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Seismoelectromagnetic homogeneous space Green’s functions

Evert Slob and Maarten Mulder

ABSTRACT

We present explicit expressions and the corresponding computer code for all homo-
geneous space Green’s functions for coupled electromagnetic fields and poroelastic
waves. The Green’s functions are derived from the basic equations in closed-form
in wavenumber-frequency and in space-frequency domains. They are given for point
sources of any type. This adds several Green’s functions to what has been published
before. These Green’s functions can be used in integral equation formulations, for
numerical model validation, and for studying earthquake related electrokinetic effects.
The wavenumber domain code for all Green’s functions is given with the numerical test
on the basic equations to demonstrate correctness. The numerical codes to compute
them in space-frequency domain are also given. Numerical inverse FFT routine is used
to provide space-time domain results. At seismic frequencies the fast P-wave is radiated
with the largest amplitude in all fields, except for the magnetic fields where no P-waves
are generated. At ultrasonic frequencies and in the particle and filtration velocity fields
generated by an electric current source the slow P-wave has the strongest amplitude.
In the filtration velocity and particle velocity the slow P-wave is, respectively, three
orders and one order of magnitude stronger than the fast P-wave.

INTRODUCTION

A macroscopic model describing the coupling of electromagnetic fields and elastic waves in
porous media has been derived by Pride (1994). The model consists of coupling between
Maxwell’s electromagnetic field equations and Biot’s equations for poroelastic waves. The
coupling mechanism lies in the transport equations that are part of the Maxwell and Biot
equations. The actual model parameters are subject to assumptions on the physical mech-
anisms underlying the model. In Pride’s model the assumptions are that there are no wave
induced diffusion effects, chemical gradients are absent so that no free charges are induced
on the grain surfaces, the pore fluids are ideal electrolytes, there is no grain-scale wave scat-
tering, all disturbances induce linear effects only, and piezo or other anisotropy effects are
absent. Pride’s postulations for the frequency dependent coupling coefficient, the dynamic
permeability, and electric conductivity are not necessarily the best ones. An alternative for-
mulation can be found in Revil and Mahardika (2013), which allows for unsaturated porous
media, and a recent development has paved the way to include two immiscible fluids in
the pore volume (Jardani and Revil, 2015). Two kinds of seismoelectric effects are known.
The first kind is based on the the electric field changes while an elastic disturbances passes,
because that disturbance creates resistivity changes within the elastic disturbance. The
setup was made with two electrodes between which a constant current runs and the electric
potential difference is measured while an elastic waves passes by the electrodes (Thomp-
son, 1936). The idea was that direct waves have different effects than reflections due to
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their large difference in apparent horizontal slownesses, which could be used to discriminate
between them in a measurement. The second kind is what we now know as the coupling
effect where the electric and magnetic fields are coupled (Ivanov, 1940; Martner and Sparks,
1959). Although the coupling effect is known for a long time, the seismoelectromagnetic
method is not routinely used in exploration geophysical activities. Field trials are reported
on massive sulfide and hydrocarbon deposits (Kepic et al., 1995; Thompson et al., 2007)
and for near surface investigations (Butler et al., 1996; Mikhailov et al., 2000; Garambois
and Dietrich, 2001). The electrokinetic effect has been proposed as a mechanism for elec-
tromagnetic fields generated during earthquakes (Karakelian et al., 2002), but no evidence
was given. Laboratory experiments at ultrasonic frequencies have been reported where the
coupled electromagnetic and elastic responses were observed (Zhu et al., 1999; Zhu and
Toksöz, 2005; Bordes et al., 2006; Zhu et al., 2008; Bordes et al., 2008). Experiments and
numerical validation of experimental results have been reported successful (Schakel et al.,
2011a,b). Several numerical models have been developed for 2D media (Han and Wang,
2001; Haines and Pride, 2006; Zyserman et al., 2010; Guan et al., 2013; Kroeger et al.,
2014). Recently, dedicated data processing techniques were developed (Haines et al., 2007;
Warden et al., 2012). Inversion and laboratory experiments with successful inversion results
have also been developed (Mahardika et al., 2012; Haas et al., 2013). Laboratory observed
transfer functions as a function of water saturation have been reported in Bordes et al.
(2015).

The first who published homogeneous space Green’s functions were Pride and Haartsen
(1996) who derived closed-form expressions for the electric field and the particle displace-
ment and filtration displacement fields generated by an electric current and forces acting
on the bulk and fluid, respectively. For these sources they continued by modeling point
source responses in a horizontally stratified medium (Haartsen and Pride, 1997). Haartsen
et al. (1998) derived expressions for the streaming currents generated by point sources of
vertical force and volume injection rate in a homogeneous porous medium. Curiously, the
authors do not present possible closed-form expressions, but give their results as Hankel
transformations, and they do not refer back to the closed-form expression given by Pride
and Haartsen in 1996. Gao and Hu (2010) derived closed form expressions for the magnetic
field generated by the three sources used in Pride and Haartsen (1996). They also stated
that not all sources can be represented by point sources, such as an explosive source or a
moment tensor source. They derived closed-form expressions for the electric and magnetic
fields generated by a moment tensor source. They did not introduce the source as a point
source in the basic equations, but used results from elastodynamic theory to introduce mo-
ment tensor responses from known Green’s functions for a force source active on the bulk.
This is not entirely correct for the coupled seismic and electromagnetic model, because
the influence of a force acting on the fluid should also be incorporated in the response to
a moment tensor. They continued to model the response of a homogeneous halfspace in
which a finite fault generated a seismoelectromagnetic response (Hu and Gao, 2011). Here
we give a proper source model that can be used as a source mechanism for earthquakes.
Even though our model is a single homogeneous medium and the source is a point source,
the way the source is incorporated allows for similar implementations in more complicated
models. Garambois and Dietrich (2002) also developed a code for modeling point source
responses in horizontally stratified media based on the scattering matrix formulation; Ren
et al. (2010) developed a layered media model and code based on a slightly different im-
plementation. Finally it is worth mentioning that when the coupling coefficient is set to
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zero, the Green’s functions for the bulk stress, the acoustic pressure, particle and filtration
velocity fields generated by force sources acting on the bulk and fluid as well as deformation
rate and volume injections rate sources are obtained and be compared to those given in
Karpfinger et al. (2009). The equations developed here can be used in modeling when a
primary-secondary formulation is used, such as in integral equation modeling, and to test
numerical results of other codes when they model the direct fields numerically.

In this paper we derive closed form expressions for all Green’s functions for fields gen-
erated by any type of source in a homogeneous medium. This is done by putting a source
term in each of the basic equations whereby the explosion source is modeled as a volume
injection rate and a moment tensor source is modeled as a deformation rate source. They
both occur in the tensor and scalar deformation equations. There are six types of fields
and six types of sources. We give the closed-form expressions of all Green’s functions in the
wavenumber-frequency domain. Ten tensor Green’s functions are found with field-source
dependent coefficients. The numerical codes are written Matlab and compute all fields
for each source type∗. In these codes the six basic equations are used to numerically val-
idate the obtained Green’s functions. These results are shown when the available codes
are run, but these results are not shown here in the paper. We then evaluate the inverse
spatial Fourier transformations in general terms and use the source-field coefficients in the
closed-form expressions in the space-frequency domain Green’s function expressions. We
show some numerical results in the space-time domain and provide the numerical codes for
all fields generated by any source type∗. We briefly discuss the results of the space-time
behavior.

