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Preface

It is exactly 100 years ago that prof. Joukowsky, one of the founders of mod-
ern aerodynamics, published the first rotor performance prediction. The tools
of Joukowsky and his contemporaries were mathematics and wind tunnel experi-
ments, nowadays we use mathematics, numerics, full scale experiments and, still,
wind tunnel experiments. A century of research has expanded the knowledge of
rotor aerodynamics enormously, with modern computer power and measurement
techniques enabling detailed analyses of flows which were out of reach 100 years
ago. However, the concepts for modelling a rotor in performance calculations
as proposed by Froude, Betz, Joukowsky and Glauert are still used, be it with
modifications and expansions. Especially the fast development of wind energy
has revitalised the use of these concepts as they enable fast and accurate rotor
designs.

Although the early models for a rotor have a proven track record, there is room
for improvement in knowledge. The author returned to these models expecting
that the combination of mathematics, dedicated computations and wind tunnel
experiments would bring more physical insight. Furthermore, to the author’s
opinion several old questions were still waiting to be resolved. The result of this
curiosity driven work is this book. Although most work has been published in
papers, the book adds a storyline and connects topics. When the research started,
there was not a storyline at all, only questions. None of the hours spent by the
author has been part of any official R&D project as it would have been impossible
to define objectives, deliverables or deadlines.

Although numerical methods and experiments have contributed to the book,
most of the content is a mathematical treatment of the fluid dynamic aspects of
rotor modelling as, quoting Maxwell (1831-1879): ‘there is nothing more practical
than a good theory’.1 A good knowledge of (inviscid) fluid mechanics is required
to read the book, which is written for proficient students and researchers.

Finally: on average the name of Joukowsky appears once per page, as his
concept for an ideal rotor is examined in detail. The book is published one cen-
tury after his first power prediction for a propeller in still air, a ship screw in still
water or a hovering helicopter rotor, so it is dedicated to prof. Nikolay Yegorovich
Joukowsky.

1see http://listverse.com/2009/02/26/another-10-most-influential-scientists/,
last visited April 25, 2018. The quote is sometimes attributed to social psychologist Lewin
(1890-1947) but he lived after Maxwell.
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Reading guide

The book intends to be interesting for all branches in rotor aerodynamics:
wind turbines, propellers, ship screws, helicopter rotors. However, with the back-
ground of the author in wind energy, many references relate to the wind turbine
field of science. Chapter 1 treats the historical context, gives the motivation of
the book and formulates several research questions. Chapters 2 and 3 are best
read together, as they treat the advantage of the dynamic method (force fields as
input in the equations of motion) over the kinematic method (force fields deter-
mined once the flow is solved), with emphasis on the two phenomena governing
the flow: conversion of energy, and generation or conservation of vorticity. Chap-
ter 4 shows why the actuator disc concept still is the correct basis for rotor design
and analysis. The performance prediction by actuator disc theory is the topic
of chapters 5 and 6: in 5 the disc concept conceived by Froude (no torque, no
angular momentum in the wake) and in 6 the concept by Joukowsky (with torque
and angular momentum). Both analyses are complemented by results of potential
flow calculations. As a side step chapter 7 treats two special topics: the role for
conservative forces acting on a disc with thickness, and on a rotor blade with
non-zero chord and thickness. Chapter 8 is a chapter with an open end. Herein
some results of previous chapters are combined to explore improvements in rotor
design and analysis methods. Finally chapter 9 looks back.

The book is not written as a summation of independent chapters but follows
a certain storyline. There is no forward referencing but quite some backward
referencing. Chapters may be read apart from the others when these referenced
equations and results are accepted, but it is advised to begin at the beginning
and end at the end.

Gijs van Kuik, May 2018.
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Nomenclature

Symbols appearing only locally are explained in the text so not listed here.

Symbols Description units
e a bold symbol is a vector

a induction a = 1− vx,d/U0 -
A area of a stream tube cross section m2

B number of blades -
c chord m
C cross section m2

Cl lift coefficient L/( 12ρU
2
0 c) -

Cp power coefficient* P/( 12ρU
3
0πR

2) -
CT thrust coefficient* T/( 12ρU

2
0πR

2) -
Ct local thrust coefficient BdLx/

(
ρU2

0πrdr
)

-
C distribution of vϕ in vortex kernel -
d numerical damping -
D induced drag N
e unit vector -
f force density N m−3

F surface force N m−2

F potential of f N m−2

F tip correction function -
F1 additional tip correction function -
G distribution of vx at the actuator disc -
H Bernoulli parameter p+ 1

2ρv · v N m−2

J advance ratio U0/(2nR) -
KE kinetic energy per unit mass kg m−1 s−2

L lift N m−1

L contour m
n revolutions per second s−1

N number of vortex rings -
p pressure N m−2

P power N m s−1

q dimensionless vortex strength Γ/(2πRU0) -
Q torque N m

*To avoid confusion with other definitions
of Cp and CT see the footnote at page 37.

xiii



xiv NOMENCLATURE

Symbols Description, continued units
R radius m
R aerodynamic force vector N m−1

S spanwise load N
S surface m2

t time s
T thrust N
U0 undisturbed velocity m s−1

v velocity vector m s−1

V volume m3

α angle of attack ◦

γ vortex sheet strength m s−1

Γ vortex strength or circulation m2 s−1

δ radius vortex core m
Δ jump in parameter value -
ε thickness m
η propeller efficiency P/TU0 -
λ tip speed ratio ΩR/U0 = π/J -
ρ fluid density kg m−3

Φ flow potential m2 s−1

Ψ Stokes’ stream function m3 s−1

ω vorticity s−1

Ω rotational speed rad s−1

Subscripts
ann annulus of a stream tube
B at the position of the blade
cons conservative force
non-cons non-conservative force
rot in rotating coordinate system
0,d,1 far upstream, at the disc, far downstream
h static or hovering disc
i induced
K-J Kutta-Joukowsky
C Coriolis
ΔH connected to a change in H
Δvϕ connected to a change in vϕ

Superscripts
- averaged value

Coordinate Systems
x, r, ϕ cylindrical, see fig. 2.2
x, r, ϕrot rotating cylindrical, see eqs. (2.5, 2.6)
s, n, ϕ local, see fig. 2.2



NOMENCLATURE xv

Abbreviations
2-D,3-D two, three dimensional
AD Actuator Disc
AL Actuator Linec
BEM Blade Element Momentum theory
CFD Computational Fluid Dynamics
LES Large Eddy Simulation
LL Lifting Line
PGS Prandtl-Glauert-Shen tip correction
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1

More than a century of rotor research

1.1. Introduction

Rotor aerodynamics has a history of more than a century, with the first
performance prediction that still holds today published exactly 100 years ago.
Joukowsky (1918) used a very simplified model of a rotor, the actuator disc, to
connect thrust, velocity and power for predicting the performance of a ‘static’
rotor like a hovering helicopter rotor. A century later, rotor aerodynamics has
several branches: ship screws, propellers, helicopter rotors and wind turbine ro-
tors. All branches have excellent textbooks and survey papers, like Breslin and
Andersen (1994) for ship propellers, Wald (2006) for propellers, Leishman (2006)
for helicopter rotors and Schaffarczyk (2014) for wind turbine rotors. Especially
the latter application, wind turbines, has been growing very fast over the last
decades, giving rise to more specialized books like Sørensen (2015) and Branlard
(2017), textbooks like Hansen (2008), Burton et al. (2011) and Manwell et al.
(2009) in which rotor aerodynamics is treated as part of wind turbine design,
and survey papers like Okulov et al. (2015) and van Kuik et al. (2015a). Loads,
performance and dynamic behaviour can now be calculated with high accuracy
under conditions that were unimaginable 100 years ago: rotors having diameters
approaching 200 m, operating in the earth boundary layer with often high turbu-
lence levels and extreme gusts, interacting with the neighbouring turbines when
placed in a wind farm, and designed for 20 years lifetime.

This book returns to the rotor theories as developed in the first decades of
rotor aerodynamic history, with the objective to renew the physical interpretation
of some flow phenomena observed for heavily loaded discs and rotors, to comple-
ment the theory with knowledge about flow details which has become into reach
by modern computing power, and to expand the theory to its limits of operation.
Section 1.4 presents the questions which will be addressed, preceded by sections
on the history of rotor aerodynamics, with special attention to the development
of the actuator disc model. With its origin in the late 19th century this model is
the basis for modern rotor design and analysis methods.

1.2. History of the actuator disc momentum theory

The three European aerodynamic research schools that were famous in the
first half of the 20th century have contributed significantly to actuator disc mo-
mentum theory: the British school led by Froude and Lanchester, the German
school led by Prandtl and Betz, and the Russian school led by Joukowsky and
Vetchinkin. These contributions are reviewed in retrospect, based on van Kuik

1



2 1. MORE THAN A CENTURY OF ROTOR RESEARCH

Table 1.1: From actuator disc theory to BEM: the main contributions and con-
tributors

contributions British school German school Russian school

Actuator disc theory 1865 Rankine
1889 Froude

1904 Finsterwalder
1910 Bendemann

1913 Vetchinkin

1917 Bothezat
First power performance 1918 Joukowsky
for the static disc

Confirmation by vortex theory 1919 Betz, Prandtl 1912-1918 Joukowsky

Expansion to wind turbines, Aug.1920 Munk Febr.1920 Joukowsky
formulation of Cp,max Sept.1920 Betz

Jul.1921 Hoff

Blade element theory 1920 Drzewiecki

BEM: the Blade Element 1935 Glauert
Momentum theory

(2007) and Okulov and van Kuik (2012). In table 1.1 the main contributions are
shown.

1.2.1. The British School. The idea to replace a rotor by an actuator
disc goes back to the work of Rankine (1865). However, only in 1889 Froude
has for the first time found a correct dynamic interpretation of the actuator disc
action showing that for such a theoretical propeller one half the acceleration must
take place before the propeller and the other half behind it. Unfortunately, the
discussion on the question whether the contraction or expansion of the stream
tube takes place before or behind the disc continued after Froude’s paper, de-
spite his formal mathematical treatment. Vetchinkin (1913, 1918), who was a
pupil of Joukowsky, sought an explanation for the denial of Froude’s result in the
misunderstanding of the relation between the action of a disc and of real rotor
blades. Most scientists at that time thought, erroneously, that the flow before
the rotor plane is undisturbed, then receives a full speed alteration when it moves
through the rotor blades, after which the flow behind the rotor is undisturbed
too. From 1910 to 1915 there was a lively discussion in the Institution of Naval
Architects (see issues 52, 53, 55 and 56 of their Transactions). The author of the
last article is Lanchester (1915). In his analysis, Lanchester supports the energy
and momentum balance as defined by Froude. However, Lanchester continues
the discussion on the ‘difficulties of regime’ started by Froude, in particular on
the pressure discontinuity at the disc edge. Although Lanchester says that ‘the
admitted difficulty relating to the edge of the actuator disc is probably more ap-
parent than real’, his next step is to substitute the continuously operating disc
by an intermittently operating disc shedding vortex rings into the flow. Lanchester
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Explanation 1.1. Froude’s actuator disc Froude (1889) formulated
the earliest concept of the actuator disc: a permeable disc with a uniform
pressure jump, representing a propeller with infinite rotational speed op-
erating in a uniform parallel flow. The associated momentum theory is
sometimes called the one-dimensional theory as it includes only the mo-
mentum balance in 1 direction, the axial direction. This concept is called
‘Froude’s disc’ in contrast to Joukowsky’s actuator disc. Joukowsky
(1912) formulated the concept of the actuator disc with wake rotation: a
permeable disc with an axial load and a torque, representing a propeller
with a finite rotational speed operating in a uniform parallel flow. The as-
sociated momentum theory is sometimes called the two-dimensional theory
as it includes not only the momentum balance in axial direction, but also
the balance of angular momentum. See also Explanation 3.1.

states that a considerable portion of the change in kinetic energy is now tobe
found in the outer portions of the vortex rings, so outside the stream tube pass-
ing through the disc. According to modern insights in vorticity dynamics, Lanch-
ester’s statement is incorrect since he should include also the pressure- and un-
steady terms arising from the intermittent operation in the energy equation. It is
here where Lanchester deviates from Froude and leaves the possibility open that
the velocity at the disc is not the average of the velocities far up- and downstream.

1.2.2. The German and Russian School. In 1917 Bothezat has gen-
eralized the result about the doubling of the induced velocity in the wake for
actuator discs producing not only a forward but also a rotary movement in the
wake. Joukowsky published a series of 4 papers on propeller aerodynamics in
1912; 1914; 1915; 1918. In the 4th paper he finally formulated the modern state
of Froude’s theory. This history has been supported and extended by Hoff (1921)
who indicated Finsterwalder as the scientist who established the theory too, which
was extended by Bendemann (1910).

Although Froude’s theory was accepted by many scientists, it was not yet
possible to show a connection between the abstraction of the actuator disc and
the action of real blades on the flow. During the first two decades of the 20th

century this led to a struggle of viewpoints, that was resolved by vortex theory.

1.2.3. The contribution of Joukowsky and Betz to the vortex theory
of propellers. The first article of Joukowsky from his cycle Vortex theory of the
screw propeller has been published in 1912. Herein he created the vortex model of
a propeller based on a rotating horseshoe vortex, which expanded the elementary
vortex model of a wing with a finite span. In his vortex theory each of the blades
is replaced by a lifting line about which the circulation, associated with the bound
vorticity, is constant, resulting in a free vortex system consisting of helical vortices
with finite cores trailing from the tips of the blades and a rectilinear hub vortex,
as sketched in figure 1.1a. In 1918 in the last, fourth, article of the cycle, he
not only expounds the theory of an ideal propeller based on Froude’s actuator
disc theory but also derived the performance of a static disc. This is considered
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Figure 1.1: Rotor vortex models of Joukowsky, (a), and Betz, (b), for a 1-bladed
propeller.

to be the very first performance prediction for a rotor. His static disc result is
still valuable as a first indication for the power required to keep a helicopter or a
modern drone hovering.

Simultaneously Betz (1919) worked on the creation of the propeller vortex
theory. He proposed a model for rotors equivalent to Prandtl’s model of a wing
with an elliptically distributed load giving a uniform induced velocity with mini-
mum induced drag. Each of the rotor blades is replaced by a lifting line releasing
a free vortex sheet with constant velocity in axial direction, see figure 1.1b.

The models of Joukowsky and Betz are supposed to represent the ideal rotor.
At the time of these pioneers it was not yet possible to evaluate which model was
more ideal than the other. Both models neglected wake expansion or contraction,
so were valid only for lightly loaded rotors. Goldstein (1929) found an analytical
solution for the wake of Betz’s rotor restricted to lightly loaded propellers. Wald
(2006) pays great attention to the Goldstein solution as this is considered to be
the optimal one for propellers. Okulov et al. (2015, chapter 4) present an overview
of the development towards a complete non-linear solution to Betz’s problem in-
cluding wake expansion or contraction. A similar solution was published by Wood
(2015). Both confirm the main result of Froude’s analysis that the averaged axial
velocity at the disc or rotor is the mean of the velocities far up- and downstream,
and satisfies the results of momentum theory. Furthermore Okulov et al. (2015,
chapter 4) show that Joukowsky rotors perform slightly better than Betz rotors
for the same tip speed ratio. For the analyses in the next chapters it is relevant to
know that in the limit for an infinite number of blades rotating with infinite speed,
both models converge to Froude’s actuator disc, so they become identical. For
the Betz rotor this is shown by Okulov and Sørensen (2008), for the Joukowsky
rotor the limit transition is presented in section 4.3.

Concluding this subsection we may say that Joukowsky (1912, 1914, 1915,
1918) and Betz (1919, 1921) have shown for the first time the connection between
a real rotor and an abstract actuator disc.



1.3. FROM ACTUATOR DISC TO ROTOR AERODYNAMICS 5

1.2.4. The Betz-Joukowsky limit for wind turbines. Joukowsky (1920)
and Betz (1920) have independently published articles to develop Froude’s theory
to the theory of the ideal wind turbine, predicting the maximum energy which can
be extracted from wind. Munk (1920) did the same. In addition to this Hoff (1921)
remarked that his article with the same topic was written somewhat later than
the mentioned papers but was independent of them. Because the independent
publications by Joukowsky and Betz are the result of their great achievements in
vortex theory, their names are connected to this limit, see Okulov and van Kuik
(2012). The maximum efficiency of an energy extracting device was known as the
Joukowsky limit in Russia, and as the Betz limit in the rest of the world.

The reason why Joukowsky’s name was not connected outside Russia may be
explained by the following. The paper of Joukowsky (1920) had a quite special
purpose: it was a response to an inventor, in which he formulated the maximum of
wind energy utilization for the ideal wind turbine. The paper of Betz (1920) has
a title that shows the topic clearly: The maximum efficiency of a wind turbine.
In addition to this Betz has published the remarkable book Wind energy and
its utilization by windmills which made the name of Betz well-known amongst
wind energy engineers. Furthermore, the paper of Betz has been published in
a journal, whereas the paper of Joukowsky was part of the Transactions of his
scientific institute, with a possibly more limited distribution. Joukowsky was 73
in 1920 and it was his last article.

After this history has been published by Okulov and van Kuik (2012) the
maximum efficiency of a wind turbine is known as the Betz-Joukowsky limit.

1.3. From actuator disc to rotor aerodynamics

The actuator disc is the basis for the industry standard rotor design method,
the Blade Element Momentum method, BEM (see Explanation 1.2 for a brief
description). There is a good reason for this, as shown in figure 1.2. The black
line shows the result of Froude’s momentum theory for the wind turbine mode,
left part, and the propeller mode, right part. The vertical axis gives the average
induced velocity at the disc, the horizontal axis the undisturbed wind speed with
respect to the disc, both made dimensionless by the velocity at the static disc
(representing a rotor in hover, so U0 = 0). This representation is well known
in helicopter literature like Leishman (2006) as it is able to show the results
for zero wind speed, but for the same reason only rarely used in wind turbine
references, see e.g. Sørensen et al. (1998). In this branch of rotor aerodynamics
figure 1.3 is used, showing the average velocity at the disc for the wind energy flow
states as a function of the thrust coefficient CT = T/( 12ρU

2
0Ad). Added to both

graphs are results of experiments in the 80thies of the previous century, Anderson
et al. (1982), Wilmshurst et al. (1984), van Kuik (1989), more recent experiments,
Leishman (2006), Medici and Alfredsson (2006), Haans et al. (2008), Parra et al.
(2016) and Lignarolo et al. (2016a), and calculations found in literature from
the 70thies, Greenberg (1972), up to recent times, Sørensen et al. (1998), Spalart
(2003), Rosen and Gur (2008), Mikkelsen et al. (2009), Madsen et al. (2010).
The correspondence between the momentum theory and the data is quite good,
except close to the static disc and close to the maximum load on a wind turbine
disc. Figure 1.3 shows the engineering extension of the momentum theory for the
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Figure 1.2: Actuator disc momentum theory compared with experiments and
calculations. The vertical axis gives the induced velocity at the disc, the horizontal
axis the undisturbed wind speed with respect to the disc, both made dimensionless
by the velocity at the static or hovering disc at U0 = 0
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Figure 1.3: Actuator disc momentum theory including an engineering extension
compared with experiments and calculations for wind turbine flow states. The
vertical axis shows the velocity at the (rotor) disc, the horizontal axis the thrust
coefficient.
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heavily loaded disc developed by Glauert (1926) in the form presented by Hansen
(2008).

The classical actuator disc momentum theory is not able to say anything
about radial or azimuthal distributions of velocity and load for real rotors. The
disc concept has been adapted by many as to make it useful for rotors with a
finite number of blades. A major contribution was delivered by Glauert (1935,
ch. III) who coupled disc loads to blade loads and introduced the torque in the
momentum theory, resulting in the Blade Element Momentum method. One of the
assumptions Glauert made to make the method executable is that the pressure in
the far wake is uniform, despite the pressure gradient necessary to maintain swirl.
Many authors have published similar adaptations with slightly different results,
reviewed by Sørensen (2015). The main problems that were left after Glauert’s
work were the refinement of the blade model, the effect of swirl, the tip correction,
the optimisation procedure and the adaptation of BEM to atmospheric and rotor
conditions conditions not covered by the first versions of BEM. Much effort has
been spent in making BEM suitable for real screws, propellers, helicopter and
wind turbine rotors and to make it ready for digital computing, as done by Wilson
and Lissaman (1974). For the wind energy application, models have been added
for wind, wind shear, turbulence, three-dimensional flow along the blade surface,
blade deformations, tip effects, yawed flow, dynamic inflow, unsteady aerofoil
behaviour, dynamic stall, rotor and turbine control, etcetera. Similar adaptations
and extensions have been developed for the other branches of rotor aerodynamics.
Propeller, helicopter and wind energy textbooks like Breslin and Andersen (1994),
Leishman (2006), Burton et al. (2011), Manwell et al. (2009), and Schepers (2012)
present surveys of these BEM-adaptations, although improved corrections are
continuously being published, e.g. by Schaffarczyk (2014) and Sørensen (2015).

Besides momentum theory also vortex theory is used to model the action of
a B-bladed rotor. Breslin and Andersen (1994) presented, besides the actuator
disc theory, a thorough treatment of the lifting line theory and propeller design
optimization. Branlard (2017) gives a comprehensive survey of vorticity based
modelling for wind turbine aerodynamics. Modern computer power has enabled
vortex lattice methods like the one described by Micallef et al. (2013), where
boundary conditions are applied at the true blade surface. The potential flow
solution provides details of the wake as well as the blade loads. Full solutions in-
cluding viscous effects using Computational Fluid Dynamics (CFD) are presented
in early publications like Sørensen and Myken (1992) and Madsen and Paulsen
(1990), and more recent publications like Madsen et al. (2010), Sibuet Watters
et al. (2010) and Troldborg et al. (2010). Since the calculation time required for
a complete solution of blade and wake flow is still too long, the blade is often
represented by an actuator line as first proposed by Sørensen and Shen (2002). In
the actuator line method the blade is represented by a prescribed load distributed
along a line replacing the blade, see e.g. Shives and Crawford (2013) and Réthoré
et al. (2014). This method is very successful in wake analyses where details of
the flow around the blade cross section are not very relevant. Specially in the
combination with atmospheric turbulence, rotor generated turbulence, interac-
tion between multiple wakes and intervention by rotor control actions, methods
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based on the actuator line, disc or surface are the method of choice. A survey of
CFD methods in wind energy is published by Sanderse (2011).

Despite the progress in blade aerodynamics, the actuator disc has received and
still receives continuous attention. Wu (1962) has derived a differential equation
describing the flow in terms of the stream function, the circulation around the
axis and the component of the disc load perpendicular to the stream tube. When
the disc has a uniform normal load, the wake is bounded by a vortex sheet and
the flow inside the wake is free of vorticity. This enables rewriting Wu’s equation
as a potential flow equation, with the position and strength of the vortex sheet as
unknowns to be solved by numerical methods. Greenberg (1972) has published
results for such a uniformly loaded disc. Øye (1990) and Mikkelsen et al. (2009)
represented the vortex sheet emanating from the edge of a uniformly loaded disc
by a series of concentric vortex rings. The strength and position of these rings is
calculated with the appropriate boundary conditions. Several authors, amongst
which Sørensen and van Kuik (2011), have presented an extension to Glauert’s
theory for rotating disc force fields including torque when the rotational speed
tends to zero. Conway (1998) has presented exact analytical solutions for non-
uniform load distributions in inviscid flow. His results have become a benchmark
to test other flow solvers. Rosen and Gur (2008) developed a semi-analytical
actuator disc model, in which the disc is represented by a distribution of sinks.
They found a close correspondence with Conway’s results. Réthoré et al. (2014)
used Conway’s work to successfully validate a CFD actuator disc method. A first
CFD calculation for many actuator disc flow states is presented by Sørensen et al.
(1998). An example of the calculation of the hover flow state is published by
Spalart (2003).

This brief representation of the state-of-the-art in rotor aerodynamics shows
that it has a long history with a well developed foundation in analytical theory,
vorticity modelling and CFD calculations, and with BEM as well validated design
method. The research area Rotor Aerodynamics is much wider than treated in
this book. Especially for wind turbine aerodynamics the following references may
help the interested reader to get acquainted: Sørensen and Shen (2002) for the
first application of an actuator line, Calaf et al. (2010) for a Large Eddy Sim-
ulation (LES) study of wind turbine array boundary layers, Churchfield et al.
(2012) for a LES study of wind plant aerodynamics, Porté-Agel et al. (2011) for
a LES study of atmospheric boundary layer flow through a wind farm, Schepers
(2012) for a survey of engineering models, Hölling et al. (2014) for the impact
of turbulence, Fleming et al. (2015) for a comparison of wake mitigation control
strategies, Simão Ferreira (2009) for the aerodynamics of vertical axis wind tur-
bines, Stevens and Meneveau (2017) for a review of flow phenomena and models
in wind turbine wakes and wind farms interacting with the earth boundary layer,
and finally van Kuik et al. (2016, section 2,3) where long term research questions
on aerodynamic, wind and turbulence issues are reviewed.
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Explanation 1.2. BEM, the Blade Element Momentum method
In its most elementary form, BEM proceeds from a rotor placed in a uni-
form, undisturbed, parallel flow aligned with the rotor axis. The Mo-
mentum part uses the actuator disc momentum theory, see section 5.2,
to find the induction at the position of the rotor. However, instead of
doing so for the entire rotor disc, it is done for each radial element Δr
of the rotor blades. The corresponding annulus contains the flow from
far upstream to far downstream passing through the rotor in between the
radii of the blade element. It is known that applying the disc momentum
theory to annuli instead of the stream tube is not valid, but still it is used
as the error is assumed to be limited, except close to the tip where all
BEM codes apply a tip correction to modify the axial velocity and local
load. The Momentum part of BEM requires the blade load as input. This
is taken from the Blade Element part where 2-D aerofoil properties are
used to determine lift and drag for a given axial induction. Both parts
are solved iteratively. Based on the assumption of independent annuli,
Burton et al. (2011, page 70) shows that the Joukowsky distribution of
uniform circulation (see Explanation 3.1) results from BEM based rotor
design optimisation. However, the independence of annuli is not correct,
as will be discussed and quantified in chapters 5 and 6.

1.4. Why this book?

The fluid dynamic basis of rotor aerodynamics is revisited with emphasis
on the first rotor model, the actuator disc. Three approaches characterize the
analysis:

• in most fluid dynamic analyses the flow induced by lifting surfaces is solved
using boundary conditions at the surface, with the resulting load on the surface
as output. In doing so, the force field term in the equation of motion is absent.
However, the equation of motion allows using a force field as input instead of
output, with the force field determining the flow. In contrast to many other
fields of fluid dynamics, this is common practice in most rotor aerodynamic
models, so this approach is adopted here. This leads to relations between force
fields and (conversion of) vorticity or energy which are underexposed in modern
fluid dynamic textbooks.

• the actuator disc is supposed to represent a real rotor sufficiently accurate. The
relation between a disc and a rotor is investigated analytically and numerically,
and the respective flow fields measured in a wind tunnel are compared.

• using modern computer power, it has become possible to show several details
of actuator disc flows which could not be determined by the pioneers in rotor
aerodynamics. This numerical approach uses the same equations of motion as
used by them: the inviscid, incompressible Euler equations.

The questions which are addressed are listed below. Several of these questions
lead to improved understanding, others to improved rotor modelling:
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Q1 Most aerodynamic models calculate the load on a lifting body by integration
of the pressure at a surface after the flow is solved: the load is output. In
many rotor aerodynamic models the reverse method is used, with the load as
input and the flow field as output. Are these approaches consistent and what
are the benefits and drawbacks of the force field method?

Q2 In solid mechanics it is useful to classify forces as conservative or non-conserva-
tive. Is this a relevant distinction in the force field method?

Q3 It seems obvious to interpret Bernoulli’s law as conservation of energy, but
fluid dynamic textbooks are very cautious to do so. Is it possible to show that
conservative forces conserveH, the Bernoulli parameter, and non-conservative
forces change H? If so, can pressure be interpreted as potential energy?

Q4 Textbooks learn that lifting surfaces like wings and rotor blades, when mod-
elled as a bound vortex, form a closed vortex system with the trailing vortices:
vorticity and circulation are conserved, often explained by Helmholtz’s conser-
vation laws. However, the most simple rotor representation, the actuator disc,
produces vorticity instead of conserving it. Are both approaches compatible?

Q5 Physical intuition as well as numerical examples show that a rotor subjected
to the limit B → ∞, B being the number of blades, becomes the actuator
disc. Can we show this analytically?

Q6 How close does the velocity field of an actuator disc resemble the velocity field
of a rotor? In more detail: can we use the velocity distribution at the disc to
represent the velocity distribution at the position of the rotor blade?

