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Introduction
Next-generation sequencing (NGS) platforms are able to 
generate large amounts of DNA sequencing data at low cost, 
which provides great opportunities to deeply understand 
human genetics and identify genetic diseases.1 However, han-
dling the large amount of DNA sequencing data produced by 
NGS platforms consumes much computation time. This is 
caused by the computationally intensive genomics analysis 
tools developed to help researchers study and investigate such 
DNA data. One such tool is GATK HaplotypeCaller (HC),2,3 
which is a widely used variant caller tool in practice.

Variant callers are used to identify DNA variants by com-
paring a patient DNA sequencing data with a reference 
genome. Compared with many other variant callers, GATK 
HC is highly accurate in detecting variants. However, it comes 
at the expense of long execution time. Therefore, optimizing 
GATK HC to make it more efficient is important.

In GATK HC, the pair-HMMs forward algorithm (or 
PFA) accounts for a large percentage of the total execution 
time. It is applied to study the overall alignment probability of 
2 sequences. Pair-HMMs forward algorithm is a computation-
ally intensive algorithm in GATK HC, which is executed 
repeatedly millions of times for a typical data set.

To address this computational challenge, graphics process-
ing units (GPUs) and field programmable gate arrays (FPGAs) 
are commonly used in many bioinformatics tools to accelerate 
the computationally intensive algorithms and improve their 
performance.4,5 Thus, this article accelerates PFA on GPUs to 
improve the performance of GATK HC.

The contributions of this article can be summarized as fol-
lows: (1) evaluate 2 approaches to implement PFA on GPUs, 

(2) present several GPU-based implementations of PFA based 
on these 2 approaches and compare their performance with 
different data sets, and (3) choose one implementation to inte-
grate into GATK HC.

Background
GATK HaplotypeCaller

The GATK HC program consists of 4 main steps.6 (1) Active 
regions of the genome which have significant evidence of vari-
ation are determined. (2) For each active region, haplotypes are 
determined based on a de Bruijn–like graph and then haplo-
types are realigned against the reference sequence using the 
Smith-Waterman algorithm. (3) For each active region, PFA is 
applied to perform a pairwise alignment of each read against 
each haplotype. (4) Bayes’ rule is applied to find the most likely 
genotypes.

Because the number of reads and the number of haplotypes 
for each active region are not the same, the number of read-
haplotype pairs processed by PFA in the third step is different 
for each active region.

Pair-HMMs forward algorithm

Pair-HMMs forward algorithm in GATK HC is performed as 
shown in equations (1) to (3).7 m  and n  are the length of the 
read R  and the haplotype H , respectively. Mi, j  is the overall 
alignment probability of 2 subsequences R Ri1  and H H j1  
when Ri  is aligned to H j . Ii j,  is the overall alignment prob-
ability of R Ri1  and H H j1  when Ri  is aligned to a gap. 
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Di j,  is the overall alignment probability of R Ri1  and 
H H j1  when H j  is aligned to a gap.
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αi, βi, δi , ε i, ζ i, and ηi  are transmission probabilities that 
depend on the read position i. In GATK HC, βi  and ε i  are set 
to be constant. λi j,  is the emission probability. Equation (4) 
shows how to calculate λi j, , where Qi  is the base quality score of 
the read at position i, Ri  and H j  are the value of the read base 
at position i and the haplotype base at position j, respectively:
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The pseudocode of PFA is illustreated in Algorithm 1. The 
input data include 6 arrays and 2 integers. Among them, R[ ]  
and H[ ]  are used to store read bases and haplotype bases; Q[ ]  
is used to store the base quality of the read; α[ ], δ [ ], and ζ [ ]  
are used to store transmission probabilities; m  and n  are the 
length of read and haplotype, respectively. The output is the 
overall alignment probability.

Algorithm 1 employs a 2-layer loop to calculate the ele-
ments of 3 matrices. Hence, the computational complexity of 
PFA is O mn( ). As shown in Algorithm 1, Mi j, , Ii j, , and Di j,  
are only decided by the left, top-left, and top neighbor ele-
ments of the 3 matrices. This implies that the elements on the 
same antidiagonal do not have data dependency, which results 
in the inherent parallelism of PFA. Thus, elements on an anti-
diagonal are able to be calculated in parallel.

GPU architecture

Modern GPUs are widely applied to accelerate computation-
ally intensive algorithms. For NVIDIA GPUs, there are many 
cores which are able to execute in parallel, and all of the cores 
are organized into several groups, which are called streaming 
multiprocessors.

