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Abstract 

In this paper, the fabrication and thermal conductivity of water-based nanofluids using boron (B) 

doped SiC as dispersions are reported. Doping B into β-SiC phase leads to the shrinkage of SiC 

lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B atoms (radius: 0.095 nm). 

The presence of B in SiC phase also promotes crystallization and grain growth of obtained particles. 

The tailored crystal structure and morphology of B doped SiC nanoparticles are beneficial for the 

thermal conductivity improvement of the nanofluids by using them as dispersions. Serving B doped 

SiC nanoparticles as dispersions for nanofluids, a remarkable improvement of the stability was 

achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. Dispersing B 

doped SiC nanoparticles in water based fluids, the thermal conductivity of the as prepared 

nanofluids containing only 0.3 vol. % SiC-B6 nanoparticles is remarkably raised up to 39.3 % at 

30 °C compared to the base fluids and is further enhanced with the increased temperature. The main 

reasons for the improvement of thermal conductivity of SiC-B6 nanofluids are more stable 
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dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the 

enhanced thermal conductivity of the SiC-B dispersions. 

Keywords: Boron doping; SiC nanofluids; Stability; Thermal conductivity. 

 

1. Introduction 

Nanofluids, a colloidal mixture with nano-sized solid nanoparticles dispersing in base fluids, have 

aroused great research interests in recent decades because they can significantly improve the heat 

transfer characteristics compare to the traditional heat transfer fluids [1-3]. This salient characteristic 

ensures that the nanofluids have great potential in a variety of thermal exchange systems for 

different industrial applications such as transportation, electronic cooling, energy storage, 

mechanical applications and so on. The nanoparticle dispersions used in the nanofluids are typically 

made of metallic, oxide or non-oxide ceramic nanoparticles while liquids such as water, ethylene 

glycol, oil, etc. are often adopted as base fluids [4-7]. Ceramic nanoparticle dispersions are more 

favorable than metallic ones since they can be easily incorporated into the base fluid with better 

chemical stability over long period of time compared to metallic nanoparticle dispersions[8]. 

Among those ceramic nanoparticle dispersions, nano-sized silicon carbide (SiC) is one of the 

most promising dispersions for nanofluids because of its unique properties. SiC is a covalent bond 

compound that consists of Si and C atoms, with a tetrahedron form in which Si (or C) is the central 

atom [9]. It has a wide bandgap varying from 2.4 to 3.2 eV depending on the polytype (2.4 eV for 

3C-SiC, 3.0 eV for 6H, and 3.2 eV for 4H at 300 K), outstanding electronic features, high thermal 

conductivity (490 W/m·K) [10-13], excellent oxidation resistance and corrosion durability, great 

mechanical properties and excellent chemical and physical stability [9, 10, 14, 15]. Extensive 

research work has been performed to investigate the physical properties of the SiC nanoparticle 

dispersed nanofluids. Effects of crystal form, particle shape, viscosity, volume concentration, 

surfactants, base fluid and temperature on the heat transfer performance were studied [16-27]. For 

example, Timofeeva et al [19] demonstrated that the nanofluids with larger particles size and volume 

concentration provide higher thermal conductivity and lower viscosity increment than those with 

smaller particles size because of the less solid/liquid interfacial area of larger particles. Li et al  

investigated the thermos-physical properties of water and Ethylene Glycol (EG) mixture based SiC 
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nanofluids and found that the thermal conductivity of as prepared nanofluids increased with the 

volume fraction and the highest thermal conductivity enhancement was found to be 33.84 % for the 

nanofluid containing 1 vol.% nanosized SiC particles at 20 oC which indicated that the water/EG 

based SiC nanofluid might have high potential application for energy system.  

The crystal structure, crystallinity and surface property of nanoparticles can be tailored by doping 

amount of adding ions [28]. However, because of the stronger covalent bond between Si atoms and 

C atoms, only atoms of some light elements of II-V groups such as B, Be, N, Al having small 

covalent radius value allowed to be dissolved in the SiC lattice and consequently modify the 

properties of the SiC particle [28-31]. Thus, in the present study, boron (B), an element from group 

III in the periodic table of elements, is considered as a dopant for the SiC nanoparticle aiming to 

improve the surface properties and thermal conductivity of the SiC. Then, those B doped SiC 

nanoparticles (named SiC-B nanoparticles) will be applied as dispersions for water based nanofluids. 

The stability and thermal conductivity of nanofluids contained B-doped SiC nanoparticles were 

determined with different parameters such as B dopant content, the volume concentration of the 

SiC-B nanoparticles and temperature etc. 

 

2. Experimental procedures 

2.1 Preparation of nanoparticles 

In order to prepare B doped SiC nanoparticles, tetraethyl orthosilicate (TEOS, (C2H5)4SiO4), anhydrous 

alcohol, tributyl borate (C12H27BO3), hydrogen chloride (HCl) and hydrofluoric acid (HF), purchased 

from Sinopharm Chemical Reagent Co., Ltd, were adopted as starting materials. In the first step, 25 ml 

TEOS and 15 ml anhydrous alcohol were mixed by magnetic stirring for 10 minutes followed by adding 

15 ml deionized water and 5 ml anhydrous alcohol into the solution and further stirred for 10 min. 

Afterwards, 5 ml HCl and tributyl borate with different volume amount, i.e. 0, 4, 6 and 8 ml (marked as 

B0, B4, B6 and B8) were incorporated into the solution by magnetic stirring for another 10 minutes. 

Finally, 5 g graphite was added in the above solution with 24 hours stirring. The obtained gels were 

converted into xerogels by drying at 80 °C for 12 hours and pulverized into powders by ball milling. The 

obtained powders were loaded into corundum crucibles and placed in a vertical tubular furnace and 

heated to 1500 °C in flowing high purity Ar for 6 hours. The obtained products were further calcined at 
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700 °C in air for 2 hours to decarburize and then soaked in hydrofluoric (HF) for several hours to remove 

SiO2 phase. Finally, the product was cleaned using anhydrous alcohol and deionized water for several 

times and dried at 70 °C for 12 hours. 

2.2 Characterization of nanoparticles 

The phases of obtained nanoparticles were identified by X-Ray Diffraction (XRD Bruker D8 

Advance) with Cu-Kα radiation. XRD data were refined by using a MAUD software in order to 

extract the lattice parameter of the B doped 3C-SiC phase [32]. For all the Rietveld refinements in 

the present work, the two important refinement parameters of the MAUD program, Weighted 

Reliability factor (RWP, %) and Sigma value (sig.) were in the 7.37-9.2 % range and 1.43-1.89 

range, respectively, indicating reliable Rietveld refinements. Scanning Electron Microscopy (SEM, 

FEI novaTM nano SEM 450) and High Resolution Transmission Electron Microscopy (HRTEM 

JEM-1400, JEOL) were applied to characterize the morphologies of the as-synthesized 

nanoparticles. The crystal structure of the as-prepared SiC-B nanoparticles was determined by mean 

of Selected Area Electron Diffraction (SAED) equipped on the TEM device, respectively. The 

elemental composition and bonding configurations of SiC-B nanoparticles were examined by X-ray 

photoelectron spectroscopy (XPS, Kratos, AXIS ULTRADLD) and Raman spectroscopy (Raman, 

HORIBA LabRAM HR Evolution) with a wavelength of 325 nm. A Water Contact Angle (WCA) 

measurement was applied to evaluate the surface property of the as prepared nanoparticles. The 

measurements were carried out based on the static sessile drop method where water droplets with a 

volume of 5-10 μL were used. The photographs of water drops were acquired by optical microscopy 

and three different droplets were applied for each sample.  

