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Abstract

In this paper we develop a fast model predictive control (MPC) approach for variable speed limit coordination to
resolve freeway jam waves. Existing MPC approaches that are based on the second-order traffic flow models suffer
from high computation load due to the non-linear and non-convex optimization formulation. In recent years, simplified
MPC approaches which are based on discrete first-order traffic flow models have attracted more and more attention
because they are beneficial for real-time applications. In literature, the type of traffic jam resolved by these approaches
is limited to the standing queue in which the jam head is fixed at the bottleneck. Another type of traffic jam known as
the jam wave, has been neglected by the discrete first-order model-based MPC approaches. To fill this gap, we develop
a fast MPC approach based on a more accurate discrete first-order model. The model keeps the linear property of the
classical discrete first-order model, meanwhile takes traffic flow features of jam waves propagation into consideration.
A classical non-linear MPC and a recently proposed linear MPC are compared with the proposed MPC in terms of
computation speed and jam wave resolution by a benchmark problem. Simulation results show that the proposed MPC
resolves the jam wave with a real-time feasible computation speed.

Keywords: Model predictive control, variable speed limit, capacity drop, linear model, jam wave

1. Introduction

Due to increasing demand, traffic jams happen frequently at current freeway networks. Traffic jams generate many
negative effects such as reducing freeway capacity, inducing travel delays and potentially unsafe traffic conditions.
Infrastructure expansion is an effective way to combat traffic jams. However, adding additional lanes and new freeways
are not always viable due to economical or environmental concerns. Instead, traffic control measures are playing more
and more important roles in improving traffic operation efficiency.

To implement effective traffic control measures to resolve traffic jams, the features of traffic jams have to be
investigated. In general, two types of traffic jams on freeways can be identified. As has been presented in (Hegyi
et al., 2008), traffic jams with the head fixed at the bottleneck are known as standing queues, and jams that have an
upstream moving head and tail are known as jam waves (also known as wide moving jams in some studies, e.g.,
(Kerner and Rehborn, 1996)). A standing queue can be formed at a busy on-ramp, a lane drop bottleneck, or any kind
of infrastructural bottleneck. According to empirical studies in literature (Cassidy and Bertini, 1999; Chung et al.,
2007; Srivastava and Geroliminis, 2013), the outflow of a standing queue is typically 10-15 percent lower than the free
flow capacity, which is known as the capacity drop. Jam waves usually originate from breakdowns, and in most cases
from standing queues. Possible triggers for the formation of a jam wave could be a vehicle suddenly braking or a lane-
changing vehicle in a high-demand traffic flow situation. Therefore, since so many (partially unobservable) factors
influence the formation process, the formation of a jam wave is considered stochastic and difficult to be reproduced.
However, from different empirical studies, some common patterns of its propagation can be distilled. For example,
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the propagation speed of jam waves is relatively constant, typically between 15-20 km/h (Kerner and Rehborn, 1996).
The queue discharge rate of a jam wave is typically around 30 percent lower than the free flow capacity (Schönhof
and Helbing, 2007). It can propagate for a long time period and distance, and resolves only with the traffic demand
decreasing (Kerner and Rehborn, 1996). Jam waves are considered more difficult to reproduce than standing queues,
because the bottleneck of jam waves moves dynamically rather than fixed at specific locations.

The common feature of standing queues and jam waves is that both of them are associated with a capacity drop.
Thus, the aim of many freeway traffic control methods are often to prevent the activation of bottlenecks, so as to
avoid the occurrence of the capacity drop and maximize the outflow of the bottleneck. Variable speed limit (VSL)
and ramp metering are commonly used control measures on freeway networks to regulate the flow and delay the onset
of congestion. Ramp metering regulates the inflow from the on-ramp to the mainstream of the freeway to delay or
prevent the activation of the bottleneck. The performance of ramp metering control is limited by available storage
space at on-ramps (Carlson et al., 2011). Normally VSLs do not suffer from the storage capacity restriction since
the mainstream of freeways are wider and longer than on-ramps. VSLs may be used to reduce the mainstream flow,
so as to resolve traffic jams or delay or prevent the activation of bottlenecks. There are two mechanisms of VSLs in
reducing mainstream flows that are explained as follows. First, when lower VSLs are applied on a freeway stretch at
under-critical densities, there is a transition to a new traffic state, which serves the same flow at lower speed and high
density. During this transition, the density increase leads to a temporary reduction of the mainstream flow (Carlson
et al., 2010). Second, sub-critical VSLs lead to a fundamental diagram that has lower capacity with lower VSLs.

There are various theories and algorithms to determine the approprate values of the VSLs. SPECIALIST is an
analytical approach for VSL control to resolve jam waves based on the shock wave theory (Hegyi et al., 2008).
While the approach was successfully tested in practice (Hegyi and Hoogendoorn, 2010), its disadvantage is that due
to its feed-forward structure, disturbances during activation of the VSLs are not handled. Later on, the algorithm
has been extended to a feedback structure, which is known as COSCAL v2 (Mahajan et al., 2015), to overcome the
deficiency of the SPECIALIST algorithm. Analytical approaches are usually efficient in computation and easy to be
implemented. However, they are not easy to be adapted to new situations (e.g., changes in infrastructure). Traffic
model predictive control (MPC) is another control approach which has attracted the attention of many researchers. It
predicts the evolution of traffic dynamics and calculates the optimal control scheme for the time period in which the
relevant traffic dynamics occurs. This feature enables the controller to take advantage of potentially larger future gains
at a current (smaller) cost, so as to avoid a myopic control actions. The coordination of VSL by MPC to suppress jam
waves has been investigated by (Hegyi et al., 2005b), where the design is based on a non-linear second-order model
METANET (Kotsialos et al., 2002). Another advantage of MPC is that various of control measures can be easily
integrated into one control system. Consequently, VSL control is often integrated with other control measures such as
ramp metering by MPC (Hegyi et al., 2005a; Carlson et al., 2010; Roncoli et al., 2015b).

