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SUMMARY

There is an increasing demand for accurate predictions of urban air quality in order
to quantify the health risks due to planned and existing pollutant emission sources.
Therefore, predicting the transport of pollutants in urban environments is of great
interest. However, current models for pollutant dispersion are incapable of accurately
capturing the flow near the obstacles that make up the urban environment. Moreover,
the effects of atmospheric stability on the flow in urban regions are largely unknown
as the combination of flow over obstacles and stably stratified flow is a rather unex-
plored field.

The work presented in this thesis contains an investigation on this topic by means
of large-eddy simulation (LES). The developed LES model contains an immersed
boundary method (IBM) such that the flow around obstacles could be accurately
resolved. In addition, methods to generate realistic turbulent velocity and temperat-
ure boundary layers were implemented, such that streamwise developing situations
could be studied. The model was employed to investigate the flow and dispersion
behaviour in regions where the character of the surface roughness changes from a
rural to an urban type of roughness. Pollutant emissions from line sources were con-
sidered, where the pollutants were assumed to behave as a passive tracer.

Firstly, the effects of a single two-dimensional obstacle, a fence, on the flow and
pollutant dispersion in neutral and stable boundary layers were studied. The validity
of two simplifications was assessed; either neglect the presence of the obstacle, or
neglect thermal stratification effects. It is concluded that both simplifications do not
hold when pollutant dispersion is considered. In additon, it is found that for stable
conditions the turbulence added by the obstacle remains present for a much greater
distance than for neutral conditions.

Subsequently, the flow in a rural-to-urban roughness transition was investigated
by considering a smooth-wall boundary layer approaching an array of cubical rough-
ness elements. Both neutral and stable conditions were taken into account, and the
effects on dispersion from a pollutant emission near the surface, as well as from an
elevated source, were examined. It is found that the profile of the mean streamwise
velocity component becomes neary indistinguishable from the fully-developed case
after approximately 24 streets. However, this does not hold for stable conditions. In
addition, the budget of turbulence kinetic energy reveals that buoyancy effects are
reduced inside the internal boundary layer, which is induced by the roughness trans-
ition. Nevertheless, the buoyancy destruction term increases approximately linearly
with height up to the value found for the smooth-wall flow. As a result in stable
conditions the pollutant concentrations from emissions below the urban canopy are
higher than for neutral conditions due to decreased advection and decreased internal
boundary-layer growth.
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Furthermore, the case of a rural-to-urban roughness transition was further invest-
igated by focussing on the influence of the geometry of the roughness elements.
The spanwise aspect ratio of the roughness elements was varied, and the results
from the LES were compared with results acquired from simultaneous stereoscopic
particle image velocimetry (PIV) and laser-induced fluorescence (LIF) measurements
in water-tunnel experiments. It is found that both methods independently predict
practically the same velocity and concentration statistics. In addition, the dominant
mechanisms that govern pollutant dispersion were studied. In all cases in the first
three streets the mean vertical pollutant flux out of the street canyons is dominated
by the advective pollutant flux, after which the vertical pollutant flux shows similar
behaviour as found for fully-developed cases. The mean flow structure that is re-
sponsible for street canyon ventilation was identified by means of linear stochastic
estimation. This structure is characterized by low momentum fluid passing over the
street canyons. Furthermore, the vertical length scale of this structure increases with
increasing spanwise aspect ratio of the obstacles. While considering the various span-
wise aspect ratios it was observed that a spanwise aspect ratio of two results in a
relatively large surface drag that is related to a large-scale secondary flow.

The work in this thesis shows that obstacle-resolving LES can be used to investig-
ate flow and pollutant dispersion in urban regions. Currently, the required compu-
tational resources for these simulations limit their use to dedicated pollutant studies
and academic studies. Therefore, from the results obtained in this research perspect-
ives are given on derived models that are expected to outperform current practical
dispersion models.



SAMENVATTING

Er is een toenemende vraag naar nauwkeurige voorspellingen van luchtkwaliteit
in stedelijke omgeving met als doel de gezondheidsrisico’s van bestaande en toe-
komstige vervuilende emissies te kwantificeren. Het is daarom van belang de ver-
spreiding van vervuilende stoffen in stedelijke gebieden goed te voorspellen. Echter,
huidige verspreidingsmodellen zijn niet in staat om de stroming rond stedelijke be-
bouwing te beschrijven. Bovendien is er weinig bekend over de effecten van atmosfe-
rische stabiliteit in stedelijke gebieden, omdat de combinatie van luchtstroming over
obstakels en stabiele condities nauwelijks is onderzocht.

Dit proefschrift bevat een onderzoek op dit gebied waarbij gebruik is gemaakt van
‘large-eddy simulation’ (LES). De ontwikkelde LES bevat een ‘immersed boundary
method” (IBM) zodat de stroming rond obstakels nauwkeurig kan worden opgelost.
Daarnaast zijn methoden geimplementeerd om realistische snelheids- en tempera-
tuursgrenslagen te kunnen genereren, zodat situaties kunnen worden beschouwd
waarin de stroming zich in de stroomrichting kan ontwikkelen. Het model is ge-
bruikt om de stroming en de verspreiding te onderzoeken in gebieden waar het
karakter van de oppervlakteruwheid verandert van ‘landelijke ruwheid’ naar ‘stede-
lijke ruwheid’. Emissies van lijnbronnen zijn beschouwd, waarbij is aangenomen dat
de vervuiling zich gedraagt als een passieve ‘tracer’.

Allereerst zijn de effecten onderzocht van een enkel twee-dimensionaal obstakel;
een scherm. De geldigheid van twee aannames is getoetst; 6f de aanwezigheid van
het obstakel verwaarlozen, 6f de effecten van thermische stratificatie weglaten. De
conclusie is dat beide aannames niet gegrond zijn wanneer verspreiding van vervui-
ling wordt beschouwd. Daarnaast blijkt dat voor stabiele condities de turbulentie
die is toegevoegd door het obstakel over een grotere afstand standhoudt dan voor
neutrale condities.

Vervolgens is de stroming over een landelijke-naar-stedelijke ruwheidstransitie on-
derzocht door een ‘gladde wand’ grenslaag te beschouwen die een rooster van kubi-
sche ruwheidselementen nadert. Zowel neutrale als stabiele condities zijn beschouwd
en de invloed op de verspreiding van een bron dichtbij het oppervlak én van een ver-
hoogde bron zijn bestudeerd. Het profiel van de snelheidscomponent in de stroom-
richting is na ongeveer 24 straten niet te onderscheiden van de volledig ontwikkelde
situatie. Dit is echter niet zo voor stabiele condities. Daarnaast laat het budget van
de turbulente kinetische energie zien dat dichtheidseffecten zijn verminderd in de
interne grenslaag, welke is onstaan door de ruwheidstransitie. Desalniettemin neemt
de ‘buoyancy-destructie’ term bij benadering lineair toe in de hoogte, tot de waarde
die geldt voor de stroming over een gladde wand. Voor emissies op een lokatie la-
ger dan de obstakelhoogte is de concentratie voor stabiele condities hoger dan voor
neutrale condities, ten gevolge van een lagere advectiesnelheid en een verminderde
interne grenslaaggroei.
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De situatie van een landelijke-naar-stedelijke ruwheidstransitie is verder bestu-
deerd door de invloed van de geometrie van de ruwheidselementen te onderzoeken.
De lengte-breedte verhouding van de ruwheidselementen is gevarieerd en de resul-
taten zijn vergeleken met resultaten verkregen met stereoscopische ‘particle image
velocimetry’ (PIV) metingen en ‘laser-induced fluorescence’ (LIF) metingen in wa-
tertunnelexperimenten. De simulaties en de experimenten laten onafhankelijk van
elkaar nagenoeg dezelfde snelheids- en concentratiestatistieken zien. De dominante
mechanismen die verantwoordelijk zijn voor verspreiding van vervuiling zijn onder-
zocht. In alle beschouwde situaties wordt de gemiddelde verticale concentratieflux in
de eerste drie straten gedomineerd door de advectieve concentratieflux, waarna de
verticale concentratieflux vergelijkbaar gedrag gaat vertonen als in de situatie voor
een volledig ontwikkelde stroming. Daarnaast is door middel van linaire stochasti-
sche benadering de stromingsstructuur geidentificeerd die verantwoordelijk is voor
de ventilatie van straten. Deze structuur is gekarakteriseerd door een stromingsge-
bied van lage impuls die boven de straten passeert. De verticale lengteschaal van
deze structuur neemt toe wanneer de breedte-lengte verhouding van de obstakels
toeneemt. Daarnaast tonen de resultaten bij een breedte-lengte verhouding van twee
een relatief grote oppervlakteweerstand die samenhangt met een secundaire stro-
ming op grote schaal.