NVIDIA proposes CUDA to help users to efficiently per-
form general computing. When a GPU kernel is launched by 

the host processor, there are many threads produced on the 
GPU. These threads on GPUs are managed by CUDA using a 
2-level thread hierarchy: block and grid. Threads produced by 
a GPU kernel are grouped into many blocks and these blocks 
are grouped in a grid. Threads produced by different GPU ker-
nels are in different grids. A GPU card can execute one or more 
grids and a streaming multiprocessors can execute one or more 
blocks.

Moreover, threads with consecutive thread indexes in the 
same block are bundled into groups, which are called warps. 
For many NVIDIA GPUs, the size of warp is 32. In addition, 
due to the Single Instruction Multiple Thread (SIMT) execu-
tion model, threads in a warp execute each instruction in lock 
step.

CUDA also introduces a memory hierarchy, which includes 
global memory, texture memory/cache, constant memory/
cache, local memory, shared memory, and registers. Due to the 
characteristics of input data of PFA and implementation 
designed in this article, only the global memory, constant 
memory/cache, shared memory, and registers are used.

Figure 1 shows a simplified representation of the CUDA 
memory hierarchy. Constant memory is to store data which 
would not change during execution to reduce memory band-
width. Global memory is accessed by all the threads on a GPU. 
As it resides on the device DRAM, the latency of the global 
memory access is high. Coalescing global memory accesses is 
useful to decrease the latency of total global memory accesses. 
For the GPU used in this article, the width of one global mem-
ory access is 128 bytes. If each thread in the same warp loads 
data (4 bytes, for example) stored at unordered different 
addresses from global memory, there would be 32 sequential 
global memory accesses in the worst-case situation. However, if 
all the accesses are coalesced, which means the data are stored at 
neighboring addresses, there will be only one global memory 
access.

However, registers and shared memory are owned by each 
streaming multiprocessor. Each block running on a streaming 
multiprocessor has a private space of the shared memory, which 
is only accessible to the threads in that block, whereas each 
thread running on the streaming multiprocessor has private 
registers, which are not accessible to other threads. Because 
shared memory and registers are scarce resources for each 
streaming multiprocessor, they limit the number of threads and 
blocks running on a streaming multiprocessor.

Related work

Most research published regarding the optimization of GATK 
HC focused on increasing the performance of PFA. Intel and 
IBM researchers adopt vector instructions on their respective 
processors8,9 to decrease the execution time by exploiting the 
inherent parallelism of PFA. There are also a couple of reports 
and publications on FPGA-based and GPU-based hardware 
acceleration of PFA.
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Research on acceleration of PFA on FPGAs can be found in 
previous works.10–14 Ren et al10 used a systolic array to imple-
ment PFA on FPGAs, which exploits the inherent parallelism 
of PFA. Ito and Ohara11 proposed pipelined processing ele-
ments within a systolic array. Peltenburg et  al12 reduced the 
overhead in the systolic array to improve the performance of 
the FPGA-based implementation of PFA. Altera13 mapped 
the algorithm to a 2-dimensional systolic array, whereas Huang 
et al14 mapped the algorithm to a ring-based systolic array.

Carneiro15 and Ren et  al16 exploited GPU to accelerate 
PFA. Carneiro15 implemented PFA on several NVIDIA GPUs 
and reported the runtime of their implementations, without 
describing the implementation details. Ren et  al16 proposed 
various GPU-based implementations of PFA by investigating 
2 different acceleration approaches: intertask and intratask par-
allelization. In intertask parallelization, PFA is mapped to a 
single thread, such that each thread implements PFA indepen-
dently. In intratask parallelization, PFA is mapped on multiple 
threads in a single block, instead of a single thread. It exploits 
the inherent parallelism of PFA, reducing the computational 
complexity of the algorithm to O m n( )+ . However, it decreases 
the number of instances of PFA running in parallel on GPUs.

In this article, we analyze these 2 acceleration approaches in 
detail and compare the performance of several implementa-
tions of each approach using various data sets. Compared with 
the GPU-based implementation on NVIDIA Tesla K40 
reported by Huang et al,14 our implementations are up to 5.47× 
faster. Moreover, one GPU-based implementation of PFA is 
selected to integrate into GATK HC.

Methods
First, we present the general design of the GPU-based GATK 
HC implementation. We then focus on the 2 GPU accelera-
tion approaches and describe their implementations in detail.

General design

Figure 2 shows a block diagram of the GPU-based GATK 
HC. On the host PC, data sets of read-haplotype pairs are pro-
duced during the execution of GATK HC. The size of the data 
sets is variable, ranging from a couple to 100 000s of pairs 

depending on the input DNA data. When a data set is pro-
duced, the host preprocesses the data set, copies the data set to 
GPU, launches the GPU kernel to execute PFA, and then cop-
ies the results back.