Optimal control formulations based on the discrete macroscopic second-order model, METANET, have become a
popular choice since the model has been calibrated and validated with a reasonable accuracy. However, the non-linear
and non-convex optimization formulation of METANET-based MPC might result in high computation load, especially
if the optimization is solved by the standard SQP algorithm (Hegyi et al., 2005b). Researchers have managed to
solve this problem by developing more efficient computational algorithms, such as the feasible-direction algorithm
(Kotsialos et al., 1999a), the parameterization algorithm (Zegeye et al., 2012; van de Weg et al., 2015). A noticeable
problem for METANET-based MPC of VSL is that the solution of the optimization may depend on the selection of the
initial guess trajectory, in the sense that if the initial guess is not appropriately chosen, the solution of the optimization
might get stuck at a local minimum. In recent years, linear or quadratic optimizations for traffic control have attracted
more and more attention. The origin of this type of approach dates back to (Gazis and Potts, 1963), who suggested a
store-and-forward modeling approach to traffic control problems. Following this line, Papageorgiou (1995) proposed
a linear optimization approach for integrated traffic control based on a store-and-forward model. Later on, Lo (1999);
Ziliaskopoulos (2000) embedded the cell-transmission model into a linear optimization problem for dynamic traffic
assignment purpose. Since the capacity drop was not considered, the only gain of the controller was coming from
increasing the off-ramp flows. Recent research has incorporated the capacity drop into linear MPC for VSL and ramp
metering control (Muralidharan and Horowitz, 2015; Roncoli et al., 2015b). The controllers have been demonstrated
to be efficient in terms of computation speed and reducing total travel delay by the designed case studies. However,
the type of traffic jam considered in their case studies is only the standing queue.

As far as we are concerned, there is no specific research in literature which aimed to resolve freeway jam waves
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through a linear MPC formulation. To fill this gap, in this paper we develop a linear-quadratic MPC based on an
extended discrete first-order traffic flow model. The extended model keeps the linear property of the classical discrete
first-order model, meanwhile takes traffic flow features of jam waves propagation into consideration. The performance
of the proposed controller is compared with a classical non-linear MPC and one recently proposed linear MPC in terms
of resolving jam waves and the computation speed for a benchmark problem.

The rest of this paper is set up as follows. Section 2 describes the mechanism of the extended model and the
models for comparison. Section 3 elaborates on the formulation of the MPC approach. In Section 4 the presented MPC
approach is compared with other MPC approaches for a benchmark problem, in terms of the capability of resolving
jam waves, the resulting total travel time, and the required computation time. Section 5 presents the conclusions and
some topics for future research.

2. Model description

In this section, the mechanism of several discrete first-order models in literature are briefly described. The clas-
sical cell-transmission model is described in Section 2.1. Then some extended cell-transmission models which have
incorporated the capacity drop are summarized in Section 2.2. The new extended CTM and the VSL assumption are
described in Section 2.3.

2.1. The cell-transmission model
The origin of discrete first-order models is the well-known cell-transmission model (CTM) developed by (Da-

ganzo, 1994), which is consistent with the hydrodynamic theory of LWR model (Lighthill and Whitham, 1956;
Richards, 1956). The roadway stretch is divided into cells, which are increasingly numbered from upstream to down-
stream, as shown in Fig. 1. In the following, cell i is referred to as an upstream cell, and cell i + 1 is interpreted as a
downstream cell. Traffic states of the roadway stretch are represented by the densities of cells at discrete time steps
indexed by k. The density of cell i at time step k + 1, which is represented as ρi(k + 1) [veh/km], is updated as:

ρi (k + 1) = ρi (k) +
T
Li

[ fi−1(k) − fi(k)], (1)

where, T is the duration of the discrete time steps. Li is the length of cell i. fi−1 and fi [veh/h] are the downstream
boundary flows of cell i − 1 and cell i.

ii-1 i+1

  fi-1 fi

Figure 1: A freeway stretch divided into discrete cells.

Lebacque (1996) showed that CTM is the first-order discrete Godunov approximation of the LWR model. Accord-
ing to the Godunov scheme, the flow fi(k) between cell i and cell i + 1 is determined by the minimum of the sending
flow (represented by S i(k)) and the receiving flow (represented by Ri(k)), also known as the demand of sending cell
and the supply of receiving cell. fi(k) is represented as,

fi(k) = min (S i(k),Ri+1(k)) , (2)

The demand of sending cell, S i(k), is represented as:

S i(k) = min (ρi(k)v, c) , (3)

which states that the outflow of cell i is restricted by the vehicles present in the sending cell and the capacity of the
sending cell. The supply of receiving cell, Ri+1(k), is represented as:

Ri+1(k) = min
(
c, β(ρJ − ρi+1(k))

)
(4)
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which states that the inflow to cell i + 1 is restricted by capacity of the receiving cell and the amount of space in the
receiving cell. The CTM assumes a triangular-shaped fundamental diagram (FD) for the above equations, which is
characterized by the free flow speed v, the capacity c, the congestion wave speed β, and the jam density ρJ . The FD
and the demand and supply functions are depicted in Fig. 2. ρcr denotes the critical density, which separates the FD
into free-flow branch and congestion branch.
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Figure 2: The triangular-shaped FD of the CTM (a), and the demand and the supply parts (b).

2.2. Extended versions of the CTM
It is commonly known that the classical CTM does not take the capacity drop phenomenon into consideration.

