

Delft University of Technology

Efficient Acceleration of the Pair-HMMs Forward Algorithm for GATK HaplotypeCaller on
Graphics Processing Units

Ren, Shanshan; Bertels, Koen; Al-Ars, Zaid

DOI
10.1177/1176934318760543
Publication date
2018
Document Version
Final published version
Published in
Evolutionary Bioinformatics

Citation (APA)
Ren, S., Bertels, K., & Al-Ars, Z. (2018). Efficient Acceleration of the Pair-HMMs Forward Algorithm for
GATK HaplotypeCaller on Graphics Processing Units. Evolutionary Bioinformatics, 14, 1-12.
https://doi.org/10.1177/1176934318760543

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/1176934318760543
https://doi.org/10.1177/1176934318760543

https://doi.org/10.1177/1176934318760543

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 14: 1–12
© The Author(s) 2018
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934318760543

Introduction
Next-generation sequencing (NGS) platforms are able to
generate large amounts of DNA sequencing data at low cost,
which provides great opportunities to deeply understand
human genetics and identify genetic diseases.1 However, han-
dling the large amount of DNA sequencing data produced by
NGS platforms consumes much computation time. This is
caused by the computationally intensive genomics analysis
tools developed to help researchers study and investigate such
DNA data. One such tool is GATK HaplotypeCaller (HC),2,3
which is a widely used variant caller tool in practice.

Variant callers are used to identify DNA variants by com-
paring a patient DNA sequencing data with a reference
genome. Compared with many other variant callers, GATK
HC is highly accurate in detecting variants. However, it comes
at the expense of long execution time. Therefore, optimizing
GATK HC to make it more efficient is important.

In GATK HC, the pair-HMMs forward algorithm (or
PFA) accounts for a large percentage of the total execution
time. It is applied to study the overall alignment probability of
2 sequences. Pair-HMMs forward algorithm is a computation-
ally intensive algorithm in GATK HC, which is executed
repeatedly millions of times for a typical data set.

To address this computational challenge, graphics process-
ing units (GPUs) and field programmable gate arrays (FPGAs)
are commonly used in many bioinformatics tools to accelerate
the computationally intensive algorithms and improve their
performance.4,5 Thus, this article accelerates PFA on GPUs to
improve the performance of GATK HC.

The contributions of this article can be summarized as fol-
lows: (1) evaluate 2 approaches to implement PFA on GPUs,

(2) present several GPU-based implementations of PFA based
on these 2 approaches and compare their performance with
different data sets, and (3) choose one implementation to inte-
grate into GATK HC.

Background
GATK HaplotypeCaller

The GATK HC program consists of 4 main steps.6 (1) Active
regions of the genome which have significant evidence of vari-
ation are determined. (2) For each active region, haplotypes are
determined based on a de Bruijn–like graph and then haplo-
types are realigned against the reference sequence using the
Smith-Waterman algorithm. (3) For each active region, PFA is
applied to perform a pairwise alignment of each read against
each haplotype. (4) Bayes’ rule is applied to find the most likely
genotypes.

Because the number of reads and the number of haplotypes
for each active region are not the same, the number of read-
haplotype pairs processed by PFA in the third step is different
for each active region.

Pair-HMMs forward algorithm

Pair-HMMs forward algorithm in GATK HC is performed as
shown in equations (1) to (3).7 m and n are the length of the
read R and the haplotype H , respectively. Mi, j is the overall
alignment probability of 2 subsequences R Ri1 and H H j1
when Ri is aligned to H j . Ii j, is the overall alignment prob-
ability of R Ri1 and H H j1 when Ri is aligned to a gap.

Efficient Acceleration of the Pair-HMMs Forward
Algorithm for GATK HaplotypeCaller on Graphics
Processing Units

Shanshan Ren, Koen Bertels and Zaid Al-Ars
Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands.

ABSTRACT: GATK HaplotypeCaller (HC) is a popular variant caller, which is widely used to identify variants in complex genomes. However, due
to its high variants detection accuracy, it suffers from long execution time. In GATK HC, the pair-HMMs forward algorithm accounts for a large
percentage of the total execution time. This article proposes to accelerate the pair-HMMs forward algorithm on graphics processing units (GPUs)
to improve the performance of GATK HC. This article presents several GPU-based implementations of the pair-HMMs forward algorithm. It also
analyzes the performance bottlenecks of the implementations on an NVIDIA Tesla K40 card with various data sets. Based on these results and
the characteristics of GATK HC, we are able to identify the GPU-based implementations with the highest performance for the various analyzed
data sets. Experimental results show that the GPU-based implementations of the pair-HMMs forward algorithm achieve a speedup of up to 5.47×
over existing GPU-based implementations.

Keywords: Pair-HMMs forward algorithm, GPU acceleration, memory access, GATK HaplotypeCaller

RECEIVED: May 19, 2017. ACCEPTED: November 17, 2017.

Type: Review: Special Collection: Computational Bioinformatics Tools for Evolutionary
Genomics

Funding: The author(s) received no financial support for the research, authorship, and/or
publication of this article.

Declaration of Conflicting Interests: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CORRESPONDING AUTHOR: Shanshan Ren, Computer Engineering Lab, Delft
University of Technology, 2628CD Delft, The Netherlands. Email: s.ren@tudelft.nl

760543 EVB0010.1177/1176934318760543Evolutionary BioinformaticsRen et al
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:s.ren@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1176934318760543&domain=pdf&date_stamp=2018-03-12

2	 Evolutionary Bioinformatics ﻿

Di j, is the overall alignment probability of R Ri1 and
H H j1 when H j is aligned to a gap.