On the GPU, threads load the data set from the global 
memory, execute PFA independently or cooperatively, and 
write the results to the global memory.

In addition, as CUDA is not able to communicate with 
JAVA directly, JCUDA is used to connect the JAVA and CUDA 
code.

Intertask implementations

In the intertask approach, each thread implements PFA inde-
pendently. The execution trace of each thread is similar to that 
described in Algorithm 1. However, extra operations are added 
to take advantage of the CUDA memory hierarchy.

We first present the naive implementation of the intertask 
approach, the pseudocode of which is illustrated in Algorithm 2. 
As shown in Algorithm 2, each thread exploits a 2-level loop to 
calculate the elements of the matrices.

Due to the limitations of the shared memory and registers 
size on the GPU, each thread cannot load the input data into 
the shared memory and registers in advance. All of the input 
data are loaded into the shared memory and registers when 
they are being processed. To decrease the number of global 
memory accesses required by the input data, the outer loop of 
the 2-level loop iterates through the read bases and the inner 
loop iterates through the haplotype bases. In this way, the base 
quality score ( )Qi  and the transmission probabilities (αi, δi , 
and ζ i) of the read are loaded only once. Otherwise, these data 
are loaded many times.

Because each element is decided by the left, top-left, and top 
neighbor elements of the matrices, the intermediate results of 
PFA do not need to be stored for the entire duration of the execu-
tion time. As such, each thread uses 3 registers (MN , IN,  and 
DN ) to store the left neighbor elements, a register (MID)  to 
store the result of a series of calculations of the top-left neighbor 
elements, and 3 vectors (MM n0... , II n0... , and DD n0... ) in the global 

Figure 1.  Simplified CUDA memory hierarchy. Figure 2.  Block diagram of the GPU-based GATK HC implementation. 

GATK HC indicates GATK HaplotypeCaller; GPU, graphics processing 

unit.
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memory to store the top neighbor elements. Using MID  avoids 
loading the top neighbor elements from the global memory twice.

As shown in Algorithm 2, each iteration of the inner loop 
loads and stores 3 values from/into the 3 vectors, which requires 
6× ×m n  global memory accesses. Because the latency of global 
memory access is very high, it is necessary to decrease the global 
memory accesses required by the intermediate results. Hence, 
the tiling technique17 is employed. The size of a tile is the num-
ber of the successive elements in one column covered by the tile.

The differences between the naive implementation and the 
tile-based implementation are as follows (the tile size is k): (1) 
the iteration times of the outer loop of the tile-based imple-
mentation is m/k and (2) each iteration of the inner loop of the 
tile-based implementation calculates a tile, which stands for k 
successive elements in a column, instead of one element. 
Figures 3 and 4 show the execution trace of the naive imple-
mentation and the tile-based implementation (the tile size is 
2), which explain these 2 differences. In Figure 4, the iteration 
time of the outer loop is 6 2 3/ =  and each iteration of the 
inner loop calculates 2 elements.

In the inner loop of the tile-based implementation, 3 values 
from the 3 vectors are loaded to calculate the first element of a 

Algorithm 1. Pseudocode of PFA in the GATK 
HaplotypeCaller.

1: function PFA H[ ], R[ ], Q[ ], α [ ], δ [ ], ζ [ ], m, n

2:   M ← 0  I ← 0  D ← 0

3:   
D nn0,0 1/... ←

4:   
β0 0.9...m ←

5:   
0 0.1...m ←

6:   for i m←1,   do

7:     for j n←1,  do

8:       if R [i]==H[j] then

9:         λi j iQ, / 3←

10:     else

11:         λi j iQ, 1← −

12:     end if

13:         M M I Di j i j i i j i i j i i j, , 1, 1 1, 1 1, 1( )← + +− − − − − −λ α β β

14:         
I M Ii j i i j i i j, 1, 1,← +− −δ 

15:         
D M Di j i i j i i j, , 1 , 1← +− −ζ 

16:     end for

17:   end for

18:   return j

n

m j m jM I
=1

, ,( )∑ +

19: end function

Algorithm 2. Pseudocode of the naive implementation 
of the intertask approach.