Het werk in dit proefschrift laat zien dat ‘obstacle-resolving’” LES gebruikt kan
worden om de stroming en verspreiding in stedelijke gebieden te onderzoeken. Door
de benodigde rekenkracht blijft op dit moment het gebruik van dergelijke simulaties
beperkt tot specifieke verspreidingsstudies en academische studies. Daarom worden
aan de hand van de resultaten uit dit onderzoek perspectieven geboden voor afge-
leide modellen waarvan verwacht kan worden dat ze huidige praktische versprei-
dingsmodellen zullen overtreffen in nauwkeurigheid.
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INTRODUCTION

1.1 BACKGROUND

The number of people living in urban areas compared to the number of people liv-
ing in rural areas is increasing (United Nations, 2014). This growth of urban environ-
ments, so-called ‘urbanization’, also leads to an increase of pollutant emissions near
populated areas. In order to quantify the health risks due to planned and existing
emission sources there is an increasing demand for accurate predictions of urban air
quality. Therefore, predicting the transport of pollutants in urban environments is of
great interest.

In addition, in the unfortunate event of a release of hazardous material in the
atmosphere, such as during fires, chemical spills, or nuclear disasters, an accurate
prediction of the transport of these substances in urban regions is an important part
of emergency response, as it can be used in deciding if and where evacuation should
be initiated.

The modelling of the transport of contaminants in the atmosphere due to advec-
tion and turbulent diffusion, i.e. pollutant dispersion, is often done by assuming
that the pollutant concentration takes the form of a Gaussian distribution. Such a
‘Gaussian plume’ is an analytical solution of a strongly idealized form of the pollut-
ant transport equation for statistically steady conditions (Roberts, 1923). Since it is
an analytical solution, it requires low computational effort to find the concentration
field for a specific case. This makes it an appealing model when multiple situations
need to be considered, e.g. several wind directions or atmospheric conditions. Most
dispersion models that are approved by national authorities for air quality and risk
assessment, are based on the Gaussian plume formulation (e.g. in the Netherlands
the 'Nieuw Nationaal Model’ is used (Projectgroep Revisie Nationaal Model, 1998;
Minister VROM, 2007)).

However, the Gaussian plume solution is not entirely correct since its underlying
assumptions do not hold. For example, the model assumes that the mean wind and
the turbulence are uniform, which is not valid in atmospheric flows. Nevertheless,
by means of empirical constants the model is used to approximate plumes from
elevated pollutant emissions. However, the underlying assumptions limit the model
from being used for pollutant emissions and dispersion in urban regions. In addition,
there are no alternative models for urban regions that have a similar simplicity and
range of applicability as the Gaussian plume model for rural environments. Some
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INTRODUCTION

attempts have been made to make dispersion models for general urban situations,
mostly based on the local geometry of buildings and empirical relations (Berkowicz,
2000; Soulhac et al., 2011; Barnes et al., 2014). Unfortunately, they do not allow for
a more detailed analysis of the flow and disperion behaviour for specific cases, nor
can they be applied for all atmospheric conditions.

The reason that mostly empirical models are used instead of theoretical models, is
because the fluid mechanics in urban environments are not fully understood. Disper-
sion of pollutants can occur through mean advection in streets as well as through tur-
bulent mixing of the flow. However, buildings induce complex flow features, which
make parameterization of the mean flow and turbulence characteristics difficult.
Besides that, the heterogeneity of the surface roughness increases this complexity.
Furthermore, the influence of atmospheric stability on the flow in urban regions is
largely unknown.

Consequently, there is a need for a proper understanding of the flow and the dis-
persion behaviour in urban environments. One approach to improve our knowledge
on these topics is to do real-life measurements (Allwine and Leach, 2007; Wood et al.,
2010; Barlow, 2014). However, assessing the influence of specific parameters proves to
be difficult, because the atmospheric conditions are variable in time, and the spatial
resolution and size of the measurements are often limited. Therefore, the approach
used in this thesis is to address the case of urban pollutant dispersion by means of
simulation, i.e. by solving the equations that govern the relevant physics. The method
of large-eddy simulation (LES) is used, which allows for an accurate and controlled in-
vestigation.

1.2 SCOPE AND OBJECTIVES

The focus of this study is the transport of pollutants, and consequently the flow, in the
region of urban roughness. The lower part of the atmospheric boundary layer (ABL) that
is mostly affected by the interaction with the surface is called the ‘surface layer” (Stull,
1988). Specifically, the boundary layer in urban regions is called the urban boundary
layer (UBL) (Barlow, 2014). Pollutant dispersion in the ABL is largely dominated
by turbulence; the fluctuations in the three-dimensional wind field. There are two
sources of turbulence in the ABL: turbulence produced by strong velocity gradients
and turbulence produced by buoyancy differences. The ratio of these two sources
in the production of turbulence kinetic energy (TKE) is called the flux Richardson
number

. w'e’
Rif = igii, (1.1)
u'w' ou/oz

where g is the gravitational acceleration, p is the coefficient of thermal expansion,
w'0’ is the vertical turbulent heat-flux, and u’w’ d1/9z is the shear-production term
(in the TKE budget equation this term contains a minus sign, see Eq. 4.10 in Sect.
4.4.4). If heat transfer is upward (w’6’ > 0), Ri; is negative, because u'w’ ou/0z < 0,
in general. For these conditions the flow is called unstable, or convective, because the




1.3 STRUCTURE OF THE THESIS

enhanced vertical motions increase the level of turbulence. If there is no heat transfer
(w'0’ = 0), Ri; is zero, which is called neutral, or neutrally buoyant. For these conditions
the flow is completely dominated by shear production. Finally, when the heat transfer
is downward (w’6" < 0), Ris is positive, which is called stable. For these conditions the
downward heat flux tends to decrease vertical motions and consequently turbulence
is destroyed. As a result, stable flows show a more ‘layered’ flow structure, such that
these conditions are often called stratified. Observations show that when Ri; 2 0.2
turbulence cannot be sustained. In view of pollutant dispersion, one can understand
that for unstable conditions concentrations decay fast with increasing distance from
the emission source, because turbulent mixing is strong. On the other hand, for stable
conditions concentrations can remain high for longer distance, because turbulent
mixing is weaker. For this reason, pollutant releases during stable conditions pose the
largest risk to public health. Therefore, in this study stable conditions are compared
to neutral conditions, i.e. cases where Ri; > 0 are considered.

