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Abstract

To fulfill the objectives of deep space missions, such as in situ measurements at
an outer planet’s moon or investigations at main belt asteroids, spacecraft must
be provided with sufficient energy to get to these distant objects. This energy
be expressed with the so-called ∆V -budget, which is the sum of required velocity
changes along a spacecraft’s trajectory. As today’s and future deep space missions
are infeasible using chemical propulsion alone, their trajectories involve one or
more close flybys at mass-rich celestial bodies to gain additional orbit energy.
These maneuvers are called gravity assists and depend on the relative positions
of the assisting body and the respective target. Due to the orbital motion of both
bodies, the required constellation may however repeat only every few decades.
This constrains both trajectory and mission design and small launch windows
can be the result. Any project delay hence threatens an on-time launch and thus
potentially puts an entire mission at risk.

Mitigation of that risk is possible through using low-thrust propulsion which can
provide the required ∆V of a deep space mission without gravity assists. Con-
trary to chemical propulsion, having thrust values up to kilo-Newtons at specific
impulse (Isp) values of 300-400 s, low-thrust propulsion currently offers only ap-
proximately one Newton at maximum. This thrust is achieved either through the
ejection of carried-along particles, which are accelerated to very high velocities,
or the reflection of sunlight photons. High exhaust gas velocities and very low
propellant consumption make the respective Isp of low-thrust propulsion one mag-
nitude higher than for chemical propulsion. The low-thrust propulsion concept of
solar sailing even utilizes the solar radiation pressure for the generation of thrust,
making it independent on any propellant.

The different characteristics of low-thrust propulsion and chemical propulsion
result in different trajectories. Therefore the methods for the optimization of tra-
jectories of chemically propelled spacecraft are of limited use for the optimization
of low-thrust trajectories. New methods were developed for this purpose, and one
of them is Evolutionary Neurocontrol. This global optimization method combines
the two biology-inspired mechanisms artificial neural networks and evolutionary
algorithms. Called neurocontrollers, the artificial neural networks are used for
spacecraft control. The optimization capability of evolutionary algorithms is used
for the training of neurocontrollers. Contrary to other optimization methods, Evo-
lutionary Neuroncontrol does not require an initial guess solution to work, which
increases its usability for non-experts in optimal control and optimization. Evo-
lutionary Neurocontrol was applied successfully in the past to various low-thrust
transfer problems. Each of those problems, however, consisted of only one single
heliocentric transfer from one celestial body to another. The problem of global
optimization of multiphase low-thrust trajectories remained unsolved.

This thesis describes how Evolutionary Neurocontrol can be extended to mul-
tiphase low-thrust transfers. An existing implementation was revised and com-
plemented with new capabilities, concepts, and functionalities. Examples of the
new features are a generic multiphase simulation framework, the support of non-
heliocentric transfers, and third-body perturbation. The resulting method has
been validated on various complex low-thrust transfer problems, which included
two-phase transfers, like Earth-Moon-transfers, or heliocentric rendezvous mis-
sions with multiple targets or multiple propulsion technolgies. If available, the
results were compared with published reference solutions. Finally, Evolutionary
Neurocontrol was successfully applied to the design of a trajectory for a so-called
Interstellar Heliopause Probe mission. Including a close flyby at Jupiter and using
two different propulsion technologies, the resulting transfer brought the spacecraft
to a heliocentric distance of 200 AU in less than 25 years.



Abstract

Het doeleinde van missies in de verre ruimte, bijvoorbeeld in situ metingen bij een
maan van een der buitenplaneten of onderzoekingen in de asteroidengordel, vereist
een hoog v-budget. Dit is met chemische voortstuwing alleen niet te bereiken en
daarom worden overdrachtsbanen gepland met een of meer passagen dicht aan
een zwaar hemellichaam voorbij om extra baanenergie te verkrijgen. Zulke ma-
noeuvres worden gravity assists genoemd, waarbij de energiewinst afhangt van de
relatieve geometrie. Zowel het uiteindelijke doel als het ondersteunende lichaam
onderweg bewegen zich, zodat de vereiste constellatie misschien niet vaker dan
enkele malen per eeuw voorkomt. Dat beperkt de keuze van mogelijke trajecten,
het tijdvenster van de lancering en de opzet van de gehele missie. Eventuele
vertragingen bedreigen derhalve het complete project.

Dit risico kan worden geband door een systeem met geringe stuwkracht te ge-
bruiken (’low-thrust propulsion), dat de benodigde v voor een deep-space missie
kan leveren zonder gravity assists. Zo’n ’low-thrust propulsion systeem biedt
op het ogenblik maximaal n Newton, zulks in tegenstelling tot chemische voort-
stuwingssystemen die, bij Isp waarden van 300 tot 400 seconden, kilo-Newtons
kunnen bereiken. Een hoge snelheid van het uittredende gas en een zeer laag
brandstofverbruik maken de Isp tienmaal groter. Het concept om de stralingsdruk
van de zon te gebruiken middels zonnezeilen biedt een ’low-thrust voortstuwings-
systeem dat van brandstof onafhankelijk is.

De verschillende eigenschappen van systemen met geringe stuwkracht en van
chemische voortstuwingssystemen leiden tot verschillende trajecten. Daarom zijn
methoden ter optimalisatie van trajecten voor ruimtesondes met chemische voort-
stuwing van weinig nut bij de optimalisatie van trajecten waarbij een ’low-thrust
systeem wordt gebruikt. Daarvoor zijn nieuwe methoden ontwikkelt, waarvan n
de zogenaamde ’evolutionary neurocontrol is. Deze globale optimalisatie methode
kombineert twee mechanismen, die bekend zijn uit de biologie, n.l. kunstmatige
neurale netwerken en evolutie algorithmen. Kunstmatige neurale netwerken wor-
den voor het sturen van ruimtevaartuigen ingezet onder de naam neurocontrole.
In tegenstelling tot andere optimalisatie methoden heeft ’evolutionary neurocon-
trol geen vooronderstellingen nodig om te functioneren, wat de bruikbaarheid
voor niet-experten verhoogt waar het optimale controle en optimalisatie betreft.
’Evolutionary neurocontrol werd al met succes toegepast op verschillende trans-
ferproblemen met geringe stuwkracht. Elk van deze opgaven bestond echter uit
slechts n enkele heliocentrische transfer van een hemellichaam naar een tweede.
Een globale optimalisatie van trajecten in meerdere fasen en met geringe voort-
stuwingskracht werd daarbij niet bereikt.

Dit proefschrift beschijft op welke wijze de evolutionary neurocontrol methode
werd uitgebreid om ook te kunnen worden gebruikt voor transferbanen met meer
dan een ’low-thrust propulsion fase. Een bestaande aanwending werd herzien
en met nieuwe functionaliteiten aangevuld. Voorbeelden van het laatste zijn
een generisch kader voor simulaties met meerdere fasen, de mogelijkheid niet-
heliocentrische overdrachtsbanen te berekenen en storingen van derde lichamen.
De geldigheid van de nieuwe methode werd aangetoond voor verschillende trans-
fer problemen, o.a. voor een met twee etappes zoals voor een aarde-maan over-
drachtsbaan, of voor heliocentrische rendez-vous missies met meer dan een doel.
De resultaten werden vergeleken met reeds gepubliceerde referentie oplossingen,
indien die ter beschikking stonden. Tenslotte werd de evolutionary neurocontrol
methode met succes gebruikt om een traject te ontwerpen voor een sonde in de
interstellaire heliopauze. Het resultaat is een overdrachtsbaan met een gravity
assist bij Jupiter, die de sonde in minder dan 25 jaar naar een heliocentrische
afstand van 200 AE brengt, waarbij twee verschillende voortstuwingstechnieken
worden gebruikt.
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1

Introduction

Deep space exploration missions have contributed significantly to the understanding of our
solar system. Examples are missions to the planets and their moons, polar Sun-orbiter
missions, or solar system escape missions. However, they require huge amounts of orbit
energy to reach their targets. This energy, typically expressed as the velocity increment or
∆V -budget, is either provided by a launcher or by a propulsion system. Launched onto a
direct solar system escape trajectory by the National Aeronautics and Space Administration
(NASA) in 2006, the mission New Horizons currently sets the record for the highest achieved
Earth-relative velocity with ∆V � 16.2 km{s [36]. This can be seen as a practical limit, as
chemical propulsion is limited to the energy that is stored in the on-board propellant.

The ∆V -budget of deep space missions often exceeds the capabilities of chemical propulsion.
Including maneuvers called gravity assists (GA), or swing-bys, where spacecraft can gain
additional energy, into mission design can provide the required additional orbit energy. A
GA is a flyby of a spacecraft at short distance to a celestial body, e.g., a planet or a moon.
Depending on the spacecraft’s initial velocity and flight direction and on the mass and flight
direction of the flyby body, the gravitation of that body alters the spacecraft’s inertial flight-
path. The spacecraft velocity vector after a GA therefore differs in direction or magnitude
or both from the one before the flyby. Such a maneuver can thus accelerate or decelerate a
spacecraft, or also only change the direction of its velocity vector. The latter is exploited for
orbit inclination changes, for example.

Whether a GA is positive for a particular mission depends on the phasing of potential swing-
by bodies during the planned mission time frame. The orbit periods of outer planets are
greater than the orbit periods of the inner planets of our solar system. Usable geometries
for a swing-by therefore occur only every few decades, which is a severe constraint to the
planning of a deep space mission. Including multiple swing-by maneuvers into a mission’s
trajectory design is even more complicated as the resulting phasing problem is more complex
than for missions with only one GA. The higher ∆V , resulting from multiple swing-bys, is
therefore linked to the substantial drawback of a reduced flexibility in mission execution.
Reducing the number of necessary GA, or omitting them at all, would reduce a mission’s
complexity. Furthermore, it offers more launch options, e.g., launch opportunities for a
longer time or repeating in shorter intervals. Future deep space missions are unlikely to
set lower ∆V -requirements and chemical propulsion is inherently limited. The mitigation of
these problems consequently calls for new and more capable propulsion technologies.

Such high-performance propulsion systems exist today at various stages of technical develop-
ment and qualification, expressed with the so-called technology readiness level (TRL). Electric
propulsion (EP) basically offers significantly higher ∆V than chemical propulsion, through
higher exhaust gas velocities and lower propellant consumptions. The maximum thrust level
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of EP is however only a few Newtons at maximum. They are unusable for high-thrust appli-
cations, like launching from a planet’s surface. However, past and current missions employed
EP successfully for primary deep-space propulsion. Examples are Deep Space 1 (DS1) in 1998
and Dawn in 2007, conducted by the Jet Propulsion Laboratory (JPL); Hayabusa in 2003
of the Japan Aerospace and Exploration Agency (JAXA); and Small Missions for Advanced
Research in Technology-1 (SMART-1) of the European Space Agency (ESA) in 2003.

The low-thrust propulsion concept of solar sailing even would enable completely new mis-
sion types because it does not require any propellant. Solar sails are large, ultra-lightweight
structures that exploit the solar radiation pressure for acceleration, i.e., for acceleration and
deceleration. The sails direct the force vector resulting from reflected sunlight into the re-
quired direction. The TRL of solar sails is however lower than for EP. No space mission
using solar sailing for primary propulsion has flown yet. However, once in-space validation
has taken place, solar sail-driven propulsion is expected to become a further viable alternative
to chemical propulsion for deep space missions. In fact, for very advanced mission concepts
it will be the only viable option.

1.1 Optimization of Multiphase Low-thrust Trajectories

The flight path of a body, i.e., its position and velocity vectors over time, is called trajectory.
It depends on the initial state (position, velocity) at a time t0 and the forces that act on
that body during t ¥ t0. For a spacecraft and neglecting third-body perturbations, these are
primarily the gravitational attraction of a central body and the thrust forces generated by its
propulsion system. Gravity depends on the masses of the involved bodies and the distance
between them and the spacecraft.

The achievable thrust levels from propulsion systems and the time span during which a
resulting force acts on a spacecraft depends heavily on the propulsion technology. Chemical
propulsion features high thrust forces that act for a short time, rarely more than an hour. The
maximum thrust of low-thrust propulsion is in the range of milli-Newtons. The high exhaust
velocity and low propellant mass flow rate however allows the application of this small but
highly efficient thrust over long times. The measure for a propulsion system’s efficiency is
the specific impulse Isp. While chemical propulsion is limited to Isp ¤500 s, EP as already
successfully demonstrated Isp values of several thousand seconds [35].

The different thrust characteristics of high-thrust and low-thrust propulsion result in high-
thrust trajectories and low-thrust trajectories. The long coast arcs of high-thrust trajectories,
during which the spacecraft travels primarily under the influence of the gravitation of the
central body, depend on the position and velocity vector at the time of burnout of the
propulsion subsystem or the launcher. In simple terms, for the computation of the trajectory
that transfers a spacecraft from one celestial body to another, the associated vector set
of position and velocity and the burnout time must be calculated. This is not the case
for low-thrust trajectories because the long-acting low-thrust force changes the flightpath
continuously. The design of a low-thrust trajectory that leads to a predefined target or
celestial body instead requires the calculation of a thrust vector history. The resulting increase
in optimization variables is therefore considerable.

Regardless of the actually used propulsion technology, the design of a particular mission in-
evitably requires the optimization of the transfer trajectories. This is because the trajectory
influences spacecraft design parameters, like required propellant mass, life time, communi-
cations, and power and thermal control systems. Due to the described lower number of
trajectory-influencing variables, this is easier for missions using chemically propelled space-
craft. Proven methods have been developed for that particular purpose, but they are of



1. INTRODUCTION 3

limited use for the optimization of low-thrust trajectories. Optimized low-thrust transfers
require an optimized thrust profile, i.e., a thrust vector history over time, which must be fol-
lowed in order to accomplish the mission. The thrust vector history not only decides whether
the target body is met at all but also affects crucial figures of merit, e.g., the flight time ∆t
and/or the total propellant consumption. Its optimization is therefore essential. New meth-
ods have been developed and successfully applied to this optimization problem type. Thereby
some of these rely on traditional optimization methods, e.g., gradient-based, deterministic,
or local optimization techniques. An example is the collocation or direct transcription al-
gorithm [8, 10]. It transcribes the optimal control problem into a nonlinear programming
problem which is solved using quadratic programming. Other optimization methods employ
new approaches such as static-dynamic control (SDC) [95], shape-based methods or stochastic
global optimization methods, like particle swarm optimizers (PSO) [1]. A promising global
optimization method is evolutionary neurocontrol (ENC). Its foundations are control and
optimization principles from artificial intelligence and evolutionary computing. It has been
applied successfully to the optimization of several heliocentric low-thrust trajectory prob-
lems [15]. The focus was thereby on single-phase transfers. Examples are flyby or rendezvous
trajectories to planets or asteroids but also solar sail transfers into near-polar Sun orbits [14].

1.2 Motivation and Scientific Rationale

Real-life missions often exhibit multiple flight legs or phases, as the maximization of scientific
return of expensive deep space missions often requires to visit more than a single target.
Complex flyby or multi-rendezvous missions have therefore become common practice without
adequate methods and tools to efficiently treat them. The design and optimization of the
required trajectories is by principle challenging, not only for astrodynamics specialists but also
for the used software tools, and therefore often requires a team of experts. Moreover, analysis
and resulting mission design is done through separate optimization of each mission phase
and therefore is, by principle, not globally optimal. Human experts must furthermore assure
that the trajectories of adjacent missions phases fit together at their start and end points.
These transition points are mostly also selected by experts according to their experience and
knowledge. Consequently, today’s low-thrust optimization methods are not satisfying and
require further development and extension.

Existing low-thrust trajectory optimization methods are often limited to a particular type
of problem or unusable without expert knowledge in orbital mechanics and optimization
techniques. The optimization of mission designs that contain more than one transfer to a
target body is a further problem for most optimization method implementations. In addition,
successful use of these tools often requires a user to check obtained solutions for validity. In
dependence on the solution’s validity and according to his knowledge, the user then possibly
alters simulation and optimization parameters and starts a new optimization run. Some
optimization schemes require an initial-guess solution from which they derive an optimum
from. The generation of such a solution is very difficult for single-phase low-thrust missions.
For multiphase low-thrust missions it can become almost impossible.

For a proper nomenclature, this thesis defines a phase as a specific part of the mission. It
can be a complete trajectory but also only a certain part of it. For a mission comprising
two rendezvous-type transfers to different asteroids, for example, each of the trajectories can
be treated as one phase and the stay-time at the first asteroid as a separate third phase.
A different example is the transfer from an Earth-bound orbit into an orbit around the the
Earth’s Moon. Here, the transfer from the Earth to the Moon’s sphere-of-influence can be
treated as one phase. The subsequent flight leg from there to the final, presumably lower,
orbit about the Moon would be another phase. A subdivision into multiple phases is also
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possible for an interplanetary transfer of a spacecraft having more than one propulsion system
or propulsion stage. In this case, the point of jettison of the first stage can mark the separation
between the phases. Naturally, for all these examples, the parameters of subsequent phases,
such as the propellant mass, influence the optimization of the trajectories of previous phases
and vice versa. A generic treatment of such complicated constraints is often impossible with
existing low-thrust trajectory optimization methodologies. Certain assumptions are therefore
often made, which, by principle, prohibit global optimization of the complete mission.

In order to solve existing methodological shortcomings and to allow true global optimization
of multiphase low-thrust missions, this thesis tries to answer the following research questions:

1. Which methodology enables the global optimization of multiphase low-
thrust mission designs?

2. How can the methodology be validated and what are the results of these
validations?

3. How does the methodology apply to preliminary mission analysis, i.e., what
problem types are solvable and which are potentially still not?

The focus of this thesis is on the development and validation of a methodology that answers
these questions. As the application of that methodology is preliminary mission design, high-
fidelity trajectories are not required. Their computation would require taking into account
additional effects, like known disturbance accelerations1, air-drag at low-altitude orbits, and
relativistic effects. Inclusion of these effects, however, disguises the actual multiphase opti-
mization problem and often increases computation times significantly. For detailed mission
analysis, high-fidelity trajectory are nevertheless required, but this is achievable through
existing low-thrust trajectory optimization methodologies. They can provide the required
accuracy easily if provided with a global optimal solution.

1.3 Thesis Outline

Following this introduction, Chapter 2 describes the principles of spaceflight propulsion and
describes in detail the differences between chemical propulsion and low-thrust propulsion. The
two main low-thrust technologies types of electric propulsion and solar sailing are described
with corresponding models. Different technologies of both types are explained and examples
of existing implementations and components are presented, such as thrusters, electric power
generation systems, and solar sails types.

Chapter 3 provides an introduction to trajectory optimization. The differences between tra-
jectories resulting from chemical propulsion and low-thrust propulsion are explained and also
the difference between single-phase and multiphase trajectories. Furthermore, the influence
of the optimization criterion on the trajectory is discussed and how the concept of Pareto-
optimality is usable to balance contradicting criteria. This is followed by the formulation of
the general multiphase, low-thrust trajectory optimization problem. Different methods and
techniques for the optimization of low-thrust trajectories are presented. Finally, in this chap-
ter a globally optimal, multiphase, low-thrust trajectory optimization method is developed.

The application of the concepts of machine learning and artificial intelligence to the opti-
mization of multiphase low-thrust trajectories is shown in Chapter 4. It introduces to the
basic theory of mechanisms and techniques that enable ENC. These are artificial neural

1For detailed mission analysis, at least the gravity forces of all planets of the solar system as well as those
of the big asteroids must be taken into account.
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networks and evolutionary algorithms. The networks, called neurocontrollers, thereby steer
the low-thrust propelled spacecraft according to a strategy that is encoded in their internal
parameters. Evolutionary algorithms then train the neurocontrollers for optimal steering
through optimization of these parameters.

InTrance, a software which implements ENC for heliocentric single-phase low-thrust trajec-
tory optimization, had to be completely revised and extended to allow its application for
solving multiphase trajectory optimization problems. The new capabilities divide into three
categories: capabilities for multiphase trajectory optimization, the support of non-heliocentric
trajectory calculations, and the extension of the trajectory simulation with new features, such
as the increase of the robustness to find optimal solutions more reliably. Chapter 5 describes
these features in detail.

Chapter 6 describes the validation of newly developed concepts and the application to mis-
sion analysis. Validation comprises tests for logical correctness of existing and newly de-
veloped components. This was achieved through comparison of published solutions of ref-
erence problems with recalculated solutions. The analyzed problems are non-heliocentric
single-phase transfers, single-phase and two-phase Earth-Moon transfers, and heliocentric
double-rendezvous transfers. The final example shows, how a flight time-minimal, solar-
system escape mission that comprises two propulsion stages and a gravity assist at Jupiter
was optimized with the developed method.

The final Chapter 7 summarizes the results of this research and discusses potential further
research activities in this field. It sketches how generic problems related to ENC for trajec-
tory optimization can be solved, such as providing optimal input data to an artificial neural
network (ANN). Furthermore, it describes how ENC can help to search for optimally gen-
eralizing ANNs or to find an analytical solution of the general, low-thrust transfer problem.
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Low-thrust Propulsion

The understanding of the application of ENC to low-thrust trajectory optimization requires

knowledge of the underlying propulsion physics. This chapter shall therefore familiarize the

reader with spacecraft propulsion systems and provide that required basic knowledge. For

this purpose, section 2.1 gives a brief introduction into the basics of spacecraft propulsion, its

enabling physics, and existing technologies. For detailed information on spacecraft propulsion

technologies, the reader is referred to the numerous standard literature on this topic.

The following section 2.2 and section 2.3 briefly explain two examples of low-thrust propul-

sion systems. The first is EP, which achieved already very high exhaust velocities of up to

�150 000 km/s1 [93]. The second is the concept of solar sails, which uses only the sunlight

photon’s radiation energy and requires no propellant at all. For both technologies, the en-

abling principles and mathematic models are described and, if possible, also current or past

real mission applications of each technology are presented.

2.1 Basics of Propulsion

The space age started with the first man-made satellite that was brought into an Earth-bound

orbit. This was achieved by the Soviet Union with the launch of Sputnik 1 on top of a modified

intercontinental rocket R-7 on 4th October 1957 [21]. All chemical rocket motors developed

since then share the same enabling principle with the Sputnik 1 launcher: the conversion of

chemical energy that is bound in the carried-with propellant chemicals into thermal energy

via an exothermal reaction in the combustion chamber. The high-temperature, high-pressure

reaction products then expand through a nozzle. During the expansion, the exhaust gas

pressure interacts with the combustion chamber walls, and the resulting reaction force accel-

erates the rocket into the direction opposite to the exhaust plume. The range of achievable

thrust thereby spans from a few Newtons to more than several thousand kilo-Newtons (kN).

The five F-1 engines of the first stage of Apollo’s launch system Saturn V, for example, used

the propellant kerosene and liquid oxygen (LOX) as oxidizer. Each F-1 had a thrust force of

F � 7 893 kN with a specific impulse Isp of 304 s [89].

The specific impulse, or characteristic mission impulse, is a measure of a rocket engine’s

efficiency and can be understood as the momentum given to the rocket per kilogram of

propellant expelled from the engine’s nozzle. It is measured in seconds and calculated with

1First successful test of the dual stage four grids (DS4G) laboratory thruster model test in 2005; DS4G
thruster developed by ESA and Australian National University
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Figure 2.1: Ratio of Dry Mass to Payload Mass and the Ratio of Launch Mass to
Propellant Mass Over the Ratio of Mission-specific Impulse to Exhaust Velocity.

Figure 2.2: Specific Impulse, Isp, of Different Propulsion Technologies, with Electric
Propulsion as a Prominent Low-thrust Technology in the Upper Left Part. Courtesy
JPL/NASA.
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the exhaust gas velocity vex and the norm acceleration at Earth sea level g0 with

Isp � vex
g0

� vex 9mp

g0 9mp

� F

g0 9mp

. (2.1)

Equation (2.1) provides an alternative expression, using the thrust force F and the propellant
mass flow 9mp. The energy that is stored in the chemicals in the rocket’s tanks limits the
exhaust velocity to maximum 4.6 km/s1. Current most advanced liquid propellant rocket
motors have almost reached that velocity limit. The Vinci cryogenic upper-stage2 of the
Ariane V ECB, for example, achieves vex � 4.56 km/s and Isp � 465 s through burning LH2
and LOX.

Tsiolkovsky’s rocket equation

∆V � vex ln

�
m0

m1



(2.2)

shows the influence of vex and the ratio of initial mass, also called launch mass or wet mass, m0

to burnout mass m1, or dry mass on the resulting velocity increment ∆V . The plot in Fig. 2.1
shows this dependency, which allows several options for preliminary mission design. First, if
∆V and m1 are fixed, one needs to increase vex to reduce mp � m0�m1, which can require a
more capable propulsion technology or the use of different propellant and oxidizer chemicals.
There are however technically and chemically limits to both strategies. Second, if mp is fixed,
a higher vex either allows for a higher m1 or a higher ∆V . Third, if m0 and ∆V are fixed,
one need to either increase vex or mp by reduction of m1 to achieve the required ∆V . To
realize high-∆V missions, therefore one can either increase vex, or reduce m1, or do both, if
technically feasible.

Figure 2.2 compares chemical propulsion systems with low-thrust propulsion systems and
other, some of them being currently theoretical propulsion technologies. The upper left part
of this figures shows EP as an example of low-thrust propulsion. Their upper thrust force limit
of around 10 N clearly inhibits their use for a launch from Earth surface. The approximately
one magnitude higher Isp makes it however well suited for deep-space propulsion because it
allows novel high-∆V space missions, or higher payload ratios, or a combination of both.

2.2 Electric Propulsion

Although the principles and mechanisms of EP are known since the 1960s [84] [46], it took
approximately 30 years until their realization and in-space validation. Interestingly, the
high-∆V -capability of electric propulsion did not found its first application in deep-space
propulsion but in station-keeping of geostationary communication satellites [22]. NASA’s
New Millennium Deep Space 1 (DS 1) mission to the comet 19P/Borrelly [60], ESA’s SMART-
1 mission to the Moon [29], and JAXA’s asteroid sample return mission Hayabusa [48] to the
asteroid Itokawa are prominent examples of later deep space missions using EP.

Common to all EP-technology thrusters is their increased electrical power requirement. De-
pending on how that power is generated, they divide into solar electric propulsion (SEP),
nuclear electric propulsion (NEP), and radioisotope electric propulsion (REP). While SEP
depends on the Sun-spacecraft distance, NEP and REP do not suffer from this drawback.
After an introduction into the general principles of EP and different thruster technologies,
three EP-types and their models are presented.

1vex � 4.6 km/s for liquid hydrogen (LH2)/LOX at oxidizer-propellant-ratio of 4.83 [89]
2http://cs.astrium.eads.net/sp/launcher-propulsion/rocket-engines/vinci-rocket-engine.html
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2.2.1 Electric Propulsion Principle

According to (2.1), vex determines Isp, and electric thrusters allow significantly higher vex-
values because, contrary to chemical rocket motors, they are not constrained to the energy
within the propellant and oxidizer chemicals. The energy for the acceleration of the expelled
ions instead stems from an external power source and is therefore principally unlimited. The
beam power Pb of the ions streaming through a nozzle if an EP thruster is

Pb � dEk

dt
� 9mp

2
v2
ex �

Fvex
2

. (2.3)

It corresponds to the energy per time that is necessary to accelerate the propellant mass flow
9mp to vex. The electrical input power Pe cannot be completely exploited for ion acceleration.

This is expressed with the thruster efficiency ηt when relating Pe with (2.3)

ηtPe � Pb � 9mp

2
v2
ex. (2.4)

Basically, any mean of electrical power generation is suited to supply an EP-thruster as long as
its power output allows operating the thrust unit. A system consisting of one or multiple low-
thrust engines and an electric power generation subsystem is called electric propulsion system
(EPS). If the thrust module is an ion engine, i.e., its enabling principle is the acceleration of
ions, the propulsion system is also called ion propulsion system (IPS).

Equation (2.4) shows the dependency of vex on Pe. Theoretically, and for constant 9mp, the
higher Pe the higher is also vex. In practice, there are however technical limitations to the
allowed Pe of a thrust unit, such as increased material degrading through sputtering and the
danger of performance degrading sparkovers.

Besides thrusters and an electrical power supply, an EPS also contains at least one power
processor unit (PPU). A PPU conditions and transforms the input power and voltage to the
different requirements of the respective thruster’s components. Due to the imperfection of
this conversion, the electrical input power PPPU � Pe of a PPU must be supplied with an
efficiency factor ηPPU to obtain the thruster input power PT

ηPPU � PT

PPPU

. (2.5)

PT again divides into the ion beam power Pb and the so-called other power Po, which accounts
for the electrical power to ionize the propellant and to operate the thruster components, e.g.,
heaters, grids, and control units

ηPPUPPPU � PT � Po � Pb � Po � 9mpv
2
ex

2
. (2.6)

The electrical efficiency ηe is defined as the ratio of beam power to thruster input power

ηe � Pb

PT

� Pb

Po � Pb

. (2.7)

Using (2.1) and ηt � ηeηPPU, the thrust force is

F � 2ηtPPPU

g0Isp
. (2.8)
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Table 2.1: Maximum thrust force F *, maximum electrical thruster input power P *
e , and specific

impulse Isp of selected electrical thrusters [35]. NEXT-data taken from [65]. RIT-22 data taken
from [15].

Thruster Technology F * P *
e Isp Manufacturer Application

[ mN] [ W] [ s]

NSTAR Kaufman 93 2 567 3 127 Boeing, U.S.A. DS 1, DAWN
NEXT Kaufman 236 6 900 4 190 JPL/NASA -
SPT-50 Hall effect 20 350 1 100 Fakel, Russia -
SPT-70 Hall effect 40 700 1 500 Fakel, Russia -
SPT-100 Hall effect 80 1 350 1 600 Fakel, Russia Small GEO
PPS1350-G Hall effect 88 1 500 1 650 Snecma, France SMART 1
SPT-140 Hall effect 300 5 000 1 750 Fakel, Russia -
RIT-10 RIT 15 459 3 400 Astrium, Germany Eureca, Artemis
RIT-22 RIT 175 6 200 4 763 Astrium, Germany -
T5 Kaufman 18 476 3 200 QinetiQ, U.K. GOCE
T6 Kaufman 210 4 500 4 700 QinetiQ, U.K. Bepi Colombo

2.2.2 Electric Propulsion Technologies

Depending on the respective mechanism for the acceleration of the propellant, EP further
divides into electrothermal, electrostatic, or electrodynamic propulsion. These types are
briefly presented in the following and Tab. 2.1 gives an overview of the capabilities of selected
thruster models.

2.2.2.1 Electrothermal Propulsion

The enabling mechanism of electrothermal propulsion is the generation of thrust through
expansion of high-temperature, high-pressure gas through a nozzle, which is the same mecha-
nismas for chemical engines. The required energy is however externally provided; an electric
arc, a tungsten wire coil through which an electric current flows, or microwaves are viable
energy sources. Thrust units of this technology are called resistojets or arcjets. Current
space-qualified thruster models achieve vex � 10 km/s with thrust levels less than 0.5 N and
ηt ¡ 70 %. Several propellant types are possible but the most common are hydrogen, nitrogen,
ammonia, and hydrazine. Hydrazine resistojets are called power-augmented electrothermal
hydrazine thruster (PAEHT) and have an Isp ¡ 500 s with Pe   2 kW [37].

2.2.2.2 Electrostatic Propulsion

Electrically charged particles, e.g., electrons or ions, accelerate electrostatically between an
electrical potential difference. This principle is exploited for electrostatic propulsion. The
expulsion of accelerated ions also gave engines of this technology the name ion engines.
Different propellants are feasible, e.g., Mercury, Cesium, or noble gases. However, only the
nontoxic noble gas Xenon (Xe) is used today. It is easier handled and stored than metallic
propellants and its exhaust plume does not contaminate the spacecraft.

Ionization of propellant gas molecules is achieved through bombardment with accelerated
electrons from either electrostatic (Kaufman thrusters) or radio-frequency (RF)-induced ori-
gin. In Kaufman thrusters, an ionizer cathode in the discharge chamber emits electrons, and
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Figure 2.3: NSTAR Ion Engine. Cour-
tesy NASA/JPL-CalTech.

Figure 2.4: RIT-22 Thruster. Courtesy
Airbus.

these electrons are then accelerated towards an anode. On their way to the anode, elec-
trons hit Xe-atoms and ionize them. Within the second mechanism, electrons are excited
with RF-waves of 0.7-1.0 MHz. Electrons leave their Xe-atoms and potentially collide with
electrons of other Xe-atoms, which leaves positively charged Xe-ions and electrons. These
so-called radio-frequency ion thruster (RIT) were developed by Giessen University, Germany,
in cooperation with Astrium. After ionization, the ions are accelerated by an electrostatic
field with a potential difference of several kV. Most designs involve two or three acceleration
grids and achieve exhaust velocities of tens of thousands kilometers per second. In order to
prevent an electrical field between the expelled ions and the spacecraft, a neutralizer cathode
injects electrons into the exhaust beam.

Because of their very high exhaust velocities, ion engines are suited to propel interplanetary
missions, during which long-duration thrust periods are acceptable. For example, the ion
engine that was used for NASA’s DS 1 mission was the Kaufman-type NASA Solar Technology
Readiness (NSTAR) thruster.

Another thruster type that utilizes the electrostatic acceleration of ions is the Hall effect
thruster (HET). HETs lack acceleration grids and where first developed and used in the
Soviet Union for station-keeping on a multitude of satellites. As a result of a technology
transfer, HETs were later also further developed in the U.S. and in Europe. Current thruster
models, e.g., the T220 of NASA, achieve F � 500 mN, an Isp � 2450 s, and ηe � 59 % with
Pe � 10 kW. Another flight-proven HET thruster model is the Snecma PPS1350-G, used on
ESA’s successful mission to the Moon SMART-1 [30].

2.2.2.3 Electrodynamic Propulsion

These thrusters use the interaction of electric and magnetic fields to accelerate a plasma.
Except for the pulsed plasma thruster (PPT), which has very small thrust capability, other
thrusters have not yet reached a TRL suited for space application. This is also related
to the problem of providing the necessary energy on board a spacecraft to operate such
thrusters efficiently. Once this problem is solved, a so-called magnetoplasmadynamic thruster
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(MPDT) is however an interesting option also for human deep-space missions because of their
significantly higher thrust level.

2.2.3 Solarelectric Propulsion

SEP combines electrical engines with a solar-cell-based electric power generation system
(EPGS). Exploiting the photo-voltaic (PV) effect and arranged on a solar panel (SP), so-
lar cells convert the sunlight photon’s energy directly into electrical energy. The resulting
power Pe,SP supplies the spacecraft bus and the propulsion subsystem, which contains the
thrust units’ PPU

Pe,SP � Pe,bus � PPPU. (2.9)

Solar cells are in use for in-space electrical power generation since the beginning of spaceflight
and have been continuously improved. Current space-qualified solar cell types have conversion
efficiencies up to nearly 30 % [25]. An important performance figure is the power-specific mass,
which is the ratio of the SP mass mSP to its electric output power Pe,SP

α � mSP

Pe,SP

. (2.10)

Solar panels have power-specific masses of 13 kg/kW for panels with Pe,SP ¡ 10 kW and
7 kg/kW for Pe,SP � 5-6 kW [89]. Concentrator lenses and GaAs-cells with a conversion effi-
ciency up to 30 % can theoretically achieve α � 3-5 kg/kW, but big-scale in-space validation
still remains unachieved.

The intensity of the sunlight radiation is inversely dependent on the square of the distance
to the Sun and, theoretically, so is the SP’s power output as well. The conversion efficiency
however reduces with increasing temperature, which again depends on an SP’s sunlight ex-
posure. A power law exponent κ of 1.5 [31] is therefore more realistic. With the power Pe,SP,0

at the reference distance r0 � 1 AU and the distance from the Sun rs, Pe,SP and mSP are given
by

Pe,SP � Pe,SP,0

�
r0
rs


κ
(2.11)

and
mSP � αPe,SP,0. (2.12)

2.2.4 Nuclear Electric Propulsion

Interplanetary missions to the outer solar system, i.e., beyond Mars orbit, cannot rely on a
PV-based electrical power generation for propulsion. Supplying an EPS at these distances
would require SPs of dimensions almost impossible to assemble today. A nuclearelectric power
generation system (NPGS), which converts thermal energy from nuclear fission processes
to electrical energy, would be an alternative. Pasts studies and tests of nuclear reactors
mostly dealt with the application to nuclear-thermal rockets. The increasing public concern
of potential environment pollution because of launch failures, or nuclear reactors reentering
the Earth’s atmosphere, let the interest in this technology decline, however. So far, only
the Soviet Union launched satellites carrying nuclear reactors for electrical power supply. At
this point it is worth mentioning that, contrary to radioisotope thermoelectric generators
(see subsection 2.2.5), a uranium fission reactor does not produce any radioactive products
prior its activation [89]. This holds also true for the case of launch failures and a potential
reentry. The activation of an NPGS must therefore take place only after successful launch
and attainment of a safe orbit.
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Nuclear reactors are therefore generally safe, and the advantage of a high, sunlight-independent
electrical power output1 would offer new mission possibilities. Operating multiple high-Isp
ion engines or MPDTs at the same time and at outer solar system distances would become
viable. It is therefore not surprising that this technology regained interest in recent years and
was also considered for big-scale space missions. NASA’s Jupiter Icy Moons Orbiter (JIMO)
proposal, for example, included an NPGS to supply an EPS with eight ion engines [66].

Compared with PV-based EPGSs, an NPGS has considerable advantages:

• independence on Sun distance, spacecraft attitude, and shadowing,

• electrical power output levels between 10–150 kW,

• high mass-specific power.

For a simple nuclear electric power and force model, one can neglect the spacecraft bus power
and the decrease of the reactor’s nominal power P *

e,n over time. In this case, the power output
is constant from reactor activation until end-of-mission (EOM). A NEP-system’s thrust force

FNEP � χfP,NEPP
*
e,n (2.13)

is calculated with the throttle setting χ P p0, 1q and the power-specific force

fP,NEP � F *
NEP

P *
e,n

, (2.14)

whereby F *
NEP is the NEP system’s maximum thrust. The propellant mass flow 9mp calculates

with (2.1) and (2.13)

9mp � FNEP

g0Isp
, (2.15)

and the NEP-acceleration vector is

athr,NEP � FNEP

mSC

ef �
χfP,NEPP

*
e,n

mSC

ef, (2.16)

with the thrust acceleration unit vector ef and the spacecraft wet mass mSC. The mass of a
nuclear reactor mn is determined with P *

e,n and the power-specific mass αn
2

mn � αnP
*
e,n. (2.17)

2.2.5 Radioisotope Electric Propulsion

While an NPGS exploits the thermomechanical conversion of thermal energy generated
through nuclear fission to mechanical energy, an radioisotope power system (RPS) uses the
thermal energy of the natural decay of the radioisotope Pu-238 for the same purpose. The
half-life of Pu-238 of 87.7 yrs allows for irradiation of thermal energy for long enough to
supply space missions lasting for decades. A radioisotope thermoelectric generator (RTG)
converts the thermal energy emitted by plutonium oxide pellets glowing at temperatures of
1 235 �C. An RTG’s thermal efficiency is only ηth � 6 % [89], which necessitates irradiation of
excess thermal energy into space via radiators. Thermomechanical generators, e.g., Stirling
or Brayton systems, could increase ηth to 30–40 % [89]. Such an RTG, the advanced Stirling
radioisotope generator (ASRG), is being qualified by NASA for a first space application.

1Russian Topaz reactors for space application achieved 10 kW with an overall mass of 320 kg [89].
2αn= 32 kg/kWe for Topaz nuclear reactor [89]
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The ASRG is specified with a mass-specific power output of 8 W/kg [80], corresponding to a

power-specific mass of αRTG � 125 kg/kW. This is approximately one third more than present

general purpose heat source-RTGs with 5.2 W/kg and Pe,RTG � 140 W.

Because of their independence on sunlight, RTGs have been the preferred EPGS technology

for many deep space missions. They powered the Viking Mars probes, the Mariner and Voy-

ager spacecraft, and also the ESA/NASA Cassini-Huygens mission to Saturn. The electrical

power was thereby exclusively used to supply the spacecraft bus and the scientific payload

but not to power a propulsion system. However, combining multiple RTGs with a low-power

electric thruster, e.g., a throttled RIT-10 ion engine, would offer the interesting alternative of

REP. For example, REP could shorten the flight time to very large heliocentric distances of

150–200 AU by further long-lasting acceleration beyond the orbits of Jupiter and Saturn [27].

An RTG’s electrical power Pe,RTG inevitably follows the natural exponential decay process of

radioactive isotopes according to

Pe,RTG � P *
e,RTG � e�λt. (2.18)

The power output decreases from the beginning-of-mission (BOM) power P *
e,RTG over time

with a decay constant λ. It is calculated from the half-life ∆t1{2, which is the time span

during which the number of radioactive particles of a specimen has halved, as

λ � ln 2

∆t1{2
. (2.19)

The mass of an RTG-based EPGS is determined with the BOM power P *
e,RTG and the power-

specific mass αRTG

mRTG � αRTGP
*
e,RTG. (2.20)

To determine the acceleration vector athr,REP, one needs the power-specific thrust fP,REP, the

throttle factor χ P p0, 1q, and the spacecraft mass mSC

athr,REP � χ
fP,REPPe,RTG

mSC

ef � χ
fP,REPP

*
e,RTGe

�λt

mSC

ef. (2.21)

2.3 Solar Sails

Solar sailing is a propulsion technology whose most remarkable feature is the absence of

propellant. This gives solar sailing spacecraft, the solar sails, in principle unlimited ∆V -

capability. Solar sails could thus enable novel and challenging mission types in interplane-

tary space and nearby major celestial bodies. A couple of still unsolved technical problems,

however, have prohibited their usage until today.

A manifold of different solar sail concepts exists, e.g., the square sail design in Fig. 2.5 or the

heliogyro configuration in Fig. 2.6. They do not only differ in shape and performance but also

in terms of TRL. It ranges from pure theory over ground qualification tests to first in-space

validation tests of smaller scale sails. Vulpetti et al. [92] and McInnes [55] give an overview of

different sail designs and mission scenarios based on solar sailing. The next subsection briefly

explains the underlying principle of solar sailing, followed by a description of commonly used

force models.
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Figure 2.5: Square Solar Sail. Flat
square-shaped solar sail with 3-axis control.
The triangular sail segments are kept under
tension with four extendable booms. Cour-
tesy NASA.

Figure 2.6: Rotating Solar Sail. Rotat-
ing solar sail or heliogyro. The sail film’s
shape is kept through centripetal force caused
by rotation. Courtesy Sciencephotolibrary.

2.3.1 Solar Sailing Principle

The principle mechanism of solar sailing is the transfer of the sunlight photons’ momentum
to the highly reflective solar sail film facing the Sun, and thus to the spacecraft. The flux of
solar photons causes the so-called solar radiation pressure (SRP) pSRP

pSRP � S

c
, (2.22)

where S is the solar radiation flux and c is the speed of light in vacuum. The SRP must not
be confused with the Solar Wind, which is also radially emitted by the Sun but consists of
charged particles, e.g., electrons, protons or α-particles. The solar radiation flux is inversely
dependent on the square of the Sun-spacecraft-distance rs so that

S � S0

�
r0
rs


2

. (2.23)

Here, S0 is the solar constant S0 at mean Earth-Sun distance r0 � 1 AU. Using (2.23) in (2.22)
gives

pSRP � S0

c

�
r0
rs


2

� pSRP,0

�
r0
rs


2

� 4.563 Pa

�
r0
rs


2

. (2.24)

The result of pSRP acting on the solar sail area A is a force, and the reflection of the photons
gives a second force of the same size. The resulting absolute force is called Solar Radiation
Pressure Force FSRP

FSRP � 2ApSRP. (2.25)

Although FSRP always points away from the Sun, it can be directed on the complete hemi-
sphere for which the vector product of the sunlight direction vector el and the sail normal
unit vector en is ¥ 0 (see Fig. 2.7).