procedure PFA( H[ ], R[ ], Q[ ], α [ ], δ [ ], ζ [ ], m, n) 

  for i m←1,  do

    r Ri←

    q Qi←

    α α← i

    δ δ← i

    ζ ζ← i

    for j n←1,  do

      h Hi←

      if i > 1 then

        MU MMj←

        IU IIj←

        DU DDj←

      else

        MU IU← ← 0

      
DU

n
←

1

        MID DU← ⋅0.9
      end if

      if H R=  then

        λ ← q / 3

      else

        λ ← −1 q

      end if

      DN MN DN← ⋅ + ⋅ζ 0.1

      MN MID← ⋅λ

      IN MU IU← ⋅ + ⋅δ 0.1

      MID MU IU DU← ⋅ + ⋅ + ⋅α 0.9 0.9

    
MM MNj ←

    
II INj ←

    
DD DNj ←

      if i m=  then

      
result MM IIj j= +

      end if
    end for
    end for

    return result

  end procedure
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tile and 3 values of the last element of a tile are stored in the 3 
vectors. Thus, the number of global memory accesses required by 
the intermediate results is ( ) /6× ×m n k  using tiling technique.

However, the cost of reducing the global memory accesses 
required by the intermediate results is that each thread uses 
more shared memory and registers to store left neighbor ele-
ments of each tile.

Data set preparation.  To better use the GPU computation 
capabilities, the data sets need to be converted before transfer-
ring them to the GPU.

Although for the intertask approach all threads implement 
PFA independently, if the iteration numbers of the outer loop 
and the inner loop of each PFA are not the same, threads in a 
warp need to wait for each other because of the SIMT execu-
tion model. Thus, the data sets are sorted first according to the 
length of reads and then according to the length of haplotypes.

After sorting, 32 read-haplotype pairs are processed by 32 
threads in the same warp. To coalesce global memory accesses 
of the input data, each group of 32 read-haplotype pairs is 
stored in an interlaced fashion.

Figure 5 shows how the read bases and haplotype bases are 
stored. Take haplotypes for example. We write the first 4 char-
acters of the first haplotype, after which write the first 4 char-
acters of the second haplotype, and so on. This way, the first 4 
characters of 32 haplotypes make up 128 bytes, which could be 
loaded by one coalesced global memory access. For haplotypes 
shorter than the longest haplotype in the group, they are pad-
ded with dummy characters.

The transmission probabilities and base quality score of 32 
reads in each group are also written in an interlaced fashion. As 
they are single-precision floating point numbers, for each 128 bytes, 
we only write 1 number instead of 4 numbers. For reads shorter 
than the longest read in the group, the transmission probabilities 
and base quality score are padded with dummy numbers.

Intermediate results.  For each thread, each iteration includes 6 
global memory accesses required by the intermediate results. If 

these global memory accesses of 32 threads in a warp are non-
coalesced, there will be 6 32×  global memory accesses in the 
worst-case situation.

As mentioned before, the intermediate results of each thread 
are stored in 3 vectors. To reduce global memory accesses, we use 
3 big vectors to store the intermediate results of 32 threads in a 
warp, which are stored in an interlaced fashion. This way, each 
thread loads/writes the intermediate results from neighboring 
addresses. Because the intermediate results are single floating 
point numbers, 1 global memory access is able to satisfy the load/
write requirements of 32 threads. Thus, there are 6  global mem-
ory accesses for 32 threads in a warp instead of 6 32×  of each 
iteration.

Intratask implementations

In the intratask approach, threads in a block implement PFA 
cooperatively. The execute trace of each thread is different from 
that described in Algorithm 1.

We first present the naive implementation of the intratask 
approach. Depending on the number of threads in a block and 
the length of the read, there are 3 cases to analyze. We start 
with the simplest case, in which the number of threads in a 
block is equal to the length of the read. The execution trace of 
this case is shown in Figure 6A, in which the number of 
threads in a block and the length of the read is 4. As shown in 
Figure 6A, each thread calculates the elements in one column. 
For example, thread 0 (T0) calculates the elements in the first 
column. At each step, threads calculate the elements on an 
antidiagonal. For example, at step 3, T0 calculates M3 1, , D3 1, , 
and I3 1, ; T1 calculates M 2 2, , D2 2, , and I 2 2, ; and T2 calculates 
M1 3, , D1 3, , and I1 3, . Because there are ( )m n+ −1  antidiagonals 
in the matrices, the computational complexity of the naive 
implementation is O m n( )+ .

The second case is that the number of threads in a block is 
bigger than the length of the read. The execution trace of the 
second case is similar to Figure 6A. However, there are some 
threads that remain idle during the whole execution period as 

Figure 3.  Execution trace of the naive implementation of the intertask 

approach.

Figure 4.  Execution trace of the tile-based implementation of the 

intertask approach (the tile size is 2).
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the number of threads is bigger than the number of columns to 
be calculated.