Thus, many researchers have presented extensions of the CTM to incorporate the capacity drop. Most of those ap-
proaches try to incorporate the capacity drop by changing the demand function, which is first proposed by (Lebacque,
2003). Schreiter et al. (2010) assumed two constant capacity values for the cell-transmission model, one for free-flow
condition and the other for congested condition. Srivastava and Geroliminis (2013) extended the LWR model by
defining a FD with two capacity values. A memory-based approach was proposed to choose the appropriate capac-
ity value, so as to distinguish congested and uncongested states. However due to non-linearities, these models have
not been used for model-based traffic control. Muralidharan (2012) incorporated the capacity drop into a link-node
cell-transmission model, which used a discontinuous fundamental diagram. The capacity drop was assumed to be
triggered only at the bottleneck cell, and with a constant value. The model has been developed into a mixed-integer
linear programming for network traffic optimization. However, since bottlenecks have to be predefined at fixed loca-
tions, this approach is not suitable for the jam wave type of congestion under which bottlenecks move dynamically.
Roncoli et al. (2015a) proposed an optimization-oriented first-order model, which also represented the capacity drop
by a reduced demand function. They assumed that the extent of the demand reduction of a cell has a linear relation
with the vehicle density of the same cell. When the density of a cell is beyond the critical value, the demand decreases
linearly with increasing density. Srivastava et al. (2014) used a similar assumption for urban traffic to capture the
headway behavior. The empirical study by (Yuan et al., 2015) has shown that the magnitude of capacity drop has a
negative relation with the speed in congestion. Thus, the state-dependent capacity drop assumption by (Roncoli et al.,
2015a) is considered to be more reasonable than the assumptions with a constant extent of capacity drop. Han et al.
(2015) used a similar capacity drop assumption for lane drop bottlenecks. In that study, the demand reduction which
represented the capacity drop, was assumed to take place at the downstream cell of the cell with over-critical density,
rather than in the cell with over-critical itself.

The model from (Roncoli et al., 2015a) has considered both lateral flows and longitudinal flows. Stronger capacity
drop maybe reproduced when there are lateral flows due to lane changes or on-ramp traffic. In this paper we do not take
lane changing into consideration since the focus is on jam waves for which the lateral flows do not play an important
role. In the following we only introduce their assumptions on longitudinal flows. In their model, the capacity drop
was characterized by variable c jam, which represented the flow discharge rate of a cell in jam state. As shown in Fig. 3
(a), the demand reduces gradually as the density increases at the over-critical part. The supply remains the same as
the original cell-transmission model, which is shown in Fig. 3 (b).
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Figure 3: The demand (a) and supply (b) parts of the FD of the model from (Roncoli et al., 2015a).

It is found that the type of traffic jam considered by most of the above mentioned models is only the standing
queue. In (Han et al., 2016), it has been tested that most of the above mentioned models can not reproduce the
propagation of jam waves accurately. Thus, we have proposed a new extension of the discrete first-order model to
reproduce the propagation of jam waves more accurately, which will be briefly introduced in the next section.

2.3. The new extended CTM

As has been discussed in (Han et al., 2016), the cell-transmission model and many of its variants have difficulties
in reproducing the propagation of jam waves accurately. One reason is that capacity drop has not been adequately
incorporated. The capacity drop assumption that we propose is a linear reduction of the outflow of cell i + 1 as a
function of the density of cell i in case the densities are over-critical. For simplicity, in this paper we assume that all
of the cells have same properties. However, note that it is possible to make the model parameters cell-dependent. For
a general presentation of the model, readers are referred to (Han et al., 2016). Without loss of generality, the index of
cell number remains in the following equations. According on the capacity drop assumption, the maximum outflow
of cell i + 1 can be represented as:

Qi+1(k) = min
ci+1, ci+1(1 − α

ρi(k) − ρcr
i

ρJ
i − ρ

cr
i

)
 , (5)

where, Qi+1(k) is the maximum outflow of cell i+1 at time step k. α denotes the maximum extent of the capacity drop.
The capacity drop model is depicted by the sub-figures (a,c,e,g) of Fig. 5. In this way, the capacity drop can not only
be reproduced at on-ramp bottlenecks, but also other infrastructural bottlenecks such as lane drops (Han et al., 2015).
When cell i is in an over-critical state and cell i + 1 is in an under-critical state, Qi+1(k) represents the flow discharge
rate of cell i + 1, which is lower than the free-flow capacity ci+1. Accordingly, the critical density of cell i + 1 under
such a condition, represented by ρcr−dch

i+1 (k), is lower than ρcr
i because the free-flow speed does not change. ρcr−dch

i+1 (k)
is calculated as:

ρcr−dch
i+1 (k) =

Qi+1(k)
vi+1

. (6)

Thus, the demand of the proposed model is represented as:

S i+1(k) =

ρi+1(k)vi+1 if ρi+1(k) < ρcr−dch
i+1 (k)

Qi+1(k) if ρi+1(k) ≥ ρcr−dch
i+1 (k).

(7)

The other aspect that plays a role in the proper reproduction of jam wave propagation is the supply function when
a cell is in a discharging state. According to the cell-transmission model, the supply function (4) is dominating in
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determining the flow if both the sending cell and the receiving cell have over-critical densities. In other words, the
boundary flow between two over-critical cells only depends on the average density of the receiving cell. However
in practice, traffic states at the over-critical part can be inhomogeneous if a cell has a long length (typically several
hundred meters when applied to traffic control). For example, if the jam head is in the middle of cell i + 1, then cell
i + 1 is in such a state that the back part is congested while the front part is not, which is shown in Fig. 4. We define
such a state as the discharging state. Note that the discharging state may be avoided by making the cell size small.
However, the proposed model is applied to a linear optimization problem for traffic control purpose. If a smaller cell
length is used, the linear optimization framework results in higher number of cells, control variables, and constraints.
This increases the computation time and may render the control problem too complex to be solved in real-time. From
this point of view, our way of modelling gives good trade-off between modelling accuracy and controller performance
(in terms of computation speed).

Cell i

Cell i+1

Travel direction

Congested Free-flowing

Figure 4: An example to explain the discharging state. Cell i + 1 is in the discharging state.