Q7 Actuator disc momentum theory does not provide detailed results like the
distribution of vorticity along the wake boundary. This boundary is a cylin-
drical vortex sheet with its leading edge coinciding with the disc edge. Leading
edges of vortex sheets are known to be singular in the vorticity strength. Can
modern computations be used to investigate the leading edge behaviour of
this vortex sheet?

Q8 The actuator disc momentum theory gives the average velocity at the disc.
Can we say something about the radial distribution of the velocity?

Q9 It is known that the actuator disc momentum theory can not be applied per
stream annulus instead of the entire stream tube. Is it possible to modify the
theory to become a useful prediction method per annulus?

Q10 Some actuator disc momentum theories including swirl have a remarkable
result for energy extracting discs with a rotational speed approaching zero:
the efficiency becomes infinite. This is is not physically acceptable. What
goes wrong in the theory?

Q11 The wake behind a disc or rotor with finite rotational speed includes an
azimuthal velocity vϕ. Some publications consider this to be a loss of energy.
Is this true?

Q12 What are the main differences between actuator disc flows extracting energy
and adding energy, apart from wake expansion versus contraction?
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Q13 Several experiments on wind turbine model rotors show that the tip vortex
first moves inboard, so to a lower radius, before the wake expansion starts.
What is the explanation?

Q14 Joukowsky’s model for an optimal rotor with a finite number of blades has
uniform circulation along the radius while the model of Betz for such a ro-
tor has a non-uniform circulation. The tip correction used in BEM has been
formulated by Prandtl using Betz’s model. Is it correct to apply a tip cor-
rection derived for Betz’s concept in BEM calculations based on Joukowsky’s
concept?

Each of the next chapters ends with a section Evaluation, in which the answers
to these questions will be summarized. Only actuator discs representing rotors
operating in unbounded fluid are considered. Discs used to model devices in flows
that are restricted laterally by walls, e.g. tubes, cascade disc flows and disc flows
through flame fronts, are treated by Horlock (1978).



blankleftintentionallypageThis



2

Force fields in fluid dynamics

2.1. Introduction

Rotor aerodynamics is one of the few areas in aerodynamics where force fields
are used as input in flow calculations: the flow field induced by predefined forces
is solved (the dynamic method). In most other aerodynamic analyses the force
field is the output instead of input: the flow field around a surface is solved using
surface boundary conditions, after which the pressure and so the load are known
(the kinematic method). One of the reasons why force fields as input are not
used often is twofold: usually they are not known in advance, and the kinematic
method for which Lanchester, Prandtl and Joukowsky laid the basis, has been
shown to be very powerful. However, the use of force fields has some advantages,
especially for rotor aerodynamics since the thrust, being the integrated load, is the
main parameter defining flow states. The use of force fields as input is common
practice in classical actuator disc theory, in the Momentum part of BEM methods,
and in actuator line (AL) analyses. In the AL analyses the blade is replaced by a
load carrying line in order to have a much lower computation time compared to
full Computational Fluid Dynamics (CFD) solutions. The load in these methods
is determined either by the definition of the problem (in actuator disc analyses:
based on physical arguments a load distribution is assumed, e.g. Sørensen et al.
(1998)) or by iteration with other methods (in AL and momentum methods: for a
given flow field the load is taken from a Blade Element calculation, e.g. Shen et al.
(2014)). Besides its modest computational effort, the force field approach offers
the advantage of a force-field based interpretation of the three processes governing
disc and rotor flows: the change of momentum, the generation or conservation of
vorticity and the conversion or conservation of energy.

Before discussing these processes we treat the role of the force field term in
the Euler equation of motion, involving a distinction between conservative and
non-conservative force fields. Furthermore we show that the kinematic approach
(no force field, boundary condition of zero normal velocity at the lifting surface)
and the dynamic approach (external force fields) are equivalent.

2.2. The equation of motion and the coordinate systems

The flow is assumed to be incompressible, inviscid and isentropic, so the Euler
equation:

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇p+ f (2.1)

is valid as well as the continuity equation:

∇ · v = 0, (2.2)

13
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Figure 2.1: Properties of a bound vortex sheet with thickness ε and force density
distribution f : pressure jump p− − p+ = Fn, velocity jump v− − v+ = γ.

with v being the velocity vector, ρ the flow density, p the pressure and f the
force density, volume force or force field. Rewriting (2.1) with the vector identity
(v · ∇)v = ∇ (v · v) /2− v × ω yields:

∇H = f − ρ
∂v

∂t
+ ρv × ω, (2.3)

where H is the Bernoulli constant p+ 1
2ρv ·v, and ω the vorticity. Most textbooks

pay some attention to the force term but at some moment assume that f is
conservative, like the gravity force field ρg. Then f = ρg = −∇G where G is the
potential of ρg. The right-hand side of (2.1) then becomes −∇(p+ G). With the
potential G considered to be part of the pressure, the conservative f disappears
from the equation of motion. Here this assumption is not made. Instead, force
fields are assumed to be confined to thin surfaces having thickness ε, see figure
2.1. Integration of f along the normal n, becoming a Dirac delta function for
ε → 0, gives the surface load F :

F =

∫
ε

fdn. (2.4)

More integrations result in a line force or a discrete force, which will be named
after its function, e.g. lift or thrust.

Most analyses in this book use the cylindrical coordinate system (x, r, ϕ)
with the disc centreline coinciding with the positive x-axis and with e denoting
the unit vector with an appropriate index, as well as the local coordinate system
(s, n, ϕ), see figure 2.2. The coordinates s and n are in the meridian plane tangent
respectively normal to a streamline. Besides these inertial coordinate systems also
the rotating system (x, r, ϕ)rot is used, rotating with respect to the inertial system
with the angular velocity Ω of the force field. The velocity and vorticity in the
inertial and rotating systems are related by:

vrot = v − eϕΩr (2.5)

ωrot = ω − 2exΩ. (2.6)
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Figure 2.2: The coordinate systems of an actuator disc and rotor acting as a wind
turbine. Ψ is the Stokes stream function. All vectors are in positive direction
except Γaxis and γϕ. Shown are the flow states decelerating the flow.

Batchelor (1970, eq. (3.5.20))1, gives the steady Euler equation in the rotating
coordinate system, including the centrifugal force −Ω × (Ω× r) = erΩ

2r =
1
2∇ (Ωr)

2
and Coriolis force vrot × 2Ω:

f+
ρ

2
∇ (Ωr)

2
+ ρvrot × 2Ω = ∇Hrot − ρvrot × ωrot. (2.7)

With (2.6) and with ∇Hrot = ∇
(
H − ρvϕΩr +

ρ
2 (Ωr)

2
)
this becomes:

f = ∇ (H − ρvϕΩr)− ρvrot × ω for steady flows. (2.8)

2.3. Equivalence of the kinematic and dynamic methods

Prandtl (1918) showed that the pressure distribution acting on a translating
lifting surface is equivalent to a distribution of normal forces acting on the surface
modelled as a bound vortex sheet γ. The line of thoughts is the following: In
the kinematic method usually the space occupied by a body is excluded from
the flow domain, with appropriate boundary conditions like zero normal velocity
applied at the surface. The flow and pressure around it are determined by solving
ρ∂v

∂t + ρ (v · ∇)v = −∇p resulting in the pressure acting at the surface. In the
force field approach this exclusion of the body volume is not made, but the surface
S is considered as a layer of infinitely thin thickness ε, at which a normal force
field f is distributed. After integration across ε the force term becomes F defined

1Batchelor’s equation is without f . He has included the centrifugal term 1
2
∇ (Ωr)2 in ∇H.
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Figure 2.3: Comparison of the flow around a Joukowsky aerofoil. Left: the ana-
lytical solution, right: the numerical solution with the lift as input, copied with
permission from Mart́ınez-Tossas et al. (2017)

by (2.4) with f behaving as a Dirac delta function for ε → 0. Integration of (2.3)
across ε gives:

F = lim
ε→0

∫
ε

(∇H − ρv × ω) dn, (2.9)

in which the unsteady term is absent as F ⊥ v. In the limit ε → 0 the first
term in the integrand results in a jump in H, while the second term becomes∫ (−ρvs

∂vs

∂n

)
dnε =

1
2ρ
(
v2− − v2+

)
with the subscripts + and − explained in figure

2.1. Herewith:

F = enΔH − ρv × γ (2.10)

in which v is the average of the velocity on both sides of the vortex sheet and γ
is the vortex sheet strength:

γ =

∫
ε

ωdn = −eφΔvs. (2.11)

Equation (2.10) shows that every vortex sheet having a non-zero velocity expe-
riences a jump in Bernoulli parameter H or carries a normal load F . In case
ΔH = 0 the famous Kutta-Joukowsky relation for the load on a vortex sheet
results. If the sheet is the surface of an aerofoil contour, the pressure and velocity
inside the aerofoil are constant, so ΔH = constant, by which (2.10) gives for the
lift on a 2 D aerofoil:

L2−D =

∮
F ds = −ρ

∮
v × γds (2.12)

with s following the contour of the aerofoil. As:

F = −ρv × γ = −enΔ

(
1

2
ρv2s

)
= enΔp (2.13)
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this becomes:

L2−D =

∮
F ds = ρ

∮
enpds. (2.14)

This shows the equivalence of the force field F and the pressure enp.

Besides showing the equivalence in equations, it is worthwhile to see some
numerical implementations. The modelling of the force field F in CFD methods
requires a distribution of f on a number of grid cells, satisfying (2.4), see for
example Mart́ınez-Tossas et al. (2017). He demonstrates the equivalence of the
kinematic method and a numerically implemented dynamic method for a two-
dimensional aerofoil flow. The left side of figure 2.3 shows the analytically resolved
potential flow around a cambered Joukowsky aerofoil at 12◦ angle of attack, where
the right side gives the flow induced by the Joukowsky lift for the same aerofoil.
The flow is solved with a linearised equation of motion and the lift is approximated
by an elliptic Gaussian distribution of which the centre is at at the chord of the
aerofoil. The position of the centre and the length parameters in the direction of
the chord and thickness are optimized for a best fit with the analytical solution.
Despite these approximations the flow field at 1 chord distance from the quarter
chord point is almost identical for both methods as it follows the r−1 behaviour
for a potential vortex. This example shows the pros and cons of the dynamic
method: one has to know important information from the aerofoil such as the
lift coefficient before running a CFD simulation, but if so, it allows an accurate
calculation of the flow field without the need to resolve all aerofoil flow details.

A second example of the equivalence is shown in figure 2.4, where the axial
velocity in the rotor plane of a 3 bladed rotor with constant bound circulation is
shown, calculated by a lifting line (LL) method and an actuator line (AL) method
as reported in van Kuik et al. (2015b). The LL method is the kinematic method:
the blade is modelled as a line with prescribed constant bound circulation Γ. The
AL method prescribes forces acting at the line. The force distribution is chosen
such that the resulting circulation around the lines is identical to the prescribed
constant circulation in the LL method. The load case shown is the wind turbine
for tip speed ratio λ = 7 where λ is the tip speed ΩR divided by the wind speed
U0, for the thrust coefficient CT = T/( 12ρU

2
0πR

2) = −8/9. The results of both
methods agree reasonably well except for minor differences for r < 0.1R and near
the tip, due to differences in the desingularisation of the vortices. In section 4.4
both methods will be used to compare actuator disc and rotor flows.

2.4. Conservative and non-conservative force fields

The use of the force field f is discussed in old text books and papers, like
Prandtl (1918) and von Kármán and Burgers (1935) without making an explicit
distinction between conservative and non-conservative components. In general,
the force field can have both components:

A non-conservative force field is defined by:

∇× f �= 0, (2.15)
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Figure 2.4: Distribution of vx/U0 at the rotor plane x=0 according to the actuator
line (AL), and lifting line (LL) model, for λ = 7 and CT = −8/9, from van Kuik
et al. (2015b). The direction of rotation is anti-clockwise

and is able to generate vorticity as shown by the curl of (2.3) (see Saffman, 1992,
pp. 10-11):

1

ρ
∇× f =

Dω

Dt
− (ω · ∇)v, (2.16)

with the last term denoting the change of vorticity due to stretching or tilting
of already existing vortex filaments. When f is distributed on a surface with
thickness ε as shown in figure 2.1, integration of ∇ × f and taking the limit for
ε → 0 gives:

1

ρ
∇× F =

Dγ

Dt
− (γ · ∇)v. (2.17)

For inviscid flow around a 2-D aerofoil
∮ ∇ × F ds = 0 with s taken along the

aerofoil contour, so the force field is conservative and no vorticity is produced.
For a finite wing

∮ ∇×F ds �= 0 because of the spanwise gradient of the load. The
force field of a 3-D lifting surface is non-conservative, producing trailing vorticity
according to (2.17). However, when integrated over the entire surface S of a wing
or rotor blade: ∮

S

∇× F dS = 0, (2.18)

since the integrand consists of the derivatives of the normal load in spanwise
direction, yielding 0 after integration on a closed contour. The force field of a
lifting surface generates vorticity locally, but as an equal amount of opposite sign
is produced somewhere else at the surface, the nett generation is zero. This is
the force field based explanation of the fact that any lifting surface produces the
same amount of positive and negative vorticity.
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Since the generation of vorticity implies that fluid particles receive an angular
speed, it is expected that (2.16) represents the differential balance of angular
momentum. The Euler equation possesses a number of conserved quantities like
the angular- or moment of momentum, as shown by e.g. Marshall (2001, p.50).
However, an explicit relation between this balance and force fields is not found in
literature. In appendix B it is shown that ∇ × f expresses, in differential form,
the torque applied to a fluid element and similarly that (2.16) is the balance of
angular momentum. The analysis is restricted to 2−D and 3−D axisymmetric
flows without swirl.

A conservative force field satisfies ∇× f = 0 or, equivalently:

f = −∇F (2.19)

where F is the potential of f . With (2.19) the Euler equation (2.1) becomes:

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇ (p∗ + F) = −∇p, (2.20)

with p = p∗ + F where p∗ indicates the pressure in absence of F . When only
conservative forces act, the flow is free of vorticity so v can be expressed in its
potential Φ, v = ∇Φ. Analogous to (2.3) the unsteady Bernoulli equation follows:

∇
(
H + ρ

∂Φ

∂t

)
= 0 for f = f cons. (2.21)

with H = H∗ + F . This can be compared with the Bernoulli equation derived
from (2.8) for flows without a force field and free of vorticity:

∇ (H − ρvϕΩr) = 0, (2.22)

which has been derived previously by Thwaites (1960, p. 473) and de Vries (1979,
app. C2). A comparison shows that in the wake of a rotor or disc, where ∇F = 0,

∂Φ

∂t
= −vφΩr in the wake where ω = 0. (2.23)

Equation (2.20) also shows that the effect of a conservative f is to change the
pressure field. According to (2.21) a conservative force acting in a steady flow

conserves H = p+ ρ
2 |v|2, so changing p implies changing ρ

2 |v|2, positioning p in
the role of potential energy. This is examined further in section 2.5.

2.5. Force fields and energy

2.5.1. Work done by force fields. Batchelor (1970, p. 157) shows that
the work per volume per second done by a distribution of volume forces is given
by the dot product f · v. This is evaluated using (2.3), integrated on volume V
with surface S encompassing the area at which f is distributed. With en,S as the
unit vector normal to S and using Gauss’s theorem this gives:∫

V

f · vdV =

∫
V

ρ

2

∂ |v|2
∂t

dV +

∫
V

(v ·∇)HdV

=

∫
V

ρ

2

∂ |v|2
∂t

dV +

∫
S

H (v · en,S) dS. (2.24)
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Figure 2.5: Control volume V used to assess the power converted by the disc:
(a) is the volume extending to infinity encompassing the start vortex, (b) is the
volume containing steady flow as the start vortex is far enough outside V to have
no influence at the flow inside V .

The choice of the volume V determines which of the terms at the right-hand
side contribute. Figure 2.5 shows the wake of an energy adding disc with two
versions of V . In figure 2.5a V is large enough to encompass the wake including
the start vortex which is convected downstream. The flow within V is unsteady,
but at the surface S the flow and pressure are undisturbed. Figure 2.5b shows the
volume in which the flow is steady. V is large enough to include a fully developed
wake. Furthermore the stream tube passing through the disc is displayed, with the
subscript 0 to indicate the undisturbed flow, subscript 1 for the fully developed
wake, and subscript d for the disc itself. If the force field starts to work at a
certain time and V is taken so large that at S the velocity and pressure remain
undisturbed, figure 2.5a applies, and the second integral at the right-hand side
of (2.24) is 0. The work done is expressed as the increase per second in kinetic
energy contained within V :∫

V

f · vdV =

∫
V

ρ

2

∂ |v|2
∂t

dV when control volume V extends to infinity. (2.25)

This holds for force fields representing wings or rotors when an inertial frame of
reference is used, and V is sufficiently large to encompass the entire wake behind
these lifting surface after the start.

In case V is chosen smaller such that S crosses the fully developed wake,
figure 2.5b applies, so the unsteady integrand may be either zero (for the steady
actuator disc) or periodic (for the rotor), yielding a zero result after integration



2.5. FORCE FIELDS AND ENERGY 21

over time Δt required for 1 revolution of the force field. The work done per second
is: ∫

V

f · vdV =

∫
S

H (v · en,S) dS for steady or periodic flows, finite V , (2.26)

so is expressed in the flux of flow times H, where H is the energy level of the fluid
particles.

2.5.2. Choice of reference system. The use of (2.25) implies that an
inertial reference system is used, with V extending to infinity. To use (2.26) the
reference system need to be fixed to the position of the force field in order to
achieve steady or periodic flow within V , with V having finite dimensions. In
case (2.26) is used it is important to check where and how the work is done.
Let us consider a force field representing the action of a wing. The force field
experiences a non-zero undisturbed velocity U far upstream. At the wing surface
the velocity v is tangent to the surface while the force F is perpendicular, so
the wing load does not perform work as F · v = 0. This situation is not an
invented case, as this is what happens in wind tunnel tests: the energy required
to maintain the flow against the induced drag is delivered by the wind tunnel fan.
Consequently, for the energy balance V should be chosen large enough to include
the force field of this fan. For a wing flying in a reference frame fixed to the earth
(2.25) applies: the wing has a velocity U in unbounded air which is undisturbed
at infinite distance from the wing. The flow vector at the surface is v − U and
the work done by the force field is (the integrated value of) F ·U , to be delivered
by the wing engines. As the amount of work to be delivered by either the wing
force field, (2.25), or the fan force field, (2.26), is the same, the right-hand side of
(2.26) is conveniently used to assess the work required to keep a wing flying.

Comparison of the performance of a rotor in a (non-rotating) coordinate sys-
tem fixed to the axis with the performance of a rotor moving in an inertial system
reveals a remarkable difference, as already noted by Betz (1920). Represented
as an actuator disc, it is clear that in both systems F · v �= 0. The power ex-
tracted by a wind turbine fixed to earth is calculated as T · v where T is the
thrust acting against the wind speed U0 and v the averaged wind speed at the
disc, with v < U0. When the same wind turbine is mounted on an aeroplane
having flying speed U0 in still air, the power required to overcome the turbine
thrust is T ·U0. According to Corten (2001b) the difference T · (v −U0) is the
kinetic energy dissipated into heat in the flow outside of the stream tube passing
the disc. He derives this result by including in his analysis the mixing of the
wake with the flow outside the wake, resulting in a vanishing slipstream at a large
downstream distance. As mixing and dissipation are processes not governed by
the Euler equations, these phenomena remain outside the scope of this book.

Relevant for the present analysis is the comparison of the performance in a
co-rotating reference frame fixed to the axis (and blades), with the performance
in a similar but stationary system. In a reference system fixed to the blades
the blade force field does not perform work as at the blade surface the velocity
vco−rotating is perpendicular to the force F , similar to the wing force field in the
wing-fixed system. If the rotor reference system is a non-rotating system fixed to
the rotor centre, the work done by the rotor is the torque times rotational speed.
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From (2.25) we know that ultimately all work done is expressed in a change
of kinetic energy. The contribution by conservative forces is evaluated using (2.1)
and (2.3):

f · v = ρv · Dv

Dt
+ (v ·∇)p. (2.27)

Adapting the analysis in Marshall (2001, p. 102) for flows being at rest at infinity,
to flows which are undisturbed at infinity, submission of f = −∇F yields for the
change in kinetic energy KE within V :

dKE

dt

∣∣∣∣
fcons

=

∫
V

v · Dv

Dt
dV =− 1

ρ

∫
V

(v ·∇) (p+ F) dV

= −1

ρ

∫
S

(p+ F)v · en,SdS. (2.28)

As we consider only force distributions originating from body forces on volumes
with finite dimensions, (p+ F) → p0 for infinitely large V , so:

dKE

dt

∣∣∣∣
fcons

= − (p+ F)

ρ

∫
S

v ·endS = 0 for flows undisturbed at infinity. (2.29)

This shows that conservative forces can not perform work. Then, from the left-
hand side of (2.27) it follows that f cons · v = 0, so conservative forces are per-
pendicular to the local velocity vector. If a force field performs work, it is non-
conservative.

2.5.3. Pressure as a conservative force in momentum balances. A
special class of conservative forces appears in momentum balances. When this
momentum balance is drawn on a certain control volume, the pressure at the
boundaries of the volume have to be included in the balance. For the flow in the
control volume, the pressure acts as a force field normal to the boundary of the
control volume:

F = −en(p− p0) =

∫
fdn with f = −∇p (2.30)

satisfying (2.19). As will be evaluated in chapters 5 and 6 this conservative load
does not contribute to the energy balance.

2.5.4. Pressure interpreted as potential energy. Batchelor (1970, p.
138, 157) and Kundu (1990, p. 102) mention that F can be considered as the
potential energy. The same holds for pressure as Batchelor suggests (p. 157)
that ’under certain conditions the pressure might play the part of a potential
energy’. Equation (2.27) shows that the work done by f is expressed in a change
of pressure, kinetic energy or both. Consequently the pressure is to be considered
as potential energy, while the Bernoulli value H expresses the total amount of
energy which can be changed by non-conservative forces. The interpretation of
pressure as potential energy is supported by Morrison (2006) who states that for
ideal flows ‘potential energy is stored in terms of pressure and temperature’. As
here the flow is considered to be isentropic temperature does not play a role,
leaving pressure as a measure for potential energy. The conversion of potential
to kinetic energy depends on the evolution of the wake behind the force field.
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As an example we take the flow through the actuator disc without swirl. The
load on an energy extracting disc decreases the potential energy in the near wake,
which is converted to a loss of kinetic energy in the far wake having recovered
undisturbed pressure. For a disc adding energy to the flow the same happens
in an opposite way. In section 6.3.2 an energy adding disc flow will be treated
where the increase of energy in the wake is found to be only potential energy, so
is expressed in pressure.

2.6. Definition of (non-)conservative forces as used in this book

The mathematical definition of non-conservative and conservative forces is
given by (2.15) and (2.19) respectively. These equations define the local charac-
ter of the force field, not of the entire distribution. For the analyses in this book
the following unambiguous characterization of a force field distribution is used:

Definition 2.1. A force field distribution integrated on a surface S or
a volume V with finite dimensions is non-conservative when it releases
vorticity into the flow. It is conservative when this is not done. In an
inertial frame of reference non-conservative forces perform work, while
conservative forces act perpendicular to the local velocity vector, so do
not perform work.

2.7. Evaluation

In this chapter we answered research question Q1 in section 1.4: the kinematic
method (loads as output of flow analyses) is consistent with the dynamic method
(loads as input). The advantage of the dynamic method is that it gives explicit
relations for the work done by the load on lifting surfaces. Also Q2 and Q3
are answered: the distinction between conservative and non-conservative forces
is useful for the interpretation of the physical processes: conservative forces do
not produce vorticity and do not convert energy but convert potential energy
(pressure) to kinetic energy or vice-versa. Non-conservative forces do produce
vorticity and convert energy. This distinction will play a role in the momentum
theory chapters 5 and 6, and in chapter 7. For steady actuator disc flows and
steadily rotating rotors the work done by the force field is expressed in a change of
Bernoulli valueH. For the flows considered here the pressure term inH represents
the potential energy.

In the next chapter the relation between loads and vorticity is analysed in
more detail.
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3

Force fields and vorticity

3.1. Introduction

One of the distinct features of the force field approach is the direct link with
the generation of vorticity according to (2.16) or (2.17). The literature on creation
of vorticity by force fields is limited. Several authors, e.g. Betz (1950), mention
viscosity as the main source of vorticity while the force fields discussed here act
in an inviscid flow. This is brought up for discussion by some authors. von
Kármán and Burgers (1935) and Saffman (1992) treat the impulsive motion of
respectively a force field and a body as a source of vorticity. With the equivalence
of the kinematic and dynamic method, both impulsive actions become the same.
von Kármán and Burgers (1935) also treat the continuous creation of vorticity
for which they show that ∇×F �= 0 is the requirement. Prandtl (1924) presents
how vortex sheets emanate from a sharp aerofoil trailing edge in inviscid flow, but
this solution is given another interpretation by van Kuik (2004). Batchelor (1970,
section 5.4) describes the creation of vorticity by moving surfaces in inviscid fluid
at rest. All of these analyses are presented in the inviscid Euler flow representation.
Morton (1984) presents a comprehensive treatment on the generation of vorticity
and the role of viscosity herein. He covers the mechanisms mentioned above,
concluding that vorticity is generated by pressure gradients: non-zero tangential
pressure gradients at the surface create vorticity while viscosity is responsible for
diffusion. By (2.13) a non-zero tangential pressure gradient ∂p/∂s is the same as
a non-conservative force derivative ∂Fn/∂s.

This limited literature study does not cover the topic of vorticity generation
comprehensively, but is sufficient for the purpose of this chapter: vorticity gen-
eration in inviscid flows is possible by non-conservative force fields. While most
kinematic considerations are qualitative and descriptive, the force field approach
gives an explicit relation: (2.16) and (2.17) connect the force field to the genera-
tion of vorticity. This seems to be in contrast to Helmholtz’s conservation laws
which are often used in textbooks to show that circulation, being the integrated
vorticity, is conserved when going from bound to free vortices. This will be anal-
ysed in section 3.2, after which the generation of vorticity by an actuator disc
force field is treated in detail in section 3.3.

3.2. The role of Helmholtz’s conservation laws

A lifting surface like a wing or rotor blade can be represented by a bound
vortex, which is continued in the flow by trailing vortices. For a rotor blade the
combination of the root vortex, blade-bound vortex and the tip vortex consti-
tute a continuous vortex system, as shown at the left of figure 3.1 copied from

25
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� 

Figure 3.1: The rotor model of Joukowsky, left, and wing model of Prandt, right.
Joukowsky uses J as symbol for circulation, where Prandtl uses Γ.

Joukowsky (1912). This is to be considered as the equivalent of the ’horse-shoe’
vortex of a wing as developed by Prandtl (1918), displayed at the right of figure
3.1. When the bound vortex Γ (J in the left part of figure 3.1) is assumed to
be constant, the models of Prandtl and Joukowsky show a continuous vortex line
of uniform strength which is often explained by the vorticity conservation laws
of Helmholtz, see e.g. Clancy (1986), Kundu (1990), Katz and Plotkin (2001),
Anderson Jr (2011) and Rathakrishnan (2013). However, when the wing or blade
is represented by a distribution of force fields F , (2.17) shows that vorticity is
generated instead of conserved. To solve this apparent contradiction, the origi-
nal publication of Helmholtz (1858) has been studied. He clearly states that his
conservation laws assume that there are no non-conservative force fields. Fur-
thermore the concept of bound vorticity does not appear in his paper as this
was introduced only half a century later by Lanchester (1907) and Prandtl (1918,
I. Mitteilung). Prandtl himself notes that the concept of bound vorticity is not
covered by Helmholtz’s conservation laws. Consistent with this Meyer (1982,
p. 42) shows that Helmholtz’s laws are not applicable to bound vorticity. Saffman
(1992, p. 10) confirms that these vorticity conservation laws are not applicable,
since these have been derived assuming only conservative forces. In other words,
the laws of Helmholtz cannot be used to explain the continuation of bound vor-
ticity in trailing vorticity.

The correct kinematic explanation for the creation of trailing vorticity is well
described by e.g. Batchelor (1970) and Lighthill (1986) who use Stokes’ theorem
to show that for a wing:

γtrailing = −dΓbound/dy (3.1)

with y the spanwise coordinate. These considerations do not affect the validity
of the horse-shoe models of Prandtl and Joukowsky but the physical explanation:
these models do not proceed from conservation of vorticity. Similarly this holds
for Kelvin’s circulation theorem. The circulation around any closed contour en-
closing the bound or free vortices equals Γ, so is constant. However, this is not
because of vorticity conservation since Kelvin’s theorem is derived assuming 1)
only conservative forces, 2) the contour being a material contour convected with
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the flow, see Saffman (1992, §1.6). This is not the case for lifting surfaces, since
a material contour around the tip vortextip vortex was a circulation-free contour
when it was still upstream of the surface position.