BASIC EQUATIONS

The basic equations for the coupled electromagnetic fields and elastic waves in a homo-
geneous porous medium can be written as three sets of coupled equations (Pride, 1994;
Revil and Mahardika, 2013). The equations as they are given here below we assume lin-
ear medium responses so that linear macroscopic theory for isotropic media is valid. We
develop the equations in the three-dimensional spatial-Fourier time-Laplace transformed
domain. We use the following transformations. The time-Laplace transformation of a field
quantity F (x, t) is given by

F̂ (x, s) =

∫ ∞
t=0

F (x, t) exp(−st)dt, (1)

where t denotes time and the Laplace transformation parameter s can be chosen as s = iω
to reduce it to a temporal Fourier transformation and where i denotes the imaginary unit.
The three-dimensional spatial Fourier transformation of a quantity F̂ (x, s) is given by

F̆ (k, s) =

∫
x∈IR3

F̂ (x, s) exp(ikmxm)dx. (2)

The Cartesian vector components of the wavenumber vector k are denoted km and xm
denotes the coordinates of the position vector x. We use Einstein’s summation convention
for repeated lower case Latin subscripts in the range from 1 to 3, e.g., kmxm = k1x1 +

∗Peer-reviewed code related to this article can be found at http://software.seg.org/2016/0003.
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k2x2 +k3x3. The first basic equations are the two modified Maxwell equations (Schoemaker
et al., 2012),

εkmpikmH̆p + ςĔk + sρ(E)L̂w̆k = −J̆ (e)
k , (3)

−εjnriknĔr + ζH̆j = −J̆ (m)
j , (4)

where εkmj is the anti-symmetric tensor of rank three, εijk = (i − j)(j − k)(k − i)/2. The

vector components of the electric and magnetic field vectors are given by Ĕk, H̆j , whereas

J̆
(e)
k , J̆

(m)
j denote the electric and magnetic current sources; w̆i is the filtration velocity

vector, given by w̆i = φ(v̆
(f)
i −v̆i), in which φ denotes porosity, and v̆

(f)
i , v̆i denote the particle

velocity vector components in the fluid and solid, respectively. The medium parameters are
given by,

ς = η(e) − sρ(E)L̂2, η(e) = σ̂(e) + sε, (5)

ζ = σ̂(m) + sµ, ρ(E) = η/(sk̂), (6)

where σ̂(e), σ̂(m) are the generalized electric and magnetic conductivity, which include elec-
tric and magnetic dissipation and polarization effects and ε, µ are the electric permittivity
and magnetic permeability which account for propagation effects; η is viscosity, k̂ is the
dynamic permeability; L̂ is the coupling coefficient. The equations of motion are given by

sρv̆i + sρ(f)w̆i + ikj(τ̆ij + τ̆ji)/2 = f̆i, (7)

sρ(f)v̆i + sρ(E)(w̆i − LĔi)− ikip̆ = f̆
(f)
i , (8)

where ρ, ρ(f) are the mass density of the bulk and fluid, respectively, τ̆ij , p̆ denote the

components of the stress tensor and acoustic pressure, and f̆ , f̆ (f) represent the components
of the force source vectors acting on the bulk and fluid, respectively. The deformation
equations are given by

−sτ̆ij − cijkliklv̆k − Cδij ikmw̆m = cijklh̆kl + Cδij q̆, (9)

sp̆− Cikmv̆m −M iknw̆n = Ch̆ii +Mq̆, (10)

where δij denotes the components of the unit matrix; C,M are stiffness parameters of the
porous solid and cijkl is the stiffness tensor, given by

cijkl = (KG − 2G(fr)/3)δijδkl +G(fr)(δikδjl + δilδjk), (11)

in which KG, G
(fr) are the bulk and shear moduli of the porous solid. The deformation

and volume injection rate sources are given by h̆ij , q̆, respectively. The coupled seismic and
electromagnetic wavefield has four different types of wavefields characterised by the slow and
fast P-waves, the seismic shear wave, and the electromagnetic field. Hence we need to find
the solution for these waves and fields. Because of the large number of coupled equations this
is lengthy, yet straightforward. A relatively easy way is to eliminate the magnetic field, bulk
stress, filtration velocity, and acoustic pressure, leaving a coupled system of equations for
the electric field and the particle velocity in the solid. The detailed derivation of these two
coupled equations is given in Appendix A and the solution procedure is given in Appendix
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B. The fields can then be expressed with the aid of Green’s functions and the sources as



v̆i
Ĕi
w̆i
H̆i

p̆
τ̆ir

 =



Ğvfij Ğveij Ğvffij Ğvmij Ğvqi Ğvhikl
Ğefij Ğeeij Ğeffij Ğemij Ğeqi Ğehikl
Ğwfij Ğweij Ğwffij Ğwmij Ğwqi Ğwhikl
Ğmfij Ğmeij Ğmffij Ğmmij Ğmqi Ğmhikl
Ğpfj Ğpej Ğpffj Ğpmj Ğpq Ğphkl
Ğτfirj Ğτeirj Ğτffirj Ğτmirj Ğτqir Ğτhirkl





f̆j

J̆
(e)
j

f̆
(f)
j

J̆
(m)
j

q̆

h̆kl


, (12)

where the Green’s functions have superscripts that relate to the field and source types, e.g.
Ğvffij denotes the tensor components of the particle velocity Green’s function component i

generated by a force with component j exerted on the fluid and Ğmhikl denotes the tensor
components of the magnetic field Green’s function component i generated by a deformation
rate source with components kl exerted on the bulk. These Green’s functions are given in
closed form in the wavenumber-frequency and space-frequency domains in the following two
sections, respectively.

WAVENUMBER DOMAIN GREEN’S FUNCTIONS

The Green’s functions for the particle velocity and the electric field are derived in detail
in Appendix B and all others follow from these. For the Green’s functions we use tensor
descriptions as outlined in Appendix B. They are given by

Ğrsij = K̆rs
SS

(
kikj
k2
− δij

)
ĞSS + K̆rs

PP

kikj
k2

ĞPP , (13)

Ğpsi = −K̆ps
PP ikiĞ

PP , (14)

Ğmsij = −K̆ms
SS εimj ikmĞ

SS , (15)

Ğτsijk = −K̆τs
SS

[(
kikk
k2
− δik

)
ikj +

(
kjkk
k2
− δjk

)
iki

]
ĞSS

− K̆τs
PP

(
kikj
k2
− δij

)
ikk − N̆ τs

PP δij ikk, (16)

Ğpq = K̆pq
PP Ğ

PP , (17)

Ğmqi = Ğpmi = 0, (18)

Ğτqij = −K̆τq
PPk

2

(
kikj
k2
− δij

)
ĞPP + N̆ τq

PP Ğ
PP δij , (19)