Suppose traffic states at the downstream of cell i + 1 are free-flow states. The discharging state of cell i + 1 is
captured by the condition ρi(k) > ρi+1(k) > ρcr−dch

i+1 in the proposed model. The inequality is explained as follows.
According to (5) and (6), if ρi(k) > ρcr−dch

i+1 , then ρi(k) > ρcr
i . Thus, cell i is in an over-critical state. If the density

of cell i + 1 is lower than the density of cell i, but higher than the critical discharging density, ρcr−dch
i+1 , then cell i + 1

should be in a mixed state with a congested upstream part and free-flow downstream part. According to the definition
in Fig. 4, cell i + 1 is in the discharging state. Under the discharging state, it is assumed that the supply of cell i + 1 is
overestimated by (4) because the average density ρi+1(k) is lower than the density upstream part of cell i+1. Empirical
analysis in (Han et al., 2016) has confirmed that this assumption is reasonable. Thus, we assume two supply functions
R(1)

i+1(k) and R(2)
i+1(k), which apply for the discharging state and the non-discharging state respectively when cell i + 1 is

over-critical. The non-discharging supply function is represented as,

R(1)
i+1(k) = β(1)

i+1(ρJ
i+1 − ρi+1(k)), if ρi(k) ≤ ρi+1(k) < ρJ

i+1, (8)

where, β(1)
i+1 represents the slope of the line which connects the critical state and the jam state. It expresses the

congested states of traffic in a jam or getting in a jam. When cell i + 1 is in the discharging state, the supply from (8)
would overestimate the real value. It was also shown in (Han et al., 2016) that the extent of the supply overestimation
has a positive relation with the density difference between the sending cell and the receiving cell. To keep the linear
property of the model, we assume a linear relation between the density difference ρi(k) − ρi+1(k) and the supply
reduction R(1)

i+1(k) − R(2)
i+1(k). The discharging supply function is represented as,

R(2)
i+1(k) = R(1)

i+1(k) − (β(1)
i+1 − β

(2)
i+1) · (ρi(k) − ρi+1(k)), if ρcr−dch

i+1 (k) ≤ ρi+1(k) < ρi(k). (9)

where, β(2)
i+1 represents the slope of the line which connects the state of a discharging cells and the state of its

upstream cell. It expresses the congested states of traffic leaving a jam wave, which in free-flow will lead to the queue
discharge rate that is lower than the free-flow capacity. When traffic of cell i + 1 is getting in a jam, the traffic state lies
on the line with the slope β(1)

i+1. When traffic in cell i + 1 is leaving a jam, the traffic state lies on the line with the slope
β(2)

i+1. Thus, the line of β(1)
i+1 represents the deceleration of traffic whereas β(2)

i+1 represents the acceleration of traffic. In
real traffic, deceleration is usually faster than acceleration, thus β(1)

i+1 is higher than β(2)
i+1. The overall supply function
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of cell i + 1, Ri+1(k) is formulated as:

Ri+1(k) =


Qi+1(k) if ρi+1(k) < ρcr−dch

i+1 (k)
R(2)

i+1(k) if ρcr−dch
i+1 (k) ≤ ρi+1(k) < ρi(k)

R(1)
i+1(k) if ρi(k) ≤ ρi+1(k) ≤ ρJ

i+1.

(10)

The above equations can be further explained by considering the following three conditions:

1. ρi(k) ≤ ρcr
i . Under this condition, neither capacity drop nor supply reduction happens for cell i + 1. Thus

Qi+1(k) = ci+1(k), and the demand and supply of cell i + 1 are the same as which from the CTM, which are
shown as sub-figure (b) of Fig. 5.

2. ρi(k) = ρJ
i . Cell i is in the jam state. Thus, the demand of cell i + 1 is represented by the blue line of sub-

figure (d) in Fig. 5, which has a maximum flow Qi+1(k) = ci+1(k)(1 − α) and a critical density ρcr−dch
i+1 (k) =

ci+1(k)(1 − α)/vi+1. Under this condition, ρi can not be smaller than ρi+1, so the supply of cell i + 1 at the over-
critical part is represented by R(2)

i+1, which equals to β(2)
i+1

(
ρJ

i − ρi+1(k)
)

according to the third equation of (10).
The supply of cell i + 1 at the under-critical part equals to Fi+1, and the overall supply of cell i + 1 is represented
by the red line of sub-figure (d) in Fig. 5.

3. ρcr
i < ρi(k) < ρJ

i . The demand of cell i + 1 is calculated by (6) and (7), and represented by the blue line in Fig. 5
(f). Under this condition, the supply at the over-critical part is represented by R(1)

i+1(k) when ρi(k) ≤ ρi+1(k), and
is represented by R(2)

i+1(k) when ρi(k) > ρi+1(k). The line of R(1)
i+1(k) and R(2)

i+1(k) intersect at ρi(k) = ρi+1(k). The
supply of cell i + 1 at the under-critical part equals to Qi+1(k), and the overall supply of cell i + 1 is represented
by the red line in Fig. 5 (f).

Variable speed limits (VSLs) are used as the control measure in this paper. Thus, the effect of VSLs have to be
taken into account by the model. The influence of VSL on the shape of FD was investigated by (Papageorgiou et al.,
2008). Some findings of the reported investigations can be summarized as: (i) Speed limits decrease the slope of the
flow-occupancy diagram at under-critical occupancies. (ii) The VSL-affected flow-occupancy curve crosses the no-
VSL curve, shifting the critical occupancy to higher values in the flow-occupancy diagram. (iii) There is no conclusive
result whether VSL will increase the flow capacity or not, since a slight increase is only visible at some locations.
Since the effect of VSL on aggregated traffic flow features is complex, simplified VSL model assumptions were often
made. Hegyi et al. (2005a) assumed the VSL impact was to replace the left part of the flow-occupancy curve by a
straight line with slope corresponding to the displayed VSL. Carlson et al. (2010) incorporated a VSL model into the
METANET model based on the empirical findings of (Papageorgiou et al., 2008).