The conclusion is that a lifting surface generates vorticity which may be mod-
elled by the dynamic method using (2.17) and by the kinematic method using
(3.1). There is no conflict with Helmholtz’s laws since these do not apply. The
circulation of bound and free vortices is the same, although this is not based on
Helmholtz’s laws or Kelvin’s theorem. By this result the apparent contradiction
between a rotor and actuator disc is removed: both generate vorticity governed
by the curl of the force field.

3.3. Generation of actuator disc vorticity

A contour L enclosing the upstream part of the stream tube is free of circu-
lation Γ. It remains so when moving downstream enclosing the wake, as can be
explained in terms of the force field. Branlard (2017, eq. 2.159) shows that for
incompressible inviscid flow dΓ

dt =
∮
L(t) F · dl. In case the force field is absent

Kelvin’s theorem follows, but also when
∮
F · dl = 0. For a rotor or disc force

field, (2.18) is valid by which this is true, so Kelvin’s theorem applies to a contour
enclosing the stream tube. This implies that the total of axial vorticity enclosed
by L must be zero, irrespective of the stream wise position of L. Here we analyse
how the generation of vorticity by the disc force field satisfies Kelvin’s theorem.

For the Joukowsky actuator disc, shown in figure 3.2 and described in Ex-
planation 3.1, the generation and convection of vorticity is analysed in detail. As
only the pressure and azimuthal velocity will be discontinuous across the infinitely
thin disc, integration of (2.1) across the disc gives:

F = exΔp+ eϕρvxΔvϕ. (3.2)

The Bernoulli equation p+ 1
2ρv · v = H, integrated across the disc, is:

Fx = Δp = ΔH − 1

2
ρΔv2ϕ (3.3)

so:

F = ex

(
ΔH − 1

2
ρΔv2ϕ

)
+ eϕρvxΔvϕ. (3.4)

Evaluation of ∇× F gives:

ex
1

ρ

∂ (rFϕ)

r∂r
− eϕ

1

ρ

∂Fx

∂r
= ex

∂ (rvxΔvϕ)

r∂r
− eϕ

∂
(

1
ρΔH − 1

2Δv2ϕ

)
∂r

. (3.5)

For any load distribution the integration of ∂(rFϕ)/(r∂r) over the entire disc gives
a nett zero result, so the total amount of axial vorticity produced by the disc is
zero. This is not the same for the ∂Fx/∂r: the nett production of azimuthal
vorticity is non-zero. Three regions are distinguished to analyse (3.5):
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Explanation 3.1. Joukowsky circulation distribution Figure 3.2
shows the rotor and disc model of Joukowsky, characterized by a constant
circulation Γ. For the 1-bladed rotor shown in the figure the vortices at
the axis, blade and tip have equal strength. The disc vorticity system has
the same vortex at the axis and constant Γ = −γdisc2πr. The azimuthal
velocity in the wake of a rotor, averaged over a revolution, and the local
velocity in the disc wake are: vϕ = Γ/(2πr). For both systems the flux of
vϕΩr represents the work done by the disc or rotor force field, see section
4.2. For a disc with Ω → ∞ the azimuthal velocity vanishes like Ω−1 as
will be shown in section 4.3.

The disc region: δ < r < R where δ is the radius of the vortex core at the
axis and where Δvϕ = Γ/(2πr). With ∂vϕ/∂r = −vϕ/r (3.4) and (3.5) become:

ex
1

ρ

∂ (rFϕ)

r∂r
− eϕ

1

ρ

∂Fx

∂r
= ex (rΔvϕ)

∂vx
r∂r

− eϕ
Δ2vϕ
r

, (3.6)

with rΔvϕ being independent of r as it concerns a Joukowsky disc.
This shows that the distribution of rFϕ is responsible for the distribution of

the angular momentum rvxΔvϕ, thereby creating the disc vortex sheet strength
erγ, defined by the velocity discontinuity across the disc:

erγ = −erΔvϕ. (3.7)

The axial load derivative provides the required centripetal pressure distribution
1
ρ
∂Δp
∂r = Δ2vϕ/r. Furthermore Fx depends only on vϕ where Fϕ depends too on

the distribution of vx:

Fx ∝ r−2 + constant, Fϕ ∝ vx
r
. (3.8)

This describes the load on an infinitely thin disc. For a disc with thickness, several
other terms contribute to the right-hand side of (3.5). In chapter 7 the role of
these additional terms is evaluated for a disc load generating a wake with a solid
body rotation like a Rankine vortex.

The disc centre: r ≤ δ. If a Rankine core is assumed1 Δvϕ = r
δ

Γ
2πδ . Inte-

gration of (3.5) across the core yields, with ( 1ρΔH − 1
2Δv2ϕ) =

1
ρ (Δp + v2x − U2

0 )

remaining finite for δ → 0:

1

ρ
lim
δ→0

δ∫
0

∇× F 2πrdr = lim
δ→0

δ∫
0

ex
Γ

2πδ2
∂
(
r2vx

)
r∂r

2πrdr (3.9)

= lim
δ→0

δ∫
0

exvx
Γ

πδ2
2πrdr (3.10)

= exvxΓ for r < δ, (3.11)

showing that the force field produces the centreline vortex Γ.

1The Rankine core is known as a viscous core, but the same distribution of Δvϕ can be

generated by a force field F , see van Kuik et al. (2014) and chapter 7.
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Figure 3.2: The Joukowsky circulation distribution for (a) a one-bladed lifting line
rotor, (b) the actuator disc with swirl, and (c) the classical disc without swirl, see
Explanation 3.1.

The disc edge: r = R, where integration of the right-hand side of (3.5) across
the disc edge gives:

1

ρ

∫
edge

∇× F 2πrdr = −ex (2πRvxΔvϕ)r=R + eϕ2πR

(
ΔH

ρ
− 1

2
Δv2ϕ

)
r=R

(3.12)

= −exvxΓ + eϕ2πRFx for r = R, (3.13)

where (3.3) has been used. The axial component shows that the force field pro-
duces the axial vorticity having the same circulation as the root vortex but
with a negative sign. With (2.17) the azimuthal component can be written as∫
edge

Dωϕ

Dt rdr =
DΓϕ

Dt expressing the increase of azimuthal circulation of the wake

boundary. Combined with (3.13) this gives:

DΓϕ

Dt
=

1

ρ
2πRFx,edge, (3.14)

so only the pressure jump at the edge defines the increase of Γϕ. In summary we
see that the force field

• creates the disc bound vorticity γr,
• sheds equal amounts of positive and negative axial vorticity: the root vortex Γ
and the wake boundary with the axial component equalling −Γ,

• sheds azimuthal vorticity being part of the wake boundary.

3.4. Convection of actuator disc vorticity

So far the occurrence of free radial vorticity does not follow from the preceding
equations. In other words: the disc force field does not generate the radial com-
ponent of the wake boundary vorticity but is a consequence of convection. Once
generated, vorticity is convected with the flow v and is subject to stretching and
tilting, described by (ω · ∇)v. In the wake f = 0 so the azimuthal component of
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Figure 3.3: Details of the vortices trailing from a rotor blade in hover and a wing.

the steady version of (2.16) becomes:

(v · ∇)ωϕ = (ω · ∇) vϕ − ωr
vϕ
r

+ ωϕ
vr
r
. (3.15)

By substitution of the axial and radial components of (A.7) (ω · ∇) vϕ = ωx∂vϕ/∂x+
ωr∂vϕ/∂r = −ωrvϕ/r is obtained, so:

(v · ∇)ωϕ = −2ωr
vϕ
r

+ ωϕ
vr
r
. (3.16)

According to Darmofal (1993) the first term at the right hand side describes the
change of azimuthal vorticity due to tilting of radial vorticity. The second term
describes the stretching of vorticity, also described by Saffman (1992, p. 14). Fur-
ther simplification of (3.16) is achieved by considering (2.22). In the wake but
also outside the wake ∇ (H − ρvϕΩr) = 0 so this term vanishes after the integra-
tion of (2.8) across the free vortex sheet forming the wake boundary, resulting in
vrot×ω = 0. The x−component reads vrωϕ = vϕ,rotωr. With (2.5) this becomes
vrωϕ = (vϕ − Ωr)ωr. Substitution in (3.16) yields:

(v · ∇)ωϕ = −
(vϕ

r
+Ω
)
ωr. (3.17)

Equation (3.17) shows that ωr depends on the convection of ωϕ, so is needed to
transport the azimuthal vorticity to other radii. Once generated, the azimuthal
vorticity is determined by the boundary conditions for a free vortex sheet, satis-
fying conservation of circulation within a contour moving with the flow.

The axial vorticity contained in the centreline vortex and wake boundary are
related, as shown in figure 3.2b, where the wake vorticity is decomposed. The
centreline vorticity, the disc bound vorticity and the axial wake boundary vortic-
ity constitute a system of connected vortex lines of equal (integrated) strength.
Conservation of circulation on a contour L enclosing the stream tube is satisfied,
as discussed in the previous section. This vortex system induces the swirl in the
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wake, which is the measure for the work done by the force field as will be shown
in the next chapter.

3.5. Convection of rotor vorticity

Figure 3.1 shows the linearised vortex models of Joukowsky for a two-bladed
rotor and of Prandtl for a wing. Comparison with the physical models as shown in
figure 3.3 show the simplifications of the early models: Joukowsky kept the wake
radius R constant, Δr = 0, as well as the pitch θ = arctan x

rϕ of the wake spirals

constant, so Δx = Rϕ tan θ. Prandtl (1918) assumes zero inboard and downward
movement of the tip vortices, Δx = Δy = 0 (see also Milne-Thomson (1966)).
The distances Δx, Δy and Δr are shown in figure 3.3. For a wing Δx and Δy
indicate the location of the wing tip vortices with respect to the plane defined
by the undisturbed wind speed vector and the vector along the wing span, for a
rotor blade Δx and Δr give the downwind respectively inboard displacement of
the tip vortex.

Conservation of wake circulation by Kelvin’s theorem as discussed in section
3.2 shows that the summation of all axial vorticity in the rotor wake at any
downstream x−position has to be zero, so

∫
ωxdAx,root = − ∫ ωxdAx,tip where

Ax is the cross-section of the vortices with the plane x = constant. This leads to
Γx, root = −Γx, tip. At first sight this may conflict the rotor equivalent of (3.1),
expressing that the root and tip vortices equal the +/− strength of the bound
blade vortex: Γroot = −Γtip. However, this equation originates from

∫ |ω|dAroot =
− ∫ |ω|dAtip in which A is the cross section of the vortex perpendicular to the
direction of the vorticity ω. Geometric considerations show that

∫
ωxdAx,root =∫ |ω|dAroot.

A characteristic difference between the linearised rotor and wing models is
observed. First is that Δx �= 0 in the rotor model while Δx = 0 in the wing
model. Converted to the components of the vorticity, this implies that Γx = 0
for the linearised wake of a wing, while for a rotor it is essential to have Γx �= 0
since Γx defines the swirl. In the next chapter we show that the swirl defines the
converted power. In other words: the vorticity component that is least important
for determining the performance of a wing is essential for a rotor.

3.6. Evaluation

This chapter contributes to the answer of question Q2 in section 1.4: the force
field approach allows explicit expressions for the generation of vorticity by non-
conservative force fields acting on lifting surfaces. Furthermore this chapter gives
an answer to research question Q4: with respect to vorticity dynamics, there is
no conceptual difference between the most simple model of a rotor, the actuator
disc, and real rotor models. In both type of models vorticity is produced by the
disc or rotor blade instead of conserved. The continuation of the blade bound
vorticity into free tip vorticity is not governed by Helmholtz’s conservation laws
as often assumed. Furthermore the components of bound and free vorticity in
actuator disc flows have been characterised. The relations between forces, energy
and vorticity will be used in subsequent chapters. Particularly equation (3.3) will
play a major role in chapter 6.
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The disc as representation of a rotor

4.1. Introduction

The actuator disc momentum theory is the basis for the design and load
calculations of real rotors with a finite number of blades. In this chapter the
expressions for thrust and power for a disc and rotor are derived and compared
in order to find similarities and differences. Furthermore the limit transitions to
convert a real rotor to a disc with an axisymmetric load will be presented as an
answer to the question: is the actuator disc the result of a rotor subjected to
the limit of the number of blades B → ∞, the blade cross section C → 0, the
rotational speed Ω → ∞, meanwhile keeping the converted power P and thrust
T constant? Thereafter, section 4.4 compares the velocity fields of a disc and a
rotor having the same size and having been measured in the same wind tunnel.

4.2. Loads and power of a Joukowsky disc and rotor

Joukowsky discs and rotors (in equations abbreviated as J-disc and J-rotor)
are characterised by a constant circulation Γ around the axis, as shown in figure
3.2 and mentioned in Explanation 3.1. This centreline vortex is modelled with a
vortex core having radius δ. For r ≥ δ vϕ = Γ/(2πr), inside the core vϕ depends
on the assumed characteristics of the core.

4.2.1. The actuator disc equation. The power produced or absorbed by
an annulus dr of the actuator disc can be expressed in two ways. First as torque
Q times rotational speed Ω giving ΩdQ = 2πΩfϕr

2dr, second by integration of
f · v using the steady version of (2.3), resulting in 2πr(v.∇)Hdr. Comparison
shows that:

f · v = Ωrfϕ = (v.∇)H. (4.1)

The expression for fϕ is derived from the ϕ-component of the steady version of
(2.1), with the help of (A.4):

rfϕ = ρ(v ·∇)rvϕ. (4.2)

Substitution in (4.1) gives:

f · v = ρ(v.∇) (Ωrvϕ) = (v.∇)H, (4.3)

so:
1

ρ
∇H = ∇ (Ωrvϕ) = ∇

(
ΩΓ

2π

)
. (4.4)

This relation between converted power and azimuthal velocity has been obtained
in chapter 2 for flows without force fields and vorticity, see (2.22), but is now
shown to be valid at the disc too. Equation (4.4) shows that the work done by

33
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the force field is expressed in a change in the total pressure or Bernoulli constant
H. Integrated across the disc this gives:

ΔHd = ρΩrvϕ (4.5)

so combined with (3.3):

Fx = Δpd,ΔH +Δpd,vϕ
= ρΩrvϕ − 1

2
ρv2ϕ. (4.6)

Both terms at the right-hand side are pressure jumps: ρΩrvϕ converts power so
is a non-conservative disc load, − 1

2ρv
2
ϕ is required for the radial pressure gradient

balancing vϕ. The increase of kinetic energy, 1
2ρv

2
ϕ is balanced by the change in

potential energy Δpd,vϕ = − 1
2ρv

2
ϕ and is not a measure of the work done.

A combination of (4.4) with (2.8) gives the actuator disc equation:

f = −ρvrot × ω. (4.7)

An alternative way to derive (4.7) is to express (4.4) in ω: ∇ (Ωrvϕ) = eϕΩr×ω.
Substitution in the steady version of the Euler equation (2.3) using the coordinate
transformations (2.5) and (2.6) results in (4.7).

Equation (4.7) is the equation of motion for the steady actuator disc convert-
ing power for any radial distribution of f . The subscript rot in (4.7) distinguishes
it from the expression of a Kutta-Joukowsky force: the disc load is the cross
product of the velocity as experienced in the rotating system with the vorticity in
the inertial system. Since it is expressed in kinematic terms it enables an easier
physical interpretation of the relation between loads and vorticity compared to
the Euler equation including H.

The thrust T is obtained by integration of (4.7) on the disc volume. With
ε denoting the thickness of the disc, the limit ε → 0 gives, analogous to the
conversion of (2.9) to (2.10),

∫
ε
vrot × ωdε = vrot × γd. For a Joukowsky disc

2πrγd = −Γ, see (3.7), so the thrust becomes, using (2.5):

T = ρ

∮ R∫
0

vϕ,rotγrdϕdrd = −ρΓ

R∫
0

vϕ,rotdrd

= ρ
ΩΓ

2
R2 − ρΓ

R∫
δ

vϕ,ddrd for a J-disc, δ → 0 (4.8)

The power converted by the non-conservative force field of a steady actuator disc
or a steadily rotating rotor is given by (2.26). As a conservative force field does
not convert power, see (2.28), this can be generalized to:

P =

∫
V

f · vdV =

∫
S

H (v · en,S) dS (4.9)

with volume V having surface S shown in figure 2.5b. At the cross section with
the wake v · en,S = vx. At the cross section with the stream tube far upstream
the velocity is undisturbed U0. For the part of V outside the stream tube H = H0
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and
∫
(v · en,S) dS = 0 so the expression for the converted power becomes:∫

V

f · vdV =

∫
A1

HvxdA1 −H0U0A0, (4.10)

where A0 is the cross section of the stream tube far upstream and A1 the same far
downstream. For a Joukowsky disc (4.4) shows that in the wake H is constant.
Mass conservation U0A0 = vxA1 gives:

P = (H −H0)

∫
A1

vxdA1 for a J-disc, δ → 0, (4.11)

or, with (2.22):

P = ρΩΓ

R1∫
δ1

vxr1dr1 = ρ
ΩΓ

2π
vx,dR

2 for a J-disc, δ → 0, (4.12)

where conservation of mass is used to convert the integral from plane A1 to the
disc area, and where vx,d is the disc averaged axial velocity.

4.2.2. The rotor blade. Figure 4.1 shows a rotor blade having a cross
section C at which the bound vorticity is distributed. The sectional load on a
blade is derived in the rotating coordinate system by integration of (2.8) on C:

L = −ρ

∫
C

vrot × ωdC +

∫
C

∇ (H − ρvϕΩr) dC. (4.13)

According to (4.4) the gradient term is zero for an actuator disc, but for a rotor
this is not yet clear. The integral is converted by Green’s theorem to

∮
(H −

ρvϕΩr)endS where S is a contour enclosing C and en the outward unit vector at
S in the plane of C. According to (2.22) the integrand is constant when ω = 0,
so outside of the vortex sheet leaving the aerofoil. As we consider inviscid flows,
any vorticity leaving the aerofoil trailing edge is concentrated in an infinitely thin
sheet. At the sheet the integrand (H − ρvϕΩr) has to behave as a Delta function
in order to contribute to the integral. As H and ρvϕΩr remain finite, this is
not the case. Consequently

∮
(H − ρvϕΩr)endS = 0, by which the sectional load

(4.13) becomes:

L = −ρ

∫
C

vrot × ωdC. (4.14)

Depending on the orientation of vrot and ω the sectional load may have a radial
component, besides the axial and azimuthal components. Figure 4.1 shows the
load on the radial bound vorticity but also, close to the blade tip and root, on
the chordwise bound vorticity, being able to carry an additional axial and radial
load. This is treated in detail in chapter 7. In case the blade is modelled as a
lifting line, so C → 0, only the radial bound vorticity is taken into account, and:

lim
C→0

L = −ρ

∫
C

vrot × erωrdC = −ρvrot,B × ΓB (4.15)
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Figure 4.1: The load on bound radial vorticity of a wind turbine rotor blade.

with the blade bound vortex strength ΓB = er
∫
C
ωrdC remaining invariant for

C → 0, and with vrot,B the velocity at the position of the lifting line. This is the
expression for the Kutta-Joukowsky load used in rotor aerodynamic textbooks like
Stepniewski and Keys (1978), Leishman (2006) and Schaffarczyk (2014). Blade
Element Momentum design methods as presented by Sørensen (2015) and wind
turbine textbooks like Burton et al. (2011) express the inviscid load as Lblade =
Cl

1
2ρv

2
relc where c is the chord, Cl the lift coefficient and vrel the velocity perceived

by the blade, so identical to vrot. This expression is fully equivalent to −ρvB,rot×
Γ.

The thrust at the rotor is defined by the axial component of (4.15). With
(2.5) and with Γ = −BΓB :

T = −ρΓ

R∫
δ

vϕ,rot,Bdrd = ρ
ΩΓ

2
R2 − ρΓ

R∫
δ

vϕ,Bdrd for a J-rotor, δ → 0. (4.16)

The converted power P is torque Q times Ω, so with the azimuthal component
of (4.15):

P = QΩ = −ΩBρ

R∫
δ

∫
C

vxωrrddrddC. (4.17)

In (4.15) the limit C → 0 was included, so
∫
C
vxωrdC = vx,BΓB . As before

Γ = −BΓB , yielding:

P = ρΩΓ

R∫
δ

vx,Brdr for a J-rotor, δ → 0. (4.18)
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Equations (4.16) and (4.18) are equivalent to the disc equations (4.8) and (4.12)
apart from the indication B in (4.18).

A contribution by the vortex kernel itself is not included in P and T as we
have assumed a Rankine-like distribution of vϕ with vϕ = 0 at r = 0. Evaluation
of the contribution to P and T shows that the kernel does not contribute when
δ → 0.

For the disc as well as rotor the conversion of power by the force field is
expressed in the in- or decrease of the amount of wake swirl. The sign conventions
shown in figure 2.2 are that the rotational speed Ω > 0 and Γ < 0 for energy
extracting discs, so ΔH < 0. For an energy adding disc Γ and ΔH > 0.

4.2.3. Power and thrust coefficients for Joukowsky discs / rotors.
The disc: Equation (4.12) gives the expression for the power P converted by
the disc. With the introduction of the non-dimensional vortex strength q =
Γ/(2πRU0) and tip speed ratio λ = ΩR/U0, (4.5) becomes:

ΩΓ

2π
= 2qλ for r ≥ δ. (4.19)

Herewith the dimensionless power coefficient Cp becomes1:

Cp =
P

1
2ρU

3πR2
= 2qλ

vx,d
U0

for a J-disc, δ → 0. (4.20)

The thrust T is given by (4.8). As the first term at the right-hand side of (4.8) is
the thrust converting power and the second term the thrust due to the pressure
gradient connected to the rotation of the wake, the dimensionless thrust coefficient
is written as:

CT =
T

1
2ρU

2πR2
= CT,ΔH + CT,Δvϕ

CT,ΔH = 2λq

CT,Δvϕ = −q2 ln

(
R

δ

)2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for a J-disc, δ → 0. (4.21)

For δ → 0 CT,Δvϕ
→ ∞. The consequences of this will be discussed at the end of

this section.
The rotor: The power is given by (4.18). As for the disc, the power coefficient
becomes:

Cp = 2λq
vx,B
U0

for a J-rotor, δ → 0. (4.22)

The thrust is given by (4.16), so in dimensionless form:

CT = 2λq − 4q

R∫
δ

vϕ,B

UδR
dr. (4.23)

1the definitions for Cp and CT used here differ from the definitions used by Wald (2006),
where Cp = P/(ρn3D5) and CT = T/(ρn2D4), but are the same as his coefficients Kp and KT .

The definitions used by Leishman (2006) are Cp,Leishman = Cp/(2λ3), CT,Leishman = CT /(2λ2).
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The local thrust coefficient Ct defined as BdLx/
(
ρU2

0πrdr
)
, where Lx is the axial

component of (4.15):

Ct = 2λq − 2q
vϕ,B

U0

R

r
, for a J-disc, r ≥ δ. (4.24)

In the wake the azimuthally averaged value vϕ = Γ/ (2πr) but in the rotor plane
it is half this value: vϕ,x=0 = Γ/ (4πr) . The azimuthal distribution of vϕ will be
approximately uniform for low values of r/R as the induction by the root vortex
dominates. However, for larger r/R values the tip vortices will add a harmonic
distribution. With the actuator line and lifting line calculations of which the
axial velocity is shown in figure 2.4, the order of magnitude of the approximation
vϕ,B = vϕ = Γ/ (2πr) is estimated: the deviation in ΔCT is < 1�, so the
approximation is well in place. When the non-uniformity of vϕ is neglected,
vϕ,B/U0 ≈ Γ/ (4πrU0) for r > δ and ≈ Γr/

(
4πδ2U0

)
for r < δ when vϕ = 0

for r = 0 is assumed. For δ → 0 the contribution of the area πδ2 to the thrust
vanishes so the result for CT is:

CT = CT,ΔH + CT,Δvϕ

CT,ΔH = 2λq

CT,Δvϕ = −4q

R∫
δ

vϕ,B

U0R
dr ≈ −q2 ln

(
R

δ

)2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for a J-rotor, δ → 0 (4.25)

and for the local thrust coefficient Ct:

Ct = Ct,ΔH + Ct,Δvϕ

Ct,ΔH = 2λq

Ct,Δvϕ
= −2q

vϕ,B

U0

R

r
≈ −q2

(
R

δ

)2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for a J-rotor, δ → 0 (4.26)

The expressions for the rotor and disc are identical, apart from the approximation
in (4.25) and (4.26) for the rotor thrust component CT,Δvϕ

.
CT,Δvϕ

, representing the contribution to the thrust by the radial pressure
gradient balancing the radial distribution of vϕ, becomes ∞ for δ → 0. With
δ 
 R the singular term is positive, so it adds up to CT,ΔH for a wind turbine
rotor but is opposite to this for a propeller. For practical wind turbine conditions
δ mimics the root cut-out radius, which is the radius below which the nacelle
and blade root connection occupy the space. A practical value is 0.15R so for
λ > 7 and 2λq > −1 we find that CT,Δvϕ

≤ 0.02CT,ΔH so this contribution to
the thrust may be ignored. In forthcoming results and figures CT,ΔH will be
used as parameter defining flow states, together with the tip speed ratio λ for
wind turbine discs and the advance ration J = U0/(nD) for propeller discs, with
λ = π/J .

4.3. The transition from a B-bladed rotor to the Joukowsky disc

The actuator disc carrying a constant pressure jump is supposed to represent
a rotor with an infinite number of blades by which the rotor load is distributed
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Figure 4.2: Maximum power coefficients |Cp| of an optimum rotor as function of
tip speed ratio λ and number of blades 1 to 4. Left: Joukowsky rotor; Right:
Betz rotor. From Okulov and Sørensen (2010) with permission.

over the entire disc. Physical arguments support this notion, as well as a numerical
approach by Okulov and Sørensen (2010). Figure 4.2 shows the power coefficients
Cp as a function of λ and the number of blades for the load distributions according
to Betz and Joukowsky. For both distributions the |Cp| values grow to the actuator
disc maximum for an increasing number of blades. A remarkable property of
this analysis is that the distance between the tip vortices, modelled with a core
diameter δ to avoid velocity singularities, will not vanish for B → ∞ as Bδ remains
non-zero. Apparently the transition from spiralling vortices with a vortex core to
a continuous vortex sheet with a velocity jump is not an automatically generated
result.

Apart from the numerical and physical arguments, an analytical transition
from rotor to disc, based on the relevant equations for the rotor and disc, has to
provide the formal basis for the statement that the disc represents the rotor with
an infinite number of blades. The limit transitions with which Joukowsky rotors
turn into a Froude disc are: B → ∞, Ω → ∞, C → 0, meanwhile keeping the
thrust T and power P constant.

The power converted by a disc and rotor is given by (4.12) and (4.18), and
the thrust by (4.8) and (4.16). The limit C → 0 has already been used in their
derivation. For B → ∞ the velocity at the rotor plane will become azimuthally
uniform, so with invariant power and thrust vx,B → vx,d and vϕ,B → vϕ,d, and:

lim
C→0
B→∞

PJ−rotor = ρΩΓ

R∫
0

vxrdr = ρ
ΩΓ

2π
vx,dAd = PJ−disc, (4.27)

lim
C→0
B→∞

TJ−rotor = ρΩΓR2 − ρΓ

R∫
0

vϕdr = TJ−disc. (4.28)
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So far the rotor blade and the disc still have a finite Ω. With increasing Ω the
torque Q disappears and the load becomes normal. For constant P but Ω → ∞,
(4.1) and (4.3) yield:

rfϕ ∝ Ω−1 and rvϕ ∝ Ω−1 if lim
Ω→∞

f · v = constant. (4.29)

This implies that fϕ and vϕ vanish but not vϕΩr = ΩΓ/(2π). By (4.4) at the disc
ρΩΓ/(2π) = ΔH = Δp so (4.27) and (4.28) become:

lim
C→0
B→∞
Ω→∞

PJ−rotor = ρΔpvx,dAd = PFroude disc (4.30)

and:

lim
C→0
B→∞
Ω→∞

TJ−rotor = ρΔpAd = TFroude disc. (4.31)

Herewith a Joukowsky rotor with B blades has been transferred to Froude’s disc
with a constant pressure jump Δp by the limits C → 0, B → ∞ and Ω → ∞.

4.4. Comparison of the flow fields of a disc and rotor

In the previous sections we showed the conformity of the loads and power
conversion by a rotor and an actuator disc. However, this does not yet include
the development of the wake behind both. An experimental analysis compares
the wake development of a 2-bladed model rotor and of an actuator disc tested in
identical circumstances: the same wind tunnel, wind speed and turbulence level,
size of rotor and disc, Reynolds number and thrust coefficient. This experimental
comparison is entirely based on Lignarolo et al. (2016a)2.