Ğmmij = −K̆mm
SS

(
ζ−1kikj + η(e)δij

)
ĞSS + N̆mm

SS ĞSSδij , (20)

Ğτmijk = −K̆τm
SS (εimkkmkj + εjmkkmki) Ğ

SS , (21)
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Ğτhijkl = K̆τh
PP

[
δij

(
kkkl
k2
− δkl

)
+

(
kikj
k2
− δij

)
δkl

]
ĞPP

+ Q̆τhPP

(
kikj
k2
− δij

)(
kkkl
k2
− δkl

)
ĞPP + N̆ τh

PP Ğ
PP δijδkl

− K̆τh
SS

[(
kikk
k2
− δik

)
kjkl +

(
kikl
k2

δil

)
kjkk +

(
kjkk
k2
− δjk

)
kikl

+

(
kjkl
k2

δjl

)
kikk

]
ĞSS − H − 2G(fr)

s
δijδkl −

G(fr)

s
(δikδjl + δilδjk), (22)

where the superscript s in equations 13-16 can be s = {f, e, ff} and superscript r in
equation 13 can be r = {v, e, w}. Equation 13 contains the Green’s functions derived in
Pride and Haartsen (1996) and equation 15 is given in Gao and Hu (2010), while the others
are new. It can be observed that the direct source terms are still present in equation 22.
These could be eliminated by reworking the other parts, but that does not lead to a more
comprehensive result. For the Green’s functions the following source-receiver reciprocity
relations hold

Ğveij (k, s) = Ğefji (−k, s), Ğvqi (k, s) = −Ğpfi (−k, s), (23)

Ğvffij (k, s) = Ğwfji (−k, s), Ğeqi (k, s) = −Ĝpei (−k, s), (24)

Ğeffij (k, s) = Ğweji (−k, s), Ğwqi (k, s) = −Ğpffi (−k, s), (25)

Ğvmij (k, s) = −Ğmfji (−k, s), Ğvhijk(k, s) = Ğτfkji(−k, s), (26)

Ğemij (k, s) = −Ğmeji (−k, s), Ğehijk(k, s) = Ğτekji(−k, s), (27)

Ğwmij (k, s) = −Ğmffji (−k, s), Ğwhijk(k, s) = Ğτffkji (−k, s), (28)

Ğphij (k, s) = −Ğτqji (−k, s), Ğmhijk (k, s) = −Ğτmkji (−k, s). (29)

The scalar transversal and longitudinal wave Green’s functions are given by

ĞSS =
1

(k2 + γ2S)
− 1

(k2 + γ2EM )
, (30)

ĞPP =
1

(k2 + γ2Pf )
− 1

(k2 + γ2Ps)
, (31)

in which γS , γEM , γPf , γPs denote the spherical wavenumbers of the shear wave, electro-
magnetic field, and the fast and slow P-waves, respectively, given in equations B-9, B-10,
B-12, and B-13.

The coefficients for the fields generated by a force source acting on the bulk are given
by

K̆vf
SS = − s

G(fr)

ζη(e) + k2

γ2EM − γ2S
, (32)

K̆vf
PP =

(
sM

HM − C2

)
s2ρ(E)η(e)/(Mς) + k2

γ2Ps − γ2Pf
, (33)

K̆ef
SS = −s

2ρ(f)ζL̂

G(fr)

1

γ2EM − γ2S
, (34)

K̆ef
PP =

(
s2ρ(E)L̂C

(HM − C2)ς

)
s2ρ(f)/C + k2

γ2Ps − γ2Pf
. (35)
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K̆wf
SS =

sρ(f)

ρ(E)G(fr)

ζς + k2

γ2EM − γ2S
, (36)

K̆wf
PP = −

(
sC

HM − C2

)
s2ρ(f)/C + k2

γ2Ps − γ2Pf
. (37)

K̆pf
PP = −

(
s2

HM − C2

)
ρ(E)η(e)C/ς − ρ(f)M

γ2Ps − γ2Pf
, (38)

K̆mf
SS = −s

2ρ(f)L̂

G(fr)

1

γ2EM − γ2S
, (39)

K̆τf
SS = −ζη

(e) + k2

γ2EM − γ2S
, (40)

K̆τf
PP = 2

(
G(fr)M

HM − C2

)
s2ρ(E)η(e)/(Mς) + k2

γ2Ps − γ2Pf
, (41)

and

N̆ τf
PP =

s2(ρ(E)Hη(e)/ς − ρ(f)C)/(HM − C2) + k2

γ2Ps − γ2Pf
. (42)

The coefficients for the fields generated by an electric current source are given by

K̆ee
SS = ζ

s2ρ(c)/G(fr) + k2

γ2EM − γ2S
, (43)

K̆ee
PP =

(
(sρ(E)L̂)2sH

(HM − C2)ς2

)
s2ρ/H + k2

γ2Ps − γ2Pf
− ĞPP

ς
. (44)

K̆we
SS = ζL̂

s2ρ/G(fr) + k2

γ2EM − γ2S
, (45)

K̆we
PP = −

(
s2ρ(E)L̂H

(HM − C2)ς

)
s2ρ/H + k2

γ2Ps − γ2Pf
, (46)

K̆pe
PP =

sρ(E)L̂

ς

s2(ρM − ρ(f)C) + k2

γ2Ps − γ2Pf
, (47)

K̆me
SS =

s2ρ(c)/G(fr) + k2

γ2EM − γ2S
, (48)

K̆τe
SS = − sρ(f)L̂ζ

γ2EM − γ2S
, (49)

K̆τe
PP = 2

(
sρ(E)L̂G(fr)C

(HM − C2)ς

)
s2ρ(f)/C + k2

γ2Ps − γ2Pf
, (50)

N̆ τe
PP =

(
sρ(E)L̂

(HM − C2)ς

)
s2(ρ(f)H − ρC)

γ2Ps − γ2Pf
, (51)
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Notice that in equation 44 a separate factor ĞPP /ς is present. Although this term is absent
in Pride and Haartsen (1996) it is necessary, which can be seen by taking the limit in the
wavenumber-frequency domain of L̂→ 0. It is not required in the space-frequency domain
in the same limit, showing that the simple pole at k = 0 does not give a contribution to the
space-domain result as explained in Appendix B. The coefficients for the particle velocity
generated by an electric current source are omitted, because these can be obtained from
the reciprocity relations.