The third case is that the number of threads in a block is 
smaller than the length of the read. The calculation is divided 
into several passes, which is shown in Figure 6B. The number 
of threads in a block is 2 and the length of the read is 4. Hence, 
there are in total 2 passes. In each pass, the execution trace is 
similar to Figure 6A.

For the intertask approach, because each block calculates 
one PFA, the input data of one PFA are able to be stored in the 
shared memory and registers in advance. Each read base and its 
corresponding base quality score and transmission probabilities 
are stored in the registers of each thread, whereas the haplotype 
bases are stored in the shared memory. The intermediate results 
produced by each thread are stored in 3 vectors in the shared 
memory. In addition, for the third case, 3 vectors in the global 
memory are used to store the intermediate results produced by 
the last thread of each pass, which will be used in the next pass.

For the intratask approach, the synchronization function is 
called to ensure that all the threads in the same block are syn-
chronized and finish reading/writing the intermediate results 

in the shared memory. In each step, the synchronization func-
tion is called twice. Thus, the synchronization call will be called 
O m n( ( ))2 +  times in total. However, the cost of synchroniza-
tion call is high because it makes threads in a block stall to wait 
for each other. There are 2 solutions to decrease the number of 
the synchronization function calls.

One solution is to exploit the tiling technique. In the tile-
based implementation (the tile size is k), each thread calculates 
k elements in a column before a synchronization function is 
called. Figure 7 shows the execution trace of the tile-based 
implementation (the tile size is 2). As shown in Figure 7, each 
thread calculates 2 elements in each column every 2 steps and 
thus the synchronization function is called every 2 steps. In this 
way, there are only O m n k( ( / ))2 +    synchronization function 
calls in the tile-based implementation (the tile size is k). 
However, more shared memory and registers are used to store 
the intermediate results. Moreover, the number of execution 
steps of the tile-based implementation is more than that of the 
naive implementation. As shown in Figure 7, the execution 
steps of the tile-based implementation are 12, whereas the exe-
cution steps of the naive implementation would be only 9.

The other solution is the warp-based implementation, in 
which the number of threads in a block is equal to the number 
of threads in a warp (32). In this way, threads in a warp imple-
ment PFA cooperatively. Because the threads in the same warp 
work in the SIMT execution model, there is no need to call 
synchronization function in the warp-based implementation. 
Moreover, because threads within a warp can use shuffle 
instructions to exchange data, the intermediate results pro-
duced by each thread are not stored in the shared memory. The 
only intermediate results stored in the shared memory are the 
intermediate results between passes for the third case.

However, the warp-based implementation cannot effec-
tively use the resources on GPUs because the number of threads 
in a block is small. One method to solve this problem is to 
increase the number of warps in a block and make each warp 
implement PFA independently. For example, if the number of 
threads in a block is 256, there are 8 warps in the block and 
each warp implements PFA independently. In the improved 
warp-based implementation, the intermediate results between 
passes for the third case produced by each warp are stored in 
the global memory.

Data set preparation.  In the intratask approach, the read bases, 
base score quality, and the transmission probabilities, which are 
loaded into the registers of each thread, are written into 6 vec-
tors separately, whereas the haplotype bases, which are loaded 
into the shared memory, are written into char4 to reduce the 
global memory accesses.

Intermediate results.  The intermediate results inside one pass 
are stored in the shared memory using 3 vectors, except for the 
(improved) warp-based implementations (which use shuffle 

Figure 6.  Execution trace of the naive implementation of the intratask 

approach (A) without passes (B) with passes.

Figure 5.  Writing bases of reads and haplotypes in an interlaced fashion.
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instructions to exchange data), whereas the intermediate results 
between passes are stored in the global memory using 3 vectors, 
except for the warp-based implementation (which stores inter-
mediate data in the shared memory).

Results and Discussion
Experimental setup

IBM Power System S823L (82478-42L) is used to perform 
all the experiments. This system has 2 IBM Power8 proces-
sors, each of which has 10 cores running at 3.6 GHz, 
256 GB of DDR3 memory, and an NVIDIA Tesla K40 
card. The NVIDIA Tesla K40 card has 2880 cores that run 
at up to 745 MHz and has a CUDA compute capability of 
3.5.

We first compare the performance of these GPU-based 
PFA implementations with the synthetic and real data  
sets and then integrate the GPU-based PFA implementa-
tions into GATK HC 3.7 and compare the overall 
performance.

