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a b s t r a c t

This work presents a method to emulate the flow dynamics of physically based hydrodynamic simulators
under variations of time-dependent rainfall and parametric scenarios. Although surrogate modelling is
often employed to deal with the computational burden of this type of simulators, common techniques
used for model emulation as polynomial expansions or Gaussian processes cannot deal with large
parameter space dimensionality. This restricts their applicability to a reduced number of static param-
eters under a fixed rainfall process. The technique presented combines the use of a modified Unit
Hydrograph (UH) scheme and a polynomial chaos expansion (PCE) to emulate flow from physically based
hydrodynamic models. The novel element of the proposed methodology is that the emulator compen-
sates for the errors induced by the assumptions of proportionality and superposition of the UH theory
when dealing with non-linear model structures, whereas it approximates properly the behaviour of a
physically based simulator to new (spatially-uniform) rainfall time-series and parametric scenarios. The
computational time is significantly reduced, which makes the practical use of the model feasible (e.g. real
time control, flood warning schemes, hydraulic structures design, parametric inference etc.). The
applicability of this methodology is demonstrated in three case studies, through the emulation of a
simplified non-linear tank-in-series routing structure and of the 2D Shallow Water Equations (2D-SWE)
solution (FLOW-R2D) in two computational domains. Results indicate that the proposed emulator can
approximate with a high degree of accuracy the behaviour of the original models under a wide range of
rainfall inputs and parametric values.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The simulation of surface water flow dynamics in urban and
rural catchment scale is of great importance in water management.
During the past four decades, several distributed or semi-
distributed models, having a physical basis, have been developed,
such as MIKE-SHE, SWAT or TOPKAPI software (Abbott et al., 1986;
Mazzetti, 2015; Neitsch et al., 2002) among others. These con-
ceptualisations simulate several processes (infiltration,
.M. Moreno-Rodenas).

Ltd. This is an open access article u
interception, snow melting, overland flow, groundwater flow, etc.)
included in the water cycle using either differential or empirical
equations. Usually, the overland flow propagation is approximated
by simplified methods, such as the kinematic or dynamic wave
equations and therefore cannot capture the non-linearities
observed, especially in extreme events such as floods (Costabile
et al., 2012a; Liang, 2010; Singh et al., 2014).

In the last few years, there is an increasing trend to simulate
overland flow dynamics at catchment scale using the full form of
the two-dimensional Shallow Water Equations (2D-SWE). Fiedler
and Ramirez (2000) and Esteves et al. (2000) represent early at-
tempts to use numerical solvers based on the full form of 2D-SWE
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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to simulate the rainfall-runoff process in micro-scale catchments.
The rapid increase in computational power led to several examples
of application to real catchments (Costabile et al., 2012b, 2013;
Liang et al., 2007; Nguyen et al., 2016; Singh et al., 2014).

Although the implementation of this kind of simulators is
currently feasible in large-scale scenarios, the required computa-
tional time is a substantial limitation (in the order of hours-days).
Therefore, the use of this type of physically based flow simulators
in practice is still hampered (e.g. hydraulic design, real-time flood
warning schemes, uncertainty analysis or parametric calibration).

Accelerating the sampling of hydrodynamic models is an area of
high interest. Several approaches focus on exploiting the benefits of
high performance computing (Kalyanapu et al., 2011; Vacondio
et al., 2014) or efficient grid definitions (Stelling, 2012). These
strategies reduce the time required for computing events of inter-
est, however the computational burden is still prohibitive for
intensive model evaluation.

The use of surrogate modelling is an alternative to approximate
the behaviour of dynamic simulators at output variables of interest.
Several authors have presentedmethods inwhich a large physically
based model is substituted by a fast surrogate conceptual version
(Bermúdez et al., 2018; Meert et al., 2018; van Daal-Rombouts et al.,
2016). Other strategy focuses on learning directly the behaviour of
the original simulator (building an interpolator between the para-
metric and output spaces). For instance, Wang et al. (2015) pre-
sented a data-driven emulator to facilitate uncertainty analysis in
hydrologic modelling. A similar application for groundwater
modelling can be found in Laloy et al. (2013). Carbajal et al. (2017)
described a comparison of surrogate methods (mechanistic vs.
data-driven) based on Gaussian processes to emulate the dynamics
of urban drainage routing models. More applications can be found
in urban hydrology (Machac et al., 2016a, 2016b). These methods
have the advantage of representing a mapping between model
parameters and the simulator output space, which allow for a direct
use in calibration, inference or uncertainty analysis schemes.
However, they are generally hard-bounded to the rainfall time-
series in which they were trained. This means that the model
emulator is only valid for changes in the parametric space under a
particular rainfall event and boundary conditions (outside those
conditions a new sampling and training would be necessary). This
has posed a strong limitation on the application of data-driven
emulators in hydrology.