For VSL models incorporated in discrete first-order models, the approach is often that the demand function is
modified while the supply function is left unchanged (Muralidharan, 2012; Hadiuzzaman and Qiu, 2013). The VSL
value in this paper is, however, derived from the optimization outcome. Specifically, if the optimizer determines a
flow reduction and the flow is determined by demand constraints, then the sending cell is under VSL control and the
corresponding VSL value is calculated based on the vehicle density.

A VSL model can be derived from the optimization. As shown in Fig. 5 (g-h), if a VSL signal is applied to cell
i + 1 with the value Vi+1(k), the demand of the cell is the minimum of Vi+1(k)ρi+1(k) and Qi+1(k), which is represented
by the blue line in Fig. 5 (h). The new extended CTM incorporated with VSLs can be used for model calibration and
validation.

3. The optimal control formulation

This section shows the MPC formulation based on the model proposed in the previous section. MPC-based
controllers predict traffic flow evolutions by traffic flow models, and determine the optimal control signals based on
current system states. The length of prediction horizon is represented by Np, and the length of control horizon is
represented as Nc. The duration of a control time step is represented as Tc. After optimization the first sample of the
optimal control signals is applied to the process. The remaining part of the control signal is recalculated in the rolling
horizon scheme. For a detailed description of MPC approach, readers are referred to (Camacho and Bordons, 2012).
MPC-based controllers are formulated into linear or non-linear optimizations, depending on the model properties.
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Figure 5: The left column, figures (a,c,e,g) show the relation between ρi(k) and Qi+1(k), which represents the capacity drop assumption. The right
column shows the demand and supply of cell i + 1, (b) for condition ρi(k) ≤ ρcr

i , (d) for condition ρi(k) = ρJ
i , (f) for condition ρcr

i < ρi(k) < ρJ
i , (h)

for condition ρcr
i < ρi(k) < ρJ

i and cell i + 1 is under VSL control with the value Vi+1(k) .
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The MPC approaches that are formulated into linear optimization problems can be solved very efficiently (Roncoli
et al., 2015b). The proposed model has a linear property, which will be described in Section 3.1. The MPC controller
in this paper is formulated as a linear-quadratic optimization problem. The objective function of the proposed MPC
is presented in Section 3.2.

3.1. The linear property of the model

In literature, extended cell-transmission models have been reformulated as linear optimization problems for traffic
control (Gomes and Horowitz, 2006; Muralidharan and Horowitz, 2015; Roncoli et al., 2015b). The most important
feature of this model type is the linear property. Traffic states can be predicted by the following linear equation,

ρi (k + n) = ρi (k) +

k+n−1∑
j=k

T
Li

[ fi−1( j) − fi( j)], (11)

where, flows between cells, fi( j), j = k : k + n − 1, are decision variables of the model. The calculation of fi( j) are
delegated to the controller, and only upper bounds are specified to fi( j) as follows:

fi( j) ≤ ρi( j)vi( j) (12)

fi( j) ≤ ci

1 − αρi−1( j) − ρcr
i−1

ρJ
i−1 − ρ

cr
i−1

 (13)

fi( j) ≤ ci+1

1 − αρi( j) − ρcr
i

ρJ
i − ρ

cr
i

 (14)

fi( j) ≤ β(1)
i+1

(
ρJ

i+1 − ρi+1( j)
)

(15)

fi( j) ≤ β(1)
i+1

(
ρJ

i − ρi( j)
)

+ β(2)
i+1 (ρi( j) − ρi+1( j)). (16)

The modeling approach for flows is based on the demand and supply functions in Equation (7) and (10). More
specifically, equation (12) and (13) correspond to two terms of the demand function (7) and equation (14), (15), (16)
correspond to three terms of the supply function (10). Thus, the lines of the demand and the supply function in Fig. 5
(b), (d), (f) represent the upper bounds of fi( j), corresponding to different values of ρi( j). In case no control actions
are applied, the actual flow equals the minimum between the demand and supply flows and the solution of fi( j) lies in
the lines of the upper bounds. If the solution of fi( j) is lower than the minimum of the demand and supply flows, then
cell i at time step j is under VSL control. The displayed VSL value, Vi( j), is calculated by:

Vi( j) =
fi( j)
ρi( j)

. (17)

The above equations show the linear property of the model, which enables the formulation of a linear optimization
problem. Thus the state variables are calculated in one step for the whole prediction horizon. In the formulation of
non-linear optimizations, the state variables have to be calculated sequentially and iteratively, which might result in a
higher computation load.

3.2. Objective function

The objective function of a controller needs to reflect the level of congestion in the freeway. Total travel time (TTT)
captures the aggregate performance of traffic conditions on all users in the freeway. Minimizing TTT is equivalent to
minimize the total number of vehicles in the entire network. The number of vehicles in the network is represented by
a vector X(k), where X(k) =

[
L1ρ1(k), L2ρ2(k), · · · LIρI(k)

]′. The evolution of X(k) is represented by a linear matrix
formulation:
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X(k + n) = X(k) +

k+n−1∑
j=k

B ∗ U( j) +

k+n−1∑
j=k

d( j), (18)

where, U( j) =
[
f1( j), f2( j), · · · fI( j)

]′ is a decision vector. B is a matrix that contains the freeway structure information.
The non-zero elements in matrix B are the duration of the discrete time step. d( j) is the traffic demand vector. To
approximate the minimization of the TTT, the objective of the proposed controller is to minimize a quadratic function
of the number of vehicles in the network, which is shown as:

min
k+Np−1∑

j=k

[X( j)′PX( j) + GU( j)], (19)

where, P is a matrix with all 1 elements, so the term X( j)′PX( j) aims to minimize the quadratic function of the number
of vehicles in the network in the prediction horizon. G is a vector of the cell lengths multiplied by a small negative
value. The term GU( j) aims to maximize the flows, so as to address the so-called holding back problem. Holding
back may occur for a congested state, where the VSLs cannot have an influence. The second term in (19) (which was
initially suggested in (Papageorgiou, 1995)) mitigates this undesirable occurrence by rewarding the solutions where
the flows take higher values. Note that this second term in (19) has a physical meaning, as it is proportional to the
total travel distance (TTD). Thus, (19) may be perceived as a weighted combination of TTT minimization and TTD
maximization. A more detailed explanation of this objective function is in (Le et al., 2013). In that paper, the linear
quadratic objective function is applied to an urban signal control problem. The objective function (19) under the
constraints in Section 3.1 can be solved by an appropriate solver (e.g., CPLEX). The outputs of the controller are
optimal flows between cells.