A porous disc3 and a two bladed horizontal axis wind turbine model running
at tip speed ratio λ = 7, both with a 0.6m diameter, have been tested in the
low speed closed loop Open Jet Facility at a wind speed of 4.7m/s. The OJF
is a wind tunnel located at Delft University of Technology, faculty Aerospace
Engineering. It has an octagonal test section with an equivalent diameter of 3
m and a contraction ratio of 3:1, delivering a uniform stream with about 0.5%
turbulent intensity up to 1m from the nozzle and lower than 2% at 6m from the
nozzle exit. The disc and turbine model have been tested in identical conditions
with identical measurement systems, described in Lignarolo et al. (2016a). This
paper presents a comprehensive analysis of both experiments, while here only the
data on the axial velocity and the wake expansion are reproduced. The thrust
coefficient CT = −0.93.

Figure 4.3 shows the axial velocity vx of the disc (AD) flow field and the
azimuthally averaged vx of the wind turbine (WT) flow field. The area between
x = 0.15D and .55D could not be covered by the SPIV (Stereo Particle Image

2The authors of this paper have given permission to include their results in this book.
3A porous disc changes H by dissipation and heat exchange, instead of changing angular

momentum or swirl. However, as shown in section 4.3, swirl disappears for Ω → ∞, so a porous
disc represents the Froude disc at the right-hand sides of (4.30) and (4.31). The difference is in
the origin of the disc force field: an externally applied force field for Froude’s disc, versus the
viscous drag for the porous disc, and the type of extracted energy: QΩ with Q → 0, Ω → ∞ for
Froude’s disc, heat for the porous disc.
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Figure 4.3: Axial velocity field in the wake of the AD (top) and of the WT
(bottom), both operating at CT = −0.93.

Figure 4.4: Axial velocity profiles at five different locations in the wake of the AD
and of the WT.

Velocimetry) system, so no data are available. Figure 4.4 shows the radial distri-
bution of vx at several positions downstream of the plane of the AD-WT. Finally
figure 4.5 shows the wake expansion behind the AD and WT. Figures 4.3, 4.4
and 4.5 show a good correspondence between the AD and WT results.
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x   WT 

Figure 4.5: ADs and WTs wake expansion and relative difference. The curves
represent the loci of the points where the axial velocity is 99% of the free stream
value.

Next to this experimental comparison, section 8.3 presents a numerical com-
parison of the velocity distribution in the plane of a 3-bladed rotor with the
velocity in the plane of an actuator disc. This numerical exercise uses the results
of the Lifting Line and Actuator Line methods described in section 2.3 and the re-
sults of the actuator disc method described in chapter 5 and 6, so the presentation
of the results is postponed to chapter 8.

4.5. Evaluation

Research question Q5 listed in section 1.4 has been answered. The expressions
for the thrust and power for a Joukowsky rotor and disc are similar. A Joukowsky
rotor becomes the classical Froude disc with a uniform load after a series of limit
transitions. The power converted by the actuator disc as well as the rotor shows
itself as a change of the Bernoulli value H, being equal to the change in the
angular momentum times rotational speed.

Question Q6 has been answered positively by experiments with a wind turbine
disc and rotor having the same size and thrust, tested in the same wind tunnel.
The flow of a disc and rotor resemble enough to be confident that the disc can be
used for analyses of rotors with a finite number of blades. Chapter 5 treats the
performance of a Froude disc, chapter 6 of a Joukowsky disc.
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Analysis of Froude’s actuator disc flows

5.1. Introduction

This chapter addresses the actuator disc as conceived by Froude (1889): a
disc with a uniform normal load created by a pressure jump over the disc, with
the disc placed perpendicular to a uniform inviscid flow. As shown in chapter 4
such a disc is the end product after a series of limit transitions starting with a
rotor having a finite rotational speed and finite number blades. The momentum
theory couples the disc load to the acceleration or deceleration of the flow in the
fully developed wake, allowing for optimisation of the action of the disc. This
actuator disc momentum theory, sometimes called ‘one-dimensional’ as only the
axial momentum balance is included, is repeated in section 5.2.2. The theory gives
the average value of the axial velocity at the disc, not the velocity distribution.
Modern computational approaches are able to provide flow details like the shape
and strength of the vortex tube that separates the wake from the outer flow. Using
a Computational Fluid Dynamics (CFD) solver for the Navier-Stokes equations,
the velocity field for propeller as well as wind turbine flows states was published
by Sørensen et al. (1998), and for a static or hovering disc by Spalart (2003). The
method to find details of the actuator disc flow used in this chapter is based on
the inviscid method of Øye (1990), aiming for such a high numerical accuracy
that conclusions may be drawn supporting or rejecting analytical treatments.

First section 5.2 presents the axial momentum theory with and without con-
servative force. In section 5.3 the numerical method is explained where-after in
section 5.4 flow details are investigated like the shape and strength of the wake
boundary vortex sheet, the distribution of the pressure and velocity at the disc
and in the wake, the inflection points in the streamlines passing the disc and the
role of the pressure in the momentum balance. The chapter is based on the papers
by van Kuik and Lignarolo (2016) and van Kuik (2018).

5.2. One-dimensional momentum theory

5.2.1. The momentum balance. The general expression for the momen-
tum balance is given by Batchelor (1970, p. 138). For inviscid flow the balance in
x−direction drawn on a volume V enclosed by a surface S:

T −
∮
S

ex · enpdS = ρ

∮
S

vx (vx − U0) dS (5.1)

with p being the pressure acting at the boundary S. According to section 2.5.3
the pressure integral represents a conservative contribution, but when applied to
the stream tube passing through the disc the integral becomes zero, as will be

43
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Figure 5.1: Sphere with surface S as control volume for the momentum balance,
crossing the stream tube of an actuator disc far upstream with undisturbed flow,
and far downstream with a fully developed wake. Only half of the cross section
is displayed.

shown in the next section. Sections 5.2.3 and 5.2.4 treat the balance including
conservative contributions, e.g. when the balance is applied per annulus instead
entire stream tube.

Usually the stream tube passing through the actuator is used as the control
volume V . Several proofs have been published that the pressure acting at the
stream tube boundary does not contribute to the momentum balance, e.g. by
Thoma (1925). Here another control volume is used, equivalent to figure 2.5b:
figure 5.1 shows the control volume bounded by a sphere with radius RS , with the
centre of the sphere coinciding with the centre of the actuator disc. The advantage
of this control volume is that only the flow conditions at infinite distance need to
be known, not at the vortex sheet itself. Furthermore this control volume can be
used for the flow induced by a static disc which does not have a stream tube.

Outside the wake of the actuator disc at a large distance from the origin, the
flow can be considered as a summation of a parallel flow and a source/sink flow.
Analogous to Batchelor (1970, p. 351) momentum and pressure terms in (5.1)
at the sphere S but outside the wake vanish for RS → ∞. This is because the
summation of undisturbed Uo and source/sink induced velocities v gives rise to
momentum flux and pressure terms containing U2

o , vUo and v2. The source/sink
velocity vanishes like R−2

S by continuity of mass, so the v2 term does not con-
tribute after integration on S for RS → ∞. The same holds for the constant
term containing U2

0 . The mixed terms containing vUo do not vanish for increas-
ing RS but do not contribute after integration on S, due to the symmetry of the
source/sink flow with respect to the plane x = 0. What remains for RS → ∞
are the contributions by the disc itself and the momentum transport at stream
tube cross sections A0 far upstream and A1 far downstream. The pressure acting
at these cross sections is undisturbed, p0, so the pressure integral in (5.1) van-
ishes. As Froude’s disc has a constant pressure jump Δp the momentum balance



5.2. ONE-DIMENSIONAL MOMENTUM THEORY 45

becomes:

ΔpAd = ρ

∫
A1

vx,1 (vx,1 − U0) dA1. (5.2)

The same result is obtained when we use the stream tube as control volume, and
assume that the pressure at the stream tube boundary does not result in an axial
force acting on the control volume. In other words: the momentum balance using
the sphere as control volume confirms this assumption, so it may be considered
as an indirect proof that the stream tube pressure does not contribute.

5.2.2. Momentum theory without conservative forces. The Bernoulli
equation applied to the upstream and downstream part of a streamline (the dashed
line in figure 5.1) can be coupled by the pressure jump Δpd, giving:

Δpd =
1

2
ρ
(
v2x,1 − U2

0

)
. (5.3)

As Δpd is uniform, also the velocity in the wake vx,1 is uniform so (5.2) becomes:

ΔpdAd = ρvx,1 (vx,1 − U0)A1. (5.4)

Mass conservation gives vx,dAd = vx,1A1 where vx,d is the velocity averaged on
the disc area. Elimination of Δpd from (5.3) and (5.4) gives the famous result,
first obtained by Froude (1889):

vx,d =
1

2
(vx,1 + U0) . (5.5)

The converted power P = Δpdvx,dAd so in dimensionless form the power coeffi-
cient is:

Cp =
P

1
2ρU

3
0Ad

=
1

2

((
vx,1
U0

)2

− 1

)(
vx,1
U0

+ 1

)
(5.6)

or, expressed in vx,d:

Cp = 4

(
vx,d
U0

)2(
vx,d
U0

− 1

)
. (5.7)

The thrust coefficient becomes:

CT =
T

1
2ρU

2
0Ad

= 4
vx,d
U0

(
vx,d
U0

− 1

)
. (5.8)

Differentiation of (5.7) to vx,d to find the coefficient for maximum of power ex-
traction gives:

Cp,max = −16

27
for

vx,d
U0

=
2

3
(5.9)

which was obtained by Joukowsky and Betz in 1920. The minus sign indicates
that the energy is taken from the flow.

For the static disc U0 = 0 so Cp loses it meaning. To cover the entire regime
of the disc it is common to non-dimensionalise velocities by the velocity at the
disc when U0 = 0. The combination of (5.4) and (5.5) gives vx,d =

√
T/(2ρAd)

which is used in figure 1.2. The power P = Tvx,d required to keep the disc static
or a helicopter hovering is:

P = 2ρAdvd,x
3 =

√
T 3

2ρAd
(5.10)
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p 

Figure 5.2: The annulus as control volume for the momentum balance, including
the contribution of the pressure at the surface of the annulus.

corresponding to equations 17 and 19, p. 143, in the French translation of
Joukowsky (1918)1.

5.2.3. Momentum theory including conservative forces. In the pre-
vious section the momentum balance is applied to the entire stream tube, with
the disc load as the only load entering this balance. Now it is assumed that the
pressure integral in (5.1) is

∮
S
ex · enpdS �= 0. This contribution acts as a con-

servative force as discussed in section 2.5.3. Furthermore the thrust may contain
a conservative component Tcons,d. Herewith the momentum balance becomes:

Tnon−cons + Tcons = ρ

∮
S

vx (vx − U0) dS (5.11)

with:
Tnon−cons = ΔpA

Tcons = Tcons, d −
∮
S

ex · enpdS.

⎫⎪⎪⎬
⎪⎪⎭ (5.12)

The energy equation (5.3) is unaffected by Tcons so the combination of (5.11) with
(5.4) gives:

vx,d =

(
Tcons

Tnon-cons
+ 1

)
U0 + vx,1

2
. (5.13)

Expression (5.7) for the power coefficient becomes:

Cp =

(
Tcons

Tnon-cons
+ 1

)
Cp,Tcons=0 (5.14)

and for the thrust coefficient:

CT = CTcons
+ CTnon−cons

(5.15)

Equations (5.13) and (5.14) have first been derived by van Holten (1981) for discs
or rotors placed in a shroud or ring wing. The lift on the ring wing contributes
thrust Tcons,d to the momentum balance but does not convert energy. The average
axial velocity at the disc is then given by (5.13). When both trust components
have the same sign the average velocity increases and so does the power coefficient.

1Please note that the translation uses a reversed notation: P for thrust, T for power.
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Sørensen (2015, section 3.4) presents a survey of recent publications on the so-
called diffuser-augmented wind turbines and discusses the associated momentum
theory in detail.

5.2.4. Momentum theory applied per stream annulus. Equation (5.13)
has also been derived by Sørensen and Mikkelsen (2001) and is included in Sørensen
(2011) although they, as well as van Holten (1981), did not use the classification
cons and non− cons. Sørensen and Mikkelsen (2001) derived (5.13) for the mo-
mentum theory applied to a stream annulus instead of stream tube. A stream
annulus is a part of the stream tube, e.g. the volume bounded by the stream line
shown as a dashed line in figure 5.1 or the volume between two such stream lines
passing the disc at radii r and r + Δr as shown in figure 5.2. Such a volume is
called an annulus. Applying the momentum balance to an annulus can only be
done with the volume of the annulus as control volume, by which (5.2) becomes:

ΔpdAd,ann +

∫
ann

ex · enpdSann = ρ

∫
A1

vx,1 (vx,1 − U0) dA1,ann, (5.16)

where Sann is the surface of the annulus, Ad,ann and A1,ann the cross sections of
the annulus with the disc and far wake, and en the unit vector normal to Sann.
With Tcons = Td = ΔpdAd,ann and Tnon cons = Tann =

∫
ex · enpdSann:

vx,d =

(
Tann

Td
+ 1

)
U0 + vx,1

2
, (5.17)

equivalent to (5.13). In section 5.4.5, equation (5.17) will verified by a numerical
evaluation of the momentum theory applied to annuli.

5.3. Numerical assessment of Froude’s actuator disc performance

In order to supplement the results of the momentum theory with flow details
like the velocity and pressure distributions at the disc and in the wake, van Kuik
and Lignarolo (2016) developed a numerical potential flow code which calculates
the position and strength of the wake for a prescribed axial disc load. With the
wake known, all flow details can be calculated, The potential flow model of the
wake is described in detail in appendix D, so here only a summary is presented.

5.3.1. The model and accuracy of computation. The disc generates a
cylindrical vortex sheet with expanding or contracting diameter, emanating from
the disc edge as shown in figure 5.3 for an energy extracting disc. The cylin-
drical sheet stretches from the disc to downwind infinity, and separates the flow
that has passed the disc from the flow outside this stream tube. The numerical
implementation of the vortex sheet splits the sheet in two parts.

• The fully developed far wake has a constant radius R1 and is modelled as a
semi-infinite vortex tube with constant γ = eϕγ1 = eϕ(−U0 +

√
2Δp+ U2

0 )
starting at x = 30R1. An analytical solution for the axial velocity induced
by this semi-infinite tube has been derived by van Kuik and Lignarolo (2016)
and a solution including the axial and radial velocity by Branlard and Gaunaa
(2015). The properties of this far wake do not change during the iteration
process towards a converged solution.
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Figure 5.3: The vortex model. The far wake has a constant radius during the
convergence process, while the vortex rings adapt their radii and strength. The
first vortex ring coincides with the disc edge.

• From the disc position x = 0 up to x = 30R1 the sheet is discretised using
N vortex rings with strength Γ(i)(x(i), r(i)), 1 ≤ i ≤ N , like in the model
of Øye (1990). The velocity close to the vortex ring core is de-singularised by
adopting a core with radius δ. The boundary conditions defining the radius and
strength of each ring are: 1- the sheet is force free; 2- Stokes’ stream function
Ψ is constant or the normal velocity vn = 0. The iteration starts with all rings
having equal radius r(i) = R1, and vortex sheet strength Γ(i)/Δs(i) = γ1 where
Δs(i) is the distance between the cores of ring (i+1) and (i). In each iteration
the radius and strength of the rings are adapted to decrease the deviation from
the boundary conditions until these are satisfied.

Appendix D gives details of the convergence scheme, the verification of the model,
a sensitivity analysis for the model parameters N and δ, and an assessment of the
accuracy. The conclusions are repeated here:

• The vortex model is verified by comparison with an analytical solution of the
semi-infinite vortex tube, yielding deviations in local velocity vectors less than
2 � for N = 6909, δ = 0.0001, except for the velocity component normal to
the vortex sheet within a distance 0.02Rtube from its leading edge

• Solutions converged to a constant stream function Ψ have similar deviations in
normal velocity. By comparing these with solutions converged to vn ≤ 0.0002U0

it has been shown that calculated flow properties differ less than 3 �, except
for γ deviating up to a few % for s/Rd < 0.13, with s measured from the disc
edge.

• By this uncertainty in γ or vn close to the disc edge, accurate quantitative
conclusions with respect to the vortex sheet strength close to the disc edge are
not possible. Qualitative conclusions are possible as the accuracy is limited to
a few %. It has an effect of ≤ 3� on other flow parameters,
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Figure 5.4: Comparison of momentum theory (—) and computed induced velocity
at the disc indicated by a � and ♦. Most data have been calculated with N = 4656
and d = 0.001, some with N = 6909 and d = 0.0001. The data displayed by a ♦
do not have the required accuracy.
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Figure 5.5: Comparison of momentum theory (—) and computed Cp as a function
of CT . For explanation of the symbols, see the previous figure.
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x/R 

Figure 5.6: Comparison of the calculated (black) velocities and wake expansion
with the measured values (red) for CT = −0.93

• The results are, with deviations of 2 �, insensitive to variations in N and
δ. The smoothness of the wake boundary vorticity distribution increases with
higher N .

• The overall accuracy is assessed at 3� except for flow details within a distance
of 0.13Rd from the disc edge.

• For thrust coefficients −1 < CT < −0.96 , the required accuracy is not achieved,
see the results in figure 5.4 indicated with a ♦.

5.3.2. Comparison of calculated performance with momentum the-
ory results. Figures 5.4 and 5.5 show the calculated performance in terms of
the induced velocity at the disc, for wind turbine and propeller discs, and the effi-
ciency for wind turbine discs. The results of the actuator disc momentum theory
are reproduced accurately:

• for CT = −8/9 or U0/
√
T/(2ρA) = −2.12 Rd/R1 deviates < 1�, the induced

velocity and Cp 2.5�, with the boundary conditions satisfied within 1�.

• for CT = 16/9 or U0/
√
T/(2ρA) = 1.5 the same data are: 0.4, 3, 1�

These flow cases have been chosen for further analyses of flow details in section 5.4
as, according to momentum theory, the absolute value of the average induction
at the disc and in the wake is the same:

• CT = −8/9 gives vi/U0 = −1/3 and γ1/U0 = −2/3,
• CT = 16/9 gives vi/U0 = +1/3 and γ1/U0 = +2/3.

As figure 5.4 shows, no solutions are available for low but positive values of
U0/
√
T/(2ρA). This is due to the convergence scheme as with the radial displace-

ment of the vortex ring cores it is not possible to converge to a wake boundary
with an increasing slope for decreasing U0/

√
T/(2ρA).

5.3.3. Comparison with experimental results. The actuator disc ex-
periment of Lignarolo et al. (2016a) described in section 4.4 provides the flow
field measured by Stereo Particle Image Velocimetry (SPIV) The disc has a di-
ameter of 0.6m and is realised with three layers of fine metal mesh, with a total
porosity (open to total area) of 32%, resulting in a measured CT = −0.93. The
comparison of the measured velocities and wake expansion with the calculated
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values is shown in figure 5.6 taken from Lignarolo et al. (2016b). The SPIV mea-
surements did not cover the region immediately behind the disc. Furthermore
the disc in the experiment was mounted at a nacelle, by which the vectors near
the disc centre do not match. The experimental wake expansion shown in the
figure is determined as the position where |v| equals 0.99U0. The measured and
calculated velocity vectors and wake expansion match very well.

5.4. Flow details

5.4.1. Flow and pressure patterns. Figures 5.7 and 5.8 show the velocity
vectors, streamlines, wake boundary and isobars for CT = −8/9 and 16/9. All
other flow states show similar patterns. The isobars show a continuous pressure
at the wake boundary, but a discontinuous pressure gradient.

5.4.2. Properties of the wake boundary. A steady actuator disc with a
uniform load exΔp creates a wake in which the Bernoulli constant is uniform. This
becomes clear by applying Bernoulli’s law separately to a the up- and downstream
part of a streamline passing the disc, and combining both by the pressure jump.
It also follows from (2.3) which reduces in the wake to ∇H = 0. Upstream of
the disc and outside the wake also ∇H = 0. The difference ΔH follows from the
combination of (2.3) and (2.4) for an infinitely thin disc, giving ΔHd = F = Δpd,
and for the wake boundary:

Δ

(
1

2
ρ|v|2

)
= ΔH (5.18)

as the vortex sheet forming the wake boundary is force free. With γ = (v− − v+)
denoting the strength of the vortex sheet, v− and v+ the velocities at the wake
side and outer side of the sheet and vs = 1

2 (v− + v+) the velocity of the sheet,
(5.18), becomes:

ρvsγ = ΔH = constant (5.19)

or:
vsγ

vs,1γ1
= 1. (5.20)

For a disc accelerating the flow, the velocity of the vortex sheet vs increases to
vs,1 when going downstream, so γ/γ1 decreases to become 1 in the far wake.
As γ is positive the maximum value is at the leading edge of the sheet. For a
disc decelerating the flow the opposite is true: as vs/vs,1 decreases when going
downstream, γ/γ1 increases with a minimum value of γ/γ1 at the leading edge.
As γ1 is negative, this implies that γ reaches a maximum at the leading edge.
However, this reasoning assumes that the velocity of the sheet is in- or decreasing
everywhere along the sheet, so dγ/ds �= 0 along the sheet. Figure 5.9 shows the
calculated distribution γ(s). For CT = 16/9 the above reasoning is confirmed:
the maximum value of γ is at s = 0. For the flow decelerating case CT = −8/9
the maximum of γ occurs at s/Rd = 0.0513. In both cases the distribution tends
to become singular for s/Rd → 0 but with a different slope dγ/ds: for positive CT

dγ/ds < 0 at s = 0, while dγ/ds > 0 at s = 0 for negative CT . Using (5.20) this
implies that in the flow accelerating case vs increases smoothly from the disc edge
to the far wake, but in the flow decelerating case vs increases immediately after
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Figure 5.7: For CT = −8/9: (a) shows the velocity field and wake boundary, (b)
stream tube value Ψ/Ψ1, (c) isobars (p− p0) / |Δpd|, both with increments of 0.1.
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Figure 5.8: For CT = 16/9: (a) shows the velocity field and wake boundary, (b)
stream tube value Ψ/Ψ1, (c) isobars (p− p0) / |Δpd|, both with increments of 0.1.
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Figure 5.9: The distribution γ(s) for a: CT = −8/9, b: CT = 16/9.

s = 0 reaching a maximum value at a small distance behind the disc, where-after
vs decreases until vs,1 is reached in the far wake.

Despite the differences between the vortex sheet development for propeller
and wind turbine discs, the vortex sheet characteristics at the leading edge of
the sheet are similar. For all flow cases the shape of the vortex sheet close to its
leading edge is somewhat curved but does not show a particular behaviour. For
wind turbine discs the slope of the vortex sheet at x = 0 is always less than 90◦

so the sheet does not turn upwind of x = 0. For CT = −0.998 the slope is 65◦, for
CT = −8/9 it is 46◦. For all calculated propeller disc flows the same holds, with
a slope −30.5◦ for CT = 16/9. For very high values of CT , as in case of a static
disc (U0 = 0), the vortex sheet is known to turn upwind, see e.g. Spalart (2003).
The strength of the vortex sheet seems to exhibit a singular behaviour at the disc
leading edge as shown in figure 5.9. For s → 0 the strength |γ| tends to go to
∞, but as discussed in appendix D the uncertainty in local flow properties close
to the disc edge is a few %. Consequently it is not possible to draw quantitative
conclusions with respect to the singular behaviour.

The numerical solution does not resemble the two-dimensional solution pub-
lished by Schmidt and Sparenberg (1977). They have derived a 2-D solution of an
infinite vortex sheet carrying a constant jump in Bernoulli value H. This solution
is a 45o spiral (the tangent is at 45o with the radial vector in all positions) with
constant γ. Both properties are not present in the calculated potential flow solu-
tion. van Kuik (2009) showed that their spiral is a particular member of a family
of vortex sheet spirals developed by Prandtl (1924). These spirals are defined at
a Riemann surface instead of a plane 2-D surface, see van Kuik (2004), so do not
represent a 2-D solution.

5.4.3. Pressure and velocity distribution at the disc. The isobar pat-
terns shown in figures 5.7 and 5.8 seem to indicate that the pressure at the disc
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Figure 5.10: The velocity components at x = 0 for a: CT = −8/9, b: CT = 16/9.

is uniform for CT = −8/9 but non-uniform for CT = 16/9. A close examination
of the pressure data confirms this. When the pressure at the disc is constant the
absolute value of the velocity at the disc will be constant, based on Bernoulli’s
law. The velocity components at the disc are shown in figure 5.10, confirming that
the absolute value of vs is constant (with a deviation of ±2 �) for CT = −8/9
while vs increases 2.3% from r = 0 to r/R = 0.98 for CT = 16/9. The same
behaviour is found for other values of CT . To explain the constant velocity and
pressure at the flow decelerating disc, the radial component of the (steady version
of the) equation of motion (2.1) is helpful:

ρvs
∂vr
∂s

= −∂p

∂r
. (5.21)

As the disc force field is only axial, f is absent in (5.21). When following a
stream line passing the disc and observing the in- or decrease of vr, the following
observations are made for a disc decelerating the flow:

(i) when the position of observation s∗ travels along a stream line from far
upstream, s0, to the disc position sd, vs increases due to the decreasing
distance to the vorticity γ in the wake boundary. The induction becomes
stronger when the distance decreases, so ∂vr/∂s > 0.

(ii) following the streamline in the wake, so with s∗ > sd, two regions can
be distinguished: the wake downstream of the disc up to the position of
observation s∗, and the wake downstream of s∗. The vorticity between sd
and s∗ induces a negative vr which increases for increasing s∗, so contributes
to ∂vr/∂s < 0. The induction by the vorticity downstream of s∗ does not
change sign but becomes constant for large s∗ so ∂vr/∂s → 0.

(iii) consequently ∂vr/∂s = 0 at the disc itself, by which (5.21) gives ∂p/∂r = 0
and |vd| is constant.
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Figure 5.11: The inflection points in the streamlines for a: CT = −8/9, b: CT =
18/9.

This reasoning does not yet account for:

(iv) the variation in distance from the position of observation s∗ to the most
nearby vorticity due to the wake expansion

(v) the variation in the strength γ of the wake boundary sheet as shown in
figure 5.9.

Apparently, these additional aspects support the result that ∂p/∂r = 0 for CT <
0. However, repeating the line of arguments (i) to (iii) for positive CT leads to
a similar conclusion that vs should be constant, which is not supported by figure
5.10. This is attributed to these additional aspects. Further discussion about
the velocity at the disc is postponed to section 6.4.4 where the effect of swirl is
included.

The conclusion is that:

• for discs decelerating the flow the absolute velocity at the disc is constant while
the axial velocity is non-uniform

• for discs accelerating the flow the absolute and the axial velocity are non-
uniform.

These results do not support the assumption mentioned in several wind tur-
bine textbooks and papers that the axial velocity is constant. As discussed by
Xiros and Xiros (2007) this is based on the expression for the vorticity being zero:

ω =
∂vr
∂x

− ∂vx
∂r

= 0 for x = 0, r < Rd, (5.22)

combined with the assumption that the inflection points defined as ∂vr/∂x = 0
are located at x = 0, leading to ∂vx/∂r = 0. Mikkelsen (2011) noted that the
deflection point may be at x �= 0 which is confirmed by the present calculations.
Figure 5.11 shows the positions where ∂vr/∂x = 0 as calculated for CT = 8/9 and
16/9, located upstream, respectively downstream of the disc. The explanation is
that for a flow decelerating disc ∂vr/∂x is always lower than ∂vr/∂s as the wake
expansion gives lower values of Ψ and vr when moving in x−direction instead of
s−direction. Consequently ∂vr/∂x = 0 is reached at x < 0. Furthermore figure
5.11 shows where ∂vn/∂s = 0 marking the inflection from concave or convex
streamlines to convex or concave streamlines.
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The conclusion that vx,d is non-uniform contradicts the assumption of uni-
form vx,d made in BEM. This assumption finds its roots in vortex models used
to analyse actuator disc and rotor flows. In most vortex models it is assumed
that the wake expansion may be neglected, by which analytical treatments be-
come into reach, e.g. Okulov and Sørensen (2010), Burton et al. (2011), Okulov
et al. (2015) , Branlard and Gaunaa (2015), Branlard et al. (2014) and Branlard
(2017). The vortex models reproduce the result of momentum theory that the
averaged induced velocity at the disc is the average of the velocities far up- and
downstream. However, the present analysis reveals an essential difference between
the two approaches:

• for the semi-infinite vortex tube with constant radius: vx,d is uniform,
|vd| is non-uniform

• for the actuator disc extracting energy : vx,d is non-uniform,
|vd| is uniform.

• for the actuator disc adding energy : vx,d is non-uniform,
|vd| is non-uniform.