Obstacles tend to increase the turbulence production in the boundary layer, be-
cause they induce strong velocity gradients. Consequently, stable boundary layers
become less stratified when surface roughness is increased. For this reason, in prac-
tice the UBL is often assumed to be purely dominated by shear production, hence
they are considered neutral. It is unclear what the conditions are for this assumption
to be correct. Moreover, when the surface characteristics change from e.g. a rural
to an urban environment, the boundary layer needs to adapt to this new surface
roughness. It is not known how much distance is needed for stable flow to adapt to
this change in roughness and how pollutant dispersion is affected by this transition.
Therefore, the following objectives are formulated:

e Determine the flow field, surface forces, and internal boundary layer growth
for rural-to-urban transitions in neutral and stable conditions.

e Assess to what extent stratification effects are diminished by the added turbu-
lence due to urban roughness elements.

e Identify the dominating mechanisms of pollutant dispersion near roughness
transitions in both neutral and stable conditions.

e Develop a method to simulate these cases realistically and accurately.

1.3 STRUCTURE OF THE THESIS

The thesis is based on three journal papers, which are presented (in a slightly adapted
form) in Chapters 3, 4, and 5. As such, these chapters are self-contained and therefore
some redundancy in the thesis as a whole is inevitable.

The numerical method is decribed in Chapter 2. First of all, the governing equa-
tions for the LES are derived from the conservation equations for mass, momentum,
and energy. Furthermore, the details of the numerical model are described, such
as the spatial and temporal discretization, the pressure-correction method, the im-
mersed boundary method, and the generation of inflow turbulent boundary layers.
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In Chapter 3 the effects of a two-dimensional fence on the development of a
smooth-wall turbulent boundary layer are studied for both neutral and stably strati-
fied conditions. In addition, the influence on pollutant dispersion of both the obstacle
and the applied level of stratification are investigated.

In Chapter 4 the investigation is extended to regions with multiple obstacles, i.e.
regions where the surface roughness changes from rural to urban characteristics. The
main interest is to investigate the influence of stable stratification on the flow and on
pollutant dispersion. The urban region is made up of an array of cubical obstacles.
First, the model is validated for this type of roughness by applying it to a UBL test
case described in the literature and comparing the results with experimental data.
Thereafter, roughness transition simulations are done, for which the surface forces
are investigated and the budgets of resolved turbulence kinetic energy are given. A
comparison is made with fully-developed flow over the same geometry. Finally, the
effects on pollutant dispersion are studied by considering the pollutant flux out of
each street.

Chapter 5 also considers the transition from rural-to-urban roughness, but here
the focus of interest is the influence of the geometry of the obstacles that make up
the urban environment. The same configuration as in Chapter 4 is considered, except
that the spanwise aspect ratio of the obstacle is varied. Neutrally buoyant conditions
are applied in all cases. Moreover, for three cases a comparison is made with experi-
mental data from water-tunnel experiments. The velocity and concentration statistics
are investigated, and the flow structure that is responsible for the ventilation of street
canyons is identified and compared for several values of obstacle aspect ratios.

Finally, in Chapter 6 the conclusions drawn from the research as a whole are
presented. Furthermore, recommendations are given for further research.



NUMERICAL METHOD

In this chapter the equations for the large-eddy simulations (LES) are derived from
the governing equations. Furthermore, the details of the numerical model are de-
scribed. The model is based on DALES 3.2 (Heus et al., 2010), but it has been modified
in multiple areas. Differences include the applied subgrid model, the use of ‘inflow-
outflow” boundary conditions, and the implementation of an immersed boundary
method. These topics are discussed in the second part of this chapter.

2.1 GOVERNING EQUATIONS

The equations that describe the motions of a fluid are based on conservation of mass,
momentum, and energy. The first, also called the continuity equation, reads

ap n opu;

at axi - O’ (2‘1)

where p is the fluid density, u; = (1, v, w) are the velocity components, and the index
i (and further on also indices j and k) represents the three cartesian coordinates x, v,
and z. Furthermore, the Einstein summation convention is used, i.e. repeated indices
imply a summation. When the fluid can be considered incompressible Eq. 2.1 reduces
to

gz; =0, (2.2)
which is a good approximation as long as the velocity components #; are much
smaller than the speed of sound propagation in the fluid. In addition, it requires
that the vertical motions should be small compared to the scale over which the fluid
density changes due to gravity.

The conservation of momentum is described by the Navier-Stokes equations:

oo dp Py o
pat p]axj_pgl axi ‘uax]z’ -3

where the z coordinate represents the upward direction such that g; = (0,0, —g) is
the vector describing the gravitational acceleration, p is the pressure, and y is the
fluid dynamic viscosity, which is assumed to be constant. The equations, one for
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each dimension, describe the change of motion of an infinitely small fluid element
based on the forces acting on it. The left-hand side of Eq. 2.3 contains the material
derivative of the fluid element, while the right-hand side contains the gravitational
forces, pressure forces and viscous forces acting on it per unit volume.

The density p is a function of the temperature 6. Based on conservation of energy
the transport equation for 6 is

aﬁ + u.ai = 8279 (2 )
ot Moy, ~ Max 4
where g is the diffusion coefficient of heat in the fluid. The transport of pollutants
is described by a similar equation by considering the pollutant concentration c*

oc* ac* 9%
T u]E)ch = Oéc*aisz, (25)
where a+ is the diffusion coefficient of the pollutant in the fluid. In addition, it is
assumed that the pollutant is transported passively with the flow, that there is no
deposition, and that there are no chemical reactions.

We simplify the equations by approximating the influence of density variations on
the flow. A detailed derivation can be found in standard works on stratified turbulent
flow, e.g. Turner (1973) and Tennekes and Lumley (1972). Here a concise derivation
is given. First, let us assume the considered flow can be described by fluctuations
around the reference state of a fluid in rest: po + p/, po + p’, and 6y + €', where
p', p/, and 0" are small fluctuations around the reference state 6y = constant, and
dpo/0z = —pog, which is the hydrostatic law. Substitution in Eq. 2.3 and dividing by
1/p9 gives

ou; dui  p 19p u

at+uj87xjipogl 00 0X; Vaxf’

(2.6)

where v = u/pp is the fluid kinematic viscosity. Furthermore, because p’/pp < 1 all
terms containing p’/po are neglected, except the gravitational force term (p’/po) gi-
The reason is that the fluctuations in buoyancy are large compared to the fluctuations
in inertia, and can therefore not be neglected. Finally, we use the linearized equation
of state to link p to 0 (Eq. 2.4):

p = po— Bpo (6 — o), (2.7)

where f is the coefficient of thermal expansion, which is 1/6y for an ideal gas, as is
taken here. Therefore, Eq. 2.6 becomes:
aui au,» 0 1 6p azui

- — =g — = .8
ot u]ax]' f)ogl 00 0x; +Uax]2 (28)

Equations 2.2, 2.4, and 2.8 are called the Boussinesq equations, named after Boussinesq,
who introduced this approximation of the effects of variable density (Boussinesq,
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1903). The equations are also valid for the flow of a gas when the compressibility
of the gas is taken into account. This is achieved if 6 is interpreted as the potential
temperature, which is defined as the temperature a fluid parcel would acquire if
adiabatically brought to a reference temperature.