2.3 Preparation, stability and thermal conductivity of nanofluids 

Homogeneous and stable water based nanofluids using nanosized B doped SiC particles (named 

SiC-B nanofluids) as dispersions were prepared by the two-step method [33]. Depending on the B 

content in the starting materials, four types of nanofluids (named SiC-B0, SiC-B4, SiC-B6 and SiC-

B8 nanofluids, respectively) containing (0 - 0.3) vol.% nanoparticles were prepared and dispersed 

in deionized water. Ultrasonic homogenization was adopted to achieve a uniform dispersion. Zeta 

potential and light transmission method were adopted to evaluate the stability of the SiC-B 

nanofluids. The Zeta potential was performed on a Zeta potential analyzer (Zetasizer, Malvern Nano 

ZEN 2600), and the effects of the pH values of fluid and concentration were concerned. The light 
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transmission method was conducted by using a UV spectrophotometer (UV–Vis spectrophotometer, 

UNIC UV-2800) between 190 and 1100 nm. Thermal Conductivity (TC) of SiC-B nanofluids was 

measured by using TPS 2500 instrument (Hot Disk model 2500) based on the Transient Plane 

Source Method (TPS) [34]. The flaky test probe was inserted into the prepared nanofluid with 

constant temperature, and the TC value of specimen can be obtained by the current response of 

probe. For each SiC-B nanofluid, 10 TC measurements were performed. 

 

3. Results and Discussion 

3.1 Characterization of the B doped SiC nanoparticles 

Doping B atom into SiC lattice often leads to a distorted crystal structure of SiC and modifies the 

surface property and phase composition of the synthesized products. The XRD analysis of the 

synthesized SiC nanoparticles with variety of B dopant amount (named SiC-B0, SiC-B4, SiC-B6 

and SiC-B8) is shown in Fig. 1. It suggested that well crystallized 3C-SiC (β-SiC) phase was formed 

in all the compositions. A weak diffraction peak of 6H-SiC (α-SiC) at 33.67 ˚ was also detected in 

the present XRD patterns which was due to the presence of the stacking faults and the formation of 

α-SiC phase could be suppressed by doping B element into β-SiC lattice [29, 31, 35]. Such kind of 

microstructure evolutions were also confirmed by TEM observations. The representative HRTEM 

micrographs of synthesized nanoparticles (See Fig. 2) clearly reveal that the stacking faults were 

decreasing gradually as the increasing of B amount. The stacking faults were captured obviously 

from the B free SiC nanoparticle as shown in Fig. 2(a). However, it can be seen fuzzy stacking faults 

in the SiC-B6 nanoparticle (Fig. 2(b)) and a neatly arranged lattice structure in the SiC-B8 

nanoparticle (Fig. 2(c)) indicating that the presence of B into SiC could eliminate the crystal defects 

in the grain and stabilize the 3C-SiC (β-SiC) formation in the present study. 
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Fig. 1: XRD patterns of synthesized B doped SiC nanoparticles. 
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Fig. 2: HRTEM micrograph of the representing stacking faults in synthesized B doped SiC 

nanoparticles, (a) SiC-B0 nanoparticles; (b) SiC-B6 nanoparticles; (c) SiC-B8 nanoparticles. 

 

Another important effect of the B dopant was that the diffraction peaks of 3C-SiC phase were 

shifted towards higher diffraction angles with the increasing B dopant content (see the (111) peak 

in the inset of Fig. 1). Accommodation of B element into the 3C-SiC crystal structure resulted in 

shrinkage of 3C-SiC lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B 

atoms (radius: 0.095 nm) [28, 29]. Rietveld refinement using the XRD data in a MAUD software 

allows to carefully determine the lattice parameter of the 3C-SiC phase.  

As an example, Rieveld refined pattern using the XRD data obtained from SiC-B6 (See Fig. 3) 

demonstrateda well-fitting between the computed pattern (red line) and the experimental pattern 

(blue open circle). Similar Rietveld refinements were performed with other XRD data and the results 

are shown Table 1. As expected, the a lattice parameter of SiC-B extracted from the Rietveld 

refinement reduced from 4.3550 Å for the SiC without B dopant to 4.3467 Å for SiC-B8 

nanoparticle while the inter-planar distance d(111) decreased from 2.5143 Å for the SiC without B 

dopant to 2.5096 Å for the SiC-B8 nanoparticle showing a strong modification of the crystal 
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structure of the 3C-SiC phase.  
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Fig. 3: Rietveld Refinement obtained on the SiC-B6 sample, the red solid line: computed pattern; 

blue open circle: experimental data. 

 

Table 1: a lattice parameter and inter-planar distance d between (111) planes of 3C-SiC extracted 

from Rietveld refinement using a MAUD software. 

Starting materials 

Rietveld Refinement 

a lattice parameter (Å) d(111) (Å) Sig RWP(% ) 

SiC-B0 4.3550(1) 2.5143 1.78 8.39 

SiC-B4 4.3537(5) 2.5136 1.43 7.37 

SiC-B6 4.3496(3) 2.5112 1.59 8.1 

SiC-B8 4.3467(5) 2.5096 1.89 9.2 

 

The B doped SiC nanoparticles were further characterized by using X-ray photoelectron 

spectroscopy (XPS), as shown in Fig. 4. The full XPS spectrum (Fig. 4(a)) shows the existence of 

Si, C, B and O for SiC-B4, SiC-B6 and SiC-B8, and Si, C and O exist in SiC-B0. The fine XPS 

spectra of Si 2p of SiC-B6 nanoparticles is demonstrated in Fig. 4(b). The peak centered at 100.7 

eV corresponds to Si-C bond in SiC, while the peak at 101.8 eV can be assigned to SiOxCy [36], 

which is the intermediate product during the preparation of SiC nanoparticles. The same analysis 

results were obtained from the fine XPS spectra of Si 2p of SiC-B0, SiC-B4 and SiC-B8 (not shown). 
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Fig. 4(c) gives the fine XPS spectra of B 1s of SiC-B6 nanoparticles. Only one sharp peak appears 

at 189.8 eV, which can be assigned to the B-C bond in SiC [37, 38]. No peak is detected around 

187.4 correspond to the B-Si bond and 193.1 eV correspond to the B-O bond [38], which indicates 

that B atoms have incorporated into SiC lattice and substituted Si sites. The same analysis results 

were obtained from the fine XPS spectra of B 1s of SiC-B4 and SiC-B8 (not shown). 
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Fig. 4: XPS spectra of synthesized B doped SiC nanoparticles. 