Initialization:

	
M I D i m

M I j n
D n j n

i,0 i,0 i,0

0, j 0, j

= = = 0 (0)
= = 0 (0)

1 (0)0, j

≤ ≤
≤ ≤

= ≤ ≤




/






	 (1)

Recurrence:

	
M M I D

I M
i j i j i i j i i j i i j

i j i i j

, , , , ,

, ,

()= + +
= +

− − − − − −

−

λ α β β
δ ε

1 1 1 1 1 1

1 ii i j

i j i i j i i j

I

D M D
−

− −= +









1

1 1

,

, , ,ζ ε
	 (2)

Termination:

	 Result = +
=
∑(), ,M Im j m j
j

n

1
	 (3)

αi, βi, δi , ε i, ζ i, and ηi are transmission probabilities that
depend on the read position i. In GATK HC, βi and ε i are set
to be constant. λi j, is the emission probability. Equation (4)
shows how to calculate λi j, , where Qi is the base quality score of
the read at position i, Ri and H j are the value of the read base
at position i and the haplotype base at position j, respectively:

	 λi j
i i j

i i j

Q if R H

Q if R H,

/ ()

()
=

≠
− =







3

1
	 (4)

The pseudocode of PFA is illustreated in Algorithm 1. The
input data include 6 arrays and 2 integers. Among them, R[]
and H[] are used to store read bases and haplotype bases; Q[]
is used to store the base quality of the read; α[], δ [], and ζ []
are used to store transmission probabilities; m and n are the
length of read and haplotype, respectively. The output is the
overall alignment probability.

Algorithm 1 employs a 2-layer loop to calculate the ele-
ments of 3 matrices. Hence, the computational complexity of
PFA is O mn(). As shown in Algorithm 1, Mi j, , Ii j, , and Di j,
are only decided by the left, top-left, and top neighbor ele-
ments of the 3 matrices. This implies that the elements on the
same antidiagonal do not have data dependency, which results
in the inherent parallelism of PFA. Thus, elements on an anti-
diagonal are able to be calculated in parallel.

GPU architecture

Modern GPUs are widely applied to accelerate computation-
ally intensive algorithms. For NVIDIA GPUs, there are many
cores which are able to execute in parallel, and all of the cores
are organized into several groups, which are called streaming
multiprocessors.

NVIDIA proposes CUDA to help users to efficiently per-
form general computing. When a GPU kernel is launched by

the host processor, there are many threads produced on the
GPU. These threads on GPUs are managed by CUDA using a
2-level thread hierarchy: block and grid. Threads produced by
a GPU kernel are grouped into many blocks and these blocks
are grouped in a grid. Threads produced by different GPU ker-
nels are in different grids. A GPU card can execute one or more
grids and a streaming multiprocessors can execute one or more
blocks.

Moreover, threads with consecutive thread indexes in the
same block are bundled into groups, which are called warps.
For many NVIDIA GPUs, the size of warp is 32. In addition,
due to the Single Instruction Multiple Thread (SIMT) execu-
tion model, threads in a warp execute each instruction in lock
step.

CUDA also introduces a memory hierarchy, which includes
global memory, texture memory/cache, constant memory/
cache, local memory, shared memory, and registers. Due to the
characteristics of input data of PFA and implementation
designed in this article, only the global memory, constant
memory/cache, shared memory, and registers are used.

Figure 1 shows a simplified representation of the CUDA
memory hierarchy. Constant memory is to store data which
would not change during execution to reduce memory band-
width. Global memory is accessed by all the threads on a GPU.
As it resides on the device DRAM, the latency of the global
memory access is high. Coalescing global memory accesses is
useful to decrease the latency of total global memory accesses.
For the GPU used in this article, the width of one global mem-
ory access is 128 bytes. If each thread in the same warp loads
data (4 bytes, for example) stored at unordered different
addresses from global memory, there would be 32 sequential
global memory accesses in the worst-case situation. However, if
all the accesses are coalesced, which means the data are stored at
neighboring addresses, there will be only one global memory
access.

However, registers and shared memory are owned by each
streaming multiprocessor. Each block running on a streaming
multiprocessor has a private space of the shared memory, which
is only accessible to the threads in that block, whereas each
thread running on the streaming multiprocessor has private
registers, which are not accessible to other threads. Because
shared memory and registers are scarce resources for each
streaming multiprocessor, they limit the number of threads and
blocks running on a streaming multiprocessor.

Related work

Most research published regarding the optimization of GATK
HC focused on increasing the performance of PFA. Intel and
IBM researchers adopt vector instructions on their respective
processors8,9 to decrease the execution time by exploiting the
inherent parallelism of PFA. There are also a couple of reports
and publications on FPGA-based and GPU-based hardware
acceleration of PFA.

Ren et al	 3

Research on acceleration of PFA on FPGAs can be found in
previous works.10–14 Ren et al10 used a systolic array to imple-
ment PFA on FPGAs, which exploits the inherent parallelism
of PFA. Ito and Ohara11 proposed pipelined processing ele-
ments within a systolic array. Peltenburg et al12 reduced the
overhead in the systolic array to improve the performance of
the FPGA-based implementation of PFA. Altera13 mapped
the algorithm to a 2-dimensional systolic array, whereas Huang
et al14 mapped the algorithm to a ring-based systolic array.

Carneiro15 and Ren et al16 exploited GPU to accelerate
PFA. Carneiro15 implemented PFA on several NVIDIA GPUs
and reported the runtime of their implementations, without
describing the implementation details. Ren et al16 proposed
various GPU-based implementations of PFA by investigating
2 different acceleration approaches: intertask and intratask par-
allelization. In intertask parallelization, PFA is mapped to a
single thread, such that each thread implements PFA indepen-
dently. In intratask parallelization, PFA is mapped on multiple
threads in a single block, instead of a single thread. It exploits
the inherent parallelism of PFA, reducing the computational
complexity of the algorithm to O m n()+ . However, it decreases
the number of instances of PFA running in parallel on GPUs.