A potential approach to incorporate the rainfall variability in the
data-driven emulator is to encode the rainfall process as a set of
discrete parameters (representing rainfall intensity at each time
step), which is added to themodel parametric space to be emulated
(Mahmoodian et al., 2017). However, common techniques used for
model emulation as polynomial chaos expansion (PCE) or Gaussian
processes (GP) are sensitive to the dimensionality of the parameter
space, allowing only for a reduced number of parameters to be
accounted for. This technique is limited to only short rainfall events,
or very coarsely discretised. Another surrogate approach could be
the use of recurrent neural networks (RNN, e.g. long-short term
memory configurations (Hochreiter and Schmidhuber, 1997)).
These structures are designed to accommodate time-dependent
processes. However, RNN implementations are expected to
require a prohibitive number of simulator samples to guarantee
that variations of time-dependent rainfall are sufficiently explored.
Sajikumar and Thandeveswara (1999) provided an early example
describing a rainfall-runoff process using a neural network by
learning patterns from monitoring data. Although this could
replicate the behaviour of a given status of the system, it did not
allow for representing parameter variations or virtual changes in
the system.

A way to cope with the approximation of physically-based flow
simulators responses to new rainfall series is the hybrid combina-
tion of the hydrological Unit Hydrograph (UH) theory with hydro-
dynamic modelling (Bellos and Tsakiris, 2016). With this technique,
an UH is derived using a physically based 2D hydrodynamic
simulator. Then, the rainfall event is simulated abstracting from the
precipitation losses due to infiltration, sewer drainage, interception
etc., and composing the total flow response using proportionality
and superposition of the UH. With this scheme a flood event can be
readily evaluated. Nevertheless, the derivation of the UH is
parameter dependent, and thus practical model use is still severely
hampered (e.g. quantification of uncertainty, sensitivity analysis,
calibration, etc.). Bellos et al. (2017) addressed this issue by gen-
eralising the UH derivation with the use of a surrogate model for a
uniform distribution of Manning coefficient values, thus including
the parameter dependency. However, the solution of the 2D-SWE is
often highly non-linear, which is strongly manifested when dealing
with small catchments (characterised by fast response). This vio-
lates the assumption of linearity in the UH theory, thus rendering
significant errors in the estimated hydrograph.

In this work, we present a new methodology to emulate phys-
ically based hydrodynamic simulators. This is based on encoding
the rainfall process as unitary responses through a dedicated
sampling scheme and the use of a polynomial chaos expansion
surrogate model which compensates for the effect of non-
linearities due to the superposition and proportionality composi-
tion of the UH. The mismatch observed in the results derived by the
hybrid technique and the full implementation of the physically
based model in previous attempts (Bellos and Tsakiris, 2016; Bellos
et al., 2017) is significantly reduced. This new surrogate technique
allows the modeller to capture the behaviour of the real model to
variations of time-dependent rainfall (spatially uniform) and
parameter scenarios at a significant computational time reduction
(in the order of milliseconds-seconds).

In order to demonstrate the presented methodology, we
compare the results derived by a simulator, the conventional use of
UH linear theory and the new proposed surrogate model, in three
case studies: a synthetic catchment which is represented by a
simplified non-linear tank-in-series flow routing structure and two
catchment geometries where the rainfall-runoff process is
described by the full form of 2D-SWE.

2. Methods and materials

2.1. Model based unit hydrograph

The Unit Hydrograph (UH) theory (Dooge, 1959) is based on the
assumption that there is a unique runoff response after a unitary
rainfall depth, during a specific time interval, for every catchment.
A commonly accepted unitary depth is 10mm (l,m�2Þ of rainfall,
whereas the time interval varies and depends on the characteristics
of the catchment, such as the size, time of concentration etc. With a
given UH of a catchment, every runoff can be derived using as input
data the rainfall event, based on the principles of the proportion-
ality and superposition. The runoff response for rainfall depth in
every time step is derived assuming that this rainfall depth is
proportional to the corresponding unitary depth and therefore the
responses should be proportional as well (principle of propor-
tionality). The individual runoff responses are composed in time to
represent the response for the given rainfall event (principle of the
superposition).

The UH theory has been often used to approximate the behav-
iour of catchments where limited data is available (ungauged ba-
sins). This is done using synthetic UHs, which are derived based on
the catchment's characteristics (e.g. Snyder's US or the Soil Con-
servation Service UH, etc.). Alternatively, UHs of several durations
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can be derived from monitoring data when available. In this
particular case, the objective is to represent the behaviour of a
hydrodynamic simulator. Thus, a set of tailored simulations can be
drawn from the model in order to capture its unitary reaction by
using the principles of UH theory. From this set of samples, an
emulator structure was applied to generate an interpolation map
between new parameter and rainfall scenarios and the approxi-
mated response of the hydrodynamic simulator.
2.2. Polynomial chaos expansion (PCE)

Aweighted sum of orthogonal polynomials can be used to link a
vector of random variables to space-time model outputs (Xiu and
Karniadakis, 2003; Xiu, 2010) if the mapping is smooth. In this
case, we denote a deterministic flow model M as:

QðtÞ ¼ M½m0; IðtÞ; q�; (1)

which has a set of initial conditions m0, time dependent inputs
IðtÞ2ℝm and a vector of model parameters q2ℝd and which solu-
tion renders the simulated flow dynamics at a certain location,
QðtÞ2ℝm. Then, we aim to find a linear combination of polynomials
(only dependent on the parametric space) which approximate a
map between q and Qðt; qÞ as:

Qðt; qÞzcðtÞT,fðqÞ (2)

in which fðqÞ2ℝNx1 is a series of N orthogonal polynomials con-
structed as basis of the joint probability density function of the
parameter space q and cðtÞ2ℝNx1 is a vector of coefficients
ciðtÞ2ℝm to be fitted to the particular model response.

The output space Qðt; qÞ is interpolated through aweighted sum
of polynomials. The fitting process is performed by deriving the
model output at i ¼ 1…K known parameter combinations (q ¼ qi)
as M½m0; IðtÞjq ¼ qi� ¼ QðtjqiÞ. The model samples and the poly-
nomial approximation can be written as a system of equations:

2
4
Qðtjq1Þ

«
QðtjqKÞ

3
5 ¼

2
4
f1ðq1Þ / fNðq1Þ

« 1 «
f1ðqKÞ / fNðqKÞ

3
5,

2
4
c1ðtÞ
«

cNðtÞ

3
5; (3)

in which the only unknown factors are the coefficients ciðtÞ. This
system can be expressed in matrix form as:

Q ðtjqÞ ¼ PðqÞ,cðtÞ; (4)

for which P2ℝKxN is the matrix of polynomials values corre-
sponding to each parameter sample. By ensuring that the system is
overdetermined (K >N), this system can be approximated by a least
squares minimisation:

cðtÞ ¼
�
PðqÞT,PðqÞ

��1
,PðqÞT,Q ðtjqÞ; (5)

thus the values of cðtÞ are approximated so they map the selected
polynomial basis fðqÞ and the sampled output series Q ðtjqÞ. Then
the expression of equation (2) can be used to interpolate the tar-
geted output series to different values of the parameter set. This is
known as a non-intrusive collocation method, other fitting
methods and sampling strategies are discussed in Hadigol and
Doostan (2018).

The orthogonal polynomials should be chosen as basis of the
parameter probabilistic space. Xiu and Karniadakis (2002) provided
a range of known polynomial basis and stochastic variable distri-
butions. In this case, training parameter distributions were always
considered independent and uniformly distributed. This has
associated the Legendre polynomials. The creation of orthogonal
polynomial series was done using the implementation of Gautschi
(1994), which uses a three-term recursion relation for univariate
polynomials:

fnþ1ðqiÞ ¼ fnðqiÞðqi � AnÞ � fn�1ðqiÞBn

An ¼
E
h
qif

2
n

i

E
h
f2
n

i ;Bn ¼
E
h
f2
n

i

E
h
f2
n�1

i;f�1 ¼ 0; f0 ¼ 1
(6)

where fnðqiÞ represents the nth polynomial of the ith parameter. As
the parametric space is considered stochastically independent, the
multivariate orthogonal expansionwas obtained bymultiplying the
univariate ones:

fnðqÞ ¼ fnðq1Þ/fnðqdÞ: (7)

In practice, the polynomial series is truncated at a certain order
p, which is selected such that a desired level of accuracy is achieved.
Then, the number of polynomials (and thus of associated ciðtÞ to be
approximated) is:

N ¼ ðpþ dÞ!
p!d!

(8)

which is related to the polynomial truncation order p and to the
dimensionality of the parameter vector d.
2.3. Emulator structure

A polynomial chaos emulator can be used to represent an
interpolation map between model parameters and the model
unitary hydrograph response (Bellos et al., 2017). This is done by
propagating a unitary rainfall event of 10mmat combinations of
model parameter q ¼ qi and fitting a PCE (as described previously)
to the output unitary response, UH10mmðt;qÞ:

UH10mmðt; qÞzc10mmðtÞT,f10mmðqÞ: (9)

The total hydrograph shape is then reconstructed for any given
rainfall event and combination of parameters. This relies on the
proportionality and superposition assumptions of the UH theory,
which has proven insufficient to capture the real model dynamics
in previous attempts (Bellos et al., 2017). The observed error in the
comparison between the hydrodynamic simulator and the
composition of the UHwas separated in two sources: a) error due to
the proportionality assumption; b) error due to the superposition
assumption.

According to the proportionality principle, the UH relates line-
arly to rainfall intensity. This assumption is not valid when dealing
with a non-linear model structure. In order to correct for this error
source, the behaviour of the unitary hydrograph to rainfall intensity
was transferred to the PCE emulator. This was achieved by training
the emulator through variations of the model parametric space and
of the unitary rainfall intensity (R) (instead of using a fixed 10mm
event to derivate the UH):

UHPðt; q;RÞzcPðtÞT,fPðq;RÞ: (10)

With this approach, the emulator UHP included the proportional
non-linear effect. This corrected for the proportionality error of the
classical UH theory, which was tested by reproducing the behaviour
of a non-linear tank-in-series model to variations of unitary rainfall
intensity.