The coefficients for the fields generated by a force acting on the fluid, which cannot be
directly found from reciprocity, are given by

K̆wff
SS = − 1

sρ(E)

(s2ρ/G(fr) + k2)(ζς + k2)

γ2EM − γ2S
, (52)

K̆wff
PP =

(
sH

HM − C2

)
s2ρ/H + k2)

γ2Ps − γ2Pf
, (53)

K̆pff
PP = −s

2(ρM − ρ(f)C)/(HM − C2) + k2

γ2Ps − γ2Pf
, (54)

K̆mff
SS = L̂

s2ρ/G(fr) + k2

γ2EM − γ2S
, (55)

K̆τff
SS =

ρ(f)

ρ(E)

ζς + k2

γ2EM − γ2S
, (56)

K̆τff
PP = −2

(
G(fr)C

HM − C2

)
s2ρ(f)/C + k2

γ2Ps − γ2Pf
, (57)

N̆ τff
PP = −

(
1

HM − C2

)
s2(ρ(f)H − ρC)

γ2Ps − γ2Pf
. (58)

The coefficients for the fields generated by the volume injection rate source, which cannot
be directly found from reciprocity, are given by

K̆pq
PP =

sρη(e)

ς

s2(ρ− (ρ(f))2ς/(ρ(E)η(e)))M/(HM − C2) + k2

γ2Ps − γ2Pf
, (59)

K̆τq
PP = −2

(
2G(fr)

HM − C2

)
s(ρ(E)η(e)C/ς − ρ(f)M)

γ2Ps − γ2Pf
, (60)

N̆ τq
PP = sρ(f)

s2C(ρρ(E)η(e)/(ρ(f)ς)− ρ(f))/(HM − C2) + k2

γ2Ps − γ2Pf
. (61)

The coefficients for the fields generated by a magnetic current source, which cannot be
directly found from reciprocity, are given by

K̆mm
SS =

s2ρ(c) + k2

γ2EM − γ2S
, (62)

N̆mm
SS = −(sρ(f)L̂)2s/G(fr)

γ2EM − γ2S
, (63)

K̆τm
SS =

sρ(f)L̂

γ2EM − γ2S
. (64)
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The coefficients for the stress field generated by a deformation rate source, which cannot
be directly found from reciprocity, are given by

K̆τh
SS =

G(fr)(ζη(e) + k2)

s(γ2EM − γ2S)
, (65)

K̆τh
PP = 2

G(fr)

s

k4 + k2s2(ρ(E)Hη(e)/ς − ρ(f)C)/(HM − C2)

γ2Ps − γ2Pf
, (66)

N̆ τh
PP =

Hk4 + k2s2(ρ(E)H2η(e)/ς − 2ρ(f)HC + ρC2)/(HM − C2)

s(γ2Ps − γ2Pf )
, (67)

Q̆τhPf =

(
4(G(fr))2

s(HM − C2)

)
Mk4 + k2s2ρ(E)η(e)/ς

γ2Ps − γ2Pf
. (68)

With these coefficients all Green’s functions are defined in the wavenumber-frequency do-
main. In the numerical codes provided with this paper all these Green’s functions are
computed and used in the basic equations to verify correctness numerically. The results are
not shown in the paper, but can be obtained by running the codes available in the folder
for wavenumber-frequency domain modeling where one script file for each source type is
availabe to run the test. In the next section the space-frequency domain Green’s functions
are given.

SPACE-DOMAIN GREEN’S FUNCTIONS

Inverse spatial Fourier transformation as outlined in Appendix C gives the space-frequency
domain Green’s functions. We use the scalar and six tensor Green’s functions for the four
separate wave types derived in Appendix C to write the results. The Green’s functions are
given by

Ĝrsij (x, s) = K̂rs
S Ĝ

S
ij(x, s)− K̂rs

EM Ĝ
EM
ij (x, s) + K̂rs

Pf Ĝ
Pf
ij (x, s)− K̂rs

PsĜPsij (x, s), (69)

Ĝpsi (x, s) = K̂ps
Pf Ĝ

Pf
i (x, s)− K̂ps

Pf Ĝ
Ps
i (x, s), (70)

Ĝmsij (x, s) = εimj

(
K̂ms
S ĜSm(x, s)− K̂ms

EM Ĝ
EM
m (x, s)

)
. (71)

Ĝτsijk(x, s) = K̂τs
S

(
ĜSikj(x, s) + ĜSjki(x, s)

)
− K̂τs

EM

(
ĜEMikj (x, s) + ĜEMjki (x, s)

)
+K̂τs

Pf Ĝ
Pf
ijk(x, s)− K̂τs

PsĜ
Ps
ijk(x, s) +

(
N̂ τs
Pf Ĝ

Pf
k (x, s)− N̂ τs

PsĜ
Ps
k (x, s)

)
δij , (72)

Ĝpq(x, s) = K̂pq
Pf Ĝ

Pf (x, s)− K̂pq
PsĜ

Ps(x, s), (73)

Ĝmqi (x, s) = Ĝpmi (x, s) = 0, (74)

Ĝτqij (x, s) = K̂τq
(
γ2Pf Ĝ

Pf
ij (x, s)− γ2PsĜPsij (x, s)

)
+ (N̂ τq

Pf Ĝ
Pf (x, s)− N̂ τq

PsĜ
Ps(x, s))δij ,

(75)

Ĝmmij (x, s) = K̂mm
S

(
γ2Sζ

−1ĜSij(x, s)− η(e)ĜS(x, s)δij

)
− N̂mmĜS(x, s)δij

−K̂mm
EM

(
γ2EMζ

−1ĜEMij (x, s)− η(e)ĜEM (x, s)δij

)
+ N̂mmĜEM (x, s)δij , (76)

Ĝτmijk (x, s) = K̂τm
(
γ2S

(
εimkĜSmj(x, s) + εjmkĜSmi(x, s)

)
−γ2EM

(
εimkĜEMmj (x, s) + εjmkĜEMmi (x, s)

))
, (77)
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Ĝτhijkl(x, s) = K̂τh
Pf

(
δijĜ

Pf
kl (x, s) + ĜPfij (x, s)δkl

)
+ Q̂τhPf Ĝ

Pf
ijkl(x, s)

− K̂τh
Ps

(
δijĜ

Ps
kl (x, s) + ĜPsij (x, s)δkl

)
− Q̂τhPsĜPsijkl(x, s)

+ N̂ τh
Pf Ĝ

Pf (x, s)δijδkl − N̂ τh
PsĜ

Ps(x, s)δijδkl

+ K̂τh
S

(
ĜSikjl(x, s) + ĜSiljk(x, s) + ĜSjkil(x, s) + ĜSjlik(x, s)

)
− K̂τh

EM

(
ĜEMikjl (x, s) + ĜEMiljk (x, s) + ĜEMjkil (x, s) + ĜEMjlik (x, s)

)
−
(

(H − 2G(fr))δijδkl −G(fr)(δikδjl + δilδjk)
) δ(x)

s
. (78)

The field coefficients for any source type are equal to the wavenumber domain coefficients
with substitution of k = iγW for each wave type to which the coefficient belongs, as shown
in Appendix C. As an example the S-wave and Pf -wave coefficients for the particle velocity
generated by a force source acting on the bulk are given by

K̂vf
S = K̆vf

SS(k = iγS), (79)

K̂vf
Pf = K̆vf

PP (k = iγPf ). (80)

All other coefficients can be found in the same way. Similarly source-receiver reciprocity
relations in space-domain can be directly obtained from the wavenumber domain counter-
parts, e.g.,

Ĝvqij (x,xs, s) = −Ĝpfji (xs,x, s), (81)

Ĝvhijk(x,x
s, s) = Ĝτfkji(x

s,x, s), (82)

where it is noted that in the latter example not only source-receiver subscripts are inter-
changed, but also the two subscripts related to the deformation rate source are interchanged
when related to the stress field. The other relations can be found in a similar way.