In this article, we analyze these 2 acceleration approaches in
detail and compare the performance of several implementa-
tions of each approach using various data sets. Compared with
the GPU-based implementation on NVIDIA Tesla K40
reported by Huang et al,14 our implementations are up to 5.47×
faster. Moreover, one GPU-based implementation of PFA is
selected to integrate into GATK HC.

Methods
First, we present the general design of the GPU-based GATK
HC implementation. We then focus on the 2 GPU accelera-
tion approaches and describe their implementations in detail.

General design

Figure 2 shows a block diagram of the GPU-based GATK
HC. On the host PC, data sets of read-haplotype pairs are pro-
duced during the execution of GATK HC. The size of the data
sets is variable, ranging from a couple to 100 000s of pairs

depending on the input DNA data. When a data set is pro-
duced, the host preprocesses the data set, copies the data set to
GPU, launches the GPU kernel to execute PFA, and then cop-
ies the results back.

On the GPU, threads load the data set from the global
memory, execute PFA independently or cooperatively, and
write the results to the global memory.

In addition, as CUDA is not able to communicate with
JAVA directly, JCUDA is used to connect the JAVA and CUDA
code.

Intertask implementations

In the intertask approach, each thread implements PFA inde-
pendently. The execution trace of each thread is similar to that
described in Algorithm 1. However, extra operations are added
to take advantage of the CUDA memory hierarchy.

We first present the naive implementation of the intertask
approach, the pseudocode of which is illustrated in Algorithm 2.
As shown in Algorithm 2, each thread exploits a 2-level loop to
calculate the elements of the matrices.

Due to the limitations of the shared memory and registers
size on the GPU, each thread cannot load the input data into
the shared memory and registers in advance. All of the input
data are loaded into the shared memory and registers when
they are being processed. To decrease the number of global
memory accesses required by the input data, the outer loop of
the 2-level loop iterates through the read bases and the inner
loop iterates through the haplotype bases. In this way, the base
quality score ()Qi and the transmission probabilities (αi, δi ,
and ζ i) of the read are loaded only once. Otherwise, these data
are loaded many times.

Because each element is decided by the left, top-left, and top
neighbor elements of the matrices, the intermediate results of
PFA do not need to be stored for the entire duration of the execu-
tion time. As such, each thread uses 3 registers (MN , IN, and
DN) to store the left neighbor elements, a register (MID) to
store the result of a series of calculations of the top-left neighbor
elements, and 3 vectors (MM n0... , II n0... , and DD n0...) in the global

Figure 1.  Simplified CUDA memory hierarchy. Figure 2.  Block diagram of the GPU-based GATK HC implementation.

GATK HC indicates GATK HaplotypeCaller; GPU, graphics processing

unit.

4	 Evolutionary Bioinformatics ﻿

memory to store the top neighbor elements. Using MID avoids
loading the top neighbor elements from the global memory twice.

As shown in Algorithm 2, each iteration of the inner loop
loads and stores 3 values from/into the 3 vectors, which requires
6× ×m n global memory accesses. Because the latency of global
memory access is very high, it is necessary to decrease the global
memory accesses required by the intermediate results. Hence,
the tiling technique17 is employed. The size of a tile is the num-
ber of the successive elements in one column covered by the tile.

The differences between the naive implementation and the
tile-based implementation are as follows (the tile size is k): (1)
the iteration times of the outer loop of the tile-based imple-
mentation is m/k and (2) each iteration of the inner loop of the
tile-based implementation calculates a tile, which stands for k
successive elements in a column, instead of one element.
Figures 3 and 4 show the execution trace of the naive imple-
mentation and the tile-based implementation (the tile size is
2), which explain these 2 differences. In Figure 4, the iteration
time of the outer loop is 6 2 3/ = and each iteration of the
inner loop calculates 2 elements.

In the inner loop of the tile-based implementation, 3 values
from the 3 vectors are loaded to calculate the first element of a

Algorithm 1. Pseudocode of PFA in the GATK
HaplotypeCaller.

1: function PFA H[], R[], Q[], α [], δ [], ζ [], m, n

2:   M ← 0 I ← 0 D ← 0

3: 
D nn0,0 1/... ←

4: 
β0 0.9...m ←

5: 
0 0.1...m ←

6:  for i m←1, do

7:   for j n←1, do

8:    if R [i]==H[j] then

9:     λi j iQ, / 3←

10:   else

11:     λi j iQ, 1← −

12:   end if

13:     M M I Di j i j i i j i i j i i j, , 1, 1 1, 1 1, 1()← + +− − − − − −λ α β β

14:    
I M Ii j i i j i i j, 1, 1,← +− −δ 

15:    
D M Di j i i j i i j, , 1 , 1← +− −ζ 

16:    end for

17:   end for

18:  return j

n

m j m jM I
=1

, ,()∑ +

19: end function

Algorithm 2. Pseudocode of the naive implementation
of the intertask approach.

procedure PFA(H[], R[], Q[], α [], δ [], ζ [], m, n) 

  for i m←1, do

   r Ri←

   q Qi←

   α α← i

   δ δ← i

   ζ ζ← i

   for j n←1, do

    h Hi←

    if i > 1 then

     MU MMj←

     IU IIj←

     DU DDj←

    else

     MU IU← ← 0

    
DU

n
←

1

     MID DU← ⋅0.9
    end if

    if H R= then

     λ ← q / 3

    else

     λ ← −1 q

    end if

    DN MN DN← ⋅ + ⋅ζ 0.1

    MN MID← ⋅λ

    IN MU IU← ⋅ + ⋅δ 0.1

    MID MU IU DU← ⋅ + ⋅ + ⋅α 0.9 0.9

   
MM MNj ←

   
II INj ←

   
DD DNj ←

    if i m= then

    
result MM IIj j= +

    end if
   end for
   end for

   return result

  end procedure

Ren et al	 5

tile and 3 values of the last element of a tile are stored in the 3
vectors. Thus, the number of global memory accesses required by
the intermediate results is () /6× ×m n k using tiling technique.