As an example, one can conclude from (2.25) that a square-shaped solar sail must have a
side length l � 330 m to achieve an acceleration of 1 N at rs � r0. Although his example is
only valid for a sail that is oriented perpendicular to the Sun, it shows a peculiarity of solar
sails; their dimensions need to be large for reasonable thrust values. Generally, direction and
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magnitude of FSRP do not only depend on the distance from the Sun but also on the spatial
orientation of the sailcraft (see 2.3.3).

Solar sails must not only have large dimensions and at the same time maintain attitude
control. To increase acceleration, they must also be as lightweight as possible. The space
environment and the intense sunlight thereby pose additional challenges to sailcraft design.
As the front side is never a perfect reflector, a small fraction of the incoming solar radiation
energy is usually absorbed. The backside should therefore have an emissivity high enough to
radiate excess thermal energy into space. This way a solar sail’s damage from temperature-
induced degradation of optical and mechanical properties, or both, can be reduced. Another
technical challenge associated with large structures on spacecraft in deep space is to assure
the required pointing accuracy for RF communication with the operations team. Big solar
sails can only turn at very slow angular rates. Attaining and stabilizing the spacecraft
structure for communication and then turning back into the required optimal direction for
thrust generation is not trivial. Thus must therefore be accounted for during mission analysis.

2.3.2 Performance Metrics

Performance figures allow the comparison of the capabilities of different solar sail concepts.
The metrics described in the following are the sail assembly loading σSA, the sailcraft loading
σ, the characteristic acceleration ac, and the lightness number λ.

The stiffness of the sail film is insufficient to allow a solar sail to maintain its shape by itself.
The sail film is therefore usually attached to a structure that spans the sail film1 to reduce
wrinkles. Wrinkles do not only reduce reflection efficiency but can also cause local hot spots.
If the temperature in such hot spots exceeds the sail film material’s limit temperature, the
sail film will be persistently damaged. A structure is also necessary to mount the payload,
i.e., the remaining bus structure including instruments, and to transfer the sail radiation
pressure force from the sail film to the entire spacecraft. The sum of the solar sail film mass
and the structure mass is called sail assembly mass mSA. Dividing mSA by the sail area A
yields the sail assembly loading σSA

σSA � mSA

A
. (2.26)

The sail assembly loading does not include the payload mass mPL. It is therefore a metric
only for the comparison of the structural efficiency of different solar sail designs and not their
overall performance.

The solar sail mass ms is the sum of the payload mass mPL and the sail assembly mass mSA.
Dividing ms by the sail area A gives the sail loading σ, which is independent of sailcraft
design and technology

σ � ms

A
� mSA �mPL

A
� σSA � mPL

A
. (2.27)

High performance solar sails, i.e., those with a high acceleration capability, have lower σ-
values than less competitive sail designs.

A solar sail at the distance r0, with its reflecting side oriented perpendicular to the sunlight,
experiences the characteristic acceleration ac [55]. It is calculated from the SRP at Earth-Sun
mean distance pSRPprs � r0q � pSRP,0, the sail area A, and ms

ac � 2ApSRP,0

ms

� 2pSRP

σ
. (2.28)

The lightness number λ is defined as the ratio of the maximum SRP acceleration aSRP to
the gravitational acceleration ag � µs{r2

s , with the Sun’s gravitational parameter µs. The

1This does not hold true for rotating sail structures, e.g., the heliogyro concept shown in Fig. 2.6.
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Figure 2.7: Ideal SRP Force model. Perfect reflection of sunlight photons at the front side of
a flat solar sail having the position vector rs w.r.t. the Sun. The resulting vectors F1 and F2 sum
to the SRP force vector FSRP,ideal. The pitch angle β is defined between the sail plane unit vector
en and the unit vector of incident sunlight el. The transversal unit vector et � pen � elq � en is
in the sail plane and in the plane spanned by en and el. The unit vector er shows the reflection
direction.

maximum acceleration aSRP occurs when the sail unit vector en and the incoming sunlight

unit vector el are aligned (el � en � 1). Under this condition, the lightness number is

λ � aSRP

ag

�
ac

�
r0
rs

	2

µs
r2s

� acr
2
0

µs

� ac

a0

. (2.29)

Equation (2.29) also gives the relation between ac and the gravitation acceleration a0 of the

Sun acting on a body at the distance r0.

2.3.3 SRP Force Models

A variety of solar sail force models of different complexity exists, and three of them are

presented in the following. These are the ideal force model, the simple force model, and the

standard force model.

2.3.3.1 Ideal SRP Force Model

The cause of the SRP force is a two momentum transfer between sunlight photons and the

solar sail film. The first one takes place when the photons impinge on the sail surface, and

the result is a force component in sunlight direction, described by el � sinβet � cosβen as

shown in Fig. 2.7

F1 � pSRPA cosβel. (2.30)

The so-called pitch angle

β � arccos pel � enq (2.31)
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is defined between el and the sail plane normal unit vector en. The momentum transfer due
to back reflection of the photons in direction er � sinβet � cosβen results in a second force
of opposite direction

F2 � �pSRPA cosβer. (2.32)

Vector addition of F1 and F2 yields

FSRP,ideal � F1 � F2 � pSRPA cosβ pel � erq , (2.33)

which can be simplified with el � er � 2 cosβen as

FSRP,ideal � f prs, β, enq � 2PSRP,0

�
r0
rs


2

A cos2 βen (2.34)

aSRP,ideal � FSRP,ideal

ms

� 2pSRP,0

�
r0
rs


2 A

ms

cos2 βen. (2.35)

An alternative expression of (2.35) is possible by using the sail loading (2.27)

aSRP,ideal � 2
pSRP,0

σ

�
r0
rs


2

cos2 βen. (2.36)

For en �el � cosβ � 1 and rs � r0, the characteristic acceleration (2.28) and the corresponding
acceleration vector are

ac,ideal � 2pSRP,0

σ
(2.37)

aSRP,ideal � ac,ideal

�
r0
rs


2

cos2 β (2.38)

aSRP,ideal � aSRP,idealen. (2.39)

2.3.3.2 Simple SRP Force Model

The simple SRP force model is a compromise between the ideal SRP force model and more
complex force models, such as the standard SRP force model (2.3.3.3). Sailcraft configuration
and real-world effects like wrinkles and sail billowing are only coarsely approximated with an
overall sail efficiency parameter η P p0, 1q. The respective equations are

FSRP,simple � 2ηpSRP,0

�
r0
rs


2

A cos2 βen (2.40)

ac,simple � 2ηpSRP,0

σ
(2.41)

aSRP,simple � aSRP,simpleen � ηaSRP,idealen � 2ηpSRP,0

σ

�
r0
rs


2

cos2 βen. (2.42)

This force model combines the simplicity of the ideal SRP force model with a higher degree
of realism. However, the efficiency parameter must be chosen carefully and dependent on the
solar sail technology.
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Figure 2.8: The Optical SRP Force Model. The pitch angle β is defined between the sail
plane unit vector en and the unit vector of the incident sunlight el. The vector rs is the solar
sail’s position vector w.r.t. the Sun. The unit vector et � pen � elq � en is in the plane spanned
by en and el perpendicular to en and pen � elq.

2.3.3.3 Standard SRP Force Model

The standard SRP force model describes the physics of a solar sail in space more accurately
than the ideal SRP force model, and therefore it has become a standard in solar sail-related
literature. As it principally relies on the sail film’s optical parameters, it is also named optical
force model [55].

Even the best sail film does not completely reflect incoming light but absorbs a fraction of
the photon’s energy. This energy flux leads to an increase of the sail film temperature and
causes a temperature dependent irradiation of energy. The SRP optical force model vector
FSRP,optical therefore consists of components resulting from reflection, absorption, and emission
(see appendix C)

FSRP,optical � Fr � Fa � Fe. (2.43)

Magnitude and direction of FSRP,optical depends on the sail film’s optical properties, which are
described with the absorption coefficient α, the transmission coefficient τ , and the reflection
coefficient ρ. Energy conservation demands the sum of absorption, transmission, and emission
to equal the incoming energy. The associated coefficients must therefore fulfill the relation

α� ρ� τ � 1. (2.44)

Within this force model, the energy impinging on the solar sail front side is assumed to
be absorbed completely first and then the major part of this energy is either reflected or
re-radiated. Under the assumption of zero transmission pτ � 0q, α can be expressed with ρ

α � 1� ρ. (2.45)

Reflection divides into a specular and a diffuse part.

ρ � ρs � ρd (2.46)

The force vector FSRP,optical in Fig. 2.8 consists of a normal component Fn and a transversal
component Ft (see appendix C)

FSRP,optical � Fn � Ft (2.47)
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Table 2.2: Optical parameters for an ideal solar sail, a Al|Cr-coated JPL square sail, and JPL
heliogyro [55].

ρ ρs εf εb Bf Bb

Ideal sail 1 1 0 0 2/3 2/3
Square sail/Heliogyro 0.88 0.83 0.05 0.55 0.79 0.55

Fn � pSRPA cosβ

�
p1� ρsq cosβ � ρdBf � p1� ρq εfBf � εbBb

εf � εb



en (2.48)

Ft � pSRPA cosβ p1� ρsq sinβet. (2.49)

Table 2.2 provides values of ρ, ρs, the emissivity factors εf and εb, and the non-Lambert
coefficients Bf and Bb of the sail’s front and back side for different sailcraft configurations.
With the centerline angle

ε � arctan

�
Ft

Fn



� arctan

�
p1� ρsq sinβ

p1� ρsq cosβ � ρdBf � p1� ρq εfBf�εbBb
εf�εb

�
(2.50)

and the unit vector in SRP force direction

ef � sin εet � cos εen (2.51)

an equivalent formula of the optical SRP force model is

FSRP,optical �
a
F 2

n � F 2
t ef. (2.52)

Alternatively, also the thrust cone angle δ � β� ε is used to describe the thrust direction. It
is defined between ef and el

δ � arccos pef � elq . (2.53)
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Trajectory Optimization

At a specific point in time t, a spacecraft’s position rptq and velocity vptq completely describe
its astrodynamic state

yptq �
�

rptq
vptq



, (3.1)

and on trajectory begin, at the so-called epoch t0, this state vector is consequently

y0 � ypt0q �
�

rpt0q
vpt0q



. (3.2)

The spacecraft motion is governed by Newton’s physical laws1. That means, its state of mo-
tion changes through the application of forces. Those can be external ones, like gravitational
attraction, or forces generated by the spacecraft itself, e.g., thrust forces from propulsion sys-
tems. Depending on y0 and on the forces acting on the spacecraft, the state vector y � fptq
changes over time and assumes the final state yptfq after the flight time ∆t at tf � t0 � ∆t.
The three-dimensional, continuous position vector function rptq with t P pt0, tfq is called tra-
jectory or flight path. The general problem is thereby to determine rptq for a given initial
state and the known acting forces.

Analytical formulations of a solution to this problem exist only for special cases. The classical
Kepler problem is an example for such a case. It requires the determination of a body’s
trajectory for a given initial state and under the Newtonian gravitational influence of a
central body. The resulting analytical trajectory is called Keplerian orbit and described
with six so-called Keplerian parameters (see also appendix B). As the determination of a
body’s trajectory for the general case is impossible, a time-discretized approximation of rptq,
obtained through numerical integration of the equations of motion, is therefore normally used
instead. The resulting position vector set r rtks with t0 ¤ tk ¤ tf is then also called trajectory.

The problem gets more difficult if a certain trajectory type is required. That is the case if
it should fit a specific purpose, such as bringing a spacecraft from one orbit to another orbit
or celestial body. To find the trajectory that fits this purpose best w.r.t. a given criterion,
e.g., with the lowest energy demand, is even more difficult. An example of such a minimum-
energy transfer, which is only valid for coplanar circular orbits, is the so-called Hohmann
transfer [41].

From a flight dynamics point of view, space missions, especially interplanetary ones, therefore
depend on whether the target body or target orbit can be attained at all, and on the necessary
effort. This becomes evident when thinking of the compromise each mission designer has to

1Relativity effects are neglected for this introduction but must be respected for physical correctness at
very large velocities close to the speed of light. Within the scope of this thesis, v ! c is assumed.
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make between schedule, cost, required technology, and risk. A space mission’s chances for
realization therefore implicitly depend on whether a trajectory for the posed objectives exists
in the given mission time frame. Furthermore, the influence of potentially several trajectory
alternatives on the overall mission design, its technical implementation, and the necessary
effort is often considerable. The chosen trajectory influences key mission design parameters
such as ∆V , mission duration, and the spacecraft’s launch mass m0. The latter is primarily
important if propellant-dependent propulsion systems are employed, as the propellant mass
accounts for a major fraction of a spacecraft’s total launch mass. Also for the by principle
propellant-less solar sails, the trajectory optimization can yield a required minimum charac-
teristic acceleration. For example, if the spacecraft mass without the solar sail is fixed, bigger
and technologically more challenging sail structures may become necessary to achieve that
acceleration.

Trajectory optimization is therefore essential already at early mission analysis and design
stages. It is an indispensable tool for mission designers to balance the mission requirements
with the available resources and technological capabilities.

This chapter addresses different, general aspects of low-thrust trajectory optimization. It be-
gins with possible optimization objectives and the concept of Pareto-optimality in section 3.1,
followed by the formulation of the general single-phase and multiphase, low-thrust optimiza-
tion problem in section 3.2. Section 3.3 shows how low-thrust steering can be achieved
through the application of local steering laws. Different control methods and optimization
methods and the difference between global and local optimization techniques are covered
in section 3.4. Finally, section 3.5 provides a concept of a smart, multiphase, low-thrust
optimization method.

3.1 Objectives and Optimality

The optimality of a spacecraft trajectory expresses if certain problem-dependent boundary
conditions or constraints are matched or if they are not violated. An example of such a
constraint is the allowed minimum distance to the Sun under which the spacecraft should not
fall below during a transfer in order to keep its thermal balance. If all conditions were met,
the optimality is furthermore an expression for how good the actual optimization criterion
has been fulfilled. Optimality criteria can thus be understood as a superset of conditions,
constraints, and metrics. Such optimality criteria can be the transfer time ∆t, the ∆V that is
required for a certain trajectory, or, alternatively, the required propellant mass mp

1. Possible
optimization objectives for propellant-dependent missions are therefore:

1. minimization of ∆t for a given m0,

2. minimization of ∆t for a given mPL,

3. maximization of mPL through minimization of mp for a given ∆t and m0,

4. minimization of mp for a given ∆t and mPL, which effectively reduces the launch system
requirements through the minimization of m0.

For solar sails, the following optimization objectives can be thought of:

1. minimization of ∆t for a given sailcraft performance metric, e.g., ac,

2. minimization of a specified performance metric for a given ∆t,

1The optimization for mp is impossible for solar sails.
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Figure 3.1: Pareto-optimality Curves of an Example EP Mission with Three, Four,
or Five Thrust Units. This figure shall help explaining the generic problem of concurrent,
mutually affecting mission parameters, such as flight time, complexity, and mass. Implicitly, and
together with other factors, these parameters ultimately also affect mission cost. The two param-
eters of the number of thrust units and mp significantly drive technical design and implementation
decisions.
Each curve shows the flight time ∆t over the propellant mass mp of the pareto-optimal solutions
for a fixed number of thrust units with equal maximum thrust. It qualitatively shows the benefit
of a having more thrust units, but the reduction in ∆t becomes smaller with each additional
thruster. Furthermore, the reduction of ∆t due to increased mp becomes negligible beyond a
certain mass.

3. minimization of the solar sail film’s solar radiation dose (SRD) for a given maximum
∆t.

An optimization carried out w.r.t. a single criterion is called single-objective optimization,
while multi-objective optimization involves multiple criteria. Most real-world optimization
problems, e.g., finding an optimal spaceflight trajectory, are of multiobjective nature. A prob-
lem solution generally cannot satisfy all criteria to best possible extent, i.e., if one criterion is
optimally fulfilled the others are not and vice versa. Applied to the trajectory optimization
problem, the solution with the smallest ∆t is often suboptimal in terms of ∆V and thus mp.
Solutions to multi-objective problems may therefore be treated with the concept of pareto
optimality, developed by the Italian sociologist and economist Vilfredo Pareto (1848-1923).
A pareto-optimal solution is not dominated by any other solution in all criteria, or, in other
words, an improvement of a pareto-optimal solution in one criterion inevitably results in
worsening it in at least one other criterion. If all but two problem parameters are fixed,
the resulting plot of pareto-optimal solutions is the pareto optimality curve. For trajectory
optimization problems, this is typically ∆t and either m0 or mp, as can be seen in Fig. 3.1.
The example pareto-optimality curves show the sensitivity of one criterion to the others,
and such plots can be helpful for the assessment of possible design trade-offs. One option
is the decision against increasing mp because the pareto-curve tells that ∆t is less sensitive,
i.e., decreases only insignificantly, beyond a critical propellant mass. Another option is the
determination of the optimum number of EP thrusters, because the relative improvement of
∆t reduces with each additional thruster.

Hartmann showed with the example of low-thrust Earth-Mars transfers how to transform a
multiobjective problem into a single-objective problem [39]. For a two-criteria problem, this
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is typically done on two ways:

• Only one criterion is subject to optimization, with the other criteria being constraints.

• Using weighting factors. The fulfillment of both criteria is combined into one scalar
value to be optimized. To decide on proper weighting factors is not trivial and requires
profound knowledge of the particular problem. This often turns the determination of
adequate weighting factors into a separate optimization task.

In practice, it may depend on the particular problem or on the employed optimization method-
ology, or both, which one of the two ways leads to acceptable results.

3.2 The Multiphase, Low-thrust Optimization Problem

The optimization of multiphase low-thrust trajectories requires addressing of several subprob-
lems, which are treated within the following sections. After the explanation of the funda-
mental difference between low- and high-thrust trajectories in subsection 3.2.1, the problem
is viewed from the perspective of optimal control in subsection 3.2.2. Subsection 3.2.3 finally

explains the difference between single-phase and multiphase transfers.

3.2.1 Low-thrust and High-thrust Trajectories

The shape of low-thrust trajectories differs significantly from that of spacecraft driven by

chemical propulsion systems because of different acceleration characteristics of these propul-
sion technologies w.r.t. thrust magnitude and thrust duration. While low-thrust propulsion
systems apply a highly propellant-efficient thrust of a few Newtons at maximum for months
or even years, chemical propulsion systems can operate only for minutes to hours but with

absolute thrust values that are magnitudes higher.

In the following subsection 3.2.1.1 and subsection 3.2.1.2, the effect of these different oper-

ation characteristics on the resulting trajectories is described. Then, in subsection 3.2.1.3
and subsection 3.2.1.4, the pros and cons of low-thrust trajectories in comparison to chemical
ons are discussed from a mission design perspective.

3.2.1.1 High-thrust Trajectories

Compared to the duration of the entire transfer, the acceleration phase of a chemically pro-

pelled spacecraft is negligibly short, which makes it basically a free-flight phase. Such a
transfer is determined by the state x pt0q at burnout of the rocket’s upper stage and the

launch time t0
1. Along the trajectory, the spacecraft is subject to the dominating gravi-

tational attraction of the respective central body and the perturbing accelerations of other
celestial bodies, e.g., of Jupiter - our solar system’s second-largest body. Eventual small de-

viations from the predetermined x pt0q are correctable with midcourse correction maneuvers

(MCM) [21]. These are small-∆V maneuvers, executed at certain trajectory points with small
rocket engines or cold gas systems. For a particular mission, the spacecraft must achieve the
six predetermined parameters of x pt0q at t0 to reach its target. If the spacecraft exhibits no

1In this context, t0 means date and time-of-day.
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Figure 3.2: Example of a Multiphase
High-thrust Trajectory. The trajectory
of the ESA/NASA mission Cassini-Huygens
serves as an example of a multiphase, high-
thrust transfer with the typical ballistic, free-
flight phases. Additionally, this transfer in-
cludes a Venus-Venus-Earth-Jupiter gravity
assist sequence. Courtesy JPL/NASA.

Figure 3.3: Low-thrust Transfers. The
trajectory of NASA’s deep space mission
Dawn shows the principle difference of low-
thrust missions, with their long thrust phases,
to high-thrust missions. It also includes a
gravity assist at Mars. Courtesy JPL/NASA.

hyperbolic excess velocity, i.e., it barely leaves the launch body’s gravity field, then the initial
state x pt0q of the spacecraft equals1 that of the launch body

x pt0q �
�

REarth pt0q
VEarth pt0q



. (3.3)

Although t0 is a fixed point in time, there might be a mission-dependent set of feasible
px pt0q , t0q within a so-called launch window. It can be several weeks long, with daily launch
opportunities, but it may also be only a few days long if the mission involves multiple gravity
assists at planets, as can be seen in Fig. 3.2. It shows the heliocentric trajectory of NASA’s
Saturn system mission Cassini-Huygens, with the typical features of chemical interplanetary
mission design. After launch at Earth, a series of gravity assists at Venus, Earth, and Jupiter
is necessary to attain the final transfer orbit to Saturn. After having reached the target
body, a second velocity increment is needed. This so-called insertion burn can be optimized
together with the launch ∆V . Finding the optimal2 balance between flight time, required
propellant, mass budget, launch opportunities, and necessary margins requires compromises
and also profound experience.

Neglecting gravity assists, the high-thrust transfer problem between two celestial bodies is
defined with the launch and arrival time, and the 12 parameters of the four, 3-dimensional
vectors of position and velocity at launch and arrival. There is not an a priori best transfer
trajectory between two celestial bodies but an indefinite number, each requiring a specific
mission-∆V and having a resulting ∆t. The problem of determining the ∆V for a given
two-body transfer problem and the ∆t is known as Gauss problem and can be solved with an

1The spacecraft position is of course not exactly that of the launch body, this assumption is however valid
for preliminary mission analysis.

2Optimality is almost impossible to define for this type of problem. It can therefore hardly ever be
mastered, as design of a space mission continues and less variables can be modified with ongoing project time.
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algorithm given by Bate et al. [5]. The method is also known as Lambert-solver and gives a
mission designer an overview of the ∆V -surface over the 2-dimensional ∆t-t0-parameter space.
The assessment of the resulting solutions to this multiobjective optimization problem and the
selection from potentially arising mission design options is the task of mission designers and
not discussed here.

3.2.1.2 Low-thrust Trajectories

Low-thrust trajectories typically consist of long thrust phases and small coast phases. In
addition to the initial state x pt0q, the gravitational acceleration of the central body and
third bodies, the acceleration due to an operating low-thrust propulsion system determines
the trajectory shape. Contrary to chemical propulsion systems, this low-thrust acceleration
is active for a major fraction of the mission time, and its vector can basically point into any1

direction. The actual thrust duration however depends on the employed propulsion system
technology and on the carried-with mp, if a propellant is necessary. A low-thrust trajectory
is thus mainly determined through a steering strategy which is the guidance that provides
the thrust acceleration vector at any time t. The optimal solution of a low-thrust trajectory
is therefore a combination of an optimal x pt0q at the optimal launch date t0 and an optimal
steering strategy. This makes low-thrust trajectory optimization in general a difficult task.
Characteristic for low-thrust trajectories is their many-revolutions shape, which results from
the low acceleration level which allows only for small orbit changes per revolution. Figure 3.3
shows an example of an heliocentric low-thrust trajectory. It is the trajectory of the NASA
mission New Millennium Deep Space 1 which relies on EP and a gravity assist at Mars to
visit the two asteroids Vesta and Ceres.

3.2.1.3 Advantages of Low-thrust Propulsion For Mission Design

Low-thrust propulsion enables high-∆V missions that are hardly realizable with chemical,
high-thrust propulsion systems. Even if chemical propulsion is viable for the respective
mission, its design will almost inevitably comprise gravity assists. For the design of a deep
space mission, the trajectories resulting from low-thrust propulsion therefore have several
advantages:

• New mission types. Due to their unique feature of only sunlight-dependent SRP ac-
celeration, solar sails offer new applications and mission types. They could, for example,
use non-Keplerian polar Sun orbits for continuous monitoring of the Sun’s poles.

• Fuel-efficient thrust due to the high Isp. For a given ∆V , the efficient propellant
utilization of EP allows for a reduced mp, an increased mPL, or a mixture of both.
Potentially, if the spacecraft launch mass m0 reduces through a reduction of mp, also a
smaller launch vehicle becomes possible.

• Wider launch windows. Low-thrust propulsion systems enable high-∆V space mis-
sions without the gravity assist maneuvers that might be necessary for the corresponding
high-thrust mission design alternative. This, together with the capability to “shape”
the trajectory during flight with a suited steering strategy, not only widens the launch
window but also enables more frequent launch opportunities.

1There are limits for the thrust direction vector for solar sails.
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• Reduced sensitivity on injection accuracy. The x pt0q is never accurately matched,
i.e., injection errors do inevitably always occur. A low-thrust stage can however correct
for larger injection errors than a spacecraft on the ballistic flight phase of a chemical
mission would be able to. Low-thrust propulsion can therefore help to lower the risk of
mission failure.

• Reduced flight time ∆t. If a chemical, high-∆V mission designs contains gravity
assists and a concurrent low-thrust mission design alternative does not, the ∆t of the
latter is often smaller.

The influence of these advantages can not be generalized in the sense that low-thrust is benefi-
cial to all mission types. An increased flexibility in launch date and window, however, reduces
mission failure risk especially for deep space missions. A current example for this is ESA’s
comet rendezvous and in situ measurement mission ROSETTA, which suffered from launch
delay caused by the launch segment. Its original target object, the comet 46P/Wirtanen,
could therefore not be meet any more. The redesign of the mission resulted in the new pri-
mary target 67P/Tschurjumow-Gerasimenko and also different asteroid flybys on the way to
that comet [4].

3.2.1.4 Disadvantages of Low-thrust Propulsion For Mission Design

Low-thrust propulsion systems are despite their advantages not a priori the best propulsion
technology for every deep space mission and not for every mission phase. The actual mission-
specific criteria, how they are best met, and at which cost, determine whether low-thrust
propulsion should be favored over chemical propulsion. The following disadvantages of low-
thrust systems and their effect on mission design must therefore be considered:

• High Pe-demand. EP-systems have an electrical power demand Pe in the range of
several kW to MW, especially if multiple thrust units are operated simultaneously.
While solar-electric power generation systems can provide up to � 50 kW, Pe-values in
the MW-regime inevitably requires an NPGS. Space-qualified, ready-for-flight nuclear
reactors do not exist and solar-electric power generation is not only limited but also
strongly dependent on the distance to the Sun.

• Technological readiness level. Up until now, the practical in-space experience with
low-thrust propulsion systems covers approximately a decade. This is hardly compa-
rable to the decades of heritage with chemical propulsion systems. For space missions
requiring a very high reliability and a very low mission failure risk, this can exclude the
usage of certain low-thrust propulsion systems.

• Increased flight time ∆t. Due to the different thrust characteristic, the transfer
time of low-thrust missions is often but not necessarily higher than their chemical
alternative if both do not use gravity assists. For example, ESA’s low-thrust, lunar
mission SMART-1 flew to the Moon in about one year while the Apollo spacecraft
crossed that distance in only about three days on a ballistic trajectory.

• Increased mission ∆V . A low-thrust trajectory close to a celestial body, e.g., an EP-
powered Earth system escape trajectory beginning on a geostationary transfer orbit
(GTO), involves many revolutions about that body. During this time, the spacecraft’s
velocity vector is not exactly anti-parallel to the gravitational acceleration vector. Due
to the long thrust duration, the resulting, so-called gravity loss ∆Vloss is not negligible
and increases the total mission ∆V .
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• Longer exposure to “no go” areas. The low-thrust propulsion peculiarity of small

orbit changes rates can result in multiple revolutions around the central body. This

can lead to long dwell times in regions of strong radiation near some celestial bodies,

e.g., the Van-Allen belts of the Earth. Together with the potential disadvantage of long

flight times, this could prohibit low-thrust systems from being used, e.g., for manned

spaceflight in that environment.

Each potential mission design must be assessed w.r.t. those disadvantages. Eventually one

or more of these can rule out the use of low-thrust propulsion for a particular spacecraft and

mission.

3.2.2 Low-thrust Trajectories From an Optimal Control Perspective

Subsection 3.2.1.2 showed that a low-thrust trajectory depends on the employed steering

strategy, which defines the direction and magnitude of the thrust acceleration vector over

time. In terms of optimal control theory, the steering strategy therefore equates the control

function U. It determines the values of the control vector u P Rnu , e.g., two steering angles

and the magnitude of the thrust vector.

Within this work, two elementary low-thrust transfer types were used: the flyby (FB) and

the rendezvous (RV). In simple terms, a flyby requires to match the spacecraft’s position with

those of the target, while a rendezvous at the same time additionally requires the respective

velocity to match. The target states of both transfer types can be manifold, although there

are mostly used with celestial bodies as target states. Nevertheless, possible target types are:

• a celestial body,

• the orbit of a celestial body,

• a free orbit described by (incomplete) set of orbital elements,

• a fixed state vector,

• a fixed position vector.

A verbal description of each of these elementary problem types simple, e.g., steer a low-thrust

spacecraft time-optimally from the initial state to the target state. Depending on the point of

view or the context in which the problem is treated, different expressions are possible as well.

This section states these elementary transfers from a optimal control perspective, i.e., the FB

and RV problems are formulated as optimal control problems in continuous time formulation

in subsection 3.2.2.1 and in discrete time formulation in subsection 3.2.2.2. Later, these

transfers will then be reformulated as artificial intelligence and machine-learning problems.

3.2.2.1 Problem Formulation in Continuous Time

The following definitions of the low-thrust FB problem and the low-thrust RV problem are

adapted versions of the ones given by Dachwald [13]. They were originally formulated in the

context of heliocentric, low-thrust trajectories, but their general formulations also hold true

for non-heliocentric problems.
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RV problem from the perspective of optimal control theory:

Find a spacecraft control function U : t P rt0, tfs Ñ u P Rnu , which forces the state xSCptq �
prSCptqᵀ, 9rSCptqᵀqᵀ of the spacecraft from its initial value xSC pt0q to the state xT ptq of the

target body, along a trajectory that obeys the dynamic constraint 9xSCptq � GpxSCptq,uptqq
and the terminal constraint xSCptfq � xTptfq, and at the same time minimizes a specific cost

function J for that transfer.

FB problem from the perspective of optimal control theory:

Find a spacecraft control function U : t P rt0, tfs Ñ u P Rnu , which forces the position rSCptq
of the spacecraft from its initial value rSCpt0q to the position rTptq of the target body, along

a trajectory that obeys the dynamic constraint 9xSCptq � GpxSCptq,uptqq and the terminal

constraint rSCptfq � rTptfq1, and at the same time minimizes a specific cost function J for

that transfer.

The definition of the cost function J depends on the actual optimization goal. If the flight

time ∆t was to be minimized, its definition could be

JT �
» tf
t0

dt � tf � t0 � ∆t. (3.4)

For a propellant mass optimization it could be

Jmp �
» tf
t0

9mpdt � mpptfq �mppt0q. (3.5)

Both dates t0 and tf can either be fixed or also subject to optimization. The problem of

finding the optimal trajectory x*
SC is thus transformed into finding the optimal control u�ptq,

which is determined through the optimal spacecraft control function U�.

3.2.2.2 Problem Formulation in Discrete Time

The continuous nu-dimensional control uptq and the control function U are element of an

infinite function space. Finding an optimal low-thrust trajectory therefore means to find an

optimal U� in a per definition infinite solution space. This is possible only in rare cases, and

analytical solutions to the general FB and RV problem are in fact unknown.

Numerical solutions are however feasible, and the first step to obtain them is the reduction

of the problem complexity through transformation into a finite-dimensional problem. A

discretization of
�
t0, tf

�
in τ intervals with t0 ¤ t0 � t̄0, . . . , t̄f � tf ¤ t̄τ ¤ tf reduces the

dimension of the control function parameter space to nuτ . However, with a dimension of nuτ ,

the search space is still substantial. Through the discretization it is not necessary to find

U� but the spacecraft control vector history u�rt̄s P Rnuτ . Applying u�rt̄s then yields the

optimal trajectory x*
SC rts � x*

SC rt̄0, t̄fs. The discrete formulations of the FB (FB) and the

RV problem (RV ) are given below:

1If the target state is a celestial body, this constraint cannot be kept up but must be altered to rmin ¤
|rSCptfq � rTptfq| ¤ rmax, due to the target body’s dimensions. The distances rmin and rmax stand for the
boundaries within which the respective constraint is achieved.
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Discrete RV problem from the perspective of optimal control theory:
Find a spacecraft control vector history urt̄s, with t̄ P rt̄0, . . . , t̄f�1s, which forces the state
xSCptq � prSCptqᵀ, 9rSCptqᵀqᵀ of the spacecraft from its initial value xSCpt̄0q to the state xTpt̄q of
the target body, along a trajectory that obeys the dynamic constraint 9xSCptq � GpxSCptq,uptqq
and the terminal constraint xSCpt̄fq � xTpt̄fq, and at the same time minimizes a specific cost
function J for that transfer.

Discrete FB problem from the perspective of optimal control theory:
Find a spacecraft control vector history urt̄s, with t̄ P rt̄0, . . . , t̄f�1s, which forces the position
rSCptq of the spacecraft from its initial value rSCpt̄0q to the position rTpt̄q of the target, along
a trajectory that obeys the dynamic constraint 9xSC ptq � GpxSC ptq ,uptqq and the terminal
constraint rSCpt̄fq � rTpt̄fq, and at the same time minimizes a specific cost function J for that
transfer.

The definitions of the cost function remain unchanged.

3.2.3 Single-phase Versus Multiphase

The distinction between a single-phase trajectory and a multiphase is not as straightforward
as it seems. One is tempted to say that any trajectory leading to a single target object or
state is of single-phase type. However, such a transfer can be divided into further subphases.
Consider, for example, an heliocentric solar sail transfer beginning at the Earth and ending
in a circular heliocentric orbit of 0.48 AU radius and an inclination of 75 deg. Due to aSRP �
1{r2, Sauer suggested to subdivide the transfer into two phases for better optimization [79]:
a phase of spiraling into the inner solar system to a circular 0.48 AU heliocentric orbit and
an orbit cranking phase to the target inclination of 75 deg. A subdivision into three phases is
also possible, as shown by Dachwald and the author in [14]. In the third phase the spacecraft
thereby spirals out to 0.48 AU again, because, to facilitate faster orbit cranking during the
second phase, it got in closer to the Sun than 0.48 AU in the first phase. The results obtained
by Dachwald and the author were faster than the two-phase scenario but still inferior to the
single-phase global optimization results obtained with InTrance [14].

Despite the possibility to compose a single-target trajectory of multiple phases, the number
of targets remains a primary criterion for multiphase transfers. For the scope of this work, a
single-phase transfer therefore has only a single target that is met on a FB or a RB trajectory
without gravity assists. Additionally, the phase must take place within one influence region
or SOI, i.e., the central body does not change throughout the entire transfer.

If a trajectory leads to more than one target body, or if the flightpath crosses a SOI-boundary,
it is called a multiphase trajectory. Examples of such trajectories are the ones of the Voyager
deep space probes or the Apollo spacecraft. While Voyager’s trajectories have intermediate
targets for gravity assists1, the Apollo capsules crossed the Moon’s SOI on their way.

Todays low-thrust missions are mostly of multiphase type. This is either to gain additional
∆V at a GA-body, or because the mission’s objective is to visit more than one body, or the
flight path leads across an SOI -boundary. This is shown with two examples from Tab. 3.1.
NASA’s low-thrust mission Dawn, takes place in interplanetary space and comprises a gravity
assist at Mars, two asteroid FBs, and two RVs at the primary targets asteroids Vesta and
Ceres. This results in five phases and each phase having one single target. ESA’s low-thrust
Moon orbiter mission SMART-1 serves as example for a SOI-border-crossing mission without
heliocentric phases. Its trajectory leads from an Earth-bound orbit into a Moon-bound

1Effectively, they also cross the respective GA-body’s SOI-boundary twice: first, when they approach the
GA-body, and, second, when they leave it again on a hyperbolic trajectory
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Table 3.1: Examples of high-thrust and low-thrust transfers of single-phase and multiphase
nature. It gives for each mission the respective mission phases and corresponding targets. Gravity
assists are part of most missions, namely at Venus (VGA), Earth (EGA), and Mars (MGA). The
objectives of the chosen interplanetary missions are often flybys or rendezvous at asteroids (AFB,
ARV) or comets (CFB,CRV), but also a capture in the Saturnian system (SCPT). Although
considered of interplanetary type, the missions Apollo and SMART-1 comprise of planetary phases
when having reached the Moon’s sphere-of-influence (SOI) (LSOI) or attained a Moon-bound orbit
(LO).

High-thrust High-thrust High-thrust Low-thrust Low-thrust Low-thrust
Phase Apollo CASSINI Rosetta DS 1 SMART-1 Dawn

1 LSOI VGA EGA AFB LSOI MGA
2 LO VGA MGA CFB LO AFB
3 n/a EGA EGA n/a n/a AFB
4 n/a SCPT AFB n/a n/a ARV
5 n/a n/a EGA n/a n/a ARV
6 n/a n/a AFB n/a n/a n/a
7 n/a n/a CRV n/a n/a n/a

orbit and thereby crossed the Moon’s SOI. While the first part of the trajectory takes place
under the dominating gravitational influence of the Earth, with the Moon’s and the Sun’s
gravitation acting as disturbances, the scene changes within the Moon’s SOI. Then, Luna’s
gravitation becomes dominant, and turns the Sun and the Earth into disturbing bodies. The
entire transfer from Earth to the Moon can therefore be divided into the two phases of a
capture within the Moon’s SOI and a second phase during which the spacecraft attains the
final orbit about the Moon.

3.2.3.1 The Patched-conics Approximation

The problem of solving multiphase trajectory problems emerged as soon as progress in propul-
sion technology enabled spaceflight beyond Earth-bound orbits. The trajectories of high-
thrust missions are primarily ballistic free-flight arcs, and, assuming no disturbance acceler-
ation, each arc corresponds to an analytically solvable two-body problem. This is exploited
within the Patched-Conic Approximation or Patched Two-Body Approximation, as shown by
Bate et al. [5]. In its simplest form, it transforms the n-body problem into several two-body
problems, whose resulting trajectories are then “patched together” at the respective SOI-
boundaries according to trajectory optimization expert knowledge. The method is applicable
for preliminary mission analysis and gives solutions for heliocentric missions as well as for
transfer trajectories to the Moon.

However, what is a viable way for high-thrust trajectories, does not transfer easily to low-
thrust trajectories. This is evident when recalling the fundamental difference between both
propulsion technologies: the very low but long-lasting thrust, and the fact that ballistic,
two-body flight arcs have analytical solutions and low-thrust ones generally have not. Fur-
thermore, third-body disturbance accelerations are not negligible for multiphase low-thrust
trajectories in the vicinity of an SOI border. However, the underlying principle of subdivid-
ing a mission into its subphases, finding solutions for them independently, and patching the
resulting trajectories together will be picked up later and derived further in the context of
global optimization.
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3.2.3.2 Multiphase Transfers as Single-phase Optimization Problem

In the context of multiphase trajectory optimization, it is worth to ask why to distinguish
between single-phase and multiphase transfers at all. Why not assume a single-phase trans-
fer with intermediate and final targets, constraints, and central bodies that change along the
trajectory? The big advantage of this approach is the physical correctness of every solution
at every stage of the optimization, whether it fulfills the mission’s constraints or not. Fur-
thermore, there is no need to “enforce” continuous state vectors at eventual phase boundaries
because there are no such phase boundaries.

This approach however complicates optimization due to the following:

• Steering strategy. The steering strategy can differ significantly from one mission
phase to another. An example would be a low-thrust mission that comprises an escape
from an Earth-bound orbit into an heliocentric orbit, a consequent rendezvous transfer
to the SOI of Mars, and a final transfer onto a low-altitude, polar orbit about a Martian
moon.

• Third-body accelerations. The determination of when to include the third-body
disturbance acceleration of which celestial body is not trivial and hard to determine
before trajectory integration. Including all of them throughout the entire transfer would
be a complete but inefficient alternative.

• Problem description. Each phase of a mission may be different from the others,
and so may be the optimal description of each one. The inclination of the osculating
orbit of a spacecraft on an interplanetary flight, for example, often changes only little
throughout the transfer. Therefore the respective state vector and state equations
could utilize orbital elements or polar coordinates, together with the associate rates of
change. For planetary problems, however, cartesian coordinate formulations may be
more appropriate.

• Discretization. Section 3.2.2.2 showed the time-discrete formulation of the low-thrust
optimization problem. When “forcing” a multiphase low-thrust problem into a single-
phase problem, one is inevitably confronted with the challenge of finding a suited time
discretization. The necessary step size ranges from minutes, if the spacecraft is near
the pericenter of a highly-elliptic orbit around the Earth, to several days for the same
spacecraft during the following heliocentric flight phase. Proper a priori choice of suited
step sizes is thus difficult if not impossible.1

• Parameter Search Space. Assuming a three-dimensional control urt̄s, the search
space dimension scales with the number of steps that is necessary for problem dis-
cretization. In fact, the search space dimension of low-thrust optimization problems
can be tens of thousands.

• Optimization. Finding an optimal trajectory for a low-thrust transfer that requires
a “complicated” steering strategy is already difficult. The optimization of multiphase
transfers of this type is even more challenging and can require a combination of strate-
gies of different complexity. Treating the entire problem as one phase, requires an
optimization method, which shall be equally well suited for various low-thrust prob-
lems.

1A dynamic determination of the control step size, which the is time after which a new control variable
value is obtained through the application of a steering strategy, is part of problem modeling. Step size control
for keeping integration accuracy is however task of appropriate integration algorithms.
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• Performance. This topic is related to the time discretization of the transfer problem.
Multiphase low-thrust problems with heliocentric and planetary phases often require
many control steps. This is especially true for fixed-size control steps, because the step
size here depends on the smallest step size required for accurate modeling.

The practical problems when trying to cope with the listed eventual problems often leads to
the, in principle, suboptimal approach of subdivision into several mission phases.

3.2.3.3 Challenges of Optimizing Multiphase, Low-thrust Trajectories

Many of the problems of subsection 3.2.3.2 are alleviated by treating the multiphase problem
as concatenated, inter-dependent problems in the context of an overall optimization. The
transfer problem of each phase may be described with a suited set of state variables, only
the dominating third-bodies, an optimized discretization scheme, and control variables. The
optimization framework would be more flexible in general, as it could also cope easier with
phase-dependent propulsion systems or instantaneous mass changes, e.g., caused by dropped-
off propulsion stages or surface probes. Finally, the parameter search space of each phase’s
problem would also reduce significantly.

These improvements go along with challenges. The biggest one for this approach is thereby to
assure final physical correctness, i.e., the steady and continues state vector transition between
consecutive trajectory phases1. Therefore and additional to an appropriate subdivision of the
transfer problem into several solvable phases, also the putting back together of the phases’
solutions to a physically correct and global-optimal result must be achieved. Proper setup of
the subproblems can thereby be a challenge that requires experts in orbit mechanics as well
as optimal control.