Fig. 5 gives the Raman spectra of the synthesized B doped SiC nanoparticles in the 600～1800 
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cm-1 region. The Raman spectra shows the presence of sharp peaks at about 790 cm-1 and 966 cm-1 

which correspond to transverse optical (TO) phonon mode and longitudinal optical (LO) phonon 

mode peaks of β-SiC, respectively [39]. The peak at 1590 cm-1 is related to the graphite structure of 

carbon residual in products, and the peak at 1355 cm-1 is similar to the TO peak of diamond, which 

is indicative of the presence of C–C sp3 bonds in β-SiC. Most probably the bonds are caused by 

carbon antisites in the SiC structure because of the lowest defect formation energy (1.1 eV) of CSi 

in β-SiC. The peak intensities at 790 cm-1 and 966 cm-1 increase with the increasement of B dopant 

content. It indicates that B doping is beneficial to the crystallization of SiC, which is in agreement 

with the results of XRD [40]. Additionally, it can be find that the peak at 966 cm-1 (LO) shift to 

higher wavenumber obviously with the increased B dopant content. The LO peak will shift to higher 

wavenumber as the carrier concentration increases [41], so the LO peak shift of B doped SiC 

nanoparticles is due to the substitution for B atoms to Si atoms in SiC lattice to form B acceptor 

doping, resulting in the increase in the carrier concentration of holes. Because of the better 

crystallization of SiC with B doping, the peak intensity at 1355 cm-1 decreases with increasing B 

content, suggesting the decrease of the amount of CSi defects in SiC crystallite. The peak intensity 

at 1590 cm-1 decreases with the increased B dopant content, which is due to the transformation of 

the sp2 carbon to the sp3 carbon due to the B doping [42, 43]. 
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Fig. 5: Raman spectra of synthesized B doped SiC nanoparticles. 

 

The typical microstructures of the obtained SiC-B nanoparticles observed by SEM are revealed 

in Fig. 6. From Fig. 6(a)-(c), the morphologies of SiC-B nanoparticles did not exhibit varied 

perceptibly with the increased B dopant content. SiC-B agglomerations consisting of large amount 
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nanoparticles were observed. Most of the nanoparticles were very smooth with equiaxed round 

shape. However, great grain growth was observed in the SiC-B8 sample (Fig. 6(d)). Large amount 

of micron grains with distinctly different shapes, such as plate like shape were observed 

demonstrating a higher crystallinity and grain growth. Such kind microstructure evolutions were in 

good agreement with the grain development of B doped SiC during the hot pressing processing and 

mechanical activation assisted self-propagating high temperature synthesis. It has been reported that 

the presence of B in SiC matrix could reduce the diffusion activation energy and enhance the mass 

transportation by several orders of magnitude which promoted the grain growth and crystallization 

of SiC grains [29, 44, 45]. Fig. 6(e) and Fig. 6(f) give the magnified images of SiC-B8 sample. Form 

Fig. 6(e), due to the increased tendency of the grains to be crystallized, many larger grains consist 

of multiple small grains can be seen in SiC-B8. The diameter of larger grains is often more than 1 

μm, even close to 2 μm (Fig. 6(f)). 
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Fig. 6: SEM micrographs of synthesized B doped SiC nanoparticles, (a): SiC-B0; (b) SiC-B4; (c) 

SiC-B6; (d) SiC-B8; (d) and (e): Magnified images of SiC-B8. 

 

Indeed, the TEM observations and SAED analysis shown in Fig. 7 further confirmed such kind 

of microstructural evolutions. In the B free SiC nanoparticle (Fig. 7(a)), the grains are typically 

equiaxed shape with an average grain size of 116.33 ± 7.24 nm. However, in the SiC-B4 (not shown) 

and SiC-B6 nanoparticle (Fig. 7(c)), elongated grains with an average size of 172.80 ± 33.20 nm 

were observed which suggested better crystallization and grain growth. So, over doping B in the 

SiC phase would significantly promote grain growth. As shown in the Fig. 7(e), the grains of the 

SiC-B8 particles were grown into micron level which was in agreement with the SEM observation. 

Furthermore, SAED analysis also shows similar traces. Fig. 7(b) shows a representative diffraction 

ring of SiC nanoparticles. However, a clear increase of the diffraction spots was observed in the 

diffraction ring patterns of SiC-B6 (Fig. 7(d)) and Si-B8 (Fig. 7(f)) nanoparticles indicating the 

improved crystallization of the grains. 
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Fig. 7: TEM micrographs and SAED patterns of synthesized B doped SiC nanoparticles, (a) and 

(b) TEM image and SAED pattern obtained on SiC-B0 nanoparticles; (c) and (d) TEM image and 

SAED pattern obtained on SiC-B6 nanoparticles; (e) and (f) TEM image and SAED pattern 

obtained on SiC-B8 nanoparticles. 

 

3.2 The surface property of SiC-B nanoparticles 

The wettability and hydrophobic property of cubic SiC with different B dopant content are important 

factors for water based nanofluid. Water Contact Angle (WCA) are often used to qualify the 

properties. The measured WCA of SiC-B nanoparticles with varied B dopant content are shown in 

Fig. 8. In the B free SiC nanoparticles, the measured WAC was 115.50 °. However, in the B doped 

SiC nanoparticles, the measured WCA of all samples were reduced to almost close to 0 °, 

demonstrating that the particles with B dopant possessed good hydrophilicity. According to the 

wettability mechanisms, the wettability between the solids and liquid were strongly dependent on 

the surface energy of the solid particles. A solid with high surface energy could be easily wetted by 

liquid molecular which was due to the improved spreading parameter [46]. In our study, introducing 

minor B atoms to replace Si atoms, lattice distortions would take place in the SiC nanoparticles 

because a B atom only has three C atoms as neighbors [47]. On the nanoparticles surface and inside, 

the atoms near B atoms deviate from their original stable positions, enhancing the surface energy of 

SiC nanoparticles. Thus, the improved wettability and hydrophobic property of SiC-B nanoparticles 

might be due to the doping the boron into 3C-SiC phase surface which resulted in increase of the 

surface energy.  
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Fig. 8: Measured water contact angles of 3C-SiC-B nanoparticles. 

 

3.3 Stability of SiC-B nanofluids 

The stability of nanofluids is a critical factor that must be concerned because of the sedimentation 

and stratification of nanoparticles which would cause remarkable reduction of the TC of nanofluids 

and a Zeta potential analysis is commonly applied to evaluate the stability of the nanofluids. In 

general, a nanofluids with an absolute Zeta potential above 30 mV is considered to have moderate 

stability and those above 45 mV indicate good stability [22]. The pH value of fluid is a key parameter 

which affect the Zeta potential and dispersion stability of nanoparticles or colloidal. In order to 

investigate the stability region and identify the optimized pH values for stable dispersions, Zeta 

potential analyses of nanofluids containing 0.3 vol % SiC-B nanoparticles were measured in the pH 

region from 1 to 12 and is shown in Fig. 9(a). The Iso-Electric Points (IEP) for those B-doped SiC 

nanofluids were around pH 2.4-3.2 and the most stable dispersion was achieved at pH 11. At pH 11, 

absolute Zeta potential values of 35.5 mV and 23.5 mV were observed in the SiC-B0 nanofluid and 

SiC-B4 nanofluid, respectively, indicating a moderate stability while an absolute Zeta potential 

value of 53.5 mV was measured for SiC-B6 nanofluid revealing a superior stability. However, a 
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significant lower absolute Zeta potential (18.5 mV) was found in the SiC-B8 nanofluid. In the 

previous study, it has been found the Zeta potential could be strongly affected by the particle size of 

the dispersions. In the SiC-B8 nanofluid, particle size of the dispersions was over 1 µm, where 

sedimentation and stratification became pronounced and significantly reduced the stability of the 

nanofluids.  

In addition, the concentration effect on the Zeta potential of the SiC-B nanofluids at pH 11 was 

shown in the Fig. 9(b). In the 0.1-0.3 vol.% concentration range, the nanofluids with SiC-B6 was 

found to have highest absolute Zeta potential values compared to the other B doping the SiC 

nanofluids. The absolute Zeta potential value varied from 47 mV to 52 mV indicating a slight 

enhancement of the stability with the increased SiC-B6 nanoparticle concentration. However, in the 

other SiC-B nanofluids, the Zeta potential value did not show improvement within present 

concentration range and the SiC-B8 nanofluids has the lowest Zeta potential value in the whole 

range because of the presence of micron size particles. 
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Fig. 9: Zeta potential measurement of B-doped SiC nanofluids, (a) as a function of pH; (b) with 

different volume fractions of SiC-B nanoparticle dispersions at pH 11. 