However, the cost of reducing the global memory accesses
required by the intermediate results is that each thread uses
more shared memory and registers to store left neighbor ele-
ments of each tile.

Data set preparation.  To better use the GPU computation
capabilities, the data sets need to be converted before transfer-
ring them to the GPU.

Although for the intertask approach all threads implement
PFA independently, if the iteration numbers of the outer loop
and the inner loop of each PFA are not the same, threads in a
warp need to wait for each other because of the SIMT execu-
tion model. Thus, the data sets are sorted first according to the
length of reads and then according to the length of haplotypes.

After sorting, 32 read-haplotype pairs are processed by 32
threads in the same warp. To coalesce global memory accesses
of the input data, each group of 32 read-haplotype pairs is
stored in an interlaced fashion.

Figure 5 shows how the read bases and haplotype bases are
stored. Take haplotypes for example. We write the first 4 char-
acters of the first haplotype, after which write the first 4 char-
acters of the second haplotype, and so on. This way, the first 4
characters of 32 haplotypes make up 128 bytes, which could be
loaded by one coalesced global memory access. For haplotypes
shorter than the longest haplotype in the group, they are pad-
ded with dummy characters.

The transmission probabilities and base quality score of 32
reads in each group are also written in an interlaced fashion. As
they are single-precision floating point numbers, for each 128 bytes,
we only write 1 number instead of 4 numbers. For reads shorter
than the longest read in the group, the transmission probabilities
and base quality score are padded with dummy numbers.

Intermediate results.  For each thread, each iteration includes 6
global memory accesses required by the intermediate results. If

these global memory accesses of 32 threads in a warp are non-
coalesced, there will be 6 32× global memory accesses in the
worst-case situation.

As mentioned before, the intermediate results of each thread
are stored in 3 vectors. To reduce global memory accesses, we use
3 big vectors to store the intermediate results of 32 threads in a
warp, which are stored in an interlaced fashion. This way, each
thread loads/writes the intermediate results from neighboring
addresses. Because the intermediate results are single floating
point numbers, 1 global memory access is able to satisfy the load/
write requirements of 32 threads. Thus, there are 6 global mem-
ory accesses for 32 threads in a warp instead of 6 32× of each
iteration.

Intratask implementations

In the intratask approach, threads in a block implement PFA
cooperatively. The execute trace of each thread is different from
that described in Algorithm 1.

We first present the naive implementation of the intratask
approach. Depending on the number of threads in a block and
the length of the read, there are 3 cases to analyze. We start
with the simplest case, in which the number of threads in a
block is equal to the length of the read. The execution trace of
this case is shown in Figure 6A, in which the number of
threads in a block and the length of the read is 4. As shown in
Figure 6A, each thread calculates the elements in one column.
For example, thread 0 (T0) calculates the elements in the first
column. At each step, threads calculate the elements on an
antidiagonal. For example, at step 3, T0 calculates M3 1, , D3 1, ,
and I3 1, ; T1 calculates M 2 2, , D2 2, , and I 2 2, ; and T2 calculates
M1 3, , D1 3, , and I1 3, . Because there are ()m n+ −1 antidiagonals
in the matrices, the computational complexity of the naive
implementation is O m n()+ .

The second case is that the number of threads in a block is
bigger than the length of the read. The execution trace of the
second case is similar to Figure 6A. However, there are some
threads that remain idle during the whole execution period as

Figure 3.  Execution trace of the naive implementation of the intertask

approach.

Figure 4.  Execution trace of the tile-based implementation of the

intertask approach (the tile size is 2).

6	 Evolutionary Bioinformatics ﻿

the number of threads is bigger than the number of columns to
be calculated.

The third case is that the number of threads in a block is
smaller than the length of the read. The calculation is divided
into several passes, which is shown in Figure 6B. The number
of threads in a block is 2 and the length of the read is 4. Hence,
there are in total 2 passes. In each pass, the execution trace is
similar to Figure 6A.

For the intertask approach, because each block calculates
one PFA, the input data of one PFA are able to be stored in the
shared memory and registers in advance. Each read base and its
corresponding base quality score and transmission probabilities
are stored in the registers of each thread, whereas the haplotype
bases are stored in the shared memory. The intermediate results
produced by each thread are stored in 3 vectors in the shared
memory. In addition, for the third case, 3 vectors in the global
memory are used to store the intermediate results produced by
the last thread of each pass, which will be used in the next pass.

For the intratask approach, the synchronization function is
called to ensure that all the threads in the same block are syn-
chronized and finish reading/writing the intermediate results

in the shared memory. In each step, the synchronization func-
tion is called twice. Thus, the synchronization call will be called
O m n(())2 + times in total. However, the cost of synchroniza-
tion call is high because it makes threads in a block stall to wait
for each other. There are 2 solutions to decrease the number of
the synchronization function calls.

One solution is to exploit the tiling technique. In the tile-
based implementation (the tile size is k), each thread calculates
k elements in a column before a synchronization function is
called. Figure 7 shows the execution trace of the tile-based
implementation (the tile size is 2). As shown in Figure 7, each
thread calculates 2 elements in each column every 2 steps and
thus the synchronization function is called every 2 steps. In this
way, there are only O m n k((/))2 +   synchronization function
calls in the tile-based implementation (the tile size is k).
However, more shared memory and registers are used to store
the intermediate results. Moreover, the number of execution
steps of the tile-based implementation is more than that of the
naive implementation. As shown in Figure 7, the execution
steps of the tile-based implementation are 12, whereas the exe-
cution steps of the naive implementation would be only 9.