2.2 LARGE-EDDY SIMULATION

Equations 2.2, 2.4, and 2.8 contain five unknowns; u;, p, and 0. Therefore, in theory
the discretized form of these five equations can be solved after applying boundary
conditions and initial conditions. However, such direct numerical simulation (DNS)
is not feasible for atmospheric flows. The reason is that atmospheric flows, just as
most turbulent flows in reality, are characterized by a large Reynolds number, i.e. the
turbulent motions occur at a large range of scales. To properly capture the dynamics
of these turbulent motions the resolution of the computational grid should allow all
motions to be resolved. However, their length scales range from the largest turbulent
structures in the boundary layer down to the scales where turbulence kinetic energy
is dissipated into heat due to the viscosity of the fluid. This occurs at the Kolmogorov
scale 7 (Kolmogorov, 1991). In atmospheric boundary layers the largest turbulent mo-
tions can be in the order of 103 m, while 7 for these flows is around 1073 m. DNS
at such a large scale is not possible with current computational capabilities and it is
expected that this will not change in the near future. For this reason, the method of
large-eddy simulation (LES) is used in this thesis. LES involves solving the equations
of motion on a computational grid that resolves the energetically dominant part of
the range of turbulent motions, i.e. the large eddies, while the small-scale motions are
parameterized. Even then, the range of scales is too large to solve computationally.
Therefore, a common approach in atmospheric LES studies is to use ‘wall functions’;
to model the flow near the ground where most resolution is required to capture
the strong gradients in velocity. However, since this research focusses on the near-
wall region that contains the urban geometry, wall-functions are not used, and the
flow is resolved up to the ground. To make the simulations feasible, the considered
Reynolds number is approximately three orders of magnitude smaller than in reality.
Nonetheless, the Reynolds number of the approaching flow is still in the range of
laboratory-scale experiments: Rer = u6/v = 2 x 103, where ur = \/vou/0z is the
friction velocity and ¢ is the boundary-layer depth. In addition, experimental invest-
igations have shown that Reynolds number effects are marginal for cases similar to
those considered in this thesis (Huppertz and Fernholz, 2002; Castro, 1979; Cheng
and Castro, 2002b).

The method of LES was first introduced by Smagorinsky (1963) and Lilly (1962),
while the first three-dimensional LES explorations for atmospheric flows were done
by Deardorff (1970). Further influential research on LES includes the work of Schu-
mann (1975) and Mason and Callen (1986) on the modelling of the unresolved scales
of turbulence in LES. For a detailed description of LES modelling the reader is re-
ferred to textbooks on turbulence and LES, e.g. Pope (2000). Here, the LES model
developed and used in this study is discussed.
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The LES approach implies that the variables that describe the flow are spatially
filtered, either explicitly by a prescribed filter, or implicitly by the chosen grid size,
as is done in the currently employed method. The underlying assumption is that the
modelled part of the turbulence is isotropic. Hence, the prognostic variables become
w =i +ul,p=p+p" and 6 = 0+ 6", where (..) denotes the filtered part and
(..)"” denotes the unresolved part contained in the subgrid-scale (SGS). Substitution
in the Boussinesq equations (Egs. 2.2, 2.4, 2.8) and neglecting terms containing single

occurrences of 1/, p” and 6", results in

du;

a—xf =0, (2.9)
1

o 9 . 19p gz | U 107

g = E)Tc] (MIM]) pfoaixz + %9513 +v axz P*Oaix], (2.10)

acfﬁ B 0~ a%ﬁ aq]'

EI (911)) +’X¢@ "o +S, (2.11)

where the advective terms in Eq. 2.10 and Eq. 2.11 are written in conservative form
using continuity (Eq. 2.9) and é;3 is the Kronecker delta. In addition, Eq. 2.11 de-
scribes the filtered transport equation for the scalars ¢, which are the temperature
6 and the pollutant concentration c*. Furthermore, S represents a volumetric heat
source in the transport equation for 6 (used in streamwise periodic simulations as
discussed in Sect. 4.2.4.2), while it is a concentration source in the transport equa-
tion for c*. Effectively, the filtering operation results in the unknown SGS stress
tensor T;; = po (ujit; — il;ij) in Eq. 2.10 and the unknown SGS scalar flux vector
q; = ¢u; — ¢il; in Eq. 2.11. Closure of the momentum equations is achieved by relat-
ing the SGS stresses to the resolved velocity components by means of the Boussinesq
hypothesis (Boussinesq, 1877), such that the SGS stresses are treated in a similar way
to the viscous stresses;

Tj &, Tkij

p—é = —2U5gsSij + ?0], (2.12)
which is called the "eddy-viscosity” SGS model, where vsgs is the SGS viscosity (or
eddy viscosity), §ij = % (aﬁi/ dx;j +du;/ axi) is the rate of strain tensor based on the
filtered velocity components, and Ty is the trace of the SGS stress tensor. The SGS
normal stresses require no modelling as they are lumped into p/py. However, the
deviatoric part of 7;; requires a model to predict vsgs. In all simulations discussed in
this thesis the eddy-viscosity SGS model of Vreman (2004) is used, which has the ad-
vantage over the standard Smagorinsky-Lilly model (Smagorinsky, 1963; Lilly, 1962)
that no wall-damping is required to reduce the SGS energy near walls. In addition,
while the Smagorinsky-Lilly model tends to damp turbulence in transitional flows,
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Figure 2.1: Structured ’'staggered” grid with u, v, and w evaluated at the cell faces, while all
scalars (here p is shown) are evaluated at the cell centers indicated by the circles.
The relative position of the cells is indicated by the indices i, j, and k. A part of the
grid is shown in the x — y plane (a) and in the x-z plane (b).

the Vreman model does not. This makes it more suitable for simulating flows in
which laminar-to-turbulence transitions can occur.
Furthermore, the SGS scalar flux vector g; is modelled as

9¢
qi = —“sgsaTCi, (2.13)
where the SGS diffusivity asgs is related to the SGS viscosity vsgs by the SGS Prandtl
number Prsgs = Vsgs/@sgs. In all simulations in this thesis Prses was set to 0.9, equal
to the turbulent Prandtl number found in the major part of the turbulent boundary
layer in DNS studies by Jonker et al. (2013). In addition, Pr = v/ay = 0.71 was used,
corresponding to air. Note that for ¢* the same diffusivity is used as for 6, which
means the Schmidt number Sc = v/a,+ is assumed equal to Pr.

In the rest of this thesis the (..) symbol is omitted for clarity; the (..) symbol rep-
resents temporal averaging and (..) denotes spatial averaging. If a spatial averaged
quantity is given it is indicated over which dimension(s) this spatial average is taken.

2.3 NUMERICAL MODEL
2.3.1 Spatial Discretization

The numerical method involves finding solutions of Egs. 2.9, 2.10, and 2.11 at a fi-
nite number of locations in space and time. Firstly, the equations are discretized in
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space by using second-order central-differencing for all spatial derivatives. The only
exception is the discretization of the advective terms in the transport equation of c*,
for which the second-order x scheme (Hundsdorfer et al., 1995) is used to ensure
positivity. The discretization is done such that conservation of mass, momentum,
and energy is satisfied. In Fig. 2.1 it is shown that a structured ’'staggered’ grid is
employed in order to avoid odd-even decoupling between pressure and velocity, i.e.
u; is evaluated on the cell faces, while p, 6, and c* are evaluated at each cell center.
Furthermore, the model allows grid stretching in the streamwise (x) and vertical (z)
directions, which means the grid can be locally refined in those directions.

2.3.2 Time Integration and Pressure-Correction Method

Subsequent solutions of the discretized form of Egs. 2.9, 2.10, and 2.11 are found
by integrating each solution in time for a timestep At. This is achieved by means of
an explicit third-order Runge-Kutta time integration scheme (Wicker and Skamarock,
2002). If ¢ represents the prognostic variables u;, 6, and c*, this scheme reads

3
Pt =g+ Y At <aatf> , (2.14)
s=1 s

where index n indicates steps in physical time and index s denotes evaluations at
the intermediate steps t, + At;, where Aty = At/3, Aty = At/2, and At; = At.
After spatial discretization of Eq. 2.11 the time derivatives of scalars ¢ are expressed
in terms of known quantities such that a new solution can be found with Eq. 2.14.
Finding (du;/dt),,, requires some additional steps, because the updated velocity
field needs to satisfy Eq. 2.9 and Eq. 2.10 simultaneously. For this reason the method
of "pressure-correction” is employed. Firstly, (du;/dt),  is predicted using the known
velocity and pressure field (at step s). Secondly, a correction is applied to the pressure-
gradient term to satisfy mass conservation (Eq. 2.9) for the new velocity field, such
that the final expression becomes

5 =—————=—+Bs+As+ D, (2.15)