3.3. The minimum VSL constraint

Typical real-world speed limit systems have some pre-defined minimum speed that can be displayed. The opti-
mization variables of the proposed controller are flows, thus the minimum VSL constraints cannot be applied directly,
instead minimum flow constraints are applied to achieve the same purpose. However, minimum flow constraints might
cause infeasibility due to conflicting constraints. For example, the flows prediction made at time step k is denoted
by fi( j|k) (the same meaning as fi( j) in (12-16)). If the minimum flow constraints restrict fi( j|k) ≥ Ai( j|k), but the
demand and supply constraints restrict fi( j|k) ≤ Bi( j|k), then the optimization problem will not have any solution if
Ai( j|k) > Bi( j|k).

To overcome this problem, here we introduce a method to apply the minimum flow constraints based on a forward
prediction. The basic idea is to find possibly conflicting flows by predicting future traffic states, then exclude them
from the minimum flow constraints. Therefore, before running the optimization at each control step, the traffic states
are predicted by the prediction model of the controller. The flows from the forward prediction are denoted as f̂i( j|k).
The following equation is used as the minimum flow constraints for the optimization:

fi( j|k) ≥ Ai( j|k), if fi( j|k) ≥ Ai( j|k) (20)
fi( j|k) ≥ 0, if fi( j|k) < Ai( j|k). (21)

The values of Ai( j|k) are set based on the predicted density of every cell at every time step. For any cell at which VSLs
can be applied, Ai( j|k) are set to the value that Ai( j|k) = VSLmin × ρi( j|k). It can be guaranteed that the optimization
problem with the above constraint has a solution, because f̂i( j|k) is a feasible solution of the optimization problem
with the above constraints. Note, however, that in this way, it cannot be ensured that every fi( j|k) under VSL control
is restricted by the minimum VSL constraints. For flows in the prediction that are lower than Ai( j|k), the minimum
flow constraint cannot be guaranteed. This can be perceived as a shortcoming of linear optimizations. But still, the
proposed method provides a way to realize the minimum flow constraints to some extent.
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4. Benchmark problem

A benchmark problem is set up to test the performance of the proposed controller. A classical non-linear MPC
and one recently proposed linear MPC, are compared with the proposed MPC in terms of resolving jam waves and the
computation speed. The benchmark network we choose is a simple homogeneous freeway stretch, which is sufficient
to test the relevant contributions we present in this paper. The 6km freeway stretch contains three lanes, and it is
divided into 20 cells, which is depicted in Fig. 6. Note that in practice, deceleration areas are needed for VSLs for
safety reasons. Deceleration areas for VSLs are not considered in this paper because the transition period is much
shorter than the normal control period. For example, the SPECIALIST theory also did not consider deceleration areas
(Hegyi et al., 2008). However in practice, the SPECIALIST field test imposed a very short deceleration period for
safety. The field test results show that the deceleration did not have much effect (Hegyi and Hoogendoorn, 2010). To
reproduce a jam wave, the second-order model METANET is used as the process model to represent the real world.
The process of reproducing the jam wave is presented in Section 4.1. The prediction models of the proposed controller
and the linear MPC for comparison are calibrated with the simulation results of the METANET. The calibration of the
models’ parameters and the setup of the controllers are introduced in Section 4.2. The performance of the controllers
are shown in Section 4.3.

Cell 1,

the origin
Cell 2 Cell 20…...

Traffic flow

Figure 6: A graphical representation of the freeway stretch for the benchmark problem.

4.1. Reproducing of a jam wave

The second-order macroscopic traffic flow model METANET, which can reproduce capacity drop and the prop-
agation of jam waves with a reasonable accuracy, is used as the process model to represent the real world. The
METANET model is briefly introduced in the following.

In the METANET model, the freeway network is divided into segments which have a uniform geometry structure.
Each segment i is characterized by the traffic density ρi(k) [veh/lane/km], the mean speed vi(k) [km/h], and the outflow
qi(k) [veh/h], where k is the index of the discrete time step. The following equations describe the evolution of the
freeway stretch over time. The outflow of each segment equals to the density times the mean speed and the number of
lanes of that segment (represented by λi):

qi(k) = ρi(k)vi(k)λi, (22)

The density of a segment follows the vehicle conservation law, which is represented as:

ρi(k + 1) = ρi(k) +
T

Liλi
(qi−1(k) − qi(k)) , (23)

The mean speed of segment i at time step k + 1 depends on the mean speed at time step k, the speed of the inflow of
vehicles, and the density downstream, which is represented as:

vi(k + 1) = vi(k) +
T
τ

(V(ρi(k)) − vi(k)) +
T
Li

vi(k)(vi−1(k) − vi(k)) −
ϑT
τLi

ρi(k + 1) − ρi(k)
ρi(k) + κ

, (24)
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where, τ, ϑ, κ are model parameters. V(ρi(k)) denotes the desired speed that drivers try to achieve, which is:

V(ρi(k)) = v f ree,i · exp[−
1

am

(
ρi(k)
ρcr,i

)am

], (25)

where, am is a model parameter. v f ree,i represents the free flow speed of segment i, and ρcr,i denotes the critical density
at which the flow is maximal. The effect of VSL follows the assumption of (Hegyi et al., 2005a), that the desired
speed is the minimum of (25) and the speed limit displayed on variable message sign:

V(ρi(k)) = min
(
VS Li(k), v f ree,i · exp[−

1
am

(
ρi(k)
ρcr,i

)
am

]
)
. (26)

The first segment of the freeway stretch is perceived as the origin, and modeled by simple queue model. The number
of vehicles in the first segment is calculated as:

ω1(k + 1) = ω1(k) + T (d(k) − q1(k)), (27)

where, d(k) is the demand of the origin. q1(k) is determined by:

q1(k) = min[d(k) +
ω1(k)

T
, λ1V(ρcr,1)ρcr,1], (28)

where, the first term is the available traffic in time period k. The second term is the capacity flow. For the upstream
boundary condition, the speed of the origin segment is assumed to be the same as the second segment, so v1(k) = v2(k).
For the downstream boundary condition, the density downstream of the freeway stretch is defined according to the
simulation scenario.