The other solution is the warp-based implementation, in
which the number of threads in a block is equal to the number
of threads in a warp (32). In this way, threads in a warp imple-
ment PFA cooperatively. Because the threads in the same warp
work in the SIMT execution model, there is no need to call
synchronization function in the warp-based implementation.
Moreover, because threads within a warp can use shuffle
instructions to exchange data, the intermediate results pro-
duced by each thread are not stored in the shared memory. The
only intermediate results stored in the shared memory are the
intermediate results between passes for the third case.

However, the warp-based implementation cannot effec-
tively use the resources on GPUs because the number of threads
in a block is small. One method to solve this problem is to
increase the number of warps in a block and make each warp
implement PFA independently. For example, if the number of
threads in a block is 256, there are 8 warps in the block and
each warp implements PFA independently. In the improved
warp-based implementation, the intermediate results between
passes for the third case produced by each warp are stored in
the global memory.

Data set preparation.  In the intratask approach, the read bases,
base score quality, and the transmission probabilities, which are
loaded into the registers of each thread, are written into 6 vec-
tors separately, whereas the haplotype bases, which are loaded
into the shared memory, are written into char4 to reduce the
global memory accesses.

Intermediate results.  The intermediate results inside one pass
are stored in the shared memory using 3 vectors, except for the
(improved) warp-based implementations (which use shuffle

Figure 6.  Execution trace of the naive implementation of the intratask

approach (A) without passes (B) with passes.

Figure 5.  Writing bases of reads and haplotypes in an interlaced fashion.

Ren et al	 7

instructions to exchange data), whereas the intermediate results
between passes are stored in the global memory using 3 vectors,
except for the warp-based implementation (which stores inter-
mediate data in the shared memory).

Results and Discussion
Experimental setup

IBM Power System S823L (82478-42L) is used to perform
all the experiments. This system has 2 IBM Power8 proces-
sors, each of which has 10 cores running at 3.6 GHz,
256 GB of DDR3 memory, and an NVIDIA Tesla K40
card. The NVIDIA Tesla K40 card has 2880 cores that run
at up to 745 MHz and has a CUDA compute capability of
3.5.

We first compare the performance of these GPU-based
PFA implementations with the synthetic and real data
sets and then integrate the GPU-based PFA implementa-
tions into GATK HC 3.7 and compare the overall
performance.

To evaluate these GPU-based PFA implementations,
throughput is a key performance metric, which is measured by
giga cell updates per second (GCUPS). For a data set of read-
haplotype pairs, equation (5) defines how to calculate the value
of GCUPS:

	
m n

t
i ii

s
×

×
=∑ 1

910
	 (5)

where t is the runtime in seconds, s is the number of the
read-haplotype pairs in the data set, mi and ni are the length
of ith read and ith haplotype, respectively. The runtime t is
the computation time of PFA on GPUs.

Implementations of intertask approach

For the tile-based implementations of the intertask approach,
the length of reads would slightly affect the performance if it is
not a multiple of the tile size. To be fair and find the maximum
achievable speedup of every implementations, 6 types of syn-
thetic data sets are used and the length of read and haplotype
in each data set are different, as shown in Table 1. In addition,
the number of the read-haplotype pairs of each data set is
5 105× .

Figure 8 shows the throughput of 5 implementations of the
intertask approach: naive, tile = 2, tile = 4, tile = 6, and tile = 8. As
shown in Figure 8, the throughput of the naive implementation
is the lowest over all the implementations. In addition, the
throughput of the implementation with tile = 6 is the highest
over all the implementations.

We use NVIDIA profiling tools (NVVP) to find the perfor-
mance bottleneck of these implementations. We run the imple-
mentations with data set 6. The profiling results are shown in
Table 2. Table 2 shows that the global memory bandwidth
reduces when the tile size increases. However, the registers per
thread and shared memory per block increase when the tile size
increases, which reduces the theoretical occupancy. In addition,
the naive, tile = 2, and tile = 4 implementations are bounded by
the global memory bandwidth; whereas the other 2 are bounded
by the instruction and memory latency, which is caused by the
low occupancy.

Table 2 shows that the implementation with tile = 6 strikes a
trade-off between the decreasing global memory bandwidth

Figure 7.  Execution trace of the tile-based implementation of the

intratask approach (the tile size is 2).

Table 1.  Synthetic data sets of the intertask implementations.

1 2 3 4 5 6

Read length 24 48 72 96 120 144

Haplotype length 24 48 72 96 120 144

Figure 8.  Performance comparison of the intertask implementation on

the synthetic data sets.

8	 Evolutionary Bioinformatics ﻿

requirements as tile size increases, on the one hand, and
between the increasing requirements of the instruction and
memory latency, on the other hand. This explains the reason
why the throughput of the implementation with tile = 6 is the
highest on the synthetic data sets.

Implementations of intratask approach

This section compares the performance of the naive, tile = 2,
warp-based, and improved warp-based implementations of the
intratask approach. Here, the block size of the naive and tile = 2
implementations is 128. Table 3 shows 26 types of synthetic
data sets and the length of read and haplotype in each data set
are different. Data sets 1 to 21 make no thread idle during each
pass for the (improved) warp-based implementations, whereas
data sets 22 to 26 make no thread idle during each pass for all
the implementations.