NUMERICAL RESULTS

The code that is available with the paper computes all fields generated by each type of source
and will do so very fast on a simple desktop computer. However, to avoid a large number of
figures here we show a limited number of field responses. Because the coupling coefficient is
small, converted wavefields are small for seismic fields generated by seismic sources and for
electromagnetic fields from electromagnetic sources. We therefore concentrate on seismic
fields generated by electromagnetic sources. Because the magnetic current source only
creates transversal waves it is sufficient to look at the seismic field responses to an electric
current source. The reverse fields can be understood from source-receiver reciprocity. In
this section we use x for x1, y for x2 and z for x3. We take an electric current source in
the origin and a grid of receivers in the (x, y)-plane at some depth below the source. The
time source signature is a Ricker wavelet with center frequency of 40 Hz and of 400 kHz
to mimic field seismic and ultrasonic measurement regimes. The medium parameters that
have been used to generate the results are given in Table 1.

We compute the particle velocity and filtration velocity fields generated by an electric
current source emitting a Ricker wavelet with center frequency of 40 Hz in the horizontal
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plane at a depth of z = 50 m below the source location. We show the four different wave
types separately for Gve11(x, y, z, t) in Figure 1 and Gwe11 (x, y, z, t) in Figure 2 for fixed z and
t = 98 ms. The first observation is that in a single field the amplitudes of the four wave
types differ by more than 10 orders of magnitude. The propagating waves are the S-wave
and the fast P-wave and their amplitude difference four orders of magnitude.The S-waves
shown in Figures 1a and 2a have a maximum propagation amplitude in the y-direction.
It can be seen that the particle velocity S-wave is more than three orders of magnitude
stronger than that of the filtration velocity. The particle velocity and filtration velocity in
the electromagnetic and the slow P-waves of these fields are diffusive fields in the frequency
band of the Ricker wavelet as can be seen from Figures 1b, 2b and 1c, 2c, respectively.
In this snapshot their amplitudes are several orders of magnitude smaller than those of
the propagating waves. The reason for the low amplitude of the particle velocity in the
electromagnetic field is because the signal essentially arrives at t = 0 and there it has a
maximum amplitude that is on the order of 10−12 and the signal has a short duration of
the time window of the Ricker wavelet. Hence, the particle velocity in the electromagnetic
field has a similar maximum amplitude as the fast P-wave. For the slow P-wave it is
different because the diffusion process is very slow and the signal is spread out over the
whole time window, but with extremely small amplitude. The fast P-waves are shown in
Figures 1d and 2d. They propagate with maximum amplitude in the x-direction and the
particle velocity fast P-wave is more than three orders of magnitude stronger than that of
the filtration velocity. The ratio of maximum amplitude of fast P-wave and S-wave in the
particle velocity and the filtration velocity fields is approximately 5 × 103. We can also
observe that the particle velocity and filtration velocity fields have opposite polarity. The
stress-field is similar, but because it has one extra gradient the radiation pattern is slightly
different and is not shown here.

We compute the particle velocity and filtration velocity fields generated by an electric
current source emitting a Ricker wavelet with center frequency of 400 kHz in the horizontal
plane at a depth of z = 5 mm below the source location. At these frequencies we cannot
use the static values for the permeability and coupling coefficients and we use the following
relations

k̂(ω) = k0

(√
1 + sm/(2ωc) + s/(ωc)

)−1
, (83)

L̂(ω) = L0 (1 + 2s/(mωc))
−1/2 , (84)

in which m is a shape factor that we take as m = 8 and ωc is the critical frequency given
by ωc = φη/(α∞k0ρ

(f)) and in our example ωc = 76.9 kHz. We show the four different
wave types separately for Gve11(x, y, z, t) in Figure 3a-3d and Gwe11 (x, y, z, t) in Figure 4a-4d
for fixed z = 5 mm and t = 9.8 µs. The shear-waves can be seen in Figures 3a and 4a and
it can be seen that the particle velocity S-wave is an order of magnitude stronger than that
of the filtration velocity. The particle velocity and filtration velocity in the electromagnetic
field is still diffusive in the ultrasonic frequency band of the Ricker wavelet as can be seen
from Figures 3b and 4b. The reason for the low amplitude of the particle velocity in the
electromagnetic field is because the signal essentially arrives at t = 0 and there it has a
maximum amplitude and the signal has a short duration of the time window of the Ricker
wavelet so we observe the tail end of the Ricker wavelet. At these frequencies the slow
P-wave is a propagating wave with a propagation velocity below that of the shear wave as
can be seen in Figures 3c and 4c, respectively. The slow P-waves are the strongest signal
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Figure 1: The particle velocity response to an electric current source; S-wave (a), EM-field
(b), Ps-field (c), and Pf-wave (d).
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Figure 2: The filtration velocity response to an electric current source; S-wave (a), EM-field
(b), Ps-field (c), and Pf-wave (d).
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Figure 3: The ultrasonic particle velocity response to an electric current source; S-wave (a),
EM-field (b), Ps-field (c), and Pf-wave (d).
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Figure 4: The ultrasonic filtration velocity response to an electric current source; S-wave
(a), EM-field (b), Ps-field (c), and Pf-wave (d).
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in this frequency band and the filtration velocity slow P-wave is more than three times
stronger than that of the particle velocity. The fast P-waves are shown in Figures 1d and
2d and the particle velocity fast P-wave is just over one order of magnitude stronger than
that of the filtration velocity. The ratio of maximum amplitude of fast P-wave and S-wave
in the particle velocity and the filtration velocity fields has increased compared to the low
frequency example above to approximately 108. We can observe that the particle velocity
and filtration velocity fields have opposite polarity. We can also observe that the electric
field at seismic frequencies has opposite polarity relative to the electric field at ultrasonic
frequencies.

CONCLUSIONS

We have derived closed-form expressions for the Green’s functions corresponding to all
fields and any type of source. This was done by reducing the coupled system of equations
to an algebraic system for the particle velocity and the electric field in the wavenumber-
frequency domain. The solution of this reduced set naturally leads to separated solutions
for transversal and longitudinal wavefields and is given in terms of four tensors of rank
two. These tensors are the time-step response Green’s functions for the particle velocity
and electric field generated by a force source acting on the bulk and the fluid, respectively.
All Green’s functions for the particle velocity generated by other sources are linear combi-
nations of the Green’s functions for the particle velocity generated by a force source acting
on the bulk and the fluid. Similarly, all Green’s functions for the electric field generated by
other sources are linear combinations of the Green’s functions for the electric field generated
by a force source acting on the bulk and the fluid. From these expressions and the basic
equations the Green’s functions for all fields generated by any source can be found alge-
braically. After these are found a three-dimensional inverse spatial Fourier transformation
could be evaluated analytically to find closed-form expression for all the Green’s functions
in space-frequency domain. Space-time domain results are then obtained numerically using
an inverse FFT routine.