The parameters of METANET model are set up as follows. In (23), Li=0.3 km, λi=3. T=5 s. In (24), τ is set to
18 s, κ is set to 40 veh/km/lane, and ϑ is set to 30 km2/h. These parameters are referred to (Kotsialos et al., 1999b).
In (25), ρcr=27.6 veh/km/lane, am= 2.5, v f ree=108 km/h. These parameters are selected based on the experience of
a reasonable shape of the fundamental diagram. The input of the system are the traffic demand at the origin and the
density downstream of the freeway stretch. Traffic demand profile is shown in Fig. 7 (a). The downstream density
equals to the critical value constantly, except for a pulse from time step 380 to 400 which is used to trigger the jam
wave. The pulse is chosen large enough to cause an upstream-propagating jam wave. The downstream density profile
is shown in Fig. 7 (b).

The entire simulation process contains 1440 time steps, which correspond to 2 hours. Simulation results by the
METANET model are shown in Fig. 8. The jam wave propagates from the downstream end to the upstream end in
about 200 time steps. The flow contour plot shows a conspicuous capacity drop, that the outflow of the jam (the yellow
area) is much lower than the flow after the jam wave is resolved (the white area).

As presented, three model predictive controllers are compared in this benchmark problem. To tune the parameters
of Np and Nc, we follow the rule that Np should be larger than the typical travel time from the controlled cells to the
exit of the network, and Nc should has a good trade-off between the computational effort and the performance. The
prediction horizon and control horizon are set to 10 minutes, and the duration of control step Tc is set to 10 seconds.
For a fair comparison the parameters are set to same values for three controllers. The controllers are assumed to be
activated at time step 420 when the jam wave has formed and deactivated if the density of every cell in the freeway
stretch is lower than the critical value so there will be no risk to form a new jam. In the following we briefly describe
the mechanisms of three controllers.

1. Controller 1, the METANET-based MPC. The optimal control formulation we refer to (Hegyi et al., 2005b), thus
both the process model and the prediction model in controller 1 are the METANET model. The optimization
problem is solved by MATLAB implementation of the SQP algorithm (fmincon). The lowest VSL value is set
to 35 km/h.

2. Controller 2, a model predictive controller, which uses (19) as the objective function and the model from
(Roncoli et al., 2015a) (referred to as model R in the following) as the prediction model. Model R has taken lane-
changing into consideration. Since lateral flows are not considered in this paper, we only use their longitudinal
flow model which is introduced in Section 2.2. Ai( j) are set to values based on the predicted density of every
cell at every time step.
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3. Controller 3, a model predictive controller, which uses (19) as the objective function and the new extended
CTM as the prediction model. Ai( j) are set to values based on the predicted density of every cell at every time
step. The linear quadratic formulation of controllers 2 and 3 are solved by CPLEX from MATLAB toolbox.

Figure 7: The traffic demand at the origin (a), and the density downstream of the freeway stretch (b).
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Figure 8: The speed (km/h) contour plot (a), and the flow (veh/h) contour plot (b) of the simulation without VSL control.

4.2. The set up of controllers

The model parameters of controllers 2 and 3 are calibrated with the simulation results from the METANET model.
The calibration is performed based on an optimization-based method to best match the model parameters with the sim-
ulation results of the METANET model. The root mean square error (RMSE) of density is chosen as the performance
indicator of the calibration, which is shown as the following equation:

min
1

(I − 1) × (N − k + 1)

√√√ I∑
i=2

N∑
j=k

(ρi( j) − ρ̂i( j))2, (29)

where, ρ̂i( j) is the density of cell i at time step j from the METANET simulation, and ρi( j) is the simulated density
from the prediction models of controllers 2 and 3. Data are extracted from time step 401 to 700, thus N = 700,
k = 401. The optimization problem is solved by MATLAB implementation of the SQP algorithm (fmincon). Multi-
starting points have been tried to avoid the optimization results getting stuck in a local optimum. The calibration
results of controllers 2 and 3 are shown in Table 1. The parameter which characterizes the extent of capacity drop in
the model of model R is c jam, while in the new extended CTM it is α. Since they represent the same physical meaning,
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Figure 9: The calibated fundamental diagram of controller 3

Table 1: The calibration results of controllers 2 and 3
v (km/h) α c (veh/h) β(1) (km/h) RMSE

Controller 2 100.32 0.58 6000 24.33 10.30
Controller 3 100.75 0.79 6000 23.9 8.41

for consistency both of them are represented by α in the table. If α is known, β(2) can be calculated accordingly. The
values of parameters of controller 3 are also shown in Fig. 9

The RMSE shows that the new extended CTM has a more accurate simulation result than model R. Fig. 10 shows
the density contour plots which are simulated by the predictions models. Both the new extended CTM and model R
show dispersions of the jam wave, but qualitatively speaking, the dispersion of the new extended CTM is less.
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Figure 10: The density (veh/km/lane) contour plots (without VSL control) from (a) the METANET model, (b) Roncoli’s model, and (c) the new
extended CTM.