Figure 9 shows the throughput of 3 implementations of the
intratask approach when the number of the read-haplotype
pairs of each data set is 5 105× . For the warp-based and
improved warp-based implementations, if the length of read is
the same, the throughput increases with the increase in the
haplotype length. In contrast, if the haplotype length is the
same, the throughput decreases with the increase in the read
length, which is caused by the increased number of costly
global memory accesses. In addition, the improved warp-based
implementation achieves higher throughput than the warp-
based implementation.

As shown in Figure 9, the throughput of the naive and
tile = 2 implementations increases with the increase in the read/
haplotype length, which is not the case for the (improved)
warp-based implementations. Compared with tile = 2 imple-
mentation, the naive implementation achieves higher
throughput.

Table 4 shows the NVVP profiling results of the 4 imple-
mentations running with data set 26. As shown in Table 4, the
shared memory bandwidth of the naive implementation is

higher than that of the tile = 2 implementation, which is
because that the tiling technique reduces shared memory
accesses. However, because the tile = 2 implementation has
more shared memory and registers to store the intermediate
results, its theoretical occupancy is smaller than that of the
naive implementation. As shown in Figure 9, the throughput of
the tile = 2 implementation is smaller than that of the naive
implementation, which indicates that the decrease in the occu-
pancy outweighs the reduction in the number of synchroniza-
tion calls. If the tile size continues to increase, the theoretical/
achieved occupancy will continue to reduce, which results in
the decreasing throughput.

As shown in Table 4, the theoretical/achieved occupancy of
the improved warp-based implementation is much bigger than
that of the warp-based implementation, which is caused by the
low GPU resources utilization of the warp-based implementa-
tion. Hence, the throughput of the improved warp-based
implementation is higher than that of the warp-based imple-
mentation, as shown in Figure 9.

In Figure 8, the throughput of the intertask implementa-
tions is comparable when the length of the haplotype or read
increases, whereas in Figure 9, the throughput of the intratask
implementations increases when the length of the haplotype or
read increases.

Figure 10 shows the throughput of the intratask implemen-
tations when the number of the read-haplotype pairs of each
data set is reduced to only 200 (instead of 5 105× pairs used
for Figure 9). In this figure, the naive implementation achieves
the highest throughput for most of the data sets. This is because
when the size of data set is small, the improved warp-based
implementation does not have enough computation to fully use
the GPU resources.

Comparison with other implementations

We compared our GPU-based implementation with other
implementations proposed in the previous works.13-15 The data

Table 2.  Profiling results of the intertask implementations on synthetic data set 8.

Performance
limitation

Global memory
bandwidth, GB/s

Registers
per thread

Shared memory
per block,
bytes

Theoretical
occupancy, %

Achieved
occupancy, %

Naive Memory
bandwidth

207 48 0 62.5 62.1

Tile = 2 Memory
bandwidth

201 72 4096 43.8 43.3

Tile = 4 Memory
bandwidth

193 73 8192 37.5 37.1

Tile = 6 Instruction and
memory latency

154 104 12 288 25 24.9

Tile = 8 Instruction and
memory latency

101 142 16 384 18.8 18.2

Ren et al	 9

set used is the “10s” data set.18 Despite its small size, this data
set has published runtime baseline comparisons for different
implementations and platforms.

Table 5 shows the performance of various implementa-
tions, including CPU, GPUs, multicores, and FPGAs. The
runtime includes the data set preparation time, the compu-
tation time on GPU, and the data transfer time between

Table 3.  Synthetic data sets of the intratask implementations (R and
H stand for length of read and haplotype, respectively).

1 2 3 4 5 6 7 8 9

R 32 32 32   32   32   32   32   32 64

H 32 64 96 128 160 192 224 256 64

10 11 12 13 14 15 16 17 18

R 64   64   64   64   64   64 96   96   96

H 96 128 160 192 224 256 96 128 160

19 20 21 22 23 24 25 26

R   96   96   96 128 128 128 128 128

H 192 224 256 128 160 192 224 256

Table 4.  Profiling results of the intratask implementations with synthetic data set 26 (warp* stands for the improved warp based).

Performance
limitation

Shared memory
bandwidth, GB/s

Registers
per thread

Shared
memory per
block, bytes

Theoretical
occupancy, %

Achieved
occupancy, %

Naive Memory
bandwidth

2213 32 2124 100 99.8

Tile = 2 Memory
bandwidth

2005 39 3660 75 74.9

Warp Instruction and
memory latency

362 32 6540 10.9 10.9

Warp* Compute 262 44 2000 62.5 62.5

Figure 9.  Performance comparison of the intratask implementations on the synthetic data sets (size: 5 105×). GCUPS indicates giga cell updates per

second.

host and GPU. As shown in Table 5, all the GPU-based
implementations proposed in this article are faster than the
Intel Xeon single core AVX implementation. Moreover,
except for the naive intertask implementation, all the imple-
mentations proposed in this article are faster than the
NVIDIA K40 GPU implementation proposed in the work
by Huang et al.14

Our best case performance is the improved warp-based
implementation. It is 5.47× faster than the K40 GPU imple-
mentation, 1.17× faster than the Intel Xeon 24 cores AVX
implementation, and 843× faster than the original JAVA imple-
mentation. The table also shows that the FPGA-based imple-
mentations have the potential to achieve higher performance,
albeit at the expense of long development time and the corre-
sponding high design complexity and cost.

Real data set

In this section, 5 intertask implementations (naive, tile = 2,
tile = 4, tile = 6, and tile = 8) and 4 intratask implementations
(naive, tile = 2, warp-based, and improved warp-based) are
compared using a real data set. To produce the real data set,
we modified the source code of GATK HC 3.7 to output the

10	 Evolutionary Bioinformatics ﻿

read-haplotype pairs of each active region in the third step of
the program “Determine likelihoods of the haplotypes”. For
the modified GATK HC 3.7, chromosome 10 of the whole
human data set G15512.HCC1954.1 is used to produce the
real data set, which is divided into small chunks with each
chunk containing the read-haplotype pairs of one active
region. The size of each chunk ranges from 4 to 38 912.