We have provided numerical codes in which all fields are computed for a particular
source and substituted the results in the basic equations in wavenumber-frequency domain
to demonstrate correctness of the results. This is done for all sources, but for a single
component, which suffices to demonstrate correctness of the obtained results. We have also
provided numerical codes to compute all fields generated by each source separately. For an
electric current source we have shown numerical results by separating the four wave types.
This allowed to analyse and compare the results. At seismic frequencies the fast P-wave is
radiated with the strongest amplitude in all fields, except for the magnetic field where only
transversal waves are generated. At ultrasonic frequencies the slow P-wave is the strongest
signal of the four types. In the filtration and particle velocity fields generated by an electric
current source the slow P-wave is, respectively, three orders and one order of magnitiude
lager than the fast P-wave, which is the second strongest wave component in these fields.
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APPENDIX A: REDUCTION TO COUPLED EQUATIONS FOR
ELECTRIC FIELD AND PARTICLE VELOCITY

Here we reduce the system of equations to coupled equations for the electric field and the
particle velocity, by eliminating all other fields. We start by eliminating Ĥj from equation 3
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with the aid of equation 4, which gives

−kkkmĔm + k2Ĕk + ζςĔk + sζρ(E)L̂w̆k = −ζJ̆ (e)
k + εkmpikmJ̆

(m)
p , (A-1)

in which k2 = kmkm. Equation A-1 relates the electric field and the filtration velocity to
the action of electric and magnetic current sources. By taking the scalar product with k in
equation A-1 we obtain

ςkmĔm + sρ(E)L̂knw̆n = −krJ̆ (e)
r , (A-2)

which allows expressing knw̆n in terms of knĔn and knJ̆
(e)
n . We now eliminate p̆ using

equation 10 in equation 8 and find

s2ρ(f)v̆i + Ckikmv̆m + s2ρE(w̆i − L̂Ĕi) +Mkikmw̆m =

sf̆
(f)
i + Cikih̆mm +M ikiq̆, (A-3)

from which we eliminate w̆i and kmw̆m using equations A-1 and A-2 yielding

s2ρ(f)v̆k + Ckkkmv̆m −
s

L̂ζ
(k2 + η(e)ζ)Ĕk +

(
s

L̂ζ
− Mς

sρ(E)L̂

)
kkkmĔm

= sf̆
(f)
k + (Ch̆mm +Mq̆)ikk +

s

L̂

(
J̆
(e)
k − ζ

−1εkmpikmJ̆
(m)
p

)
+

M

sρ(E)L̂
kkknJ̆

(e)
n . (A-4)

Equation A-4 is the first equation that we need to find Green’s function expressions for the
electric field and particle velocity.

For the second set of equations we start by eliminating τ̆ij from equation 7 using equa-
tion 9, which leads to

s2ρv̆i + cijklkjklv̆k + s2ρ(f)w̆i + Ckikmw̆m = cijklikj h̆kl + Cikiq̆ + sf̆i, (A-5)

from which we eliminate w̆i and kmw̆m using equations A-1 and A-2 resulting in

s2ρv̆i + cijklkjklv̆k −
sρ(f)

ρ(E)L̂ζ
(k2 + ζς)Ĕi +

(
sρ(f)

ρ(E)L̂ζ
− Cς

sρ(E)L̂

)
kikmĔm

= sf̆i + cijklikj h̆kl + Cikiq̆ +
sρ(f)

ρ(E)L̂

(
J̆
(e)
i − ζ

−1εimpikmJ̆
(m)
p

)
+

C

sρ(E)L̂
kiknJ̆

(e)
n . (A-6)

We substitute the expression for cijkl of equation 11 in equation A-6 to obtain an expression
where the particle velocity and its divergence occur explicitly(

G(fr)k2 + s2ρ
)
v̆i +

(
H −G(fr)

)
kikmv̆m −

sρ(f)

ρ(E)L̂ζ
(k2 + ςζ)Ĕi −

Cςζ − s2ρ(f)

sρ(E)L̂ζ
kikmĔm

= sf̆i +
(
H − 2G(fr)

)
ikih̆kk + 2G(fr)ikj h̆ij + Cikiq̆

+
sρ(f)

ρ(E)L̂

(
J̆
(e)
i − ζ

−1εimpikmJ̆
(m)
p

)
+

C

sρ(E)L̂
kiknJ̆

(e)
n . (A-7)

with H = KG + 4G(fr)/3. Equation A-7 is the second equation for the electric field and the
particle velocity. Equations A-4 and A-7 can be combined in a matrix equation given by(

a11δij + b11kikj a12δik + b12kikk
a21δpj + b21kpkj a22δpk + b22kpkk

)(
v̆j
Ĕk

)
=

(
F̆i;1
F̆p;2

)
, (A-8)
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with the source vectors given by(
F̆i;1
F̆p;2

)
=

(
sf̆

(f)
i + Cikih̆mm +M ikiq̆

sf̆p + (H − 2G(fr))ikph̆mm + 2G(fr)ikj h̆pj + Cikpq̆

)

+

 (
s
L̂
δij + M

sρ(E)L̂
kikj

)
J̆
(e)
j −

s
L̂ζ
εijkikj J̆

(m)
k(

sρ(f)

ρ(E)L̂
δpq + C

sρ(E)L̂
kpkq

)
J̆
(e)
q − sρ(f)

ρ(E)L̂ζ
εpmj ikmJ̆

(m)
j

 . (A-9)

The coefficients are given by

(
a11 a12
a21 a22

)
=

 s2ρ(f) −s(k
2 + ζη(e))

Lζ

s2ρ+G(fr)k2 − sρ(f)

L̂ρ(E)ζ
(k2 + ζς)

 , (A-10)

and (
b11 b12
b21 b22

)
=

 C
s

L̂ζ
− Mς

sL̂ρ(E)

H −G(fr) sρ(f)

L̂ρ(E)ζ
− Cς

sL̂ρ(E)

 . (A-11)

For later use it is convenient to also have the following combinations(
c11 c12
c21 c22

)
=

(
a11 + b11k

2 a12 + b12k
2

a21 + b21k
2 a22 + b22k

2

)

=

 s2ρ(f) + Ck2 −sη
(e)

L̂
− Mςk2

sL̂ρ(E)

s2ρ+Hk2 −sρ
(f)ς

L̂ρ(E)
− Cςk2

sL̂ρ(E)

 . (A-12)

APPENDIX B: MATRIX INVERSION AND GREEN’S FUNCTIONS

Let us write the matrix of equation A-8 as(
A B
C D

)
=

(
a11δij + b11kikj a12δik + b12kikk
a21δpj + b21kpkj a22δpk + b22kpkk

)
, (B-1)

Then the inverse can be written as(
A B
C D

)−1
=

(
P Q
R S

)
. (B-2)

Because of the fact that our matrix consists of four similar symmetric square block matrices
we are only interested in the expression for P. It is given by P = (A− BD−1C)−1 and the
other matrices can be found from this solution by substitution. The matrix of equation B-1
consists of four 3× 3 block matrices. The inverse of each such block matrix is given by

(αδij + βkikj)

[
α−1(δjk −

βkjkk)