On the other hand, the superposition error is linked to the
model dynamic state. According to UH theory, the flow response is
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unitary and independent in previous states and therefore fails to
capture non-linear processes. In order to transfer the information of
the system state to the emulator structure, we propose a new
method to sample the real simulator and to build a unitary rainfall
emulator (UHPS). Fig. 1 depicts the emulator development process.
This structure was based on two simplification phases. First, a PCE
emulator scheme was built following these steps: 1) a series of
samples were drawn from the model parametric space q ¼ qi and
from two extra parameters R and RP (which represented two
consecutive unitary rainfall steps with duration Dt, selected
following the UH theory). 2) Two samples were drawn from the
original simulator using the same parameter sample (qi) but using a
rainfall time-series input of RT ðtÞ ¼ ½Rp; R; 0; 0…�Dt and
Fig. 1. Emulator conceptual scheme for the correction of su
RpðtÞ ¼ ½Rp; 0; 0; 0…�Dt respectively (which are vectors of input
rainfall intensity at a given Dt time step). The difference between
the two output hydrographs was computed as Mðq ¼ qi; RT ðtÞÞ�
Mðq ¼ qi; RPðtÞÞ, which provided an approximation of the state
response of the model equations when a rainfall intensity Rp pre-
ceded a rainfall intensity R. This response contains the propor-
tionality non-linear error information along with the superposition
error (at one rainfall lag). The set of unitary responses was stored in
a database.

3) The model unitary responses from the database were used to
train a PCE emulator as:

UHPS
�
t; q;R;Rp

�
zcpsðtÞT,fps

�
q;R; Rp

�
: (11)
perposition and proportional non-linear errors (UHPS).
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4) The performance of the unitary emulator was tested on
several samples, which were not used to train the model. Once
fitted the interpolator (PCE), a second simplification phase is per-
formed; 5) the unitary responses from UHPS are used to reconstruct
new rainfall-parametric scenarios; 6) Effective rainfall is computed
(if required) and 7) superposing all unitary model responses ob-
tained from equation (11), which corresponds to the unitary
response of the model under the parameter set q and the given
rainfall event. Additionally, initial boundary conditions can also be
included in the emulation phase by conceptualising them as extra
model parameters.
Table 1
Parameter probability distributions used for training the simplified model emulator.

Parameter a (�) ar (�) b (�) A (km2) R (mm) Rp (mm)

Pdf Uniform Uniform Uniform Uniform Uniform Uniform
Range [1, 1.6] [1.8, 2.5] [1.1, 1.2] [4.5, 5.5] [0.2, 20] [0, 20]
2.4. Case studies

2.4.1. Simplified flow model
In order to illustrate the impact of non-linearities in the basic

assumptions of the unit hydrograph theory (superposition and
proportionality) a basic synthetic model was used (Fig. 2). This
simple rainfall-runoff model structure was conceptualised as a
chain of non-linear tanks:

dVi

dt
¼ Qin � Qout

Qout ¼ a,Vb
i

; (12)

where Vi represents the volume stored at the ith tank, Qin the flow
entering in the tank from the previous structure and Qout repre-
sents the outflow, which follows a non-linear relationship with the
current tank storage (Eq. (1)). The discharge is driven by a pro-
portional coefficient a and an exponential parameter b. The runoff
was calculated as Qin tanks ¼ A,R from a certain area (A), and was
separated in two lines of five and three tanks, which converged at
the outflow (Fig. 2).

Both tank lines shared the exponential parameter b but had
different proportional coefficients, namely a and ar . Infiltrationwas
set to 0. Thus the model was composed by a set of Ordinary Dif-
ferential Equations (ODEs):

Qoutflow ¼ Msimplifiedða; ar; b; A;RðtÞÞ; (13)

represented by Msimplified which depends in the set of tank-
parameters, the catchment's area A and in a rainfall input RðtÞ.
The parameters weremanually selected (a ¼ 1:4; ar ¼ 2:2; b ¼ 1:2
and A ¼ 5) in order to force a non-linear dynamic behaviour.
Rainfall time-series were supplied with a frequency of 10min. The
effect of non-linearities and its correction through the use of the
proposed emulator were computed on the simplified model at the
fixed set of parameters.

Additionally an example is provided inwhich the full parameter
space was used as an input for the emulator. The surrogate struc-
turewas trained using 3000 samples drawn from a Latin hypercube
sampling (LHS) scheme of the full parametric space ða; ar ; b; A; R;
RpÞ, where the first four elements referred to model parameters,
Fig. 2. Scheme for a simplified/lum
and the last two encoded the rainfall process. Distribution and
ranges used at the training dataset are described in Table 1.