In addition, 2 software-based implementations of PFA are
provided for performance comparison: Power8 single core
implementation and Power8 20 cores implementation. Both of
them are written in the C++ programming language, optimized
with the vector instructions and compiled with gcc O3

optimization. Moreover, the Power8 20 cores implementation
exploits OpenMP to run on 20 cores.

In Table 6, for the GPU-based implementation, T1 includes
the computation time on GPU and the data transfer time
between CPU and GPU, T2 is the data set preparation time,
and T3 is the total time, which is the sum of T1 and T2. For the
software implementations, T3 is the total time and there is no
data set preparation. In this section, T3 is the runtime t in
equation (5) to calculate GCUPS.

Table 6 shows the performance of 11 implementations on
the real data set. The naive intratask implementation is the
fastest over all the GPU-based implementations. In addition,
the 4 intratask implementations are faster than the 5 intertask
implementations. It is mainly because when the number of the
read-haplotype pairs in each chunk is small, the intertask
implementations cannot use the GPU resources efficiently.

As shown in Table 6, the naive intratask implementation is
faster than the improved warp-based implementation. This is
because 82% of chunks in the real data include less than 200
read-haplotype pairs. Moreover, Figure 10 shows that when the
size of the data set is reduced to 200 pairs, the naive implemen-
tation of the intratask approach is faster than the improved
warp-based implementation for most of the synthetic data sets.

For the total time (T3), all the GPU-based implementa-
tions are faster than the Power8 single core implementation.
Specifically, the naive intratask implementation is 11.73× faster
than the Power8 single core implementation. However, the
Power8 20 cores implementation is faster than all the GPU-
based implementations. Regardless of the data set preparation
time, the naive intratask implementation (46 s) is much faster
than the Power8 20 cores implementation (95 s).

Integration into GATK HC

The GPU-based implementation of PFA with the highest per-
formance for the real data set (which is the naive implementation
of the intratask approach) is integrated into GATK 3.7. There are
other 2 GATK HC implementations to be compared with: (1)
GATK HC with the PFA implemented with JAVA (referred to

Table 5.  Performance comparison of various implementations on a
“10s” data set.

Implementations Runtime, ms Speedup

Java on CPU14 10 800 1×

C++ Baseline14 1267 9×

Inter Xeon AVX 1 Core14 138 78×

Intel Xeon 24 Cores14 15 720×

Alter OpenCL (Arria 10)13 2.8 3857×

PE Ring (Arria 10)14 2.6 4154×

NVIDIA Tesla K40 GPU14 70 154×

Naive intratask 14.2 761×

Tile = 2 intratask 15.5 696×

Warp based 20.6 524×

Improved warp based 12.8 843×

Naive intertask 76.6 141×

Tile = 2 intertask 45.1 239×

Tile = 4 intertask 29.6 365×

Tile = 6 intertask 26.4 409×

Tile = 8 intertask 24.9 433.7×

Figure 10.  Performance comparison of the intratask implementations on the synthetic data sets (size: 200).

Ren et al	 11

as baseline), which is download from the GATK Web site and (2)
GATK HC with the PFA running on the CPU optimized using
vector instructions (referred to as Vector), the library of which is
implemented by IBM.9 The data set is chromosome 10 of the
whole human genome data set G15512.HCC1954.1.

Although GATK HC is able to run in single-thread and
multithread mode, it usually runs in single-thread mode while
executing several instances of GATK HC at the same time due
to the inefficiency of the multithread mode of the program.
Thus, we will only compare the performance of GATK HC
running in single-thread mode.

As shown in Table 7, the baseline is slower than the other 2
implementations. Compared with the baseline, the vectorized
GATK HC achieves 1.42× speedup and the GPU-based
GATK HC achieves 1.71× speedup. In addition, the GPU-
based GATK HC is 1.2× faster than the vectorized GATK HC.

Conclusions
In GATK HC, PFA accounts for a large percentage of the total
execution time. This article proposes to accelerate PFA on
GPUs to improve the performance of GATK HC. Due to the
characteristics of PFA, there are 2 approaches to implement it
on GPUs: intertask and intratask. This article first presented
several GPU-based implementations of PFA for each approach.

We executed all the implementations on an NVIDIA Tesla
K40 card and compared their performance using different syn-
thetic and real data sets. Experimental results show that our
solution achieves a speedup up to 5.47× over other GPU-based
implementations. In addition, the naive implementation of the
intratask approach is integrated into GATK HC, resulting in
an overall speedup of 1.71× over the baseline implementation
and 1.2× over the vectorized GATK HC on a single core.

Acknowledgements
The authors wish to thank the Texas Advanced Computing
Center (TACC) at the University of Texas at Austin and IBM for
the giving access to the IBM Power8 machines used in this paper.

Author Contributions
SR designed and performed the experiments, analyzed the
data, and wrote the manuscript. All the authors jointly devel-
oped the structure and arguments for the paper, made critical
revisions and approved final version.

References
	 1.	 Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotech.

2008;26:1135–1145.
	 2.	 McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapRe-

duce framework for analyzing next-generation DNA sequencing data. Genome
Res. 2010;20:1297–1303.

	 3.	 DePristo M, Banks E, Poplin R, et al. A framework for variation discovery and
genotyping using next-generation DNA sequencing data. Nature Genet.
2011;43:491–498.