3.3 Low-thrust Steering Using Local Steering Laws

Local steering law (LSL)s are analytical expressions or algorithms that provide the thrust
acceleration vector athr at the current time t so that one or several orbital elements change
with a desired rate. Lagrange’s planetary equations in Gauss form is often the foundation
of such LSLs, as they express the rate of change of the orbital elements (see appendix B)
dependent on an acceleration vector a � par, at, ahqᵀ in orbit frame (O-frame) components2.
With the angular momentum per unit mass h �

a
µap1� e2q and the semilatus rectum, or

orbit parameter, p � h2{µ, these equations are [6]:

da

dt
� 2a2

h

�
ear sin ν � p

r
at

	
(3.6)

de

dt
� 1

h
ppar sin ν � rpp� rq cos ν � res atq (3.7)

di

dt
� r cospω � νq

h
ah (3.8)

dΩ

dt
� r sinpω � νq

h sin i
ah (3.9)

dω

dt
� 1

eh
r�p cos νar � at pp� rq sin νs � r sinpω � νq cos i

h sin i
ah (3.10)

1This does not necessary include the spacecraft mass, which can reduce instantaneously from one phase
to another.

2see appendix A.3 for an explanation of the O-frame
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dν

dt
� h

r2
� 1

eh
rpar cos ν � pp� rq at sin νs . (3.11)

Dachwald showed how LSLs can be used to change and adjust the orbital elements during
a low-thrust transfers with maximum rate [13] [14] and how to blend pure LSLs into one
another to time-efficiently change more than one orbital element at a time.

Petropoulos developed a local feedback steering law for low-thrust trajectory optimization
based on a Lyapunov function, termed “proximity quotient” Q [68]. The proximity quotient
quantifies the proximity of the current orbit to the target orbit in terms of the respective
orbital elements. This control law also employs (3.6) to (3.11) to determine how quickly Q can
be reduced. It is a semi-analytical method that uses a user-provided cut-off parameter ηcut for
the decision on when to thrust and when to introduce a coast phase. This so-called Q-Law
has been successfully applied to various many-revolution, low-thrust orbit transfer problems.
The application to low-thrust body RV or FB problems is not possible, as it currently does
not include phasing and also lacks support for disturbing accelerations.

The first advantage of LSLs is their independence on necessary optimization processes as
they are purely mathematical. If they involve control parameters that require separate op-
timization, like the cut-off value ηcut of the Q-law, this advantage however becomes relative.
The second advantage is that LSLs are mathematically well understood and therefore can be
proven.

Despite these advantages, LSLs are of limited use for the general multiphase, low-thrust
problem. For particular mission phases they could however be beneficial. For example, if
zero-inclincation or zero-eccentricity orbits could be prevented1, and if only a single orbital
element must be altered, then the application of LSLs is useful. The inevitable problem with
multiphase trajectories is that it is often not known when and where a mission phase ends
and the next one begins. It is also unknown beforehand which order or combination of orbital
element changes is optimal. Furthermore, this optimal combination or sequence also depends
on the actual optimization goal, e.g., flight time or propellant consumption. As LSLs have
no inherent strategy or intelligence to address these problems, they were not used within this
work.

3.4 Trajectory Optimization Methods

Optimization techniques and methods exist today for many kinds of engineering problems and
thus also for high-thrust and low-thrust trajectory optimization problems. These methods
generally divide into local trajectory optimization methods (LTOM) and global trajectory
optimization methods (GTOM). Both are explained in the following subsections, with their
advantages and disadvantages as well as their application fields.

3.4.1 Local Trajectory Optimization Methods

LTOMs employ mathematically extensive but well-understood, numerical, optimal control
methods that are based on the calculus of variations. Further classification is possible in
direct methods and indirect methods. While nonlinear programming (NLP) is an example
for direct methods, gradient methods like Hill Climbing and neighboring extremal methods
are examples of indirect methods. Both were not employed for this work, and the reader is
referred to Betts [9] for a comprehensive survey on LTOMs. Common to all LTOMs is that
they need an initial guess, which is either an initial control vector history urt̄s, or, in the case
of neighboring extremal methods, the starting adjoint vector of Lagrange multipliers λpt̄0q.

1This is due to the singularities of (3.9), (3.10), and (3.11)
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Figure 3.4: Traditional Trajectory Optimization Using Local Optimization Methods.
[13] The basic algorithm or procedure of LTOMs starts with the problem setup and defines the
initial and terminal conditions as well as the timely discretization. Application of LSLs then
gives an initial guess of the control history, which is again input to the LTOM. The result is an
improved, local-optimal solution, which is often close to the initial guess.

Starting from there, LTOMs try to find an optimal u� rt̄s in the sense of finding “a better
solution than the initial guess” than finding “the best solution”.

Figure 3.4 shows a generic sketch of a LTOM algorithm. Its first step is the setup of the
transfer, i.e., initial conditions, arrival conditions, and a timely discretization. This requires
expert knowledge in mission design and astrodynamics. A simulation is then carried out
during which the application of LSLs changes the orbital elements until the spacecraft’s
terminal state is close enough to the target state or body. This is again done under supervision
of an expert and finally results in an initial control vector history that can be input to an
LTOM. Convergence of the following LTOM application with this initial guess is however not
guaranteed because similar initial guesses can produce dissimilar results.1 The generation
of the initial guess must be repeated if the LTOM does not converge. This makes regular
user interaction and supervision indispensable. The result of a successful LTOM run is an
improved solution, which will however be often close to the initial guess solution. That means,
if the initial guess solution was far away from the global optimum, then the LTOM-improved
solution will most likely also be far away from the global optimum. An LTOM is by principle
not able to cross big distances in the solution parameter space, but that is exactly what is
required to move from a far-off input solution towards a globally optimal one.

The advantages of LTOMS are:

• Proven mathematical foundations. Being purely mathematical, LTOMs are well
understood and deterministic, which gives confidence in their results.

• Accuracy. The results of an LTOM are of very high fidelity, which is not surprising
as they are mathematical optimization methods. A given transfer is often treated as a
boundary value problem (BVP) and therefore the initial and final conditions matched
exactly.

1This is no contradiction to the well understood mathematical foundations of LTOMs.
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Despite these advantages, LTOMs also have the following disadvantages:

• Initial guess dependence. This is maybe one of the biggest drawbacks of LTOMs
when viewed from a low-thrust trajectory optimization perspective. To find a suited
initial guess might be still possible for transfers with less complex control strategies.
Even then, it requires experts and special tools, like shape-based methods, to obtain
them. For complex trajectories that involve changes of all orbital elements it becomes
almost impossible to find an initial guess close to the global optimum.

• Convergence behavior. If LTOMs converge to a solution, it is often a local optimum
close to the initial guess. Iterative variation of the initial guess, however, to improve
such a solution, is difficult, as similar inputs to an LTOM can produce very dissimilar
results.

• Necessary expert knowledge. LTOMs can practically only be used by trajectory
optimization experts who know how to generate an initial guess, how to interact with
the optimization methods, and how to tune the respective parameters.

• Requirement for differentials. Depending on the actual LTOM, the user must
provide differential expressions at the discretization nodes. In practice, there may be
no analytical expressions for these differentials, which necessitates additional effort to
generate them numerically.

• No optimization of initial conditions. The initial conditions of a trajectory problem
have significant influence on the overall quality of the solution. As the choice of these
parameter values is part of the initial guess generation, their optimization is naturally
not subject of the respective LTOM.

• Expert attendance. As LTOMs practically require permanent supervision and inter-
action of experts, to find an optimal solution can become a time-consuming task.

• Discretization. The time discretization of an LTOM’s solution is basically determined
with the initial guess. The LTOM can thus not arbitrarily vary the time step size, if it
can vary them at all.

• Computational effort. Many LTOMs transcribe the trajectory problem into a system
of linear equations. The dimension of the resulting system matrix can reach up to many
thousands. Although such matrices are sparsely set, the computational effort for their
solution in terms of storage and CPU time is substantial. It can be of such extent that
it puts a practical limitation on the discretization. This drawback is however relative,
given the rapid improvement of computing power.

An LTOM can thus yield high-fidelity solutions whose global optimality depends on the
quality of the provided initial guess solution. If this initial solution is close enough to the
global optimum, the LTOM can find it with high accuracy.

3.4.2 Global Trajectory Optimization Methods

A variety of global optimization techniques1 exists today. These methods have been applied
to problems in numerous fields, e.g., biology, economy, science, and engineering. Examples of

1A survey of global optimization methods was carried out at Sandia National Laboratory in 1997 and can
be found at http://www.cs.sandia.gov/opt/survey
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these methods are Dynamic Programming, Branch and Bound algorithms, Differential Evolu-
tion (DE), Particle Swarm Optimization (PSO), Genetic Programming, Simulated Annealing,
and Multiple Shooting.

Many of these optimization methods have also been applied to low-thrust trajectory op-
timization. Alemany gives a survey of GTOMs for the application to low-thrust asteroid
rendezvous [2]. The number of existing methods indicates that no superior-to-all-others al-
gorithm does exists and each method has its pros and cons.

GTOMs have the following advantages:

• Global search behavior. If a global optimum exists for a particular problem, and
this problem is adequately coded, a GTOM can potentially find it. That means, the
search space in which a GTOM searches for the optimum is not constrained to the
vicinity of a predefined local optimum.

• Independence from initial guess. This crucial difference to LTOMs eases optimiza-
tion significantly because their global search behavior often enable GTOMs to start
from a randomly initialized parameter set.

• Optimization of initial conditions. If the problem is adequately coded, a GTOM
cannot only optimize the control vector history urt̄s but also the initial conditions, e.g.,
launch time t0, or a launcher-provided hyperbolic excess velocity vector v8.

• No expert supervision required. Without the need for an initial guess and if
the problem formulation is suited to the respective global optimization method, this
method can run without supervision of experts and interaction with them until the
optimal solution is found.

• Convergence behavior. This is a relative advantage because it depends on the
problem formulation, the problem itself, and on the optimization algorithm’s control
parameters. Although a global optimization method can principally find the global
optimum, it might have problems in finding it quickly. However, GTOMs are generally
more robust than LTOMs.

Besides their advantages, GTOMs also have disadvantages, such as:

• Difficult problem formulation. While the application of an LTOM, with its neces-
sary permanent expert supervision, can sometime become more art than science, the
same holds true for the problem formulation to solve that problem with a GTOM. The
way the problem is coded is often crucial for the algorithm’s performance in finding the
global optimum. Consequently, this is the part for which the expert for the respective
problem spends most of the time.

• Search space dimension. Compared to LTOMs, the underlying problem to find the
optimal control vector history u�rt̄s is unchanged and thus also the problem’s parameter
space is the same. The number of necessary parameters can however be reduced by
choosing a different description. This is discussed in detail in Chapter 4.

• Lower accuracy than LTOMs. Due to their focus on global parameter space search,
the results of GTOMs can lack the accuracy of LTOM-solutions. For preliminary mis-
sion analysis this is no disadvantage as high-fidelity solutions are not required at this
stage.

• Nondeterministic. Unlike LTOMs, GTOMs are often heuristic methods and their
behavior is therefore not deterministic. It can require multiple runs of the respective
GTOM with the same initial conditions to confirm a previously found optimum.
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Figure 3.5: Smart Global Optimization Of Multiphase Low-thrust Trajectories.
Dachwald sketched the general concept of smart global optimization of low-thrust trajectories [13]
and successfully applied the method of ENC to single-phase, interplanetary low-thrust transfers.
The concept basically holds true also for multiphase transfers. Instead of one initial body and
the respective initial conditions, e.g., the launch time t0, a user must now also name eventual
intermediate bodies or states, and also the respective intervals of coupling states si.

3.5 Smart Multiphase, Low-thrust Trajectory Optimization

The drawbacks of LTOMs can be addressed with GTOMs, which has been successfully demon-
strated by Dachwald, who applied ENC for single-phase, low-thrust transfers [13]. This meth-
ods requires no experts and, after provision of the basic transfer problem parameters, runs
autonomously until it has obtained a near-globally optimal solution for the given problem.

One can also solve multiphase low-thrust problems with this method but the solution would
most likely not be globally optimal. A mission designer therefore must divide the mission
into its phases and optimize each phase individually with a GTOM. The concatenation of
the results remains as a manual task, which is often solved iteratively. Such a procedure can
by principle not result in globally optimal trajectory as the optimization of transition from
one phase to the next is not an explicit component of the optimization method.

Figure 3.5 outlines the functionality of a truly global optimization method for multiphase
low-thrust transfers. Such a method must

1. be independent on the knowledge of low-thrust trajectory optimization experts and
their attendance throughout the optimization process,

2. not require any input prior to optimization than a description of the mission, i.e., which
celestial bodies to meet or which astrodynamic states to assume, and intervals for the
initial conditions,

3. automatically optimize the transition of the spacecraft’s flight path between adjacent
phase boundaries, e.g., SOIs of celestial bodies.

Chapter 4 and Chapter 5 describe the enabling principles, mechanisms, and an implementa-
tion of such a methodology.
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Multiphase Trajectory
Optimization With Evolutionary
Neurocontrol

Chapter 3 showed the low-thrust trajectory optimization problem as an optimal control prob-
lem in continuous and discrete time. This chapter treats the same problem from the per-
spective of artificial intelligence (AI) and machine learning (ML). It describes the combined
application both concepts to the problem of finding the optimal control function u� rt̄s, which
leads to the optimal trajectory r rt̄s. This trajectory r rt̄s results from the application of a time
independent strategy S. It maps an input domain, e.g., the state vectors of the spacecraft
xSC and the target body xT, to the domain of the spacecraft control variables u

S : txSC,xTu ÞÑ u P Rnu . (4.1)

Finding the optimal trajectory thus requires to find the optimal strategy S�. Within ENC, a
strategy S is incorporated by an ANN with the corresponding network parameter vector π P
Rnπ , which defines the transfer function Npπq and therefore the problem solving capability
of the ANN. An evolutionary algorithm (EA) then tries to find the optimal parameter set
π�. This is possible through mapping of candidate parameter sets πi onto corresponding
EA chromosomes ξi

1. Each parameter set π therefore defines a strategy Sπ. The relations
between the optimal chromosome, the optimal trajectory, and the transformations between
them are shown in Fig. 4.1.

Multiphase Evolutionary Neurocontrol (MENC) extends ENC by the capability of concurrent
optimization of multiple, dependent or independent, heliocentric or non-heliocentric flight
phases. If the flight phases depend on each other, then physical correctness inevitably requires
the end points and start points of adjacent phases to match in time, spacecraft mass, and
astrodynamic state, i.e., position and velocity. Intended and mission-specific exceptions are
thereby possible. An example for this is the instantaneous spacecraft mass loss caused by a
jettisoned propulsion stage or a dropped surface probe. The transition conditions are thereby
constraints that are also subject to optimization. The point at which a spacecraft enters a
target planet’s SOI, for example, can influence the transfer time or propellant consumption
until attaining the final orbit around that planet.

The structure of this chapter is as follows. A general introduction into AI and ML is given
in section 4.1 before section 4.2 and section 4.3 explain the details of the concepts that
form the method of ENC. This method was invented by Dachwald [13] and successfully

1The index i denotes a particular vector set of variables; it is not a particular vector element.
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Figure 4.1: From The Optimal Chromosome To The Optimal Trajectory.

used for the optimization of heliocentric, single-phase, low-thrust transfers. A description
of ENC is provided in section 4.4, with the focus on the application of ENC on planetary
and interplanetary, multiphase low-thrust transfers, for which the method has not been used
before.

4.1 Artificial Intelligence and Machine Learning

4.1.1 Artificial Intelligence

As a multidisciplinary research field of computer science, aims at giving machines the capa-
bilities that distinguish man from animals: the ability to think, to learn, to generalize, to
solve problems, and to perpetually adapt to a dynamic environment. Shapiro defined AI as
follows [82]:

“Artificial Intelligence is a field of science and engineering concerned with the computational
understanding of what is commonly called intelligent behavior, and with the creation of
artifacts that exhibit such behavior.”

AI is dominated by computer science but also touches philosophy, psychology, and linguistic
sciences. It divides into several branches, and, so far, only niche solutions for certain applica-
tions are found. The problem of finding general AI, or strong AI remains unsolved. Recreat-
ing something as unique and complex as human intelligence is difficult because the involved
concepts and mechanisms and their mutual interactions are not yet completely understood.
These mechanisms are perception of the environment, reasoning, knowledge, planning, learn-
ing, and the manipulation of the environment. A number of today’s applications result from
AI research. Examples are chess computers and programs; image, motion, voice, and char-
acter recognition systems; car assist systems; or medical expert systems for the support of
medical treatments and surgeries. AI systems are thereby superior to humans in some fields,
e.g., chess playing. They can however fail easily on other tasks trivial to humans, such as
recognizing a familiar person from distance only by seeing the way of walking.
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Still being in its infancy, AI research however achieves progress in all of its branches, which
touches our daily life in a generally positive but potentially also controversial way. Intelligent
and robust humanoid service robots, for example, are most probably welcome in physically
demanding and life-threatening positions. When it comes to work force, the threat of intel-
ligent robots replacing work force is existing and discussed controversial. AI research and
the resulting applications and products therefore also have a social component besides their
philosophical aspect.

AI research divides into the subfields Natural Language, Problem Solving and Search, Knowl-
edge Representation and Reasoning, Learning, Vision, and Robotics. The optimization of
low-thrust trajectories thereby primarily falls into the second subfield. The method ENC,
which was employed in this work to solve multiphase problems, uses ANNs, which also stem
from AI research. ANNs have been successfully applied on a number of classification prob-
lems, such as pattern recognition, and to intelligent control problems, such as controlling a
robotic element. The EA, which trains the ANNs and is ENC’s second essential component,
belongs to the AI subfield of Learning.

4.1.2 Machine Learning

It is difficult to formulate a universally accepted definition of ML, as many different learning
problems, methods, and systems exist in this AI subfield. Some of them share distinct features
or exhibit overlaps, and for this reason a rigorous categorization is virtually impossible.
However, common to most of them is according to De Jong [18] their ability to change
themselves with the intention to improve their performance on given tasks, whereas that
performance is evaluated by the problem environment.

An important learning problem class, which is immanent for this work, is reinforcement
learning (RL). The learning system in RL is called agent, and an associative mapping S :
X Ñ A from a situation domain X onto an action domain A defines the agent’s behavior.
That mapping is called policy in RL literature, but within the scope of this work it is called
strategy. The reaction of the environment on the agent’s actions is called evaluation, reward,
or reinforcement. Evaluation results in a scalar fitness value J . The fitness “measures”
the quality of the agent’s action. An agent thus learns through the immediate or delayed
response of the environment to its actions. If the environment responds directly after each
of the agent’s actions, then this is an immediate reinforcement learning problem. If the
response to a number of actions is delayed, and the environment returns only a single J for
all actions during a certain time period, then this is a delayed reinforcement problem. Latter
problem type is more challenging but many control problems of dynamical systems fall into
this category. The learning process uses the reinforcement J to improve the agent’s strategy
until an optimum is found. The optimal strategy S� is the one that makes the agent receive
more positive reinforcements over time than negative ones. In other words, it maximizes the
sum of positive reinforcements and minimizes the sum of negative ones.

4.1.3 Low-thrust Trajectory Optimization From Machine Learning Per-
spective

This section reformulates the problem of finding optimal low-thrust trajectories from the
perspective of ML. Each trajectory r rt̄s is in this perspective the result of the application of
a steering strategy S. A strategy is thereby an associative mapping from a problem-dependent
set of input variables on the spacecraft control vector u P Rnu . The quality of S is assessed
after the trajectory has been obtained through the application of S. This delayed reaction
makes the search for the optimal strategy S� a delayed reinforcement problem. The RV and
FB problems of subsection 3.2.2 can thus be formulated as:
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RV problem from the perspective of machine learning:
Find a spacecraft steering strategy S, which forces the spacecraft state vector xSCptq ��
rSCptqJ 9rSCptqJ

�J
from its initial value xSC pt0q to the state xT ptq of the target body, along

a trajectory that obeys the dynamic constraint 9xSCptq � GpxSCptq,uptqq and the terminal
constraint xSCptfq � xTptfq, and at the same time minimizes a cost function J .

FB problem from the perspective of machine learning:
Find a spacecraft steering strategy S, which forces the spacecraft position vector rSCptq from
its initial value rSCpt0q to the position rTptq of the target body, along a trajectory that obeys
the dynamic constraint 9xSCptq � GpxSCptq,uptqq and the terminal constraint rSCptfq � rTptfq,
and at the same time minimizes a cost function J .

The problems RV and FB thus reduce to the problem of finding an optimal strategy S�.
Due an ANN’s suitability to address mapping problems, ENC uses ANNs to incorporate a
strategy S.

4.2 Artificial Neural Networks

Natural neural networks are the inspiration for the development of ANNs. It is therefore
helpful to know about the composition and function of such biological nervous systems.
Subsection 4.2.1 gives a brief introduction. The transfer of the natural information processing
principles and mechanisms to ANNs is treated in subsection 4.2.2. Successful applications
of ANNs are given in Subsection 4.2.3. ANNs are useless without an appropriate parameter
set, which depends on the actual problem and is obtained through a process called training.
Training is the content of subsection 4.2.4.

4.2.1 Inspiration by Natural Neural Networks

A biological nervous system is a natural neural network. It consists of nerve cells, or neurons
- the anatomic, genetic, trophic, and functional entity and the basic building block of all nat-
ural neural networks. Nerve cells are distributed across the whole body, with the brain and
the spinal cord being the place where they are concentrated. The human brain, for example,
comprises billions of neurons. They are responsible for the transmission of information from
receptors cells, e.g., temperature sensitive skin cells, via the spinal cord to the brain and,
conversely, from the brain back via the spinal cord to muscles and organs. Depending on the
actual task, they divide into sensory neurons, relay neurons, and motor neurons. Table 4.1
gives details of these neuron types, their appearance, location, and distinctive features. De-
pending on the actual type, neurons also differ in shape, but they share common features.
Figure 4.2 gives an illustration. A neuron is connected to other neurons via dendrites, which
are extensions leading to the neuron’s cell body called soma. Not all details about the neu-
rons’ functional principles are known. The general understanding is that a neuron’s electrical
output depends on the level of exciting and inhibitive inputs. If the neuron excitement ex-
ceeds the sum of inhibitive inputs, the neuron “fires” an electrical signal along its output
extension. This extension is called axion and can be of varying length. It either connects
directly to muscles or organs or splits up into several synaptic endings which connect to den-
drites of other neurons via synapses. An axion of one neuron can also connect directly to the
soma of another neuron where it acts primarily inhibitive. The degree of interconnectivity
and the processing capability of a natural neural network is thus determined by the dendrites
and the connectivity at the synapses. Chemical substances called neurotransmitters in the
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Figure 4.2: Natural Relay Neuron or
Interneuron. This type of neuron is found
in the brain and the spinal cord. The typical
neuron features are the cell body (soma), the
extensions leading to the soma (dendrites),
and an extension leading away from it (ax-
ion). The latter splits up into several synaptic
endings which connect to dendrites of other
neurons via synapses.

Figure 4.3: Natural Neural Network.
Immunofluorescent light micrograph of brain
cells from the cortex of a mammalian brain.
The nucleus of each cell is stained blue and
cytoplasm stained green. Courtesy Science
Photo Library.

Table 4.1: Natural neuron types. [47]

Sensory neuron Relay neuron Motor neuron

Dendrite length long short short
Axon length short short/long long
Location spinal cord brain spinal cord
Connects to relay neuron relay/motor neuron organ/muscle

synapses control the conductivity between an axon of a neuron and the dendrites of other

neurons that are connected to that particular neuron. Figure 4.3 gives an impression of the

degree of interconnectivity in a cluster of brain cells.

4.2.2 Composition and Internal Structure

ANNs are the result of the attempt to exploit the advantageous features of natural nervous

systems for technical problems. These features are information storage and processing, fault

tolerance, generalization, and decision making. Like its biological prototype, an ANN consists

of a number of neurons as simple processing units that exchange information via interneuron

connections. That means, a neuron receives information from other neurons, and its output is

again input to other neurons. The output is determined by the sum of all input information

and the transfer function or activation function, which is inherent to each neuron. The

amount by which the output of a neuron i contributes to the total input of a neuron j thereby

depends on the weight factor wij P R. The neuron transfer function can be relative simple,

e.g., a step or linear function, but throughout this thesis the commonly employed sigmoid

transfer function is used. Figure 4.4 shows the shape of this function in dependence on a

slope parameter or temperature parameter γ. As shown in Fig. 4.5, the output of a neuron i

that uses a sigmoid transfer function is calculated from the output yj of its input neurons j
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Figure 4.4: Sigmoid Neuron Activa-
tion Function. The transfer behavior of this
differentiable, continuous activation function
depends on the slope or temperature param-
eter γ. It controls the sigmoid’s shape and
makes it either resemble a linear function
(γ � 4) or a step function (γ � 0.5).

Figure 4.5: Artificial Neuron. The sum
of the input variables xi with the correspond-
ing weight factors wi is passed through a
nonlinear function f , whereby the activation
threshold θ is subtracted before. The result
is the output variable y. Such a neuron is the
atomic building block of an ANN.

Figure 4.6: Artificial Neural Network. Due to its structure with an input layer, an output
layer, and potential hidden layers, a feedforward, layered ANN is also called multilayer perceptron
(MLP). It takes the input variables’ data at the input neurons, propagates these data via the
intermediate layers to the output layer, and provides the transfer function’s results yi at the
output neurons. As the input neurons only take the pure input values xi, no activation threshold
θi or temperature parameter γi is associated to them.
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Table 4.2: Natural and artificial neural networks [75].

ANN Natural neural network (nervous systems)

Interconnectivity feedforward recurrent
Connection type fully-connected mostly local connections
Structure uniform structure functional modules
No. of node types a few node types hundreds of node types
No. of nodes 10-1000 human brain: Op1011q, Op1015q synapses

via

yi � 1

1� e�p
°

j wijyj�θiq{γi , (4.2)

with the connection weights wij, the threshold or bias θi, and the temperature parameter
γi. An advantage of using the sigmoid is its ability to mimic the step function and linear
functions through adjustment of the temperature parameter. The sigmoid is thereby always
steady and limits its output to a minimal and maximal value.

A single neuron’s capability is limited to its transfer function, but complex transfer functions
become viable through the interconnection of multiple neurons. The only approximately
100 000 cells of a fly brain, for example, enable it not only to sense its environment, to find
food, and to reproduce, but also to manage its challenging flight control system. The key
to success is the optimal transfer behavior of the fly’s nervous system resulting from a high
degree of interconnectivity between the proper neurons.

The transfer behavior of an ANN that uses only sigmoid-type neurons is determined by the
parameters wij, θi, and γi of all neurons i. They may be arranged to the m-dimensional ANN
parameter vector π � pπ1, . . . , πk, . . . , πmq, with πk being one of the respective ANN param-
eters (wij, θi, and γi). The vector π thus completely defines the ANN network function Nπ.
For this work, only ANNs whose internal neurons are organized in layers were used, i.e., an
input layer receiving the problem dependent information (the environment), an output layer
returning the network function’s result (the control), and eventually existing hidden layers
between them. Feedforward connections transport the information between two consecutive
layers and thus render data propagation though the ANN deterministic. Figure 4.6 shows
this type of layered, feedforward ANN, which has successfully been applied to a number of
classification and control problems. Table 4.2 compares ANNs with natural nervous systems.

4.2.3 Application

ANNs are used in real-world applications and neuroscience. Firstly, their ability to infer
unknown functions from examples turned out useful. ANNs have therefore found their appli-
cation where data are either too big to process with other methods, or when it is impossible
to model the desired function otherwise. Exemplary problems are regression or function
approximation, classification or recognition of pattern and sequences, data processing, e.g.,
filtering and compression, and the control of dynamic systems or processes. ANNs generally
need a rigorous training for the particular problem prior their application, which is addressed
in subsection 4.2.4.

Besides practical applications in data modeling and control of dynamical systems, ANNs
are also employed in theoretical and computational neuroscience where they model biological
neural networks and serve the investigation on natural behavior and understanding of natural
neural processes.
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Figure 4.7: Supervised Learning.

4.2.4 Training of Artificial Neural Networks

To train an ANN means to find suited parameter vectors π that enable the ANN to solve
the given task. In general, the objective of the training is to make the ANN achieve gener-
alization, i.e., the ANN “understands” the structure of the problem and its solution rather
than memorizing the answers of training data. If an ANN, for example, should serve for
character recognition in an optical character recognition (OCR) software, it must be trained
beforehand for more than only correctly recognizing characters under ideal conditions. It
must reliably recognize the letter “A”, regardless of varying optical quality of the presented
character, which could result from different font sets, character sizes, fore- and background
colors, nonuniform backgrounds, scan image qualities, or rotated characters. Decent train-
ing with relevant examples beforehand is therefore decisive for robust behavior during later
application.

The determination of the optimal parameter vector π� is called training and can be done
on several ways. A training method is called off-line if the ANN training is finished prior
the actual application and the ANN is not further trained later. Training and application
therefore happen at different times. Contrary to off-line methods, on-line methods continue
with the training process of the ANN when it is already fielded, which allows the ANN to
acquire new knowledge about a possibly changed application environment. Some training
methods use samples s � px, tq, which consist of input vectors x and the corresponding,
correct output vectors or target vectors t. The difference between t and the ANN-output
vector y is the error that must be minimized by the training algorithm through modification
of π. The sum of square errors (SSE) over all samples ns is a commonly used error metric [75]

ESSE �
nş

i�1

pti � yiq2. (4.3)

Figure 4.7 shows the elements of a generic, supervised learning algorithm. The first is the
preparation of a set of representative training samples, which is often difficult and sometimes
impossible if the correct output is not known. This is generally the case for low-thrust
trajectory optimization problems. The following application of the ANN to all input vectors
xi of the training data set and comparison of the resulting output vectors yi with the reference
output ti results in the SSE (4.3). Based on this error metric, the training algorithm modifies



4. MULTIPHASE TRAJECTORY OPTIMIZATION WITH
EVOLUTIONARY NEUROCONTROL 49

π and initializes the ANN with the resulting, new parameters. This procedure repeats until
ESSE, the cost function in this example, is smaller than a predefined limit.

The most widely used training algorithm for MLPs is the Back-Propagation algorithm. It
was developed by Rumelhart, Hinton, and Williams [77] and is applicable to any feedfor-
ward ANN1 having neurons with differentiable transfer functions. It uses the chain rule to
determine the derivatives of the error function w.r.t. the wij. The optimization technique of
gradient descent then modifies the wij to reduce the error function value. Back-propagation
allows training of ANNs for a wide range of applications and thus renewed the interest in
ANNs when it was declining after the first enthusiasm. However, its application requires
experience as training success also depends on proper choice of certain control parameters
like the learning rate. It also principally fails for problems for which no training data exists
or cannot be generated.

4.3 Evolutionary Algorithms

The term EA stands representative within this work for all methodologies, concepts, and al-
gorithms that use the principles and mechanisms of natural evolution to find the optimal so-
lution for a given problem. Such concepts are genetic algorithms (GA), genetic programming
(GP), and evolutionary strategies (ES), for which De Jong [19] also proposed the umbrella
term evolutionary computing (EC). All of these methods share the same enabling principles
but focus on different problem classes. Their common feature is the simulation of the evo-
lution of individual structures through reproduction, inheritance, and selection mechanisms.
Selection refers to a candidate solution’s adaption to the respective environment and its re-
sulting higher probability to reproduce. Hybrid methods exist as well and combine distinctive
features of two or more concepts.

This section describes the elements and mechanisms of EAs and the mutual interaction of
these elements with a focus on the application within ENC. A more general introduction into
the topic of simulated evolutionary optimization is given by Spears et al. [83], Fogel [28], and
Whitley [96], the latter with the focus on the concept GA. De Jong also gives a more recent,
comprehensive study of EC in [19]. For a better understanding of how and why EAs are suited
for optimization tasks, subsection 4.3.1 provides a brief introduction into the mechanisms
of natural evolution. Subsection 4.3.2 then explains how these principles transfer to EAs,
whereby the focus is on the EA that was used for this work. Subsection 4.3.3 summarizes
the advantages of EAs and also lists their drawbacks, before subsection 4.3.4 shows possible
applications of EAs.

4.3.1 Natural Evolution

Natural Evolution is the continuous adaption process of all biological life forms to their re-
spective environment. It is nature’s optimization method, and its principles and mechanisms
have proven effective over millions of years. The diversity of species on Earth and the manifold
of environments in which they survive demonstrate this effectiveness impressively. Although
not fully understood in every detail, the basic mechanisms of evolution are known today, and
pioneer work on this field was conducted by Darwin [16].

Within this introduction to natural evolution, a single life form is called an individual. A
group of individuals of the same type is called population, and the type is called species.
Following this nomenclature, a single lion is an individual of the species lion, and a pack

1The ANN does not need to be of layered structure.
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Figure 4.8: Diploid Chromosome and its DNA. Courtesy National Human Genome Re-
search Institute (NHGRI).

of lions is a population. The pack itself is again a subpopulation of the population that
comprises all lions on Earth.

Survival of a species is generally assured by the inner drive of its individuals to reproduce,
i.e., to mate and to raise offspring. However, not all individuals and not all species have
equal chances to do so. “Natural selection” [16] prefers the strong and healthy individual
over the weak or unhealthy, and the better adapted species over the less adapted ones. That
means, physically disabled or ill individuals are discriminated by mating candidates and also
have less chances to hunt or to find food. They most probably die of starvation or get killed
by predators before they have a chance to mate. This holds basically true for all species
in a changing environment in which they compete for the available resources. Less adapted
ones, or species that cannot adapt quickly enough to an environmental change, will become
replaced by other, better adapted ones.

The pace of evolution is generally slow, taking thousands of years for significant changes to
a species’ features. It can however increase on sudden catastrophic events that change the
environment drastically. On one hand, events like this can lead to mass extinction of entire
species. On the other hand they can give birth to a manifold of new ones. An example for
such a environment change is the rapid climate change on Earth approximately 65 million
years ago. It was most probably caused by the impact of a larger asteroid and lead to a mass
extinction of the majority of species on Earth at that time. Among them were the dinosaurs,
which could not adapt quickly enough to the declining average temperature and the related
change in vegetation. Entire food chains collapsed, and other, less specialized species with
shorter life cycles suddenly had less competitors for the remaining resources. Additionally,
they were less threatened by predators. Especially mammals, which can regulate their body
temperature and are thus less dependent on the environment temperature, were not only able
to adapt quicker to these environment changes. They also did not have to compete any more
with the now extincted dinosaurs when vegetation started to reconquer the planet.

The more beneficial the individuals’ traits and capabilities are for their survival, the higher are
the chances of the entire species to survive. Those features, e.g., whether it is a mammal or a
reptile, it can fly or not, it is carnivorous or herbivorous and thereby its primary type of food,
are determined through its genome. The genome information of all individuals of a population
is called the genome pool of the population. The genome is encoded with the genome code
in the chromosomes. Located in the cell nucleus of every life form, chromosomes consist
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Figure 4.9: Natural Gene on a Chromosome. Courtesy NHGRI.

of two pairs of deoxyribonucleic acid (DNA) molecules that hold the genome information
in genes. An exemplary illustration of an X-shape chromosome and of the DNA is shown
in Fig. 4.8 and Fig. 4.9. Genes are the smallest units of inheritance and encode an individual’s
features, like the eye color. They are variable-length sequences of the four bases adenine (A),
cytosine (C), guanine (G), and thymine (T). The position of a base pair on the chromosome
is called allele. Complementary base pairing assures only A-T and C-G combinations, which
is essential during cell diversion to pass the complete genome information to both daughter
cells. The DNA splits before the actual cell diversion and the resulting half-chromosomes
complement themselves again through base paring. Shortly before cell diversion, the mother
cell therefore holds a complete chromosome copy for each daughter cell.

A particular sequence of bases of a gene is called the genotype of that gene. The individual’s
observable trait resulting from that genotype is called phenotype. Chromosomes that hold
the complete genome information twice are called diploid and haploid if not. The diploid
structure becomes vital for evolution as it allows inheritance through the fact that offspring
individual chromosomes consist of the genome information of one half of each of their parents’
chromosomes. An offspring can therefore potentially benefit from the positive features of
its both parents and their ancestors. If the parents have different, beneficial-for-survival
features and inherit them to their offspring, these offspring may be even better adapted to
their environment through the combination of positive features.

During reproduction, a diploid chromosome’s halves split and exchange gene information
through the genetic operation of recombination. Recombination breaks up DNA chains and
reconnects the resulting fragments to other DNA fragments. The recombination of entire
chromosomes is also called crossover. Crossover increases the genetic diversity of a population,
which helps to adapt to future environment changes. During the life of an individual its
genome also experiences random changes. These are called mutation and they introduce new
genotypes to the genome. This results in new phenotypes, with positive or negative effects
on an individual’s struggle for survival. They can also have no influence at the moment but
may become important in later generations. In both cases they increase the population’s
genetic diversity independently on the current genome pool of a species and therefore allow
evolution of that species to proceed into new directions.

4.3.2 Elements and Mechanisms

The principles of natural evolution are the foundations of EAs, which do not simulate every
detail of evolution. To find optimal solutions to technical problems, they model only the
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Figure 4.10: Evolutionary Algorithm Elements. Although differing in detail, EAs mostly
have four essential components: a population Ξ, which holds the candidate solutions; a mecha-
nism to select the candidates for reproduction; the reproduction itself, consisting of the genetic
operators recombination and mutation; and evaluation for assessment of an offspring’s adaption to
the environment. The arrows show the “reproduction cycle” of the population individuals ξi. In-
dividuals selected for reproduction become parent individuals ξp from whose genome information
reproduction generates the child individuals ξc.

required basic elements and principles of evolution to exploit its robust optimization capabil-
ity. EAs are problem-independent, heuristic, parallel search methods. Information about the
actual problem is encoded within the individuals ξi the EA acts upon. It therefore depends
on proper encoding of the problem solution parameters on the ξi if the particular problem
can be solved by the EA. Additional but unnecessary data is thereby less important than
missing essential information. Figure 4.10 shows the elements and mechanisms of a generic
EA: the population Ξ, a selection mechanism, genetic operators simulating recombination and
mutation, and a problem dependent evaluation. The implementation and the importance of
the EA elements differ from one EA to another. Within the used ENC implementation, a
GA trains an ANN parameter set, and the following description and explanation therefore
concentrates on the particular implementation in the optimization software InTrance.

Like natural populations consist of individuals of the same species, the data structure of an
EA’s population Ξ holds candidate solutions or individuals ξi of the same type, with the
population dimension q and i P N, 1 ¤ i ¤ q. The same type means that each ξi, which
is also called a chromosome or a string, is a potential or candidate solution for the same
problem. A ξi presents a solution candidate to the GA. There is no ideal generic representation
type, which makes the choice of representation dependent on the actual problem, and in
practice bit strings, real-value vectors, or graphs are used. Each ξi corresponds to exactly one
candidate solution, and the individual’s scalar fitness value J measures the overall quality of
this incorporated solution. The fitness J is a metric for the fulfillment of the actual objective
function, e.g., minimum flight time or minimum propellant mass. It however also serves to
express violations of additional boundary constraints. The fitness is by convention subject to
maximization. Greater J-values are therefore assigned to those individuals that are better
adapted to their environment and are consequently better solutions of the respective problem.
If necessary, this can be reversed with �J .

The fitness Jpξiq of an individual ξi determines its chances during selection for taking part in
reproduction. Selection is the second EA element and decides which ξi of Ξ may reproduce
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Figure 4.11: Crossover Operators.

and have offspring and which not. There are two major types of selection schemes: determin-
istic and probabilistic (or stochastic) [19]. Deterministic selection schemes, e.g., truncation
selection, allow only the subset of the best population individuals to reproduce and exhibit
a strong selection pressure. This is especially true for the case if only the best population
individual survives the selection process.

Probabilistic selection methods, e.g., roulette wheel selection and tournament selection, choose
reproduction candidates based on a probability that is assigned to each individual. They
further divide into uniform selection methods, if all individuals have the same selection prob-
ability, and fitness-biased selection methods, if selection probability depends on Jpξiq. The
drawback of these selection methods is however that they do not guarantee the survival of the
best population individual when using non-overlapping1 populations. This is the case even
if the best individual’s fitness is large compared to the average population fitness Javg. For
overlapping populations this is no problem as the best individuals do not get lost between
reproduction cycles. Roulette wheel selection, as the name implies, spins a virtual roulette
wheel with q slices; each slice thus corresponds to a ξi of Ξ. Depending on whether the slices
are of equal size or related to the relative fitness of the respective ξi, roulette wheel selection
is uniform or fitness-biased.

Another fitness-biased selection method is tournament selection and this selection method is
implemented in the EA of InTrance. It randomly selects µ individuals ξi and takes the one
with the highest fitness as winner. The tournament size µ controls the selection pressure.
The bigger the tournaments the larger is the probability to select the best individual of the
population, which results in strong selection pressure as the other ξi have less chances for
reproduction. Overlapping populations require at least two tournament rounds per repro-
duction cycle to select two parent individuals ξp. To keep q constant, the ξi that were inferior
during selection are replaced by the new individuals resulting from reproduction. InTrance
holds two tournaments for each reproduction cycle with a tournament size of µ � 2, which is
also called binary tournament.

1Non-overlapping populations generate a complete new population in one step through repeated applica-
tion of selection and reproduction. The old population is then discarded. After evaluation of all individuals
of the new population the next cycle starts.
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Following selection, the element of reproduction is crucial for the optimization capability of
an EA. It serves two purposes. First, it must create new children ξc through recombination
of genome information stored in their parent individuals’ chromosomes. Genes are passed on
this way from parents to offspring and with them also the phenotypes that are potentially
beneficial for survival. The parents are put back into the population, ready for the next selec-
tion round. Genetic crossover is the next step and Fig. 4.11 shows different crossover types
that have evolved in GA-practice: one-point crossover, uniform crossover, and arithmetic
crossover. Node crossover is a special type of uniform crossover derived for the training of
ANNs with an EA. The crossover loci are chosen specifically for the training of the particular
ANN, as it is beneficial for the learning rate to keep information related to a neuron intact.

The second purpose of reproduction is to maintain a high number of genotypes in the pop-
ulation’s genome pool, i.e., to assure a high genetic diversity. As selection prefers superior
individuals, and without a mean to introduce new genes, genetic diversity would inevitably
reduce with each individual that permanently leaves the population. Mutation is the genetic
operator that helps to increase genetic diversity again. Executed after recombination, muta-
tion introduces random changes at randomly chosen offspring chromosome loci, which helps
to to explore the solution space more thoroughly and less dependent on the population’s
initial genome pool.

The generated offspring proceed to the final EA-element of evaluation. The problem-dependent
evaluation exposes the ξc to the environment. Its adaption to this environment is expressed
in the fitness Jpξcq. The new individuals ξj are then put back to the population where they
are available for selection like their parents.

This cycle of selection, recombination, mutation, and evaluation repeats until the population
has converged to a single solution, or no improvement could be achieved for a predetermined
number of reproduction cycles, or another abort criterion is met.

4.3.3 Advantages and Disadvantages Compared to Other Optimizing Tech-
niques

Compared to other optimization techniques, especially to gradient-based methods, EAs have
a number of advantages. The first one is their global search behavior, which allows a more
thorough parameter space search than local optimization techniques can achieve. In a mul-
timodal problem environment, EAs are also less prone to premature convergence to local
optima then local search techniques. Further advantages of EAs are their blindness and their
robustness. Blindness means an EA can improve a solution without additional information,
like problem-specific derivatives. This makes them applicable to a wider range of problems
than gradient based methods. Back-propagation, for example, can only optimize feedforward
ANNs with differentiable neuron activation functions. Robustness means that EAs need no
initial guess solution to start an optimization. They can basically find the optimal solution
after having started from a randomly initialized parameter set. EAs are therefore suited to
solve problems for which initial solutions are difficult or impossible to generate.