This conceptual difference is caused by the wake expansion / contraction, by
which the pressure at expanding annuli acts as a conservative load, as will be
treated in section 5.4.5. As long as expansion or contraction may be neglected,
the vortex tube offers elegant analytical treatments providing physical insights.
However, modern wind turbines operate at thrust coefficients |CT | > 0.6 at which
the expansion is significant so the non-uniformity in vx,d has to be taken into
account.

5.4.4. Pressure at the axis. Figure 5.12 shows the pressure distribution
at the axis for CT = −8/9 and CT = 16/9. The pressure jump across the
disc is not symmetric: |(p − p0)|upstream �= |(p − p0)|downstream. A symmetric
jump would require, by the Bernoulli equation, that at the upstream side of the
disc 1

2ρ(v
2
x,r=0 − U2

0 ) = 1
2Δp, leading to vx,r=0/U0 = 0.745 respectively 1.247.

This differs from the calculated values shown in figure 5.10. Apart from this
numerical disagreement there is no argument found in the momentum theory
why the pressure jump should be symmetric.

As for flow decelerating discs |v| is constant for all r/R, see the previous
section, also the pressure and pressure jump are uniform in r.

5.4.5. Momentum balance per annulus. In the actuator disc momentum
theory the change in the momentum of the flow passing the disc is uniquely
coupled to the thrust at the disc. The pressure at the boundary of the stream
tube does not play a role, as shown in section 5.2.2. The calculations confirm this:
for CT = −8/9 the resultant force in x−direction equals 0.5� of the disc thrust.
When the momentum theory is applied per annulus instead of the stream tube this
may not be valid any more, as discussed in section 5.2.4. Still this is done in the
Blade Element Momentum theory where the results of the actuator disc theory
are assumed to be valid per annulus with each annulus being independent of the
other annuli. It is known that this assumption is invalid, as shown theoretically
by Goorjian (1972) and numerically by Sørensen and Mikkelsen (2001), but the
consequences of this assumption are assumed to be modest.
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Figure 5.12: The pressure distribution at the disc and stream tube axis for a:
CT = −8/9, b: CT = 16/9.

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

calculated distribution

calculated average on annulus

annulus momentum theory

disc average

vx / U0 

r/R 

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1
r/R 

vx / U0 

a b 

Figure 5.13: The axial velocity at the disc for a: CT = −8/9, b: CT = 16/9.

In section 5.2.4 the role of conservative forces in the momentum theory is
treated, with the pressure at the boundary of an annulus, integrated to become an
axial load Tannulus, as an example of a conservative load. Equation (5.17) shows
that the ratio of Tannulus/Td determines the deviation from the momentum theory
without conservative forces, with Td = ΔpAd and Tannulus =

∫
ex ·enpdSannulus.
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This ratio has been calculated for the annuli defined by Ψ = n
10Ψd with n from

0 to 10 for both flow states CT = −8/9 and CT = 16/9. The pressure integral is
calculated with x/R = ±15R1 as up- and downstream limits.

Figure 5.13 shows the calculated distribution of vx, the calculated average
value in the respective annulus, the result of the annulus momentum theory (5.17)
with calculated Tannulus/Td, and the disc averaged value (U0 + vx,1) /2. The
results show a very good match of the calculated average per annulus and the
momentum theory value except close to the disc edge where the steep change
of vx,d requires a finer resolution of annuli to capture the distribution accurately.
The fact that vx is not uniform appears to be a consequence of the contribution of
the pressure to the momentum balance of the annuli. The annulus method gives
the momentum balance in a number of discrete steps Δr. When it is applied in
a differential form the contribution of the pressure is expressed in the pressure
gradient normal to the streamline, so in ∂p/∂n, which is the pressure gradient
due to the expansion or contraction of the wake. One of the remarkable results is
that in the centre of the disc vx is higher than (U0 + vx,1) /2 so for a wind turbine
disc the local power coefficient exceeds the Betz-Joukowsky limit.

Sørensen and Mikkelsen (2001) have done the same analysis by viscous CFD
calculations, with approximately the same result. They attribute the large devi-
ation from the disc-averaged value near the disc edge to the strong influence of
viscous effects. Similar distributions of the axial velocity have been calculated
by several others, e.g. Mikkelsen et al. (2009), Crawford (2006), Madsen (1996)
and Madsen et al. (2007, 2010). Madsen et al. (2007) explain the high vx for
low r/R by the effect of wake rotation instead of pressure gradients due to wake
contraction or expansion. Furthermore they analyse the decrease of the axial
velocity near the tip and propose a correction method based on the radial ve-
locity. Qualitatively the results of Madsen et al. (2007) correlate well with the
present calculations but quantitatively they differ, e.g. the correction near the tip
(r > 0.8R) is approximately half of the correction presented in the next section.

The conclusion is that the non-uniformity of the induction is due to the pres-
sure at the annuli acting as a conservative contribution to the momentum balance,
not viscous effects or wake rotation. The non-uniform induction has consequences
for the application of the momentum theory in BEM, see chapter 8.

5.5. An engineering model for the velocity at a wind turbine disc

With the distribution of vx,d calculated for all CT values shown in figure 5.4
a surface fit to vx,d has been made, showing the non-uniformity as defined by the
ratio Tannulus/Td in (5.17). This is presented as an annulus-correction G(r, CT ).
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Figure 5.14: The function G(r, CT ) defined in (5.23) accounting for the non-
uniformity of vx.

Surface fitting gives the following engineering equation:

G(r, CT ) = 1 + a1

(
1− 1.00076

(
1−
( r

R

)a2
)0.0015)

with a1 = 62.05(1− CT )
0.42 − 47.56

a2 = 5− 2.5(CT − 0.8)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

CT ≤ −0.5 (5.23)

G(r, CT ) = 1
}− 0.5 < CT < 0

(5.24)

The surface fit matches the calculated data with a difference less than < 1% for
CT ≥ −0.995 and r/R < 0.95, and < 1.4% for CT ≥ −0.995 and r/R < 0.99. For
CT > −0.5 the deviation of vx,d from vx,d is negligible.

With the average velocity vx,d at the disc determined by momentum theory,
the distribution is vx,d(r, CT ) becomes:

vx,d
U0

= G
U0 + vx,wake

2
vx,wake

U0
=

√
1− CT

⎫⎪⎬
⎪⎭ (5.25)

The function G(r, CT ) will be used in chapter 8 to evaluate the effect on the
non-uniformity of vx,d in BEM.
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5.6. Evaluation

This chapter has provided details of Froude actuator disc flows, so without
swirl, by potential flow calculations complementing the results of the momentum
theory. The pressure and flow fields as well as properties of the wake boundary
vortex sheet have been analysed. This enables an answer to question Q7 listed in
section 1.4 about a possible singularity at the leading edge of this vortex sheet.
The calculations indeed show a singularity in the strength of the vortex sheet at
its leading edge, which is at the same time the disc edge. This singularity is not
strong enough to give a non-zero vortex strength at the disc leading edge. This
holds for propeller as well as wind turbine disc flows.

A difference between wind turbine and propeller disc flows is found in the
distribution of the velocity at the disc, giving an answer to Q8: the absolute
velocity is constant for wind turbine disc flows, but not for propeller disc flows. An
explanation of this is postponed to chapter 6. Q9 addresses the validity of applying
the momentum balance per annulus instead of the entire stream tube. The change
in axial momentum per annulus is accurately captured by a momentum balance
in which the pressure at the surface of the annulus is included. The contribution
of this pressure appears as a conservative load in the momentum balance, and
does not appear in the energy balance. This explains the deviation of the results
per annulus compared with the result per stream tube.
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6

Analysis of Joukowsky’s actuator disc flows

6.1. Introduction

The basis for the momentum theory including the balance of angular mo-
mentum in the wake has been laid by Joukowsky (1918). The angular velocity
or swirl is induced by a discrete vortex at the wake centre line, see figure 3.2. If
the vortex kernel is infinitely small, the azimuthal velocity and pressure become
infinite for the radius r → 0. The question of how to model the discrete vortex
and how this impacts the momentum balance has been studied by e.g. de Vries
(1979); Sharpe (2004); Xiros and Xiros (2007); Wood (2007); Sørensen and van
Kuik (2011). The reported performance predictions show a remarkable result for
the disc extracting energy from the flow: in the limit to zero rotational speed, the
efficiency of the disc increases to infinity, which is highly non-physical. Within the
inviscid flow regime, the analysis in Sørensen and van Kuik (2011) is considered
to be exact apart from the choice of the vortex core at the axis of the wake. This
centreline vortex is assumed to be a Rankine vortex of which the core diameter is
proportional to the wake radius. The analysis of Sørensen and van Kuik (2011)
shows that adding a disturbance parameter to the momentum balance removes
the non-physical result of infinite efficiency for zero rotational speed, no matter
how small this disturbance is. This is an indication that the momentum balance
is very sensitive to small deviations in the flow parameters.

The next section treats the momentum theory for Joukowsky discs, including
an analysis of the vortex core model and its impact on the momentum theory,
based on van Kuik (2017) and van Kuik (2018). The general mass, momentum
and energy balances are derived and combined, with emphasis on the swirl-related
pressure acting as a conservative load. Section 6.4 describes the numerical ap-
proach and its results, which are compared with the momentum theory results in
section 6.6. This section also includes the comparison with the Betz-Goldstein
solutions reported in literature.

6.2. Two dimensional momentum theory

6.2.1. The equations for a Joukowsky disc. The Joukowsky distribution
is described in Explanation 3.1 and shown in figure 3.2. The flow is governed by
the steady version of the Euler equation (2.1). The cylindrical reference system
(x, r, ϕ) is applied, see also figure 6.1. The wake flow is characterized by a constant
circulation induced by a free potential flow vortex Γ at the axis of the wake with

63
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a vortex core having radius δ(x). The azimuthal velocity in the wake is:

vϕ =
Γ

2πr
for r ≥ δ(x)

=
Γ

2πδ(x)
C
(

r

δ(x)

)
for r < δ(x)

⎫⎪⎪⎬
⎪⎪⎭ (6.1)

The functions δ(x) and C(r/δ(x)) remain unspecified apart from C = 0 for r = 0
and C = 1 for r = δ(x). The core radius at the disc is indicated as δ and the
radius in the far wake as δ1. Figure 6.1 shows (half of) the cross section through
the stream tube in the meridian plane, with the disc and fully developed wake
indicated. The shaded area is the vortex core with an increasing radius towards
the far wake due to the flow deceleration. The analysis starts with δ being non-
zero after which the limit of δ → 0 is taken. The only assumption made is that:

δ1 → 0 when δ → 0

while

δ1
δ

> 1 for ΔHd < 0

δ1
δ

< 1 for ΔHd > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.2)

6.2.2. The disc load. In section 4.2.3 the disc load has been formulated for
the disc area outside the vortex core. Here this will be extended to include the
vortex core. Equations (4.5) applies in the vortex core so with (6.1):

1

ρ
ΔHd =

ΩΓ

2π
for r ≥ δ(x)

=
ΩΓ

2π

r

δ(x)
C
(

r

δ(x)

)
for r < δ(x)

⎫⎪⎪⎬
⎪⎪⎭ (6.3)

Outside the core ΔHd = constant equal to (4.19) for r ≥ δ(x). The thrust T is
obtained by integration of (3.3) on the disc area. With (6.1) and (6.3) this gives
for δ → 0:

CT = CT,ΔH + CT,Δvϕ

CT,ΔH =
ΩΓ

2π
= 2λq

CT,Δvϕ
= −q2 ln

(
R

δ

)2

for r ≥ δ(x)

= −
(

Γ

2πRU0

)2
1∫

0

C2
(r
δ

)
d
(r
δ

)2
= 0 for r < δ(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.4)

This is the same expression as (4.21) but now including the core area. The
contribution of the vortex core to the thrust is zero as C(0) = 0 and C(1) = 1.
The thrust component CT,Δvϕ is absent in the one-dimensional momentum theory.
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Figure 6.1: Pressure distributions acting in the momentum balance sketched for
an energy extracting disc flow (up) and energy adding disc (down). The arrows
give the direction of the pressure fields acting on the flow. The meaning of a, b,
c, d and e is given in section 6.2.5.

6.2.3. The far wake outside the vortex core. The Bernoulli equation
(6.3) for r ≥ δ1 is written as:

1

ρ
(p0 − p1) =

1

2

(
v2x,1 − U2

0 + v2ϕ,1

)− ΩΓ

2π
. (6.5)

Differentiation with respect to r yields ∂p1/∂r1 = ρ(v2ϕ,1/r1−vx,1∂vx,1/∂r). Com-
parison with the expression for radial pressure equilibrium obtained from the
radial component of the (steady) equation of motion (A.10) with vr = 0:

∂p1
∂r1

= ρ
v2ϕ,1

r1
(6.6)

shows that vx,1 is constant. By this (6.5) can be written as:

p1 − p0 = −1

2
ρv2ϕ,1 + p∗. (6.7)

At the wake boundary the pressure has to be undisturbed (p0), so p∗ = 1
2ρv

2
ϕ,R1

and, with (6.1):

p1 − p0 = −1

2
ρv2ϕ,1 +

1

2
ρ

(
Γ

2πR1

)2

. (6.8)

This shows that the pressure variation in the far wake is caused only by the swirl,
similar to the pressure jump across the disc. By substitution of (6.8) in (6.5) and
with (6.3) the second term on the right-hand side appears as a loss in H due to
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swirl:

ΔH =
1

2
ρ
(
v2x1

− U2
0

)− 1

2
ρ

(
Γ

2πR1

)2

. (6.9)

This is consistent with the optimization of rotors according to Glauerts theory
which involves minimization of the swirl, see e.g. Sørensen (2015).

6.2.4. The vortex core. The momentum theory results are very sensitive
to the choice of δ and δ1. This is caused by the logarithmic singularity resulting
from the integration of the pressure due to the azimuthal velocity: at the disc

−ρπ
∫ R

δ
v2ϕrdr = −ρΓ2

4π ln R
δ and similarly in the far wake −ρΓ2

4π ln R1

δ1
. Previous

solutions have dealt with the singularity in different ways. Sørensen and van Kuik
(2011) have adopted δ/δ1 = R/R1, assuming that the vortex core grows with the

stream tube radius. This removes the singularity as −ρΓ2

4π ln R
δ + ρΓ2

4π ln R1

δ1
= 0.

For the energy extracting disc this leads to Cp → −∞ for λ → 0. van Kuik (2016)
assumes δ = δ1 leading to the power coefficient Cp → 0 for λ → 0. However, as
discussed in van Kuik (2016), both core models do not comply with the inviscid
flow equations, so the impact of the vortex core model to the momentum balance
merits an additional investigation.

Both analyses used the vortex core boundary as lower limit in the integration
of momentum and energy on the control volume used in momentum theory. This
implies that the vortex core is excluded, motivated by its vanishing dimension
in the limit δ, δ1 → 0. Here the vortex core will be included in the momentum
balance, while still the same limit is taken.

With δ(x) denoting the local core radius the Bernoulli equation (6.3) in the
vortex core region becomes:

1

ρ
(p0 − p) =

1

2

(
v2s − U2

0 +

(
Γ

2πδ(x)
C
(

r

δ(x)

))2
)

− ΩΓ

2π

r

δ(x)
C
(

r

δ(x)

)

with
r

δ(x)
≤ 1, (6.10)

where vs is the velocity in the meridian plane. As vs, U0 and the last term on the
right-hand side remain finite in the limit δ(x) → 0 the pressure becomes in this
limit:

lim
δ(x)→0

1

ρ
(p0 − p) =

1

2

(
Γ

2πδ(x)
C
(

r

δ(x)

))2

with
r

δ(x)
≤ 1. (6.11)

As the momentum flux through the control volume boundary has become 0 for
δ(x) → 0, the momentum balance reduces to a balance of pressures acting on the
control volume boundary, integrated as a load in x direction:

δ∫
0

(p− p0) 2πrdr −
δ1∫
0

(p1 − p0) 2πrdr +

δ1∫
δ

(p (x, δ(x))− p0) 2πδ(x)dδ(x) = 0.

(6.12)



6.2. TWO DIMENSIONAL MOMENTUM THEORY 67

where the path of integration of the third integral is the core boundary δ(x) with
0 ≤ x ≤ x1. The third integral is evaluated with (6.11) so:

lim
δ(x)→0

⎡
⎣ δ1∫

δ

(p (x, δ(x))− p0) 2πδ(x)dδ(x)

⎤
⎦ = −ρπ

δ1∫
δ

v2ϕ2πδ(x)dδ(x) = −ρ
Γ2

4π
ln

δ1
δ
.

(6.13)
The combination of (6.12) and (6.13) gives:

lim
δ(x)→0

⎡
⎣ δ∫

0

(p− p0) 2πrdr −
δ1∫
0

(p1 − p0) 2πrdr

⎤
⎦ = ρ

Γ2

4π
ln

δ1
δ
, (6.14)

irrespective of the choice of core model δ(x), C (r/δ(x)) .
This result will be used in section 6.2.5 where the momentum balance for the

entire stream tube is studied. Unless specifically indicated, all equations in the
forthcoming sections are derived for the flow region outside of the vortex core.

6.2.5. The momentum, mass and energy balance. The momentum bal-
ance (5.1) drawn on the stream tube as control volume, see figure 6.1, is written
as:

T −
∫
A1

(p1 − p0) 2πrdr = ρ

∫
A1

vx,1 (vx,1 − U0) dA1. (6.15)

The boundaries of the momentum balance volume are the stream tube bound-
ary and the cross sections A0 and A1 far up- and downstream. As discussed in
section 5.2 the pressure at the stream tube boundary does not contribute to the
momentum balance so is not included in (6.15).

Figure 6.1 shows the pressure distributions appearing on the left-hand side of
(6.15) including the thrust:

a constant pressure jump across the disc giving the jump in Bernoulli parameter
H according to the first term on the right- hand side of (3.3).

b pressure distribution due to jump in vϕ for r ≥ δ according to the second term
on the right-hand side of (3.3). This term conserves H.

c apart from correction by (d) the pressure distribution in the far wake due to
the vϕ distribution is identical to (b) for r ≥ δ1 according to the first term at
the right hand side of (6.8), conserving H.

d a correction to (c) to achieve p1 − p0 = 0 according to the second term on the
right-hand side of (6.8).

e the contribution by the vortex core cross sections, (6.14).

When all contributions are expressed in Γ by (6.1) and (6.3), integrated,
subjected to lim δ → 0, substituted in (6.15) and divided by the disc surface πR2

the result is:

ΩΓ

2π
− 1

2

(
Γ

2πR

)2

−
(

Γ

2πR

)2 [
ln

R

δ
− ln

R1

δ1
− ln

δ1
δ

]
= vx,1 (vx,1 − U0)

(
R1

R

)2

(6.16)

a d b c e

where the terms on the left-hand side have been named in accordance with figure
6.1. The term between square brackets simplifies to ln(R/R1). In other words:
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only the wake expansion area (cexpansion) or wake contraction area (bcontraction)
contribute to this term. These contributions are shown as grey areas in figure 6.1.
The mass balance is:

vx,d
vx,1

=

(
R1

R

)2

(6.17)

with the bar above vx,d indicating that it is the average value. The energy balance
follows from (6.9):

ΩΓ

2π
− 1

2

(
Γ

2πR1

)2

=
1

2

(
v2x,1 − U2

0

)
. (6.18)

Mixing (6.16) and (6.17) simplifies the momentum balance, yielding:

ΩΓ

2π
− 1

2

(
Γ

2πR

)2

−
(

Γ

2πR

)2

ln
R

R1
= vxd

(vx,1 − U0) . (6.19)

As in section 4.2.3 the non-dimensional vortex q = Γ
2πRUo

is introduced. Herewith

(6.3) becomes:
1

ρ

ΔHd

U2
0

= λq, (6.20)

and the momentum balance:

− 2λq + q2

(
1 + ln

(
R

R1

)2
)

= 2
vx,d
U0

(
1− vx,1

U0

)
(6.21)

and the energy balance:

− 2λq + q2
(

R

R1

)2

=

(
1−
(
vx,1
U0

)2
)
. (6.22)

By mixing (6.21) and (6.22) the velocity at the disc can be written as:

vx,d
U0

=
1

2

(
vx,1
U0

+ 1

) 2λq − q2
(
1 + ln

(
R
R1

)2)

2λq − q2
(

R
R1

)2 . (6.23)

This equation is equivalent to (5.13), indicating that the ratio contains conserva-
tive and non-conservative contributions. This will be discussed in section 6.5.

An analytical solution of (6.21) and (6.22) is not found. An implicit expression
of vx,1/U0 in the independent variables λ, q is obtained by writing (6.22) as an
expression for vx,1 with the help of (6.17) and substituting this in (6.21):(

1− vx,1

U0

)
vx,1

U0
q2

1− 2λq −
(

vx,1

U0

)2 =

⎛
⎜⎝−qλ− 1

2
q2

⎛
⎜⎝1− ln

⎛
⎜⎝ q2

1− 2λq −
(

vx,1

U0

)2
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠ . (6.24)

This can be solved numerically for vx,1/U0. The wake expansion or contraction
follows from (6.22) and the velocity at the disc from (6.21). The power coefficient
follows by integration of (4.1) on the disc area: P =

∫
Ad

F · v = vx,dΔHAd. In

dimensionless form this becomes:

Cp = 2λq
vx,d
U0

. (6.25)
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Figure 6.2: The axial velocity vx,d at the disc for wind turbine discs (CT,ΔH < 0)
and propeller (CT,ΔH > 0) for 0 ≤ λ ≤ 5.

Figures 6.2 and 6.3 show the solutions of (6.24) and (6.25) for 0 ≤ λ ≤ 5
and −1 < CT,ΔH ≤ +1. The front left sides show vx,d/U0 respectively Cp for
wind turbine discs, right behind for propeller discs. Several particularities can be
observed, to be addressed in the next sections:

• for very low λ the velocity at propeller discs is < 1, so the wake expands as for
wakes of energy extracting discs,

• a minimum λ > 0 exists at which the velocity at the disc is 0,
• the maximum efficiency |Cp| of energy extracting discs decreases to 0 for de-
creasing λ.

6.3. Limit values of the Joukowsky momentum theory

6.3.1. Results for λ → ∞, λ → 0. For large values of λ the wake angular
momentum should go to 0, and the momentum theory should become the one-
dimensional theory. For an energy extracting disc the well-known Betz-Joukowsky
maximum value for Cp should be recovered. According to (6.20) q is inversely
proportional to λ for constant ΔH. In the balances (6.21) and (6.22) the q2

terms vanish for λ → ∞ with which the momentum theory without wake swirl is
indeed recovered.

For the limit λ → 0 the energy balance (6.22) shows that the highest value
for q2(R/R1)

2 is obtained for vx,1/U0 = 0:

− 2λq + q2
(

R

R1

)2

= 1. (6.26)
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Figure 6.3: The power coefficient Cp for wind turbine discs (CT,ΔH < 0) and
propeller (CT,ΔH > 0) for 0 ≤ λ ≤ 5.

With vx,1/U0 = 0 the right-hand side of the momentum balance is 0 as is clear
from (6.16), by which it becomes:

− 2λq + q2

(
1− ln

(
R1

R

)2
)

= 0. (6.27)

Elimination of q2 from (6.26) and (6.27) gives the wake expansion or contraction
for the highest q, lowest λ:(

R1

R

)2
(
1− ln

(
R1

R

)2
)

=
2λq

2λq + 1
. (6.28)

As an example, 2λq = ΔH/( 12ρU
2
0 ) = −8/9 results in R1/R = 2.77, q = −0.924

from (6.26) and λ = 0.48. Both vx,d and vx,1 are 0, but the ratio of vx,d/vx,1 →
7.69. This flow state is characterized by a full blockage by the disc, creating a
wake with azimuthal flow only, so there is no change in axial momentum. A lower
value of λ is not possible for this value of CT,ΔH = 2λq. For λq = 0 with λ = 0

(6.28) gives ln (R1/R)
2
= 1 and (6.26) gives R1/R = −q =

√
e = 1.648 although

vx,d = vx,1 = 0. In the wake only the azimuthal velocity is non-zero, reaching
qR/R1 = −1 at the far wake boundary r = R1. The wake expansion is close to
the experimental value ≈ 1.6 of the wake expansion behind a solid disc reported
in Craze (1977).
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Figure 6.4: The operational regimes of an actuator disc: for negative CT,ΔH

energy is extracted from the flow, for positive CT,ΔH energy is added. The flow
states indicated by a’ (CT,ΔH = −0.7138, λ = ∞) and e (CT,ΔH = 16/9, λ = 0.5
or J = 2π) have identical deceleration in the far wake, so equal far wake induction.
The flow states indicated by c (CT = −8/9, λ = 1) and d (CT,ΔH = 16/9, λ = 1
or J = π) have equal but opposite induction in the far wake. The same holds for
a and b with the same CT,ΔH as flow states c and d but with λ = ∞, J = 0.
Flow states a and b are the ones shown in chapter 5.

A complete blockage of the flow by energy adding disc is also possible as
shown by figure 6.2 for CT,ΔH > 0. For low λ the axial velocity vx,d < U0 so
the flow decelerates, with vx,d = 0 for the lowest possible λ. Figure 6.4 shows
the lowest attainable λ as a function of CT,ΔH , being the solution of (6.26) and
(6.28). This behaviour for low λ is explained in the next section.

6.3.2. Propeller discs with a wake of constant radius and with wake
expansion. For discs adding energy to the flow, the sign of pressure distribution
(b) in figure 6.1 is opposite to the sign of (a), so flow states with a zero pressure
jump at r = R are possible. With (4.6) this gives the condition ΩR = 1

2vϕ or
λ = q/2. The result is a flow with everywhere vx = U0, vr = 0, and in the wake
vϕ = Γ/(2πr). The wake boundary consists of a cylindrical vortex sheet with
constant radius R, having only axial vorticity carrying ΔH = 1

2 (ΩR)2. At the
disc edge distributions (a) and (b) cancel each other, in the far wake (cexpansion)
or (bcontraction) are absent and finally (d) equals -(a). In other words: the swirl
induces a lower pressure which is compensated by a higher pressure due to an
increase in H by distribution (a), as shown by (3.3): for Δpd = 0 at r = R
ΔHd = ρΩRvϕ,R or, by (4.5), λ = 1

2vϕ,R/U0 = 1
2q. With this, the line ‘no wake

deformation’ in figure 6.4 is given by λ = 1
2

√
CT,ΔH .

For λ > q/2 the wake contracts as expected for a disc in propeller mode.
However, for λ < q/2 the wake expands as for a disc in wind turbine mode.
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Figure 6.5: The wake expansion or contraction for a static (hovering) disc as
function of λh.

Figure 6.4 shows where this transition takes place. Flow states a’ and e have the
same far wake deceleration. The corresponding flow patterns are shown in section
6.4, figure 6.10.

6.3.3. The static disc or disc in hover. This is a special flow state as
U0 = 0, so the non-dimensional equations (6.20) to (6.25) loose they meaning
and an alternative derivation is required. Substitution of U0 = 0 in the balances
(6.18) and (6.19) and merging (6.17) with (6.19) gives two expressions for v2x,1.
Equating these yields :

ΩΓ

2π

(
2

(
R1

R

)2

− 1

)
=

1

2

(
Γ

2πR

)2
(
1 + ln

(
R1

R

)2
)
. (6.29)

As in (5.10) and figure 5.4 the velocity at the static disc according to the one-

dimensional momentum theory is used: vx,reference =
√
T/(2ρAd) =

√
Δp/(2ρ).

Here we use ΔH = ΩΓ/(2π) instead of Δp so with (6.3) vx,ref =
√
ΩΓ/(4π). With

the introduction of the non-dimensional vortex qh = Γ/(2πRvx,ref ) and tip speed
ratio λh = ΩR/vx,ref , and with division of (6.29) by the square of the reference
velocity, we arrive at:

2

(
2

(
R1

R

)2

− 1

)
= 1

2q
2
h

(
1 + ln

(
R1

R

)2)
with λhqh = 2.

⎫⎪⎬
⎪⎭ (6.30)

The wake contraction R1/R depends only on qh or λh. Figure 6.5 shows R1/R

as a function of λh. For high λh the wake contraction becomes 1
2

√
2 being the

solution in the one-dimensional theory. For low values of λh R1/R > 1 so the
wake expands corresponding to the results in section 6.3.2. The straight wake,
R1 = R, is obtained for λh = 1.

6.3.4. The maximum efficiency of a wind turbine disc. Figure 6.6
shows the maximal attainable |Cp| for discs in the wind turbine mode, and the
|Cp| − λ curves for some values of CT,ΔH . For λ → 0 the efficiency |Cp| → 0.
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Figure 6.6: The Joukowsky momentum theory results (black lines), calculated
values (�, see section 6.4) and the maximum wind turbine |Cp| (grey line).