(aul) ot —u I Il
s+l Atgyq ox; ax;

where IT = (p + Tjidij / 3) /po and OIT*/dx; represents the correction term. Further-
more, B;, As, and Ds represent the buoyancy, advection, and diffusion terms for step
s, respectively. Equation 2.15 is solved by splitting the equation into a part with terms
on step s, i.e. the prediction, and a part containing the unknown pressure correction:

uf —u? oIr®
Lt = —— 4+ B;+ A;+ D, .16
Ai‘s+1 axi + Bs + As + Ds (2 1 )

wstt — oy oIT*
i i
Ao on (2.17)
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Equation 2.16 is used to express the prediction velocity u; in known terms, which
can then be substituted in Eq. 2.17. Subsequently, Eq. 2.17 is solved by taking the
divergence of the equation and substituting the continuity equation (Eq. 2.9), which

eliminates the term containing uf“, and reduces the equation to a Poisson equation
for IT:
] uy 0211+
- ( i ) _ = (2.18)
ox; \ Atgiq dx :

which is solved for IT* using a direct Poisson equation solver (contained in the ‘FISH-
PACK'’ library) based on discrete Fourier transforms in the spanwise direction (Bailey,
1993) and cyclic reduction in the remaining directions (Sweet, 1974). As a result, all
terms in Eq. 2.15 are known and the velocity field can be integrated in time using Eq.
2.14. In addition, IT is updated by IT+! = TT¢ + IT*.

2.3.3 Stability

The explicit time integration scheme in Eq. 2.14 results in a solution that is stable in
time when two stability criteria are met. Firstly, the Courant-Friedrichs-Lewy (CFL)
criterion should be satisfied;

u 0 w
AM—+—+ )< , )
< ~ Ay + AZ) Crmax (2.19)

where Cpax is the maximum Courant number, which is 1.5 for the second-order
central differencing discretization scheme and 1.1 for the x scheme. In addition, the
diffusion number

(06 + asgs) At
(Ax2 + Ay? + Az?)

(2.20)

should be below a critical value, which was estimated to be 0.4. Note that this cri-
terion also holds for the diffusion of momentum, v + vs¢s. Concluding, the maximum
timestep used for the simulations is derived from these two criteria.

2.4 BOUNDARY CONDITIONS
2.4.1  Domain Boundary Conditions

The equations can be solved if proper boundary conditions are applied. For each
simulation presented in this thesis the boundary conditions are given in the con-
cerned chapter. In general, for all variables periodic boundary conditions are used in
the spanwise direction (y coordinate). In case of ‘"double-periodic’ simulations peri-
odicity is also assumed in the streamwise direction (x coordinate) and the flow is
driven by a constant pressure gradient that is applied to all grid cells. In case of
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u (i—]_:,,j/,k)” y (i, ,,/k)/"' 7 (I,J,k)
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o’ u | Gk
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Figure 2.2: Three types of walls (indicated by dark grey planes) shown for cell (i, j, k) (indicated
in light grey); a wall in the y-z plane (a), a wall in the x-z plane (b), and a wall in
the x-y plane (c).

‘inflow-outflow” simulations, a convective outflow boundary condition is used at the

outlet plane;

oY oy

ar e T
where U is the bulk velocity. In addition, at the inlet plane a turbulent boundary
layer is imposed, which is generated in a separate simulation. Effectively, the flow is
driven by a constant mass flux. The method to generate this inflow boundary layer
is discussed in Sect. 2.4.3. Furthermore, at all walls no-slip boundary conditions are
used, and for ¢* zero-flux boundary conditions are applied. For 0 either zero-flux or
isothermal boundary conditions are used, which is discussed for each case separately.

0, (2.21)

2.4.2 Immersed Boundary Method

The model uses an immersed boundary method (IBM) in order to place obstacles in
the rectangular domain. The IBM employed here is the method by Pourquie et al.
(2009), such that the obstacle walls coincide with cell faces. This implies that only
rectangular obstacles can be considered. However, the advantage of this method is
that boundary conditions can be imposed exactly, which makes the method very
suitable when accurate solutions are required for flow over rectangular obstacles.
Figure 2.2 shows the three types of walls that can be present in a grid cell. The IBM
involves locally adding an extra force term to the momentum or transport equations
such that the boundary condition is satisfied at that location. For example, if w = 0
is required at a cell face where w is evaluated, the force term is chosen such that the
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prediction velocity w* in Eq. 2.16 becomes zero. Additionally, velocity components
adjacent and parallel to the wall should experience the wall shear stress. This is
achieved by replacing the shear stress computed without the wall present with the
appropriate shear stress associated with a wall. For example, the diffusion part in
the equation for conservation of momentum in the x-direction (D; term in Eq. 2.16)
contains the term

d d d
3. [(v + Vsgs) (aZ + ail;)} (2.22)

When evaluated around u"/*, where the superscript indicates the cell indices, the
discretized form becomes:

(v . vk+) yAk+L ik . Wikl _ yi—Ljk+1
Az 583 Az Ax
2.2
) ybik _ yiik=1 ik _ ik (2.23)
() (T A :

where an equidistant grid with cell sizes Ax and Az is assumed for simplicity and
the superscripts k4 and k— indicate that the subgrid viscosity is interpolated to the
upper and lower side of the cell around u"/¥, respectively. In case a wall is present in
the x-y plane, as shown in Fig. 2.2c, the IBM replaces the stress the on k— side of the
cell (computed in Eq. 2.23);

o (bR ikl ik =Lk
(1/ + ngs) Az + Ax , (2.24)

with the local wall shear stress

ik
Az’

Ju

— ~ 2
Vaz v

(2.:25)

wall

where in both cases the stress is divided by p because the momentum conservation
equation (Eq. 2.10) has been divided by p.

Similar steps are taken to apply the boundary conditions for § and c*. Note that
the pressure correction can cause u; # 0 at the immersed boundaries. However, such
"penetration velocities” are negligible as long as the pressure correction only involves
the subtraction of I1* /dx; and not the full pressure-gradient term 9I1°*! /9x;. In the
simulations discussed in this thesis the maximum penetration velocities were in the
order of 10~*U. More details about the IBM can be found in Pourquie et al. (2009).

2.4.3 Generation of Turbulent Inflow Boundary Layers

For the inflow-outflow simulations the instantaneous velocity at the inlet plane is
generated in a separate ‘driver” simulation by employing the method proposed by

13
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Figure 2.3: Recycling method used to generate inflow turbulent boundary layers. The mean
velocity field and the velocity fluctuations at the recycle plane are rescaled using a
method similar to Lund et al. (1998). The mean temperature and the temperature
fluctuations at the recycle plane are rescaled using a method similar to Kong et al.
(2000).

Lund et al. (1998). Both the mean velocity and the velocity fluctuations at a recycle
plane are used to generate the velocity field at the inlet plane. The procedure is
schematically visualized in Fig. 2.3. The underlying assumption of this method is
that the flow is self-preserving, such that these the inlet plane and the recycle plane
can be related to each other by using the law of the wall for the inner region and the
velocity-defect law for the outer region;

e =y (x) fy (z1) ‘law of the wall’, (2.26)

Ueo — 1 = 1 (x) fo (2/9) ‘velocity-defect law’, (2-27)

where zt = zu,/v is the vertical coordinate scaled with viscous units, U is the
freestream velocity, ¢ is the boundary layer height, and f; and f, are universal func-
tions. The rescaling of the velocity components from the recycle plane to the inlet
plane is done separately for both regions. In addition, the inlet velocity profile is
created by forming a weighted average of both results of which the contributions
are equal at z = 0.29. This type of simulation can be regarded as semi-periodic, be-
cause the regular convective outflow boundary condition (Eq. 2.21) is used at the
outflow plane, while there is a one-way coupling between the recycle plane and the
inlet plane. The method allows the user to define two input parameters, U, and J.
After taking the necessary steps to let the flow develop into a steady state, a plane
perpendicular to the flow can be saved in time and subsequently used as turbulent
inflow in another simulation.