Although EAs can solve numerous problems, they also have disadvantages and are not the
optimization method of choice for any problem. The inclusion of non-trivial constraints, for
example, is difficult and can require experts in the respective field of the particular prob-
lem and several attempts to find a suited problem formulation. Another drawback is their
inability to find high-fidelity solutions, compared to local optimization techniques. A local
optimization of an initial guess solution obtained from a previous EA run is therefore a valid
method leading to global-optimal solutions of high accuracy. EAs are computational expen-
sive, as they require the evaluation of many intermediate solutions to find the global optimum.
The number of evaluations and the robustness of the EA for the respective problem thereby
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strongly correlates to the problem’s transcription into a chromosome. An advantageous map-
ping of the problem with all its necessary variables may enable an EA to find the global
optimum rather quickly. A problem formulation that is poorly suited for the optimization
with an EA, or a formulation missing a crucial problem variable, can not only increase the
runtime of an EA considerably. It can moreover reduce the chances of finding the global
optimum at all.

4.3.4 Applications of Evolutionary Algorithms

GAs and GP methods have been successfully applied to various optimization problems in
engineering, management, or economics. The following examples give a brief impression of
the range of possible EA-applications.

The first example is the support of air traffic control personnel by an EA-based software tool
called ROGENA (free ROuting with GENtic Algorithms) [33] [34], which helps to optimize
airspace usage. Under obeying the safety constraints and separation distance margins, this
tool optimizes the airplanes’ entry and exit points of the respective airspace control box in
order to maximize the number of air traffic per hour in that control box. It is a typical
example of the important problem class of scheduling and routing, for which EAs have been
applied successfully.

Design optimization in engineering applications, especially where shape influences function-
ality, is another application field of EAs. This includes 2-dimensional and 3-dimensional
shapes in basically all engineering branches. An example in which a small efficiency gain of
one percent can have considerable effect on complexity, and thus on production and operating
cost, is the shape of a compressor blade of stationary and non-stationary turbo machinery.
EAs have been applied in conjunction with computational fluid dynamics (CFD) software
tools to optimize blade shapes for higher efficiencies through higher pressure ratios per blade
[12]. The objective is thereby the development of turbo machinery having fewer blades per
compressor stage, or maybe even fewer compressor stages. Both yields in the desired higher
fuel efficiency and cost saving.

GAs were also applied to the optimization of control systems [49] or industry processes
synthesis [90] and for the design and optimization of controllers for animated motion, often
in conjunction with ANNs. Genetic optimization methods proved also successful in game
theory, where they optimize the behavior and strategy of agents, for example. EAs have been
used also for artificial life simulations and for the development of machine learning rule-based
classifier systems.

Finally, EAs are employed in evolutionary biology research, where they help to model natural
systems and serve the understanding of natural evolutionary processes.

4.4 Multiphase Evolutionary Neurocontrol for Trajectory Op-
timization

The optimization method ENC combines the concepts of ANNs and EAs. MENC is the
extension of ENC on mission designs that consist of more than one transfer phase, which
must not necessarily be of low-thrust type. A mission optimization criterion therefore affects
multiple flight legs.

This section describes the functional principles of ENC and MENC. It comprises the use of an
ANN for spacecraft steering and of an EA for the optimization of the ANN parameter set and
initial conditions. With this method, ENC and its extension MENC enable the optimization
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Figure 4.12: Neurocontroller For Spacecraft Steering.

of single-phase and multiphase mission design also for non-experts in astrodynamics and
optimization.

First, subsection 4.4.1 introduces the neurocontroller concept, followed by the description
of neurocontroller training in subsection 4.4.2. If each mission phase employs a separate
neurocontroller for spacecraft steering, training of these neurocontrollers must take place
concurrently, as the flight phases affect each other. How this can be done, is explained
in subsection 4.4.3. Subdividing a mission into separate phases, and optimizing those phases
concurrently, raises the requirement on appropriate transition conditions that must be satis-
fied to yield physically valid solutions. This and the optimization of such phase transitions
w.r.t. to the overall optimization criterion is subject of subsection 4.4.4.

4.4.1 Spacecraft Steering With Neurocontrollers

A neurocontroller (NC) is an ANN that is used for control of a dynamic system. Within this
work, the low-thrust-propelled spacecraft under the influence of its environment and internal
forces is the dynamic system that must be controlled optimally. Its thrust acceleration vector
must point in the local-optimal direction at any time in order to follow the desired trajec-
tory. The determination of that direction requires a strategy. Within ENC, that strategy
is incorporated by an NC. The NC commands direction and magnitude of the local-optimal
thrust vector through mapping of problem specific information from its input neurons via its
transfer function to its output neurons. An important problem is hence which input data to
use, how to present these data to the NC, and how to decode an NC’s output to obtain the
needed control variables.

An optimal input data set contains only the variables that are necessary for optimal control
of the dynamic system. Additional variables would not further improve control behavior.
Instead, leaving out a variable of that optimal set would decrease the NC’s capabilities or even
disable them. The question of the transfer-type-dependent optimal set of input parameters
was not pursued during this work, as many parameter sets lead to the desired result as long
as they contain the necessary variables.

A natural assumption for the input data of a spacecraft-steering NC are the state vectors of
the spacecraft xSC and the target xT or the relative state pxSC � xTq. However, to make the



4. MULTIPHASE TRAJECTORY OPTIMIZATION WITH
EVOLUTIONARY NEUROCONTROL 57

NC’s steering strategy independent on time and therefore more robust, the current time t
should not be used. The usage of mp as input for an NC that controls a propellant dependent
spacecraft1, on the other hand, could provide implicit information about remaining thrust
time. As xSC and xT may be expressed in cartesian or polar coordinates of rotating or inertial
frames, there is a great number of possible input data combinations.

The choice of input data also affects the training progress of an ANN parameter set π, because
input parameter values can exhibit considerably differing absolute magnitudes. The ratio of
the Earth’s mean distance to the Sun (1.5 � 108 km) and its mean orbital velocity (28 km/s),
for example, is approximately 5.4 �106 seconds. An ANN can be trained to handle such input
data differences, but it is time consuming and may also require additional ANN nodes.

Another aspect of very large absolute parameter values becomes evident from Fig. 4.4. A
transfer function, like the depicted sigmoid, can have an “operational range”. Above and
below this range, changes to the input have no significant effect on the function’s output
value, which influences the training method that is employed for the optimization of π. If
input parameter changes do not result in noticeable changes of the output values, training
progress will be slow, or not converge at all. Normalizing the ANN’s input vector data can
improve the optimization process and, through less required ANN nodes, reduce the number
of optimization parameters.

Another problem arises when using angular input parameters, e.g., the polar azimuth angle ϕ.
Close to 0 or π and depending on the actual representation, small changes of the actual angle
can result in parameter value changes close to 2π. ANNs can adapt to this peculiarity, but
it often requires additional internal nodes, or longer training, or both. The transformation
of angular parameters prior their usage as ANN input is therefore recommended.

The transfer function maps this input on the ANN output neurons from where it is transcribed
to the control vector u. The control is the local-optimal thrust vector expressed in the orbit
frame O (see appendix A.3). For the duration of a control step, i.e., until the next NC call,
this vector is constant in that frame. It consequently changes in the inertial frame according
to the spacecraft’s orbital motion. If the ANN output gives the thrust vector directly, it is
called a direct steering strategy and an indirect steering strategy if another process, e.g., an
LSL, is interlinked. For the calculations within this work only direct steering strategies were
used. The chapter covering the implementation of MENC details further on the generation
of the ANN input parameters and how the control variables deduce from the NC output.

4.4.2 Optimization of Neurocontrollers Through Training

Assuming the same transfer function for each neuron, the number of layers and the number
of neurons in each layer defines the topology of the NC’s ANN. Topology and the respective
parameter set π thus define the overall network transfer function N � f pπq � Nπ. If
topology is fixed, i.e., not part of the optimization, the optimal parameter set π� determines
the optimal transfer function N* � Nπ� , whose application results in the optimal trajectory
r* rt̄s.
ENC employs a GA to train the spacecraft-steering NC through optimization of its param-
eters π, which requires a mapping from π to the GA chromosomes. The example depicted
in Fig. 4.13 shows for a small ANN how the respective parameters of all but the input neu-
rons sequentially arrange on a preferably real-value chromosome ξ. Figure 4.14 shows the
functional principles of ENC with its two main loops: an outer GA loop, and an embed-
ded trajectory integration loop. The latter incorporates the GA’s evaluation element and
complements “newborn” individuals ξi with the fitness J pξiq.

1This is not necessary for solar sails.
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Figure 4.13: Mapping of the NC Parameters on a Chromosome. Optimizing an NC
means to find the optimal values of its ANN weight factors wij, its input bias or thresholds θi, and
its neuron transfer function parameters γi. Mapping these parameter on a string or chromosome
ξ allows the application of a GA for their optimization.

The inner loop starts with the initialization of the NC, using the information encoded on

ξi. In addition to π, ξi also contains the simulation’s initial conditions. These are the

spacecraft’s initial state xSC,0, which may depend on the launch date t0, and, for spacecraft

with propellant-dependent propulsion, on the initial propellant mass mp,0. Both are therefore

also subject of the optimization. The simulation is the numerical integration of a differential

equation system (DES) of the state equations, also called equations of motion (EOM). Each

integration step from t̄i to t̄i+1 � t̄i � h, with the control step size1 h, precedes an NC

application. The NC provides the control u pt̄iq, based on Nπ and the input data x pt̄iq, which

comprises at least the astrodynamic states of the spacecraft xSC pt̄iq and the target xT pt̄iq.
This simulation model neglects realistic rotation dynamics and allows instantaneous attitude

alteration at each control step. The control vector2 u pt̄iq is constant in O-frame during h but

changes in the I-frame according to the relative motion of O w.r.t. I. Numerical integration

of the EOMs is the next step, followed by a check that decides about whether to continue

integration or not. If the trajectory integration should continue, the new u pt̄i+1q of the next

step is obtained through another NC application.

Trajectory integration stops upon fulfillment of the accuracy constraints, or violation of

boundary constraints, or after a preset maximum integration time. Based on the resulting

r rt̄s, an assessment w.r.t. the optimization criterion gives the individual’s fitness J pξiq.
The evaluated individual is passed on to the calling outer loop, where it is put back to the

population. This process repeats until the outer loop achieves population convergence, i.e., no

ξi with a better trajectory and resulting higher fitness could be generated. If the problem was

properly coded and all the parameters relevant for the problem were chosen appropriately,

1The control step size not necessarily equals the integration step size. Most integrators automatically
adapt the integration step size to meet predefined accuracy limits.

2As the optimal control in this case is the direction and magnitude of the thrust direction vector, this
vector is three-dimensional.
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Figure 4.14: Trajectory Optimization Through Optimization of the Initial Conditions
and the Spacecraft-Steering NC. This is an extended version of the figure from Dachwald [13].
It shows the solution ξj holding not only the NC’s parameter set πj but also the trajectory
integration initial conditions.

e.g., initial propellant mass and launch windows, the best population individual ξ� carries
the globally-optimal solution within its genome.

4.4.3 Optimization of Multiphase Missions at the Example of an Earth-
Mars-Earth Double Rendezvous

The optimization of space missions with more than one transfer phase exhibits in general
similar but also new problems, regardless of the employed propulsion technology. This is
because the mutually dependent but separate mission phases of such multiphase missions
affect each other and their optimization. Objective functions that assess the entire mission,
e.g., minimum total mission duration, are therefore indirect constraints for the optimization
of each phase. The terms “mission phase” or “flight leg” are used here to describe certain,
mission -specific elements of a logical breakdown and can be used interchangeably.

A SEP-powered Earth-Mars-Earth double RV mission shown in Fig. 4.15 serves in the fol-
lowing for the explanation of potential problems and constraints that may hamper the opti-
mization of such mission designs. The strategies to alleviate those problems and the chosen
approach for multiphase mission optimization with ENC are exemplified in this scenario as
well. It was chosen for the several reasons. Firstly, a two-phase mission design is a logical next
step from a single-phase mission. Secondly, low-thrust sample-return missions from Mars are
of scientific interest and study results can be found in literature [20]. Thirdly, both low-thrust
transfers from Earth to Mars and from Mars to Earth are of limited complexity in terms of
trajectory optimization. This would not be the case for a low-thrust Earth-Moon-Earth mis-
sion design, as the Moon’s gravitation acting as disturbance acceleration cannot be neglected
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for low-thrust transfer optimization. Finally, this example allows an easy explanation of the
concepts of dwell time, flight time, and total mission duration, as well as the dependencies
between them.

A spacecraft with the dry mass md � 624 kg, a propulsion subsystem comprising two NSTAR
engines with variable throttling, and a solarelectric power generation subsystem with Pe,SP,0 �
10 kW and κ � 1.6 should first traverse on a RV-trajectory to Mars. The scientific operations
there are accounted for with a stay time or dwell time

∆tdw �
pf̧

i�2

piq∆tdw � piqt0 � pi-1qtf � p2q∆tdw (4.4)

in r100, 150sd before the second flight leg leads the spacecraft back to the Earth. The symbol
i in parenthesis and upper left of the respective symbol denotes the flight phase 1   i ¤
pf P N : pf ¡ 1 of that variable. For the two-phase example pf � 2. The RV conditions are
set to one percent of the target’s mean Sun distance and mean orbital velocity, respectively,
which is sufficient for the purpose of illustration. Maximum allowed values for the distance
∆rf � }rT ptfq�rSC ptfq } ¤ ∆rf,max and the relative velocity ∆vf � }vT ptfq�vSC ptfq } ¤ ∆vf,max

are therefore p1q∆rf,max � 2.28 � 106 km and p1q∆vf,max � 240 m/s for the first flight phase, and
p2q∆rf,max � 1.5 � 106 km and p2q∆vf,max � 300 m/s for the second phase. The launch date
windows are r54 426, 55 523sMJD and r54 827, 55 923sMJD, respectively.

A multiphase scenario like this offers additional optimization options compared to those of
single-phase missions. Besides minimization of the total time

∆tm � ppfqtf � p1qt0 � p2qtf � p1qt0 (4.5)

or the total propellant consumption

∆mp �
pf̧

i�1

�
piqmp,f � piqmp,0

	
�

pf̧

i�1

piq∆mp � p1q∆mp � p2q∆mp � p2qmp,f � p1qmp,0, (4.6)

the total stay time could be maximized

∆tdw �
pf̧

i�2

�
piqt0 � pi-1qtf

	
� p2qt0 � p1qtf, (4.7)

or the sum of the transfer days minimized

∆tt �
pf̧

i�1

piqtf � piqt0. (4.8)

The latter strives only for the shortest possible sum of all transfer times and neglects ∆tm
and ∆tdw. Depending on the chosen objective function, the steering strategies piqS, the launch
dates piqt0, and the initial propellant masses piqmp,0 will be different, and these are the variables
to be optimized in an overall mission context. As for single-phase transfers, the approach to
optimize an entire mission scenario is to employ a GA. This time, however, the chromosome
holds the parameters of multiple phases, as shown in Fig. 4.16. In this example, the steering
strategy of the two phases is incorporated by an ANN for each phase. Their parameter
vectors π and the initial conditions of each phase therefore become substrings of ξ. This
way the solutions of phase one and phase two compete with each other to form the optimum
combination, i.e., the optimum overall mission design.
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Figure 4.15: Low-thrust Earth-Mars-Earth Double Rendezvous. The inner circle is the
orbit of the Earth and the outer one that of Mars. The dots denote the positions of Earth and
Mars at departure and arrival, respectively. After launch at Earth, the spacecraft traverses on
a low-thrust arc to Mars, stays there for the so-called dwell time for science operations. After
conclusion of this task, it flies on a low-thrust trajectory back to Earth.

This corresponds to natural species that are mutually dependent but at the same time com-
pete with each other for the limited resources of their common environment. Natural co-
evolution lets both species evolve in such a way that both profit from each other at the
expense of taking compromises. Co-evolution is the most likely reason for the survival of
both species, because neither of them would survive the selection pressure of their common
environment without the other.

The context is similar for the low-thrust, double RV mission. Neither transfer alone is a valid
problem solution. A second phase taking place before the first one would obviously invalidate
the mission as well, even if this wrong sequence order resulted in less transfer days. The same
holds true for a second phase starting earlier than 100 days or later than 150 days past the
end of the first phase, i.e., p1qtf must obey 100 d ¤ �p2qt0 � p1qtf

� ¤ 150 d.

Without this dwell time constraint, optimization would be feasible through manual opti-
mization of each phase individually, with basically two options. The first one starts with the
optimization of the second transfer, which gives triplets pp2qt0, p2qmp,

p2q∆tqi for each found
transfer within the launch date interval. The corresponding pp1qt0, p1qmp,

p1q∆tqi result from
the subsequent optimization of the first phase, respecting p2qmp for the dry mass p1qmd and
p1qtf ¤ p2qt0. For launch intervals that allow more than one solution, several combinations
of transfers for phase one and two result from this approach. The one having the smallest
transfer days sum ∆tt �

�
p1q∆t� p2q∆t

�
is the final, best solution, which, depending on the

total launch date interval, can nevertheless have a significant dwell time at Mars.

The second option for manual optimization of this mission type is to start with the first flight
leg. This is an intuitive approach but one needs to find a reasonable guess for the a priori
unknown variable p2qmp. Again, the triplets pp1qt0, p1qmp,

p1q∆tqi are the result of a trajectory
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Figure 4.16: Multiphase Mission Parameters on a Single Chromosome.

optimization. The subsequent optimization of the second transfer leg, obeying

p2qt0 ¥ p1qtf, (4.9)

provides pp2qt0, p2qmp,
p2q∆tqi. With the true p2qmp, a second optimization of the first transfer

leg gives an updated pp1qt0, p1qmp,
p1q∆tqi. If p1qtf would violate (4.9), a second optimization

gives a new p2qmp, etc. The combination of valid triplets that has fewest transfer days is the
final solution. Both options are viable ways to obtain solutions for this problem but involve
manual interaction and several iterations to find the global-optimal solution, although parts
can certainly be semiautomated.

Respecting also the additional dwell time constraint, however, does not invalidate the de-
scribed manual approach but turns it into a tedious process, even for this simple mission
design. That is because of the mutual effect of each phase on the other and on the opti-
mization objective. On one side, the second phase should have minimal duration but must
begin within a time frame specified by the dwell time limits and p1qtf of the preceding phase.
On the other side, this preceding phase is “coupled” to the second phase via p2qmp, which
has an effect on p1q∆t and on p1qt0, due to the required, flight-time-dependent, initial phase
angle between the launch and target bodies. Manually finding of a valid solution requires
the determination of the respective launch dates and to adjust them according to the results
of the trajectory optimization of each phase. Depending on the actual problem, the launch
body, the target, and on the posed constraints, this optimization can be time consuming.

MENC exploits the principle of coevolution for the automatic optimization of multiphase
transfers and thus mitigates tedious, manual optimization. As the following description is
not restricted on two-phase transfers, the generic notations i for a phase and pi � 1q for its
successor phase are used in the following.

An important decision for MENC concerns the evaluation of the individuals, which now
contain solutions of more than one phase. Precisely, it is about the simulation and its
trajectory integration’s initial conditions. There are two options, and both have their pros
and cons.
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The first option is to evaluate them one by one, with phase pi � 1q always starting exactly
at the final state of phase i. This requires chromosome-encoded initial conditions only for
the first phase and reduces the number of necessary parameters. Using the preceding phase’s
state, mass, and time information also always guarantees physically valid trajectories, which
is a considerable advantage. However, it reduces optimization efficiency, as it constrains
the solutions space of phase pi � 1q to a subspace that starts directly at the end of phase
i. This could be imagined as optimizing phase pi � 1q through a solution space “keyhole”
determined by the final conditions of phase i. Moreover, only phase i can effect phase pi� 1q
at the begin of the optimization when boundary or accuracy constraints are not yet fulfilled
and the optimization criterion is not taken into account for fitness determination. Driving
the optimization into an undesired solution space can be a consequence, which is difficult to
correct later upon boundary constraint match.

The second option also evaluates the substrings of an individual ξ one after another. In
contradiction to option one, the phase-specific initial conditions of each phase stem from the
chromosome. At the expense of additional optimization parameters, the solution space of each
mission phase is therefore unconstrained right from optimization start and can be searched
more thoroughly. However, this results in the disadvantage of discontinuous trajectories as
initial conditions of phase pi � 1q now generally differ from the final conditions of phase i.
Assuring a continuous and smooth final trajectory is therefore a task of the optimization
procedure, and often implies respecting the optimization criterion from the very beginning.
This is not a strict requirement for all mission designs, as can be seen in the two-phase,
Earth-Mars-Earth mission example. In this, the required dwell time prohibits continues and
smooth transition between the phases.

The initial conditions of all but the first phase are also termed transition conditions as they
determine the transition between two subsequent phases. Encoding them on ξ, where they
are subject to optimization by the GA, allows implicit optimization of these parameters as
follows. If the trajectory of phase i fails to match the transition conditions of phase pi � 1q,
but phase pi � 1q would achieve its objective also with slightly changed initial conditions,
such a change could be done in favor of phase i. The transitions conditions of all phases thus
would continuously evolve to those of the optimal solution. However, they are unlikely to
match perfectly upon optimization stop. A mechanism that uses a predecessor phase’s final
conditions as initial conditions for the following phase, if the respective deviation is smaller
than a problem-dependent threshold, finally guarantees a physically valid final solution.

4.4.4 Phase Transition Conditions

The transition conditions between consecutive flight phases depend on the actual mission
design. This section defines the condition types used within this work, as well as the mission
types for which they were applied. The first transition condition variable is the time t. For
mission designs that require a continuous trajectory that leads from one phase to another,
being the majority of space missions, the following equation holds

piqtf � pi+1qt0. (4.10)

That means, except for missions that involve a dwell time at a celestial body before they
continue traversing to the next target body, the end time of one phase piqtf must equal the
start time pi+1qt0 of the subsequent phase.

The next transition variable is that of the spacecraft mass mSC. Its transition condition is

piqmSC,f � pi+1qmSC,0 �∆m. (4.11)
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Table 4.3: Transition Condition Types for Three Scenarios. Here, (applicable) means that
mass continuity is required but instantaneous mass changes may be allowed, e.g., to account for
jettisoned propulsion stages or surface probes.

Scenario piqx � pi+1qx piqmSC � pi+1qmSC
piqtf � pi+1qt0

A applicable (applicable) applicable
B n/a (applicable) n/a
C applicable applicable applicable

This formulation accounts for planned changes of spacecraft mass ∆m, which can be surface
probes dropped on close flyby at a target or jettisoned propulsion stages.

The third transition variable is the astrodynamic state of the spacecraft xSC. A continuous
trajectory requires identical state vectors at the end of phase i and the begin of phase pi�1q.

piqxSC,f � pi+1qxSC,0 (4.12)

An exception to (4.12) arises from missions including dwell times or instantaneous velocity
changes, e.g., resulting from chemically induced ∆V . The latter was not used within this
work.

Three scenarios and the respective transition conditions should be defined for the transition
between two adjacent mission phases. Table 4.3 shows how the different transition condi-
tions (4.10), (4.11), and (4.12) would be defined. Scenario A is either a flyby at a celestial
body or a rendezvous at that body without stay time. A rendezvous scenario including a stay
time at the target body before starting the second phase is scenario B. Scenario C involves a
SOI-crossing, i.e., a change of the central body.
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Implementation

This chapter shows and explains the essential elements of the implementation of MENC in
the software InTrance. Dachwald developed the first version of this optimization tool [13]
exclusively for heliocentric, single-phase low-thrust transfers. It was the starting point for the
author’s work on the extension of ENC to the optimization of non-heliocentric and heliocentric
multiphase low-thrust transfers. The existing version was during this work extensively revised
and extended to enable the optimization of multiphase transfers in heliocentric space. The
version of InTrance developed by the author supports both single-phase, non-heliocentric
transfers and continuous, multiphase, low-thrust transfers comprising non-heliocentric as well
as heliocentric phases. InTrance is written in C++ following the principles of object-oriented
programming (OOP). Its input is a user provided, text-file based configuration. Its output is a
set of comma-separated-value data files, plain text report files, and data files for visualization
of the resulting transfers1.

Enhancement of InTrance required the implementation of several mechanisms described in
this chapter. They are of three general types: type A, mandatory for functionality; type
B, to increase simulation fidelity for more detailed analysis; and type C, to improve opti-
mization robustness. Type A mechanisms are essential, as they transcribe the problem of
multiphase, low-thrust trajectory optimization to the EA such that in principle it can solve
it. Type B mechanisms allow refined mission analysis through trajectory integration in a
more realistic simulation environment, e.g., with eventual planet shadows and third-body
disturbance forces. Most of these mechanisms are not essential for multiphase trajectory
optimization. Type C mechanisms increase the robustness of the optimization, i.e., they help
to find the globally-optimal solution more reliably. An example for such a feature is the
dynamic determination of the control step size.

Depending on the actual transfer problem, some of the type B mechanisms also belong to
type A. For example, although basically a simulation fidelity-enhancing feature, third-body
disturbance accelerations must be respected for low-thrust trajectory problems that involve
crossing of a SOI because there the gravitational pull of the central body and the disturbing
body are in balance. The support of third-body accelerations is a mandatory technique in
that case. Table 5.1 gives an overview of the different implementation elements and their
classification.

Five sections describe these mechanisms and techniques in detail. Section 5.1 describes the
necessary features to carry out non-heliocentric astrodynamic simulations. The following sec-
tion 5.2 describes the developed multiphase framework and its implications on the optimiza-
tion process. Section 5.3 treats simulation components in more detail, e.g., equations of
motion, integration schemes, disturbance bodies influence. The elements and mechanisms of

1The visualization format is the Virtual Reality Modeling Language (VRML).
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Table 5.1: Classification of the mechanisms and techniques in InTrance. Type A mechanisms
are mandatory for functionality, type B mechanisms increase simulation fidelity, and type C
mechanisms improve the robustness.

Element/mechanism Type A Type B Type C

Non-heliocentric simulation x n/a n/a
Planetary shadows n/a x n/a
Third-body perturbation x x n/a
Excess energy optimization n/a x n/a
Dynamic control step size n/a n/a x
Parameter range adaption n/a n/a x
Search space scan n/a n/a x
Hypercube size control n/a n/a x
Variable boundary constraints n/a n/a x

the EA employed in InTrance are the content of section 5.4. Section 5.5 treats the usage of
ANNs as NCs within MENC and explains the encoding of the NC input information and the
transcription of NC output data into spacecraft control variables.

5.1 Support of Non-heliocentric Low-thrust Transfers

One of the major changes to InTrance’s astrodynamic simulation implementation was the
added support for non-heliocentric low-thrust transfers. This was necessary as the exist-
ing version was limited to heliocentric trajectory integration using an EOM formulation in
polar coordinates. It further neglected third-body disturbances, planetary shadows, and as-
sumed the sunlight direction vector to be coincident with the radial distance vector of the
spacecraft. The assumptions underlying that implementation therefore prohibited generic
non-heliocentric simulations, e.g., those of an EP-powered spacecraft on a near-polar orbit
about the Moon. The reasons for enhancing InTrance with non-heliocentric simulation capa-
bility were therefore as follows.

With a few exceptions, heliocentric orbits of most space missions are more or less constrained
to the ecliptic plane. This is mainly for two reasons. First, the orbits of the respective
mission targets, e.g., the major celestial bodies, are within an maximum inclination range of
about seven degrees1. Second, the required energy to increase the heliocentric inclination is
significant. Missions to high-inclination orbits or to targets on such orbits therefore almost
inevitably turn into high-energy missions. The resulting ∆V -requirement necessitates either
larger launch systems or the inclusion of GAs into trajectory design. Neither one is always
feasible. For non-heliocentric orbits, e.g., around Earth, Mars, Jupiter, or one of their moons,
there is generally no such “limitation” on the orbit’s inclination. In fact, spacecraft whose
objective is to monitor or to map the surface of a body often fly on polar or near-polar orbits.
This has implications for the simulation framework because polar state equations exhibit
singularities for certain inclination values. Singularity-free astrodynamic state equations are
therefore preferable for non-heliocentric calculations. InTrance therefore uses a cartesian for-
mulation of the state equations for non-heliocentric simulations. As the polar state equation
formulation of InTrance has advantages in terms of performance over the cartesian form, it
was kept for heliocentric simulations.

1The orbit inclination of Pluto, however, which is now categorized as dwarf planet, is about 17 deg.
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The second important peculiarity is the influence of disturbance accelerations, resulting from
the gravitational attraction of bodies other than the central body. In the context of prelimi-
nary mission analysis, these third-body disturbance accelerations are negligible for heliocen-
tric motion. For non-heliocentric orbits, however, their influence on a spacecraft and on the
spacecraft’s orbit can be considerable. This influence is dependent on the spacecraft’s dis-
tances to the central body and to the disturbing bodies. If a low-thrust spacecraft solely relies
on its thrust acceleration and is not supported with additional v8, it is principally longer
exposed to such accelerations than chemically propelled spacecraft. A simulation framework
must therefore account for third-body accelerations for all low-thrust mission phases whose
trajectories lead close to or across a body’s SOI.

Another peculiarity of non-heliocentric simulations is the influence of the shadow of the central
body, caused by the obstruction of the Sun by that body. This is of significant importance
for spacecraft whose propulsion system relies either directly (solar sails) or indirectly (EP) on
sunlight. If a spacecraft is in planetary shadow, its solarelectric power generation subsystem
is inherently disabled. If it has not other power supply, thrust generation ceases as well and
reduces the means for orbit alteration. This effect decreases with increasing orbit heights.
However, its influence on the transfer time of a sunlight-dependent spacecraft from a non-
heliocentric lower orbit to a higher orbit, or even to an escape trajectory, can be significant.

The fourth difference is related to the sunlight direction vector. This is the vector that
points from the Sun to the spacecraft. For heliocentric simulations, the sunlight direction
vector coincides with the radial position vector. This is not the case for non-heliocentric
motion. Especially solar sail steering strategies around celestial bodies are different than
on heliocentric orbits and can demand rapid attitude changes. For EP-powered spacecraft,
this difference may be neglected as well, if one assumes the spacecraft’s solar panels always
optimally aligned to the sunlight vector.

5.2 Multiphase Framework

A solution candidate ξ in InTrance is evaluated via an astrodynamic simulation. The simula-
tion result is a trajectory obtained through numerical integration of the EOMs. Multiphase
transfers can differ considerably from one phase to the next, a fact any simulation framework
for such transfers must take care of. InTrance was originally designed to support single-leg
missions with a C++ simulation object for the entire mission. This was changed during this
work to a chain of concatenated simulation objects that represents the mission. Each object
thereby represents a phase of that mission and the objects call up themselves in sequential
order. One advantage of this approach is its transparency to the outer optimization loop.
The EA running there, “sees” only the first evaluator object to which it passes an unevalu-
ated solution candidate ξ. Figure 5.1 shows this concept for a mission that comprises three
mission phases, with the first and the last phase employing an NC for spacecraft steering.
After the trajectory integration, the first simulation object then passes ξ on to the second
simulation object and also receives it back again later from that object.

The simulation object chain is implemented as a doubly linked list. That means each object
can access its eventually existing predecessor and its successor. Furthermore, by iterating
through that list, each simulation can access all other list objects. This assures that each
simulation chain object can access public information of all other simulation objects of the
same chain, whether they have yet carried out the trajectory integration for the current
solution candidate ξ or not. This is important for the optimization of the transition or
couple conditions, which is covered in subsection 5.2.1.
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Figure 5.1: Chained Simulation Objects.

An individual’s evaluation with this simulation object chain is as follows. It starts with the
call to the first object of that chain, with the candidate solutions passed as parameter. The
mission phase covered by the simulation object is then evaluated and the solution is assigned
a phase-specific subfitness value1. The simulation object then calls is successor object, with
the complete solution chromosome ξ again passed as parameter. These steps repeat until
the last simulation chain object was called and has finished its evaluation. In addition to
the phase-specific subfitness, the last simulation also assigns the absolute fitness J pξq to the
candidate solution, i.e., it assesses the fulfillment of the optimization criterion w.r.t. the entire
mission2. Recursively going back to the first simulation object then returns the completely
evaluated solution candidate, which is given back to the calling EA.

5.2.1 Implications on Initial and Final Conditions

Simulation is a core component of InTrance and corresponds to the EA element of evaluation.
It receives candidate solutions during the EA’s reproduction cycle and yields a trajectory,
whose shape and transfer duration is determined by the initial conditions and the information
encoded in the candidate solution’s chromosome ξ.

A simulation run comprises the three stages initialization, state equations integration, and
postprocessing. The last one gives the phase-specific subfitness. The simulation objects
in InTrance are implemented with C++ objects, with specific initial, final, and boundary
conditions, and each phase of a multiphase mission corresponds to exactly one simulation
object. The simulation parameters are in general externally provided, e.g., by a user. Instead
of fixed values, the initial conditions may also be given as parameter ranges, from which
the optimizer must find the optimal value from. The requirement for physically valid final
trajectories additionally leads to coupling conditions, which can translate into initial and final
conditions of adjacent mission phases. That means, the final spacecraft state of phase i can
be the initial state of phase (i+1). On the other hand, the initial state of phase (i+1) can
be the target state of phase i. The couple conditions can hardly be guessed, yet be chosen
optimally by an operator. It is better to let the optimizer choose promising parameter ranges
and also let it modify them during the optimization process.

1The concept of phase-specific, so-called proximity values is covered in subsection 5.3.7.
2See also subsection 5.4.7 for more details on the fitness calculation in InTrance.
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A simulation object is therefore logically linked to its predecessor simulation and to the
successor simulation object. Figure 5.1 shows an example of such a simulation oject chain.
In order to set up a simulation object correctly, it must obtain information about certain
simulation parameters from the preceding simulation and from its successor. To calculate
the spacecraft launch mass for the phase i, for example, the initialization stage of that phase
must determine the propellant masses required for the following mission phases. This is
feasible because of the chosen approach to encode the initial conditions of all phases on
the solution chromosome. This information contains the launch or arrival date, the initial
or final state, and the spacecraft or propellant mass, respectively. Each simulation object
also contains a control strategy, which is principally initialized with the candidate solution
data but may also be a completely different steering strategies, e.g., constant thrust vector
angles. The second simulation object in Fig. 5.1 is an example for such a mission phase. The
figure also shows the relation between coupling conditions of adjacent phases. The initial
conditions of the second simulation object are at the same time the target conditions of
the first simulation object, and the assessment of the complete solution must also include
fulfillment of these target conditions. Later in the optimization process, when the difference
between the final state of phase i and the initial state of phase (i+1) has become negligibly
small, phase i’s final state can be used directly as initial state of phase (i+1) to assure a
continuous trajectory, as indicated in Fig. 5.1.

5.2.2 Spacecraft Design

A spacecraft is characterized by a set of specific parameters. Important ones are for example
the mass, electrical input or output power, or the maximum thrust level. Enabled by the
developed multiphase simulation framework, InTrance can optimize some of these parameters
within user-provided limits. It can therefore specifically optimize the design of a spacecraft
and, via the steering strategy, the trajectory for a space mission.

The most simple spacecraft configuration in InTrance is that of a solar sail. It is configured
primarily via its characteristic acceleration or sail loading, and, for the optical SRP force
model, its sail film optical properties. For electrical propulsion systems, InTrance offers
configuration and optimization options for the structure mass, tank, propellant, power supply
systems, etc. Besides the steering strategy and the launch conditions, e.g., the hyperbolic
excess velocity vector v8, the optimization thus also includes the spacecraft design. For a
spacecraft with a staged propulsion subsystem, InTrance can find the optimal compromise
between each phase’s propellant mass. If configured with a power-specific mass, InTrance can
also optimize the size of the spacecraft solar generator size. More details about the respective
configuration parameters can be found in appendix D.

5.2.3 Potential Applications of the Developed Framework

The developed simulation framework can help to solve numerous problem types. The opti-
mization of multiphase low-thrust transfer problems is thereby the only one that was used
within this work. Such mission designs are thereby principally unconstrained in terms of
propulsion systems and steering strategies. Using this framework without any steering strat-
egy would even allow the optimization of chemically-propelled multiphase missions; the tra-
jectories of each mission phase would thereby be treated as coast arcs. Additionally, this
framework allows combinations of low-thrust and ballistic phases within a mission.

However, with this framework and an EA’s optimization capability the treatment of other
problems than trajectory optimization for a particular mission become viable. Such problems
address more fundamental questions w.r.t. NCs that are used for spacecraft steering. One
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of them is the question of the smallest NC, i.e., the one with the fewest neurons, that is
still capable find the optimal transfer. Based on this, the logical next question is whether it
is possible to train an NC so that it can find the optimal transfer for a particular mission
regardless of the launch date. In other words, once properly trained, such an NC would steer
a low-thrust spacecraft optimally to the respective target state for every given launch date
without further training. A further complication is the usage of more than a single target
for the training of a NC. A single NC that masters the two low-thrust transfers from the
Earth to Mars and back would already possess better generalization than an NC that can
handle only one transfer. Finally, such a training setup in combination with different launch
dates within one synodic cycle could yield an NC with a better general capability of treating
low-thrust transfer problems.

Potential applications of the developed simulation framework are numerous. However, the
focus of this work is on the optimization of multiphase low-thrust trajectories. Therefore the
approach of one NC for each phase was chosen as a first logical step to prove the functionality
of MENC. All the sketched applications have not been pursued further1. Potential later work
can however use the gained results as reference for the described more complex problems.

5.3 Simulation

Simulation is an essential EA component and yields the trajectory r rt̄s, whose assessment de-
termines the fitness J pξiq of the solution candidate ξi. The following subsections describe the
important enabling mechanisms of the simulation objects within InTrance. They cover top-
ics such as numerical integration, spacecraft structure and mass breakdown, state equations,
third-body perturbations or planetary shadows, and problem-dependent constraints. As the
number of InTrance’s simulation features has grown over the time, only those important for
this work are presented.

5.3.1 Spacecraft Mass Breakdown

At a time t, the maximum acceleration of a spacecraft is determined through its available
maximum thrust force Fmax ptq and its total mass mSC ptq. The maximum thrust force and
the total mass are dependent on each other in manifold ways. An EP-powered spacecraft, for
example, has several components that are decisive for thrust generation. At the same time
these components also contribute to the overall mass budget, e.g., propellant, propellant tank,
solarelectric power generation system, and the thrust unit(s). To support the optimization
of these components for a particular mission design in conjunction with the optimal transfer
strategy, a more detailed spacecraft mass model was developed for InTrance’s simulation
model.

In this model, the spacecraft wet mass or launch mass mSC,0 is the sum of the dry mass md

and the propellant mass mp

mSC,0 � md �mp, (5.1)

with the spacecraft dry mass comprising the payload mass mPL and the bus mass mbus

md � mPL �mbus. (5.2)

InTrance offers two principle options to declare the mass of the bus components structure,
propellant tank, and power generation: either explicitly, via the component’s total mass, or,

1see also section 7.2
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implicitly, in relation to a second parameter of the respective component. Using a power-
specific mass factor αPGS, for example, the mass of the electric power generation system mPGS

is determined by its reference power output Pe,0.

mPGS � αPGSPe,0. (5.3)

Depending on the actual optimization criterion, this allows to implicitly optimize for the
optimal compromise between less powerful but lighter and heavier solar panels with higher
electrical power output.

Similarly, the tank mass of the spacecraft is determined by a propellant mass-specific factor
αprop and the propellant mass mp.

mtank � αpropmp. (5.4)

The structure mass of the spacecraft mst depends on the propulsion subsystem mass mPS, the
masses of the other components, and a mass-specific factor αst. In practice, αst is between
0.15 and 0.25.

mst � αstpmPGS �mPS �mtank �mpq (5.5)

The sum of the system masses provides the bus mass

mbus � mPGS �mPS �mtank �mst. (5.6)

Inserting (5.3)- (5.5) in (5.6), the bus mass may be expressed as function of Pe,0 and mp

mbus � p1� αstqpαPGSPe,0 �mPSq � pαprop � αpropαst � αstqmp. (5.7)

If configured to use given factors αi and intervals for Pe,0 and mp, InTrance can thus optimize
the entire spacecraft mass breakdown together with the steering strategy.

5.3.2 Equations of Motion

The dynamic spacecraft state is determined through the position vector rSCptq and the asso-
ciated velocity vector vSCptq. Together with the spacecraft mass mSCptq, these vectors form
the 7-dimensional state vector sptq of the state variables si

sptq � ps1 s2 s3 s4 s5 s6 s7qᵀ �
�� rSCptq

vSCptq
mSCptq

�. (5.8)

The type of these state variables is thereby not crucial as long as the state description is
complete and explicit. Commonly used representations contain cartesian, polar, or orbital
elements (see appendices A and B). The minimum number of variables that is required to
completely describe the state of a dynamic system determines the state vector dimension
and depends on the system’s number of degree-of-freedom (DOF). A simulation that con-
siders only the translational motion of a spacecraft and neglects rotational motion has three
DOF for position and velocity, respectively, which requires six state variables for a complete
description. As the mass of a spacecraft that operates a propellant-dependent propulsion
system changes, the absolute mass mSC increases the state vector dimension to seven.

The values of the state variables si change under the effect of internal and external forces.
State equations quantify the resulting rate of change w.r.t. time of each si. In this case, the
state equations primarily describe the spacecraft motion, which is why they are also called
EOMs. External factors are accelerations caused by external forces acting on the spacecraft.
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These are, for example, the accelerations due to the central body’s gravitation ag and due
to third-body disturbance acceleration adis. The acceleration caused by the thrust force athr

and the spacecraft mass reduction due to expelled propellant are examples of internal factors.
The absolute acceleration vector at � ag�athr�adis is the sum of internal and external forces.
This vector usually depends on a number of further parameters. A propulsion system’s thrust
force, for example, may depend on a throttle setting or on the Sun-spacecraft distance, or
even on both, as is the case for SEP. The state vector’s first time derivative 9s is in general
a function of the spacecraft’s state s, the independent variable t, the flight time ∆t � t� t0,
and at

9s � ds

dt
� d

dt

�� r
v
mSC

��
�� v

9v
9mSC

�� fpt,∆t, s,atq. (5.9)

The actual EOM formulation depends on the chosen state variables representation, and carte-
sian, polar, or orbital elements are the most commonly used. Cartesian EOMs have the
advantage of a rather simple formulation and, unlike EOMs in of polar coordinates or orbital
elements, they are free of singularities.

9sc � dsc

dt
�

����������
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(5.10)

For potentially highly-inclined orbits about celestial bodies, e.g., for polar Earth orbits, In-
Trance uses (5.10) with the cartesian state vector sc � px, y, z, 9x, 9y, 9z,mSCqᵀ.

The corresponding polar state vector is sp � r, ϕ, ϑ, 9r, 9ϕ, 9ϑ,mSCqᵀ, and the polar EOMs result
from multiplying (A.12) with the polar frame unit vectors er, eϕ, and eϑ, and resolving for

:r, :ϕ, and :ϑ

9sp � dsp

dt
�

�����������

9r
9ϕ
9ϑ
:r
:ϕ
:ϑ
9mSC

����������
�

�����������

s4

s5

s6

ater � r 9ϑ2 � r 9ϕ2 cos2 ϑ
1

r cosϑ pateϕ � 2 9ϕpr 9ϕ sinϑ� 9r cosϑqq
1
r

�
ateϑ � 2 9r 9ϑ� r 9ϕ2 cosϑ sinϑ

	
� 9mp

����������
. (5.11)

A spacecraft on an heliocentric trajectory rarely experiences high inclination values and thus
also the polar elevation angle ϑ is unlikely to assume values close to π{2. InTrance therefore
uses the polar EOMs for heliocentric simulations.