To evaluate these GPU-based PFA implementations, 
throughput is a key performance metric, which is measured by 
giga cell updates per second (GCUPS). For a data set of read-
haplotype pairs, equation (5) defines how to calculate the value 
of GCUPS:

	
m n

t
i ii

s
×

×
=∑ 1

910
	 (5)

where t  is the runtime in seconds, s  is the number of the 
read-haplotype pairs in the data set, mi  and ni  are the length 
of ith  read and ith  haplotype, respectively. The runtime t  is 
the computation time of PFA on GPUs.

Implementations of intertask approach

For the tile-based implementations of the intertask approach, 
the length of reads would slightly affect the performance if it is 
not a multiple of the tile size. To be fair and find the maximum 
achievable speedup of every implementations, 6 types of syn-
thetic data sets are used and the length of read and haplotype 
in each data set are different, as shown in Table 1. In addition, 
the number of the read-haplotype pairs of each data set is 
5 105× .

Figure 8 shows the throughput of 5 implementations of the 
intertask approach: naive, tile = 2, tile = 4, tile = 6, and tile = 8. As 
shown in Figure 8, the throughput of the naive implementation 
is the lowest over all the implementations. In addition, the 
throughput of the implementation with tile = 6 is the highest 
over all the implementations.

We use NVIDIA profiling tools (NVVP) to find the perfor-
mance bottleneck of these implementations. We run the imple-
mentations with data set 6. The profiling results are shown in 
Table 2. Table 2 shows that the global memory bandwidth 
reduces when the tile size increases. However, the registers per 
thread and shared memory per block increase when the tile size 
increases, which reduces the theoretical occupancy. In addition, 
the naive, tile = 2, and tile = 4 implementations are bounded by 
the global memory bandwidth; whereas the other 2 are bounded 
by the instruction and memory latency, which is caused by the 
low occupancy.

Table 2 shows that the implementation with tile = 6 strikes a 
trade-off between the decreasing global memory bandwidth 

Figure 7.  Execution trace of the tile-based implementation of the 

intratask approach (the tile size is 2).

Table 1.  Synthetic data sets of the intertask implementations.

1 2 3 4 5 6

Read length 24 48 72 96 120 144

Haplotype length 24 48 72 96 120 144

Figure 8.  Performance comparison of the intertask implementation on 

the synthetic data sets.
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requirements as tile size increases, on the one hand, and 
between the increasing requirements of the instruction and 
memory latency, on the other hand. This explains the reason 
why the throughput of the implementation with tile = 6 is the 
highest on the synthetic data sets.

Implementations of intratask approach

This section compares the performance of the naive, tile = 2, 
warp-based, and improved warp-based implementations of the 
intratask approach. Here, the block size of the naive and tile = 2 
implementations is 128. Table 3 shows 26 types of synthetic 
data sets and the length of read and haplotype in each data set 
are different. Data sets 1 to 21 make no thread idle during each 
pass for the (improved) warp-based implementations, whereas 
data sets 22 to 26 make no thread idle during each pass for all 
the implementations.

Figure 9 shows the throughput of 3 implementations of the 
intratask approach when the number of the read-haplotype 
pairs of each data set is 5 105× . For the warp-based and 
improved warp-based implementations, if the length of read is 
the same, the throughput increases with the increase in the 
haplotype length. In contrast, if the haplotype length is the 
same, the throughput decreases with the increase in the read 
length, which is caused by the increased number of costly 
global memory accesses. In addition, the improved warp-based 
implementation achieves higher throughput than the warp-
based implementation.

As shown in Figure 9, the throughput of the naive and 
tile = 2 implementations increases with the increase in the read/
haplotype length, which is not the case for the (improved) 
warp-based implementations. Compared with tile = 2 imple-
mentation, the naive implementation achieves higher 
throughput.

Table 4 shows the NVVP profiling results of the 4 imple-
mentations running with data set 26. As shown in Table 4, the 
shared memory bandwidth of the naive implementation is 

higher than that of the tile = 2 implementation, which is 
because that the tiling technique reduces shared memory 
accesses. However, because the tile = 2 implementation has 
more shared memory and registers to store the intermediate 
results, its theoretical occupancy is smaller than that of the 
naive implementation. As shown in Figure 9, the throughput of 
the tile = 2 implementation is smaller than that of the naive 
implementation, which indicates that the decrease in the occu-
pancy outweighs the reduction in the number of synchroniza-
tion calls. If the tile size continues to increase, the theoretical/
achieved occupancy will continue to reduce, which results in 
the decreasing throughput.

As shown in Table 4, the theoretical/achieved occupancy of 
the improved warp-based implementation is much bigger than 
that of the warp-based implementation, which is caused by the 
low GPU resources utilization of the warp-based implementa-
tion. Hence, the throughput of the improved warp-based 
implementation is higher than that of the warp-based imple-
mentation, as shown in Figure 9.