The implementation in the current LES model differs from the original method by
Lund et al. (1998) on two counts. Firstly, to avoid instabilities, above 1.2J the fluctu-



2.4 BOUNDARY CONDITIONS

ations are damped using the smooth Heaviside function as described by Bohr (2005),
which results in zero rescaling of the fluctuations above 1.36. Secondly, a mass-flux
correction is applied because the rescaling procedure and the associated interpola-
tion can cause the mass flux at the inlet to slightly change between time steps. This
results in pressure pulses through the domain (Sillero et al., 2013). Although prelim-
inary simulations showed that the mass-flux variations were very small (with the
maximum of order 0.01%), they did affect pressure statistics. Therefore, when the
mean variables are fully converged, this very small mass-flux correction is applied at
each time step.

The inlet temperature field is generated in a similar vein as the velocity field by
using the method developed by Kong et al. (2000). However, in contrast to their sim-
ulations the buoyancy force is taken into account in the driver simulations in order
to generate stably stratified turbulent boundary layers. The level of thermal stratifica-
tion is set by fixing the ground temperature, 6y, the free stream temperature, 8, and
the thermal boundary layer height, dr. For stable boundary layers this is a delicate
procedure because re-laminarization can occur while the mean variables have not yet
converged, which causes instabilities. The stable boundary layers discussed in this
thesis were generated by first assuming the temperature to be passive until the mean
variables were converged. Next, the buoyancy force was taken into account, while
the level of stratification was increased slowly. Finally, to prevent the development of
a strong inversion the local gradient Richardson number,

. 00
ngrad = ég;az/ZS,]S,] ’ (2.28)

is kept below the critical value (Rigri;d ~ 0.25) inside the boundary layer. This is
achieved by setting J7 slightly smaller than J at the inlet: 67 was fixed at 0.954 at the
inlet.

The universal functions f1 and f, that describe the mean velocity profile in Eq. 2.26
and Eq. 2.27 are functions of z* and z/4, respectively. However, for non-neutral con-
ditions they are also a function of z/L, where L = —u36y/(xgw'6’) is the Obukhov
length scale (Obukhov, 1971). In this expression w’6’ is assumed to be constant with
height in the surface layer. It follows from the so-called ‘Monin-Obukhov similarity
theory’ that scaling the vertical coordinate with L results in similar dimensionless
velocity profiles in the surface layer (Monin and Obukhov, 1954). In the recycling
method by Lund et al. (1998) the functions f; and f, are not prescribed, but it is
merely assumed that they hold at both the inlet and the recycle station. The rescaling
procedure requires the vertical coordinate to be scaled in either inner or outer co-
ordinates. However, for stable conditions at a certain height, L becomes the relevant
length scale, such that a scaling with L might be more suitable. Nevertheless, in the
stable boundary layers considered in this thesis L was in the order of J, so that the use
of Eq. 2.26 and Eq. 2.27 was sufficient to generate boundary layers that approximate
Monin-Obukhov scaling, as will be shown in Chapter 3.
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THE EFFECTS OF A FENCE ON A RURAL BOUNDARY LAYER*

3.1 INTRODUCTION

Predicting the pollutant dispersion behaviour in urban areas requires a good rep-
resentation of the flow in these regions. However, modelling the local flow field in
urban areas is a challenging task because there are several factors that control it, e.g.
the obstacle geometry, the character of the approaching turbulent boundary layer
(TBL), as well as temperature differences. The review article by Barlow (2014) gives
a clear overview of our current understanding of the urban boundary layer (UBL)
showing that buoyancy effects in the roughness sub-layer are still poorly understood.
Tominaga and Stathopoulos (2013) review the current modelling techniques for pol-
lutant dispersion in the UBL; most pollutant dispersion studies do take into account
obstacle geometry, but the correct treatment of inflow turbulence and thermal strat-
ification is just as important for reliable results. Still, in order to simplify such flow
and pollutant dispersion problems two practical approaches seem natural:

1. Neglect the presence of obstacles.
2. Neglect the effect of thermal stratification.

The first approach is plausible when the location of interest is at a large distance from
obstacles. The latter approach can be justified by assuming that the flow becomes
neutrally buoyant due to enhanced mixing by turbulence induced by the obstacle
geometry. The objective of the current study is to investigate if and when these sim-
plifications can be be made. Use is made of large-eddy simulations (LES) to simu-
late the flow and dispersion around a single prismatic obstacle. Realistic turbulent
equilibrium inflow TBLs at friction Reynolds number, Re; = u .6 /v, of 1950 are
generated to investigate how these TBLs respond to the perturbation by the obstacle.

3.1.1  Case of Interest

The obstacle studied here is a two-dimensional fence characterized by a small b/ h
ratio and an infinite [ / h ratio, where b is the obstacle width, i the obstacle height,

This chapter is slightly adapted from Tomas, J. M., Pourquie, M. J. B. M., and Jonker, H. J. J. (2015¢). The
influence of an obstacle on flow and pollutant dispersion in neutral and stable boundary layers. Atmos.
Environ., 113:236—246

17

CHAPTER 3



18

THE EFFECTS OF A FENCE ON A RURAL BOUNDARY LAYER

and [ the obstacle length. Spanwise line sources of passive tracers are located in
its vicinity. This set-up resembles in idealized form the case of an undisturbed (low
roughness) TBL approaching a noise barrier located next to a highway. The simple
geometry of a noise barrier is of interest because it is the first obstacle that will in-
fluence the dispersion of pollutant emitted by traffic along a highway. Besides that,
it is one of the most elementary ways to perturb a boundary layer, which could give
insight in how perturbations of the TBL develop. Due to its two-dimensional geo-
metry the flow is statistically homogeneous in the spanwise direction, which allows
for periodic boundary conditions to be used.

Several wind-tunnel studies have been reported on neutral turbulent flow over two-
dimensional obstacles. Counihan et al. (1974) measured the flow behind a riblet in a
TBL that was six times higher than the obstacle. They considered the difference with
the undisturbed flow: Al = Upstacte — Utlat, Which can be negative (deficit) or positive
(excess). In addition, they proposed a model for the velocity and turbulence deficit
based on self-similarity of the wake. Castro (1979) compared this model to his exper-
imental results, which showed reasonable agreement for the velocity and turbulence
deficit up to 30 obstacle heights downstream. However, the model is incapable of pre-
dicting the flow further downstream. Schofield and Logan (1990) collected data from
multiple experiments on high Reynolds number shear flows distorted by an obstacle
smaller than the TBL height. They confirm the conclusion of Castro (1979) that the
inner region adjusts quicker to the distortion by the obstacle than the outer region.

Experimental data on flow over surface-mounted obstacles in stably stratified flows
are sparse. Kothari et al. (1986) performed wind-tunnel measurements on three-
dimensional surface obstacles in a TBL with weak thermal stratification. Their results
show a temperature excess up to 60 downstream of the obstacle, while the velocity
deficit disappears after 7.5 — 10h. In addition, they developed a model for the tem-
perature wake behind three-dimensional obstacles in weakly stratified TBLs. Ogawa
and Diosey (1980) did wind-tunnel experiments on a two-dimensional fence in stable
and convective TBLs. The measurements were only done up to 13.5h downstream of
the fence, because the interest was in the recirculation length.