α+ βk2

]
= δik, (B-3)

seismoelectromagnetic Green’s functions



Slob and Mulder 21 Geophysics

where the term between square brackets in the left-hand side of the above equation denotes
the inverse of the term to the left of it, which represents a block matrix. With the aid of
equation B-3 P, as expressed in equation B-2, is given in components by

Pij =
a22

a11a22 − a12a21

(
δij −

kikj
k2

)
+

c22
c11c22 − c12c21

kikj
k2

. (B-4)

Notice that the division by k2 in both expressions is only an apparent singularity and
this pole will give a zero contribution in the inverse spatial Fourier transformation. The
expression for S can be written down by interchanging subscripts 1 and 2 in the expression
for P,

Sij =
a11

a11a22 − a12a21

(
δij −

kikj
k2

)
+

c11
c11c22 − c12c21

kikj
k2

. (B-5)

The expression for Q is obtained from P by keeping the second subscripts unchanged and
interchanging the values 1 and 2 in the first subscripts,

Qij =
−a12

a11a22 − a12a21

(
δij −

kikj
k2

)
− c12
c11c22 − c12c21

kikj
k2

. (B-6)

The expression for R is obtained from P by keeping the first subscripts unchanged and
interchanging the values 1 and 2 in the second subscripts,

Rij =
−a21

a11a22 − a12a21

(
δij −

kikj
k2

)
− c21
c11c22 − c12c21

kikj
k2

. (B-7)

The denominators can be written as

1

a11a22 − a12a21
=

L̂ζ

sG(fr)

1

(k2 + s2ρ/G(fr))(k2 + s2ζη(e))− (sρ(f))2(k2 + ζς)/(ρ(E)G(fr))

=
L̂ζ

sG(fr)

1

(k2 + γ2S)(k2 + γ2EM )
. (B-8)

The S-wave and electromagnetic spherical wave numbers, γS , γEM , respectively, are found
as

γS =
1√
2

s2ρ(c)
G(fr)

+ ζη(e) +

√(
s2ρ(c)

G(fr)
− ζη(e)

)2

− 4s3ζ(ρ(f)L̂)2

G(fr)

1/2

, (B-9)

γEM =
1√
2

s2ρ(c)
G(fr)

+ ζη(e) −

√(
s2ρ(c)

G(fr)
− ζη(e)

)2

− 4s3ζ(ρ(f)L̂)2

G(fr)

1/2

, (B-10)

with ρ(c) = ρ− (ρ(f))2/ρE , and <{γS , γEM} ≥ 0.

1

c11c22 − c12c21
=

sρ(E)L̂/ς

HM(k2 + s2ρEη(e)/(Mς))(k2 + s2ρ/H)− C2(k2 + s2ρ(f)/C)2

=
sρ(E)L̂

ς(HM − C2)(k2 + γ2Pf )(k2 + γ2Ps)
. (B-11)
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In this expression the spherical wave numbers of the fast and slow longitudinal waves,
γPf , γPs, respectively, are given by

γPf =
s√
2

ν −
√
ν2 + 4

(ρ(f))2 − ρρEη(e)/ς
HM − C2

1/2

, (B-12)

γPs =
s√
2

ν +

√
ν2 + 4

(ρ(f))2 − ρρEη(e)/ς
HM − C2

1/2

, (B-13)

with <{γPf , γPs} ≥ 0, and

ν =
ρM − 2ρ(f)C + ρEHη(e)/ς

HM − C2
. (B-14)

We can now write the matrices as

Pij = − ρ(f)

ρ(E)G(fr)

(k2 + ζς)

(k2 + γ2S)(k2 + γ2EM )

(
δij −

kikj
k2

)
−
(

C

HM − C2

)
(k2 + s2ρ(f)/C)

(k2 + γ2Pf )(k2 + γ2Ps)

kikj
k2

, (B-15)

Qij =
1

G(fr)

(k2 + ζη(e))

(k2 + γ2S)(k2 + γ2EM )

(
δij −

kikj
k2

)
+

(
M

HM − C2

)
(k2 + s2ρ(E)η(e)/(Mς))

(k2 + γ2Pf )(k2 + γ2Ps)

kikj
k2

, (B-16)

Rij = − L̂ζ
s

(k2 + s2ρ/G(fr))

(k2 + γ2S)(k2 + γ2EM )

(
δij −

kikj
k2

)
−

(
Hsρ(E)L̂

(HM − C2)ς

)
(k2 + s2ρ/H)

(k2 + γ2Pf )(k2 + γ2Ps)

kikj
k2

, (B-17)

Sij =
sρ(f)L̂ζ

G(fr)

1

(k2 + γ2S)(k2 + γ2EM )

(
δij −

kikj
k2

)
+

(
Csρ(E)L̂

(HM − C2)ς

)
(k2 + s2ρ(f)/C)

(k2 + γ2Pf )(k2 + γ2Ps)

kikj
k2

. (B-18)

From the fact that k = 0 gives a zero contribution we find the following identity from the
matrix P as (

γPsγPf
γSγEM

)2

=
s2ρ(E)G(fr)

(HM − C2)ζς
, (B-19)

which is easily verified to be correct. The same result is obtained from taking k = 0 in any
of the other matrices. It can also be used to check results of Green’s functions that are
linear combinations of these matrices. The Green’s functions for the particle velocity and
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the electric field of equation 12 can be written in terms of the four matrices as

Ğvfij = sQij , (B-20)

Ğveir =
Pij(s

2ρ(E)δjr +Mkjkr) +Qij(s
2ρ(f)δjr + Ckjkr)

sρ(E)L̂
, (B-21)

Ğvffij = sPij , (B-22)

Ğvmip = −(sρ(E)Pij + sρ(f)Qij)εjmpikm

ρ(E)L̂ζ
, (B-23)

Ğvqi = (MPij + CQij)ikj , (B-24)

Ğvhikl = (CPij + (H − 2G(fr))Qij)ikjδkl + 2G(fr)Qikikl, (B-25)

and

Ğefij = sSij , (B-26)

Ğeeir =
Rij(s

2ρ(E)δjr +Mkjkr) + Sij(s
2ρ(f)δjr + Ckjkr)

sρ(E)L̂
, (B-27)

Ğeffij = sRij , (B-28)

Ğemip = −(sρ(E)Rij + sρ(f)Sij)εjmpikm

ρ(E)L̂ζ
, (B-29)

Ğeqi = (MRij + CSij)ikj , (B-30)

Ğehikl = (CRij + (H − 2G(fr))Sij)ikjδkl + 2G(fr)Sikikl. (B-31)

By comparing equation B-31 with equations B-26 and B-28 it can be seen that the electric
field generated by a deformation rate source can be written by two moment tensors, one
for the responses of a force source acting on the bulk and one for a force source acting
on the fluid. Incorporation of a deformation source as a source term gives a contribution
CRij ikjδkl that is not included in the response given by Gao and Hu (2010). This has an
effect on the derived responses for other field quantities. All other Green’s functions can
be found from these sets and the basic equations. All Green’s functions are explicitly given
in the main text. For notational convenience we give the expressions for the scalar Green’s
functions for transversal ĞSS and longitudinal waves ĞPP as