Page 16 of 48AUTHOR SUBMITTED MANUSCRIPT - NANO-117514.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



According to the Beer–Lambert’s law [48], the particles concentration is proportional to the 

absorbance of nanofluids. So, the reduction of particles concentration caused by the instability of 

nanofluids can be represented by the decrease in absorbance [49]. The relative concentration (C/C0, 

the ratio of present concentration to initial concentration) of nanofluids was examined by using UV–

vis to describe the stability of SiC-B nanofluids [50]. Fig. 10 illustrates the relative concentrations 

of SiC-B nanofluids versus time. In the first 3~6 days, the relative concentrations of SiC-B 

nanofluids decreased continuously, and then they tended to be stable. The SiC-B6 nanofluid exhibits 

excellent stability performance. In addition to the sedimentation of small amounts of unstable 

nanoparticles, it maintained a higher relative concentration of 94.72 % after 10 days. However, a 

very low relative concentration of 23.64 % was obtained from the SiC-B8 nanofluid after 10 days, 

indicating the poor stability, which is consistent with the analysis of Zeta potential. The 

sedimentation of many unstable larger particles reduced the relative concentration of SiC-B8 

nanofluid. The relative concentrations of SiC-B0 and SiC-B4 nanofluids after 10 days are 69.53 % 

and 66.89 %, respectively, which are higher than SiC-B8 nanofluid and lower than SiC-B6 nanofluid. 

The final relative concentrations of SiC-B nanofluids are similar to their results of Zeta potential. 
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Fig. 10: Relative concentrations f SiC-B nanofluids versus time. 

 

3.4 Thermal conductivity of water-based B-doped SiC nanofluids 

The thermal conductivity of water based B-doped SiC nanofluids measured at temperature of 30 °C 

as a function of volume fractions is shown in Fig. 11(a). The TC values for B-doped SiC nanofluids 

are higher than that of the base fluids. Meanwhile, the TC of the B-doped SiC nanofluids were 

improved with the increased concentration of the dispersed nanoparticles in all cases. A remarkable 
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increase of the TC was observed in the SiC-B6 nanofluid with 0.3 vol.% concentration. Its TC 

increases to the highest 0.83 W/m∙K with 39.3 % enhancement compare to the base fluids. Such 

kind of TC improvement may be due to the better stability and enhanced thermal conductivity of 

the SiC-B6 caused by the doping of B in the SiC lattice. However, in the SiC-B8 nanofluids, the TC 

was significantly reduced due to the decreased stability which has been indicated by the Zeta 

potential measurement. SiC-B8 has the largest crystal size and lowest Zeta potential may lead to 

intense aggregation and sedimentation of SiC-B nanoparticle in the base fluid, leading to lower TC 

value. 
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Fig. 11: Measured thermal conductivity of water based SiC-B nanofluids as a function of (a) 

volume fractions of SiC-B nanoparticle dispersions; (b) temperatures (30-55 °C). 

 

The higher Zeta potential of SiC-B6 nanofluids mean more charge ions are adsorbed on the 

surface of nanoparticles in the same base fluid. Therefore,SiC-B6 nanoparticles possess the thickest 

stern and gouy layer as shown in Fig. 12. When the nanofluid was working, the charge ions adsorbed 

on the surface of nanoparticles transmit heat together with nanoparticles by thermal vibrations, 

leading to enhanced thermal conductivity. Furthermore, by doping B in SiC, the TC of the SiC could 

be improved. As discussed in the 3.1, the shrinkage of the SiC lattice parameter with the increased 

B content suggested that the B element is preferably accommodated in the Si sites because of the 

shorter atomic radius of boron. In the unit cell of the SiC, each C atom is connected to four 

neighboring Si atoms and each Si atom is connected to four C atoms. Therefore, applying B as 

dopant for the SiC, the B atoms will replace the Si atoms and will be connected with neighboring C 

atoms. In this case, the difference in the valence between B3+ and Si4+ will create holes named 
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“bound holes” [29]. Those “bound holes” could accept electrons and favor thermal motion around 

the B atoms which can improve the TC of the SiC-B nanoparticles. 

 

 

Fig. 12: Schematic diagram of thermal conductivity mechanism SiC-B0, SiC-B4 and SiC-B6 

nanofluids 

 

Furthermore, the TC of SiC-B nanofluids with 0.2 vol % nanoparticle concentration measured as 

a function of temperature is shown in Fig. 11(b). In a temperature range of 30～55 °C, the TC of 

SiC-B nanofluids was increased with the increasing temperature in all prepared nanofluids. A 

significant TC increase was observed in the prepared SiC-B6 nanofluids at 55 °C which was due to 

acute Brownian motion at higher temperature. Brownian motion of the nanoparticles became drastic 

with the increased temperature which could provide a much faster heat flow among particles leading 

to the enhancement of the TC [51]. Moreover, as shown in Table 2, compared with our previous 

work and aqueous or nonaqueous SiC nanofluids previously reported in the literature [17], SiC-B6 

nanofluid with just 0.3 vol % in water can improve the thermal conductivity with the enhancement 

up to 39.3 % at 30 °C in this work, further verifying the promising application of SiC-B6 nanofluid 

as thermos-conductive fluids. 

 

Table 2: Comparison of the thermal conductivity of SiC based nanofluids in the literature with 

this work. 

Author Nanofluid Concentration 100(knf-kf)/kf 
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Xie et al. [11] EG/SiC 4.0 vol % 22.90% 

Chen et al. [17] water/SiC 0.3 vol % 13.00% 

Yu et al. [18] EG/SiC 4.0 vol % 67.20% 

Timofeeva et al. [19] water/SiC 4.1 vol % 13.00% 

Chen et al. [20] saline water 0.4 vol % 5.20% 

Li et al. [22] Water/EG/SiC 1.0 vol % 33.84% 

Li et al. [25] EG/SiC 1.0 vol % 16.21% 

Lee et al. [27] water/SiC 3.0 vol % 7.20% 

Ghanbarpour et al. [52] water/SiC 1.0 vol % 29.00% 

Singh et al.[53] water/SiC 7.0 vol % 28.00% 

This work water/SiC 0.3 vol % 39.30% 

 

4. Conclusions 

B-doped SiC nanoparticles with varied B content were prepared by carbon thermal reduction 

reaction at 1500 °C in Ar. The doping of B into SiC phase leads to the shrinkage of crystal lattice of 

SiC and development of crystallization and grain growth of nanoparticles. From the Zeta potential 

measurement, a significant improvement of the stability was observed in SiC-B6 nanofluid at pH 

11. However, poor stability was found in the over B doped SiC nanofluids (SiC-B8) because of the 

formation of micron size SiC-B particles which leaded to severe sedimentation and stratification. 

Furthermore, in the TC measurement of water based SiC-B nanofluids, the TC of the nanofluids 

containing only 0.3 vol.% SiC-B6 nanoparticles was remarkably improved up to 39.3 % at 30 °C 

compared to the base fluids and was further raised with the increased temperature. The improvement 

of TC of SiC-B6 nanofluids were ascribed to the more stable dispersion and more charge ions 

vibration on the surface of nanoparticles as well as the improvement of thermal conductivity of the 

SiC-B dispersions. 
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Abstract 

In this paper, the fabrication and thermal conductivity of water-based nanofluids using boron (B) 

doped SiC as dispersions are reported. Doping B into β-SiC phase leads to the shrinkage of SiC 

lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B atoms (radius: 0.095 nm). 