An uncertainty analysis schemewas also implemented using the
emulated structure from an elicited parameter probability distri-
bution (Table 2). A total of 1000 samples were drawn from aMonte-
Carlo sampling scheme assuming independency of parameters.
This contained the four model parameters (a; ar; A; b) and a rainfall
multiplier (Krainfall), which modified the rainfall input.

2.4.2. Physically based flow model
The applicability of the proposed emulation technique in

physically based real scale models was tested by representing the
dynamic response of the full solution of the 2D-SWE in two syn-
thetic studies. A computational domain was created using a para-
bolic shape to represent a surface elevation model (Fig. 3). The
surface elevation model zðx; yÞ (in meters) adopted the following
form:

zðx; yÞ ¼ ða� a0,xÞ,ðy� y0Þ2 � b,xþ c (14)

where a ¼ 10�4; a0 ¼ 1:5x10�7; y0 ¼ 250; b ¼ 5x10�3, and c ¼
10. The computational domain was discretised in square-shaped
cells of 10� 10m, whereas a gate of 100m width was located at
the outlet of the catchment where runoff was measured. The sys-
tem had a surface of 0.26 km2, which is representative of a small
catchment characterised by fast response (Model SWE_parabola).
Additionally, a set of five obstacles (square reflective boundaries)
was located near the centre of the computational domain (Model
SWE_urban).

The numerical solver used for the flow dynamics simulationwas
the FLOW-R2D model, which solves the full form of 2D-SWE. The
implementation consisted on the Finite Difference Method and a
modified version of McCormack numerical scheme (Bellos and
Tsakiris, 2015). The time step was Dt¼ 0.01 s, whereas for the
diffusion factor a typical value of u¼ 0.999 was selected. The
Manning equation was used to represent friction. The threshold
which distinguishes wet and dry cells was selected equal to
hdry¼ 10�4m. For numerical reasons, an initial thin film of water
equal to 1.1� 10�5m was set up in the catchment. This film was
infiltrated in the first 15min through the sink term of the mass
equation of the 2D-SWE in a constant rate, in order to preserve
mass balance between rainfall and runoff volumes. The boundaries
of the catchment were set as walls through the reflection boundary
technique in order to preserve mass balance as well, whereas the
outlet of the catchment was set as open boundaries (Tsakiris and
Bellos, 2014). A rainfall input series with a time step of 15min.

The emulator scheme was implemented using variations of the
ped non-linear flow model.



Fig. 3. Surface elevation and boundary conditions of the two 2D-SWE simulators.

Table 2
Parameter marginal distributions (simplified model uncertainty propagation).

Parameter a (�) ar (�) A (km2) b (�) Krainfall (�)

Pdf truncNorm truncNorm truncNorm Uniform Uniform
Parameters m ¼ 1:4s ¼ 0:014 m ¼ 2:2s ¼ 0:088 m ¼ 5s ¼ 0:2 e e

Range [1.2, 1.5] [1.8, 2.5] [4.5, 5.5] [1.18, 1.95] [0.95, 1.05]
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surface manning roughness (n) as a model parameter (constant in
the spatial domain). Table 3 presents the parametric distributions
at training.

A total of 300 samples were performed on the two simulators
(drawn from a LHS). The 2D-SWE simulator generated numerical
instabilities at very low rainfall intensities. Thus the sampling
scheme was reduced to Rp >0:2 and R>0:2. From the remaining
dataset, 264 samples were used for training and 30 for validation of
the PCE accuracy. A 5th order Legendre polynomial set was used in
both cases. Additionally, a validation set of rainfall and parametric
scenarios (Table B.1) was used to compare the fit between the
original simulators and the proposed surrogate models.

2.5. Performance indicators

The fit between model and emulator derived flow time series
was assessed by the Nash-Sutcliffe Efficiency (NSE, Nash and
Sutcliffe (1970)):

NSE ¼ 1�
PT

t¼0ðEt � StÞ2
PT

t¼0

�
St � S

�2; (15)

where Et denoted the emulated and St the simulated values at time
t, and S the mean value of the simulated series.
Table 3
Parameter probability distributions used for training the 2D-SWE model emulator.

Parameter
n
�
s,m

�
1
3
� R (mm) Rp (mm)

Pdf Uniform Uniform Uniform
Range [0.03, 0.05] [0.01, 20] [0, 20]
Besides, a Peak relative error (PRE) index was used in order to
assess the accuracy of the flow maximum peak emulation, which
follows:

PRE ¼ Speak � Epeak
Speak

; (16)

where Speak and Epeak are the simulated and emulated values
associated with the peak flow of the hydrograph.