The difference with |Cp| → ∞ as obtained in Sørensen and van Kuik (2011) is
caused by the different treatment of the vortex core: instead of assuming that
δ(x) increases linear with the wake expansion, now δ(x) is not specified apart
from condition (6.2), and the contribution of the vortex core to the momentum
balance is included. In section 6.6 the |Cp,max| − λ curve of Joukowsky discs will
be compared with the same curve of Betz-Goldstein discs.

6.3.5. The efficiency of propeller discs. For discs representing propellers
the efficiency μ is defined as the ratio of the effective work TV where V is the flying
speed, and the work done by the propeller QΩ. In our notation V is replaced by
U0, and, with (4.1) integrated over the disc, P = Tvx,d, so for the flows considered
here:

η =
U0

vx,d
. (6.31)

This implies that the efficiency is the inverse of figure 6.2 for CT > 0. Referring
to figure 6.4, η < 1 for operation at λ > λvx,d=U0

, η > 1 for λmin < λ < λvx,d=U0
,

with the limit η → ∞ for λ → λmin. It is clear that this infinite efficiency is a
consequence of the definition, not of the physics involved.

6.4. Numerical assessment of flow details

6.4.1. The numerical model. The numerical method described in section
5.3 has been adapted to include wakes with swirl. Axial and radial velocities are
calculated by summation of the induction by each of the vortex rings which consti-
tute the wake boundary. The azimuthal velocities are calculated from (6.1). The
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Figure 6.7: Flow states c and d with λ = 1 corresponding to the same indications
in figure 6.4: c shows streamlines with Δψ = 0.1Δψwake and isobars with Δp =
0.1ΔH for CT,ΔH = −8/9, d for CT,ΔH = +16/9. Isobars close to the wake axis
are not plotted.

shape and strength of the vortex rings are adapted in the convergence scheme to
satisfy the two boundary conditions: zero pressure jump across the wake bound-
ary, and zero cross flow. The numerical implementation is given by (D.10) and
(D.11) or (D.12), with ΔH given by (3.3), so at the wake boundary:

ΔH = Δ

(
1

2
ρv2

)
= Δpd +

1

2
ρv2ϕ (6.32)

The strength of the vortex at the axis follows from (6.20) expressed in H and
λ: q = ΔH/(ρU2

0λ). As q and λ depend on the disc radius, unknown at the
start of the convergence towards a solution, the computation uses q1 and ΔH as
independent parameters. When Rd is known, q = q1R1/R and λ = q−1ΔH/(ρU2

0 )
by (3.3). Apart from these changes the code and the numerical parameters are
unmodified. The results satisfy the same accuracy requirements as described in
section 5.3.1. Figure 6.6 shows the calculated Cp(λ) for fixed values of 2λq =
ΔH/ 1

2ρU
2
0 and the momentum theory values. The data match very well, for discs

adding energy as well as extracting energy. Also indicated are the λ-values below
which the wake expands for positive Cp or CT,ΔH as indicated in figure 6.4. For
λ = 5 the difference in Cp compared with the values for λ → ∞, so with the
one-dimensional momentum theory, is less than 0.7%. Consequently, swirl may
be ignored for λ > 5.

6.4.2. Comparison of wind turbine and propeller discs at λ = 1.
Figure 6.7 shows the streamlines and isobars of the disc flow with λ = 1 for
CT,ΔH = −8/9 and +16/9 (flow states c and d in figure 6.4). The isobars in the
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Figure 6.8: Strength of the vortex sheet as a function of the distance s/Rmeasured
along the sheet, for the flow states mentioned in figure 6.7.
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Figure 6.9: The velocity distribution at the disc for the flow states shown in figure
6.7. Left is shown the velocity in the meridian plane, |vm,d| =
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the axial velocity.

wake show the pressure gradient due to the swirl. The distribution of the vortex
sheet strength γ is shown in figure 6.8, and the absolute and axial velocity at
the upstream side of the disc in figure 6.9. As for the Froude disc flows a and
b shown in chapter 5, the absolute velocity in the meridian plane is constant for
wind turbine discs, but not for propeller discs. Apparently the presence of swirl
in the wake does not affect this property. This will be discussed in section 6.5.

6.4.3. Comparison of a wind turbine and propeller disc with similar
wake expansion. Figure 6.10 shows the flow patterns of flow states a’ and e in
figure 6.4 having the same wake deceleration, so the same negative value for γ1.
Flow state a’ is generated by a wind turbine disc, e by a propeller disc. As for the
flow states a and c shown in figure 6.4, the pressure distribution at the upwind
side of wind turbine disc a’ is constant. Similarly the pressure is non-uniform in
case of propeller disc e, as for flow states b and d. By the Bernoulli equation this
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Figure 6.10: Flow states a’ and e with the same axial velocity in the far wake,
corresponding with the indications in figure 6.4. a’ shows CT,ΔH = −0.7138, λ =
∞, R1/R = 1.197, e: CT,ΔH = 16/9 = 1.7777, λ = 0.5, R1/R = 1.126. The
explanation is as in figure 6.7.
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Figure 6.11: The velocity distribution at the disc for the flow states shown in
figure 6.10. Left is shown the velocity in the meridian plane, |vm,d| =
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right the axial velocity.

gives a uniform absolute velocity |v| upstream of disc a’. Figure 6.11 shows the
values of the axial velocity component at the disc as well as the absolute value of
the velocity vector in the meridian plane: |vm,d| =

√
vx2 + vr2.

6.4.4. The velocity at the disc. In section 5.4.3 an explanation was sought
for the absolute velocity at the Froude disc to be uniform for wind turbine discs
and non-uniform for propeller discs. An explanation was found only partly, as
the arguments (i) to (iii), mentioned in section 5.4.3, appear to be insufficient.
These arguments, based on (5.21), did not yet include the effect of swirl. However,
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Figure 6.12: The distribution of γ at the wake boundary of the disc flow state e.

(5.21) is valid upstream of the disc as swirl occurs only in the wake. A constant
pressure at the upstream side of the disc requires ∂vr,d/∂r = 0. With a constant
pressure, the Bernoulli equation gives a constant |v| at the upstream side. As
vx and vr are continuous across the disc, ∂vr,d/∂r = 0 gives a constant |vm,d| =√
vx2 + vr2. The analysis of ∂vr,d/∂s started in section 5.4.3 is continued here,

with emphasis on arguments (iv), wake expansion or contraction, and (v), the
non-uniform distribution of γϕ.

A comparison of flow states a and c confirms that swirl plays no role, as
also in the λ = 1 flow state c |vm,d| = constant. The same holds for wake
expansion or contraction, as flow state e, having an expanding wake, shows the
same characteristics as flow states b and d with contracting wakes.

By comparing the wind turbine flow states with the propeller flow states, the
difference is in the distribution of γϕ(s) with s measured along the boundary of
the stream tube. Figure 6.12 shows the vorticity distribution of flow state e: the
propeller disc with an expanding wake boundary. Apart from the sign of γϕ it has
the same characteristics as the distribution of flow state d in figure 6.8 and flow
state b in figure 5.9: dγϕ/ds does not change sign so there is no local maximum
or minimum in γϕ(s). For the wind turbine disc flow states a and c, shown in
figures 5.9 and 6.8, and a’, not shown as it is almost identical to distribution a

in figure 5.9, such a local minimum exists at s/R < 0.2.
Apparently this local maximum in the distribution of γϕ, together with ar-

guments (i) to (iii) mentioned in section 5.4.3, cause vm to be uniform for wind
turbine discs. A detailed analysis of the difference in induction close to the disc
edge by a vortex sheet with and without such a local maximum or minimum, has
to show why ∂vr,d/∂s = 0 when such a maximum/minimum exists, and �= 0 when
this does not exist. This is left for future research.

6.4.5. Momentum balance per annulus. The balance for the stream
tube is defined by (6.15). In this equation the pressure acting at the stream
tube boundary is absent as discussed in section 5.2. This is confirmed by the
calculations for flow state c: the force in x direction resulting from the pressure
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calculated distribution, the calculated average per annulus and the result from
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integrated along the wake boundary for −25 < x/R < 25 is 0.2% of the non-
conservative disc load CT,ΔH for the load case CT,ΔH = −8/9 and λ = 1. When
applying the momentum balance to an annulus instead of the entire stream tube,
the same procedure is applied as in section 5.4.5 using the equations in section
5.2.4. Figure 6.13 shows the distribution of vx,d resulting from the flow field cal-
culation, the associated average value per annulus and the value resulting from
(5.16) and (5.17). Figure 6.13 shows the result: as in figure 5.13 the calculated
average per annulus coincides everywhere except at the disc edge with the mo-
mentum theory value. This confirms the results from the Froude discs in chapter
5: the annuli cannot be assumed as independent, as the pressure field contributes
to the axial momentum exchange leading to the non-uniform distribution of vx,d.

6.5. The role of swirl

The ratio in (6.23) is the ratio between the left-hand sides of the momentum
balance (6.21) and energy balance (6.22) or, in other words, between the total load
exerted on the flow in the stream tube control volume and the non-conservative
load which is the load performing work. By this, (6.23) is equivalent to (5.13)
which shows how conservative forces in the momentum balance cause the induced
velocity at the disc to deviate from Froude’s result that it is the average of the
velocities far up- and downstream. Inspection of the pressure distributions con-
tributing to the momentum balance as shown in figure 6.1 and listed in section
6.2.5 shows that:

• all distributions appear in the momentum balance (6.18) with (b), (c) and (e)
cancelling each other apart from the remaining (cexpansion) or (bcontraction),
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• distributions (a) and (d) appear in the energy balance (6.9), so are non-
conservative,

• distributions (b), (c) and (e) do not appear in the energy balance, so are con-
servative.

Direct evaluation of (a+d+bcontraction) or (cexpansion) for the counter of the ratio
Ttotal/Tcons in (5.13) and (a+d) for the denominator returns (6.23). The dif-
ference between the momentum and energy balances for the discs of Froude and
Joukowsky is caused by the swirl-related pressure in the far wake: the conservative
(bcontraction) or (cexpansion) and the non-conservative (d).

The swirl related pressure distributions (b) and (c) are conservative as the
gradient of the pressure and azimuthal velocity results in a conservation of po-
tential and kinetic energy: ∂(p + 1

2ρv
2
ϕ)/∂r = 0 as is best illustrated by the flow

without wake expansion or contraction, analysed in section 6.3.2. Still swirl has
an impact on the energy balance by distribution (d). The change of H from
undisturbed to its value in the far wake is given by (6.9) with the first term at
the right-hand side expressing the change in kinetic energy and the second term,
being the pressure (d), the change in potential energy.

The conclusion is that swirl does not contribute to a change in energy level of
flow particles, expressed in H, but affects the performance through swirl-induced
changes in pressure. These changes modify the shape and strength of the wake
boundary vortex sheet compared with the no-swirl results of Froude discs, by
which the mass flow through the disc decreases for increasing swirl. Although
swirl is an essential component of disc flows, it leads to a loss of performance
which is minimized by choosing λ as high as possible.

6.6. Comparison of the Joukowsky and Betz-Goldstein solutions

A comparison of the |Cp,max| − λ curve for wind turbine discs having a
Joukowsky circulation distribution with discs having a Betz-Goldstein distribu-
tion of the circulation is shown in figure 6.14. As shown by Okulov and Sørensen
(2008) and Okulov (2014) the original Betz-Goldstein solution for a rotor with a
finite number of blades resulted in |Cp,max| = 1, as the pitch of the helicoidal wake
was based on the undisturbed velocity. With the pitch based on the velocity in
the rotor plane, Okulov (2014) showed that |Cp,max| reaches the well-known Betz-
Joukowsky maximum 16/27 for high λ. Expansion of this solution to a rotor with
an infinite number of blades is shown in figure 3 of Okulov (2014). An alternative
solution is published in Wood (2015) where the Goldstein formulation is adapted
to allow for non-zero torque when λ → 0. A comparison of the Joukowsky maxi-
mum |Cp| curve and corresponding Betz-Goldstein-Okulov/Wood curves is given
in figure 6.14. The Joukowsky distribution gives higher |Cp,max| than the Betz-
Goldstein-based distributions, with the difference vanishing for higher λ. This
is confirmed by Okulov and Sørensen (2010) where rotors with a finite number
of blades having a Joukowsky and Betz-Goldstein-based distribution have been
compared.

6.7. Evaluation

The momentum theory including swirl developed in this chapter solves the
problem left by some other momentum theories, that the efficiency |Cp| of a wind
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Figure 6.14: The Joukowsky actuator disc |Cp,max| compared with the Betz-
Goldstein |Cp,max| solutions of Okulov (2014) and Wood (2015) for rotors with
an infinite number of blades.

turbine disc becomes infinite when λ → 0. The difference is in the treatment of
the singular flow inherent to a vortex at the disc and wake axis with an infinitely
small core. Now this core is included in the momentum balance, the singular
contributions to the momentum balance annihilate each other, giving |Cp,max| →
0 for λ → 0. The same holds for propeller discs. With this result question Q10,
listed in section 1.4, is answered.

Question Q11 is answered by the same momentum theory. The product of
Ω and wake angular velocity is a measure for the work done by the force field,
so swirl is essential. At the same time the swirl related pressure field acts as a
conservative contribution to the momentum balance, giving a lower performance
compared with disc flows without swirl. Swirl does not affect the energy content
of a volume of flow as the change in kinetic energy is compensated by a change
in pressure, keeping H the same. Swirl represents a loss in performance by the
angular momentum, not by a change in kinetic energy.

As wind turbine discs and propeller discs are treated simultaneously, some
characteristic differences have been observed, providing an answer to Q12. For
all wind turbine discs the velocity in the meridian plane at the disc is uniform, so
does not depend on r/R. For propeller discs this velocity is non-uniform. For a
wind turbine disc, the distribution of the vortex sheet strength γ along the wake
boundary shows a local maximum at a small distance after its leading edge, while
the distribution of γ for propeller discs shows a smooth decrease from the leading
edge to the far wake. A remarkable correspondence is that for very low λ not only
the wind turbine wake expands, but also the propeller wake.
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Special topics: Conservative loads at a thick disc
and blade tip

7.1. Introduction

So far only infinitely thin actuator discs and rotor blades modelled as lifting or
actuator lines have been treated, carrying only radial vorticity. In this chapter two
flows are discussed in which the other components of bound vorticity play a role.
In section 7.2 the actuator disc has a non-zero thickness containing axial bound
vorticity. Section 7.3 treats a rotor blade with non-zero chord where azimuthal
bound chordwise vorticity plays a role. For the thick disc, the disc force field is
sought which generates a Rankine vortex: a solid body rotation of the vortex core
and potential vortex flow around it. For the rotor blade the load near the tip of
a wind turbine rotor blade is studied, to find an explanation for the phenomenon
that sometimes the tip vortex moves inboard after being released, before wake
expansion drives it outboard. In both flows conservative forces are present, acting
on the axial or azimuthal bound vorticity. This chapter is based on van Kuik et al.
(2014) presenting a more detailed treatment of the same topics.

7.2. The generation of a Rankine vortex

7.2.1. Wu’s actuator disc equation. Wu (1962) has formulated the ax-
isymmetric actuator disc equation of motion expressed in the Stokes’ stream func-
tion Ψ and circulation Γ. The actuator disc is placed normal to the undisturbed
flow Uo, having an axisymmetric but otherwise arbitrary load distribution rotat-
ing with an angular velocity Ω. Since the flow field induced by the force field is
axisymmetric, it is possible to use the three-dimensional Stokes stream function
ψ. Breslin and Andersen (1994) present an extensive discussion on Wu’s equation
as the authors consider his publication ‘a landmark paper’. Here it suffices to say
that it is the normal component of the Euler equation (2.3):

∂H

∂n
= en · f − ρvsωϕ + ρvϕωs (7.1)

with all kinematic terms expressed in ψ and Γ. Furthermore H is expressed in Γ
using (4.4) resulting in:

∂2ψ

∂x2
+

∂2ψ

∂r2
− 1

r

∂ψ

∂r
=

1

2π

∂Γ

∂ψ

(
Ωr2 − Γ

2π

)
− r

ρ

fn
vs

. (7.2)

The last term fn is the same as the normal component of (4.7), being a conser-
vative force. Without the fn term, (7.2) is known as the Bragg and Hawthorne
(1950) equation. Wu (1962) suggests that fn may be neglected, as he considers
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this to be the component of the axial force density normal to the stream tube. A
significant value of fn then requires a large radial velocity component at the disc,
which is not present in general.

To test this hypothesis a solution of Wu’s equation was sought without wake
expansion of contraction, so with vr = 0. There are two possibilities for a wake
generated by a disc force field with a constant radius, as becomes clear by combin-
ing the Bernoulli equation (6.5) with the expression for radial pressure equilibrium
(6.6):

∂v2x
∂r

= 2
(
Ω− vϕ

r

) ∂(rvϕ)

∂r
. (7.3)

A flow with ∂vr/∂r = 0 requires a constant vx which can be established either as
a rotating body, so vϕ = Ωr, or as the Joukowsky flow vϕ = Γ/(2πr). A Rankine
vortex combines both flows: the kernel of it has a solid body rotation whereas
outside the kernel the flow is a vortex flow with vϕ ∝ r−1.

7.2.2. The force field required to generate a Rankine vortex. The
Rankine vortex flow is found to be an exact solution of Wu’s equation. The
kinematics of the flow generated by a force field distributed at a disc with thickness
ε, with a linear increase of the swirl at the disc, are given by:

ψ = 1
2Uor

2

vϕ =
C(x)Ωr r ≤ δ

C(x)Ω δ2

r r > δ

C(x) =
x/ε 0 < x < ε
1 x ≥ ε
0 x ≤ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.4)

where δ is the radius of the vortex core. The flow is sketched in figure 7.1.
The vorticity enclosed by the disc volume is derived by applying (A.8), with the
notation ω = [ωx, ωr, ωϕ]:

ωd =

⎡
⎢⎢⎢⎣

2Ω
x

ε

−Ω
r

ε

0

⎤
⎥⎥⎥⎦
r≤δ

ωd =

⎡
⎢⎣

0

−Ω
δ2

rε
0

⎤
⎥⎦
r>δ

, (7.5)

which gives, after integration across the disc thickness, the vortex sheet strength
γd =

∫
ωddx :

γd =

⎡
⎣ Ωε

−Ωr
0

⎤
⎦
r≤δ

γd =

⎡
⎢⎣

0

−Ω
δ2

r
0

⎤
⎥⎦
r>δ

. (7.6)

For the flow outside the disc volume the solution (7.4) satisfies Wu’s equation
(7.2), as is checked by substitution. At the disc itself, this substitution provides

the expression for fn, with vs = U0 and ∂/∂Ψ = (rU0)
−1

∂/∂r. It is clear that fn
is purely radial, so fn = fr. At the disc volume, fϕ is determined by (4.2) after
which fx by (4.1). For r > δ this gives an expression for fx that does not vanish

for r → ∞. This is corrected by adding a constant force field fx = −ρ (Ωδ)
2
/ε
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Figure 7.1: An exact solution of Wu’s equation: the generation of a Rankine
vortex, with core radius δ.

for 0 ≤ r < ∞. This has no impact on the flow, since it adds a constant pressure
downstream of the disc. It is a conservative force field satisfying (2.19) with the

potential F = ρ (Ωδ)
2
x/ε. The result is, in dimensionless form:

f

ρΩ2r
=

⎡
⎢⎢⎢⎢⎢⎣

r2 − δ2

rε
− xr

ε2

2x

ε

(
1− x

ε

)
Uo

Ω

1

ε

⎤
⎥⎥⎥⎥⎥⎦
r≤δ

f

ρΩ2r
=

⎡
⎢⎢⎢⎢⎢⎣

−xr

ε2

(
δ

r

)4

0

Uo

Ωr

δ2

rε

⎤
⎥⎥⎥⎥⎥⎦
r>δ

. (7.7)

The resultant expressions for the disc load F are obtained by integration of f
across the thickness ε :

F

ρ (Ωr)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

2
−
(
δ

r

)2

ε

3r
Uo

Ωr

⎤
⎥⎥⎥⎥⎥⎥⎦
r≤δ

F

ρ (Ωr)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1

2

(
δ

r

)4

0

Uo

Ωr

(
δ

r

)2

⎤
⎥⎥⎥⎥⎥⎥⎦
r>δ

. (7.8)

The solution satisfies the equation of motion (4.7), as is clear by substitution of
(7.4) and (7.5) in (4.7). Fx and Fϕ are independent of the thickness ε. Fr,r>δ = 0
but Fr,r<δ is O(ε), and contributes to the disc load when ε �= 0.

7.2.3. Interpretation of the radial component of the load. Inspection
in the rotating frame of reference is possible by writing (4.7) as f = −ρvrot ×
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Figure 7.2: The generation of a Rankine vortex flow by the force field (7.7) with
and without fr. Shown is the meridian plane with the undisturbed flow U0 coming
from left. This disc is between the vertical lines. The kernel diameter δ equals
the thickness ε. Left: the pressure, middle: the swirl, right: radial velocity (not
shown for fr = 0 since vr = 0 everywhere.

ωrot + vrot × 2Ω, and applying this to (7.7). This shows that fr has a Kutta-
Joukowsky as well as Coriolis part, with:

fr,K−J = 2ρ

(
1−
(x
ε

)2)
Ω2r (7.9)

fr,C = −2ρ
(
1− x

ε

)
Ω2r. (7.10)

In the inertial frame of reference the radial component of the Euler equation (2.1)
with vr = 0 and ∂v/∂t = 0 enables the interpretation of fr: ∂p/∂r− fr = ρv2ϕ/r.

Evaluation of ρv2ϕ/r with (7.4) gives:

1

ρ

(
∂p

∂r
− fr

)
= Ω

∂ (rvϕ)

∂r
− vϕ

∂vϕ
∂r

= Ω2rC(x) (2− C(x)) . (7.11)

In the wake fr = 0 and C = 1, so ρ−1∂p/∂r = Ω2r = v2ϕ/r satisfying the
centripetal balance (6.6). This is not the case at the disc, where C(x) = x/ε
results in a right-hand side of (7.11) unequal to ρv2ϕ/r. However, at the disc fr is
non-zero, and substitution of fr in (7.11) gives:

1

ρ

∂p

∂r
= Ω2rC2(x) =

v2ϕ
r
, (7.12)

which shows that the radial force density is required to restore the centripetal
balance at the disc.



7.3. THE ROTOR BLADE 85

7.2.4. Numerical assessment of the impact of the radial load. The
analytical solution shows that for r ≤ δ fr �= 0, but does not contribute to the
disc load Fr =

∫
frdx when ε → 0 since fr remains finite in this limit. The

question whether omitting fr is allowed in a flow calculation is still unanswered.
To investigate this, the flow has been calculated with the CFD code Fluent, see
van Kuik et al. (2014) for more information. The undisturbed flow has been set
to U0 = Ωδ. The thickness ε of the disc has been set to two values: ε = 0.05δ
and 1.0δ. The force density distribution (7.7) is applied, but one time with and
one time without the radial force fr. For the thin disc with ε = 0.05δ the results
with and without fr are graphically almost indistinguishable, and not shown here:
both calculations give the flow field (7.4) so the radial load does not matter. For
the thick disc with ε = δ the results with and without fr clearly show differences
as shown in figure 7.2. With the radial load included, see the upper row, the
analytical solution is reproduced exactly, and downstream of the disc the flow does
not change any more. In the absence of fr another flow field results, displayed in
the lower row. The contrast with the analytical solution is observed in the wake,
which is not fully developed immediately downstream of the disc, but is most
visible in the plot of the radial velocity. The analytical solution gives vr = 0 in
the entire flow field, but vr in absence of fr has a maximum value vr/U0 ≈ 0.07.

In conclusion the numerical analysis shows that Fx and Fϕ do not define
the flow uniquely. For the thick disc, Fr satisfying (7.7) needs to be added to
reproduce the analytical solution, whereas Fr = 0 results in another flow solution
with non-zero vr. For thin discs Fr =

∫
ε
frdx is negligible so it has no impact.

Further interpretation of fr and Fr is presented in section 7.4.

7.3. The rotor blade

7.3.1. Inboard motion of a tip vortex. Akay et al. (2012) and Micallef
(2012); Micallef et al. (2013, 2014) report experiments on two two-bladed rotors
of 2m diameter in the 3m diameter Open Jet Facility of TU Delft, with emphasis
on the root and tip region. Schepers and Snel (2007) and Schepers et al. (2014)
report experiments on a 4.5m diameter three-bladed rotor called Mexico1 in the
9.5∗9.5 m2 open test section of the German Dutch Wind tunnel. Xiao et al. (2011)
report detailed tip vortex experiments on a 1.25m diameter model of the NREL
UAE phase VI wind turbine described by Hand et al. (2001), in an open test
section of 3.2m diameter. The flow near the blade tip of these rotors is such that
the tip vortex, when leaving the tip, moves inboard before the wake expansion
moves the vortex to a larger radius. The tendency of any tip vortex to move
inboard is known from wing aerodynamics: the distance between the tip vortices
in the far wake is less than the span of the wing, see figure 3.3, as during the
concentration of the vorticity in two tip vortices the first integral moment with
respect to the symmetry plane is invariant, see Batchelor (1970, p. 591). This
corresponds with a centroid of vorticity at 70− 90% of the half-span of the wing,
depending on the load and circulation distribution. Qualitative considerations
based on the Biot-Savart induction rules make clear that the inboard induction
is caused by the chordwise vorticity at the tip since all other bound or free wake

1Measurements and EXperiments In COntrolled conditions
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vorticity components cannot induce such an inboard velocity. As the downward
movement of the tip vortices (Δx in figure 3.3) is related to the downward load
exerted by the wing, being the reaction force of the lift, the question is raised
whether the inboard motion Δy is related to a spanwise wing load. As a side step
this is evaluated here for the elliptic wing.

7.3.2. Side step: conservative, spanwise load on an elliptic wing.
The wing is placed in the Cartesian coordinate system of figure 3.3 with the
span b ranging from y = −b/2 to y = b/2. The chord length has an elliptical

distribution: c (y) /cmax =
√
(1− (2y/b)

2
). The undisturbed velocity U0 is in the

z−direction with the positive z pointing downstream, the x coordinate points
downwards. The elliptic planform gives an elliptic distribution of the bound
circulation Γ (y) /Γmax =

√
(1 − (2y/b)

2
), where Γmax is the circulation around

the wing at mid-span position. The velocity perpendicular to the undisturbed
velocity, the downwash, is vz = −Γmax/ (2b). The chordwise vorticity is given by
γc = −dΓ/dy so integration of the spanwise component of the Kutta-Joukowsky
load on the surface A of the half-wing gives:

S = −ρ

∫
A

ey · v × γdxdz = −ρ
Γmax

2b

∫
b

cdΓ (7.13)

= −ρ

4
Γ2
max

cmax

b
. (7.14)

Comparison with the induced drag, D = −πρ/
(
8Γ2

max

)
, shows that the ratio

S/D = 2cmax/(bπ). For an aspect ratio b/cmax = 10 and lift coefficient CL = 1,
the spanwise force on the half wing is 6% of the induced drag and 0.5% of the lift
of the entire wing. S is directed inboard, in agreement with the inboard motion
of the wake vorticity. S is perpendicular to the flying path so it does not convert
power. It is a conservative force which is not a ‘necessary force’ like the lift and
induced drag. For a very slender wing, so for cmax/b → 0, S vanishes as the
bound chordwise vorticity vanishes, like Fr vanishes for the disc thickness ε → 0
in section 7.2.

7.3.3. Conservative and non-conservative blade loads. The vorticity
dynamics involved in the creation and release of the tip vortex of a rotor blade are
less clear as the wake expansion or contraction drive the tip vorticity outboard or
inboard. For a propeller both effects add up but for a wind turbine rotor blade the
inboard movement of the tip vortex may be cancelled by the outboard convection
due to the wake expansion. It is expected that the inboard motion as observed
in the mentioned experiments, is connected to a radial tip load acting on the
bound chordwise vorticity as shown in figure 7.3. For simplicity it shows the most
simple rotor blade with a constant cross-section C being a symmetric aerofoil
without pitch or twist angle. This is not an optimal rotor design, but although
not self-starting, it acts as a wind turbine rotor once ΩR/U0 is sufficiently high.
By the chosen simple configuration the blade can carry only radial and azimuthal
vorticity components, which suffices for the present analysis. Figures 7.3 and 7.4
show the blade as a surface with curved lines of vorticity. Milne-Thomson (1966,
�10.61) pays attention to the in-plane component of the Kutta-Joukowsky load
appearing when the lifting surface contains non-parallel vorticity lines. Because
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Figure 7.3: Wind turbine rotor blade bound vorticity, with loads acting on the
flow. The sign conventions are similar to figures 2.2 and 4.1: all vectors are
in positive direction except Γ at the axis and γchordwise. The loads are drawn
assuming vx > 0, vϕ,rot < 0, vr = 0 near the root and vr < 0 near the tip.

of the limited importance for wings his analysis is restricted to the observation
that the spanwise load is non-zero. Here we analyse the load on both components
of the bound vorticity.