	 4.	 Lu M, Zhao J, Luo Q , et al. GSNP: a DNA single-nucleotide polymorphism
detection system with GPU acceleration. Paper presented at: 2011 Interna-
tional Conference on Parallel Processing; September 13–16, 2011; Taipei,
Taiwan.

	 5.	 Liu CM, Wong T, Wu E, et al. Soap3: ultra-fast GPU-based parallel alignment
tool for short reads. Bioinformatics. 2012;28:878.

	 6.	 HaplotypeCaller call germline SNPs and Indels via local re-assembly of haplo-
types. https://software.broadinstitute.org/gatk/documentation/tooldocs/current/

Table 6.  Performance comparison of implementations on a real data set.

Implementations T1, s T2, s T3, s Throughput (GCUPS)

Naive intratask 46 53 99 2.60

Tile = 2 intratask 47 53 100 2.52

Warp based 81 51 132 1.91

Improved warp based 48 57 105 2.40

Naive intertask 701 73 774 0.33

Tile = 2 intertask 382 73 455 0.56

Tile = 4 intertask 238 75 312 0.81

Tile = 6 intertask 213 75 288 0.88

Tile = 8 intertask 217 73 290 0.87

Power8 single core — — 1161 0.22

Power8 20 cores — — 95 2.65

Abbreviation: GCUPS, giga cell updates per second.

Table 7.  Results of the GATK HC implementations.

GATK HC Total time, s Speedup

Baseline 8034.05 —

Vector 5655.96 1.42×

GPU 4687.08 1.71×

Abbreviations: GATK HC, GATK HaplotypeCaller; GPU, graphics processing unit.

https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_haplotypecaller_HaplotypeCaller.php

12	 Evolutionary Bioinformatics ﻿

org_broadinstitute_hellbender_tools_walkers_haplotypecaller_Haplotype-
Caller.php. Accessed February 22, 2018.

	 7.	 Carneiro M, Poplin R, Biagioli E, et al. Enabling high throughput haplotype
analysis through hardware acceleration. https://github.com/MauricioCarneiro/
PairHMM/tree/master/doc. Accessed May 15, 2017.

	 8.	 Proffitt A. Broad, Intel announce speed improvements to GATK powered by Intel
optimizations. http://www.bio-itworld.com/2014/3/20/broad-intel-announce-
speed-improvements-gatk-powered-by-intel-optimizations.html. Accessed Feb-
ruary 22, 2018.

	 9.	 VdAuwera G. Speed up HaplotypeCaller on IBM Power8 systems. https://soft-
ware.broadinstitute.org/gatk/blog?id=4833. Accessed March 15, 2017.

	10.	 Ren S, Sima VM, Al-Ars Z. FPGA acceleration of the pair-HMMs forward
algorithm for DNA sequence analysis. Paper presented at: 2015 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM); November 9–12,
2015; Washington, DC, pp. 1465-1470. New York, NY: IEEE.

	11.	 Ito M, Ohara M. A power-efficient FPGA accelerator: systolic array with cache-
coherent interface for pair-HMM algorithm. Paper presented at: 2016 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS XIX); July
7, 2016; Yokohama, Japan, pp. 1–3. New York, NY: IEEE.

	12.	 Peltenburg J, Ren S, Al-Ars Z. Maximizing systolic array efficiency to accelerate
the PairHMM forward algorithm. Paper presented at: 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM); December 15-18,
2016; Shenzhen, China, pp. 758–762. New York, NY: IEEE.

	13.	 Altera. Accelerating genomics research with OpenCL and FPGAs. https://
www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/
wp-01262-accelerating-genomics-research-with-opencl-and-fpgas.pdf.
Accessed February 22, 2018.

	14.	 Huang S, Manikandan GJ, Ramachandran A, et al. Hardware acceleration of
the pair-HMM algorithm for DNA variant calling. Paper presented at: Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-Programma-
ble Gate Arrays, FPGA ’17; February 22-24, 2017; Monterey, CA, pp. 275–284.
New York, NY: ACM.

	15.	 Carneiro M. Accelerating variant calling. https://hpc.mssm.edu/files/Carneiro_
workshop.pdf. Accessed March 15, 2017.

	16.	 Ren S, Bertel K, Al-Ars Z. Exploration of alternative GPU implementations
of the pair-HMMs forward algorithm. Paper presented at: 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM);
December 15-18, 2016; Shenzhen, China, pp. 902–909. New York, NY:
IEEE.

	17.	 Hains D, Cashero Z, Ottenberg M, Bohm W, Rajopadhye S. Improving
CUDASW++, a parallelization of Smith-Waterman for CUDA enabled devices.
Paper presented at: 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum; September 1, 2011; Shanghai,
China, pp. 490–501. New York, NY: IEEE.

	18.	 Pair-HMMs forward algorithm test data. https://github.com/MauricioCar-
neiro/PairHMM/tree/master/test_data. Accessed May 15, 2017.

https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_haplotypecaller_HaplotypeCaller.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_haplotypecaller_HaplotypeCaller.php
https://github.com/MauricioCarneiro/PairHMM/tree/master/doc
https://github.com/MauricioCarneiro/PairHMM/tree/master/doc
http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
https://software.broadinstitute.org/gatk/blog?id=4833
https://software.broadinstitute.org/gatk/blog?id=4833
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01262-accelerating-genomics-research-with-opencl-and-fpgas.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01262-accelerating-genomics-research-with-opencl-and-fpgas.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01262-accelerating-genomics-research-with-opencl-and-fpgas.pdf
https://hpc.mssm.edu/files/Carneiro_workshop.pdf
https://hpc.mssm.edu/files/Carneiro_workshop.pdf
https://github.com/MauricioCarneiro/PairHMM/tree/master/test_data
https://github.com/MauricioCarneiro/PairHMM/tree/master/test_data