ĞSS =
γ2EM − γ2S

(k2 + γ2S)(k2 + γ2EM )
=

1

k2 + γ2S
− 1

k2 + γ2EM
, (B-32)

ĞPP =
γ2Ps − γ2Pf

(k2 + γ2Pf )(k2 + γ2Ps)
=

1

k2 + γ2Pf
− 1

k2 + γ2Ps
. (B-33)

These are used in the main text for ease of notation that can be used in space-frequency
domain as well.
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APPENDIX C: TRANSFORMATION BACK TO
SPACE-FREQUENCY DOMAIN

Every scalar part of the Green’s functions given in equations 13-22 can be written in the
form,

H̆(k, s) =
F̆ (k, s)

k2 + γ2a
, (C-1)

with F̆ (k, s) a regular function consisting of the prefactor of the total Green’s function
in question and in which only even powers of k occur. Because the pole at k = 0 gives
a zero contribution the functions F̆ can be considered regular functions of k. The three-
dimensional inverse spatial-Fourier transform is then given by,

Ĥ(x, s) =
1

(2π)3

∫
k

exp(−ik · x)H̆(k, s)d3k. (C-2)

Because H̆ is a function of k only, we change to spherical coordinates in k-space with center
at k = 0 and take the direction of x as polar axis. We had already defined k = |k|, we
take θ as the angle between k and x, and φ as the angle between the projection of k onto
the plane perpendicular to x and some fixed direction of reference in this plane. Then the
ranges of integration become 0 < k <∞, 0 < θ < π and 0 < φ < 2π, with

k · x = k|x|cos(θ), k · k = k2, d3k = k2sin(θ)dkdθdφ. (C-3)

The integration with respect to φ amounts to multiplication by 2π, and the integration with
respect to θ results in

Ĥ(x, s) =
1

4π2|x|i

∫ ∞
k=0

exp(ik|x|)− exp(−ik|x|)
k2 + γ2a

F̆ (k, s)kdk, (C-4)

Notice that the negative exponent can be dropped if the lower integration limit is extended
to −∞, because in F̆ no odd powers of k occur,

Ĥ(x, s) =
1

4π2|x|i

∫ ∞
k=−∞

exp(ik|x|)
k2 + γ2a

F̆ (k, s)kdk. (C-5)

If now the path of integration is supplemented with a semicircle situated in the upper half-
plane with an infinite radius, such that a counter-clockwise closed path of integration is
obtained, the residue theorem can be applied. Jordan’s Lemma shows that the contribution
from the semicircle vanishes at infinity, therefore the outcome of the closed path integral is
the same as that of equation C-5. According to the residue theorem Ĥ(x, s) is equal to 2πi
times the residue of the simple pole of H̆(k, s), and the residue of the pole is given by,

Resk=iγa

(
H̆(k, s)

)
= lim

k→iγa

1

4π2|x|i
exp(ik|x|)(k − iγa)k

(k + iγa)(k − iγa)
F̆ (k, s) (C-6)

=
1

4π2|x|i
exp(−γa|x|)iγa

2iγa
F̆ (iγa, s) (C-7)

=
exp(−γa|x|)

8π2|x|i
F̂ (iγa, s), (C-8)
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leading to

Ĥ(x, s) = F̂ (iγa, s)
exp(−γa|x|)

4π|x|
. (C-9)

In the rest of the Green’s function expressions the k-dependent factors are of the form
−iki and kikj/k

2 and lead to spatial derivatives ∂i and γ−2W ∂i∂j after transformation. In
the last expression W refers to the wave type, which can be W = {Pf, Ps, S,EM}. From
equations 13-22 we observe that up to four gradients for a Green’s function of wave type
W must be evaluated,

ĜW (x,xs, s) =
exp(−γWR)

4πR
, (C-10)

in which R is the source-receiver distance R = |x− xs| > 0.

If we take one to four gradients we obtain

∂rĜ
W (x, s) = −

(
1

R
+ γW

)
xk
R

exp(−γWR)

4πR
, (C-11)

∂k∂rĜ
W (x, s) =

[(
3
xkxr
R2
− δkr

)( 1

R2
+
γW
R

)
+
xkxr
R2

γ2W

]
exp(−γWR)

4πR
, (C-12)

∂m∂k∂rĜ
W (x, s) =

[
δmkxr + δmrxk + δkrxm

R

(
3

R3
+

3γW
R2

+
γ2W
R

)
− xmxkxr

R3

(
15

R3
+

15γW
R2

+
6γW
R

+ γ3W

)]
exp(−γWR)

4πR
, (C-13)

∂n∂m∂k∂rĜ
W (x, s) =

[
(δmkδnr + δmrδnk + δkrδmn)

(
3

R4
+ 3

γW
R3

+
γ2W
R2

)
− δnmxkxr + δnkxmxr + δnrxmxk + δmkxnxr + δmrxnxk + δkrxnxm

R2

×
(

15

R4
+ 15

γW
R3

+ 6
γ2W
R2

+
γ3W
R

)
+
xnxmxkxr

R4

(
105

R4
+ 105

γW
R3

+ 45
γ2W
R2

+ 10
γ3W
R

+ γ4W

)]
exp(−γWR)

4πR
.

(C-14)

For the Green’s functions we define six tensor Green’s functions with which we can write
all fields generated by any source,

ĜWi (x, s) = ∂iĜ
W (x, s), (C-15)

ĜWij (x, s) = γ−2W ∂i∂jĜ
W (x, s), (C-16)

ĜWij (x, s) = ĜWij (x, s)− δijĜW (x, s), (C-17)

ĜWijk(x, s) = γ−2W ∂i∂j∂kĜ
W (x, s)− δijĜWk (x, s), (C-18)

ĜWijkl(x, s) = γ−2W ∂i∂j∂k∂lĜ
W (x, s)− δij∂k∂lĜW (x, s), (C-19)

ĜWijkl(x, s) =
∂i∂j∂k∂lĜ

W (x, s)

γ4W
− (δij∂k∂l + ∂i∂jδkl)Ĝ

W (x, s)

γ2W
+ δijδklĜ

W (x, s). (C-20)

With these results and expressions for the gradients we can find all space domain Green’s
functions and these are given in the main text.
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Table 1: Medium parameters, symbols, values, and SI units.

Parameter Symbol value SI unit

free space permittivity ε0 8.854× 10−12 s/(Ωm)
free space permeability µ0 4π × 10−7 sΩ/m
bulk electric permittivity ε 11.6ε0 s/(Ωm)
bulk magnetic permeablity µ µ0 sΩ/m

bulk electric conductivity σ(e) 9.3× 10−4 S/m

bulk magnetic conductivity σ(m) 0 Ω/m
viscosity η 10−3 kg/(sm)
static permeability k0 1.3× 10−12 m2

tortuosity α∞ 3 -
porosity φ 0.38 -

shear modulus G(fr) 9× 109 N/m2

bulk modulus KG 9.35× 109 N/m2

fluid density ρ(f) 1000 kg/m3

bulk density ρ 2190 kg/m3

coupling coefficient L 6.8× 10−9 m2s/V
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