5.3.3 Third-body Perturbation

The motion of a spacecraft with mass mSC is determined by its current position and velocity
and the gravitation of the central body, whose mass mCB is in general magnitudes larger than
the spacecraft mass mCB " mSC. Without any other acceleration than the central body’s
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Figure 5.2: Three-Body Environment in an Inertial Reference Frame. A spacecraft at
the position rSC and with the mass mSC orbits a central body, which has the mass mCB and is
located at rCB. The gravitational acceleration of a third body of the mass m3 at the location r3

disturbs the orbit of the spacecraft. The vectors rSC,CB and r3,CB are the spacecraft’s and the
disturbing body’s position w.r.t. the central body, and rSC,3 is the spacecraft’s position w.r.t. the
perturbing body.

gravitational pull, the spacecraft would move on a Keplerian orbit.1 However, in reality
other bodies also act on the spacecraft through their gravitation and therefore influence
its orbit. The inducing accelerations depend on the respective distances of the perturbing
body and the spacecraft and the perturbing body and the central body. This effect is called
third-body perturbation and the resulting accelerations are normally magnitudes smaller
than the dominating central body pull. Third-body perturbation is negligible for preliminary
mission analysis of heliocentric missions, as long as a trajectory does not lead close to a
mass-rich planet, like Jupiter or Saturn. For the calculation of Earth-bound high-altitude
orbits, however, accounting for the gravitation of the Moon and the Sun is required to achieve
an acceptable fidelity. For low-thrust transfers from the Earth to the Moon, the inclusion of
third-body perturbation is mandatory.

Figure 5.2 shows a representative three body setup, with the central body mCB at the inertial
position rCB, the spacecraft at rSC with the mass mSC, and a perturbing body m3 at r3. The
spacecraft position w.r.t. the central body rSC,CB and its second time derivative are

rSC,CB � rSC � rCB (5.12)

:rSC,CB � :rSC � :rCB. (5.13)

Inserting the inertial acceleration vectors

:rSC � �µCB

rSC,CB

r3
SC,CB

� µ3

rSC,3

r3
SC,3

(5.14)

and
:rCB � µSC

rSC,CB

r3
SC,CB

� µ3

r3,CB

r3
3,CB

(5.15)

1For pure two-body motion, the gravitation of the central body must be uniform, i.e., a perfect sphere
with homogeneous mass distribution.
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into equation (5.13) yields the spacecraft’s acceleration vector w.r.t. the central body

:rSC,CB � �µCB

�
1� mSC

mCB



rSC,CB

r3
SC,CB

� µ3

�
rSC,3

r3
SC,3

� r3,CB

r3
3,CB



, (5.16)

with the gravitation constant γ and the gravitational coefficients µCB � γmCB, µSC � γmSC,
and µ3 � γm3. The two terms result from the gravitational acceleration due to the cen-
tral body and the perturbing body, respectively. Taking into account mSC{mCB � 0 and n
perturbing bodies, a general formulation of (5.16) is

:rSC,CB � �µCB

rSC,CB

r3
SC,CB

�
ņ

i�1

µi

�
rSC,i

r3
SC,i

� ri,CB

r3
i,CB



. (5.17)

With ri,SC � �rSC,i, (5.17) can be rewritten to the form given by Vallado [91]

:rSC,CB � �µCB

rSC,CB

r3
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�
ņ

i�1

µi

�
ri,SC

r3
i,SC
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r3
i,CB



. (5.18)

The first term is the gravitational acceleration of the central body and responsible for two-
body motion. The second term is the perturbation acceleration

apert �
ņ

i�1

µi

�
ri,SC

r3
i,SC

� ri,CB

r3
i,CB



. (5.19)

5.3.4 Numerical Integration

ENC consists of the outer EA reproduction cycle as optimization loop and an inner trajectory
integration loop within the EA’s evaluation component. The integration loop numerically
integrates the state equations, which form the dynamic constraint of the optimization. These
equations are a set of first-order ordinary differential equations (ODE) of the form

9s � fpt, sq, (5.20)

and they describe the spacecraft’s orbital motion under the influence of gravitational, distur-
bance, and thrust forces. Information on the spacecraft position and velocity is contained in
the generic state vector s. The underlying astrodynamic equations of motion are a second-
order differential equation system of the form :x � fpt,xq1. Efficient integration schemes
exist for that type of differential equations. However, as additional time-dependent first-
order variables complement s, e.g., the propellant mass mp (see also subsection 5.3.2), a first
order integrator was required.

Numerous integration methods exist for the integration of the resulting equation system. Dur-
ing this work either the RUNGE-KUTTA-FEHLBERG 4(5) scheme [26] for lower-precision
calculations or a DORMAND-and-PRINCE 8(7) scheme [57] for high simulation fidelity opti-
mization runs were used. Both methods are one-step integration schemes, i.e., they calculate
the new state vector at t� h from the current state s, the state equations, the independent
variable t, and the step size h. Such integration methods therefore need no information of
previous state vectors. The integration methods were chosen because in comparison to other
numerical integration methods [5] they:

• exhibit good stability and robustness,

1Drag cannot be respected with this formulation. This would require dependency on the first time deriva-
tive of the spacecraft’s position.
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Figure 5.3: Eclipse Geometry. The shown generic setup of the eclipse geometry is exaggerated
for better understanding. The Sun with the radius RS is on the left, and the eclipse-causing body
b with the radius Rb is on the right. The distance between them equals the Sun distance rS.
Occultation of the Sun disc by the body b results in two shadow cones: the penumbra with a cone
angle αp and the umbra with a cone angle αu. For the Sun and the Earth the shadow angles are
αu � 0.2641 deg and αp � 0.2690 deg [91, p. 301]. The other variables are the position vector r
of a spacecraft w.r.t. body b, the Sun vector d, and the temporary variables rh, rv, pv, and uv.

• allow easy step size control, which is important for a dynamic control step size,

• have acceptable round-off errors.

The implemented integrator objects control the internal step size via user-provided limits for
the absolute error tolabs and the relative error tolrel. Hard-coded default values of 10�6 were
used for both boundaries if no other limits are given.

5.3.5 Eclipse Treatment

Low-thrust propulsion systems generally1 rely on sunlight for the generation of thrust. This
dependency is either implicit, if the sunlight’s energy is converted into electrical energy to
power EP thrusters, or explicit, if the sunlight is employed directly for propulsion. SEP
systems are of the first kind while solar sailing is of the second one. Without means for
temporary energy storage, sunlight-dependent propulsion systems have limited or no thrust
capability if the incident sunlight is obstructed by another body. This eclipse effect is negli-
gible for heliocentric trajectories. For a realistic simulation of trajectories close to planets or
moons, e.g., for spacecraft in low Earth orbit (LEO), an eclipse model is however mandatory.

Figure 5.3 shows the eclipse geometry, with the penumbra cone angle αp where the Sun is
partially occulted

αp � RS �Rb

rS
(5.21)

and the umbra cone angle αu of complete shadow

αu � RS �Rb

rS
. (5.22)

1NEP systems are an exception. They can operate without sunlight until depletion of their nuclear
propellant.
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Figure 5.4: Occultation of the Sun Disc by a Spherical Body. The Sun is on the right
hand side and the occulting body, e.g., the Earth, is on the left hand side. The distances a, b,
and c are the apparent radius and separation of the centers of both bodies as seen from within
the penumbra shadow cone. Courtesy Montenbruck and Gill [57, p. 82]

The vertical component

rv �
a

rJr� rh2 (5.23)

of the position vector r is required for the determination whether the spacecraft is in full
sunlight or shadow. It may be obtained using the associated horizontal component

rh � �rJS r

|rS| . (5.24)

With the shadow cone radii pv and uv at the spacecraft’s horizontal distance rh

pv � Rb � rh tanαp (5.25)

uv � Rb � rh tanαu (5.26)

a coarse determination of the spacecraft’s illumination becomes feasible. The spacecraft is in
umbra if rv ¤ uv, it is outside umbra but still within penumbra if uv   rv ¤ pv, and it is in
full sunlight if pv   rv.

For higher precision trajectory integration it is not sufficient to know if the spacecraft is in
umbra or penumbra. Being in penumbra, one also needs to know how much sunlight is still
available, i.e., the fraction of solar disc that is visible from the spacecraft’s current location.
InTrance uses the shadow function fs P R : 0 ¤ fs ¤ 1 from Montenbruck and Gill [57]

fs � 1� A

πa2
(5.27)

to quantify the occultation of the apparent Sun disc area by another body, with the occulted
Sun disc area A and the apparent Sun disc radius a as seen from the spacecraft’s location.
The shadow function fs is zero for umbra, one for full sunlight, and between zero and one for
penumbra conditions. According to Fig. 5.4, A is

A � a2 arccos
�x
a

	
� b2 arccos

�
c� x

b



� cy, (5.28)
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Figure 5.5: Launch System-provided Hyperbolic Excess Velocity v8. The direction of
v8 is described with the azimuth angle α8 and the declination angle δ8 P p�π{2, π{2q.

with the auxiliary variables

x � c2 � a2 � b2

2c
(5.29)

and

y �
a
a2 � x2. (5.30)

The apparent radius of the occulting body b, the apparent distance between this body and
the Sun c, and the Sun’s apparent radius a are calculated with RS, Rb, the Sun’s position
relative to the spacecraft d, and r

a � arcsin
RS

d
(5.31)

b � arcsin
Rb

r
(5.32)

c � arccos
�rJd

rd
. (5.33)

The computation of fs is included in the EOMs of InTrance and therefore part of every
integration sub-step.

5.3.6 Launch Rocket Excess Energy

Launch rockets have large absolute thrust values and need no external oxidizer, which allows
their operation also in vacuum. Practically all today’s spacecraft are therefore brought from
Earth into space via chemical launchers. A mission’s target orbit or its trajectory initial
conditions thereby determine the ∆V that a launcher model must provide at least to become
a launch system candidate for that mission. For each potential launcher, ∆V translates to a
maximum payload mass mmax

PL that can be delivered to the specified target orbit. The criterion
mSC ¤ mmax

PL is the logical primary requirement for any potential launcher. However, other
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Figure 5.6: Ariane V ECB Launch Per-
formance Diagram. It shows the depen-
dence of the hyperbolic excess energy C3 on
the payload mass mPL and on the angle δ8
between the ecliptic and the asymptote of the
escape trajectory. Courtesy Ancarola [3].

Figure 5.7: Approximation of Ariane
V ECB’s Launch Performance, δ8 �
0. It shows the dependence of the hy-
perbolic excess energy C3 on the spacecraft
launch mass m0. The “true” values are taken
from Fig. 5.6 [3]

criteria exist as well and influence the final decision. Exemplary criteria are cost, availability,
launch opportunities, launch success rate, and political constraints.

Several factors contribute to a launcher’s maximum payload mass mmax
PL , such as the number

of rocket stages and the Isp of each stage. Only in rare occasions, a launcher’s mmax
PL matches

mSC for a given ∆V exactly. For most missions mSC   mmax
PL p∆V q, which offers trade

space for the following three options. The first option is to minimize the surplus payload
mass pmmax

PL �mSCq, corresponding to choosing the smallest launcher that still allows mission
execution. This option can potentially reduce launch cost.

A second option is to launch more than one spacecraft with a single launcher. So-called piggy-
back launches became popular with high-performance launch systems and when technology
progress allows to build smaller spacecraft. It allows to share launch cost among the payload’s
owners and reduces individual mission’s cost. Launching multiple spacecraft with a single
rocket is however more complex. It often requires restartable upper stage engines, which has
implications on the risk assessment of each participating mission.

The third option is to include the available, launcher-provided excess energy into mission
design for an additional acceleration of the spacecraft and thus a potential reduction of
necessary on-board propellant. This is promising especially for deep space probes, as it
results in a higher hyperbolic excess velocity v8 w.r.t. the Earth, which may help to reduce
the transfer time. The square of v8 is the specific hyperbolic excess energy1

C3 � v2
8. (5.34)

Figure 5.5 shows how v8 adds to the spacecraft’s initial velocity v. For example, for a launch
from Earth onto a parabolic trajectory, i.e., C3 � 0, v would equal the Earth’s heliocentric
orbit velocity at the launch date t0. The direction of v8 is described in the polar reference
frame with the azimuth angle α8 and the declination angle δ8. Figure 5.6 shows the launch
performance diagram of the Ariane V ECB for a launch into an escape orbit. Assuming an

1Precisely, hyperbolic excess energy is a mass-normalized energy, i.e., its unit is km2{s2.



5. IMPLEMENTATION 79

escape trajectory declination angle δ8 � 0, the dependence of v8 onmPL can be approximated
with

v8pmPLq �
d

1

γ
ln

�
mmax

PL

mPL



, (5.35)

with the maximum escape orbit payload mass mmax
PL � 7 200 kg, the payload mass mPL � mSC,

and the fit parameter γ � 0.032. Figure 5.7 shows the resulting fitting curve1 and the original
values given by Ancarola [3].

The exploitation of C3 allows for an interesting optimization because any gain in v8 results
in a reduction of mSC and hence mp

2, and vice versa. Within the capabilities of the actual
launcher and for a given mission design, a spacecraft design can therefore be optimized
w.r.t. an overall optimization criterion, e.g., the total mission duration. However, it strongly
depends on the actual mission if a high v8 is beneficial for the optimal fulfillment of the
optimization criterion, or if it’s better to use the spacecraft’s propulsion system to generate
the necessary ∆V .

5.3.7 Target State, Deviation, and Proximity

The term target state describes within the context of this work the state that the spacecraft
should have attained at the end of a mission phase. In other words, a mission phase ends if the
spacecraft’s state coincides with the predefined target state. If the mission design comprises
a single flight phase only, the target state of this phase equals the mission’s target state.
Different target state types maybe thought of, but flybys or rendezvous at celestial bodies
are used most widely. Nevertheless, abstract target states are possible as well, e.g., achieving
escape or capture conditions w.r.t. a specified body. For the description of the target states
that are implemented in InTrance, the term target is therefore used universally. It can refer
to a celestial body moving on its orbit, to a fixed point in space, or to an orbit described by
an incomplete3 set of orbital elements.

5.3.7.1 Proximity

Prior assessment of the quality of a given candidate ξ, the simulation of a mission phase i
integrates the state equations until matching a stop criterion. Exemplary criteria are the
maximum integration time or the minimum Sun distance. Whatever criterion stopped the
integration loop, the final state vector is unlikely the best one in terms of being close to
the target state. Therefore a check for this “being close to the target” is necessary at each
trajectory point. The simulation conducts this check through calculation of the proximity
P P R after each integration step, with P being the required measure for the distance between
the spacecraft state4 and the target state. Depending on the phase-specific target state, P is
determined through one or more so-called deviations δi

P P R : P pδiq :�
" �

a°
δ2
i , if Dδi : δi   0

min δi , if @δi : δi ¥ 0
. (5.36)

The definition of (5.36) shows that P is negative if at least one criterion is negative. If all
δi ¥ 0, then P corresponds to the smallest positive δi.

1Following a reformulation of (5.35) and using (5.34), the fitting curve gives the launch mass in dependency
of C3.

2This is not applicable for solar sails.
3As six elements are necessary to fully describe a Keplerian orbit in space, “incomplete” means any set of

less than six independent Keplerian or other orbital elements.
4“State” is in this context a general term and, depending on the respective target state, not constraint to

the pure astrodynamic state.
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5.3.7.2 Flyby

A successful flyby requires the distance ∆rf between the spacecraft position rSC ptfq and the
target position rT ptfq

∆rf � |rSC ptfq � rT ptfq| (5.37)

at the time of closest approach tf to be smaller or equal than a predefined maximum distance
∆rmax. For a time-independent target vector rT, ∆rf simplifies to ∆rf � |rSC ptfq � rT|. The
associated relative distance deviation δr is

δr P p�8, 1s : δr :� ∆rmax �∆rf
∆rmax

. (5.38)

Positive δr-values indicate achieved flyby conditions, with the maximum value one denoting
a perfect match of rSC ptfq and rT. Consequently, δr is negative as long as ∆rf ¡ ∆rmax. The
flyby proximity PFB � P pδrq is a function of δr and calculated with (5.36).

5.3.7.3 Rendezvous

For a successful rendezvous with a target, apart from the distance criterion δr, the one of
relative velocity δv must be fulfilled as well. This requires the absolute velocity difference

∆vf � |vSC ptfq � vT ptfq| (5.39)

between the spacecraft velocity vSC ptfq and the target state’s velocity vT ptfq at a time tf to
be smaller than a problem-dependent upper limit ∆vmax. For static targets, ∆vf reduces to
∆vf � |vSC ptfq � vT|. The associated relative velocity deviation is

δv P p�8, 1s : δv � ∆vmax �∆vf
∆vmax

. (5.40)

The rendezvous proximity PRV � P pδr, δvq is a function of δr and δv and calculated with (5.36).

5.3.7.4 Capture

A capture is in general the transition from an orbit about one celestial body to a closed orbit
about another celestial body. The transfer from a heliocentric trajectory into a Mars-bound
orbit is an example for such a capture. Within this work, however, not the transitions but
the result, the final state, was defined as a capture. This means the capture of a spacecraft by
the central body was successful if the spacecraft’s orbit is closed, i.e., an ellipse, and resides
completely within the influence region of that body. The capture proximity PCP � P pδr, δvq
is defined with (5.36), using the distance deviation δr from (5.38) and the velocity deviation
δv from (5.40); only the definitions of the differences ∆rf and ∆vf and the associated limits
∆rmax and ∆vmax differ from those in subsection 5.3.7.2 and subsection 5.3.7.3. The distance
limit ∆rmax � max prH, rSOIq is the maximum of the Hill Sphere radius and the radius of the
SOI. Hamilton and Burns [38] give the Hill Sphere

rH � a p1� eq
�mCB

3m

	1{3
, (5.41)

with the body mass m, the central body mass mCB, and the eccentricity e and semimajor
axis a of the body’s orbit. The radius of the SOI is [5]

rSOI � r
�mCB

m

	2{5
, (5.42)
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Table 5.2: SOI radii and Hill sphere radii of selected celestial bodies. The radii rH and rSOI

of a body with the mass m derived from the body’s semimajor axis a, the eccentricity e of the
body’s orbit, and the ratio mCB

m of the central body mass mCB and m. The radii rH and rSOI are
expressed in multiples of the body radius Rb. Note that rH is smaller than rSOI for the Moon; in
all other cases rH ¡ rSOI.

Body Rb
mCB
m a e rSOI rH

rkms �
106
� rkms rRbs rRbs

Mercury 2 440 6 023 600 57.91 0.206 46 90
Venus 6 052 408 524 108.21 0.007 102 167
Earth 6 371 328 901 149.60 0.017 146 236
Moon 1 738 81.3 0.38 0.055 38 35
Mars 3 390 3 098 708 227.04 0.093 170 320
Jupiter 69 911 1 047 778.28 0.049 690 760
Saturn 58 232 3 498 1 427.39 0.056 937 1 120
Uranus 25 362 22 903 2 870.48 0.047 2 041 2 763
Neptun 24 622 19 412 4 498.34 0.009 3 520 4 713
Vesta 560 � 7.45 � 109 353.35 0.089 71 224
Ceres 975 � 2.13 � 109 413.94 0.080 79 229

with current relative distance r between the body and the central body. Table 5.2 lists both
radii for selected celestial bodies. Depending on the eccentricity of the spacecraft’s orbit
w.r.t. the target body, the definition of the relative distance ∆rf is

∆rf �
" |rSC ptfq � rT ptfq| , if e ¥ 1

ra , if e   1
. (5.43)

In the first case, (5.43) equals (5.37), and it is replaced with the apocenter distance ra of the
spacecraft’s orbit w.r.t. the target body in the second case.

Contrary to the regular rendezvous velocity limit, the second limit

∆vmax �
$&%
b

µ
∆rmax

, if e ¥ 1b
µ
ra

, if e   1
(5.44)

and the associated difference

∆vf �
$&%

|vSC ptfq � vT ptfq| , if e ¥ 1

va �
c
µ
�

2
ra
� 1

a

	
, if e   1

(5.45)

also depend on the eccentricity of the spacecraft’s orbit w.r.t. the target body.

5.3.8 Dynamic Adaption of Accuracy Boundary Constraints

Successful evaluation of a candidate solution ξi results in a trajectory r rt̄s. This trajectory
should preferably give a high objective function value. Before that, it must however comply
to problem-dependent boundary or accuracy constraints. An example for such a constraint
is the maximum spacecraft-target-distance ∆rmax in FB problems. For RV problems, the



82 5.3 Simulation

constraint of a maximum relative velocity ∆vmax must additionally be fulfilled. Once r rt̄s
satisfies all constraints, the optimization objective function determines the fitness Jpξiq.
Especially at the begin of an optimization run, an EA’s search behavior benefits from us-
ing more relaxed accuracy constraint values than the final ones. That means to begin an
optimization of an heliocentric flyby problem with a larger maximum flyby distance, e.g.,
∆rmax � 106 km. Upon each constraint-matching solution, this distance is then successively
reduced to a final value, e.g., ∆rmax � 104 km. This procedure is more promising for find-
ing the optimal solution than using only the latter limit. The final solution should however
match reasonable and representative accuracy constraints. In a FB scenario, a spacecraft’s
trajectory should therefore not end millions of kilometers away from the target, and for a
successful rendezvous, ∆vmax should not be several kilometers per second. The values of
∆rmax and ∆vmax depend on the particular problem. In practice, it may therefore require a
few trials to obtain robust settings.

To support both requirements, the relaxed initial and the final constraint values, InTrance
implements dynamic boundary constraints. These constraints adapt themselves according to
the ongoing optimization progress and controlled by user-specified rules. The algorithm for
the adaption of both constraints is as follows.

The trigger for the alteration of these constraints is three successful EA epochs1, i.e., three
epochs that each resulted in a new best solution compliant to current ∆rmax and ∆vmax.
Depending on the configuration, InTrance then calculates new limits for ∆rmax and ∆vmax

with either an exponential or a linear law.

∆rmax,new � cr,e �∆rmax,old (5.46)

∆vmax,new � cv,e �∆vmax,old (5.47)

∆rmax,new � ∆rmax,old � cr,l (5.48)

∆vmax,new � ∆vmax,old � cv,l (5.49)

The factors cr,e P p0, 1q and cv,e P p0, 1q for the exponential decrease of the distance and
relative velocity and the decrements cr,l and cv,l for the associated linear decrease must be
provided by the user. The algorithm continues until the respective final value of each limit is
met. Both limits have individual and independent configurations, i.e., one may be configured
for exponential decrease and the other for linear reduction.

5.3.9 Multiphase Constraints

In addition to general constraints that apply to most space mission designs, e.g., an allowed
minimum safety distance from the Sun, multiphase missions have a few specific constraints.
Some of them result only from the fact that a mission has more than one flight phase. Others
result from the approach of concurrent optimization of each flight leg and reconnecting them
to a complete trajectory.

One of the constraints of the first type is the stay-time, or dwell time. It comes in effect
during multi-RV missions and is defined with (4.4). Figure 5.8 shows the stay-time window
over time and the three launch dates piqt0,a,

piqt0,b, and piqt0,c. Only the second date is between
the earliest and the latest launch date. The other two conflict with the launch window
that is defined through the preceding phase’s arrival date pi-1qtf and the stay-time window

1Within InTrance, the number of successful epochs before adapting the accuracy limits is configurable.
However, during this work three epochs turned out as robust setting. It allows InTrance to optimize w.r.t. the
actual optimization criterion for a while before adapting the boundary constrains again.
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Figure 5.8: Stay-time Constraint and its Violation. The dark gray bar in the middle is the
interval of valid launch dates for phase i. Launch dates within the light gray bars are either too
early or too late and therefore invalid. The earliest allowed launch date of phase i piqt0,min and the
corresponding latest allowed launch date piqt0,max are determined through the arrival date of the
preceding phase pi-1qtf and the stay-time interval ppiq∆tdw,min,

piq∆tdw,maxq.
piqt0,a,

piqt0,b, and piqt0,c
are example launch dates, whereas only the second is within the dark gray bar in the middle and
thus a valid one; the other two dates piqt0,a and piqt0,c result in a stay-time constraint violation,
expressed with scalar value Vdw.

ppiq∆tdw,min,
piq∆tdw,maxq. The scalar violation piqVdw counts the days by which a launch date is

outside the specified launch date window

piqVdw �
$&%

piqt0,min � piqt0 , if piqt0   piqt0,min

0 , if piqt0,min ¤ piqt0 ¤ piqt0,max

piqt0 � piqt0,max , if piqt0,max   piqt0

. (5.50)

Different to the stay-time constraint, the next constraint violations result from optimizing
multiple mission phases concurrently. This is because the resulting trajectories are generally
discontinuous w.r.t. the astrodynamic state, spacecraft mass, and time. The scalar state
violation

piqVs �
�
piqx0 � pi-1qxf

	2
(5.51)

measures the difference between the states of the spacecraft at the end of a predecessor phase
(i-1) and the begin of a successor phase i. The indices f and 0 denote the arrival or final
state and the launch or initial state of the spacecraft in the respective phase. Violation of
potentially required mass continuity is expressed with the mass violation

piqVm �
�
piqmSC,0 � pi-1qmSC,f

	2
� piq∆2

m. (5.52)

The mass piq∆m accounts for any intended mass change, e.g., a jettisoned propulsion stage,
collected sample material, or docked-on other spacecraft.

The requirement of steady and smooth trajectories also demands a continuous time history
along the entire mission trajectory. This is automatically supported with the fulfillment of
the stay-time constraint piqVdw if piq∆tdw,min � piq∆tdw,max � 0.

5.3.10 Dynamic Control Step Size

A spacecraft with a propulsion system can change its orbit by applying thrust. To do this
efficiently, the thrust vector must be chosen optimally, i.e., its direction and magnitude must
change the respective orbital element with maximum effect. For low-thrust transfers, the
adaption of the thrust vector must be performed repeatedly along the trajectory, for some
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Figure 5.9: Control Step Size and Moon Distance over Flight Time.

transfers even continuously throughout the entire transfer. For the sake of an easier inte-

gration or because an optimization method may only handle uniform step sizes, low-thrust

trajectories are often discretized with constant steering step sizes. This step size can also

be associated with a control step size because the control variables can be altered only after

each such step. The problem-dependent decision about what control step size to use is often

taken by astrodynamics experts. For example, for a transfer from the Earth to Mars it can

be sufficient to change the acceleration vector daily, resulting in a step size of one day. For a

high-elliptical heliocentric orbit, e.g., one with a pericenter at Mercury’s orbit and a pericen-

ter at Mars orbit distance, this may be unfavorable. For efficient control, a step size of one

day may be too large near the orbit’s pericenter and unnecessary small when the spacecraft

is near the apocenter of its orbit. Consequently, if the control step size needs to be constant,

one has to determine the smallest required time step. For low-complexity transfers it may

be possible to estimate a lower boundary for this parameter. However, for many low-thrust

transfers suitable steering strategies are completely unknown beforehand. This complicates

an a priori determination of a fixed control step size. It is therefore better to determine the

control step size dependent on the respective astrodynamic problem. That means to reduce

the control step size if the rate of change of the orbital elements increases and vice versa.

The true anomaly ν was chosen as the step size-controlling orbital element for InTrance. Its

rate of change is the orbital angular velocity 9ν and is calculated from the spacecraft’s current

linear velocity v and the distance from the central body r [87]

9ν � |r� v|
rr

. (5.53)

This algorithm is called dynamic step size control (DSSC). The control step size ∆ts is

calculated with

∆ts� � νmax
9ν

(5.54)
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∆ts �
$&%

∆ts� if∆ts�   ∆ts� ,
∆ts� if∆ts� ¤ ∆ts� ¤ ∆ts� ,
∆ts� if∆ts� ¡ ∆ts� .

(5.55)

The angle νmax is the maximum angle that the spacecraft is allowed to traverse through
during a control step. The upper and lower boundary of ∆ts is ∆ts� and ∆ts� . Control step
size adaption according to the shown algorithm is not constrained to the central body alone
but also includes any disturbance body.

Figure 5.9 shows the effect of DSSC on the control step size for a transfer from an Earth-bound
orbit into an orbit around the Moon. During the transfer with many revolutions around the
Earth, the control step size changes by several magnitudes as the spacecraft recedes the
Earth and reaches the Moon’s SOI. The transfer starts from a high-elliptical orbit, e.g., a
geostationary transfer orbit, and the control step sizes vary between three minutes around
pericenter and two and a half hours around apocenter. Then the apocenter and pericenter
distances increase. Consequently, also the respective control step sizes are adapted to higher
values. As soon as the gravitational pull of the Moon becomes dominating, that attraction
becomes the main driver for step size control. This occurs at a flight time of approximately
100 days. The spacecraft attains a bound orbit about the Moon and the orbit period drops
significantly. This is also reflected in the visible drop of the Moon distance, which coincidences
with the drop in the control step size.

Values of one to ten degrees have turned out to be reasonable values for νmax, depending on
the desired control resolution.

5.3.11 Dynamic Parameter Encoding

EAs robustly find the global optimum if the problem is properly encoded, i.e., in an adequate
form for the EA, but they lack the precision that local optimization can achieve. Schraudolph
and Belew [81] developed a dynamic parameter encoding (DPE) method to alleviate this
problem. DPE increases the precision of the solution but is prone to premature convergence
if the global optimal falls outside the new, smaller parameter range. The implementation of
DPE in InTrance therefore does not only shrink the parameter range but also shifts its center
if the current optimum parameter value is close to the respective lower or upper parameter
limit. This allows the EA to move away again from a local optimum if another, better
optimum is in the vicinity.

DPE within InTrance applies to initial propellant masses and launch dates, as these two are
primary initial conditions for most trajectory optimizations. The range of initial propellant
mass ∆mp was calculated with (5.56) [81] from the current best propellant mass mp, the

coefficient c � 1.6 kg, and b P N and b ¤ lnmp

ln c

∆mp � int

�
cb�1

4



. (5.56)

The lower and upper boundary of mp are accordingly mp � mp� 1
2∆mp and mp � mp� 1

2∆mp.

The second parameter using DPE is the launch date t0. At the begin of an EA optimization,
the range of that simulation parameter is the entire user-provided launch window. Later usage
of smaller parameter ranges, when the EA has settled in the vicinity of the final solution,
could however improve local search behavior. Furthermore, it is beneficial if the respective
limit is formulated in an astrodynamic context instead of time units. InTrance defines the
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launch window in degrees of the launch body orbit that the initial body, e.g., the Earth, is
allowed to traverse through during the specified time span

∆t0 � ∆νmax

9νpt0q . (5.57)

In other words, current orbital velocity at t0 of the celestial body the spacecraft starts from
and the user-provided launch window angle determine the time window. For high-elliptic or-
bits of that body, the launch window therefore broadens when getting closer to the apocenter.
Close to the pericenter of that body, where the rate of change in true anomaly is bigger, the
launch window consequently shrinks.

5.4 Evolutionary Algorithm

Every implementation of an EA has its specific peculiarities. This section is about the EA im-
plemented in InTrance. During the course of this work, the source code of InTrance’s original
EA was revised and extended by new features. The following description covers the essential
elements and principles that are necessary for its understanding. Subsection 5.4.1 describes
the encoding of an individual. The dynamic control of the current search space hypercube
is covered in subsection 5.4.2. Subsection 5.4.3 explains how the new implementation of a
mechanism called Search Space Scans exploits niche evolution to obtain the initial partial solu-
tion for the following further optimization with the EA. The basic EA elements of selection,
crossover, mutation, and evaluation are content of subsection 5.4.4 until subsection 5.4.6.
Subsection 5.4.7 details on the calculation of fitness values, and the final subsection 5.4.8
details the encoding of the the additional simulation parameters on the chromosome.

5.4.1 Real Delta Coding

Whitely et al. [98], [97] proposed delta coding (DC) as iterative search strategy to increase
precision and convergence behavior of genetic search with binary strings. Rather than encod-
ing the complete solution, a DC-chromosome encodes the distance δ to another solution h,
called partial solution or interim solution. In this context, the best solution found so far ξ� is
used for h. A population individual ξi thus comprises a h-chromosome and a δ-chromosome

ξi � h� δi ô 〈b1, . . . , bl〉i � 〈h1, . . . , hl〉� 〈δ1, . . . , δl〉i . (5.58)

DC thus limits the EA to effectively explore only a dynamically selected subspace around h
and not the entire search space.

At the begin of the algorithm, no partial solution exists, i.e., all bi � 0. A first h may however
be obtained through a regular GA-run. After convergence of this randomly-initialized initial
GA-population, the resulting best δ is the initial partial solution1. From then on, new
populations are always initialized with the best found solution so far. If the best population
individual is better than the previous solution, it will become the new partial solution. DC
avoids premature convergence by periodic reinitialization and also controls the size of the
current binary hypercube. A reduction mechanism shrinks the hypercube for promising
search space regions, and an expansion mechanism increases the hypercube again to explore
also previously not searched regions. The algorithm continues until either achieving of user-
defined stop criteria or exceeding the maximum allowed number of unsuccessful trials. Further
details and a comparison of DC against a standard GA and a hill-climbing algorithm on a
set of GA test functions can be found in [54].

1For this first GA-run, h of all individuals is set to null, i.e., ξi � δi.
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Tsinas and Dachwald [88] extended binary DC to floating-point delta coding (FPDC), and
Dachwald further revised FPDC to real delta coding (RDC) [13]

〈r1, . . . , rl〉i � 〈h1, . . . , hl〉� 〈δ1, . . . , δl〉i .

RDC runs in cycles called epochs ei, during which the GA explores a dynamically selected
parameter subspace, the hypercube H, around the most recent solution. The hypercube of
the first epoch e0

H0 � r�δmaxpe0q, δmaxpe0qsl P Rl

is constructed around the null solution h pe0q � 0. The population of the first time step t0 of
that epoch e0 is randomly initialized

Ξt0 pe0q �
�
δt01 pe0q , . . . , δt0q pe0q

�
. (5.59)

The EA runs until convergence of that epoch’s population, which has occurred at the so-
called convergence time step t � tc if the relative fitness improvement over the last ν time
steps was less than a preset limit ε

Jpξtc1 q � Jpξtc�ν1 q��Jpξtc�ν1 q��   ε. (5.60)

The best solution ξtc1 pe0q found for this epoch becomes the partial solution h pe1q of the
subsequent EA search epoch e1, whose new delta-value range is

δmaxpe1q � κ � δmaxpe0q, (5.61)

with the user-defined parameter 0   κ   1. Initialization of the new population Ξt0pe1q takes
place with random values within the updated search space hypercube

H1 � rh1pe1q � δmaxpe1q, h1pe1q � δmaxpe1qs � . . .� rhlpe1q � δmaxpe1q, hlpe1q � δmaxpe1qs � Rl.

Subsection 5.4.2 details on how the δmaxpeiq is controlled depending on optimization progress
and current simulation parameters.

The algorithm continues until achievement of RDC convergence, i.e., until the relative im-
provement between two consecutive epochs is smaller than a preset limit ε

Jph pei+1qq � Jph peiqq
|Jph peiqq|   ε. (5.62)

For an exhaustive search of the parameter space, small values for ε and large values for
ν should be chosen, but this also strongly depends on the actual problem and the fitness
function.

Dachwald [13] further introduced two mechanisms to improve robustness of the optimization
process on limited available calculation time. The first is a mechanism called Search Space
Scan (SSS), and the second is the shifting of the search space hypercube. As the original
implementation of SSS was modified during this work, its description is content of the sep-
arate subsection 5.4.3. Shifting the effective search space is done through the usage of the
best solution ξtc1 pei-1q of the previous epoch for initialization of the new epoch population,
regardless if ei-1 resulted in a new best solution ξ� or not. This allows the EA to search also
parameter subspaces more distant to ξ�. If two, subsequent applications of this mechanism
do not result in a new best solution, the stored ξ� is used for initialization of the next epoch
with a new, usually smaller, hypercube size.
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5.4.2 Hypercube Size Control

RDC assured convergence of the optimization algorithm by using (5.61) with a constant
hypercube shrink factor κ   1. The shrink factor reduces the hypercube size H after every
successful epoch. In order to improve local search behavior within the preset, fixed parameter
ranges, the hypercube size is also reduced after two consecutive unsuccessful epochs. DPE
dynamically modifies the parameter boundaries according to the current best solution and
the configured range of the respective parameter. However, it can become necessary to choose
such ranges quite narrow, e.g., only one degree for an angular parameter, and to let DPE shift
that range if the current optimal parameter value is close to the chosen boundaries. Without
also dynamically altering H, RDC could make the EA get stuck in a local optimum after
such a range adaption, because of a then eventually too small parameter search space to leave
a local optimum. The existing implementation of RDC in InTrance was therefore extended
with an expansion mechanism. Figure 5.10 shows the resulting control logic. The dynamic

Figure 5.10: EA Parameter Hypercube Control

hypercube size control increases H on any change of the range of simulation parameters
that are subject to optimization. Such parameters are the launch date window, the initial
propellant mass range, and the initial state vector. Being also a change of the simulation
environment, a modified boundary constraint upon a new best solution triggers an increase
of H as well. The hypercube is thereby increased to half of δpe0q if δpeiq was smaller than
that limit. As Fig. 5.10 shows, if δpeiq ¥ δpe0q, then H is increased through a multiplication
with κ�3. This enables the EA to keep H at the initial size as long as possible and also to
increase H again, if necessary.

Furthermore, it turned out beneficial to the fidelity of the final solution, to increase δ with a
probability of 50 percent also upon a successful epoch. At the expense of increased runtime,
that way the hypercube shrinks slower after having found the new best solution while still
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Figure 5.11: The Evolution of the Initial Individuals’ Fitness During Search Space
Scan. A niche is the solution subspace in the vicinity of an initial individual. Here, the number
of niches is five. An EA run for each initial individual potentially gives a new individual with
a higher fitness value. If that is the case, the new individual replaces the one that was used for
initialization of the EA population. The first epoch ends after five EA runs with the removal of
individual of niche five, which has the lowest fitness. The algorithm stops if only one individual
is left, which is the one of niche two in this example. This solution is the starting point for the
subsequent optimization run.

assuring convergence. The algorithm ends when consecutive epochs without triggering a
simulation environment change have reduced δpeiq below a preset lower boundary.

5.4.3 Search Space Scan

InTrance features two options to start an optimization run. The first option is called warm-
start. Any optimization thereby starts from an user-provided solution, which mostly stems
from another InTrance run. To enable quicker evaluation of the EA individuals, such a
previous optimization could use a less-fidelity simulation. Successive InTrance warmstart-
initialized runs would then be carried out, each with a more complex simulation environment
than the previous one. Third body disturbance, nonuniform gravity fields, or a smaller control
step size are elements and control variables which can thus be activated step by step.

The second option is called coldstart and requires no externally provided solution. Instead, In-
Trance generates the needed initialization solution prior the actual optimization via a heuris-
tic parameter search called Search Space Scan. This algorithm uses niching and concurrent
evolution or co-evolution to explore the parameter space to find a suitable starting point.
Figure 5.11 shows a generic example of the best fitness values of five niches during SSS. At
first, a number of randomly initialized individuals is evaluated and ordered according to their
fitness. The lowest line connects the fitness values of the first epoch’s individuals at the
begin of the SSS algorithm. Each of these individuals initializes a population which are then
exposed to the EA epoch until convergence with a hypercube size according to the algorithm
in subsection 5.4.2. If the fitness of the individual resulting from an epoch is better than the
one that initialized that epoch, then it replaces the old one in the list of individuals. After all
individuals were subject to an optimization epoch, they, or their better offspring individuals,
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are ordered again w.r.t. to their fitness and the one with the worst fitness is removed. This
procedure repeats until the list of individuals has reduced to a single individual, which is the
result of the SSS and the starting point for the subsequent optimization run.

5.4.4 Selection

The two mutually-influencing mechanisms of selective pressure (SP) and population diversity
effect the performance of evolutionary search methods. The SP of a selection method is
the expected number of individuals of a new population Ξt�1 that descend from the best
individual ξt1 of the previous population Ξt. Population diversity is the number of different
genome material in a population. Increasing the SP reduces the population diversity and vice
versa. Some selection methods, e.g., fitness proportional selection, calculate the probability
ppξjq of an individual for being selected for reproduction from its fitness Jpξjq in relation to
the other population members’ fitness values. The resulting SP for this selection scheme is

SPt � pt1 � q �
Jpξt1q°q
i�1 Jpξti q

� q � Jpξt1q
J tavg

, (5.63)

with the population dimension q. A high SP for a few superindividuals can be the consequence
and a low SP for the majority of individuals. Superindividuals are population members with
much higher fitness values than the average population fitness. A potential result is premature
convergence to local optima because individuals dominated by superindividuals have little
chances to contribute to the genome pools of new generations. Carefully chosen, problem-
dependent fitness functions or fitness scaling methods can alleviate this problem. They are
however not recommended as both approaches refer the decision on if and when to use them
to the user. This is undesirable for an intended robust method.

Other selection methods use the individuals’ relative fitness instead of their absolute fitness
for the calculation of the corresponding selection probabilities. The relative fitness is the rank
of the individuals, i.e., their position if they were arranged in ascending order according to
their fitness values, with the best individual being at first position. Such selection methods do
not need fitness scaling, as they do not suffer from potentially existing superindividuals and
premature convergence. Their drawback is however their computationally cost. A compu-
tationally more efficient selection method, called tournament selection, was therefore chosen
for InTrance. It creates a group of µ ¥ 1 randomly chosen Ξt-individuals and copies the best
individual of that group into the new population Ξt�1. Corresponding to the population size,
this process repeats q times to fill Ξt�1. InTrance implements tournament selection with the
commonly used tournament size µ � 2, which is also named binary tournament selection.
The left part ofFigure 5.12 shows the principle. Selection probabilities of the individuals for
tournament selection are [13]

pi � pµ� i� 1qµ � pq � iqµ
qµ

, (5.64)

which gives the best individuals selection probability for µ � 2

p1 � 2q � 1

q2
. (5.65)

Using (5.65) in (5.63) gives the corresponding SP

SPµ�2 � p1 � q � 2q � 1

q
. (5.66)
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Figure 5.12: One-at-a-time Reproduction with Tournament Selection. This is a modi-
fied version of the figure from [13] and shows how two binary tournaments determine two winners
and two looser out of four randomly picked individuals. The winner individuals recombine their
genome material to create two new offspring, which then replace the individuals that lost the
tournament in the new population.

The SP of tournament selection is constant for the entire EA run, if q � const., which ap-

proaches 2 for q Ñ 8. The best individual of a large population therefore contributes on

average and independent on its absolute fitness value to two individuals to a new population.

Another advantage of tournament selection is its implicit support for multiobjective opti-

mization. Using a different optimization criterion for each tournament, this selection scheme

prefers individuals that incorporate desired compromises between the respective criteria.

InTrance uses a different reproduction mechanism than traditional EA implementations. Its

one-at-a-time reproduction or steady-state reproduction mechanism lets reproduction happen

at each time step, which is computationally more efficient than generational reproduction and

also combines well with tournament reproduction.

5.4.5 Crossover

InTrance implements the four crossover types one-point crossover, uniform crossover, arith-

metic crossover, and loci crossover. The actual operator is chosen randomly with an initial

probability p � 0.25 and applied to the parent individual’s chromosomes, which potentially

contain an ANN for each mission phase and the allele holding the transition conditions. Sim-

ilar to node crossover, which assures that ANN node-related data is kept together during

crossover, a specialized operator now keeps together the data fragments that belong to a

mission phase.

