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Summary 

 

Although theoretically straightforward, adapting focal deblending to realistic 5D acquisition scenarios can be 

challenging in practice. The two main issues that have to be dealt with are insufficiently sampled spatial 

dimensions and the computational effort needed for the deblending inversion. In order to deal with both issues, 

we propose dividing the data in 'smart' subsets, specialized for the acquisition type. Then, the deblending 

problem can be divided into a number of smaller problems that can be solved independently. The focal 

transform used for the deblending is also redefined to fit the geometry of the subsets. We examine the case of 

OBN acquisition and test the performance of the proposed scheme on numerically blended field data. 
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Introduction

Simultaneous source acquisition, also referred to as blended acquisition, has matured enough as a tech-
nology to be used in the field. It offers extra flexibility to seismic acquisition by allowing a degree of
overlap between the wavefields created by seismic sources. Therefore, it enables a tradeoff between shot
density and acquisition time, which we can exploit in acquisition design. Other benefits include potential
increase in the signal-to-noise ratio (SNR) of the recorded wavefields as well as incoherent illumination
of the subsurface (Berkhout, 2008).

A considerable amount of effort has been devoted in answering key questions related to blended acqui-
sition. The first important question is how to best manage the overlap between the recorded wavefields.
The amount and nature of the overlap are controlled via the blending code, which specifies shot prop-
erties such as location, firing time, sweep parameters, amplitude modulation etc., always within the
constraints posed by the type of aqcuisition and the seismic source technology to be used. A common
choice is the random delay code, where random delays are introduced between each shot, the aim be-
ing to introduce incoherency in the blending noise. This technique can be extended by shot repetition,
where each shot is repeated more than one time, which has the effect of amplifying the coherent signal
compared to the incoherent blending noise (Wu et al., 2015). Source modulation can also give codes
with properties favorable for separation (Robertsson et al., 2016).

The second important question is how to separate (deblend) the recorded wavefields. The main principle
behind separation is to exploit properties of the blended signal that were specifically introduced by the
blending code in order to aid the separation process. Usually the property exploited is the coherency
of the signal versus the incoherency of the blending noise in the pseudodeblended wavefield, i.e. the
wavefield after the adjoint of the blending operation has been applied. The separation process then can
be posed as a problem of quantifying coherency somehow and accepting those solutions of the separation
problem that maximize the chosen metric of coherency. The flexibility in defining a coherency metric has
led to a variety of approaches to deblending. Examples include coherency-based FK filtering (Mahdad
et al., 2011), median-based filtering (Gan et al., 2015; Zhan et al., 2015), sparsity-based methods using
Radon transforms (Ibrahim and Sacchi, 2013; Haacke et al., 2015), curvelets (Lin and Herrmann, 2009;
Wason et al., 2011) and seislets (Chen, 2015). Another approach is to use rank-reduction techniques
(Wason et al., 2014; Cheng and Sacchi, 2015).

In Kontakis and Verschuur (2014) a deblending approach based on the double focal transform was
introduced, with an application to a 2D line dataset. As discussed in Kontakis et al. (2016) and Kontakis
and Verschuur (2016), extending this methodology for full 5D datasets presents a number of challenges,
the most important being the computational cost involved in solving the inverse problem. Fortunately,
it is possible to redefine the focal transform and tailor it for deblending ‘smart’ subsets of the 5D data
volume. An application to the towed multi-streamer case was presented. In this paper we handle the
case of an ocean bottom node (OBN) acquisition, as a continuation of the work found in Kontakis and
Verschuur (2016), and demonstrate this on numerically blended field data.

Method and Theory

In an OBN acquisition typically a few receiver nodes are placed at the ocean bottom, while one or more
vessels carrying seismic sources fire shots at the sea surface. Typically the number of shot locations
is much greater than the number of receiver locations and usually follows a regular and dense grid.
Applying the double focal transform (Berkhout and Verschuur, 2010; Kutscha et al., 2010; Kutscha and
Verschuur, 2012) directly on the whole 5D data volume, apart from being computationally costly, would
be very likely to introduce lots of artifacts due to the small number of receivers and the relatively big
distance between them. Let P(xr,yr,zr;xs,ys,zs;ω)≡P(xr,xs;ω) be a sample of the wavefield at angular
frequency ω , generated by a source at (xs,ys,zs)≡ xs and recorded by a receiver node at (xr,yr,zr)≡ xr.
Note that since the acquisition under discussion is an OBN-type acquisition, zr will generally be at the
sea bottom, whereas zs = z0 = 0m will be at the sea surface level.

A natural way to divide the recorded dataset into subsets, is to split the traces to sets, each one containing
all traces with the same receiver coordinates. Thus, each subset pertains to a specific node and the
deblending process to follow is understood to be performed separately for each of the subsets. Each of
these subsets can be divided further into sets of traces Dm, m = 1,2, . . . ,M. The next step is to define
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a focal transform for each set Dm. Since we consider only one receiver and many sources, it is natural
to do the focusing in the source dimension. The source-side single focal transform is suitable for this
purpose. We assume a crude velocity model as prior knowledge. We can then define K depth levels
zk. For each of these depth levels and each set Dm, a focal subdomain Xk,m(xr;x f ;ω) - focal operator
Gk,m(x f ;xs;ω) pair can be defined such that

Pm(xr;xs;ω) =
K

∑
k=1

∑
x f∈
Fk,m

Xk,m(xr;x f ;ω)Gk,m(x f ;xs;ω), xr,xs ∈ Dm. (1)