Several numerical simulations of flow past a two-dimensional obstacle under neut-
ral conditions have been reported. Orellano and Wengle (2000) performed LES and
direct numerical simulation (DNS) of a fence in perpendicular approaching flow.
Kaltenbach and Janke (2000) and di Mare and Jones (2003) investigated the fence
geometry for several wind angles with LES. Abdalla et al. (2009) compared the
flow over a riblet (b/h = 1) and the flow over a forward-facing step by means of
LES. All of these numerical investigations considered approaching boundary layers
with a height smaller than the obstacle, which does not resemble atmospheric con-
ditions. Furthermore, the effects of thermal stratification are not accounted for. Only
Trifonopoulos and Bergeles (1992) reported results for a two-dimensional obstacle un-
der stable conditions using a model based on the Reynolds-averaged Navier-Stokes
(RANS) equations. They showed reasonable agreement with experimental results
from Ogawa and Diosey (1980). However, results were only given up to 10k down-
stream of the obstacle.
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—
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Figure 3.1: Domains of driver simulations and obstacle simulations. Freestream and ground
values are fixed as well as velocity- and thermal boundary-layer height. Inlet data
from driver simulations are used in all simulations.

CHAPTER 3

Taking into account this paucity in available data the scope of the current study is:

1. A single two-dimensional fence subject to an approaching equilibrium TBL
much larger than the fence.

2. A domain that extends up to 100h downstream of the fence to investigate both
the near wake and the wake development inside the TBL.

3. Three levels of stable stratification together with the neutral case.
4. Spanwise line sources of passive tracers in the vicinity of the fence.

The paper is set up as follows: In Sect. 3.2 the numerical method is explained, after
which in Sect. 3.3 the details on the flow configuration, computational mesh, and
boundary conditions are given. The results for the inflow TBLs are discussed in Sect.
3.4. Subsequently, the results for the obstacle and flat cases are discussed in Sect. 3.5.
Finally, conclusions are given in Sect. 3.6.

3.2 NUMERICAL METHOD

The cases were simulated by means of LES. Firstly, TBLs were generated in separate
‘driver” simulations using a recycling method. The inlet plane was saved for each
time step and subsequently used as inlet condition in the corresponding pollutant
line source simulations with and without the obstacle present. We will refer to those
simulations by "obstacle” and ‘flat’, respectively. Fig. 3.1 visualizes the procedure.
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3.2.1  Governing Equations and Numerical Method

The filtered Navier-Stokes equations in the Boussinesq approximation are:

ou;

o (1)
i

Ju; _ 9 ~ ey o (p+T/3 8 s azﬁi p] =

ot aTC] (uzu]) ax; (PO + %9(513 +v asz + a—x] (szgssl]) , (3.2)

a(ﬁ N 0 ,~_ 1% 8295 d Vsgs 647

g__aixj (cpu])"f-ﬁ@‘i‘aix] <Prsg58xj + S, (33)

where (..) denotes filtered quantities, (p + T /3) /po is the modified pressure, Ty
is the trace of subgrid-scale stress tensor, g is the gravitational acceleration, v is the
fluid kinematic viscosity, vsgs is the subgrid-scale viscosity, Pr is the Prandtl number,
Prsgs is the subgrid-scale Prandtl number, §i]- = 1 (ou;/ 0xj + 9il;/x;) is the rate of
strain tensor and S is a source term. Equation 3.3 describes the transport equation
for all scalar quantities ¢, which are the temperature 6 and pollutant concentration C.

From here on the (..) symbol will be omitted for clarity. Furthermore, the (..) symbol
resembles time- and spanwise averaging.

The code developed for this study is based on DALES (Heus et al., 2010). DALES
has been validated and used extensively for atmospheric research in the Netherlands.
It has been part of several intercomparison studies (Heus et al. (2010) and references
therein). The main modifications are the addition of an immersed boundary method
(Pourquie et al., 2009), the implementation of inflow/outflow boundary conditions
and the application of the eddy-viscosity subgrid model of Vreman (2004). This
model has the advantage over the standard Smagorinsky-Lilly model (Smagorinsky,
1963; Lilly, 1962) that no wall-damping is required to reduce the subgrid-scale energy
near walls. The equations of motion are solved using second-order central differen-
cing for the spatial derivatives and an explicit third-order Runge-Kutta method for
time integration. For the scalar concentration field the second-order central ¥ scheme
is used to ensure positivity. The simulations are wall-resolved, so no use is made of
wall-functions. Prsgs was set to 0.9, equal to the turbulent Prandtl number found in
the major part of the TBL in DNS studies by Jonker et al. (2013). The subgrid-scale
Schmidt number was set to 0.9 as well. The code has been applied before to simu-
late turbulent flow over a surface-mounted fence, showing excellent agreement with
experimental data (Tomas et al., 2015a).

3.2.2  Generation of Turbulent Inflow

The instantaneous velocity at the inlet plane of the driver simulations is generated
using a recycling method similar to the method proposed by Lund et al. (1998). Both
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the mean velocity profile and the velocity fluctuations at a recycle plane (8.24¢ dis-
tant from the inlet) are rescaled according to the law of the wall for the inner region
and the velocity defect law for the outer region. The input parameters of the method
are the freestream velocity, Ue, and the inlet TBL height, . There are two differences
compared to the original method by Lund et al. (1998). Firstly, to avoid instabilit-
ies, above 1.2J the fluctuations are damped using the smooth Heaviside function as
described by Bohr (2005), which results in zero rescaling of the fluctuations above
1.36. Secondly, a mass-flux correction is applied because the rescaling procedure and
the associated interpolation can cause the mass flux at the inlet to slightly change
between time steps. This results in pressure pulses through the domain Sillero et al.
(2013). Although the mass-flux variations in our simulations were very small (max-
imum of order 0.01%), we did see effects in the pressure statistics. Therefore, when
the mean variables were fully converged this very small mass-flux correction was
applied each time step.

The inlet temperature field is generated in a similar vein as the velocity field by
using the method developed by Kong et al. (2000). However, in contrast to their
simulations the buoyancy force was taken into account in the driver simulations in
order to generate stably stratified TBLs. The level of thermal stratification is set by
fixing the ground temperature, 6, the freestream temperature, 6, and the thermal
boundary-layer height, d7. For stable TBLs this is a delicate procedure because re-
laminarization can occur while the mean variables have not yet converged, which
causes instabilities. Our results were generated by first assuming the temperature to
be passive until the mean variables were converged. Next, the buoyancy force was
taken into account while the level of stratification was increased slowly. Finally, to
prevent the development of a strong inversion the local gradient Richardson number,

. goo
Rigrag = 9082/251‘]'51‘]' , (3-4)
is kept below the critical value (Rigri;d ~ 0.25) inside the boundary layer. This is

achieved by setting d7 slightly smaller than ¢ at the inlet: 67 was fixed at 0.95J at the
inlet.

3.3 FLOW CONFIGURATION, MESH, AND BOUNDARY CONDITIONS
3.3.1 Characteristics of the Flow

To approximate the flow over an obstacle in the atmosphere the following criteria
were used to specify the properties of the flow:

e The Reynolds number: Experimental studies have shown that the flow over a
fence becomes independent of the Reynolds number if Re = Uh/v is above
4000 to 5000. (Huppertz and Fernholz, 2002; Castro, 1979). The results presen-
ted here are based on a minimum Reynolds number of 5000.
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Table 3.1: Domain dimensions and grid for simulated cases; Ax™, Ay™, and Az" are based on
ur at the inlet.

max. min. max. expans.

Simulation Dim. L; N;

Ax  Axf ratio

X 106 256 77 77 -

Driver y 1.576 160 19 19 -
z 30 80 196 3.9 1.07

X 112.5h (11.255) 288 77 77 -

Flat v 15.7h (1.576) 160 19 19 -
z 30h (30) 80 196 3.9 1.07
X 113k (11.39) 656 90 6.2 1.05

Obstacle y 15.7h (1.576) 160 19 19 -
z 30h (30) 128 196 32 1.07

e Obstacle height in inner scaling: Because the Reynolds number is finite a vis-
cous sublayer forms near walls for which the characteristic velocity scale is

ur = (vou/ az)iv/jl and the characteristic length scale is v/u (for smooth walls).
The thickness of the viscous sublayer was approximately kept constant for all
levels of stability. In addition, the top of the obstacle was in the logarithmic

region of the velocity profile in case of neutral stratification.

e Obstacle height in outer scaling: The atmospheric boundary-layer height is in
the order of one kilometer in neutral conditions. For stably stratified cases it
can be in the order of 100 meters. However, in the current study we are only
interested in the development in the region close to the ground. Therefore, the
TBL height at the inlet of the simulations was kept constant at 10k, which, as
will be shown in Sect. 3.5, proved to be high enough for the wake not to reach
the top of the boundary layer at 100k downstream.