3. Results and discussion

3.1. Correcting UH errors due to non-linearities

The simplified tank-in-seriesmodel was used to test the effect of
superposition and proportionality assumptions in the reconstruc-
tion of hydrographs based in the UH linear theory. The model pa-
rameters were defined as described in thematerials section to force
a non-linear routing process (b¼ 1.2). Fig. 4 shows the mismatch
between a UH linear derived hydrograph reconstruction (from a 10
mm/10min rainfall) and the original simulator. In the x-axis, a set
of unitary (10min) rainfall events is supplied with a ramping in-
tensity (between 1 and 50mm). The color-map represents hydro-
graph response. The normalised residuals at each time-step are
shown below, which were computed as:

~εt ¼ St � Et
St

; (17)

where St is the flow simulated at time t and Et the corresponding
emulated values. In the right (Fig. 4) the simulated, approximated
(by the UH theory) and residual values are shown for a 30mm
unitary rainfall. The residual structure indicates that for rainfall



Fig. 4. Effect of non-linearities in the proportionality assumption of the unit hydrograph theory at the simplified model.
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intensities above or below 10mm the performance of the UH
reconstruction rapidly decreases. This is due to the non-linear
behaviour of the flow propagation, which explains why higher in-
tensities are heavily underestimated and lower intensities over-
estimated through the linear representation of the UH.

Fig. 5 shows the effect of proportionality when using the UHP
emulator. In this case the rainfall intensity is included in the sur-
rogate structure, and thus the unitary response derivation repre-
sents the effect of non-linearities due to proportionality. The
residual structure indicates a high similarity between the emulator-
simulator outputs, when using only unitary rainfall at varying
intensities.

Fig. 6 depicts the errors due to the superposition of the unit
hydrograph. In the x-axis a set of 100 rainfall events with varying
duration and intensity were used as input for the simulator and for
the UHP emulator. The rainfall events had a random duration of
between 10 and 50min and a rainfall intensity ranging from 2 to 18
mm/10min. The x-axis was sorted by rainfall volume. In the right,
the effect of a constant rainfall intensity of 12 mm/10min during
30min is shown. The effect of non-linearities is still present in this
case, although the proportional factor was corrected as shown in
Fig. 5. Correction of the proportionality
Fig. 5. This indicates that the system state influences the response,
and thus, should be accounted for in non-linear systems. Fig. 7
shows the correction done by the use of the proposed emulator
structure (UHPS). This structure partially compensates for the pro-
portional and the superposition effects. The residual plot in Fig. 7
shows that these errors are significantly reduced in comparison
with the previous scheme (UHP).

The effect of the linear assumptions of the UH theory in
hydrograph approximation have been reported in the literature for
rural and urban catchments (Ding, 2011; Minshall, 1960; Musy,
1998). The example presented shows the separated effect of the
superposition and proportionality simplifications of a unit hydro-
graph and a strategy to correct them in the emulator structure.
With the use of the tank-in-series model it was possible to modify
the level of non-linearity by changing the tank exponent (b). The
reader is directed to the additional material (Figure A.1 and A.2)
where the same effect was computed for the case b¼ 1, which
shows the applicability of the UH theory in linear cases. Never-
theless, flow propagation processes are seldom linear, and thus this
effect is expected to be relevant in most applications.
error at the simplified model (UHP).



Fig. 6. Superposition error after correction of the proportional error (UHP).

Fig. 7. Correction of superposition and proportionality (UHPS).
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3.2. Emulation of the simplified flow model

Once trained, the behaviour of the UHPS emulator was compared
with the simplifiedmodel response for combinations of rainfall and
parametric scenarios. To that effect, 1000 samples were drawn from
a Monte-Carlo sampling scheme of an elicited parameter distribu-
tion (Table 2). This contained the four model parameters (a; ar ; A;
b) and a rainfall multiplier (K rainfall). Fig. 8 displays the distri-
bution of the performance indicators PRE and NSE between UHPS
and the original simulator. NSE is close to one indicating an accu-
rate fit between simulated-emulated time-series. PRE reports the
relative error in the peak reproduction, which is around 1.2% of the
maximum flow.

Fig. 9 shows the graphical comparison of the UHPS emulator and
the simulator for the initial parameter sample at a particular rainfall
series, along with the mean and 95% interval of the 1000 parameter
samples performed on the emulator.

3.3. Emulation of the 2-D shallow water equations

The dynamics of the 2D-SWEwere emulated following the same
process as in the simplified example. Fig. 10 shows the NSE values
for the emulated-simulated unitary responses at 30 combinations
of parameters contained in the testing dataset. This served to
validate the emulator of the unitary responses.

We compared the emulator UHPS (which takes into account the
error due to proportionality and superposition), the emulator UHP

(only the proportionality error), the conventional composition of
the UH linear (using 10mm unitary rainfall) and the results derived
from the 2D-SWE hydrodynamic simulators (SWE_parabola and
SWE_urban) in a set of 8 validation scenarios (Appendix B,
Table B.1), for varying rainfall time series and roughness coefficient
values. Table 4 presents the NSE and PRE values for all cases
comparing with the hydrodynamic simulator. There is a clear in-
crease in performance by the use of the proposed emulator struc-
ture (UHPS) when approximating the flow dynamics. This increase
is denoted by the high NSE values and a PRE one order of magni-
tude lower than the other emulator structures. In general, the use of
the proportional correction (UHP) is not sufficient, and although it
reproduces the hydrograph peak better than the simple use of the
linear UH structure, denoted by the lower PRE values (specially in
rainfall events where themaximum intensity differs from 10mm as



Fig. 8. Performance indicators for the comparison simulator-UHPS (1000 samples). Peak relative error (PRE) and Nash-Sutcliffe Efficiency (NSE) histograms.