The presence of B in SiC phase also promotes crystallization and grain growth of obtained particles. 

The tailored crystal structure and morphology of B doped SiC nanoparticles are beneficial for the 

thermal conductivity improvement of the nanofluids by using them as dispersions. Serving B doped 

SiC nanoparticles as dispersions for nanofluids, a remarkable improvement of the stability was 

achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. Dispersing B 

doped SiC nanoparticles in water based fluids, the thermal conductivity of the as prepared 

nanofluids containing only 0.3 vol. % SiC-B6 nanoparticles is remarkably raised up to 39.3 % at 

30 °C compared to the base fluids and is further enhanced with the increased temperature. The main 

reasons for the improvement of thermal conductivity of SiC-B6 nanofluids are more stable 
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dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the 

enhanced thermal conductivity of the SiC-B dispersions. 

Keywords: Boron doping; SiC nanofluids; Stability; Thermal conductivity. 

 

1. Introduction 

Nanofluids, a colloidal mixture with nano-sized solid nanoparticles dispersing in base fluids, have 

aroused great research interests in recent decades because they can significantly improve the heat 

transfer characteristics compare to the traditional heat transfer fluids [1-3]. This salient characteristic 

ensures that the nanofluids have great potential in a variety of thermal exchange systems for 

different industrial applications such as transportation, electronic cooling, energy storage, 

mechanical applications and so on. The nanoparticle dispersions used in the nanofluids are typically 

made of metallic, oxide or non-oxide ceramic nanoparticles while liquids such as water, ethylene 

glycol, oil, etc. are often adopted as base fluids [4-7]. Ceramic nanoparticle dispersions are more 

favorable than metallic ones since they can be easily incorporated into the base fluid with better 

chemical stability over long period of time compared to metallic nanoparticle dispersions[8]. 

Among those ceramic nanoparticle dispersions, nano-sized silicon carbide (SiC) is one of the 

most promising dispersions for nanofluids because of its unique properties. SiC is a covalent bond 

compound that consists of Si and C atoms, with a tetrahedron form in which Si (or C) is the central 

atom [9]. It has a wide bandgap varying from 2.4 to 3.2 eV depending on the polytype (2.4 eV for 

3C-SiC, 3.0 eV for 6H, and 3.2 eV for 4H at 300 K), outstanding electronic features, high thermal 

conductivity (490 W/m·K) [10-13], excellent oxidation resistance and corrosion durability, great 

mechanical properties and excellent chemical and physical stability [9, 10, 14, 15]. Extensive 

research work has been performed to investigate the physical properties of the SiC nanoparticle 

dispersed nanofluids. Effects of crystal form, particle shape, viscosity, volume concentration, 

surfactants, base fluid and temperature on the heat transfer performance were studied [16-27]. For 

example, Timofeeva et al [19] demonstrated that the nanofluids with larger particles size and volume 

concentration provide higher thermal conductivity and lower viscosity increment than those with 

smaller particles size because of the less solid/liquid interfacial area of larger particles. Li et al  

investigated the thermos-physical properties of water and Ethylene Glycol (EG) mixture based SiC 
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nanofluids and found that the thermal conductivity of as prepared nanofluids increased with the 

volume fraction and the highest thermal conductivity enhancement was found to be 33.84 % for the 

nanofluid containing 1 vol.% nanosized SiC particles at 20 oC which indicated that the water/EG 

based SiC nanofluid might have high potential application for energy system.  

The crystal structure, crystallinity and surface property of nanoparticles can be tailored by doping 

amount of adding ions [28]. However, because of the stronger covalent bond between Si atoms and 

C atoms, only atoms of some light elements of II-V groups such as B, Be, N, Al having small 

covalent radius value allowed to be dissolved in the SiC lattice and consequently modify the 

properties of the SiC particle [28-31]. Thus, in the present study, boron (B), an element from group 

III in the periodic table of elements, is considered as a dopant for the SiC nanoparticle aiming to 

improve the surface properties and thermal conductivity of the SiC. Then, those B doped SiC 

nanoparticles (named SiC-B nanoparticles) will be applied as dispersions for water based nanofluids. 

The stability and thermal conductivity of nanofluids contained B-doped SiC nanoparticles were 

determined with different parameters such as B dopant content, the volume concentration of the 

SiC-B nanoparticles and temperature etc. 

 

2. Experimental procedures 

2.1 Preparation of nanoparticles 

In order to prepare B doped SiC nanoparticles, tetraethyl orthosilicate (TEOS, (C2H5)4SiO4), anhydrous 

alcohol, tributyl borate (C12H27BO3), hydrogen chloride (HCl) and hydrofluoric acid (HF), purchased 

from Sinopharm Chemical Reagent Co., Ltd, were adopted as starting materials. In the first step, 25 ml 

TEOS and 15 ml anhydrous alcohol were mixed by magnetic stirring for 10 minutes followed by adding 

15 ml deionized water and 5 ml anhydrous alcohol into the solution and further stirred for 10 min. 

Afterwards, 5 ml HCl and tributyl borate with different volume amount, i.e. 0, 4, 6 and 8 ml (marked as 

B0, B4, B6 and B8) were incorporated into the solution by magnetic stirring for another 10 minutes. 

Finally, 5 g graphite was added in the above solution with 24 hours stirring. The obtained gels were 

converted into xerogels by drying at 80 °C for 12 hours and pulverized into powders by ball milling. The 

obtained powders were loaded into corundum crucibles and placed in a vertical tubular furnace and 

heated to 1500 °C in flowing high purity Ar for 6 hours. The obtained products were further calcined at 
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700 °C in air for 2 hours to decarburize and then soaked in hydrofluoric (HF) for several hours to remove 

SiO2 phase. Finally, the product was cleaned using anhydrous alcohol and deionized water for several 

times and dried at 70 °C for 12 hours. 

2.2 Characterization of nanoparticles 

The phases of obtained nanoparticles were identified by X-Ray Diffraction (XRD Bruker D8 

Advance) with Cu-Kα radiation. XRD data were refined by using a MAUD software in order to 

extract the lattice parameter of the B doped 3C-SiC phase [32]. For all the Rietveld refinements in 

the present work, the two important refinement parameters of the MAUD program, Weighted 

Reliability factor (RWP, %) and Sigma value (sig.) were in the 7.37-9.2 % range and 1.43-1.89 

range, respectively, indicating reliable Rietveld refinements. Scanning Electron Microscopy (SEM, 

FEI novaTM nano SEM 450) and High Resolution Transmission Electron Microscopy (HRTEM 

JEM-1400, JEOL) were applied to characterize the morphologies of the as-synthesized 

nanoparticles. The crystal structure of the as-prepared SiC-B nanoparticles was determined by mean 

of Selected Area Electron Diffraction (SAED) equipped on the TEM device, respectively. The 

elemental composition and bonding configurations of SiC-B nanoparticles were examined by X-ray 

photoelectron spectroscopy (XPS, Kratos, AXIS ULTRADLD) and Raman spectroscopy (Raman, 

HORIBA LabRAM HR Evolution) with a wavelength of 325 nm. A Water Contact Angle (WCA) 

measurement was applied to evaluate the surface property of the as prepared nanoparticles. The 

measurements were carried out based on the static sessile drop method where water droplets with a 

volume of 5-10 μL were used. The photographs of water drops were acquired by optical microscopy 

and three different droplets were applied for each sample.  