After exploration of boundary-layer data we found that these criteria are met when
Rer = u8/v 2 1900 at the location of the fence. Therefore, at the inlet of all simu-
lations Re; was kept constant at approximately 1950. In addition to the neutral case
three stably stratified TBLs were considered, for which the bulk Richardson number,

g/00) (0o —00) 6

o
Ri = 2 ,

(3-5)

was 0.049, 0.098 and 0.147, respectively.
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3.3.2 Domain and Grid

The domains for all simulations are 1.576 = 15.7h wide and 3¢ high in order to
capture also the largest eddies in the TBL. The length of the domain is 105, 11.256,
or 11.3¢6 for the driver, flat, and obstacle simulations, respectively. The flow is well
resolved, since the average subgrid stress, —2vsgs513, did not exceed 6% of the total
Reynolds stress. Table 3.1 summarizes the domains and the number of grid points
that were used for each case, including the local mesh size and maximum expansion
ratio of the grid.

3.3.3 Pollutant Line Sources

Five independent constant-flux line sources of passive scalar, indicated by concentra-
tions Cy, Cp, C3, C4, and Cs, are located at locations x; = —5h, —1h, 1h, 10h, and
20h. All sources are located at z = 0.2h. The source terms are distributed over the
surrounding cells using a Gaussian distribution with a standard deviation of 0.25h.

3.3.4 Boundary Conditions

In spanwise direction periodicity was assumed for all variables. Velocity and temper-
ature data were imposed at the inlet as described in Sect. 3.2.2. At the outlet a convect-
ive outflow boundary condition was applied for all variables. Furthermore, on the
ground and fence walls no slip conditions were applied, while at the top boundary
a free-slip condition was used with a constant outflow velocity of w = U, dé;/dx,
where ddq/dx is the mean streamwise growth of the displacement thickness. This
was done to establish a zero pressure gradient in the driver simulations. In the flat
and obstacle simulations the same outflow velocity was applied as in the driver sim-
ulations. For the scalars 8 and C zero-flux boundaries were assumed, except for 0 at
the ground, for which isothermal conditions were applied. Applying isoflux thermal
conditions would be another possibility. For TBLs nearly identical results are repor-
ted for z* > 20 (Kong et al., 2000). If this also holds for the flow behind an obstacle
is a question requiring future investigation.

3.3.5 Statistics

After the driver simulations reached a steady state the results were averaged over
10007, where T = ¢/Uc. For the driver and flat simulations sampling was done at
intervals of 0.2T, while a constant time step of 0.02T was used. The obstacle simu-
lations used a time step of 0.0032T and a sampling interval of 0.032T. The duration
of these simulations was 1507 of which the first 50T was not used for averaging to
make sure that start-up effects were gone.
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Table 3.2: Properties of the inlet TBLs created in the driver simulations; thermal BL height J7,
displacement thickness J;, momentum thickness é,, shape factor H, and Obukhov
length L.

Simulation Case Re; Ri or/é  61/0 /6 H L/
BLO 1916 0 - 0.163 0120 136 -
BL1 1952 0.049 095 0208 0.140 149 1.11
BL2 1952 0.098 095 0254 0.155 1.64 047
BL3 1908 0.147 095 0290 0.160 1.82 0.20

Driver

3.4 DISCUSSION OF THE INFLOW BOUNDARY LAYERS

Four TBLs were generated; one neutral case and three stably stratified cases. In Table
3.2 the properties of each TBL are given for the inflow of the domain, because this is
the plane that was saved in time and used as inlet for the flat and obstacle simulations.
61 is the displacement thickness, J, is the momentum thickness, and H is the shape
factor.

In Appendix A it is shown that the horizontal domain size is adequate: at z/dy =
0.15 at least 18 spanwise integral length scales fit the domain width and the stream-
wise two-point velocity correlations have decreased to zero before half of the domain
length is reached. The spanwise energy spectra decrease five orders of magnitude,
which indicates that a large part of the turbulence is resolved.

The mean profiles of BLO are in good agreement with the results from DNS of a
zero pressure gradient TBL at Re; = 1990 by Sillero et al. (2013), as can be seen in Fig.
3.2, where the mean velocity profiles at the inlet are shown in both outer and inner
scaling. Figure 3.3 shows the root mean square (RMS) of the velocity fluctuations for
BLO also in outer and inner scaling. #;ms shows a slight underprediction in the outer
region. In addition, near the ground u;ms is slightly overpredicted, while vyms and
Wrms are slightly underpredicted; a symptom of coarseness of the mesh. The mean
velocity profiles for the stable TBLs show good agreement with the log-linear velo-
city profiles following from Monin-Obukhov similarity theory (Monin and Obukhov,

1954):

u 1 4 z
e [1nz +c0ﬂ +5.0, (3.6)

where « is the Von Kérman constant, L = —u36y/(xgw'6’) is the Obukhov length,
and cp is a constant approximately equal to 5. In Fig. 3.2b it can be seen that the
temperature gradient has the largest effect in the outer region of the boundary layer,
because in non-neutral cases the large eddies scale with L instead of §. The inner
region appears to be unaffected by the stratification; for z* < 20 no effect is visible
in the mean velocity profile. The most stable case (Ri = 0.147) shows the largest
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Figure 3.2: Mean streamwise velocity for BLO, BL1, BL2, and BL3. For reference results from
DNS at Rer = 1990 (neutral) from Sillero et al. (2013) are shown. (BLO almost
collapses with DNS data). (a) Outer scaling. (b) Inner scaling; coloured lines corres-
pond to Monin-Obukhov theory.

deviation from the Monin-Obukhov similarity profile; the flow starts to accelerate
above z* = 10. Figure 3.4 shows the mean temperature profiles at the inlet of the
driver simulations for the stable cases (BL1, BL2, and BL3) in both outer and inner
scaling, while Fig. 3.5 shows the corresponding profiles for the RMS of the temper-
ature fluctuations. The mean temperature profiles show the same behaviour as the
mean velocity profiles; the logarithmic profile transforms into a nearly linear pro-
file with increasing Richardson number. Furthermore, the temperature fluctuations
in the logarithmic region increase compared to the peak value in the buffer layer
(at z" ~ 25). In inner scaling the peak itself also increases slightly. Finally, Fig. 3.6
shows the gradient Richardson number, Rigaq (Eq. 3.4), for the stable TBLs. Near the
ground Rig,q increases with height until it reaches an approximately constant value
in the outer region. Near the top of the boundary layer Rig;,q increases again until the
top of the boundary layer is reached, where it is not defined. In all driver simulations
Rigraq stayed below the critical gradient Richardson number, Ri;iatd ~ 0.25, inside the
boundary layer, except for BL3, which reached Rigrag = 0.25 at z/J = 0.95. BL3 re-
mained turbulent, but further increasing Af did result in intermittent turbulent flow.

3.5 DISCUSSION OF THE FLAT AND OBSTACLE SIMULATIONS

Next, we considered the flow over a fence together with pollutant emissions from line
sources by using the previously generated TBLs as inflow condition. The flat cases
were simulated as well. Table 3.3 lists the characteristics of the flat and obstacle sim-
ulations and the corresponding inflow boundary layer that was used. Firstly, we will
discus