The crossover probability is constant at the begin of the algorithm. Later, after ¡ 100

successful reproductions, i.e., reproductions that resulted in a new best solution, crossover

operator probabilities are determined dynamically by InTrance. Therefore a counter for each

crossover operator keeps track of the number of successful reproductions after application of

that operator. Once the sum of all operator counters exceeds 100, the ratio of an operator’s

counter value and the sum of all counters is taken as probability. This dynamic adaption of

EA control parameters helps to adapt to the respective problem and reduces an EA’s cus-

tomization to a particular application or problem type, which in this case is the optimization

of low-thrust trajectories.
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5.4.6 Mutation

According to Whitely, mutation is not necessary when using DC, as populations are regularly

reinitialized. Dachwald [13] found this unfavorable for real-value strings because it may lead

to premature convergence within an epoch in case of small population sizes. InTrance there-

fore implements the so-called fast uniform mutation, a mutation scheme based on uniform

mutation. Uniform mutation determines for each locus of the chromosome whether the allele

at that locus should be modified or not. The typical mutation probability of pm � 10�3

is very small, resulting in the generation of many random numbers for potentially only a

few mutation operations per chromosome. To prevent these time-consuming calculations,

InTrance’s fast mutation operator applies a random change with a probability of 0 ¤ pm ¤ 1

only to a single allele at a randomly chosen locus. The decision on the application of muta-

tion is therefore made for the entire chromosome and not for each locus. If the decision is to

mutate the string ξi, the operator picks a random locus j and replaces allele δij with a new

δij P r�δmax,�δmaxs.

5.4.7 Fitness in Multiphase Problems

The evaluation of a fitness function gives a scalar fitness J , which drives the optimization

process of the EA by fulfilling multiple tasks. It expresses the conformity to problem depen-

dent constraints or, equivalently, the violation of one or more constraints. Beyond that, J

guides the EA search towards the optimal problem solution.

Multiphase missions introduced new constraints to the simulation component of InTrance.

This necessitated a revision of the existing fitness function implementation. Basis for the

calculation of J is an intermediate fitness JP

JP �
$&% �

c
°np
i�1 minp0,Piq

2

np
, if Di P p0, npq : Pi   0

minpPiq , if @i P p0, npq : Pi ¥ 0
. (5.67)

It is an expression for the degree to which the trajectory fulfills the respective phases’ con-

straints. For each phase, any of the constraints expressed with the proximity variables defined

in subsection 5.3.7 may be used. If all proximity variables Pi ¥ 0, then all constraints of the

phases i have been achieved and JP ¥ 0. Once this has happened, J pξiq is primarily deter-

mined with the objective function O. Table 5.3 gives the objective functions implemented in

InTrance. Note that the Oi are subject of maximization, regardless whether the underlying

base variable should be minimized or maximized. The final fitness is

J pξq �
"

JP , if JP   0
O �±iPpdw,m,sq

1
1�Vi

, if JP ¥ 0
. (5.68)

Once the phase-specific constraints have been achieved, any fitness improvement results from

an increased value of the respective objective function O1 or from a reduction of the transition

condition violations Vi defined in subsection 5.3.9, or both.

1The objective functions O of Tab. 5.3 are mission specific and not phase specific. They cannot be used
concurrently.
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Table 5.3: InTrance objective functions. Using the variables that are available to the simulation,
other objective functions may be implemented in the future.

No. Symbol Definition Description

1 O∆t,min 1�
°np
i�0 ∆ti
°np
i�0 ∆ti

transfer time minimization

2 Omp
1

p0qmp,0�
pnpqmp,f

minimum propellant consumption

3 OmSC∆t
pnpqmSC

∆t maximum final mass over transfer time

4 OmSC∆tm

pnpqmSC
pnpqtf�p0qt0

maximum final mass over mission duration

5 O∆tdw

°
∆tdw,i°
∆tdw,i

maximum stay-time

6 O∆tm
∆tm�∆tm

∆tm
minimum mission duration

7 Ot0,min
p0qt0�p0qt0
p0qt0�p0qt0

earliest launch date

8 Ot0,max

p0qt0�p0qt0
p0qt0�p0qt0

latest launch date

5.4.8 Enoding of Variable Initial Conditions on a Chromosome

An EA chromosome ξi in InTrance contains more than the parameter sets pjqπ that determine
the different mission phases’ NCs. It also holds the simulation parameters that should be
optimized and which either affect spacecraft design or mission design. Of the first parameter
type are the launch propellant mass mp,0 and the characteristic power output of the electric
power generation subsystem Pe,0. Mission-design-influencing parameters are the launch date
t0, the hyperbolic excess velocity vector v8 at t0, and the initial state vector xSCpt0q. There
are however a few peculiarities to each of these parameters when it comes to choosing a suited
encoding scheme for storing them on ξi. In general, a parameter is bound to a range of values
determined either by the user or by InTrance. The begin of the trajectory, for example, must
take place in a launch date window t0 ¤ t0 ¤ t0. A few parameters additionally exhibit
discontinuities, e.g., angular parameters at 0 or π, which must be taken care of. Other
parameters offer more than one possible representation; v8 is such a parameter that can
be expressed with cartesian or polar coordinates, for example. The same holds true for
xSCpt0q, and the representations chosen for InTrance are v8 � pv8, α8, δ8qJ and xSCpt0q �
pr, ϕ, ϑ, v, ζ,ΦqJ.

Table 5.4 provides the loci of the chromosome allele that determine the respective parameter.
These loci are relative to the begin of a parameter block that follows directly on the π-
parameters of that mission phase. They are described in the sequel.

A linear mapping of the first allele onto a range pt0, t0q defined by the minimum and maximum
launch dates gives the actual launch date

t0 � t0 �
r0 � r

r � r

�
t0 � t0

�
. (5.69)

The lower and upper boundary of allele values at all loci are r and r. Subsection 5.3.6
introduced the hyperbolic excess velocity vector v8. The definition of this launcher-provided
velocity increment in the P-frame is

v8 � v8

�� cosα8 cos δ8
sinα8 cos δ8

sin δ8

�. (5.70)
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Table 5.4: Simulation parameter encoding.

Relative locus Allele Associated variable Affected initial condition

0 r0 t0 t0
1 r1 v8 v8
2 r2 α8 v8
3 r3 δ8 v8
4 r4 mp,0 mp,0

5 r5 Pe,0 Pe,0

6 r6 r, v xSCpt0q
7 r7 r, v xSCpt0q
8 r8 r, v xSCpt0q
9 r9 ϕ, ϑ xSCpt0q
10 r10 ϕ, ϑ xSCpt0q
11 r11 ϕ, ϑ xSCpt0q
12 r12 ζ,Φ xSCpt0q
13 r13 ζ,Φ xSCpt0q
14 r14 ζ,Φ xSCpt0q

The mappings of the required three components v8, α8, and δ8 are linear as well

v8 � v8 � r1 � r

r � r
pv8 � v8q (5.71)

α8 � α8 � r2 � r

r � r
pα8 � α8q (5.72)

δ8 � δ8 � r3 � r

r � r

�
δ8 � δ8

�
. (5.73)

A linear mapping was also applied for the initial propellant mass

mp,0 � mp,0 �
r4 � r

r � r

�
mp,0 �mp,0

�
(5.74)

and the characteristic electrical power

Pe,0 � P e,0 �
r5 � r

r � r

�
P e,0 � P e,0

�
. (5.75)

The remaining alleles r6 � r14 are first interpreted as cartesian vectors r6/7/8 � pr6 r7 r8qJ,

r9/10/11 � pr9 r10 r11qJ, and r12/13/14 � pr12 r13 r14qJ. From the equivalent polar representation�� r6
r7
r8

�� r6/7/8

�� cosϕ6/7/8 cosϑ6/7/8

sinϕ6/7/8 cosϑ6/7/8

sinϑ6/7/8

� (5.76)

result the corresponding polar azimuth and elevation angles for each vector1. Their squares

1See also appendix A.2.
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are the base for the determination of the components of xSCpt0q via quasi-linear mappings.

r � r � pr � rq sin2 ϕ6/7/8 (5.77)

v � v � pv � vq sin2 ϑ6/7/8 (5.78)

ϕ � ϕ� �ϕ� ϕ
�

sin2 ϕ9/10/11 (5.79)

ϑ � ϑ� �ϑ� ϑ
�

sin2 ϑ9/10/11 (5.80)

ζ � ζ � �ζ � ζ
�

sin2 ϕ12/13/14 (5.81)

Φ � Φ� �Φ� Φ
�

sin2 ϑ12/13/14 (5.82)

This encoding scheme uses nine alleles to determine six initial state variables and is therefore
overdetermined but guarantees always valid variables and prevents saturation.

5.5 Artificial Neural Networks

One of the two elementary elements of ENC are ANNs, which are used as NCs for the control
of low-thrust powered spacecraft. ANNs thereby map from a set of problem-specific input
data to to the output variables, which then must be translated into control variables. Sec-
tion 5.5.1 describes encoding and scaling of NC input information, and section 5.5.2 describes
how the required control data derives from the ANN output.

5.5.1 Encoding and Scaling of Input Data

An NC is given input data of different types from which it determines the desired control
via its internal ANN. The input data thereby range from position and velocity variables,
over angles and their change rates, to mass, time and acceleration variables. An NC can
generally handle all these data types but it needs a minimum number of internal nodes
and an appropriately trained parameter set to do so. Problems may arise if input values
are outside the reasonable range of neuron transfer functions. For example, if a neuron’s
transfer function is the sigmoid (see Fig. 4.4), and the spacecraft’s heliocentric x-coordinate
in kilometer is input to that neuron, then this input almost never contributes to the neuron’s
output. This is evident as the input is practically never inside the range of reasonable sigmoid
input values. Using the distance unit AU would alleviate this problem but not mitigate it.
An NC that should steer optimally along a transfer that spans over large distance ranges still
suffers from it. Normalization of the different input data types is therefore encouraged.

Another problem occurs when using angle input data. Depending on the respective definition,
at 0 or 2π their values can exhibit a change of 2π although the actual angle might change only
by a few degrees. Assuming a sufficient number of neurons and proper training, an NC can
handle even such input data peculiarities. The training of the NC for the required steering
strategy might however be time consuming.

To alleviate the latter problem through the usage of a different encoding scheme and therefore
“help” the NC to focus on the actual control problem, InTrance uses the sine and cosine of
an angle instead of the actual angle value. The values of both, singularity-free functions are
bound within p�1, 1q and thus require no normalization. Solving the first problem means to
find normalization values for distance, time, and velocity. However, only the first two must be
defined because the velocity norm is derived from them. InTrance uses the current spacecraft
distance w.r.t. the current central body rSC as unit distance r̂ and scales all linear distance
input values with this norm value

r̂ � rSC. (5.83)
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Table 5.5: NC input data.

Variable NC input Norm Frame

Spacecraft position x x{r̂ r̂ (rotating),cartesian
Spacecraft position y y{r̂ r̂ (rotating),cartesian
Spacecraft position z z{r̂ r̂ (rotating),cartesian
Spacecraft velocity vx vx{v̂ v̂ (rotating),cartesian
Spacecraft velocity vy vy{v̂ v̂ (rotating),cartesian
Spacecraft velocity vz vz{v̂ v̂ (rotating),cartesian

Control step size h h{t̂ t̂ n/a
Spacecraft azimuth angle ϕ sinϕ n/a polar
Spacecraft azimuth angle ϕ cosϕ n/a polar
Spacecraft elevation angle ϑ sinϑ n/a polar
Spacecraft elevation angle ϑ cosϑ n/a polar

Spacecraft azimuth rate 9ϕ 9ϕ{t̂ t̂ polar

Spacecraft elevation rate 9ϑ 9ϑ{t̂ t̂ polar

Range ρ }rT�rSC}
r̂ r̂ n/a

Range rate 9ρ pvT�vSCqprT�rSCq
v̂}rT�rSC}

v̂ n/a

Abs. target position xT xT{r̂ r̂ (rotating),cartesian
Abs. target position yT yT{r̂ r̂ (rotating),cartesian
Abs. target position zT zT{r̂ r̂ (rotating),cartesian
Abs. target velocity vx,T vx,T{v̂ v̂ (rotating),cartesian
Abs. target velocity vy,T vy,T{v̂ v̂ (rotating),cartesian
Abs. target velocity vz,T vz,T{v̂ v̂ (rotating),cartesian
Rel. target position xT � x xT�x

r̂ r̂ (rotating),cartesian

Rel. target position yT � y yT�y
r̂ r̂ (rotating),cartesian

Rel. target position zT � z zT�z
r̂ r̂ (rotating),cartesian

Rel. target velocity vx,T � vx
vx,T�vx

v̂ v̂ (rotating),cartesian

Rel. target velocity vy,T � vy
vy,T�vy

v̂ v̂ (rotating),cartesian

Rel. target velocity vz,T � vz
vz,T�vz

v̂ v̂ (rotating),cartesian
Propellant mass mp mp{mp,0 mp,0 n/a

The time norm t̂ is derived with r̂ and the velocity vcirc of a body on a circular orbit with the
radius r̂

t̂ � r̂

vcirc
� r̂

d
r̂

µ
. (5.84)

The velocity norm v̂ is calculated from r̂ and t̂

v̂ � r̂

t̂
� vcircprSCq. (5.85)

Table 5.5 lists the definitions of the different NC input data variables and the physical vari-
ables they are derived from.

5.5.2 Decoding of Output Values

The spacecraft control vector u comprises the local-optimal thrust direction vector ef for all
propulsion systems and for propellant-dependent systems additionally the throttle factor χ.
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Both control variables derive from the NC output vector d P Rnd , with nd � 3 for solar sails
and nd � 6 for propellant-dependent propulsion systems. The first three components of d
determine the thrust direction unit vector êf

êf � ef?
efef

, (5.86)

with the intermediate vector

ef � 2

�� d1� 0.5
d2� 0.5
d3� 0.5

�. (5.87)

The remaining three components determine the throttle χ

χ �
$&%

0, χ̂ ¤ 0
χ̂, 0   χ̂   1
1, χ̂ ¥ 1

. (5.88)

It is calculated from the intermediate vector

p � 2

�� d4� 0.5
d5� 0.5
d6� 0.5

� (5.89)

through centering and rescaling with a variable a and the scale factor b � 1.1

χ̂ � ab� 1� b

2
, (5.90)

with

a � 1�
2

����arcsin

�
p3?
ppJ


����
π

. (5.91)

This encoding scheme is overdetermined and assures that:

1. the control is always valid, regardless of the respective di,

2. no saturation effects occur, which might arise, for example, if only the range p�1, 1q is
taken as control,

3. various combinations of d4, d5, and d6 yield the same χ.

Effectively, the throttle is the ratio of the angle =pe1,pq and π
2 , scaled by b and constrained

in p0, 1q.
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6

Validation and Mission Analysis

This chapter describes the validation of MENC and its implementation in InTrance, as well

as its application to the analysis of multiphase deep space missions. The validation took

place in several stages and levels of detail. Basic software features, such as OOP-related

functionality, were validated with software test procedures to ensure logical correctness of

implemented features. These low-level tests shall not be described here. More complex

software components, e.g., numerical integration routines, required other validation methods.

Section 6.1 provides results of two examples of the carried-out validation at this next-higher

stage. The first one, presented in subsection 6.1.1, validates the results of the tests of the

numerical integration routines and the second, in subsection 6.1.2, explains and demonstrates

the validation of the GA implementation.

The third validation stage contained mission analysis, i.e., the optimization of low-thrust

trajectories. Through comparison of the obtained results with analytical solutions of the

respective problems or reference solutions from literature, new InTrance features were verified

for correctness. One of these features is the support of non-heliocentric or planetocentric

simulations. Correct simulation is a prerequisite for the optimization of low-thrust trajectories

in such environments. Section 6.2 describes the corresponding calculations and presents the

obtained results.

Solutions of heliocentric multiphase problems belong to the fourth validation stage. It con-

tained the validation of the newly developed capability of InTrance to optimize multiphase

trajectory problems. This was constrained to two-phase problems, i.e., trajectories that ei-

ther lead to a single target, but were divided into two mission phases, or two target bodies.

The first type is covered with section 6.3, which presents the results of several calculations of

Earth-Moon low-thrust transfers. Section 6.4 is on the validation of the second problem type.

It provides the results of a double-rendezvous low-thrust deep space mission for which corre-

sponding trajectories have been calculated. NASA’s deep space mission Dawn was chosen as

reference and the results compared with its reference trajectory. This section further shows

how global optimal solutions for that problem type may now be calculated with InTrance

and explains the difference to a manually optimized multiphase trajectories.

Following validation, section 6.5 describes the application of InTrance to the analysis of a

complex and challenging deep space mission. It is a solar system escape mission to the

boundary of our solar system. Relying on a SEP and a REP stage, its mission design thereby

leads the two-stage spacecraft to a distance of 200 AU within a defined maximum mission

duration of 25 years. The obtained trajectory exhibits a gravity assist at Jupiter, which is

an implicit result of the inclusion of third-body disturbances into simulation.
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6.1 Implementation Validation

The following subsection 6.1.1 and subsection 6.1.2 describe the validation of the numerical
integration algorithms and the GA that were used for this thesis. Both are only examples of
the carried-out stage-2 validation activities during the development of InTrance, but further
tests were conducted as well. This includes tests for the newly implemented support of third-
body perturbing forces, reference system transformation and planetary shadows. A complete
description of all of these validation activities is however beyond the scope of this work. Other
simulation elements were already validated during Dachwald’s work on the first version of
InTrance [13] and can thus be considered as validated. An example of this is the computation
of the SRP.

6.1.1 Validation of Numerical Integration Schemes

Numerical integration schemes, or numerical integrators, are essential components of In-
Trance’s simulation objects. They provide the current state variables based on the state
variables of the previous step, the state equations, and the control variables. It is immanent
that numerical integration schemes should be free of any implementation errors. To assure
correct integration of a given DES, the integration schemes implemented in InTrance were
used on test DES, for which analytical results exist. Hull et al. [42] gives the test function����
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����
�����

y3

y4
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����. (6.1)

The initial state vector for all calculations was

yp0q �

�����
1� e

0
0b
1�e
1�e

����. (6.2)

It describes the planar orbital motion of an object under a pure Newtonian central force. For
the five test runs, the eccentricity parameter was e P r0.1, 0.3, 0.5, 0.7, 0.9s. The integration
was carried out for x P p0, 20q with integrators Runge-Kutta (RK)4, Runge-Kutta-Fehlberg
(RKF)5(4), and RK8(7)DP1. Absolute and relative accuracy tolerance was set to 10�10. The
allowed cartesian deviation from the analytical reference solution was always less than 10�3.

The respective numbers of calls to (6.1) to achieve the required accuracy limits are listed
in Tab. 6.1. It shows an increasing number of DES calls with higher orbit eccentricities
because the integrators had to insert more internal step subdivisions to keep the config-
ured accuracy tolerances. Table 6.1 also shows a common feature of higher-order integration
routines, such as RK87DP. They need fewer DES calls for achieving high accuracy than
lower-order integrators, e.g., RK54F. For low accuracy requirements, however, this does not
generally hold true any more, as both integrators may be able to achieve the accuracy toler-
ances without internal subdivision.

The results of the validation calculations were within the defined allowed deviation from
the analytical solution, and the implementation of the integrators in InTrance was therefore
considered to be correct.

1RK4 is an integration scheme of order four, RKF5(4) is one of fifth order with an embedded method of
order four for step size control based on the estimation of the local truncation error, and RK87DP is of order
eight with an embedded method of order seven according to Prince and Dormand. [57]
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Table 6.1: Calls to a DES function during integration of Hull’s class D test function.

Test Case RK4 RKF54 RK87DP

D1 pe � 0.1q 4 400 3 561 1 309
D2 pe � 0.3q 15 200 7 290 2 903
D3 pe � 0.5q 32 400 11 612 4 861
D4 pe � 0.7q 56 000 17 038 7 416
D5 pe � 0.9q 85 996 24 563 11 178

Figure 6.1: Rosenbrock 2D Test Func-
tion.

Figure 6.2: Multimodal 2D Test Func-
tion.

6.1.2 Genetic Algorithm Validation

A second essential InTrance component is the GA. It was therefore tested separately before

using it for optimization runs. For verification, reference test functions with known optimal

solutions were chosen. These known solutions were compared with the solutions that were

obtained through using the GA on the test functions.

A standard test function in function optimization literature is the two-dimensional Rosen-

brock function [76]

fpx1, x2q � � �100px1
2 � x2q2 � p1� x1q2

�
. (6.3)

It is also known as Rosenbrock’s valley, Rosenbrock’s banana, or as De Jong’s Second Func-

tion [17, 19]. Its global optimum f � 0 is at p1.0, 1.0q. As the EA’s objective is the max-

imization of an objective function, the inverted Rosenbrock function (6.3) was used for the

validation runs. Figure 6.1 shows the maximum of (6.3) on a wide parabolic “mountain” with

relatively small derivatives w.r.t. x1 and x2. This is a fundamental problem for gradient-

based methods. They either experience difficulties in finding the optimum at all or need many

function evaluations for success. A separate test program using the GA of InTrance to find

the optimum of the inverse of (6.3) was written. Multiple execution of that program with an

accuracy of 10�3 showed that the GA-implementation within InTrance found the optimum

of that test function in every run.
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Table 6.2: Results of the EA runs for a multimodal, two-dimensional test function. The deviation
∆f� is the difference between the worst solution found by InTrance and the reference solution.
The last column gives the standard deviation of the solutions found by the GA w.r.t. to the
analytical reference solution.

q Avg. epochs Max. no. of eval. ∆f� dev.�
10�8

� �
10�7

�
25 136 203 615 4.3 3.6
50 122 228 339 3.4 4.7
75 122 251 727 5.6 6.1

100 119 282 100 7.8 5.1
125 119 310 487 11 4.2

A second GA validation test used the two-dimensional, multimodal function

fpx1, x2q � �
5̧

i�1

i � cosppi� 1qx1 � iq �
5̧

j�1

j � cosppj � 1qx2 � jq. (6.4)

Figure 6.2 shows this function in x1, x2 P r�6, 4s2. It has numerous local optima and a global
optimum fpx1

�=�1.306708, x2
� at �1.4251284q=176.5417931367. The multimodal character

of this function makes (6.4) suited for the validation of the GA’s ability to find the global
optimum in such solution spaces. The configuration parameters of the GA were varied to
investigate on their effect for finding the global optimum. Therefore, the number of SSS
epochs were varied from one to nine with a step size of one. The mutation probabilities were
0.2 to 0.8 in steps of 0.2. The hypercube shrink factor κ was varied from 0.2 to 0.8 also
in steps of 0.2, and the population size q from 25 to 125 with a step size of 25. To test
the GA’s robustness, each optimization was run five times with identical settings of q. The
optimum of the test function was found every time, whereby the average number of required
GA epochs per run reduces with increasing q. The absolute number of function evaluations
however increases with bigger populations. The average difference ∆f� to the optimum as
well as its deviation was always below the preset limits.

6.2 Non-heliocentric Single-phase Transfers

One of the new developments in the course of enabling multiphase low-thrust trajectory op-
timization with InTrance was the support for non-heliocentric or planetocentric simulations.
As that type of simulation was going to be used for the optimization of mission designs that
involve respective phases, it needed to be validated beforehand. Several transfers from litera-
ture thereby served as reference for comparison and the assessment of simulation correctness.
These test cases were four Earth-bound transfer problems and one having the asteroid Vesta
as central body. The chosen cases therefore cover a representative set of orbit transfer prob-
lems. They range from coplanar circular orbit transfers, i.e., only the semimajor axis changes,
to trajectories during which all orbital elements must be changed optimally.

6.2.1 Test Cases

Five test cases were chosen for the validation of the capability of InTrance to optimize non-
heliocentric low-thrust trajectories. They are given by Petropoulos who used them for the
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Table 6.3: Orbit specification of test cases for non-heliocentric orbit changes. The test cases
were taken from [68, 69]. The orbits are specified with Keplerian elements (see appendix B). The
respective spacecraft characteristics are given with the maximum thrust Fthr, the launch mass
m0, and the specific impulse Isp of the propulsion subsystem.

Test Orbit a e i ω Ω Fthr m0 Isp Central
Case Type [ km] [ deg] [ deg] [ deg] [ mN] [ kg] [ s] Body

A Launch 7 000 0.01 0.05 0 0 1 000 300 3 100 Earth
A Target 42 000 0.01 n/d n/d n/d 1 000 300 3 100 Earth
B Launch 24 505.9 0.725 7.05 0 0 350 2000 2 000 Earth
B Target 42 165 0.001 0.05 n/d n/d 350 2 000 2 000 Earth
C Launch 9 222.7 0.2 0.573 0 0 9 300 300 3100 Earth
C Target 30 000 0.7 n/d n/d n/d 9 300 300 3100 Earth
D Launch 944.64 0.015 90.06 156.9 -24.6 45 950 3 045 Vesta
D Target 401.72 0.012 90.01 n/d -40.73 45 950 3 045 Vesta
D� Launch 950.00 0.000 90.00 n/d -102 45 950 3 045 Vesta
D� Target 375.00 0.000 90.00 n/d -126 45 950 3 045 Vesta
E Launch 24 505.9 0.725 0.06 0 0 2 000 2 000 2 000 Earth
E Target 26 500 0.7 116 270 180 2 000 2 000 2 000 Earth

validation of a heuristic steering law based on a Lyapunov function, which he named Q-
law [67, 68, 69]. Table 6.3 lists the initial and target orbit parameters for each case as well
as the spacecraft specifications. Petropoulos also compared the flight times and propellant
mass consumptions of his solutions with reference trajectories found by others with different
optimization techniques.

Case A is a coplanar, circle-to-circle, time optimal transfer from a LEO to a geostationary
orbit (GEO). For a low-thrust system, the chosen thrust-to-mass ratio of 1 N{300 kg is rather
high but still less than for chemical propulsion. For this transfer, there exists an optimal
solution found by Edelbaum [23], and the fastest Q-law transfer found by Petropoulos showed
good coincidence with it. Any minimum-time Case A solution found by InTrance should
consequently be close to these two reference solutions in order to be valid.

Case B is more complex than Case A because three instead of one target orbit element had to
be matched. It is a propellant-optimal, low-thrust transfer from a slightly inclined GTO to a
GEO. Geoffrey and Epenoy [32] found further solutions of that transfer using orbit averaging
and the calculus of variations. Their results were included into the comparison.

Case C is a propellant-optimal, coplanar transfer from a low-eccentricity orbit to a larger,
high-eccentricity orbit with a thrust-to-mass ratio bigger than in Case A. Petropoulos com-
pared his results to fixed-time, propellant-optimal solutions for this problem that was found
with an optimization software tool called Mystic. This software is based on the static/dynamic
control (SDC) algorithm, which was developed by Whiffen and Sims [95]. Mystic is one of
the primary mission analysis tools at JPL and, as of today, restricted by International Traffic
and Arms Regulations (ITAR).

The fourth test Case D is the only one that was not bound to the Earth. It was roughly
a circle-to-circle transfer around the asteroid Vesta with a small plane change. Again, the
solutions found by Petropoulos were compared with a minimum-time, minimum-propellant
solution found with Mystic. However, the initial and final conditions of the transfer published
by Whiffen [94] is not exactly the one given by Petropoulos. The original transfer was
therefore included as test case D mod.
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Table 6.4: Results of non-heliocentric, low-thrust orbit transfers. The flight time ∆t and the
consumed propellant mp of the solutions found by InTrance are listed for each test case. Re-
spective figures of reference solutions are provided for comparison. The figures of Case B of
Petropoulos [68] were taken from Fig. 4.

Test ∆t mp Reference
Case [ d] [ kg]

A 14.60 41.50 Petropoulos [69]
A 14.53 41.28 InTrance
A 14.42 40.98 Edelbaum [23]
B � 145 � 220 Petropoulos [68]
B 142.27 219 InTrance
B 137.5 212 Geoffreoy & Epenoy [32]
C 4.4 18.7 Petropoulos [68]
C 4.4 18.7 InTrance
C 4.4 18.2 Whiffen [68]
D1 25 3.22 Petropoulos [68]
D1 25 3.26 InTrance
D2 25 3.26 InTrance
D2 25 3.22 Whiffen [94]
E 96.6 677.2 Petropoulos [68]
E 81.61 719.0 Petropoulos [69]
E 72.3 637.2 InTrance

Test Case E is the most challenging one and requires changing all orbit elements except mean
anomaly, which was always free. It was a transfer from an inclined GTO into a Molniya-type
orbit. The required inclination change was 116 deg. The objective was to find the time-
minimal transfer, and the shortest transfer found in [68] was 96.6 days. Later, with a refined
Q-law, Petropoulos could reduce the transfer time to 81.61 days. The required propellant
mass of that solution was 719 kg [69].

6.2.2 Results

The recalculation of test cases A to E were conducted by following a two-stage approach.
A so-called “coldstart” optimization run yielded the first solution. The obtained solution
was then refined with a second optimization run called “refine”. During coldstart runs, the
EOMs were integrated with an RKF45 integrator. The control step size was dynamically
determined with a discretization in true anomaly of six degrees for the first run and of three
degrees for the refinement run. The relative and absolute integration error tolerances were
10�6 and the allowed final distance 200 km and relative velocity 100 m{s. For the subsequent
refinement of the coldstart solution, an Dormand and Prince 7(8) integrator was used with
relative and absolute error tolerances of 10�10. The respective optimization goal was set for
each problem.

Table 6.4 gives the flight time ∆t and the consumed propellant mass mp of the obtained
results and the corresponding figures of the reference transfers from literature. The associated
trajectory plots are given in Fig. 6.3 to Fig. 6.8. The found InTrance-solution for case A
was between those found with the Q-law and the solution found by Edelmann, whereby
the InTrance-solution was closer to one of Edelmann. For case B, the solution found by
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Figure 6.3: Case A. Figure 6.4: Case B.

InTrance was inferior to those found by Geoffroy and Epenoy but better than the Q-law
solution. InTrance’s solution for case C matched the Q-law solutions but was inferior to the
one found with Mystic. The fourth test case result was also close enough to the reference
solution to be acceptable. For the most challenging transfer, case E, InTrance found a
solution which was faster and consumed less propellant than the best obtained Q-law result.
The Q-law, which showed acceptable performance for the other four test cases and good
coincidence with respective reference solutions, therefore seem to be less suited for case-E-
like transfers. This may however depend on the choice of the user for the Q-law control
parameter. The comparison of the results that were obtained with InTrance for various non-
heliocentric test cases showed very good coincidence with the chosen reference solutions. For
the most challenging transfer, Case E, InTrance even found a significantly better result.

With only small deviations of less than 2 % from the respective reference solutions A-D, In-
Trance found comparable solutions for these test cases. The deviations in flight time and mass
consumption are explainable with differences in the respective simulation and optimization
setups. Elimination of those is hardly possible, as publications do rarely contain all the de-
tails of carried-out calculations that would be required for exact comparison. Using a slightly
different control step size, for example, can sum up along the trajectory to small deviations
of such figures as the flight time. This is however acceptable for the purpose of preliminary
mission analysis. The explanation of the better solution found by InTrance for Case E is
Petropoulos’ Q-law. Dependent on a user-provided so-called cut-off parameter, this control
law allows for coast phases. This parameter was not optimally chosen, as InTrance found a
steering strategy that uses the thruster during the entire transfer, resulting in a better solu-
tion to the problem. Concluding from these results, the implementation of non-heliocentric
simulations within InTrance is considered validated and usable for optimization.

6.3 Earth-Moon Transfers

This section is about the optimization of two-phase low-thrust transfers during which a SOI
must be crossed. The chosen problem is a ∆t-optimal transfer from an Earth-bound orbit
into an orbit about the Moon. The resulting trajectory should qualitatively resemble those of
SMART-1, one of the few real-life low-thrust missions so far and the only low-thrust mission
to the Moon. This mission type has been treated extensively in literature, for example by
Betts and Erb [10] or Herman and Conway [40].

Earth-Moon transfers exhibit several peculiarities. Some of them stress the simulation frame-
work which is inevitably associated to trajectory optimization. Others can in fact ease the
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Figure 6.5: Case C. Figure 6.6: Case D1.

Figure 6.7: Case D2. Figure 6.8: Case E.
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optimization process. Compared to the natural satellites of other planets in our solar system,
the Moon is a big and mass-rich. A spacecraft in this environment is therefore subject to
strong gravitational forces of the Earth and the Moon. Additional gravitational pull results
from the Sun. An astrodynamic simulation must therefore at least include the gravitational
accelerations caused by these three celestial bodies. As third-body accelerations cannot be
neglected for Earth-Moon transfers, it was implemented in InTrance before such transfers
were calculated (see subsection 5.3.3 for details). The calculation of the transfer cases of this
section therefore also validates this feature of InTrance.

The mass ratio of the Earth and the Moon is 81.3 and thus smaller than the corresponding
ratio of any other planet-satellite constellation1 of the solar system. This mass ratio makes
the radius of the Moon’s SOI exceptionally big. In fact, it is nearly 1/6 of the semimajor
axis of its orbit. With approximately 1/400, the corresponding SOI-to-semimajor-axis ratio
of Mars is significantly smaller. From the perspective of trajectory optimization, the Moon
is therefore a large, heavy, and near target.

The advantage of a close and heavy target comes with a downside. Low-thrust transfer
trajectories from LEO typically exhibit many revolutions about the Earth. The reason is
that at such orbit heights the gravitation acceleration is magnitudes higher than acceleration
resulting from propulsion. This often requires more complex steering strategies which are
difficult to optimize.

The recalculation of this transfer problem was conducted via two approaches. The first treated
the complete transfer as a single-phase problem while the second splits it into two phases. The
second approach eases simulation but requires the optimization of the transition point, i.e.,
finding the point in state space from which the problem turns from a geocentric into a Moon-
centric one. The next two sections describe the test cases, the simulation and optimization
setup, and the obtained results. Finally, the remarkable ENC-feature of parameter space
reduction is explained with the presented results.

6.3.1 Problem Description and Setup

Three transfer time-minimal Earth-Moon transfers, called Case A, Case B, and Case C, were
chosen. Orbital elements of the respective initial Earth-bound orbit and the target orbit of
each case are listed in Tab. 6.5. The transfers Case A and Case B were optimized as single-
phase transfers, and transfer Case C was configured as two-phase transfer. The EOMs in
cartesian, Earth-centered inertial (ECI) coordinates were integrated with a RK 8(7) integrator
(Dormand and Prince) using error tolerances of 10�6. The step size of DSSC was set to 20 deg.
JPL’s DE405 ephemerides catalog was used for position and velocity information of the Earth
and the Moon. The spacecraft was modeled with a NEP subsystem, md=283 kg, mp=84 kg,
Isp=3 714 s and F *=135 mN. The EA settings were q=35 and pm=0.93. Tests carried out
before the optimization showed that the spacecraft-steering NC required no hidden-layer
neurons. Its configuration was therefore set to 37 input neurons and five output neurons.
Spacecraft ECI position and velocity in cartesian and polar expression were provided to the
first 14 NC input neurons. To prevent discontinuities at null and 360 deg, angular parameters,
e.g., polar azimuth and elevation, were first transformed to sine and cosine before using as
input. Next 14 input elements were the Moon’s cartesian and polar position and velocity,
processed as the ones for Earth. Moon-centered orbit elements a, e, and i of the spacecraft
and of the target orbit were the input of the next eight input neurons. Input to the last
input neuron was the relative propellant, i.e., as fraction of current propellant mass to initial
propellant mass.

1See Tab. 5.2. The mass ratio next in size is that of the Sun and Jupiter with 1047.
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Table 6.5: Orbit specification of Earth-Moon transfers.

Test Orbit Central a e i Ω ω M
case type body [ km] [ deg] [ deg] [ deg] [ deg]

A,B Launch Earth 24 500 0.73 0 0 0 0
A Target Moon 20 000 0 40 free free free
B Target Moon 7 238 0.62 90 free free free
C Launch Earth 24 460 0.73 6 279.2 177.9 3.5
C Target Moon 2 000 0 84 free free free

Table 6.6: Results of single-phase Earth-Moon transfers. For each case, the flight time ∆t, the
consumed propellant mass mp, and the achieved distance ∆r to the respective target and relative
velocity ∆v are listed.

Transfer ∆t mp ∆r ∆v
[ d] [ kg] [ km] [ m/s]

A 120 35 670 33
B 194 56 500 25
C 183 105 694 91

The first leg of Case C was computed in cartesian ECI coordinates and the second in cartesian
Moon-centered inertial (MCI)-frame coordinates. The handover was at the SOI, whereby the
state vector at the end of phase one was taken as initial state of phase two. Therefore,
the resulting trajectory was always physically valid. This approach was possible because of
the big radius of the Moon’s SOI. Initial mass was set to 671 kg, the maximum thrust was
271 mN, and the specific impulse 3 714 s. Each phase used a dedicated NC for spacecraft
steering. Phase one used a (26-15-6) NC with 26 input neurons, 15 hidden-layer neurons,
and 6 output neurons for spacecraft steering. The NC of phase two had a (23-35-6) topology.

6.3.2 Results and Discussion

The results of the single-phase transfers are listed in Tab. 6.6 and were also published by the
author [63]. Figure 6.9 and Fig. 6.9 show the respective trajectories in ECI-frame coordinates.
The trajectory of Case A from GTO into selenocentric circular orbit takes ∆t � 120 d and

consumes mp � 35 kg of propellant. For Case B, the respective figures are ∆t � 193 d and
mp � 56 kg. As expected, the flightpath of both transfers exhibits many revolutions about
the Earth before the spacecraft enters the SOI of the Moon.

Table 6.7: Earth-Moon transfer: Comparison of the Number of Node Parameters and ENC
Parameters of Case C.

# of # of node # of ENC
steps variables variables

Leg 1 5 068 15 204 527 (3.5%)
Leg 2 17 556 52 668 1 102 (2.1%)

Total 22 624 67 872 1 629 (2.4%)
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Figure 6.9: Trajectory of Earth-Moon
Case A.

Figure 6.10: Trajectory of Earth-Moon
Case B.

Figure 6.11: First Flight Leg from
Earth Orbit to the Moon’s SOI

Figure 6.12: Second Transfer Phase
from SOI Boundary to Low Lunar Or-
bit.
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The resulting trajectories of the test cases highlight a substantial advantage of ENC, which
becomes evident with trajectories having multiple revolutions about a central body. This
advantage is the reduction of the number of required parameters and shall be explained
with the solution of Case C. Table 6.7 gives the number of nodes for each flight leg of that
transfer. A node is a trajectory point at which the thrust vector is determined and then held
constant for the integration of the EOMs until the next node. As a three-dimensional vector
Fthr is associated to each node, the resulting parameter count is three times the number of
nodes. For the first leg, and without using ENC, 15 204 variables would have been required
for modeling and optimization of that trajectory part. The corresponding number of ENC
parameters, which also describe the solution of that leg completely, was however only 527,
corresponding to a reduction of about 97 percent. The solution of the complete transfer
comprised 1 629 parameters, and the number of node parameters in a non-ENC treatment
would have been of 67 872. The achieved total reduction is about 98 percent.

6.4 Multiple Asteroid Rendezvous – Dawn

NASA’s deep space low-thrust mission Dawn is an example for low-thrust missions that
comprise multiple asteroid rendezvous. It uses SEP throughout the entire mission and for
all phases, i.e., interplanetary cruise, target body approach, orbit changes, departure from
Vesta, and attitude control. Based on the original mission specification, InTrance was used to
recalculate the respective flight legs and to optimize the entire mission for minimum duration.
This example thus demonstrates how InTrance can be applied to preliminary analysis of
heliocentric, low-thrust, multiple-rendezvous missions.

Subsection 6.4.1 briefly describes the scientific objectives and key figures and facts of Dawn.
For more information on that fascinating and novel low-thrust mission, please see Rayman et
al. [70], Rayman and Patel [74], Rayman and Mase [73], and Russel et al. [78]. Subsection 6.4.2
describes the trajectory optimization problem and the setup of InTrance that was used for
the optimization runs. The obtained results, which are also in Ohndorf and Dachwald [62],
are then presented and discussed in subsection 6.4.3.

6.4.1 Mission Description, Objectives, and Spacecraft Design

Dawn is the first mission whose objective is to orbit a main belt asteroid and the first that
orbits two extraterrestrial bodies. The project is designed to increase our understanding
of the conditions and processes acting at the solar system’s earliest epoch. Examining the
geophysical properties of Ceres and Vesta with panchromatic and multi-spectral imagery is
therefore one of Dawn’s primary objectives. Table 6.8 lists physical and orbit characteristics
of both asteroids. Vesta and Ceres are by far the largest asteroids in our solar system. Because
of that size, they have survived the collisional history of our solar system largely intact. They
are virtually “records” of the physical and chemical conditions during the early epochs of our
solar system. This renders them particularly interesting for astrogeologists, astrobiologists,
and astrophysicists. Rayman et al. [70] hence list the following scientific objectives for Dawn:

1. Determination of the bulk density of Vesta and Ceres to better than 1%;

2. Determination of the spin axis orientation of Vesta and Ceres to better than 0.5%;

3. Determination of the gravity fields of Vesta and Ceres;

4. Optical mapping of the surface of Vesta and Ceres;
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Table 6.8: Physical parameters and orbit elements of asteroids Vesta and Ceres. The orbits are
specified with perihelion distance rp, apohelion distance ra, and inclination i. Physical parameters
are the principle radii, density ρ, and sidereal rotation period ∆trot. Values taken from Rayman
et al. [70] and Taylor et al. [86]

Body Principle Radii ρ ∆trot rp ra i
[ km] [ g{cm3] [ h] [ AU] [ AU] [ deg]

Vesta 289 �280�229 3.7 5.34 2.15 2.57 7.1
Ceres 487 �487�455 2.1 9.08 2.55 2.99 10.6

Figure 6.13: Reference Trajectory of the Multi-asteroid-rendezvous Low-thrust Mis-
sion Dawn. The letters denote the Sun (S), the Earth (E), Mars (M), Vesta (V), and Ceres (C).
Taken from [72]. Courtesy NASA/JPL

5. Creation of a topographical map of the surface of Vesta and Ceres;

6. Measure and map the abundances of major rock-forming elements and the elements H,
K, Th, and U of the surface of Vesta and Ceres;

7. Obtain spectral frames of the surfaces of Vesta (¥ 10 000 frames) and Ceres (¥ 8 000
frames).

Dawn launched on September 27 2007 (54 370 MJD) with a Delta II 7925H-9.5 rocket from
Cape Canaveral, Florida. The launch mass was m0 � 1 217 kg, with 425 kg being Xe pro-
pellant. Dawn’s IPS is based on DS1 heritage and uses the same NSTAR thruster type.
A single thruster of this type has a maximum thrust of 92 mN [70], a PPU input power
PPPU � 2.6 kW, and a maximum propellant throughput of 150 kg. The Dawn spacecraft’s
IPS comprises three NSTAR engines, with maximum one being operational at a time. EPGS
output at 1 AU distance from the Sun and beginning-of-life (BOL) conditions is 10.3 kW. The
reference trajectory is shown in Fig. 6.13. It features a Mars gravity assist (MGA), which,
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according to Rayman, was not mandatory for mission success but increased system margin
and thus reduced mission failure risk.