Fig. 9. Model vs. emulator comparison; Mean rainfall series (above), emulator and simulator response at parameter values (a¼ 1.4, a_s¼ 2.2, b¼ 1.2 and A¼ 5) (middle) and
comparison of forward uncertainty propagation from 1000 samples from the emulator and simulator (below).
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in Validation events 0 to 3), it is heavily affected by the super-
position error as seen in the Validation events 4 to 7.

The use of UHPS improves the reconstruction of the simulated
hydrograph and it captures the timing of the flow peak in all tested
cases for both geometrical scenarios. Fig. 11 shows a graphical
comparison between the emulated and simulated values for the
Validation_0 and Validation_1 scenarios for the simulator
SWE_urban. UHPS has a close fit to the simulator dynamics, with an
error in the peak estimation of 1e5%. The comparison of SWE_-
parabola and SWE_urban are also shown in Fig.11 were the effect of
geometrical obstacles of the second scheme generates a slightly
delayed and attenuated flow response, which led to a decrease in
performance of UHLINEAR and UHP. The reader is directed to the
additional material for the graphical comparison at the 8 validation
scenarios for the two simulators (Figure B.1 and B.2).

One of the advantages of the proposed methodology (UHPS
structure) is that the emulation errors can be decomposed directly
in two sources: a) errors in the emulation of the unitary responses
through a PCE and b) errors in the reconstruction of the hydrograph
by composition of the unitary responses. The errors in phase a) can
be described by comparing the PCE emulator and the simulator in a
set of test parameter scenarios. This source is dependent on the
capability of the emulation technique used to represent the link
between the unitary response and the parameter space, which can
be reduced in two ways: 1) by carefully selecting the emulator
structure, which should be capable of representing a dynamic
output, such as a PCE (Xiu and Karniadakis, 2002), by using a
Gaussian Process as in Carbajal et al. (2017), Bayesian networks
(Conti and O'Hagan, 2010) or recurrent neural networks (Gers et al.,
2002). 2) By increasing the training dataset size (sampling from the
simulator). Phase b) involves reconstructing the hydrograph from
the unitary responses. The effect of the proportionality simplifica-
tion is well represented by including the rainfall intensity in the
emulator structure. However, the superposition composition has a
dependency on the system dynamics and the unitary rainfall
length. For highly dynamic systems, high-frequency rainfall data
could be necessary, and thus, accounting for only one temporal step
in the superposition scheme might not be sufficient.



Fig. 10. NSE and parameter values for the UHPS emulator unitary responses at the test database (SWE_parabola).

Table 4
Nash-Sutcliffe Efficiency and Peak relative error between simulated vs emulated (in the left, SWE_parabola, and in the right, shaded, SWE_urban).
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A limitation of the proposed methodology is that its applica-
bility is restricted to rainfall spatial homogeneity. The generalisa-
tion to spatio-temporal rainfall variability poses a challenge since it
will increase significantly the degrees of freedom of the unitary
response, which should be captured by the emulator phase, thus
requiring a much larger number of samples from the real simulator.

Also, in practice the number of accounted parameters is limited
in this approach. When using the PCE emulator, the number of
polynomials follows equation (8), which depends on the dimension
of the parameter space (d) and the grade of the polynomial series
(p). This relationship grows rapidly, forcing to increase the number
of samples from the original model. Thus, for large dimensional
spaces the number of required model samples could render the
training impractical.

For instance, the training of the SWE_parabola and SWE_urban
emulators was done through 260 unitary responses requiring a
total of 1040/2080 computation-hours (training was performed in
the HPC platform of the Computational Centre of the National
Technical University of Athens), details are provided in Table 5. The
emulator sampling at the validation tests took ~40ms per iteration
(in a 2.2 GHz Intel Core i7) which represents a significant time
reduction. The benefit of proposing an emulator is strongly case
dependent and is linked to the number of required parameters and
shape of the simulator response. Fig. 12 provides a measure for the
increase in performance (measured by the decrease in L2 norm)
with the training data set size for the three tested emulators. The
stabilization of performance can be used to design a sequential
sampling scheme, which can reduce the number of simulator
samples.