The focal operator is a two-way wavefield extrapolator that extrapolates a wavefield from the source
locations at the surface, to depth level zk and then to a set of chosen coordinates Fk,m with elements
(x,y,zr)≡ x f , that lie on the plane z = zr, as schematically illustrated in Fig. 1a. The set of coordinates
Fk,m defines a focusing grid. Generally we assume a homogeneous isotropic medium of known velocity
for this extrapolation. The focal subdomain here can be understood as a virtual dataset with sources at
x f ∈ Fk,m and a receiver at xr ∈ Dm. This virtual dataset is produced by removing traveltime from the
sources of Pm(xr;xs;ω). This has a focusing effect which can be later used to constrain the deblended
solution. The focusing grid locations should be generally chosen to lie near the receiver coordinates
for achieving good focusing. This could be the same for all depth levels, but it does not need to. In
fact, for low focal velocities it can be beneficial to define a finer grid to avoid artifacts arising from
the summation along x f in Eq. (1). Similar to the towed streamer case, we pay a certain price for the
simplifications we introduced. Approximate velocities, limited number of depth levels, a focusing grid
of limited dimensions and working on a subset of the data, will generally lead to less good focusing
than what could be achieved with a dense coverage of sources and receivers. Still, as will be seen in the
example it is possible to achieve rather good separation despite these limitations.
For the blending part, we assume a random time delay code, where a source at location xs fires at time
τ(xs). The relationship between the blended and unblended data then is given by

Pbl(xr;Bi;ω) = ∑
xs∈
Bi

Pm(xr;xs;ω)e− jωτ(xs), m : (xs ∈ Dm)∧ (xs ∈ Bi), xr ∈ Dm, (2)

where Bi is the set of shots that generate the i-th blended shot gather. Inserting Eq. (1) in Eq. (2) we
arrive at

Pbl(xr;Bi;ω) = ∑
xs∈
Bi

K

∑
k=1

∑
x f∈
Fk,m

Xk,m(xr;x f ;ω)Gk,m(x f ;xs;ω)e− jωτ(xs), m : (xs ∈ Dm)∧ (xs ∈ Bi), xr ∈ Dm.

(3)
Using the matrix notation adopted in Berkhout (1982), Eq. (3) can be written more concisely using
monochromatic frequency slices, where blended shots are stored as the columns of P̄bl(zr;zs;ω):

P̄bl(zr;zs;ω) =
K

∑
k=1

X̄k(zr;zr;ω)Ḡk(zr;zs;ω)Γ̄ΓΓ(zs;ω). (4)

The bar over the matrices serves as a reminder that we are working with a subset, rather than with the
whole volume of the recorded dataset. The operator Γ̄ΓΓ(zs;ω) performs the blending operation.
We can take advantage of the compression achieved by the focusing, by promoting sparse solutions in
the compressed focal domain. A way to achieve this is to solve the following optimization problem:

min

{
∑

t

K

∑
k=1

||X̄k(zr;zr; t)||S

}
s.t. ∑

ω
||P̄bl(zr;zs;ω)−

K

∑
k=1

X̄k(zr;zr;ω)Ḡk(zr;zs;ω)Γ̄ΓΓ(zs;ω)||F < σ . (5)

Here ||A||S and ||A||2F for a matrix A with elements Ai j are the sum norm and Frobenius norm respec-

tively, with ||A||S = ∑i, j |Ai j| and ||A||F =
√

∑i, j |Ai j|2. Note that in (5) the argument of the sum norm
is in the time domain, since it is there where the solution is expected to be sparse. Solving (5) is a basis
pursuit denoise (BPDN) problem, that can be efficiently solved by solvers such as SPGL1 (van den Berg
and Friedlander, 2007, 2008).
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Example
The deblending scheme is tested using a numerically blended dataset. The OBN acquisition scheme is
depicted in Fig. 1b. Two source lines of 700 traces each from a particular receiver node were extracted
and blended to form the blended dataset. The chosen receiver node and shot locations can be seen in
red color in Fig. 1b. A total amount of approximately 3s was kept from the gathers, which contains
frequencies up to 100Hz. The blending code used is a random time delay code of delays ranging from
0.1s to 0.4s. Six focal operators were used for deblending, with NMO velocities ranging from 1482m/s
to 1800m/s and apex times from 0.7 to 2.08s. The unblended data (Fig. 1c) was made to be in the range
of the operators before blending it. The pseudodeblended data can be seen in Fig. 1d and the deblended
data in Fig. 1e. Most of the blending noise has been suppressed from the deblended result, something
that can be also seen in the error section in Fig. 1f. The deblending quality is Q = 19.8dB, using the
metric Q = 10log10(∑t ||P̄ideal(zr;zs; t)||2F/∑t ||P̄ideal(zr;zs; t)− P̄debl(zr;zs; t)||2F).
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Figure 1: (a) Schematic representation of single-sided focusing, red original sources, magenta virtual
sources at the focusing grid. The dotted traveltime is removed by the focal operator; (b) Acquisition
plan for the field data, red: chosen node and sources, magenta: focusing grid; (c) Unblended data; (d)
Pseudodeblended data; (e) Deblended data; (f) Deblending error, multiplied by 5.

Conclusions
Realistic acquisition will generally be subsampled in one or more dimensions, while still providing an
amount of data that can make inversion-based seismic processing challenging. A way to reduce the
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computational effort required for focal deblending is to use ‘smart’ subsets of data, breaking down a big
inversion problem into several smaller ones that can be solved in parallel. An application of this idea to
the case of OBN acquisition was presented, with encouraging results, paving the way for the application
of focal deblending on realistic datasets.
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