6.4.2 Problem Description and Setup

To determine a trajectory that would be comparable to the reference trajectory, the boundary
conditions needed to equal to those of Dawn. The following assumptions were therefore
made for the recalculation of the reference trajectory with InTrance. The launch should be
not later than September 30 2007 (t0 ¤ 54 373MJD). InTrance lacks a robust and generic
support of gravity assists. Contrary to the real Dawn mission, the transfer should therefore
not contain such a flyby maneuver. A maximum hyperbolic excess energy of C3=11.3 km2{s2

was allowed [74] (|v8|=3.362 km/s), with the direction of v8 being subject to optimization
by InTrance. Duty cycle limits were not included, i.e., the IPS was allowed for continuous
operation directly from launch. Launch and early operations phase (LEOP), in-orbit check-
out, and commissioning were therefore ignored or ignored for operating the IPS. The stay-time
at Vesta should be at least 250 days (∆tdw ¥ 250 d), and the arrival at Ceres should be not
later than at the end of March 2015 (tf,Ceres ¤57 112 MJD). An asteroid was successfully
met if ∆r ¤500 000 km and ∆v ¤500 m/s. The dry mass was set to md=790 kg and the
propellant mass was optimized by InTrance for both flight legs. Mass reductions due to
the depletion of Hydrazine, the propellant of Dawn’s attitude control subsystem (ACS),
was not modeled. To account for the load of other spacecraft components, the available
electrical power at 1 AU was set to Pe,SP,0pt0q=9.8 kW instead of the 10.3 kW supplied at
that distance by the real Dawn spacecraft’s solar generator. Degradation was not simulated
(Pe,SP,0pt0q=Pe,SP,0ptf,Ceresq). The power law exponent was κ=1.7, according to Rayman et
al. [71]. Thrust and propellant consumption curves of the NSTAR thruster were taken from
Williams and Coverstone-Carrol [99]. The maximum thruster input power was PT=2.6 kW.

As InTrance can globally optimize multi-rendezvous deep space missions, it was used to inves-
tigate on whether such mission designs could be improved w.r.t. minimum mission duration.
Two design options were calculated for this purpose. The first alternative A comprised the
individual optimization of each leg for minimum ∆t, i.e., one after another, obeying a preset
minimum stay-time at Vesta. A globally optimized complete mission, using the developed
multiphase framework, was called Alternative B. The resulting mission durations and the
consumed propellant masses should be compared. Thus, and besides recalculation, the inter-
est was also on the optimization of the actual Dawn reference trajectory. Therefore, slightly
different values or ranges of the simulation parameters were chosen. One of them were the
launch windows, which are less important for the planned comparison. Furthermore, dry
mass was md=790 kg and the maximum thrust Fthr=72 mN, the original value of an NSTAR
thruster. The propellant mass mp should be optimized by InTrance. Launcher-provided hy-
perbolic excess velocity was set to 1.732 km/s [70] and the EPGS power output at one AU
Sun-distance to 10.3 kW. The error tolerances of the RKF 5(4) integrator were set with 10�5.

6.4.3 Results and Discussion

Figure 6.14 shows the trajectory resulting from the optimization with InTrance. The launch
is on August 21 2007 (54 333 MJD) with the predefined v8=3.362 km/s. Launch mass is
1 139 kg, with 346 kg propellant. Its direction was however determined by InTrance for max-
imal benefit for the transfer to Vesta, where it arrives after 1 472 days on September 1 2011
(55 805 MJD). Arrival conditions are ∆r=162 000 km, ∆v=195 m/s, and 264 kg of propellant
are consumed. The stay-time at Vesta is ∆tdw=251 d, and on May 8 2012 (56 055 MJD) Dawn
leaves Vesta towards Ceres. After 1 047 days, the spacecraft arrives at Ceres on March 21
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Figure 6.14: Dawn’s Trajectory, Recalculated with InTrance.

2015 (57 054 MJD) with ∆r=480 000 km and ∆v=239 m/s. The total mission duration until
arrival at Ceres is 2 770 days.

Except for the excluded MGA, the trajectory on Fig. 6.14 looks almost identical to the
reference trajectory on Fig. 6.13. Its propellant consumption is however 20 percent less than
the reference value mp=425 kg. With the original propellant mass, the transfers from Earth
to Vesta and from Vesta to Ceres are not achievable without violation of set constraints,
e.g., mission duration or stay-time at Vesta. Dawn however requires these additional 87 kg of
Xe for orbit maneuvers at the asteroids and for safety margin of its propellant budget. The
implementation of ENC for heliocentric multi-rendezvous missions in InTrance is nevertheless
considered valid, as the described recalculation led to qualitatively equal results. Due to the
MGA of the reference trajectory, further comparison is difficult. Both solutions have specific
consequences. The MGA gives a higher margin for the ∆V -budget. It also reduces the mission
duration but at the same time limits the number of launch dates or narrows launch windows.
The solution obtained through InTrance lacks that ∆V -margin and therefore requires the
entire propellant but has a wider launch date window. Furthermore, the duty cycle of the IPS
was set to unrealistic 100 percent. The found solution may therefore not be realized without
different launch and arrival dates. It may even require an adaption of the mission’s mass
budget, i.e., reduction of md or increase of mp. However, for preliminary mission analysis,
the result is adequate and comparable with the reference mission design. It furthermore
demonstrates the advantage of multiphase optimization with InTrance, as it has been found
requiring significantly less effort than for the reference trajectory1

Due to the validation purpose, i.e., for the comparison with a reference, the recalculation
of the Dawn trajectory included several constraining assumptions. These assumptions do
however limit a global optimization, which is a key feature of InTrance. The optimizations of
two alternative transfers, called A and B, were therefore conducted with less Dawn-derived
constraints, as described in subsection 6.4.2. Table 6.9 gives the results of these optimization

1The determination of the Dawn reference trajectory required a team of astrodynamic and optimization
experts using JPL-proprietary, non-freely available tools. One of them is the ITAR restricted software Mystic.
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Table 6.9: Results of two options of a Dawn-like transfer to Vesta and Ceres. The symbols
denote launch date t0, flight time ∆t, propellant mass mp, and the stay-time ∆tdw at Vesta. The
numerals 1 and 2 denote the first transfer from Earth to Vesta and the second transfer from Vesta
to Ceres.

Unit A B B-A

t0 [ MJD] 54 103 54 150 +47
∆t1 [ d] 1 744 1 749 +5 (0.3%)
mp,1 [ kg] 327 328 +1 (0.3%)
∆tdw [ d] 528 341 -241 (41.4%)
∆t2 [ d] 679 790 +111 (16.3%)
mp,2 [ kg] 114 111 -3 (2.6%)

∆t1�2 [ d] 3 005 2 879 -126 (4.2%)
mp,1+2 [ kg] 441 439 -2 (0.5%)

runs. The resulting trajectory plots in heliocentric ecliptic projection are shown in Fig. 6.15
and Fig. 6.16.

Alternative A takes 3 005 days and 441 kg of propellant. The globally optimized Alternative
B needs 2 879, a saving of 126 days or four percent, while the required propellant is practically
unchanged. Its difference is only 0.5% and therefore within margin of any real mission’s mass
budget.

The reason for the differing mission durations becomes apparent when comparing the launch
and arrival dates. Clearly, a minimal total mission duration requires early departure at
Earth, a minimum stay-time at the intermediate target Vesta, and a time-minimal second
transfer from Vesta to Ceres. Due to its global-optimizing character, InTrance can find the
compromise between these mission phases that leads to minimal mission duration. This can
also be seen in the trajectories shown in Fig. 6.15 and Fig. 6.16. Compared to Alternative A,
launch of Alternative B takes place 47 days later. The transfer to Vesta takes five more days,
resulting in a net saving of 42 days. Transfer leg 2 of Alternative B takes 111 days longer
than for the individual-leg-optimized alternative. This is however over-compensated by the
shorter dwell-time at Vesta. While Alternative A takes 679 days, Alternative B requires 241
days less.

Two conclusions can be drawn from the presented results. First, the optimization of multi-
rendezvous missions requires global optimization tools. As shown with the Dawn mission
design, they yield better results than individually optimizing the trajectories of each phase
and putting them together manually. Second, the MENC-implementation InTrance can solve
that particular problem type and yield global-optimal solutions.

6.5 Solar System Escape to the Heliopshere Bowshock

This section describes the use of InTrance for trajectory optimization of a proposal for a
future deep space mission and presents the results. The objective of that mission is to bring
a spacecraft within a predefined time frame on a solar system escape course to the heliosphere
boundary region. This mission analysis was included in this thesis because:

1. It shows how the newly developed framework in InTrance can be applied to the opti-
mization of such multiphase trajectories and for preliminary mission analysis.
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Figure 6.15: Trajectory of Alternative
A of a Dawn-like Transfer.

Figure 6.16: Trajectory of Alternative
B of a Dawn-like Transfer.

2. It does not involve rendezvous conditions at the target body. The resulting trajectory is
therefore different to the examples shown before and its optimization requires a different
steering strategy than for multiple rendezvous-type transfer problems.

3. The spacecraft design comprises two propulsion subsystem stages of different technol-
ogy: a primary SEP-stage and a second stage based on REP. When the spacecraft is
too far from the Sun for the generation of solar-electrical power, the jettison of the SEP
stage instantaneously reduces the mass of the spacecraft. Other optimization methods
can have problems with the modeling of such changes, and therefore the optimization
of this transfer also demonstrates the respective new capability of InTrance.

4. The mission concept poses a challenging flight-time requirement. It is however achiev-
able with low-thrust propulsion and one gravity assist at Jupiter. The mission concept
is therefore an example for deep space missions that are impossible for chemical propul-
sion but become feasible with low-thrust propulsion, although it still involves a GA.
Subsection 6.5.2 will discuss whether the disadvantages for mission design that result
from using GAs can be eliminated by a relaxation of the flight time requirement.

5. The inclusion of a Jupiter gravity assist shows how this technique can be included
for low-thrust trajectory optimization, although InTrance lacks a generic support of
gravity assist. For certain cases, and using mass-rich celestial bodies such as Jupiter, it
is however implicitly possible.

The outer solar system and the region beyond are of scientific interest since decades [45]. The
heliosphere bow shock is one of those particularly interesting areas. In the heliocentric ecliptic
reference frame, it is in flight direction of our solar system at a distance of approximately
r �200 AU, a longitude of l �105.5 deg longitude, and a latitude of b �7.5 deg [100]. Within
this region, the then-subsonic solar wind hits the local interstellar medium (LISM). Complex
interaction of electromagnetic fields decelerates the solar wind particles, which results in
the so-called bow shock wave, which can be seen in Fig. 6.17. To prove this model and its
validity1, it is necessary to probe this region using a scientific deep space probe. The key
scientific questions of such a mission would be [53]:

1Zank [101] gives more information on these models.
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Figure 6.17: The Heliosphere in the Local Interstellar Medium. The main components
of the heliosphere are the inner and outer heliosheath, the bow shock, the termination shock, the
heliotail and the heliopause. The solar system is moving from right to left, and this movement
presumably generates a bow shock through electromagnetic interaction of the local interstellar
medium with the outer heliosheath. This figure also shows the flight path and approximate
distances of the Voyager deep space probes, the two man-made objects that have crossed the
largest distance so far. They are however useless for investigations of the bow shock for three
reasons: first, their instruments were developed for investigations of planetary magnetospheres;
second, their flightpath will not lead them towards the bow shock; and, third, they will run out
of energy before reaching the required distances. For Voyager 1, this will be latest in 2020 at a
distance of approximately 148 AU. Courtesy ESA [53].

• What are the characteristics and precise location of the termination shock and the
heliopause, and what is the temporal variation?

• How are (anomalous) cosmic rays accelerated in the heliosheath?

• What are the processes in the heliosheath that (possibly) affect the characteristics of
the interstellar neutral gas and dust as well as galactic cosmic rays interactions?

• What are the characteristics of the local interstellar medium beyond the heliopause?

Answering these questions has been prevented by the large distance and the available propul-
sion technologies. However, the development of new propulsion techniques, like EP and solar
sails, offer viable options, and NASA and ESA have included such interstellar heliopause probe
(IHP) missions into their strategic programs. The set maximum allowed mission durations
are 25 yrs for ESA missions and 15 yrs for NASA missions, respectively. The corresponding
average velocities are 8 AU/yr and 13.3 AU/yr. Solar sailing is a promising concept, as it
theoretically provides the required ∆V . This was investigated in past IHP studies by Liewer
et al. [50] and Lyngvi et al. [53]. Other studies by Bramanti et al. [11] concentrated on very
high-power SEP or NEP propulsion for that transfer type. The use of REP in combination
with hyperbolic excess energy and gravity assists was investigated as well, for example by
McNutt et al. [56] and Wimmer-Schweingruber et al. [100]

In the course of a study [51], a team including the author investigated whether this transfer
is feasible with a combination of SEP and REP propulsion technology. The maximum flight
time was set to the ESA ∆t-requirement of 25 yrs. Only the optimization of the trajectory
with InTrance shall however be treated here, and the reader is referred to [51, 52, 64] for
more details on this particular IHP mission analysis.
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Figure 6.18: Interstellar Heliopause
Probe with Folded Solar Power Gen-
erator Panels. [64] Figure 6.19: Interstellar Heliopause

Probe with Solar Power Generator
Panels Unfolding. [64]

6.5.1 Mission Design and Optimization Setup

The objective of the IHP mission is to leave the solar system towards the heliosphere bow
shock with a velocity that allows for latest arrival there within maximum 25 yrs. The mission
should use SEP for primary propulsion, with the option of a GA at a major celestial body, if
necessary. Potentially, a second, REP-powered stage may be used for further acceleration to
achieve the required terminal velocity.

The spacecraft design consisted of the probe itself, a SEP stage for primary propulsion, and an
optional secondary REP stage, both using Xenon as propellant. The SEP stage comprised
six RIT-22 engines with Isp=7 377 s and a solar-electric power generation subsystem with
Pe=53 kW. At distances greater than three AU, the EPGS output is insufficient to supply
the SEP stage. Mission design therefore foresaw the jettison of that first propulsion stage and
to utilize the second one, which contained four RTG units with a total BOL power output
of 648 W, enough to operate the RIT-10 unit with an input power PT=592 W. The resulting
thrust is 21 mN. An illustration of the spacecraft is given in Fig. 6.18 and Fig. 6.19. From
a flight dynamics point of view, the mission’s trajectory requirement corresponds to a flyby
scenario at a fix point in space. That point is defined through a vector defined with the
spherical coordinates r �200 AU, l �105.5 deg, and b �7.5 deg in the heliocentric ecliptical
frame. For the investigation on whether SEP is a suited propulsion option for an IHP mission
or not, gravity assists were neglected first. With this assumption, and with the Earth as
launch body, one could simplify the problem even more and use an orbit flyby as target
condition. This means that InTrance had to find a trajectory on which the IHP spacecraft
hits an ecliptical, circular, 200 AU orbit with ∆rmax ¤ 10 � 106 km and ∆tmax ¤ 25 yrs. To
save mass, the IHP design did not include a thermal control subsystem specifically designed
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Table 6.10: Data of the fastest IHP transfer, including a gravity assist at Jupiter.

Unit Value

Launch date t0 MJD 58 254.59 (17 May 2018)
m0 kg 1 692
mp kg 440
C3 km2{s2 45.1
∆tSEP d 831 (1.31 yrs)
rSEP AU 3.05
vSEP km/s 30.5 (6.44 AU/yr)
vJ� km/s 26.8 (5.65 AU/yr)
vJ� km/s 39.3 (8.29 AU/yr)
d RJ 1.34
tREP MJD 59 225.48 (11 Jan 2021)
∆tREP d 3 283 (8.98 yrs)
rREP AU 79.60
vREP km/s 47.4 (10 AU/yr)
tf MJD 66 929.80 (15 Feb 2042)
∆t d 8 675 (23.8 yrs)

for operations near the Sun. An allowed minimum Sun-spacecraft-distance of 0.7 AU was
therefore set as an optimization boundary condition. A NC steered the IHP during the first,
SEP-propelled mission phase on a flyby course towards Jupiter. During the second phase,
the REP-acceleration phase, the thrust pointed in flight direction. This decision based on
the fact, that the acceleration of the REP-stage was insufficient for a significant modification
of the direction of the velocity vector, even if it was applied for years. Consequently, the
spacecraft had to be on its final course already before this phase started. InTrance was
configured to determine the required propellant mass and to utilize the excess energy of the
foreseen launcher Ariane 5 ECA. The combination of both features should find the mission-
dependent optimal compromise between launcher-provided ∆V and the ∆V resulting from
operation of a EP-stage.

6.5.2 Results and Discussion

Table 6.10 shows the resulting figures with ∆t=23.8 yrs significantly below the 25 yrs-limit.
Figure 6.20 and Fig. 6.21 show the associated trajectory plots in ecliptical heliocentric inertial
(HCI)-frame. The launcher Ariane 5 ECA provided an additional C3 of 45.1 km2{s2, which
corresponds to v8=6.72 km/s. This additional ∆V is used to raise the aphelion. The thrust
of the SEP-stage then lowers the perihelion while the spacecraft traverses to its current
orbit’s aphelion. This way, the spacecraft has maximum electrical power during the following
perihelion passage and can operate its propulsion subsystem with maximum thrust. The
launch mass m0 of 1692 kg contains 440 kg of Xe propellant, and the Jupiter gravity assist
(EGA) provided an inertial ∆V of 12.5 km/s (2.64 AU/yr). The flyby distance from Jupiter
was only 1.34 Jupiter radii. Operation of the REP-stage ceased after approximately 10 yrs,
corresponding to a mission-elapsed-time (MET) of 11.6 yrs. The IHP then traverses on a
ballistic trajectory towards the target with a heliocentric, inertial velocity of 10 AU/yr. At
the time of REP-burnout at r=80 AU, the distance to the target is 120 AU.
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Figure 6.20: SEP+REP Transfer to
200 AU with a Swing-by at Jupiter.
The influence of the flyby maneuver, i.e.,
the increase in heliocentric velocity, is visu-
alized in the sudden trajectory color change
at Jupiter.

Figure 6.21: Close-up of the IHP
Gravity Assist at Jupiter. The color cod-
ing of the trajectory shows how the space-
craft’s velocity is increased when passing by
behind Jupiter, whose trajectory is shown in
brown.

The figures of Tab. 6.10 show that this mission satisfies the posed requirements. Due to the
required relative positions of the target and Jupiter, suited launch opportunities do however
exist only once per decade. The JGA in fact reduces mission flexibility and thus increases
mission execution risk through eventual missing the required launch date. The author et
al. [64] showed that a pure SEP+REP mission, based on already or soon existing technologies,
can achieve a flight time of 27.5 yrs. A reduction of the mission execution risk is therefore
possible through relaxation of the ∆t-limit by approximately 10 percent. This results in a
28-yrs-limit, but the benefit would be more frequent launch opportunities. That is because
the launch date only depends on the relative position of the Earth to the heliopause nose.
This geometry repeats more often than for IHP mission designs that include gravity assists
at outer planets. More frequent launch opportunities and risk reduction could potentially
compensate for increased mission times.
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Conclusions

This chapter concludes this thesis by summarizing the problem statement and the novel con-
tributions to research and by providing recommendations and an outlook to further research
fields. It describes the problem, lists the obtained results, and gives a summary about what
has been done to achieve these results. The thesis ends with a discussion of still unsolved
problems and recommendations of associated research fields worth while investigation with
the presented methods.

7.1 Summary

This subchapter describes the problem handled in this thesis. Then the newly developed
method to solve that problem is briefly described, followed by a description of the results
that were obtained in the validation and application process.

7.1.1 Problem Description and State-of-the-Art Solutions

Deep space missions are essential for the exploration of our solar system and beyond. The
scientific interest thereby shifts to more and more distant objects. Space missions to the outer
planets (Cassini-Huygens), to asteroids (Hayabusa), and to comets (Rosetta) are examples,
as well as solar polar orbiter (Ulysses) or solar-system-escape missions (Voyager, New Hori-
zons). Maximizing the scientific return of costly deep space missions also necessitates the
investigation of more than a single object per mission, if possible. NASA’s Dawn mission
achieved this by visiting the two asteroids Vesta and Ceres. As a consequence, the required
velocity increment of such deep space missions is constantly growing.

Up to a certain limit, the generation of the required velocity increment is achievable with
chemical propulsion. That limit is determined by the energy contained in the propellant
of the launcher or carried on-board the spacecraft. Therefore, this technology often cannot
provide the required orbit energy completely or the remaining usable spacecraft mass would
be insufficient for reasonable science. To enable deep space missions with chemical propul-
sion, the respective mission design consequently must include externally-provided additional
energy. This is possible through so-called gravity assists, which are flybys at celestial bodies
at a distance close enough to bend the trajectory of the spacecraft through gravitational
attraction. Planned and carried out correctly, a spacecraft can gain or loose orbital energy
from the flyby body. Including gravity assists into a mission however constrains the design
of the transfer trajectory. This affects the mission itself because the realization of a gravity
assists depends on several factors. These are the velocity of the spacecraft and the relative
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positions of the assisting body and the target at the time of the flyby. Multiple gravity assists
can prolong a mission’s duration further because of the required cruise phases to meet the
desired subsequent flyby conditions. Depending on the constellation of the involved bodies,
this can be achieved only every few years. The effect on possible launch dates in case of
program schedule delays can be severe. Despite the provision of the needed additional orbit
energy, gravity assists can thus be inapplicable for a particular mission.

An alternative to including gravity assists into mission design for higher velocity increments is
the use of a more capable propulsion technology. Low-thrust propulsion is such a technology,
with electrical propulsion being the most prominent one. The exhaust velocities of electrical
thrusters are not inherently limited and primarily dependent on the electrical input power.
The propellant efficiency of electric propulsion systems, expressed with the specific impulse,
is therefore significantly higher than the one of chemical propulsion systems. Advanced
low-thrust propulsion concepts, such as solar sails, even operate propellantless through the
generation of a thrust force solely from solar radiation pressure. Low-thrust propulsion can
therefore enable the described high-energy mission types without or with fewer gravity assists.
This reduces or eliminates mission design constraints resulting from these flybys. The benefit
of a high thrust efficiency of low-thrust propulsion comes along with a very small absolute
thrust level. It ranges from of a few milli-Newtons to a few Newtons and is significantly less
than the kilo-Newtons of thrust force chemical propulsion can provide. High-thrust applica-
tions, such as a launch from the Earth or a planetary capture, are consequently infeasible
for low-thrust propulsion. Its usefulness for propellant-efficient transfers in planetary and
interplanetary space is nevertheless obvious.

The different thrust characteristics of chemical and low-thrust propulsion affect the design of
transfer trajectories and its optimization w.r.t. critera like flight time or propellant consump-
tion. High-thrust trajectories can be regarded as pure free-flight phases with instantaneous
velocity changes at the begin and the end of a transfer and a few small midcourse correction
maneuvers. In its simplest case, an optimal chemical transfer trajectory only requires an
optimal injection velocity vector at the optimal launch time, which results in four variables
that must be optimized. Various optimization methods have been successfully developed for
this purpose. They range from gradient-based local optimization methods, often based on
Newton iteration schemes, to heuristic and probability-based global optimization methods,
like simulated annealing, ant simulation, particle swarm optimizers, and genetic algorithms.
Local optimization methods are precise, deterministic and their mathemathical foundations
well understood. This means, if there is an optimum near the current solution, then such
methods will find it with high fidelity. Their need for an initial guess solution is, however, a
known drawback, as well as their inability to escape from any potentially existing local opti-
mum. Global optimization methods can, by principle, escape local optima in solution space,
although it is not guaranteed. Furthermore, they need no initial guess solution, which is a
considerable advantage over local optimization methods. Especially for complex transfers,
such an initial guess is difficult to generate and often requires a team of flight mechanics and
optimization experts.

Unlike the quasi-instantaneous flight path changes caused by chemical propulsion, the orbital
elements of low-thrust-propelled spacecraft change permanently through the continuously
applied thrust acceleration. Assuming three-dimensional local optimal thrust vectors and
depending on the chosen time-discretization, this can lead to thousands of variables to op-
timize. A few local optimization methods have been adapted for this purpose. Common to
most of them is a resulting set of many equations. Arranged in a matrix and provided with
an initial-guess solution sufficiently close to the optimum, these optimization methods find
the optimum through variation techniques. Stochastic methods have been applied as well to
low-thrust trajectory optimization. One of them is Evolutionary Neurocontrol, which was
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used by Dachwald [13] to optimize single-phase, interplanetary, low-thrust transfer problems.
It combines an optimal control mechanism called Artificial Neural Networks with the opti-
mization method Evolutionary Algorithms for the training of neural network parameter sets.
Evolutionary neurocontrol uses artificial neural networks for the steering of a spacecraft. That
means it derives the necessary control variables from a set of problem-specific input variables
according to the strategy stored within its internal parameters. An evolutionary algorithm
then searches for an optimal strategy to solve the particular transfer problem. The imple-
mentation of ENC resulting from Dachwald’s work is a computer program named Intelligent
spacecraft Trajectory Optimization through Evolutionary Neurocontrol (InTrance).

A deep space mission however often comprises more than only a single flight phase. Dawn,
for example, features a rendezvous transfer from the Earth to Vesta and, after finishing of
science operations at Vesta, a second rendezvous transfer to the final destination Ceres. This
rather simple multiphase transfer shows the problems associated with global optimization of
multiphase low-thrust transfers. For the optimization of such a mission design w.r.t. short
mission duration, for example, it does not suffice to optimize the two low-thrust rendezvous
transfers for a short transfer duration. The launch dates at the Earth and Vesta must be
chosen optimally as well. Whether it is favorable for a minimum total mission duration
to concentrate on the reduction of the flight time of the first flight leg or of the second is
principally unknown beforehand. The dwell time at the first mission target as well as the
propellant mass introduce further variables that contributes to mission duration and must be
accounted for in a global optimization method. Moreover, an optimization of the first transfer
requires knowledge of the propellant mass required for the second transfer. In summary, global
optimization of high-thrust and single-phase low-thrust transfers is no problem for existing
optimization schemes and methods. However, the problem of finding a generic methodology
for true global optimization of multiphase low-thrust trajectories therefore remained unsolved
so far.

7.1.2 Approach and Results

The starting point for the development of a methodology called Multiphase Evolutionary
Neurocontrol (MENC) for the global optimization of multiphase low-thrust trajectories was
Evolutionary Neurocontrol and its implementation for heliocentric single-phase transfers In-
Trance. This software was substantially revised and extended to support that objective. The
core component of trajectory simulation, which serves as the evaluation element of the Evolu-
tionary Algorithm, was redesigned from a single-phase simulation to a multiphase simulation
framework. The basic approach was thereby to implement each mission phase through a spe-
cific simulation object. Each of these objects contained a steering strategy incorporated by a
Neurocontroller. As in the real transfer, each simulation was also linked to the simulation of
the preceding phase and the subsequent phase. Coupling conditions assured physical integrity
at the boundary of two phases in terms of mass, time, position, and velocity variables. To
support also non-heliocentric mission analysis, the simulation implementation was further ex-
tended with new features. Third-body disturbances, which are not negligible for Earth-Moon
transfers, for example, were implemented. As low-altitude orbits about the Earth or another
planet are affected by shadowing, and as this has a crucial effect on solar-electric propulsion
systems, models of planetary shadows were implemented as well. Using Neurocontrollers
for spacecraft steering reduced the number of variables that had to be optimized. Together
with the starting conditions of each phase, those variables were encoded on a string. The
existing Evolutionary Algorithm of InTrance then solved the problem through concurrent
optimization of the steering strategies and initial conditions of each mission phase.

Newly implemented features as well as the entire framework were verified before application
for preliminary mission analysis. This was achieved in several validation stages. This means
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validation was carried out starting with simple tests of elementary elements or components of
methodology, such as the Evolutionary Algorithm. The successful component tests were fol-
lowed by recalculation of single-phase non-heliocentric transfers from literature and compari-
son with the published results. InTrance was therefore used to recalculate several low-thrust
orbit transfers about the Earth and other celestial bodies. The results obtained by InTrance
showed in all cases comparable or even superior results. The next stage was the validation
of the multiphase framework. Two examples of low-thrust transfers with each having two
flight phases were chosen for that purpose: a SMART-1-like solar-electric transfer from an
Earth-bound orbit into an orbit about the Moon and the Dawn scenario of an interplanetary
double rendezvous. In the first case, the transfer trajectory was split into two phases. The
first one lead from an orbit about the Earth to a handover point near the Moon’s sphere of
influence. From there, the second phase lead to the final orbit about the Moon. To achieve
a flight time-optimal transfer, InTrance therefore had to optimize the steering strategy of
both flight legs, the handover point, and the propellant masses. The final validation was the
recalculation of the Dawn mission, excluding the gravity assist at Mars, which is part of the
real mission design. This simplification can be done, as it was included for mission margin
reasons and not due to orbit energy requirements. InTrance found basically the same results
using the original mission parameters, i.e., power, masses, dates. In the case of that transfer,
a strictly quantitative assessment is difficult because of the neglected gravity assist and due
to intended purpose of InTrance. Intended for preliminary mission analysis, features such as
duty cycles, i.e., times reserved other activities than for thruster operation, are not modeled.
The real Dawn trajectory however must and does include such times, causing the respective
effect on the transfer. A final aspect should be highlighted in the context of this validation
case. While the real transfer was developed and optimized by a team of flight dynamics and
optimization experts, the trajectory presented in this thesis was calculated by the improved
version of InTrance. The author only had to provide a configuration with mission describing
parameters, e.g., masses, launch windows, propulsion system technology, etc.

The developed methodology was finally applied to a challenging multiphase low-thrust mission
scenario. This mission design, called Interstellar Heliopause Probe (IHP), should go to a
distance of 200 AU in less than 25 years. Its transfer trajectory consisted of two flight phases
and included a change of the propulsion system as well as gravity assist at Jupiter. While
the first transfer leg until the flyby at Jupiter was achieved with a solar-electric propulsion
system, the second flight leg after the gravity assist until end of mission was carried out using a
nuclear-thermal-electric propulsion system. The simple steering strategy of always thrusting
along the current velocity vector was chosen for the second flight leg. InTrance was configured
to optimize the entire mission design, i.e., launch date, the launcher-provided hyperbolic
excess velocity vector at orbit injection, the needed propellant mass, the steering strategy
until burnout of the first propulsion stage and the optimal gravity assist at Jupiter. The
resulting transfer lasted 23.8 yrs, well below the set limit of 25 yrs. This was achievable only
through including the gravity assist at Jupiter. It must be mentioned that InTrance cannot
use such maneuvers in a robust manner usable for mission analysis. For IHP, this was possible
only by configuring InTrance for a very close flyby at Jupiter and accounting for its third-
body perturbation during the heliocentric transfer. Only the masses of such large objects
can influence the flight path of spacecraft already at very large distances. This explains, why
planets like Mars cannot be used for gravity assists with the current implementation.

The results obtained in the course of the validation and prelimiary mission analysis work
show that the developed method Multiphase Evolutionary Neurocontrol globally optimizes
a multitude of different heliocentric and non-heliocentric, multiphase low-thrust transfers.
It does not require an initial guess solution and, based on the user-provided configuration,
optimizes a mission design as a whole, i.e., including departure dates, handover points, and
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propellant masses, if required. In doing this, Multiphase Evolutionary Neurocontrol elimi-
nates the deficiencies of other optimization methods. Despite this improvement, a few mission
types remain difficult to optimize or cannot be optimized yet with this method. The reason
is the missing robust support of gravity assists within InTrance. Therefore mission designs
requiring such flybys, especially at smaller planets like the Earth or Mars, to achieve the nec-
essary velocity increment, generally cannot be optimized with the current implementation of
Multiphase Evolutionary Neurocontrol. Exception to this statement are flybys at very large
celestial objects, as has been demonstrated with the IHP mission design.

7.2 Recommendations for Further Work

This thesis showed the successful extension of Evolutionary Neurocontrol to the optimiza-
tion of multiphase low-thrust transfers. However, a few questions remain unanswered and
not all of its capabilities are yet explored. Section 7.2.1 therefore recommends topics for
further fundamental research in the fields of Artificial Neural Networks and Evolutionary Al-
gorithms, wile section 7.2.2 gives more practical recommendations to improve the application
of Evolutionary Neurocontrol to the optimization of low-thrust spacecraft trajectories.

7.2.1 Fundamental Research

An interesting research topic is the search for the answer to the question of the optimal NC
input data set. The NCs within ENC and MENC were provided with a set of astrodynamic
state information of the spacecraft and the target. Although the NCs solved the respective
problems, it is unclear if another, maybe smaller, input data set would have solved the
problem as well. Most likely, the optimum data set has no or only little physical meaning
and is a yet unknown combination of problem parameters. Starting with a particular transfer
problem, ENC could be useful for the determination of such a minimum data set for that
transfer. Subsequent analysis of these input parameters could provide more knowledge into
the nature of this abstract input data set and which physical input parameters have the most
influence on the output. The extension from one transfer type to further mission types, e.g.,
flyby and rendezvous transfers to varying targets, also with different inclinations, could lead
to an input data set appropriate for the generic description of transfer problems.

Similar to the search for the optimal input data set is the search for an ANN that can solve
any low-thrust transfer of a particular type. Taking a flight-time-minimal RV-type transfer as
an example and assuming the transfer is feasible, such an ANN would be capable of steering
any low-thrust spacecraft from one planet to another planet without further training. Such
a ANN would necessarily have generalized best and “understood” the underlying nature of
the transfer problem. InTrance can help on such investigations with its support for multiple
trajectory integrations with a single NC.

Trying to find for the smallest ANN capable of achieving the optimization task is another
recommendation for further fundamental research on this AI element. An approach to achieve
this might be the concurrent training of two separate NCs in addition to the one of a regular
trajectory optimization with ENC. The first NC thereby features an additional neuron in
its hidden layer than the regular NC, and the other NC has one less. As a training data
set is available from the current best solution, back-propagation should allow parameter
optimization of the additional NCs. The ANN with more neurons can then be used if the
current one does not achieve the boundary constraints. The smaller one is consequently taken
if it matches the boundary constraints and achieves or supersedes the objective function value
of the original ANN. This approach requires feed-forward ANNs with differentiable neuron
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transfer functions. Following the sketched approach, an on-line optimization of not only the
ANN parameters but also its structure seems promising.

Besides research related to ANNs that reside within the NC, also the training algorithm, the
GA, offers further research topics. The current algorithm is stable and robust. However, it
is not clear whether further adaption to natural evolution might improve its behavior even
more, i.e., reduce runtime through early and assured convergence to a the global optimum.
Natural evolution of many life forms relies on diploid chromosomes but most GA implement
only haploid genome structures. Using diploid chromosomes and deciding upon reproduction
on which chromosome half to pass on to the offspring might help to keep up genetic diversity
and thus improve convergence behavior.

7.2.2 Application-oriented

This section describes several recommendations related to the application of ENC to the
analysis of space missions that involve low-thrust-propelled spacecraft. Further research can
address several topics, such as usability, robustness, features, performance and reliability, and
only a few can be listed here.

First, the suboptimal accuracy inherent to global optimization methods such as EAs might be
alleviated through a combination with local optimizing techniques. For example, a solution
obtained through InTrance could serve as initial guess solution to a local optimizer, which
then achieves final accuracy. There may be however practical limits to this approach because
some control vector histories are difficult to optimize for analytical methods. Instantaneous
changes of parameter values, for example, are difficult to model for methods that require
derivatives.

InTrance is constrained to the optimization of predefined mission scenarios, i.e., a user must
specify target, trajectory type, dates, and spacecraft’s capabilities. Automatic optimization
of multiphase missions for which only the targets but not their sequence is known is currently
not possible. Combining InTrance with a heuristic method that solves that combinatorial
problem beforehand would be an approach to find global-optimal solutions to such problems.
This would allow the increase of scientific return of a mission as the spacecraft, while on
its way to the primary target, could conduct as many asteroid flybys as possible without
spending significant additional propellant.

Within the work for this thesis only mission-specific objective functions were used, i.e., they
were valid for the entire mission and not phase-specific. Dropping this assumption would
allow, for example, to optimize one mission phase for minimum transfer time and another
one for minimum propellant consumption. The assessment of the final fitness of a solution
candidate is however not easy and often strongly mission dependent.

The intended application of InTrance is the support of mission analysis on Phase-A study
level, and its current capabilities are sufficient for that purpose. Nevertheless, the extension
with operational constraints would enhance its usefulness even more. For example, spacecraft
on deep space missions must regularly communicate with its ground segment. This is not a
problem for a chemical missions. For low-thrust-propelled spacecraft, however, with its long
thrust phases, it certainly has an effect, as the spacecraft may have to be turned towards the
Earth. During that communication time, it cannot point the thrust vector in the direction
required for optimal trajectory change. This is expressed in a so-called duty cycle, which is
the relative fraction of a day during which thrusting is allowed. This cannot be accounted for
with InTrance. The effect resulting from such limitations on various mission characteristics,
such as total mission duration, can thus not yet be determined.

The spacecraft model implemented in InTrance is designed for phase-A level study support.
Complex spacecraft models are not supported. Improved models of the different spacecraft
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subsystems would be beneficial for higher simulation accuracy. The implemented ion engine
model, for example, lacks the feature of a maximum total impulse. In other words, every
engine can operate as long as it is supplied with propellant, which is impossible in reality.
Restricting an engine’s spent impulse creates new constraints on the optimization because the
load of thrust generation should be evenly shared among the engines of a propulsion stage.
Using different engine types, with different Isp-values, offers further optimization possibilities.
An intelligent scheduling algorithm, for example, could select the engine(s) to use according
to the current astrodynamic environment, the available electrical power, and the spent total
impulse. A spacecraft with such intelligent propulsion subsystem control could therefore
utilize the most efficient engine type when required electrical power is available and the more
powerful but propellant-inefficient ones at times of limited electrical power.
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Appendix A

Coordinate Frames

A.1 Inertial Cartesian Frame

The Cartesian reference frame I : pex, ey, ezq is right-handed positively defined through its

orthogonal unit vectors ex, ey, and ez. A vector r expressed in cartesian frame coordinates

is therefore described with its projections along these base vectors. The XY-plane of the

inertial heliocentric cartesian reference frame I : pex, ey, ezq is defined by the Earth’s mean

orbit plane and the x-axis by the vernal equinox direction of epoch J2000 [58]

r � rer � r rperexqex � pereyqey � perezqezs
� r cos per, exq ex � r cos per, eyq ey � r cos per, ezq ez

� xex � yey � zez �
�� x

y
z

�. (A.1)

The base vectors are invariant w.r.t. time and therefore their time derivatives are zero

dex

dt
� dey

dt
� dez

dt
� 0. (A.2)

The velocity vector as the positions vector’s first time derivative is computed as

v � 9r � dr

dt
� d prerq

dt
� d pxex � yey � zezq

dt
� d pxexq
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� d pyeyq
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(A.3)

The acceleration vector, i.e., the positions vector’s second derivative is computed to

a � 9v � dv

dt
� :r � d2r

dt2
� :xex � :yey � :xey �

�� :x
:y
:z

�. (A.4)



130 A.1 Inertial Cartesian Frame

Figure A.1: The Cartesian Reference Frame I. It is defined through its base vectors ex, ey,
and ez. A vector r is thus the vector sum of these base vectors multiplied with the components
of r.

Figure A.2: The Polar Reference Frame P : per, eϕ, eϑq is defined through its base vectors
er, eϕ and eϑ. A vector r is expressed with the vector length or magnitude r, the azimuth angle
ϕ P p0, 2πs, and the elevation angle ϑ P

�
�π

2 ,�
π
2

�
.
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A.2 Polar Reference Frame

The right-handed, orthogonal polar reference frame P : per, eϕ, eϑq is defined with the or-
thonormal base vectors er, eϕ, and eϑ, which can be described in cartesian frame coordinates

er �
�� cosϕ cosϑ

sinϕ cosϑ
sinϑ

� (A.5)

eϕ �
�� � sinϕ

cosϕ
0

� (A.6)

eϑ �
�� � cosϕ sinϑ

� sinϕ sinϑ
cosϑ

�. (A.7)

A vector r is defined r � rer. The derivatives of the base vector are

9er � der

dt
�
�� � 9ϕ sinϕ cosϑ� 9ϑ cosϕ sinϑ

9ϕ cosϕ cosϑ� 9ϑ sinϕ sinϑ
9ϑ cosϑ

�� 9ϕ cosϑeϕ � 9ϑeϑ (A.8)

9eϕ � deϕ
dt

�
�� � 9ϕ cosϕ

� 9ϕ sinϕ
0

�� � 9ϕ pcosϑer � sinϑeϑq (A.9)

9eϑ � deϑ
dt

�
�� 9ϕ sinϕ sinϑ� 9ϑ cosϕ cosϑ

� 9ϕ cosϕ sinϑ� 9ϑ sinϕ cosϑ

� 9ϑ sinϑ

�� � 9ϕ sinϑeϕ � 9ϑer. (A.10)

The velocity vector v is

v � 9r � d prerq
dt

� 9rer � r 9er � 9rer � r
�
9ϕ cosϑeϕ � 9ϑeϑ
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The acceleration a is derived from r and v with (A.8)- (A.10):

a � 9v � :r � d

dt
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Figure A.3: The Orbit Reference Frame O. The orbit angle ζ is between et and eϕ.

A.3 Orbit Reference Frame

The orbit reference frame O : per, et, ehq offers easier description of a spacecraft’s translational
motion, as it has two unit vectors in the orbit plane. It derives from the P-frame through a
rotation about er with the rotation angle ζ

ζ � arccos peϕetq � arctan

�
vϑ
vϕ



� arctan

�
9ϑ

9ϕ cosϑ

�
. (A.13)

The radial unit vector er lies in the orbit plane and points to the spacecraft’s current position.

er � r

|r| �
�� cosϕ cosϑ

sinϕ cosϑ
sinϑ

� (A.14)

The transversal unit vector et also lies in the orbit plane and is perpendicular to er.

et � eh � er � cos ζeϕ � sin ζeϑ �
�� � sinϕ cos ζ � cosϕ sinϑ sin ζ

cosϕ cos ζ � sinϕ sinϑ sin ζ
cosϑ sin ζ

� (A.15)

The orbit-normal unit vector eh points in angular momentum direction and is perpendicular
to er and et.

eh � r� v

|r� v| � � sin ζeϕ � cos ζeϑ �
�� sinϕ sin ζ � cosϕ sinϑ cos ζ

� cosϕ sin ζ � sinϕ sinϑ cos ζ
cosϑ cos ζ

� (A.16)
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Orbital Elements

The size of an orbit in space, its shape, spatial orientation, and the in-orbit position of
an object on that orbit must be known to allow prediction of the object’s future position
and velocity. A six-dimensional vector holding current position and velocity data is such
a description. Supplemented with the time for which this information is valid, this vector
describes the object’s current state of motion and is therefore called state vector or state. A
state vector comprising cartesian or polar position and velocity data is not the only suitable
parameter set. Other sets exist, and they are called orbital elements, or Keplerian elements,
or two-body elements. The following list of orbital elements is therefore not complete. Val-
lado [91] also gives singularity-free parameter sets that are better suited for special problems,
e.g., zero inclination or circular orbits.

Semimajor axis a
Unperturbed orbits follow the shape of conic sections. The distance between the two

extreme points of an ellipse is called major axis and its half is called the semimajor axis
a. The semimajor axis determines the size of ellipse orbits and hyperbolic orbits; it is not
defined for parabolic orbits. One can either use the distances of the two extreme points from
the focal point F , the apoapsis ra and the periapsis rp, or the current distance r, the velocity
v, and gravitational parameter µ of the central body to calculate a

a � ra � rp
2

�
�

2

r
� v2

µ


�1

. (B.1)

Eccentricity e
The eccentricity e is the shape parameter, and for closed orbits it is defined as the ratio of

the difference of ra and rp and the corresponding sum

e � ra � rp
ra � rp

. (B.2)

Elliptic orbits have eccentricity values between zero and one. Parabolic orbits have an eccen-
tricity of one, and for hyperbola-shaped orbits e is greater than one.
The infinite apoapsis distance in case of parabolic or hyperbolic orbits render (B.2) unsuit-
able for the calculation of e. With the mass-specific orbit energy E and the specific angular
momentum h, the equation valid for all orbits is:

e �
d

1� 2Eh2

µ2
. (B.3)
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Figure B.1: Elliptical Orbit and orbit plane Keplerian Elements.