The load acting on a blade cross section C is given by 4.14. With ω expressed
in its components the lift L is:

L = −ρ

∫
C

vrot × erωrdC − ρ

∫
C

vrot × eϕωϕdC. (7.15)

The first integral gives the load on the radial vorticity, contributing to the rotor
thrust and torque. The second integral in (7.15) is the lift on azimuthal vorticity.
Evaluated in the (s, n, ϕ) system using (2.5), vrot×eϕωϕ = v×eϕωϕ = −envsωϕ

so the second integral gives the load is in the meridian plane normal to the stream
tube, by which it is indicated as Ln.

In order to distinguish conservative and non-conservative contributions to L,
∇×L =

∫ ∇× fdC is evaluated in the (s, n, ϕ) system, giving:∫∫
C

[
es

(
∂ (rfϕ)

r∂n
− ∂fn

r∂ϕ

)
+ en

(
∂fs
r∂ϕ

− ∂fϕ
∂s

)
+ eϕ

(
∂fn
∂s

− ∂fs
∂n

)]
rdϕds.

(7.16)
Despite the derivatives to ϕ and s being non-zero, they vanish after integration,
so:

1

ρ
∇×L =

∫
C

[
es

∂ (rfϕ)

r∂n
− eϕ

∂fs
∂n

]
dC = es

∂ (rLϕ)

r∂n
− eϕ

∂Ls

∂n
. (7.17)
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Figure 7.4: Schematic representation of bound and free vorticity of the wind
turbine blade tip of figure 7.3.

Ln is not included in (7.17) so it is conservative, while the other components of
L are non-conservative. With z measured from the leading edge to the trailing
edge 0 ≤ z ≤ c. Comparison of (7.15) and (7.17) allows a decomposition of L as:

Lnon−cons =− ρ

∫
C

vrot × erωrdC = −ρvrot ×
c∫

0

erγrdz (7.18)

Lcons = Ln =− ρ

∫
C

v × eϕωϕdC = −ρv ×
c∫

o

eϕγϕdz. (7.19)

with v and vrot being the average values across the thickness of the cross section C.

Furthermore
∫ trailing edge

leading edge
rdϕ has been replaced by

∫ c

0
dz. The non-conservative

part of L acts upon the spanwise or radial vorticity, while the conservative Ln,
having an axial as well as radial component, acts upon the chordwise vorticity.

The relation between both components is now expressed in terms of the cir-
culation Γ. For any lifting surface the well known relation between the change of
spanwise circulation and trailing vorticity is (3.1). Expressed in the rotor coordi-
nates of figures 7.3 and 7.4 this becomes γϕ = −∂Γr/∂r. The subscript r indicates
that Γ is defined in a plane normal to a radius, enclosing radial γ. Similarly the
circulation Γϕ is defined in a plane normal to the chordwise direction, enclosing
azimuthal γ, see figure 7.4. Inspection of the derivation of this relation as pre-
sented by e.g. Lighthill (1986) shows that it also holds at the blade surface itself
with Γ∗r measured from the leading edge: γ∗ϕ = −∂Γ∗r/∂r. When measured from

a local value of r∗ to the tip then Γ∗ϕ(r) =
∫ R

r∗ γϕdr or γ∗ϕ = ∂Γ∗ϕ/∂r. Combining
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both expressions for γ∗ϕ gives γ∗ϕ = −∂Γ∗r/∂r = ∂Γ∗ϕ/∂r or:

∂
(
Γ∗r + Γ∗ϕ

)
∂r

= 0, (7.20)

in which Γ∗r =
∫ leading edge

∗ position
γrrdϕ =

∫ z∗

0
γrdz and Γ∗ϕ =

∫ R

r∗ γϕdr. Expressed in

z this becomes Γ∗z = −Γ∗ϕ =
∫ R

r∗ γzdr. It provides a coupling between the radial
vorticity in (7.18) and the azimuthal vorticity (7.19). With (7.20) Γ∗z = Γ∗r for a
fixed chordwise position z∗, indicated in figure 7.4. By comparing this with (7.19)
the expression for the local L∗cons becomes:

L∗cons = −ρv × ez

1∫
o

Γ∗zd
z

c
. (7.21)

The occurrence of a load acting on chordwise vorticity at the tip is known from
measurements on helicopter and propeller model rotors. Gray et al. (1980) show
the measured pressure distribution at the tip of a model rotor operating in hover,
resulting in a significant increase of the normal force for r/R > 0.98. Ragni et al.
(2011a,b) report propeller tip measurements using SPIV and CFD calculations
showing details of the pressure distribution at the tip. A very good agreement
between experimentally obtained and calculated tip pressure is shown in figure 8
of (Ragni et al. (2011b), but no data for the integrated loads are given. As the
pressure contours at the suction side of the propeller blade have the same sign,
this results in a non-zero radial load after integration on the radially projected
blade surface.

Here (7.21) will be evaluated using data from one of the TU Delft experiments
described in detail in Micallef (2012), with emphasis on the axial as well as radial
component.

7.3.4. Experimental and numerical results for a model wind turbine
rotor. Micallef (2012) gives the details of the experiment with the 2m diameter,
two-bladed TUD-B rotor in the 3m diameter Open Jet Facility of TU Delft. Figure
7.5 shows the almost cylindrical blade shape of the TUD-B rotor with a blunt tip
surface having a zero pitch angle at r = R. All results concern the rotor operating
at its optimal tip speed ratio λ = 7 at a wind speed of 6 m/s. Figure 7.5 also shows
the plane of observation and the coordinate systems. Besides the (x, r, ϕ) system
defined in figure 7.3 also the local (x, z, r) system is used since it is convenient
to express local flow properties in the chordwise coordinate z. Apart from the
experimental data obtained by SPIV measurements, the CFD code implemented
by Herráez et al. (2014a,b) and the vortex panel code developed by Micallef et al.
(2013) are used to capture the tip flow in detail. A summary of these models is
presented in van Kuik et al. (2014).

Figure 7.6 shows the measured and calculated radial flow in the plane of
observation as defined in figure 7.5. At the tip a large difference in radial velocity
at the pressure side of the blade tip (x < 0) and suction side is visible, indicating
chordwise vorticity bounded at the tip. This vorticity component is shown in
figure 7.7 indicating high values for r/R > 0.97. This chordwise vorticity may be
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Figure 7.5: The geometry of the tip of the TUD-B rotor, the coordinate system
and the plane of observation, used for the measurements and calculations. The iso-
lines indicate the radial velocity. The square contour of the plane of observation is
used to determine the chordwise bound circulation at various chordwise positions
of the plane. The chordwise coordinate z is measured from the leading edge where
z = 0.

Figure 7.6: Comparison of the radial velocities in the plane through the quarter-
chord tip position.

Figure 7.7: The chordwise vorticity determined by difference in radial velocities.
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Figure 7.8: Iso-lines of constant percentage of the local circulation Γ∗r/Γr,max

around the TUD-B rotor blade, determined by the CFD method. As Γ∗r = Γ∗z the
iso-lines also give the circulation measured from the tip.

considered as the beginning of the tip vortex as shown in detail by Micallef et al.
(2014, 2018).

Figure 7.8 shows how the circulation Γ∗r measured around blade bound radial
vorticity γr is connected to the circulation Γ∗z measured around bound chordwise
vorticity γϕ, with a visual explanation of Γ∗r and Γ∗z in figure 7.4. The value
of the iso-circulation lines gives the local circulation, measured from the leading
edge divided by the maximum blade circulation. This maximum occurs at the
trailing edge at r/R = 0.825. As Γ∗rΓ

∗
z for a fixed position r∗, z∗, the iso-lines

give the value for Γ∗r , measured along the chord from the leading edge, as well
as Γ∗z, measured along the radius from the tip to inboard. As an example at the
trailing edge the spanwise circulation increases from 0 at r = R to ≈ 0.9Γ∗r,max

at r = 0.94R. In other words, 90% of the radial circulation leaves the blade as
chordwise circulation in the outer 6% of the blade. The figure shows that a small
amount of the circulation leaves the tip, see the iso-lines 0.1 and 0.2. This missing
part is not analysed further, but it is unbound vorticity or the contribution of the
flat tip surface to the bound circulation.

The measured and CFD-calculated velocity field is integrated along the con-
tour displayed in figure 7.5, to obtain the circulation Γ∗r(z) around the chordwise
vorticity at r = 0.9R at 6 chordwise positions. Details of the procedure are given
in van Kuik et al. (2014), with the results shown in the left part of figure 7.9. The
two curves agree reasonably well.
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Figure 7.9: Left: chordwise circulation, right: axial and radial load. The squares
show the K-J method applied to the CFD data. The diamond marker indicates the
same applied to the experimental data. The triangles present the experimental
momentum method. The error bars for the K-J experimental load show the
sensitivity for the position to determine vref . Tblade is the thrust on a single
blade. The sensitivity of the radial load for variations of the contour in the
momentum method is 5% of the values indicated.

7.3.5. Determination of the conservative tip load. The conservative
tip force (7.21), decomposed in the axial force Fx and radial force Fr, is determined
by several means.

• Equation (7.21) gives the load on the chordwise vorticity for a certain radius
so integration along r gives the total load. This is approximated by the follow-
ing procedure. The force is calculated by chordwise integration of the Kutta-
Joukowsky load −ρvref × Γ where the equivalent velocity vref is the velocity
in the (x; r) plane at a position close to the tip. The variation in the results by
varying this position is shown by the error bars in figure 7.9, giving results for
the CFD and experimental obtained data.

• The radial load Fr is obtained by direct integration of the pressure as calculated
by the CFD code.

• Furthermore the radial load is found by applying a radial momentum balance
using the measured velocity field based on a contour as shown in figure 7.5,
however with r = R as inboard boundary instead of r = 0.9R. By doing so the
pressure at the flat tip surface is the source term in the balance giving the radial
load. The sensitivity for the choice of the contour is checked by varying the
position of the other contour sides. The momentum method is described and
applied in del Campo et al. (2013, 2014, 2015) where it is applied to determine
the load on the radial circulation.

The results of figure 7.9 are integrated along the chord to obtain the normal and
radial load given in table 7.1. The results agree reasonably well, with the pressure
integrated radial load most deviating. The ratio of the radial force to the thrust
of the blade has the same order of magnitude as the ratio of the spanwise force to



7.4. THE ROLE OF CONSERVATIVE FORCES 93

Table 7.1: The axial load Fx and radial load Fr at the tip, as % of Tblade. P,
K-J and MOM refer to the pressure, Kutta-Joukowsky and momentum methods
explained in section 7.3.5.

CFD Experiment

P K-J K-J MOM

Fx 1.0 1.3± 0.3 -
−Fr 1.2 1.8 1.9± 0.4 2.2± 0.1

the lift at one half of an elliptic wing calculated in section 7.3.2: 1 − 2%, so the
contribution of the conservative tip loads to the overall rotor load is very small.
However, when Fx and Fr are normalized by the thrust acting acting on the blade
tip for r/R > 0.9 , the order of magnitude changes to 10%.

7.3.6. The tip vortex trajectory. Besides the loads, the tip vortex trajec-
tories are compared. Figure 7.10 shows the calculated trajectories in comparison
with the measured values. The CFD-blade results corresponds to the CFD anal-
ysis discussed so far, the actuator line (CFD-AL) results are presented below2.
The CFD-AL method is a standard actuator line method, applied including the
tip correction proposed by Shen et al. (2005b). Both CFD results are obtained
by taking the average position of 100 streamlines forming the tip vortex. For
the panel code the trajectory is the vorticity filament that leaves the blade at
the trailing edge of the tip. Although there are differences between the exper-
imental data and calculated trajectories, the CFD-blade and panel code results
confirm that the tip vortex moves somewhat inboard before expansion starts after
approximately 30◦ azimuth angle after the c/4 position. The CFD-AL line does
not show any inboard movement. The wake expansion in CFD-AL starts imme-
diately after the tip vortex is released, while this is delayed in CFD-blade. When
the expansion part of CFD-blade is interpolated to r = R keeping the same slope
for large ϕ, the equivalent delay in wake expansion compared to CFD-AL is 50◦

azimuth angle.
Since in the AL method all chordwise information is discarded, the bound

chordwise vorticity and the loads acting on it are absent, so Lcons = 0. The
difference between the CFD-blade and CFD-AL lines in figure 7.10 is the difference
in including or discarding conservative tip loads. So far both codes did not use
any tip correction. In the next chapter a tip correction in combination with a
model for the conservative tip load is treated, with emphasis on the tip vortex
trajectory and the impact of a delayed wake expansion on the blade loads.

7.4. The role of conservative forces

In the previous sections three examples of conservative forces have been
shown: the radial load on axial disc bound vorticity in section 7.2, the spanwise
load on chordwise vorticity of an elliptic wing in section 7.3.2 and the axial and
radial load on chordwise vorticity of a rotor blade in section 7.3.3. A common

2The AL result is taken from Herráez et al. (2017) instead of van Kuik et al. (2014) as it
is much more accurate, e.g. 3 times more blade elements distributed along the radius.
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Figure 7.10: The radial coordinate of the tip vortex as a function of the azimuth
angle measured from the c/4 position.

property is that the conservative loads act on bound vorticity, which existence
depends on the dimension of the lifting surface perpendicular to its main bound
vorticity. For the wing and blade the main vorticity is the spanwise vorticity,
which behaves as a Dirac delta function when the chord becomes 0 in case of lift-
ing or actuator line modelling. For the actuator disc the main bound vorticity is
the radial vorticity, with the axial vorticity vanishing for the thickness going to 0.
This implies that conservative and non-conservative forces depend in essentially
different ways on the geometry of the surface or volume carrying them. For anal-
yses with non-conservative loads, no geometrical information is necessary once
the circulation is defined. In contrast to this, conservative forces do depend on
geometry since the disc thickness or blade chord have to be known. Since conser-
vative forces do not convert power nor produce vorticity, they may be discarded
from the force field that induces the flow, without violating conservation laws or
far field boundary conditions. This was shown by the disc calculations without
the radial force, and the actuator line calculations for the rotor. However, the
resulting flow field differs from the ’original’ flow field as shown in figure 7.2 for
the disc and figure 7.10 for the blade tip.

The physical origin of the conservative force field is the same as of the non-
conservative one: the pressure distribution. Realizing this, a different explanation
of the dependency of the spanwise or radial load on the dimensions of the cross
section is possible. Projection of the wing or blade surface in spanwise or radial
direction gives the surface which is observed when looking from the wing - blade
tip to the inboard direction. The pressure integrated on this surface gives the
spanwise or radial load. For a vanishing chord length the projected surface disap-
pears and so does the radial load. For the conservative additional lift at the tip a
similar reasoning is possible: when the chord tends to 0 the spanwise bound vor-
ticity as well as the chordwise vorticity become concentrated in a discrete vortex,
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but, unlike the spanwise vortex, the tip vortex has no length or surface to which
it is bound.

7.5. Evaluation

In previous chapters the disc was assumed to have a zero thickness, and
the rotor blade zero thickness and chord. This chapter deviates from this by
analysing the flow induced by a force field acting on a thick disc, as well the flow
around a rotor blade tip with a non-zero cross section. In both cases conservative
forces appear in the equations of motion. These conservative forces become 0
for vanishing dimensions in contrast to the non-conservative forces. The role of
the conservative forces is to maintain the local flow and pressure equilibrium at
the volume where the non-conservative force density is distributed. Apart from
understanding the role of force fields, there is one result relevant for wind turbine
rotor flows: the conservative tip load on the chordwise bound vorticity at the
tip explains why some experiments show that the tip vortex moves inboard after
being released, before wake expansion drives it outboard. Question Q13 listed in
section 1.4 addressed this tip flow effect, which will be included in the discussion
about tip corrections in the next chapter.
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8

From disc theory to BEM models: the tip
correction

8.1. Introduction

In the previous chapters we have refreshed the one- and two-dimensional actu-
ator disc theories and shown that these are a solid basis for rotor models. However,
the step to convert actuator disc theory to rotor models has not yet been set. The
textbook by Sørensen (2015) presents an excellent overview of momentum-based
models and treats BEM with emphasis on the differences between some versions,
the limitations and the add-on engineering rules that make BEM the most used
rotor design method for wind turbines. Here we limit ourselves to the basic
form of BEM, assuming the rotor to operate in undisturbed uniform parallel flow
aligned with the rotor axis. The essential steps in the conversion from actuator
disc theory to BEM have to do with:

(i) the radial distribution of the induction: apply the disc momentum theory
per annulus, including the contribution of the pressure at the boundary of
the annulus, with an assumed load on the blade element replacing the disc
load,

(ii) the azimuthal distribution of the induction: account for the azimuthal non-
uniformity in rotor flows in contrast to axi-symmetric disc flows,

(iii) the radial distribution of the blade circulation: for an ideal Joukowsky rotor
this circulation is constant, which is physically not possible,

(iv) iterative optimisation: determine the lift and drag on the blade element
by blade element theory, based on the previous steps, and optimise the
performance by varying the blade geometry in an iterative procedure.

This chapter discusses step (i) to (iii), preceded by section 8.2 on the tip correction
that is most used to account for (i) to (iii). In current BEM practice, the tip
correction is the single measure to convert the disc flow to a rotor flow. This
correction is based on a correction of Prandtl for (ii), but has a consequence for
the radial distribution of the induction, (i), and thereby modifies the circulation,
(iii). Despite these interactions (i)-(iii) are treated here separately to emphasise
the differences in cause and effect.

8.2. Development of the tip correction

8.2.1. In BEM methods. The tip correction F used in most BEM models
is based on the appendix by Prandtl added to the paper of Betz (1919), on the
ideal circulation distribution for lightly loaded discs discussed in section 1.2.3 and
shown in figure 1.1. Prandtl’s appendix presents a correction F to Betz’s model

97
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to account for a finite number of blades, resulting in a correction of the induced
velocity at the rotor plane. The correction is derived as a two-dimensional solution
where Betz’s model is three-dimensional. As this correction is most noticeable
near the tip it is commonly called a tip correction although no details of the
tip geometry are included. Prandtl himself and Glauert (1935, ch. VII-4) name
it a correction for the effect of number of blades and do not use the words ‘tip
correction’. After Prandtl the correction has been modified by many, as can be
read in Sørensen (2015, chapter 8) and Branlard (2017, chapter 13). Glauert
(1935, ch. VII-4) has adapted Prandtl’s model, by which it corrects the induction
at the blade position instead of the azimuthally averaged induction. Thereafter
many have fine tuned the Prandtl-Glauert correction by adding tip geometry input
and by validation with experiments and CFD calculations. In particular this is
done by wind energy researchers like Shen et al. (2005a), Branlard et al. (2013),
Shen et al. (2014), Schmitz and Maniaci (2016), Maniaci and Schmitz (2016),
Sørensen et al. (2016), Wimshurst and Wilden (2017) and El khchine and Sriti
(2017). The contribution by Shen et al. (2005a) adds a correction F1 to achieve
3-D tip-aerofoil properties in combination with the Prandtl-Glauert correction for
the induction at the blade position. F and F1 and their role in the momentum
balance will be treated in section 8.3.

Wood et al. (2016) and Wood (2018) treat the Prandtl correction for ro-
tors having a circulation distribution for which the correction was developed: the
Betz-Goldstein distribution mentioned in section 1.2.3. For the Joukowsky distri-
bution the physical meaning of the correction is not that clear any more: originally
Prandtl derived it as a 2-D correction for the 3-D optimal Betz circulation dis-
tribution for lightly loaded discs, but it is applied to BEM which optimises for
a heavily loaded Joukowsky distribution. Furthermore, many of the adaptations
and additions do not have a basis in the circulation model of Betz and Prandtl,
but in validations by experiments and CFD results. The result is an efficient
engineering model to obtain the induced velocity at the blade position, 3-D tip-
aerofoil properties and, in an iterative process, the load at the outer part of the
blade.

8.2.2. In actuator disc, actuator line and lifting line methods. Shen
et al. (2005b) have developed a tip correction method to be used for actuator disc
and actuator line analyses analogous to the method in Shen et al. (2005a). The
same equations for F and F1 are used as for BEM, but the application is different.
As actuator disc flows are obtained by CFD or vorticity based flow solvers, the
relation between loads and flow field is exact, apart from numerical discretisation
issues, so there is no need for a tip correction F . The same holds for F1, correcting
2-D aerofoil properties to 3-D, when the disc load is prescribed as in the analyses
in chapter 5 and 6. If the actuator disc is to represent real blade loads instead of
an axisymmetric disc load, correction F in combination with F1 is recommended.
For actuator line and lifting line analyses the same reasoning applies: F is not
required to obtain the correct flow field, and F1 is not necessary when the line
load or circulation is prescribed, as for the flow cases shown in figure 2.4. In case
the load at the actuator or lifting line is obtained in an iterative procedure with
a blade element analyses, correction F1 is required.
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8.3. The distribution of the axial velocity

8.3.1. The radial distribution. At the time Prandtl derived his correction
the velocity distribution at the Froude or Joukowsky disc was not yet known. In
chapter 5 this distribution has been calculated for a range of thrust coefficients
for Froude discs representing wind turbines, so it is worthwhile to compare this
with the results of BEM with a tip correction. The tip correction used is the
one of Shen et al. (2005a, 2014). In this model the Prandtl-Glauert correction
F , correcting the azimuthally averaged induction to the induction at the blade
position, is extended by a correction F1 to modify 2-D aerofoil properties to 3-D
properties, originating from the tip flow. The equation for F is:

F =
2

π
cos−1

[
exp

(
−B

2

(
R

r
− 1

)
1

sin(θ)

)]
, (8.1)

where θ is the local inflow angle, with sin(θ) = vx,B/
√
(Ωr − vϕ,B)

2
+ v2x,B . To

account for local tip shape properties, some details of the tip geometry are in-
cluded in this correction F1 :

F1 =
2

π
cos−1

[
exp

(
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sin(θ)

)]

g = exp
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+ 0.1
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(8.2)

where k is the minimum value of chord-to-radius derivative at the tip. The value
k = −0.45, used by Shen, is kept unchanged. When B, λ are given, F and F1

are known except for vx,B or the induction aB = (1 − vx,B/U0). For n = 1 and
g = 1, F1 is identical to F , the Prandtl-Glauert correction. F1 is the correction
of the blade loads by Shen et al., so the combination of F1 and F is called the
Prandtl-Glauert-Shen (PGS) correction. In BEM this is used in the momentum
balance to solve aB :

CtF1 = 4aBF (1− aBF ), (8.3)

with the local thrust coefficient Ct originating from blade element theory based
on 2-D aerofoil properties. For a given CtF1, the quantity aBF is solved as the
azimuthally averaged induction resulting from the momentum theory without any
radial dependency of the results. The local induction aB follows after division by
F .

For the actuator disc Ct is given by (4.26). Here we use it without the q2

term, as discussed in section 4.2.3, while Ct is treated as if it is based on aerofoil
properties. The momentum theory solution of (8.3) will be compared with the
calculated actuator disc results obtained in chapter 5, for the same uncorrected
Ct.

For wind turbine discs the radial distribution of the axial velocity is given by
the function G, described by (5.23) and (5.24), and shown in figure 5.14. It is
used in combination with the local momentum equation:

Ct = 4a(1− a)

1− aB = G(1− a)

}
(8.4)
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Figure 8.1: The axial velocity distribution obtained from the momentum theory
+ PGS correction (dash line) and actuator disc function G (solid line). (a) to (c)
correspond with the flow cases in table 8.1

The first equation gives the induction a as if the local and disc-averaged mo-
mentum equations are the same, the second equation gives the local value. The
comparison of both methods, (8.3) and (8.4), is done for the load cases given
in table 8.1, representing an optimal rotor (a), a heavily loaded rotor (b) and a
very fast running rotor (c). The results are shown in figure 8.1, presenting vx,B
as resulting from the PGS correction and G function. The PGS correction has
little effect for r < 0.8R so the the axial velocity is lower than the G-function for
r/R < 0.8. For r/R > 0.8 the actuator disc line G corresponds reasonably well
with the PGS corrected results.

8.3.2. The azimuthal distribution: averaged or at blade position.
Actuator Line and Lifting Line models have been introduced in section 2.3: both
have a constant circulation and do not apply any correction. For rotors modelled
as an AL or LL operating in a uniform flow aligned with the rotor axis, the
induction at the position of the AL/LL by the bound vorticity of the other AL/LL
is zero. The same holds for the azimuthally averaged induction by the AL/LL, as
follows by considerations of anti-symmetry based on the Biot-Savart rules. It is
only wake vorticity that defines the induction at the AL/LL and the azimuthally
averaged induction, irrespective of the radial distribution of the bound Γ. When
the blade is modelled with a non-zero chord length, the anti-symmetry is distorted
so the induction may be different. In sections 8.3.3 and 8.4.2 the effect of non-zero
chord will be discussed.

Table 8.1: Flow cases

Case # λ CT

(a) 7 0.888
(b) 7 0.970
(c) 20 0.888



8.3. THE DISTRIBUTION OF THE AXIAL VELOCITY 101

r/R

0 0.2 0.4 0.6 0.8 1

ν
��/U

0

0

0.2

0.4

0.6

0.8

r/R

0.2 0.4 0.6 0.8 1

r/R

0.2 0.4 0.6 0.8 1

(a) (b) (c)

Figure 8.2: The axial velocity distribution at the actuator line (red dashed line),
the lifting line (black solid line) and the actuator disc (blue dashed-dot line) for
cases (a), (b) and (c) defined in table 8.1

Here we compare the velocity distribution at the disc as calculated in chapter
5 with the velocity at the position of a 3-bladed rotor modelled as an AL or LL
generating the same thrust. The load cases used in this comparison are given in
table 8.1, with the axial velocity distribution for case (a) shown in figure 2.4.

As shown in figure 3.2-a the vortex emanating from the tip of a rotor blade has
a small axial and a large azimuthal component when λ is sufficiently high. Then
the induction by wake vorticity at the rotor plane will show little non-uniformity
in azimuthal direction, apart from the induction at the outer part of the AL/LL by
the very first part of the tip vortex. This is confirmed by the AL/LL calculations
for the three load cases. In figure 8.2 the distribution of the axial velocity of the
actuator disc as given by (5.23) is compared with the distribution calculated by the
AL and LL models at the blade position. As the AL model does not give results
close to the rotor axis, see figure 2.4, the graphs show a jump to 0 for r/R < 0.1.
The numerical discretisation of both models and the consequences for the accuracy
are described in van Kuik et al. (2015b), but some aspects are treated here. The
minimum value for vx should be at r/R = 1 for an infinitely thin vortex core,
but occurs at a lower radius for both models. This is a consequence of the vortex
core size, as is confirmed by figure 9 of Segalini and Alfredsson (2013) showing the
same behaviour and explanation. Furthermore the discretisation parameters have
not been optimised per load case, given computational limitations. For r/R < 0.8
the AL, LL and disc results agree reasonably in cases (a), show a deviation of
the LL model in the heavily loaded case (b) and of the disc results in the high
λ case (c). With respect to the shape of the distribution for r/R > 0.8 the AL
and LL models agree well but show a steeper curve than the disc distribution, so
vx,B AL/LL < vx,disc, except for case (c). Case (a) is treated too in Segalini and
Alfredsson (2013). Figure 9 of this paper compares the induction at the lifting
line, aB , with the azimuthally averaged induction a, showing that aB/a > 1 so
vx,B < vx, especially near the tip. This is the effect of the nearby position of the
first part of the tip vortex, responsible for the azimuthal non-uniformity in wake-
induced vx. As in the high λ case (c) the tip vortices are less strong compared to
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the strength in (a) with equal thrust, the non-uniformity in (c) is less compared
to (a) by which the distributions match better.

Figure 8.2 shows that in case the disc distribution G is used as basis for the
momentum balance in BEM, the required correction from a(r) to aB(r) is much
smaller than from the uniform induction a used in BEM, to the PGS corrected
aB(r).

8.3.3. The azimuthal distribution: decambering of aerofoils. In BEM
the blades are not modelled as a line, but have a non-zero chord. The anti-
symmetry considerations mentioned in the previous section are not exact any
more. The Blade-Element part in BEM relies on two-dimensional aerofoil data
to determine the lift and drag once the local velocity vector is known. This data
assume that the induction is uniform along the chord. This is not the case as
can be observed in figure 2.4: the axial velocity at both sides of the AL-LL is not
the same. In front of the AL-LL (in anti-clockwise direction) vx is larger than at
positions after the line. For a rotor with a non-zero chord, this implies that at
the leading edge of the aerofoil vx is higher than at the aerodynamic centre, c/4.
At the trailing edge vx is lower than at the aerodynamic centre. Expressed in the
axial induction this implies that vx,induced increases from leading to trailing edge,
corresponding to figure 1 in Sørensen et al. (2015), who introduced the decamber
correction to account for the non-uniform induction. As shown in this paper,
the non-uniform induction has the same effect as a negative camber added to the
aerofoil: it decreases the lift by increasing the zero-lift angle of attack.