2.3 Preparation, stability and thermal conductivity of nanofluids 

Homogeneous and stable water based nanofluids using nanosized B doped SiC particles (named 

SiC-B nanofluids) as dispersions were prepared by the two-step method [33]. Depending on the B 

content in the starting materials, four types of nanofluids (named SiC-B0, SiC-B4, SiC-B6 and SiC-

B8 nanofluids, respectively) containing (0 - 0.3) vol.% nanoparticles were prepared and dispersed 

in deionized water. Ultrasonic homogenization was adopted to achieve a uniform dispersion. Zeta 

potential and light transmission method were adopted to evaluate the stability of the SiC-B 

nanofluids. The Zeta potential was performed on a Zeta potential analyzer (Zetasizer, Malvern Nano 

ZEN 2600), and the effects of the pH values of fluid and concentration were concerned. The light 
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transmission method was conducted by using a UV spectrophotometer (UV–Vis spectrophotometer, 

UNIC UV-2800) between 190 and 1100 nm. Thermal Conductivity (TC) of SiC-B nanofluids was 

measured by using TPS 2500 instrument (Hot Disk model 2500) based on the Transient Plane 

Source Method (TPS) [34]. The flaky test probe was inserted into the prepared nanofluid with 

constant temperature, and the TC value of specimen can be obtained by the current response of 

probe. For each SiC-B nanofluid, 10 TC measurements were performed. 

 

3. Results and Discussion 

3.1 Characterization of the B doped SiC nanoparticles 

Doping B atom into SiC lattice often leads to a distorted crystal structure of SiC and modifies the 

surface property and phase composition of the synthesized products. The XRD analysis of the 

synthesized SiC nanoparticles with variety of B dopant amount (named SiC-B0, SiC-B4, SiC-B6 

and SiC-B8) is shown in Fig. 1. It suggested that well crystallized 3C-SiC (β-SiC) phase was formed 

in all the compositions. A weak diffraction peak of 6H-SiC (α-SiC) at 33.67 ˚ was also detected in 

the present XRD patterns which was due to the presence of the stacking faults and the formation of 

α-SiC phase could be suppressed by doping B element into β-SiC lattice [29, 31, 35]. Such kind of 

microstructure evolutions were also confirmed by TEM observations. The representative HRTEM 

micrographs of synthesized nanoparticles (See Fig. 2) clearly reveal that the stacking faults were 

decreasing gradually as the increasing of B amount. The stacking faults were captured obviously 

from the B free SiC nanoparticle as shown in Fig. 2(a). However, it can be seen fuzzy stacking faults 

in the SiC-B6 nanoparticle (Fig. 2(b)) and a neatly arranged lattice structure in the SiC-B8 

nanoparticle (Fig. 2(c)) indicating that the presence of B into SiC could eliminate the crystal defects 

in the grain and stabilize the 3C-SiC (β-SiC) formation in the present study. 
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Fig. 1: XRD patterns of synthesized B doped SiC nanoparticles. 
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Fig. 2: HRTEM micrograph of the representing stacking faults in synthesized B doped SiC 

nanoparticles, (a) SiC-B0 nanoparticles; (b) SiC-B6 nanoparticles; (c) SiC-B8 nanoparticles. 

 

Another important effect of the B dopant was that the diffraction peaks of 3C-SiC phase were 

shifted towards higher diffraction angles with the increasing B dopant content (see the (111) peak 

in the inset of Fig. 1). Accommodation of B element into the 3C-SiC crystal structure resulted in 

shrinkage of 3C-SiC lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B 

atoms (radius: 0.095 nm) [28, 29]. Rietveld refinement using the XRD data in a MAUD software 

allows to carefully determine the lattice parameter of the 3C-SiC phase.  

As an example, Rieveld refined pattern using the XRD data obtained from SiC-B6 (See Fig. 3) 

demonstrateda well-fitting between the computed pattern (red line) and the experimental pattern 

(blue open circle). Similar Rietveld refinements were performed with other XRD data and the results 

are shown Table 1. As expected, the a lattice parameter of SiC-B extracted from the Rietveld 

refinement reduced from 4.3550 Å for the SiC without B dopant to 4.3467 Å for SiC-B8 

nanoparticle while the inter-planar distance d(111) decreased from 2.5143 Å for the SiC without B 

dopant to 2.5096 Å for the SiC-B8 nanoparticle showing a strong modification of the crystal 
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structure of the 3C-SiC phase.  
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Fig. 3: Rietveld Refinement obtained on the SiC-B6 sample, the red solid line: computed pattern; 

blue open circle: experimental data. 

 

Table 1: a lattice parameter and inter-planar distance d between (111) planes of 3C-SiC extracted 

from Rietveld refinement using a MAUD software. 

Starting materials 

Rietveld Refinement 

a lattice parameter (Å) d(111) (Å) Sig RWP(% ) 

SiC-B0 4.3550(1) 2.5143 1.78 8.39 

SiC-B4 4.3537(5) 2.5136 1.43 7.37 

SiC-B6 4.3496(3) 2.5112 1.59 8.1 

SiC-B8 4.3467(5) 2.5096 1.89 9.2 

 

The B doped SiC nanoparticles were further characterized by using X-ray photoelectron 

spectroscopy (XPS), as shown in Fig. 4. The full XPS spectrum (Fig. 4(a)) shows the existence of 

Si, C, B and O for SiC-B4, SiC-B6 and SiC-B8, and Si, C and O exist in SiC-B0. The fine XPS 

spectra of Si 2p of SiC-B6 nanoparticles is demonstrated in Fig. 4(b). The peak centered at 100.7 

eV corresponds to Si-C bond in SiC, while the peak at 101.8 eV can be assigned to SiOxCy [36], 

which is the intermediate product during the preparation of SiC nanoparticles. The same analysis 

results were obtained from the fine XPS spectra of Si 2p of SiC-B0, SiC-B4 and SiC-B8 (not shown). 
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Fig. 4(c) gives the fine XPS spectra of B 1s of SiC-B6 nanoparticles. Only one sharp peak appears 

at 189.8 eV, which can be assigned to the B-C bond in SiC [37, 38]. No peak is detected around 

187.4 correspond to the B-Si bond and 193.1 eV correspond to the B-O bond [38], which indicates 

that B atoms have incorporated into SiC lattice and substituted Si sites. The same analysis results 

were obtained from the fine XPS spectra of B 1s of SiC-B4 and SiC-B8 (not shown). 
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Fig. 4: XPS spectra of synthesized B doped SiC nanoparticles. 