The eccentricity also equals the norm of the eccentricity vector, which points to the orbit’s
pericenter

e �
�
v2 � µ

r

�
r� pr � vqv
µ

, (B.4)

e � }e} . (B.5)

Inclincation i
The angle between the specific angular momentum vector h � r � v and the reference

frame’s third unit vector ez is called inclination angle, or inclination i

i � arccos

�
h � ez

h



. (B.6)

The inclination angle is constrained to 0 ¤ i ¤ π and orbits with i ¡ 0 are called inclined
orbits. Orbits with 0 ¤ i   π{2 are called direct or prograde, and orbits with π{2   i ¤ π are
retrograde. Orbits whose inclination is zero or π are in the reference system plane spanned
by ex and ey. These orbits are called equatorial if the Earth is the central body and ecliptical
if they are Sun-centered. A special orbit type is the one with i � π{2. A spacecraft moving
along this orbit crosses both poles of the central body. That gave this type of orbit the name
polar orbits.

Right ascension of ascending node Ω
The right ascension of ascending node is the angle between the unit vector ex and the vector

from the reference system’s origin to the point on the reference system plane spanned by ex
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Figure B.2: Elliptical Orbit in Space

and ey where the orbit crosses that plane from south to north. The second such point is called
descending node because an object on the orbit would enter the southern hemisphere at this
point coming from the northern hemisphere. Both points exist only for inclined orbits, i.e.,
i ¡ 0. The line that connects both points is called line of nodes, and the vector n, pointing
from the center of the coordinate system to the ascending node, is called node vector

n � ez � h. (B.7)

Using the node vector, the right ascension of the ascending node is

rΩ � arccos

�
ex � n
|n|



Ω �

rΩ pn � eyq ¥ 0

2π � rΩ pn � eyq   0
.

(B.8)

Argument of pericenter ω
The argument of pericenter is measured from the ascending node along the orbit to the

point closest to the central body, and it calculates from node vector n and eccentricity vector
e. rω � arccos

�
n � e
|n| |e|



ω � rω pe � ezq ¥ 0

2π � rω pe � ezq   0

(B.9)

Mean anomaly M
The mean anomaly M is the angle between the pericenter and the fictitious orbit point at

which an object would be if it moved with the mean motion n.

n � 2π

T
�
d
γ pmCB �mSCq

|a|3 (B.10)
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The orbit period T is the time span that an object on the orbit needs for a complete revolution,
and mCB and mSC are the masses of the central body and the spacecraft. The mean anomaly
is

M P r0, 2πq � pt� tpqn (B.11)

with the current time t and the periapsis passage tp, which is the point in time when the object
was at the orbit’s periapsis. To calculate ν from M one needs the the eccentric anomaly E
or, if e ¡ 1, the hyperbolic anomaly H. Both can be iteratively computed from M .

M � E � e sinE, e   1
sinhH �H, e ¡ 1

(B.12)
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�b
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�
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2

�	
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2 arctan
�b

e�1
e�1 tanh

�
H
2

�	
, e ¡ 1

(B.13)

True anomaly ν
Although not being a Keplerian element, the orbital element true anomaly ν P r0, 2πq is

also used to describe a body’s position on its orbit. It is the angle between the ascending
node vector n and the position vector r.

ν � arccos

�
n � r
|n| |r|



(B.14)



Appendix C

Optical SRP Force Model

Three components sum to the total SRP force FSRP,optical of the optical force model: FSRP,a

due to absorption of sunlight photons, FSRP,r due to the fraction that is reflected, and FSRP,e

due to thermal irradiation of absorbed energy.

FSRP,optical � FSRP,a � FSRP,r � FSRP,e (C.1)

The absorption force component is calculated identical to that of the ideal SRP force model
with the solar radiation pressure, pSRP, the sail area, A, and the sail pitch angle, β.

FSRP,a � pSRPA cosβel (C.2)

FSRP,a points into sunlight direction, and the relation el � sinβet � cosβen allows express-
ing (C.2) with a normal and a transversal force component.

FSRP,a � pSRPA cosβ psinβet � cosβenq (C.3)

Reflection, however, is different than in the ideal SRP force model. Not all sunlight photons
are reflected, and the reflected ones are not all reflected specularly, i.e., in er-direction.

FSRP,r � FSRP,rs � FSRP,rd (C.4)

Like the reflection force component in (C.4) divides into two components, also the reflection
coefficient, ρ � ρs�ρd, is the sum of a specular reflection coefficient, ρs, and a diffuse reflection
coefficient, ρd. The specular component of (C.4) points in er-direction

FSRP,rs � �ρspSRPA cosβer (C.5)

and with the relation er � sinβet � cosβen it can be dissolved into normal and transversal
direction.

FSRP,rs � �ρspSRPA cosβ psinβet � cosβenq (C.6)

The photons that are not specularly reflected, leave the front side of the solar sail in all
directions and therefore the resulting force direction is en. An ideal surface would appear
with constant brightness from all viewing angles. A real surface, however, does not, and
the non-Lambertian coefficient Bf describes the deviation of the sail front side from an ideal
surface.

FSRP,rd � ρdBfpSRPA cosβen (C.7)
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Figure C.1: Components of Optical SRP Force. The vector FSRP,optical of the optical
SRP force model consists of components resulting from different mechanisms: from absorption,
FSRP,a; from specular reflection, FSRP,rs, from diffuse reflection, FSRP,rd; and from irradiation of
thermal energy, FSRP,e. Resolving these vectors along the solar sail’s normal unit vector, en, and
the transversal unit vector, et, allows decomposition of the total force vector into the normal
component FSRP,optical,n and the transversal component FSRP,optical,t. The sail pitch angle, β, is
defined between the direction of incident sunlight, el, and the sail normal direction, en. The
centerline angle, ε, is defined between the sail normal direction and the direction of the SRP
force.
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The total reflection force is therefore

FSRP,r � pSRPA cosβ rpρdBf � ρsq en � ρd sinβets . (C.8)

A body having an absolute temperature T ¡ 0 and an emission coefficient ε ¡ 0 irradiates
thermal energy, and that relation is the Stefan–Boltzmann law, which, under the assumption
of uniform temperature throughout the body, gives the energy resulting energy flux.

W � εσT 4 (C.9)

The emissivity ε P r0, 1s tells if the body is a so-called black body (ε � 1), or if it does not
irradiate energy (ε � 0). A body having an emissivity coefficient between zero and one is
called grey body.
If we assume a solar sail as a flat plate, the dominating surfaces from which irradiation takes
place are the front side and the back side. Allowing both sides to have non-Lambertian
character, the resulting force from irradiation on the front side is calculated with the speed
of light c and the sail film surface area A.

Fe,f � σεfBfAT
4

c
en (C.10)

Fe,b � �σεbBbAT
4

c
en (C.11)

FSRP,e � Fe,f � Fe,b � σAT 4

c
pεfBf � εbBbq en (C.12)

If the sail is in thermal equilibrium, the incoming energy flux is equal to the irradiated thermal
energy per time.

Ein � Eout � Eout,f � Eout,b (C.13)

The thermal input per time can be obtained from the solar radiation flux S times the projected
sail area A cosβ and the absorption factor α. The thermal output is known from (C.9) and
the sail area A.

αSA cosβ � σAT 4 pεf � εbq (C.14)

Using the relation S � cpSRP allows resolving for the equilibrium temperature.

T � 4

d
αcpSRP cosβ

σ pεf � εbq (C.15)

With this temperature the force component due to emission (C.12) is

FSRP,e � αpSRPA cosβ

�
Bfεf �Bbεb
εb � εf



en. (C.16)

Adding the force vectors and resolving in sail normal and sail transversal direction gives the
two resulting forces which again sum up to the vector FSRP,optical.

FSRP,optical,n � pSRPA cosβ

�
p1� ρsq cosβ � α

�
Bfεf �Bbεb
εb � εf



�Bfρs

�
en (C.17)

FSRP,optical,t � pSRPA cosβ sinβ p1� ρsq et (C.18)
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Appendix D

InTrance Configuration Files

D.1 Earth-Moon Configuration

D.1.1 InTrance Configuration

COMMAND = optimize

SIM_PARAM_FILE_1 = EarthMoonSIM1.sim

SIM_PARAM_FILE_2 = EarthMoonSIM2.sim

EA_PARAM_FILE = coldstart.eap

COLDSTART = yes

SIM_DATA_FILE = coldstart.csv

TRAJ_DATA_FILE = coldstart.dat

GESOP_FILE = coldstart.gesop.txt

VRML_FILE = coldstart.wrl

CTRL_FILE = coldstart.ctr

BEST_CHROM_FILE = coldstart.eac

REPORT_FILE = coldstart.rep

D.1.2 Evolutionary Algorithm Configuration

SEARCH_SPACE_HYPERCUBE_SIZE = 1.0

HYPERCUBE_START_SIZE = 0.125

HYPERCUBE_SHRINKING_FACTOR = 0.5

POPULATION_SIZE = 75

SEARCH_SCAN_EPOCHS = 10

FITNESS_FUNCTION_TYPE = J_AND

CHROMOSOME_MUTATION_PROBABILITY = 0.93

SELECTION_PRESSURE_ON_TIME = 0.03

HYPERCUBE_UPPER_LIMIT = 1.0E-3

IL_POP_CONV_FBC_MET = 1.0E-4

IL_POP_CONV_FBC_NOT_MET = 1.0E-2

IL_EA_CONV_FBC_MET = 1.0E-3

IL_EA_CONV_FBC_NOT_MET = 5.0E-3

FBC_MET_FITNESS = 0

CHROMOSOME_INIT_MODEL = RANDOM
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D.1.3 Neurocontroller Configuration of Phase 1

HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 12

NC_OUTPUT = direct

TRANSFER_FUNCTION = sigmoid

D.1.4 Neurocontroller Configuration of Phase 2

HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 12

NC_OUTPUT = direct

TRANSFER_FUNCTION = sigmoid

D.1.5 Spacecraft Configuration of Phase 1

SC_TYPE = NSTAR

SC_DRYMASS = 250.0

MIN_PROP_MASS = 11

MAX_PROP_MASS = 12

THROTTLE_TYPE = variable

SOLAR_ARRAY_CHAR_POWER = 15kW

POWER_VARIATION_EXPONENT = 1.7

N_THRUSTERS = 1

D.1.6 Spacecraft Configuration of Phase 2

SC_TYPE = NSTAR

SC_DRYMASS = 250.0

MIN_PROP_MASS = 16kg

MAX_PROP_MASS = 17kg

THROTTLE_TYPE = variable

SOLAR_ARRAY_CHAR_POWER = 15kW

POWER_VARIATION_EXPONENT = 1.7

N_THRUSTERS = 1

D.1.7 Simulation Configuration of Phase 1

INTEGRATION_INTERVAL = 60day

FLIGHT_TIME_MIN = 30day

INTEGRATION_STEPS = 500

MIN_OUTPUT_POINTS = 1

DYN_INTEGRATION_INTERVAL = no

MET_MAX = 100day

DISTURBING_BODIES = "disturbing_bodies.sim"

MIN_SOLAR_DISTANCE = 6900km

MODIFY_INIT_PARAMETERS = no

MODIFY_LAUNCH_DATE = yes

MODIFY_INIT_PROP_MASS = yes
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MODIFY_INIT_VINF = no

USE_DSSC = yes

DSSC_STEP_ANGLE_CONTROL = yes

DSSC_MAX_STEP_ANGLE = 5DEG

DSSC_MAX_STEP_SIZE = 5day

DSSC_MIN_STEP_SIZE = 60min

DSSC_STEP_DISTANCE_CONTROL = NO

DSSC_MAX_STEP_DISTANCE = 50000km

DSSC_APPROACH_CONTROL = no

DSSC_APPROACH_STEP_SIZE_FACTOR = 0.0

SIM_START_TIME_MIN = 55099

SIM_START_TIME_MAX = 55104

ARRIVAL_DATE_MIN = 0

ARRIVAL_DATE_MAX = 0

INITIAL_STATE = orbit

INITIAL_CENTRAL_BODY = Earth

INITIAL_FRAME_EQUATORIAL = false

INITIAL_SEMIMAJOR_AXIS = 100E3km

INITIAL_ECCENTRICITY = 0.716227925

INITIAL_INCLINATION = 7.0deg

INITIAL_LONGITUDE_OF_NODE = 178.0

INITIAL_ARGUMENT_OF_PERICENTER = 177.935176deg

INITIAL_MEAN_ANOMALY = 3.53deg

TARGET_STATE = body capture

TARGET_BODY_NAME = Moon

OPTIMIZATION_GOAL = minimum transfer time

ACCURACY_FITNESS_FRACTION = 0.0

INTEGRATOR = RK54F

MAX_RELATIVE_ERROR = 1.0E-8

MAX_ABSOLUTE_ERROR = 1.0E-8

USE_ITGR_STOPPER = no

SC_CONF = EarthMoonSC1.scp

NAV_TYPE = ANN

NAV_ANN_CONF = EarthMoonNC1.ncp

STEERING_DYN_UNIT_CALC = yes

STEERING_USE_MASS_PROPELLANT = no

STEERING_USE_RANGE = yes

STEERING_USE_RANGE_RATE = yes

STEERING_USE_ACC_THRUST_MAX = no

STEERING_USE_ACC_THRUST_MAX_DRY = no

STEERING_USE_STEP_SIZE = no

STEERING_USE_TIME_UNTIL_PERI_SC = no

STEERING_USE_TIME_UNTIL_PERI_TGT = no

STEERING_USE_ABS_CART_POS_X = yes

STEERING_USE_ABS_CART_POS_Y = yes

STEERING_USE_ABS_CART_POS_Z = yes

STEERING_USE_ABS_CART_VEL_X = yes

STEERING_USE_ABS_CART_VEL_Y = yes

STEERING_USE_ABS_CART_VEL_Z = yes
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STEERING_USE_ABS_POLAR_POS_R = no

STEERING_USE_ABS_POLAR_POS_AZI = no

STEERING_USE_ABS_POLAR_POS_ELE = no

STEERING_USE_ABS_POLAR_VEL_R = no

STEERING_USE_ABS_POLAR_VEL_AZI = no

STEERING_USE_ABS_POLAR_VEL_ELE = no

STEERING_USE_TGT_CART_POS_X = no

STEERING_USE_TGT_CART_POS_Y = no

STEERING_USE_TGT_CART_POS_Z = no

STEERING_USE_TGT_CART_VEL_X = no

STEERING_USE_TGT_CART_VEL_Y = no

STEERING_USE_TGT_CART_VEL_Z = no

STEERING_USE_TGT_CART_POS_REL_X = yes

STEERING_USE_TGT_CART_POS_REL_Y = yes

STEERING_USE_TGT_CART_POS_REL_Z = yes

STEERING_USE_TGT_CART_VEL_REL_X = yes

STEERING_USE_TGT_CART_VEL_REL_Y = yes

STEERING_USE_TGT_CART_VEL_REL_Z = yes

D.1.8 Simulation Configuration of Phase 2

INDEPENDENT_FLIGHT_PHASE = no

TRANSITION_THRESHOLD_MASS_PROP = 0.01

TRANSITION_THRESHOLD_STATE = 0.05 //0.09

SIM_START_TIME_MIN = 55147

SIM_START_TIME_MAX = 55153.2

INTEGRATION_INTERVAL = 20day

FLIGHT_TIME_MIN = 5day

MET_MAX = 100day

INTEGRATION_STEPS = 300

MIN_OUTPUT_POINTS = 1

DYN_INTEGRATION_INTERVAL = no

MIN_SOLAR_DISTANCE = 1738km

DISTURBING_BODIES = "disturbing_bodies.sim"

OPTIMIZATION_GOAL = minimum transfer time

ALWAYS_USE_OBJ_FCN = yes

ACCURACY_FITNESS_FRACTION = 0.0

INTEGRATOR = RK54F

MAX_RELATIVE_ERROR = 1.0E-8

MAX_ABSOLUTE_ERROR = 1.0E-8

USE_ITGR_STOPPER = no

MODIFY_INIT_PARAMETERS = no

MODIFY_LAUNCH_DATE = yes

MODIFY_INIT_PROP_MASS = yes

MODIFY_INIT_VINF = no

MODIFY_INIT_DISTANCE = yes

MODIFY_INIT_AZI = yes

MODIFY_INIT_ELE = yes



D. INTRANCE CONFIGURATION FILES 145

MODIFY_INIT_VEL = yes

MODIFY_INIT_OFA = yes

MODIFY_INIT_FPA = yes

USE_DSSC = yes

DSSC_STEP_ANGLE_CONTROL = yes

DSSC_MAX_STEP_ANGLE = 5DEG

DSSC_MAX_STEP_SIZE = 1day

DSSC_MIN_STEP_SIZE = 10min

DSSC_STEP_DISTANCE_CONTROL = NO

DSSC_MAX_STEP_DISTANCE = 2000km

DSSC_APPROACH_CONTROL = no

DSSC_APPROACH_STEP_SIZE_FACTOR = 0.0

INITIAL_STATE = vector

INITIAL_BODY_NAME = Moon

INITIAL_STATE_EQUATORIAL = no

INITIAL_CENTRAL_BODY = Moon

INITIAL_DISTANCE_MIN = 55440km

INITIAL_DISTANCE_MAX = 56540km

INITIAL_AZIMUTH_MIN = -33deg

INITIAL_AZIMUTH_MAX = -30deg

INITIAL_ELEVATION_MIN = 52deg

INITIAL_ELEVATION_MAX = 55deg

INITIAL_VELOCITY_MIN = +236m/s

INITIAL_VELOCITY_MAX = +248m/s

INITIAL_ORBIT_ANGLE_MIN = -85deg

INITIAL_ORBIT_ANGLE_MAX = -82deg

INITIAL_FPA_MIN = -22deg

INITIAL_FPA_MAX = -20deg

TARGET_STATE = orbital elements

TARGET_BODY_NAME = moon

TARGET_SEMIMAJOR_AXIS = 20E3km // = 262km orbit height

TARGET_INCLINATION = 40.0DEG //84.0DEG // almost polar

TARGET_ECCENTRICITY = 0.0 // circular target orbit

TARGET_DIST_MAX_FINAL = 2000km

TARGET_DIST_MAX_INIT = 4000km

TARGET_DIST_MAX_SHRINK = 0.9

TARGET_DIST_MAX_DECREASE = 100m

TARGET_DIST_MAX_REDUCTION_USE_MAX = FALSE

TARGET_RELVEL_MAX_FINAL = 100m/s

TARGET_RELVEL_MAX_INIT = 200m/s

TARGET_RELVEL_MAX_SHRINK = 0.9

TARGET_RELVEL_MAX_DECREASE = 1m/s

TARGET_RELVEL_MAX_REDUCTION_USE_MAX = FALSE
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SC_CONF = p2.scp

NAV_TYPE = ANN

NAV_ANN_CONF = p2.ncp

STEERING_DYN_UNIT_CALC = yes

STEERING_USE_MASS_PROPELLANT = no

STEERING_USE_RANGE = no

STEERING_USE_RANGE_RATE = no

STEERING_USE_ACC_THRUST_MAX = no

STEERING_USE_ACC_THRUST_MAX_DRY = no

STEERING_USE_STEP_SIZE = no

STEERING_USE_TIME_UNTIL_PERI_SC = no

STEERING_USE_TIME_UNTIL_PERI_TGT = no

STEERING_USE_ABS_CART_POS_X = yes

STEERING_USE_ABS_CART_POS_Y = yes

STEERING_USE_ABS_CART_POS_Z = yes

STEERING_USE_ABS_CART_VEL_X = yes

STEERING_USE_ABS_CART_VEL_Y = yes

STEERING_USE_ABS_CART_VEL_Z = yes

STEERING_USE_ABS_POLAR_POS_R = no

STEERING_USE_ABS_POLAR_POS_AZI = yes

STEERING_USE_ABS_POLAR_POS_ELE = yes

STEERING_USE_ABS_POLAR_VEL_R = yes

STEERING_USE_ABS_POLAR_VEL_AZI = yes

STEERING_USE_ABS_POLAR_VEL_ELE = yes

STEERING_USE_TGT_CART_POS_X = no

STEERING_USE_TGT_CART_POS_Y = no

STEERING_USE_TGT_CART_POS_Z = no

STEERING_USE_TGT_CART_VEL_X = no

STEERING_USE_TGT_CART_VEL_Y = no

STEERING_USE_TGT_CART_VEL_Z = no

STEERING_USE_TGT_CART_POS_REL_X = no

STEERING_USE_TGT_CART_POS_REL_Y = no

STEERING_USE_TGT_CART_POS_REL_Z = no

STEERING_USE_TGT_CART_VEL_REL_X = no

STEERING_USE_TGT_CART_VEL_REL_Y = no

STEERING_USE_TGT_CART_VEL_REL_Z = no

D.2 Dawn Configuration

D.2.1 InTrance Configuration

COMMAND = optimize

COLDSTART = yes

NO_OF_EVAL_OBJECTS = 4

ASTEROID_DATA_FILE1 = c:\ELEMENTS.NUMBR

SIM_PARAM_FILE_1 = Vesta.sim

SIM_PARAM_FILE_2 = Ceres.sim

EA_PARAM_FILE = coldstart.eap
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SIM_DATA_FILE = coldstart.csv

TRAJ_DATA_FILE = coldstart.dat

GESOP_FILE = coldstart.gesop.txt

VRML_FILE = coldstart.wrl

CTRL_FILE = coldstart.ctr

BEST_CHROM_FILE = coldstart.eac

REPORT_FILE = coldstart.rep

D.2.2 Evolutionary Algorithm Configuration

SEARCH_SPACE_HYPERCUBE_SIZE = 1.0

HYPERCUBE_START_SIZE = 1.0

HYPERCUBE_SHRINKING_FACTOR = 0.6

POPULATION_SIZE = 50

POPULATION_SIZE_SSS = 50

SEARCH_SCAN_EPOCHS = 10

FITNESS_FUNCTION_TYPE = J_AND

CHROMOSOME_MUTATION_PROBABILITY = 0.2

GENOM_MUTATION_PROBABILITY = 0.0

SELECTION_PRESSURE_ON_TIME = 0.03

HYPERCUBE_UPPER_LIMIT = 1.0E-3

IL_POP_CONV_FBC_MET = 1.0E-5

IL_POP_CONV_FBC_NOT_MET = 1.0E-2

IL_EA_CONV_FBC_MET = 1.0E-3

IL_EA_CONV_FBC_NOT_MET = 1.0E-3

CHROMOSOME_INIT_MODEL = RANDOM

FBC_MET_FITNESS = 0.0

D.2.3 Neurocontroller Configuration of Phase 1

NC_OUTPUT = direct

TRANSFER_FUNCTION = sigmoid

HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 35

D.2.4 Neurocontroller Configuration of Phase 2

NC_OUTPUT = direct

TRANSFER_FUNCTION = sigmoid

HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 35

D.2.5 Spacecraft Configuration of Phase 1

SC_TYPE = NSTAR

SC_DRYMASS = 793

MIN_PROP_MASS = 100

MAX_PROP_MASS = 305

SOLAR_ARRAY_CHAR_POWER = 9.8kW
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POWER_VARIATION_EXPONENT = 1.7

N_THRUSTERS = 1

THROTTLE_TYPE = variable

D.2.6 Spacecraft Configuration of Phase 2

SC_TYPE = NSTAR

SC_DRYMASS = 793

MIN_PROP_MASS = 50

MAX_PROP_MASS = 120

SOLAR_ARRAY_CHAR_POWER = 9.8kW

POWER_VARIATION_EXPONENT = 1.7

N_THRUSTERS = 1

THROTTLE_TYPE = variable

D.2.7 Simulation Configuration of Phase 1

INTEGRATION_INTERVAL = 1600day

FLIGHT_TIME_MIN = 1200day

INTEGRATION_STEPS = 400

MIN_OUTPUT_POINTS = 50

DYN_INTEGRATION_INTERVAL = yes

MODIFY_INIT_PARAMETERS = yes

MODIFY_LAUNCH_DATE = no

MODIFY_INIT_PROP_MASS = no

MODIFY_INIT_VINF = yes

USE_DSSC = no

DSSC_STEP_ANGLE_CONTROL = yes

DSSC_MAX_STEP_ANGLE = 6DEG

DSSC_MAX_STEP_SIZE = 60DAY

DSSC_MIN_STEP_SIZE = 1DAY

DSSC_STEP_DISTANCE_CONTROL = NO

DSSC_MAX_STEP_DISTANCE = 0.50AU

DSSC_APPROACH_CONTROL = yes

DSSC_APPROACH_STEP_SIZE_FACTOR = 0.0

SIM_START_TIME_MIN = 54200

SIM_START_TIME_MAX = 54400

ARRIVAL_DATE_MIN = 55805

ARRIVAL_DATE_MAX = 55805

INITIAL_STATE = body

INITIAL_BODY_NAME = EARTH

INITIAL_VINF_MIN = 3.362km/s

INITIAL_VINF_MAX = 3.362km/s

INITIAL_VINF_AZIMUTH_MIN = -10deg

INITIAL_VINF_AZIMUTH_MAX = +00deg

INITIAL_VINF_ELEV_MIN = -46deg

INITIAL_VINF_ELEV_MAX = -41deg
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TARGET_STATE = body rendezvous

TARGET_BODY_NAME = Vesta

TARGET_DIST_MAX_FINAL = 1.0E6km

TARGET_DIST_MAX_INIT = 1.0E6km

TARGET_DIST_MAX_SHRINK = 0.95

TARGET_DIST_MAX_DECREASE = 1.0E4km

TARGET_DIST_MAX_REDUCTION_USE_MAX = no

TARGET_RELVEL_MAX_FINAL = 500m/s

TARGET_RELVEL_MAX_INIT = 500m/s

TARGET_RELVEL_MAX_SHRINK = 0.95

TARGET_RELVEL_MAX_DECREASE = 1m/s

TARGET_RELVEL_MAX_REDUCTION_USE_MAX = no

OPTIMIZATION_GOAL = minimum transfer time

ACCURACY_FITNESS_FRACTION = 0.5

MIN_SOLAR_DISTANCE = 0.2AU

INTEGRATOR = RK54F

MAX_RELATIVE_ERROR = 1.0E-8

MAX_ABSOLUTE_ERROR = 1.0E-8

USE_ITGR_STOPPER = yes

SC_CONF = Vesta.scp

NAV_TYPE = ANN

NAV_ANN_CONF = Vesta.ncp

STEERING_DYN_UNIT_CALC = yes

STEERING_USE_RANGE = yes

STEERING_USE_RANGE_RATE = yes

STEERING_USE_ACC_THRUST_MAX = no

STEERING_USE_ACC_THRUST_MAX_DRY = no

STEERING_USE_STEP_SIZE = no

STEERING_USE_TIME_UNTIL_PERI_SC = no

STEERING_USE_TIME_UNTIL_PERI_TGT = no

STEERING_USE_ABS_CART_POS_X = yes

STEERING_USE_ABS_CART_POS_Y = yes

STEERING_USE_ABS_CART_POS_Z = yes

STEERING_USE_ABS_CART_VEL_X = yes

STEERING_USE_ABS_CART_VEL_Y = yes

STEERING_USE_ABS_CART_VEL_Z = yes

STEERING_USE_ABS_POLAR_POS_R = no

STEERING_USE_ABS_POLAR_POS_AZI = no

STEERING_USE_ABS_POLAR_POS_ELE = no

STEERING_USE_ABS_POLAR_VEL_R = no

STEERING_USE_ABS_POLAR_VEL_AZI = no

STEERING_USE_ABS_POLAR_VEL_ELE = no

STEERING_USE_TGT_CART_POS_X = no

STEERING_USE_TGT_CART_POS_Y = no

STEERING_USE_TGT_CART_POS_Z = no

STEERING_USE_TGT_CART_VEL_X = no

STEERING_USE_TGT_CART_VEL_Y = no

STEERING_USE_TGT_CART_VEL_Z = no

STEERING_USE_TGT_CART_POS_REL_X = yes
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STEERING_USE_TGT_CART_POS_REL_Y = yes

STEERING_USE_TGT_CART_POS_REL_Z = yes

STEERING_USE_TGT_CART_VEL_REL_X = yes

STEERING_USE_TGT_CART_VEL_REL_Y = yes

STEERING_USE_TGT_CART_VEL_REL_Z = yes

D.2.8 Simulation Configuration of Phase 2

INDEPENDENT_FLIGHT_PHASE = no

TRANSITION_THRESHOLD_MASS_PROP = 0.1

SIM_START_TIME_MIN = 56000

SIM_START_TIME_MAX = 56100

MET_MAX = 9JYR

INTEGRATION_INTERVAL = 1100day

FLIGHT_TIME_MIN = 700

INTEGRATION_STEPS = 110

MIN_OUTPUT_POINTS = 1

DYN_INTEGRATION_INTERVAL = yes

MODIFY_INIT_PARAMETERS = yes

MODIFY_LAUNCH_DATE = yes

MODIFY_INIT_PROP_MASS = no

USE_DSSC = no

DSSC_STEP_ANGLE_CONTROL = YES

DSSC_MAX_STEP_ANGLE = 5DEG

DSSC_MAX_STEP_SIZE = 10DAY

DSSC_MIN_STEP_SIZE = 1DAY

DSSC_STEP_DISTANCE_CONTROL = NO

DSSC_MAX_STEP_DISTANCE = 0.50AU

DSSC_APPROACH_CONTROL = yes

DSSC_APPROACH_STEP_SIZE_FACTOR = 0.0

DWELL_TIME_MIN = 100day

DWELL_TIME_MAX = 1.0JYR

INITIAL_STATE = body

INITIAL_BODY_NAME = Vesta

ARRIVAL_DATE_MIN = 57054

ARRIVAL_DATE_MAX = 57054

TARGET_STATE = body rendezvous

TARGET_BODY_NAME = Ceres

TGT_PROX_STATE_THRESHOLD = 0.005

TGT_PROX_STATE_THRESHOLD_FINAL = 0.001

TARGET_DIST_MAX_FINAL = 1.0E6km

TARGET_DIST_MAX_INIT = 1.0E6km

TARGET_DIST_MAX_SHRINK = 0.8

TARGET_DIST_MAX_DECREASE = 1.0E5km

TARGET_DIST_MAX_REDUCTION_USE_MAX = no

TARGET_RELVEL_MAX_FINAL = 500m/s

TARGET_RELVEL_MAX_INIT = 500m/s

TARGET_RELVEL_MAX_SHRINK = 0.9

TARGET_RELVEL_MAX_DECREASE = 1m/s
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TARGET_RELVEL_MAX_REDUCTION_USE_MAX = no

OPTIMIZATION_GOAL = maximum dwell time

ACCURACY_FITNESS_FRACTION = 0.01

MIN_SOLAR_DISTANCE = 0.2AU

INTEGRATOR = RK54F

MAX_RELATIVE_ERROR = 1.0E-6

MAX_ABSOLUTE_ERROR = 1.0E-6

USE_ITGR_STOPPER = yes

SC_CONF = Ceres.scp

NAV_TYPE = ANN

NAV_ANN_CONF = Ceres.ncp

STEERING_DYN_UNIT_CALC = yes

STEERING_USE_RANGE = yes

STEERING_USE_RANGE_RATE = yes

STEERING_USE_ACC_THRUST_MAX = no

STEERING_USE_ACC_THRUST_MAX_DRY = no

STEERING_USE_STEP_SIZE = no

STEERING_USE_TIME_UNTIL_PERI_SC = no

STEERING_USE_TIME_UNTIL_PERI_TGT = no

STEERING_USE_ABS_CART_POS_X = yes

STEERING_USE_ABS_CART_POS_Y = yes

STEERING_USE_ABS_CART_POS_Z = yes

STEERING_USE_ABS_CART_VEL_X = yes

STEERING_USE_ABS_CART_VEL_Y = yes

STEERING_USE_ABS_CART_VEL_Z = yes

STEERING_USE_ABS_POLAR_POS_R = no

STEERING_USE_ABS_POLAR_POS_AZI = no

STEERING_USE_ABS_POLAR_POS_ELE = no

STEERING_USE_ABS_POLAR_VEL_R = no

STEERING_USE_ABS_POLAR_VEL_AZI = no

STEERING_USE_ABS_POLAR_VEL_ELE = no

STEERING_USE_TGT_CART_POS_X = no

STEERING_USE_TGT_CART_POS_Y = no

STEERING_USE_TGT_CART_POS_Z = no

STEERING_USE_TGT_CART_VEL_X = no

STEERING_USE_TGT_CART_VEL_Y = no

STEERING_USE_TGT_CART_VEL_Z = no

STEERING_USE_TGT_CART_POS_REL_X = yes

STEERING_USE_TGT_CART_POS_REL_Y = yes

STEERING_USE_TGT_CART_POS_REL_Z = yes

STEERING_USE_TGT_CART_VEL_REL_X = yes

STEERING_USE_TGT_CART_VEL_REL_Y = yes

STEERING_USE_TGT_CART_VEL_REL_Z = yes

D.3 IHP Configuration

D.3.1 InTrance Configuration

ASTEROID_DATA_FILE1 = C:\ELEMENTS.UNNUM
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COMMAND = optimize

SIM_PARAM_FILE_1 = SEP.sim

SIM_PARAM_FILE_2 = REP.sim

EA_PARAM_FILE = coldstart.eap

COLDSTART = yes

SIM_DATA_FILE = coldstart.csv

TRAJ_DATA_FILE = coldstart.dat

GESOP_FILE = coldstart.gesop.txt

VRML_FILE = coldstart.wrl

BEST_CHROM_FILE = coldstart.eac

REPORT_FILE = coldstart.rep

NO_OF_EVAL_OBJECTS = 4

D.3.2 Evolutionary Algorithm Configuration

SEARCH_SPACE_HYPERCUBE_SIZE = 1.0

HYPERCUBE_START_SIZE = 2.0E-1

HYPERCUBE_SHRINKING_FACTOR = 90E-2

POPULATION_SIZE = 25

SEARCH_SCAN_EPOCHS = 15

CHROMOSOME_MUTATION_PROBABILITY = 0.94

GENOM_MUTATION_PROBABILITY = 0.02

HYPERCUBE_UPPER_LIMIT = 1.0E-4

IL_POP_CONV_FBC_MET = 1.0E-6

IL_POP_CONV_FBC_NOT_MET = 1.0E-5

IL_EA_CONV_FBC_MET = 1.0E-5

IL_EA_CONV_FBC_NOT_MET = 1.0E-5

D.3.3 Neurocontroller Configuration of Phase 1

HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 3

D.3.4 Neurocontroller Configuration of Phase 2

HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 5

D.3.5 Spacecraft Configuration of Phase 1

SC_TYPE = RIT

RIT_MODEL = SIMPLE

PAYLOAD_MASS = 497.8kg

BUS_MASS = 0.0kg

THRUSTER_MASS = 37.3kg

STRUCTURE_MASS_RATIO = 0.25

TANK_MASS_2_PROPELLANT_RATIO = 0.06

MIN_PROP_MASS = 200kg

MAX_PROP_MASS = 450kg
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SOLAR_ARRAY_CHAR_POWER_MIN = 53.0kW

SOLAR_ARRAY_CHAR_POWER_MAX = 53.0kW

POWER_SPECIFIC_MASS = 5.0kg/kW

THROTTLE_TYPE = variable

POWER_VARIATION_EXPONENT = 1.6

MAX_THRUSTER_POWER = 13.592E3

OPT_THRUSTER_POWER = 13.592E3

MIN_THRUSTER_POWER = 8.835E3

THRUST_TO_POWER_RATIO = 19.78E-6

MASSFLOW_TO_POWER_RATIO = 0.2724E-9

N_THRUSTERS = 6

D.3.6 Spacecraft Configuration of Phase 2

SC_TYPE = NEP

SC_NAME = "IHP"

PAYLOAD_MASS = 188.0kg

BUS_MASS = 0.0kg

PROP_SYS_MASS = 92.5kg // 16.5kg (prop sys) + 76kg (RTG)

STRUCTURE_MASS = 51.0kg

MIN_PROP_MASS = 154.0kg

MAX_PROP_MASS = 154.0kg

TANK_MASS_2_PROPELLANT_RATIO = 0.08

THROTTLE_TYPE = bang-bang

MAX_THRUST = 20.9E-3

SPECIFIC_IMPULSE = 3810s

NEP_DECAY_CONSTANT = -2.196450873E-5 // = -ln(2)/T_half_life

D.3.7 Simulation Configuration of Phase 1

SIM_START_TIME_MIN = 58235.0

SIM_START_TIME_MAX = 58265.0

MIN_SOLAR_DISTANCE = 0.7AU

INTEGRATION_INTERVAL = 3JYR

FLIGHT_TIME_MIN = 600day

INTEGRATION_STEPS = 3000

MIN_OUTPUT_POINTS = 100

DISTURBING_BODIES = disturbance.sim

INITIAL_STATE = body

INITIAL_CENTRAL_BODY = sun

INITIAL_BODY_NAME = earth

INITIAL_VINF_MIN = 6.0KM/S

INITIAL_VINF_MAX = 6.0KM/S

INITIAL_VINF_AZIMUTH_MIN = 0DEG

INITIAL_VINF_AZIMUTH_MAX = 90DEG

INITIAL_VINF_ELEV_MIN = 0DEG

INITIAL_VINF_ELEV_MAX = 0DEG

LAUNCHER_MAX_C3_CAPACITY = 7200kg
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LAUNCHER_C3_EXPONENT = 0.032

TARGET_STATE = gravity assist

TARGET_BODY_NAME = Jupiter

TARGET_DIST_MAX_FINAL = 20E6km

TARGET_DIST_MAX_INIT = 20E6km

TARGET_DIST_MAX_SHRINK = 0.9

TARGET_DIST_MAX_DECREASE = 0.1AU

TARGET_DIST_MAX_REDUCTION_USE_MAX = FALSE

OPTIMIZATION_GOAL = minimum transfer time

INTEGRATOR = RK54F

MAX_RELATIVE_ERROR = 1E-6

MAX_ABSOLUTE_ERROR = 1E-6

USE_ITGR_STOPPER = NO

USE_DSSC = YES

DSSC_STEP_ANGLE_CONTROL = YES

DSSC_MAX_STEP_ANGLE = 1.0deg

DSSC_MAX_STEP_SIZE = 10DAY

DSSC_MIN_STEP_SIZE = 0.5min

SC_CONF = SEP.scp

NAV_TYPE = ANN

NAV_ANN_CONF = SEP.ncp

STEERING_DYN_UNIT_CALC = TRUE

STEERING_USE_ACC_THRUST_MAX = TRUE

STEERING_USE_ACC_THRUST_MAX_DRY = TRUE

STEERING_USE_STEP_SIZE = TRUE

STEERING_USE_TIME_UNTIL_PERI_SC = TRUE

STEERING_USE_RANGE = TRUE

STEERING_USE_RANGE_RATE = TRUE

STEERING_USE_TIME_UNTIL_PERI_TGT = TRUE

STEERING_USE_ABS_CART_POS_X = TRUE

STEERING_USE_ABS_CART_POS_Y = TRUE

STEERING_USE_ABS_CART_POS_Z = TRUE

STEERING_USE_ABS_CART_VEL_X = TRUE

STEERING_USE_ABS_CART_VEL_Y = TRUE

STEERING_USE_ABS_CART_VEL_Z = TRUE

STEERING_USE_ABS_POLAR_POS_R = TRUE

STEERING_USE_ABS_POLAR_POS_AZI = TRUE

STEERING_USE_ABS_POLAR_POS_ELE = TRUE

STEERING_USE_ABS_POLAR_VEL_R = TRUE

STEERING_USE_ABS_POLAR_VEL_AZI = TRUE

STEERING_USE_ABS_POLAR_VEL_ELE = TRUE

D.3.8 Simulation Configuration of Phase 2

INDEPENDENT_FLIGHT_PHASE = FALSE

SIM_START_TIME_MIN = 0

SIM_START_TIME_MAX = 0

INTEGRATION_INTERVAL = 30JYR

FLIGHT_TIME_MIN = 20JYR
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MIN_SOLAR_DISTANCE = 0.7

INTEGRATION_STEPS = 6000

MIN_OUTPUT_POINTS = 250

DYN_INTEGRATION_INTERVAL = yes

INITIAL_STATE = body

INITIAL_BODY_NAME = earth

INITIAL_VINF_MIN = 0.0

INITIAL_VINF_MAX = 0.0

INITIAL_VINF_AZIMUTH_MIN = 0.0

INITIAL_VINF_AZIMUTH_MAX = 0.0

INITIAL_VINF_ELEV_MIN = 0.0

INITIAL_VINF_ELEV_MAX = 0.0

TARGET_STATE = body orbit flyby

TARGET_BODY_NAME = 2009IHP05

TARGET_DIST_MAX_FINAL = 5AU

TARGET_DIST_MAX_INIT = 5AU

TARGET_DIST_MAX_SHRINK = 0.9

TARGET_DIST_MAX_DECREASE = 0.1AU

TARGET_DIST_MAX_REDUCTION_USE_MAX = FALSE

OPTIMIZATION_GOAL = minimum transfer time

ACCURACY_FITNESS_FRACTION = 0.01

INTEGRATOR = RKF54

MAX_RELATIVE_ERROR = 1e-6

MAX_ABSOLUTE_ERROR = 1e-6

USE_ITGR_STOPPER = YES

USE_DSSC = YES

DSSC_STEP_DISTANCE_CONTROL = YES

DSSC_MAX_STEP_DISTANCE = 0.1AU

DSSC_STEP_ANGLE_CONTROL = YES

DSSC_MAX_STEP_ANGLE = 1.0deg

DSSC_MAX_STEP_SIZE = 9DAY

DSSC_MIN_STEP_SIZE = 10min

SC_CONF = REP.scp

NAV_TYPE = ANN

NAV_ANN_CONF = REP.ncp

STEERING_DYN_UNIT_CALC = TRUE

STEERING_USE_ACC_THRUST_MAX = TRUE

STEERING_USE_ACC_THRUST_MAX_DRY = TRUE

STEERING_USE_STEP_SIZE = TRUE

STEERING_USE_TIME_UNTIL_PERI_SC = TRUE

STEERING_USE_RANGE = FALSE

STEERING_USE_RANGE_RATE = FALSE

STEERING_USE_TIME_UNTIL_PERI_TGT = FALSE

STEERING_USE_ABS_CART_POS_X = TRUE

STEERING_USE_ABS_CART_POS_Y = TRUE

STEERING_USE_ABS_CART_POS_Z = TRUE

STEERING_USE_ABS_CART_VEL_X = TRUE

STEERING_USE_ABS_CART_VEL_Y = TRUE

STEERING_USE_ABS_CART_VEL_Z = TRUE
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STEERING_USE_ABS_POLAR_POS_R = TRUE

STEERING_USE_ABS_POLAR_POS_AZI = TRUE

STEERING_USE_ABS_POLAR_POS_ELE = TRUE

STEERING_USE_ABS_POLAR_VEL_R = TRUE

STEERING_USE_ABS_POLAR_VEL_AZI = TRUE

STEERING_USE_ABS_POLAR_VEL_ELE = TRUE
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