Fig. 11 shows the outflow of the freeway stretch simulated by those three models. The METANET model repro-
duces a substantial capacity drop, where the outflow of the network stays around 5200 veh/h till time step 650. The
outflow reproduced by model R gradually increases, and recovers to the free-flow capacity value at time step around
550. The outflow reproduced by the new extended CTM stays in the range of 4700 to 5500 veh/h, from time step
450 to 650. The oscillation of flow happen due to the numerical issue, which can be briefly explained as follows:
Suppose cell i is in a discharging state, and cell i + 1 is in free-flow state. Under this circumstance, the outflow of the
network is dominated by the outflow of cell i + 1, fi+1, because cell i + 1 is the most upstream cell of all downstream
free-flow cells. Since cell i is in the discharging state, the vehicle density ρi is decreasing and according to (5), fi+1
is also decreasing. That is the reason for the increasing of the outflow. When ρi decreases to an under-critical value,
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cell i − 1 becomes the discharging cell and the outflow of the network is dominated by fi. That’s the reason for the
sudden decreasing of the outflow. This process repeats as the discharging cell moves upstream, causing the oscillation
of flow. The numerical issue can be perceived as a drawback of the model, nevertheless, the new extended CTM still
reproduces capacity drop during jam waves propagation, which is the main target traffic control aims to avoid.
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Figure 11: The outflow of the freeway stretch from the simulation of the METANET model (a), Roncoli’s model (b), and the new extended CTM
(c).

4.3. Control performance

The simulation results of three controllers are shown in Fig. 12. It can be seen that the jam wave is resolved by
controllers 1 and 3. VSL control signals are applied to the upstream of the jam area to limit the inflow to the jam,
creating such a condition that the outflow of the jam is higher than the inflow, so that the jam wave will be resolved.
Fig. 13 shows the VSL signals generated by the controllers. The white color indicates areas where no VSL signal
was applied. At the beginning of traffic control, the VSL control area generated by controller 1 is longer than that by
controller 3, so the jam wave is resolved faster by controller 1. Controller 2 narrows the width of the jam, but it is
unable to resolve it. In order to exclude the possibility that the length of the simulated stretch was causing the inability
of controller 2 to resolve the jam, we have tried a scenario which the freeway stretch was extended to 40 cells. The
result was that the jam wave was still not resolved by the VSL control even when the length of the freeway stretch
was doubled. The reason is that the VSL signal generated by controller 2 is too short in length and time to resolve the
jam wave. This could be attributed to the fact that the prediction model of controller 2 has underestimated the extent
of the capacity drop, thus required VSLs (in length and time) to resolve the jam is underestimated. For controllers 2
and 3, most of the control signals are higher than the minimum VSL value, which are shown in Fig. 13 (b-c). A few
control signals which are lower than the minimum VSL value is because of that the flow bound cannot be set to cells
which have lower values of flows, as explained in Section 3.3. In this case, the proportion of the VSL signals which
are lower than the desired minimum VSL value (35 km/h) is less than 2%, and the minimum value of contradicted
signals is higher than 30 km/h.

More results are summarized in Table 2. It can be seen that all of the three controllers reduce the total travel delay
compared to the no-control scenario. Total travel delay is calculated from the difference between the total travel time in
the simulations and the free flow total travel time. Controller 1 achieves less total travel delay, but at a cost of a higher
computation time which is not real-time feasible. Controller 2 has a less computation time, but it does not reduce the
total travel delay as much as controllers 1 and 3. In addition, since the jam wave is not resolved, the traffic upstream
of the network still suffers bad influences. Controller 3 has a more balanced performance, because it reduces total
travel delay substantially compared to controller 2 while it can maintain a low computation time. The computation
time of controllers 2 and 3 are both possible for a real time application. The computer with an E5-1620 processor
and and 16 GB RAM is used for the optimizations. Note that one of the reason which causes the longer computation
time of controller 1 is that the non-linear optimization problem is solved by a standard SQP algorithm. As mentioned
earlier, there are some algorithms which could increase the computation speed of the non-linear optimization. More
comparisons with different kinds of algorithms remain a subject for future research.
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Table 2: The total travel delay and computation time of three controllers

No control
The non-linear MPC

(Controller 1)
The linear MPC
(Controller 2)

The proposed MPC
(Controller 3)

Total travel delay (h) 242 112.7 136.1 116.2
Computation time - 6-8 min 6 s 9 s
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Figure 12: The speed contour plots (with VSL control) of controllers 1, 2, 3 (a,c,e), and the flow contour plots of controllers 1, 2, 3 (b,d,f).
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Figure 13: The VSL control signals (km/h) generated by controller 1 (a), controller 2 (b), and controller 3 (c).

5. Conclusion and future research

In this paper we apply a linear MPC for optimal VSL control to resolve jam waves on freeways. The proposed
MPC is developed based on a new extended discrete first-order model which takes the capacity drop into account
and is able to reproduce jam wave propagation accurately. The proposed MPC controller is applied to a benchmark
freeway stretch to test the performance in terms of computation speed and jam wave resolution. The second-order
model METANET that can reproduce the capacity drop phenomenon, is used as the process model to represent the
real world. Two other controllers, one non-linear MPC based on the METANET model and the other linear MPC
based on a first-order model, were also tested in the benchmark problem for comparison.

In the benchmark problem, the proposed controller shows a better performance in resolving the jam wave and
reducing the total travel delay than the compared linear MPC. Meanwhile, the proposed controller keeps a real time
feasible computation time, which has a significant improvement comparing to the METANET-based MPC. This fea-
ture enables the proposed controller to be implemented in practice.

This paper also proposes a way to implement the minimum flow constraints to linear MPC formulations. A
forward prediction is performed before the optimization process, so as to ensure that the minimum flow constraints
do not conflict with the demand and supply constraints.

Future research will consider: implementing safety constraints into the controller. For safety, normally the VSL
variation between the neighboring cells should be lower than a certain value. At this moment it is not trivial to
implement such constraints into the controller. The proposed controller also needs to be tested for integrated control
measures (such as ramp metering, route guidance, etc.) in a large-scale network.
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