Fig. 5 gives the Raman spectra of the synthesized B doped SiC nanoparticles in the 600～1800 
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cm-1 region. The Raman spectra shows the presence of sharp peaks at about 790 cm-1 and 966 cm-1 

which correspond to transverse optical (TO) phonon mode and longitudinal optical (LO) phonon 

mode peaks of β-SiC, respectively [39]. The peak at 1590 cm-1 is related to the graphite structure of 

carbon residual in products, and the peak at 1355 cm-1 is similar to the TO peak of diamond, which 

is indicative of the presence of C–C sp3 bonds in β-SiC. Most probably the bonds are caused by 

carbon antisites in the SiC structure because of the lowest defect formation energy (1.1 eV) of CSi 

in β-SiC. The peak intensities at 790 cm-1 and 966 cm-1 increase with the increasement of B dopant 

content. It indicates that B doping is beneficial to the crystallization of SiC, which is in agreement 

with the results of XRD [40]. Additionally, it can be find that the peak at 966 cm-1 (LO) shift to 

higher wavenumber obviously with the increased B dopant content. The LO peak will shift to higher 

wavenumber as the carrier concentration increases [41], so the LO peak shift of B doped SiC 

nanoparticles is due to the substitution for B atoms to Si atoms in SiC lattice to form B acceptor 

doping, resulting in the increase in the carrier concentration of holes. Because of the better 

crystallization of SiC with B doping, the peak intensity at 1355 cm-1 decreases with increasing B 

content, suggesting the decrease of the amount of CSi defects in SiC crystallite. The peak intensity 

at 1590 cm-1 decreases with the increased B dopant content, which is due to the transformation of 

the sp2 carbon to the sp3 carbon due to the B doping [42, 43]. 
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Fig. 5: Raman spectra of synthesized B doped SiC nanoparticles. 

 

The typical microstructures of the obtained SiC-B nanoparticles observed by SEM are revealed 

in Fig. 6. From Fig. 6(a)-(c), the morphologies of SiC-B nanoparticles did not exhibit varied 

perceptibly with the increased B dopant content. SiC-B agglomerations consisting of large amount 
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nanoparticles were observed. Most of the nanoparticles were very smooth with equiaxed round 

shape. However, great grain growth was observed in the SiC-B8 sample (Fig. 6(d)). Large amount 

of micron grains with distinctly different shapes, such as plate like shape were observed 

demonstrating a higher crystallinity and grain growth. Such kind microstructure evolutions were in 

good agreement with the grain development of B doped SiC during the hot pressing processing and 

mechanical activation assisted self-propagating high temperature synthesis. It has been reported that 

the presence of B in SiC matrix could reduce the diffusion activation energy and enhance the mass 

transportation by several orders of magnitude which promoted the grain growth and crystallization 

of SiC grains [29, 44, 45]. Fig. 6(e) and Fig. 6(f) give the magnified images of SiC-B8 sample. Form 

Fig. 6(e), due to the increased tendency of the grains to be crystallized, many larger grains consist 

of multiple small grains can be seen in SiC-B8. The diameter of larger grains is often more than 1 

μm, even close to 2 μm (Fig. 6(f)). 
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Fig. 6: SEM micrographs of synthesized B doped SiC nanoparticles, (a): SiC-B0; (b) SiC-B4; (c) 

SiC-B6; (d) SiC-B8; (d) and (e): Magnified images of SiC-B8. 

 

Indeed, the TEM observations and SAED analysis shown in Fig. 7 further confirmed such kind 

of microstructural evolutions. In the B free SiC nanoparticle (Fig. 7(a)), the grains are typically 

equiaxed shape with an average grain size of 116.33 ± 7.24 nm. However, in the SiC-B4 (not shown) 

and SiC-B6 nanoparticle (Fig. 7(c)), elongated grains with an average size of 172.80 ± 33.20 nm 

were observed which suggested better crystallization and grain growth. So, over doping B in the 

SiC phase would significantly promote grain growth. As shown in the Fig. 7(e), the grains of the 

SiC-B8 particles were grown into micron level which was in agreement with the SEM observation. 

Furthermore, SAED analysis also shows similar traces. Fig. 7(b) shows a representative diffraction 

ring of SiC nanoparticles. However, a clear increase of the diffraction spots was observed in the 

diffraction ring patterns of SiC-B6 (Fig. 7(d)) and Si-B8 (Fig. 7(f)) nanoparticles indicating the 

improved crystallization of the grains. 
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Fig. 7: TEM micrographs and SAED patterns of synthesized B doped SiC nanoparticles, (a) and 

(b) TEM image and SAED pattern obtained on SiC-B0 nanoparticles; (c) and (d) TEM image and 

SAED pattern obtained on SiC-B6 nanoparticles; (e) and (f) TEM image and SAED pattern 

obtained on SiC-B8 nanoparticles. 

 

3.2 The surface property of SiC-B nanoparticles 

The wettability and hydrophobic property of cubic SiC with different B dopant content are important 

factors for water based nanofluid. Water Contact Angle (WCA) are often used to qualify the 

properties. The measured WCA of SiC-B nanoparticles with varied B dopant content are shown in 

Fig. 8. In the B free SiC nanoparticles, the measured WAC was 115.50 °. However, in the B doped 

SiC nanoparticles, the measured WCA of all samples were reduced to almost close to 0 °, 

demonstrating that the particles with B dopant possessed good hydrophilicity. According to the 

wettability mechanisms, the wettability between the solids and liquid were strongly dependent on 

the surface energy of the solid particles. A solid with high surface energy could be easily wetted by 

liquid molecular which was due to the improved spreading parameter [46]. In our study, introducing 

minor B atoms to replace Si atoms, lattice distortions would take place in the SiC nanoparticles 

because a B atom only has three C atoms as neighbors [47]. On the nanoparticles surface and inside, 

the atoms near B atoms deviate from their original stable positions, enhancing the surface energy of 

SiC nanoparticles. Thus, the improved wettability and hydrophobic property of SiC-B nanoparticles 

might be due to the doping the boron into 3C-SiC phase surface which resulted in increase of the 

surface energy.  
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Fig. 8: Measured water contact angles of 3C-SiC-B nanoparticles. 

 

3.3 Stability of SiC-B nanofluids 

The stability of nanofluids is a critical factor that must be concerned because of the sedimentation 

and stratification of nanoparticles which would cause remarkable reduction of the TC of nanofluids 

and a Zeta potential analysis is commonly applied to evaluate the stability of the nanofluids. In 

general, a nanofluids with an absolute Zeta potential above 30 mV is considered to have moderate 

stability and those above 45 mV indicate good stability [22]. The pH value of fluid is a key parameter 

which affect the Zeta potential and dispersion stability of nanoparticles or colloidal. In order to 

investigate the stability region and identify the optimized pH values for stable dispersions, Zeta 

potential analyses of nanofluids containing 0.3 vol % SiC-B nanoparticles were measured in the pH 

region from 1 to 12 and is shown in Fig. 9(a). The Iso-Electric Points (IEP) for those B-doped SiC 

nanofluids were around pH 2.4-3.2 and the most stable dispersion was achieved at pH 11. At pH 11, 

absolute Zeta potential values of 35.5 mV and 23.5 mV were observed in the SiC-B0 nanofluid and 

SiC-B4 nanofluid, respectively, indicating a moderate stability while an absolute Zeta potential 

value of 53.5 mV was measured for SiC-B6 nanofluid revealing a superior stability. However, a 
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significant lower absolute Zeta potential (18.5 mV) was found in the SiC-B8 nanofluid. In the 

previous study, it has been found the Zeta potential could be strongly affected by the particle size of 

the dispersions. In the SiC-B8 nanofluid, particle size of the dispersions was over 1 µm, where 

sedimentation and stratification became pronounced and significantly reduced the stability of the 

nanofluids.  