In Figure 8, the throughput of the intertask implementa-
tions is comparable when the length of the haplotype or read 
increases, whereas in Figure 9, the throughput of the intratask 
implementations increases when the length of the haplotype or 
read increases.

Figure 10 shows the throughput of the intratask implemen-
tations when the number of the read-haplotype pairs of each 
data set is reduced to only 200  (instead of 5 105×  pairs used 
for Figure 9). In this figure, the naive implementation achieves 
the highest throughput for most of the data sets. This is because 
when the size of data set is small, the improved warp-based 
implementation does not have enough computation to fully use 
the GPU resources.

Comparison with other implementations

We compared our GPU-based implementation with other 
implementations proposed in the previous works.13-15 The data 

Table 2.  Profiling results of the intertask implementations on synthetic data set 8.

Performance 
limitation

Global memory 
bandwidth, GB/s

Registers 
per thread

Shared memory 
per block, 
bytes

Theoretical 
occupancy, %

Achieved 
occupancy, %

Naive Memory 
bandwidth

207 48 0 62.5 62.1

Tile = 2 Memory 
bandwidth

201 72 4096 43.8 43.3

Tile = 4 Memory 
bandwidth

193 73 8192 37.5 37.1

Tile = 6 Instruction and 
memory latency

154 104 12 288 25 24.9

Tile = 8 Instruction and 
memory latency

101 142 16 384 18.8 18.2
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set used is the “10s” data set.18 Despite its small size, this data 
set has published runtime baseline comparisons for different 
implementations and platforms.

Table 5 shows the performance of various implementa-
tions, including CPU, GPUs, multicores, and FPGAs. The 
runtime includes the data set preparation time, the compu-
tation time on GPU, and the data transfer time between 

Table 3.  Synthetic data sets of the intratask implementations (R and 
H stand for length of read and haplotype, respectively).

1 2 3 4 5 6 7 8 9

R 32 32 32   32   32   32   32   32 64

H 32 64 96 128 160 192 224 256 64

10 11 12 13 14 15 16 17 18

R 64   64   64   64   64   64 96   96   96

H 96 128 160 192 224 256 96 128 160

19 20 21 22 23 24 25 26

R   96   96   96 128 128 128 128 128

H 192 224 256 128 160 192 224 256

Table 4.  Profiling results of the intratask implementations with synthetic data set 26 (warp* stands for the improved warp based).

Performance 
limitation

Shared memory 
bandwidth, GB/s

Registers 
per thread

Shared 
memory per 
block, bytes

Theoretical 
occupancy, %

Achieved 
occupancy, %

Naive Memory 
bandwidth

2213 32 2124 100 99.8

Tile = 2 Memory 
bandwidth

2005 39 3660 75 74.9

Warp Instruction and 
memory latency

362 32 6540 10.9 10.9

Warp* Compute 262 44 2000 62.5 62.5

Figure 9.  Performance comparison of the intratask implementations on the synthetic data sets (size: 5 105× ). GCUPS indicates giga cell updates per 

second.

host and GPU. As shown in Table 5, all the GPU-based 
implementations proposed in this article are faster than the 
Intel Xeon single core AVX implementation. Moreover, 
except for the naive intertask implementation, all the imple-
mentations proposed in this article are faster than the 
NVIDIA K40 GPU implementation proposed in the work 
by Huang et al.14

Our best case performance is the improved warp-based 
implementation. It is 5.47× faster than the K40 GPU imple-
mentation, 1.17× faster than the Intel Xeon 24 cores AVX 
implementation, and 843× faster than the original JAVA imple-
mentation. The table also shows that the FPGA-based imple-
mentations have the potential to achieve higher performance, 
albeit at the expense of long development time and the corre-
sponding high design complexity and cost.

Real data set

In this section, 5 intertask implementations (naive, tile = 2, 
tile = 4, tile = 6, and tile = 8) and 4 intratask implementations 
(naive, tile = 2, warp-based, and improved warp-based) are 
compared using a real data set. To produce the real data set, 
we modified the source code of GATK HC 3.7 to output the 
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read-haplotype pairs of each active region in the third step of 
the program “Determine likelihoods of the haplotypes”. For 
the modified GATK HC 3.7, chromosome 10 of the whole 
human data set G15512.HCC1954.1 is used to produce the 
real data set, which is divided into small chunks with each 
chunk containing the read-haplotype pairs of one active 
region. The size of each chunk ranges from 4 to 38 912.