Although the decambering occurs along the entire blade span, the correction
proposed by Sørensen et al. (2015) is called a refined tip correction as it is most
noticeable at the tip. It is a correction of the zero-lift angle ΔαCl=0, obtained by
an iterative calculation of the induced velocity at several chordwise positions. In
each iteration ΔαCl=0 leads to a change in the circulation Γ of the blade, so to a
change in induction. For a given rotor geometry the correction can be calculated
for various flow angles. During performance computations the actual correction
can be obtained by interpolation .

Sørensen et al. (2015) use their correction together with the Prandtl-Glauert
tip correction (8.1). Comparison of lifting line and BEM results, both with the
decamber correction, show an improved agreement with results by a vortex lattice
method, compared with uncorrected results. The vortex lattice method includes
modelling of the blade surface as a (bound) vortex sheet. The change in circulation
and loads for modern rotor blades is significant in the outer part of the blade where
the thrust is lowered by 7− 8%. The change in performance is small.

8.4. The radial distribution of Γblade

For Joukowsky discs and rotors the bound circulation Γ is taken to be con-
stant, but this is physically not possible. The circulation of a lifting surface will
gradually go to 0 when r → 0. For the TUD-B rotor analysed in the previous
chapter this occurs for r/R > 0.85, see figure 7.8. This figure shows a second
aspect of the tip flow: the creation of the tip vortex for r/R > 0.95. This involves
strong three-dimensional aerodynamics, in contrast to the aerodynamics of blade
sections at some distance from the root and tip, for which two-dimensional or
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blade element aerodynamics is sufficient. In classical wing theory both effects are
modelled as a function of the aspect ratio A = b/c where b is the span and c the
maximum chord. The usefulness of this method is discussed in the next section,
whereas the role of chordwise bound vorticity is treated in section 8.4.2.

8.4.1. The aspect ratio as a measure for tip effects. The tip or root
are the positions where the bound vorticity changes direction from spanwise to
chordwise and releases a free vortex into the flow, as shown in figures 7.4 and
7.8. For straight rectangular wings the tip effect or effective angle of attack is
expressed in the aspect ratio A: αA = CL/(πAeff ). Glauert (1935, ch. VI-7)
discusses such an effective aspect ratio to be used in propeller design. However,
as noted by Corten (2001a) this αA is the change of α due to the induction by
the tip vortices, which is already taken into account in the momentum balance.
Not captured by the momentum balance is the following tip effect. For large A
the lift of a wing is linear in α but for A → 0 the lift becomes quadratic in α,
see e.g. Rathakrishnan (2013, section 8.3). The reason is that the tip vortices,
emerging at the suction side of the surface, give additional lift due to their low
pressure, see e.g. figure 4.34 in Küchemann (1978). For rotor blades the same
physical phenomena occur, see e.g. Gray et al. (1980) who show the measured
pressure distribution at the tip of a model rotor operating in hover, resulting in
a significant increase of the normal force for r/R > 0.98. van Kuik et al. (2014,
figure 8) show the same behaviour for the TU-B rotor analysed in chapter 7. This
phenomenon comes back in the next section.

Although the aspect ratio is an elegant parameter to model the finiteness of
the span of a lifting surface, it does not model the physical origin of tip effects
but rather the effects of it. Expressed in terms of pressure, the origin is in the
equalisation of the over-pressure at one side of the surface to the under-pressure
at the other side, called suction-side. The equalisation is achieved by flow passing
along the tip from pressure to suction side. Wimshurst and Wilden (2018) use this
pressure approach to study the behaviour of the tip flow. Expressed in vorticity
terms, the origin is in the change of bound spanwise vorticity to free tip vorticity.
In section 7.3 this transition has been analysed, with emphasis on the bound
chordwise vorticity and the load it carries. In the next section we will discuss in
more detail how to model this.

8.4.2. Chordwise vorticity and conservative loads at the tip. In chap-
ter 7 the conservative load on bound chordwise vorticty at the tip of a wind turbine
blade has been analysed. A comparison of a body-fitted CFD solution, with chord-
wise information, with an actuator line solution, without chordwise information,
showed that the AL method1 cannot reproduce the inboard motion of a tip vortex
whereas the body-fitted CFD method does so. In Herráez et al. (2017) the AL
method is extended to account for bound chordwise vorticity by artificially intro-
ducing conservative tip loads. These loads are determined as Kutta-Joukowsky
loads on bound chordwise vorticity −ρv × Γchord where Γchord is assumed to be
ζΓmax ,spanwise with ζ an engineering number 0 < ζ < 1. Tentatively ζ = 0.75

1The AL method used for figures 7.10 and 8.3 differs from the AL method of figure 8.2
where Γ is constant, without any correction. Now the load distribution is based on the TUD-B
rotor geometry, with Shen’s correction F1 but without the Prandtl-Glauert function F .
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Figure 8.3: The radial coordinate of the tip vortex of the TU-D B rotor as deter-
mined by full CFD and AL solutions.

is chosen, corresponding to the circulation leaving the blade between r/R = 0.98
and 1.0 as shown in figure 7.8. The result is shown in figure 8.3 which makes clear
that a conventional AL cannot capture the inboard motion of the tip vortex as
shown in figure 7.10. The forces acting on the chordwise vorticity, with ζ = 0.75,
have the same order of magnitude as in table 7.1: 1% of the blade thrust. There-
fore the importance of this correction is not in the determination of loads and
power, but in the precise location of the tip vortices required for an optimisation
of the tip geometry. As shown in Herráez et al. (2017) the correction for the tip
loads leads to a modest change in the induced velocity, angle of attack and loads
for 0.9 < r/R < 1.

8.5. Evaluation

The last question, Q14, listed in section 1.4, addresses the tip correction.
Chapter 8 has analysed several tip flow properties, leaving ample room for discus-
sion and future work. The results of the AL/LL calculations have to be considered
as preliminary, awaiting studies with more flow cases and a higher accuracy. Still,
some conclusions can already be drawn:

• The wind turbine disc distribution G of vx,d, see (5.24), and the PGS distribu-
tion (8.2, 8.3) match reasonably well close to the edge. This may be considered
as a mutual confirmation.

• The axial velocity at the position of the blade close to the tip is lower than
the azimuthally averaged value, which is to be expected due to the induction
by the first part of the tip vortex causing the azimuthal non-uniformity in
wake-induced vx,d

• The mutual relation between induction and load at the tip is not easy to capture
in a single correction. The PGS correction does not include the decamber
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correction nor the correction for the presence of chordwise vorticity at the tip.
Both effects have a limited effect on the overall load and performance but are
relevant for a detailed, optimised tip design.

Further research and discussion is required about the following:

• The PGS distribution is well-tuned by many researchers but its physical basis
does not match the optimisation of rotors according to a Joukowsky distribu-
tion. Now this basis, being the distribution G for the Joukowsky disc, is known,
this could replace the PGS distribution

• In case the disc distribution G is used as basis for the momentum balance in
BEM, the correction from a(r) to aB(r) is much smaller than from the uniform
induction a used in BEM to the PGS corrected aB . The use of G could lead to
a more accurate assessment of aB

• It is not yet clear whether the PGS correction and the correction for the chord-
wise bound vorticity can be used together, as both corrections have a different
background.

These topics for discussion are left for future research. Validation by experiments
and full CFD solutions will provide insight whether there is room for improvement
compared the current practice of using BEM with the PGS correction.
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9

Epilogue

The evaluation of the results per chapter is presented in the last section of
each chapter, and not included here in detail. This Epilogue takes some distance
and looks back at the main results.

With the force field term retained in the Euler equation of motion, the rela-
tions between a force field and the conversion of energy can be interpreted in the
conceptual framework of solid mechanics: conservative force exchange potential
and kinetic energy but do not perform work. Non-conservative forces do so, and
change the Bernoulli parameter H. Moreover, non-conservative forces generate
vorticity, conservative forces conserve vorticity. As, from a fluid dynamic point of
view, these processes are governing rotor flows, the force field method is shown
to be very helpful in the evaluation and understanding of actuator disc and rotor
flows. A new actuator disc equation has been derived, see (4.7), valid for any
distribution of f . Thanks to the similarity with the Kutta-Joukowsky expression
for the load on a vortex, the physically plausible result that the actuator disc is
a rotor subjected to the limit of an infinite number of blades, is confirmed by
analytical limit transitions.

The momentum theory of Froude and Joukowsky actuator discs has been
formulated in terms conservative and non-conservative force fields. The non-
uniformity of the axial velocity at the disc is shown to be the consequence of the
pressure field, acting as a conservative load. The same holds for the difference
between the Joukowsky disc performance and the Froude disc performance: in
Joukowsky disc flows, part of the swirl induced pressure field appears as a conser-
vative contribution to the momentum balance, so is absent in the energy balance
leading to deviations from Froude discs. A remarkable result is that at the disc,
the velocity in the meridian plane is constant for wind turbine discs, with or
without swirl. For propeller discs this velocity is non-uniform.

Conservative loads appear when the load carrying surfaces like a disc, rotor
blade or wing, are modelled with real, non-zero dimensions. The origin is found in
the distribution of bound vorticity: when bound vorticity lines are non-parallel,
e.g. at the tip of a rotor blade, the mutual induction gives rise to these conservative
forces. With this phenomenon, the initially inboard motion of a tip vortex of wind
turbine rotor blades could be explained.

Much more detailed information about disc and rotor flows is available, com-
pared with the first decades of the previous century. This makes it worthwhile to
reconsider the assumptions and engineering models with which disc results have
been made amenable for rotor modelling. A first attempt to use the obtained disc
velocity distribution has been presented, and compared with the current practice
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of using the disc averaged velocity with a tip correction. Although the correspon-
dence is reasonably good, much more validation and tuning is required to give
this method a firm basis. The same holds for adding the conservative tip load
in actuator line modelling: the presented first attempt reproduces the inboard
motion of the tip vortex, but more testing on more load cases is required.



APPENDIX A

Vector expressions in cylindrical coordinates
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∇ · v =
∂vx
∂x

+
1

r

∂vr
∂r

+
1

r

∂vϕ
∂ϕ

(A.3)

(v · ∇)v = ex (v · ∇vx) + er

(
v · ∇vr −

v2ϕ
r

)
+ eϕ

(
v · ∇vϕ +

vϕvr
r

)
(A.4)

v · ∇v = vx
∂v

∂x
+ vr

∂v

∂r
+ vϕ

1

r

∂v

∂ϕ
(A.5)

(v · ∇)ω = ex (v · ∇ωx) + er

(
v · ∇ωr − vϕωϕ

r

)
+ eϕ

(
v · ∇ωϕ +

vϕωr

r

)
(A.6)

(ω · ∇)v = ex (ω · ∇vx) + er

(
ω · ∇vr − vϕωϕ

r

)
+ eϕ

(
ω · ∇vϕ +

vrωϕ

r

)
(A.7)

ω = ex

(
1

r

∂ (rvϕ)

∂r
− 1

r

∂vr
∂ϕ

)
+ er

(
1

r

∂vx
∂ϕ

− ∂vϕ
∂x

)
+ eϕ

(
∂vr
∂x

− ∂vx
∂r

)
(A.8)

v × ω = ex (vrωϕ − vϕωr) + er (vϕωx − vxωϕ) + eϕ (vxωr − vrωx) (A.9)
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APPENDIX B

Balance of angular momentum

This appendix is restricted to steady 3-D axisymmetric flows without swirl
and steady 2-D flows. The curl of the Euler equation (2.3) gives

1

ρ
∇× f = −∇× (v × ω) . (B.1)

In the meridian plane a circle C is defined with polar coordinates (ξ, θ), enclosing
area A. Integration of (B.1) on A shows, using Stokes’ theorem:

1

ρ

∮
C

f ·dc = −
∮
C

(v × ω) · dc =

∮
C

vξωϕξdθ, (B.2)

where dc is tangent to C. Using ωϕ = ∂ (ξvθ) / (ξ∂ξ)−∂vξ/ (ξ∂θ) and
∮
vξ∂vξ = 0,

(B.2) becomes:

1

ρ

∮
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f ·dc =

∮
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∂ξ
dθ

=

∮
C

(
∂ (ξvθvξ)

ξ∂ξ
− vθ

∂vξ
∂ξ

)
ξdθ. (B.3)

Multiplication of (B.3) by ξ∗ and integration for 0 ≤ ξ∗ ≤ ξ gives the torque Q(ξ)
about the centre of C exerted by the force field f within C :

1

ρ
Q =

1

ρ

ξ∫
0

ξ∗
∮
C

f · dc dξ∗
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ξ∫
0

∮
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∮
C

d
(
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)
dθ −
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0

∮
C

ξ∗vθd (vξξ∗) dθ. (B.4)

The second integral is evaluated with the continuity equation (2.2) expressed in
the (ξ, θ) coordinate system:
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by which:
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∮
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so Q is:

1

ρ
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ξ∫
0

∮
C

d
(
ξ∗2vθvξ

)
dθ +

ξ∫
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∮
C

vθ
vr
r
ξ∗2dξ∗dθ

=

∮
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ξvθvξdC +

∫∫
A

ξ∗vθ
vr
r
dA. (B.7)

This is the balance of angular momentum with control surface C. The first term at
the right hand side gives the 2-D balance in which the torque equals the increase of
angular momentum, being the mass transport ρvξ having an angular momentum
ξvθ integrated along the contour C. The second term gives the change of angular
momentum ξ∗vθ as a consequence of the vorticity stretching, see the last term at
the right hand side of (3.16).

This shows that (B.1) indeed is the balance of angular momentum in differ-
ential form.



APPENDIX C

The blade load expressed as pressure distribution

In (4.14) L is expressed in kinematic terms. However, physically it is pressure
at a surface that creates a resultant load, so (4.14) has to have an equivalent
pressure formulation. Integrated along the span on a volume V enclosing the
blade, this gives the resultant force R

R = −ρ

∫
V

vrot × ωdV = −ρ

∫
V

vrot × ωrotdV + 2ρ

∫
V

vrot × exΩdV (C.1)

The distribution of ω at V is equivalent to the concentration of ω in an infinitely
thin vortex sheet γ =

∫
ωdn at the surface A of V , with n normal to A and

vrot = 0 inside V . Consequently, the last integral does not contribute to R.
Since γ = en × (vrot,inside − vrot,outside) and the velocity at the sheet vrot =
1
2 (vrot,inside + vrot,outside) the first integral becomes

− ρ

∫
V

vrot × ωrotdV = −ρ

2

∫
A

vrot × γdA = −ρ

2

∫
A

en|vrot,outside|2dA. (C.2)

vrot,outside is determined at streamlines tangent to the blade surface / vortex

sheet, where ω = 0 and f = 0. By combining∇Hrot = ∇
(
H − ρvϕΩr +

ρ
2 (Ωr)

2
)

with (2.22) it follows that Hrot,outside = ρ
2 (Ωr)

2
+ c where c is a constant, so

ρ
2 |vrot,outside|2 = c − (p − p0) +

ρ
2 (Ωr)

2
. The contribution of c + p0 + ρ

2 (Ωr)
2

vanishes in the closed contour integral. Herewith (C.1) becomes

R = −ρ

∫
V

vrot × ωdV =

∫
A

pendA (C.3)

The product ex · endA is equal to dAx where Ax is the projection of the blade
surface in axial direction. R can be decomposed in the axial, radial or span-wise
and azimuthal components:

R = ex

∫
A

pdAx + er

∫
A

pdAr + eϕ

∫
A

pdAϕ (C.4)

The axial and azimuthal components of R contribute to the rotor thrust and
torque. The radial component does not do so, and does not perform work, by
which it is a conservative component of the blade load.
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APPENDIX D

The potential flow model

D.1. Components of the model

The numerical model of the actuator disc wake vortex sheet has 2 components:
Axisymmetric vortex rings: From the disc position x = 0 up to x = 30 the sheet
is discretised using N vortex rings Γi(xi, ri). The distribution of rings is not
equidistant: for i = 1...N the axial position xi = (1− cos(iπ/(c1N)))c2 where c1
and c2 are constants tuned to make a smooth transition to the second component.
For the results shown here c1 = 2.72, c2 = 0.7. The values for N are given in the
main text.

The expressions for the flow field induced by a ring at position are given by
Yoon and Heister (2004):

vx =
Γi

4π
ri
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B
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B
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ρ32
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ρ1 ≥ δ. (D.1)

K(k) and E(k) are the complete elliptic integrals of the 1st and 2nd kind. At
the position of the ring ρ1 = 0, ρ2 = 1 so k = 1. For k → 1 K(k) ∝ log(1 − k)
while E(k) = 1. Evaluation of the expressions shows that close to the ring vx
is dominated by the 1/ρ1 singularity in I1, known from linear vortices, and a
weaker logarithmic singularity in I2 caused by the curvature of the ring. To avoid
infinite velocities, a vortex kernel with diameter δ is introduced. For ρ1 ≤ δ/2 the
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expressions given by Marshall (2001, p. 270-271) are used:
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4πri

[
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16ri
δ

)
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]
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ρ1 <
δ

2
. (D.2)

The semi-infinite vortex tube: The far wake, starting at x = 30, is the semi-
infinite cylindrical vortex tube with constant strength γ and radius Rtube = 1.0.
The vortex tube strength is given by the velocity jump across the tube boundary
in the far wake, e.g. for a thrust coefficient CT = Δp/( 12ρU

2
0 ) = −8/9 the velocity

in the wake is vx/U0 = 1/3 so γwake/U0 = −2/3. Suppose the semi-infinite tube
is closed at infinity by a tube end plate with equal strength of vorticity. This
has no effect on the flow at finite distance from the opening. Then the tube
surface is a 3-D vortex sheet of uniform vorticity strength, which is equivalent to
a dipole distribution of uniform strength, see Marshall (2001, p. 204). Surfaces
with uniform dipole strength are treated by potential theory, see Courant and
Hilbert (1967, p. 232), showing that the potential is proportional to the solid
angle at the position of evaluation subtended by the aperture of the surface. This
is confirmed by an independent evaluation of the expression for the velocity field
v induced by a closed vortex line Γ as given by Saffman (1992):

v = − Γ

4π
∇Θ (D.3)

in which Θ is the solid angle, expressed in steradian, subtended by the closed
vortex line at the position of evaluation of v. For an axisymmetric tube extending
from x = x0 to x = ∞, having radius Rtube and constant strength γ, this becomes:

v(x, r) = − γ

4π

∞∫
x0

∇Θ(x0, Rtube, ξ)dξ (D.4)

or, omitting (x, r), (x0, Rtube):

vx = − γ

4π

∞∫
x0

∂Θ(ξ)

∂x
dξ =

γ

4π
(Θ(x0)−Θ(∞)). (D.5)

Since Θ(∞) = 0 this becomes:

vx = − γ

4π
Θ (D.6)

where Θ is the angle subtended by the entrance of the vortex tube. Paxton (1959)
gives the expressions for the solid angle subtended by a ring, expressed in complete
elliptic integrals. If the opening of the tube is denoted by x = x0, r = r0, this
becomes:

Θ =

(
r0 − r

|r0 − r| + 1

)
π + 2

(x− x0)

ρ2

(
K(k)− r − r0

r + r0
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)
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√
rr0

r + r0
(D.7)
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Figure D.1: Streamlines for a semi-infinite vortex tube in parallel flow

where now ρ2 =

√
(x− x0)

2
+ (r + r0)

2
and Π(α, k) is the complete elliptic inte-

gral of the 3rd kind.
Branlard and Gaunaa (2015) have published a different derivation of the same

expression for the axial velocity, and present the expression for the radial velocity:

vr = − γ

2π

√
r0
r

((
2

k
− k

)
K(k)− 2

k
E(k)

)
. (D.8)

As this equation was not yet known at the time of making the code, the continuity
equation was used to numerically determine vr. This was compared with (D.8)
for verification, showing accurate correspondence, see section D.3.

At r = 0 (D.6) plus (D.7) yield a simple expression at the centerline, first
published by Snel and Schepers (1995):

vx,r=0 =
γ

2

(
1 +

(x− x0)√
(x− x0)2 +R2

tube

)
. (D.9)

D.2. Convergence scheme

The calculation starts with the configuration presented in the previous sec-
tion: all vortex rings have the diameter and strength per unit length of the far
wake tube, so Γi = γwake(xi − xi−1) with ri = Rwake. In each convergence
step j the discretised part is adapted, so the shape and strength of the wake
xi < 30Rwake changes per step while the far wake vortex sheet radius and strength
remain the same, as shown in figure 5.3. This implies that the disc radius, equal
to the radius of the first vortex ring, is a variable, but that the axial position is
invariant.
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Figure D.2: Deviation of the calculated (vx ; vr) with the analytical solutions
(D.6) to (D.9), expressed in�, for N = 6909, δ = 0.0001. The deviation exceeds
2� for vr close to the leading edge of the tube.

The two boundary conditions used to adapt the shape and strength are
Ψring − Ψwake = 0 and ΔHsheet = F . With the help of (5.19) and (6.32) this is
implemented as:

ΔΓring,i|j+1 = (si+1 − si)
ΔH

ρ

dΓ
vs,i

∣∣∣∣
j

, (D.10)

Δrring,i|j+1 =
Ψring,i −Ψwake

R1

dΨ
vx,i

∣∣∣∣
j

. (D.11)

(si+1 − si) is the distance between 2 rings, d is the damping being 0.05 for both
boundary conditions. Ψ is calculated at the vortex core position, vs at a position
r/ri = 0.95. After sufficient convergence is achieved, a second scheme is applied
for fine tuning. The dynamic condition (D.10) remains unchanged, while the
kinematic condition becomes:

Δrring,i|j+1 = −R1

U0
vn,idvn

∣∣∣∣
j

. (D.12)

with vn calculated at the position of the vortex core. This implies that the
axial coordinate of the vortex ring is adapted too, as the vortex core position
moves normal to the wake boundary surface calculated in the previous itera-
tion. The damping parameters for both conditions are controlled manually, with
dΓ = dvn = 0.0001 as highest damping for both conditions. The first conver-
gence scheme is very robust, while the second scheme requires manual tuning
of the damping parameters to convergence. Increasing the damping by lowering
d improves convergence at the cost of longer computation times. The iteration
is stopped when both boundary conditions are satisfied with an accuracy better
than 2�.
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Figure D.3: Deviation of the calculated γ(s), vn(s) and ΔH(s), for CT = 16/9,
N = 6909, δ = 0.0001. The black lines show the results for satisfied boundary
conditions (D.11) and (D.10), the blue lines for satisfied (D.11) and (D.12). For
γ(s) the ratio of both solutions is shown. The differences in Ψ(s) and in the
position of the vortex rings (both not shown) are smaller than the difference in
ΔH(s). The ratio of the wake contraction for both cases is 1.000035

D.3. Verification, sensitivity and accuracy

In the first iteration of the convergence scheme, all vortex rings plus the far
wake vortex tube constitute a semi-infinite vortex tube of constant strength and
diameter starting a x = 0. Figure D.1 shows the streamlines for the tube flow with
γtube/U0 = −2/3. placed in a parallel flow U0. The vortex model is verified by
comparing the numerical results of this first iteration with the analytical solution
(D.6) to (D.9).

The accuracy is shown in figure D.2. Except within a distance of 0.02 from
the edge of the tube, the deviation is less than 2�. At this leading edge the
radial velocity deviates in the order of percentages. The consequence of this
becomes clear by comparing the results of the two convergence schemes as shown
in figure D.3 for flow state CT = 16/9. The effect of vn being non-zero close to the
edge of the disc has consequences for the distribution of γ(s), has a 1� impact
on ΔH(s) and a negligible impact on Ψ(s), as well as rrings(x). Apparently
the difference in γ(s) does not affect the other flow properties more than 2 �.
Furthermore, it appears that the numerical discretisation and convergence scheme
give an uncertainty of several % in vn(s) or in γ(s) close to the leading edge. The
insensitivity for the other flow parameters has been checked for all 0 > CT ≥
−0.96 with N = 4656, δ = 0.001: the difference in using (D.11) or (D.12) leads
to differences in rrings(x), Ψ(s) and ΔH(s) of less than 3 �, but the normal
velocity close to the leading edge deviates percentages of U0. For more negative
CT the difference in grows: 1% for CT = −0.995.When (D.12) is used, vn is also
less than 2� of U0 while the other conditions remain the same.
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Table D.1: Sensitivity of R/R1 for CT = −8/9, in� deviation from the momen-
tum theory value.

N ↓ δ → 0.0015 0.001 0.0005 0.0001
6909 0.98
4956 0.99 0.98
4656 0.75 0.71 0.10
4355 0.59

Table D.2: Number of vortex rings of which the vortex core overlaps with the
core of the neighbouring ring, for CT = −8/9.

N ↓ δ → 0.0015 0.001 0.0005 0.0001
6909 0
4956 0 0
4656 14 2 0
4355 0

The numerical method has 2 independent model parameters: the number
of rings N and the vortex core radius δ/R1. A sensitivity analysis for both
parameters has resulted in table D.1. It is clear that the results are insensitive to
variations in both parameters. However, this is not the case for the properties of
the vortex sheet close to its leading edge. table D.2 shows that for some of the
combination the vortex cores of the very first rings may overlap:
The overlap has an impact on the position of the rings and the distribution γ:
the shape and strength of the vortex sheet are not smooth enough. An example
is shown in van Kuik and Lignarolo (2016, figure 9) showing the distribution of
γ as calculated with N = 4656 and δ = 0.001. The anomalous value at s = 0 is
caused by the overlap of the first ring with the second one. For all calculations
done with N = 6909 and δ = 0.0001 there is no overlap yielding a smooth γ
distributions, as shown in figures 5.9 and 6.8. All analyses in chapter 5 showing
details of boundary conditions and γ have been done with N = 6909, δ = 0.0001.

Finally, the computed values of the disc-averaged velocity at the disc have
been compared with the values of momentum theory. In the wind turbine regime
deviations are less than 2� for CT < −0.96, increasing up to 1.5% for CT =
−0.998. In the propeller regime all results shown in figure 5.4 have the same
accuracy.

The conclusions of this section are:

• The vortex model is verified by comparison with an analytical solution of the
semi-infinite vortex tube, yielding deviations in local velocity vectors less than
2 � for N = 6909, δ = 0.0001, except for the velocity component normal to
the vortex sheet within a distance 0.02Rtube from its leading edge.

• By comparison of solutions converged to a constant stream function Ψ, having
similar deviations in normal velocity, with solutions converged to constant Ψ
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ánd vn ≤ 0.0002U0 it has been shown that calculated flow properties differ less
than 3�, except for γ deviating more for s/Rdisc < 0.13.

• By this uncertainty in γ or vn close to the disc edge, accurate quantitative
conclusions with respect to the vortex sheet strength close to the disc edge are
not possible. Qualitative conclusions are possible as the accuracy is limited to
a few %. It has an effect of ≤ 3� on other flow parameters.

• The results are, with deviations of 2�, insensitive to variations inN and δ. The
smoothness of the wake boundary vorticity distribution increases with higher
N .

• The overall accuracy is assessed at 3�, except for flow details within a distance
of 0.13Rdisc from the disc edge, and for CT < −0.96.



blankleftintentionallypageThis



Bibliography

Akay, B.; Ferreira, C.S., and van Bussel, G.J.W. 2012, Experimental and Numerical Quantifica-
tion of Radial Flow in the Root Region of a HAWT. AIAA 50th Aerospace Science Meeting,
AIAA 2012-(January):1–10. doi: pdf/10.2514/6.2012-896.

Anderson, H.B.; Mi1borrow, D.J., and Ross, J.N. 1982, Performance and wake measurements
on a 3 m diameter horizontal axis wind turbine rotor. In Proc. 4th Int1. Symposium on Wind
Energy Systems. Stockholm, BHRA, 1982.

Anderson Jr, J.D. 2011, Fundamentals of Aerodynamics. McGraw-Hill, Singapore. ISBN
0073398101. doi: 10.1036/0072373350.

Batchelor, G.K. 1970, An introduction to fluid dynamics. Cambridge University Press, Cam-
bridge. doi: 10.1017/CBO9780511800955.

Bendemann, F. 1910, Luftschraubenuntersuchenden. Zeitschrift für Flugtechnik und Motor-
luftschiffahrt, 7:177–198.

Betz, A. 1919, Schraubenpropeller mit geringstem Energieverlust. Reprint of 4 famous papers
by Universitatsverlag Gottingen.

Betz, A. 1920, Das Maximum der theoretisch möglichen Ausnützung des Windes durch Wind-
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