In addition, the concentration effect on the Zeta potential of the SiC-B nanofluids at pH 11 was 

shown in the Fig. 9(b). In the 0.1-0.3 vol.% concentration range, the nanofluids with SiC-B6 was 

found to have highest absolute Zeta potential values compared to the other B doping the SiC 

nanofluids. The absolute Zeta potential value varied from 47 mV to 52 mV indicating a slight 

enhancement of the stability with the increased SiC-B6 nanoparticle concentration. However, in the 

other SiC-B nanofluids, the Zeta potential value did not show improvement within present 

concentration range and the SiC-B8 nanofluids has the lowest Zeta potential value in the whole 

range because of the presence of micron size particles. 
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Fig. 9: Zeta potential measurement of B-doped SiC nanofluids, (a) as a function of pH; (b) with 

different volume fractions of SiC-B nanoparticle dispersions at pH 11. 
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According to the Beer–Lambert’s law [48], the particles concentration is proportional to the 

absorbance of nanofluids. So, the reduction of particles concentration caused by the instability of 

nanofluids can be represented by the decrease in absorbance [49]. The relative concentration (C/C0, 

the ratio of present concentration to initial concentration) of nanofluids was examined by using UV–

vis to describe the stability of SiC-B nanofluids [50]. Fig. 10 illustrates the relative concentrations 

of SiC-B nanofluids versus time. In the first 3~6 days, the relative concentrations of SiC-B 

nanofluids decreased continuously, and then they tended to be stable. The SiC-B6 nanofluid exhibits 

excellent stability performance. In addition to the sedimentation of small amounts of unstable 

nanoparticles, it maintained a higher relative concentration of 94.72 % after 10 days. However, a 

very low relative concentration of 23.64 % was obtained from the SiC-B8 nanofluid after 10 days, 

indicating the poor stability, which is consistent with the analysis of Zeta potential. The 

sedimentation of many unstable larger particles reduced the relative concentration of SiC-B8 

nanofluid. The relative concentrations of SiC-B0 and SiC-B4 nanofluids after 10 days are 69.53 % 

and 66.89 %, respectively, which are higher than SiC-B8 nanofluid and lower than SiC-B6 nanofluid. 

The final relative concentrations of SiC-B nanofluids are similar to their results of Zeta potential. 
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Fig. 10: Relative concentrations f SiC-B nanofluids versus time. 

 

3.4 Thermal conductivity of water-based B-doped SiC nanofluids 

The thermal conductivity of water based B-doped SiC nanofluids measured at temperature of 30 °C 

as a function of volume fractions is shown in Fig. 11(a). The TC values for B-doped SiC nanofluids 

are higher than that of the base fluids. Meanwhile, the TC of the B-doped SiC nanofluids were 

improved with the increased concentration of the dispersed nanoparticles in all cases. A remarkable 
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increase of the TC was observed in the SiC-B6 nanofluid with 0.3 vol.% concentration. Its TC 

increases to the highest 0.83 W/m∙K with 39.3 % enhancement compare to the base fluids. Such 

kind of TC improvement may be due to the better stability and enhanced thermal conductivity of 

the SiC-B6 caused by the doping of B in the SiC lattice. However, in the SiC-B8 nanofluids, the TC 

was significantly reduced due to the decreased stability which has been indicated by the Zeta 

potential measurement. SiC-B8 has the largest crystal size and lowest Zeta potential may lead to 

intense aggregation and sedimentation of SiC-B nanoparticle in the base fluid, leading to lower TC 

value. 
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Fig. 11: Measured thermal conductivity of water based SiC-B nanofluids as a function of (a) 

volume fractions of SiC-B nanoparticle dispersions; (b) temperatures (30-55 °C). 

 

The higher Zeta potential of SiC-B6 nanofluids mean more charge ions are adsorbed on the 

surface of nanoparticles in the same base fluid. Therefore,SiC-B6 nanoparticles possess the thickest 

stern and gouy layer as shown in Fig. 12. When the nanofluid was working, the charge ions adsorbed 

on the surface of nanoparticles transmit heat together with nanoparticles by thermal vibrations, 

leading to enhanced thermal conductivity. Furthermore, by doping B in SiC, the TC of the SiC could 

be improved. As discussed in the 3.1, the shrinkage of the SiC lattice parameter with the increased 

B content suggested that the B element is preferably accommodated in the Si sites because of the 

shorter atomic radius of boron. In the unit cell of the SiC, each C atom is connected to four 

neighboring Si atoms and each Si atom is connected to four C atoms. Therefore, applying B as 

dopant for the SiC, the B atoms will replace the Si atoms and will be connected with neighboring C 

atoms. In this case, the difference in the valence between B3+ and Si4+ will create holes named 
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“bound holes” [29]. Those “bound holes” could accept electrons and favor thermal motion around 

the B atoms which can improve the TC of the SiC-B nanoparticles. 

 

 

Fig. 12: Schematic diagram of thermal conductivity mechanism SiC-B0, SiC-B4 and SiC-B6 

nanofluids 

 

Furthermore, the TC of SiC-B nanofluids with 0.2 vol % nanoparticle concentration measured as 

a function of temperature is shown in Fig. 11(b). In a temperature range of 30～55 °C, the TC of 

SiC-B nanofluids was increased with the increasing temperature in all prepared nanofluids. A 

significant TC increase was observed in the prepared SiC-B6 nanofluids at 55 °C which was due to 

acute Brownian motion at higher temperature. Brownian motion of the nanoparticles became drastic 

with the increased temperature which could provide a much faster heat flow among particles leading 

to the enhancement of the TC [51]. Moreover, as shown in Table 2, compared with our previous 

work and aqueous or nonaqueous SiC nanofluids previously reported in the literature [17], SiC-B6 

nanofluid with just 0.3 vol % in water can improve the thermal conductivity with the enhancement 

up to 39.3 % at 30 °C in this work, further verifying the promising application of SiC-B6 nanofluid 

as thermos-conductive fluids. 

 

Table 2: Comparison of the thermal conductivity of SiC based nanofluids in the literature with 

this work. 

Author Nanofluid Concentration 100(knf-kf)/kf 
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Xie et al. [11] EG/SiC 4.0 vol % 22.90% 

Chen et al. [17] water/SiC 0.3 vol % 13.00% 

Yu et al. [18] EG/SiC 4.0 vol % 67.20% 

Timofeeva et al. [19] water/SiC 4.1 vol % 13.00% 

Chen et al. [20] saline water 0.4 vol % 5.20% 

Li et al. [22] Water/EG/SiC 1.0 vol % 33.84% 

Li et al. [25] EG/SiC 1.0 vol % 16.21% 

Lee et al. [27] water/SiC 3.0 vol % 7.20% 

Ghanbarpour et al. [52] water/SiC 1.0 vol % 29.00% 

Singh et al.[53] water/SiC 7.0 vol % 28.00% 

This work water/SiC 0.3 vol % 39.30% 

 

4. Conclusions 

B-doped SiC nanoparticles with varied B content were prepared by carbon thermal reduction 

reaction at 1500 °C in Ar. The doping of B into SiC phase leads to the shrinkage of crystal lattice of 

SiC and development of crystallization and grain growth of nanoparticles. From the Zeta potential 

measurement, a significant improvement of the stability was observed in SiC-B6 nanofluid at pH 

11. However, poor stability was found in the over B doped SiC nanofluids (SiC-B8) because of the 

formation of micron size SiC-B particles which leaded to severe sedimentation and stratification. 

Furthermore, in the TC measurement of water based SiC-B nanofluids, the TC of the nanofluids 

containing only 0.3 vol.% SiC-B6 nanoparticles was remarkably improved up to 39.3 % at 30 °C 

compared to the base fluids and was further raised with the increased temperature. The improvement 

of TC of SiC-B6 nanofluids were ascribed to the more stable dispersion and more charge ions 

vibration on the surface of nanoparticles as well as the improvement of thermal conductivity of the 

SiC-B dispersions. 
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