Fig. 11. Validation of the SWE_urban emulator. Graphical comparison of the response of the real model under a rainfall event and two manning values (0.035 and 0.042
respectively) against; use of the classical unit hydrograph theory from a 10mm rainfall (UH linear), the correction of the proportionality error only (UHP) and the proposed emulator
structure (UHPS).
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4. Conclusion

In this work a novel methodology to perform emulation of flow
derived from hydrodynamic simulators is presented. This method
allows approximating hydrographs generated by physically based
hydrodynamic modelling under variations of model parameter
values and rainfall series. This method is based on the combined
use of the unit hydrograph theory (UH) and a polynomial chaos
expansion (PCE) emulator. The use of the unit hydrograph theory is
based upon the assumption that the underlying process is linear.
This assumption is seldom met in physically based hydrodynamic
simulators since the driving equations are fundamentally non-
linear. In this new approach, information of the non-linear reac-
tion of the model is encoded in the PCE structure by means of a
dedicated sampling scheme.

The performance of the emulator was tested in three case
studies; a) a simplified flow routing model based on a non-linear
tank cascade, b-c) two synthetic computational domains simu-
lated through the full form of the 2D Shallow Water Equations. In
the three simulators the proposed emulator structure could
approximate an output hydrograph under various combinations of
rainfall time-series and model parameters. A comparison between
Table 5
Computational time of training vs. operation.

# training samples Simulator

sample

SWE_parabola 260 ~14,400 s
SWE_urban 260 ~29,000 s
the performance of the proposed emulator structure (UHPS) and the
use of the classical UH theory is also provided. This demonstrated
that errors induced by the linear assumption of the UH theory can
be significant when dealing with simulators based on the solution
of the 2D-SWE.

The method still has several limitations. For instance, the
emulator can only accept spatially uniform rainfall time series. This
can pose a severe constrain when dealing with large-scale catch-
ments. Also, rainfall series inputs should have a constant sampling
frequency. Errors in the emulator-simulator structure are expected
to increase if the selected rainfall step-duration is much smaller
than the catchment's concentration time for highly non-linear
models, since the unit hydrograph superposition error will
become dominant. The number of independent parameters is also
limited in practice. This is a limitation of the emulator structure
used (PCE) since the number of required model samples increases
rapidly with the dimensionality of the parametric space. None-
theless other data-driven surrogate strategies can be easily imple-
mented. Further research should be conducted in these areas.

The proposed methodology has the potential to significantly in-
crease the range of applications of physically based flowpropagation
schemes,which is currently hamperedby the computational burden.
(time) Emulator (time)

Validation scenario Validation scenario

~22,000 s ~0.040 s
~40,000 s ~0.040 s



Fig. 12. Emulator performance (mean and 95% quantile for L2 norm in logarithmic scale) and number of training samples. Number of parameters and polynomial degree in each
case: a) 6e6, b) 3e5 and c) 3e5.
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Appendix A. Uh simplification in linear models

When using a linear model the assumptions of proportionality
and superposition of the unit hydrograph are congruent with the
underlying dynamics. Figure A.1 shows the comparison between
the simplified model described in the first case study (using b¼ 1,
thus a set of linear tanks) and the use of a unit hydrograph derived
from the response at 10mm rainfall for an increasing unitary
rainfall intensity from 1 to 50 mm/10min. Figure shows the same
comparison for the joint proportionality and superposition as-
sumptions for rainfall inputs of varying length (10e50min) and
intensity (1e20 mm/10min). In those cases the classical UH theory
can describe the model behaviour correctly, which is denoted by
the almost null residual map.
tionality composition for a simplified linear model (b¼ 1).



Fig. A.2. Comparison of model vs linear unit hydrograph superposition and proportionality composition for a simplified linear model (b¼ 1).
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Appendix B. Validation scenarios
Table B.1
Events (rainfall in mm and manning roughness) used to validate the 2D-SWE emulators.

Time Val_0
n¼ 0.035

Val_1
n¼ 0.042

Val_2
n¼ 0.037

Val_3
n¼ 0.043

Val_4
n¼ 0.036

Val_5
n¼ 0.040

Val_6
n¼ 0.038

Val_7
n¼ 0.041

00:00:00 0.50 0.50 0.50 0.50 2.00 2.00 3.00 3.00
00:15:00 2.00 2.00 2.00 2.00 5.00 5.00 10.00 10.00
00:30:00 5.00 5.00 5.00 5.00 12.00 12.00 11.00 11.00
00:45:00 10.00 10.00 10.00 10.00 3.00 3.00 5.00 5.00
01:00:00 4.00 4.00 4.00 4.00 0.00 0.00 0.00 0.00
01:15:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
01:30:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
01:45:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:00:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:15:00 2.00 2.00 2.00 2.00 0.00 0.00 0.00 0.00
02:30:00 3.00 3.00 3.00 3.00 0.00 0.00 0.00 0.00
02:45:00 18.00 18.00 18.00 18.00 0.00 0.00 0.00 0.00
03:00:00 5.00 5.00 5.00 5.00 0.00 0.00 0.00 0.00
03:15:00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
03:30:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
03:45:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
04:00:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00



Fig. B.1. Validation comparisons emulator vs SWE_parabola simulator.
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Fig. B.2. Validation comparisons emulator vs SWE_urban simulator.
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