In addition, 2 software-based implementations of PFA are 
provided for performance comparison: Power8 single core 
implementation and Power8 20 cores implementation. Both of 
them are written in the C++ programming language, optimized 
with the vector instructions and compiled with gcc O3 

optimization. Moreover, the Power8 20 cores implementation 
exploits OpenMP to run on 20 cores.

In Table 6, for the GPU-based implementation, T1 includes 
the computation time on GPU and the data transfer time 
between CPU and GPU, T2 is the data set preparation time, 
and T3 is the total time, which is the sum of T1 and T2. For the 
software implementations, T3 is the total time and there is no 
data set preparation. In this section, T3 is the runtime t  in 
equation (5) to calculate GCUPS.

Table 6 shows the performance of 11 implementations on 
the real data set. The naive intratask implementation is the 
fastest over all the GPU-based implementations. In addition, 
the 4 intratask implementations are faster than the 5 intertask 
implementations. It is mainly because when the number of the 
read-haplotype pairs in each chunk is small, the intertask 
implementations cannot use the GPU resources efficiently.

As shown in Table 6, the naive intratask implementation is 
faster than the improved warp-based implementation. This is 
because 82% of chunks in the real data include less than 200 
read-haplotype pairs. Moreover, Figure 10 shows that when the 
size of the data set is reduced to 200 pairs, the naive implemen-
tation of the intratask approach is faster than the improved 
warp-based implementation for most of the synthetic data sets.

For the total time (T3), all the GPU-based implementa-
tions are faster than the Power8 single core implementation. 
Specifically, the naive intratask implementation is 11.73× faster 
than the Power8 single core implementation. However, the 
Power8 20 cores implementation is faster than all the GPU-
based implementations. Regardless of the data set preparation 
time, the naive intratask implementation (46 s) is much faster 
than the Power8 20 cores implementation (95 s).

Integration into GATK HC

The GPU-based implementation of PFA with the highest per-
formance for the real data set (which is the naive implementation 
of the intratask approach) is integrated into GATK 3.7. There are 
other 2 GATK HC implementations to be compared with: (1) 
GATK HC with the PFA implemented with JAVA (referred to 

Table 5.  Performance comparison of various implementations on a 
“10s” data set.

Implementations Runtime, ms Speedup

Java on CPU14 10 800 1×

C++ Baseline14 1267 9×

Inter Xeon AVX 1 Core14 138 78×

Intel Xeon 24 Cores14 15 720×

Alter OpenCL (Arria 10)13 2.8 3857×

PE Ring (Arria 10)14 2.6 4154×

NVIDIA Tesla K40 GPU14 70 154×

Naive intratask 14.2 761×

Tile = 2 intratask 15.5 696×

Warp based 20.6 524×

Improved warp based 12.8 843×

Naive intertask 76.6 141×

Tile = 2 intertask 45.1 239×

Tile = 4 intertask 29.6 365×

Tile = 6 intertask 26.4 409×

Tile = 8 intertask 24.9 433.7×

Figure 10.  Performance comparison of the intratask implementations on the synthetic data sets (size: 200).
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as baseline), which is download from the GATK Web site and (2) 
GATK HC with the PFA running on the CPU optimized using 
vector instructions (referred to as Vector), the library of which is 
implemented by IBM.9 The data set is chromosome 10 of the 
whole human genome data set G15512.HCC1954.1.

Although GATK HC is able to run in single-thread and 
multithread mode, it usually runs in single-thread mode while 
executing several instances of GATK HC at the same time due 
to the inefficiency of the multithread mode of the program. 
Thus, we will only compare the performance of GATK HC 
running in single-thread mode.

As shown in Table 7, the baseline is slower than the other 2 
implementations. Compared with the baseline, the vectorized 
GATK HC achieves 1.42× speedup and the GPU-based 
GATK HC achieves 1.71× speedup. In addition, the GPU-
based GATK HC is 1.2× faster than the vectorized GATK HC.

Conclusions
In GATK HC, PFA accounts for a large percentage of the total 
execution time. This article proposes to accelerate PFA on 
GPUs to improve the performance of GATK HC. Due to the 
characteristics of PFA, there are 2 approaches to implement it 
on GPUs: intertask and intratask. This article first presented 
several GPU-based implementations of PFA for each approach. 

We executed all the implementations on an NVIDIA Tesla 
K40 card and compared their performance using different syn-
thetic and real data sets. Experimental results show that our 
solution achieves a speedup up to 5.47× over other GPU-based 
implementations. In addition, the naive implementation of the 
intratask approach is integrated into GATK HC, resulting in 
an overall speedup of 1.71× over the baseline implementation 
and 1.2× over the vectorized GATK HC on a single core.
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