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A B S T R A C T

Gas flow in fractured nano-porous shale formations is complicated by a hierarchy of structural features, ranging
from nanopores to hydraulic fractures, and by several transport mechanisms that differ from standard viscous
flow used in reservoir modeling. The use of accurate simulation techniques that honor the physical complexity of
these reservoirs and capture the associated dynamics of nanopores is required. However, these simulations often
necessitate a large amount of computational resources for field scale models and therefore require upscaling.
Usually, the upscaling techniques are based on idealizations that do not reflect the discrete features of the
reservoir. In this work, we first incorporate the physics model that describe dynamics of shale gas into a nu-
merical Discrete Fracture and Matrix (DFM) model. The formulation of our DFM model applies an unstructured
control volume finite difference approach with a two-point flux approximation. We then propose to upscale these
detailed descriptions using two different techniques, with the major difference in their coarse-grid geometry. The
first approach, referred to as Embedded DFM upscaling, relies on a structured Cartesian coarse grid. The second
method, which we call the Multiple Sub-Regions (MSR) upscaling, introduces a flow based coarse grid to re-
plicate the diffusive character of the pressure in the matrix. The required parameters for the coarse-scale model
in both methods and the geometry of the subregions in the second method are determined using numerical
homogenization of the underlying discrete fracture model. An accurate comparison with the fine-scale re-
presentation indicates an existence of an additional transient phenomenon at coarse scale. To account for this
effect, the transmissibility of both types of coarse models is related to the pressure in our approach. Both up-
scaling methods are applied to simulate a shale-gas flow in 2D fractured reservoir models and are shown to
provide results in close agreement with the underlying fine-scale model and with a considerable reduction in the
computational time.

1. Introduction

The abundance of shale gas in the world has caught the attention of
many countries looking for an alternative to the declining conventional
resources of natural gas. The U.S Energy Information Administration (
http://www.eia.gov/ EIA) estimates that known shale-gas deposits
worldwide add 47% to the global technically recoverable natural gas
resources. As shale-gas reservoirs are characterized by a very low per-
meability, gas production can only be achieved by stimulating the shale
formation through hydraulic fracturing. Combined with horizontal
drilling, it maximizes extraction by allowing multiple fractures along
the shale bed, which in turn allows the gas to be commercially ex-
tracted. The large development cost of shale-gas reservoirs makes it a
necessity to develop accurate and reliable modeling tools for un-
certainty quantification and risks assessment.

The behavior of fluid flow in a shale matrix also deviates from that

in a conventional gas reservoir/rock matrix as matrix porosity in shale
consists of pores within the nanometer scale [9,23]. As the size of the
confining pore space reduces to nano-scale, the validity of the standard
approach based on the Navier-Stokes equation with no-slip boundary
condition diminishes [16]. Researchers (e.g. Javadpour et al. [22],
Darabi et al. [10] as well as others) identified the main transport me-
chanisms in shale gas as viscous flow and self-diffusion due to gas ex-
pansion. Additionally, as pore diameter becomes of the order of the
molecular mean free path, the molecule-wall collisions become more
pronounced, also known as Knudsen diffusion [40]. The storage of gas
molecules in organic-rich shale sediments also differs from conven-
tional resources. The gas is stored as a compressed gas in the pores, but
also as an adsorbed gas to the pore walls and as a dissolved gas in the
solid organic matter of the shale (i.e., kerogen and clays) [22,37].

The majority of studies investigated the shale-gas dynamics by
means of an apparent permeability model [22,23,8,39] that combine
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the different transport mechanisms written in a format compatible with
Darcy formulation. Other modeling approaches, such as molecular dy-
namics [6], direct simulation Monte Carlo [28] and Lattice-Boltzmann
[19] can be used to model gas flow in nanopores. However, these
modeling techniques are computationally demanding and cannot be
used for systems larger than a few microns. One promising approach is
a direct incorporation of confinement effects into the thermodynamic
description proposed in [41].

Furthermore, the analysis of gas production from shale formation is
complicated by a hierarchy of structural features induced by the mul-
tistage hydraulic fracturing and the consequent micro-seismic events
which creates a connected network of secondary fractures within the
reservoir. The characteristics and properties of these fracture networks
play an important role in shale-gas reservoir performance. Therefore, it
is significantly important to accurately characterize and represent these
features in the modeling of these formations.

This is often done by means of highly detailed discrete fracture re-
presentations that recent measurements and modeling techniques are
able to generate. In Discrete Fracture and Matrix (DFM) modeling ap-
proaches, each fracture is modeled explicitly using, in most of the cases,
highly resolved unstructured grids [25]. This allowed the simulation of
fine-scale geological models with complex and various fracture geo-
metries. For these reasons, DFM is considered as the most accurate
representation of fracture networks but with the disadvantage of high
computational cost as a large number of grid cells are generally in-
volved; representing an obstacle for the application of DFM models at
the field scale, therefore the necessity of upscaling. Hence, our objective
in this study is to provide a coarse-scale representation of flow in shale
systems without losing the important characteristics related to the
structural features and transient effects observed in shale-gas reservoirs.

Conventionally, the modeling of fractured reservoirs is handled by
means of multiple continua approaches such as the dual porosity
method. The idea, proposed by Barenblatt and Zheltov [3] and later
introduced to the oil industry by Warren and Root [45], is founded on
the subdivision of the system into two separate continua, the fracture
network and the matrix, and to model the exchange between these two
media using a transfer function, also called a shape factor. These mul-
tiple continua representations were the basic foundation for many of
the upscaling models for fractured reservoirs, where equivalent per-
meability for the coarse block is determined based on either homo-
genization approach [1,36] or local single phase flow simulations over
the fine-scale model [5,14].

Although these techniques are quite practical, they rely on a sim-
plified representation of a fracture network and often limit the re-
presentation of the geological and flow complexity by a single para-
meter – the shape factor. Lee et al. [30] proposed a hierarchical fracture
upscaling that is meant to reduce the error brought by homogenization
when fracture length scale distribution is non-uniform or the network is
poorly connected. In their approach, large-scale fractures were modeled
explicitly and the effective permeability contribution from smaller
fractures was determined analytically. The EDFM model in Li and Lee
[31] can also be used for upscaling of fracture networks. This method
represents an interesting development to the dual continuum ap-
proaches, where fracture networks are discretely connected to matrix
blocks by a series of source terms. It also has the advantage that frac-
tures and matrix are represented by independent grid domains. How-
ever, difficulties still might arise when evaluating the transfer function
to describe the exchange of fluid between matrix and fracture.

Gong et al. [15] and Karimi-Fard et al. [27] presented a systematic
multi-subregion (MSR) upscaling approach based on the integration of
DFM into a general multiple continuum representation. The method
was developed as an effort to include spatial variability within a local
matrix region, considering that most of the dual-porosity implementa-
tions model the pressure and saturation as constant within the matrix.
They succeed to resolve spatial variation within the matrix with a novel
flow-based sub-griding technique using the solution of a local discrete

fracture flow problem over each coarse grid-block. Application of the
method to simulate 2D and 3D fracture models, with viscous, bouyancy
and capillary forces is also shown in their work.

In our study, we investigate the upscaling of shale-gas reservoir with
the objective of accurately reproducing important characteristics of
flow in nano-scale porosity, and to honor geological descriptions of the
fracture networks in full details. We introduce a high fidelity model that
serves as the base case for our upscaling approach. In the high fidelity
model, we implement the formulations that describe the physics of gas
transport in the shale matrix and accurately describe the interactions
with the structural features in stimulated shale reservoirs. This is done
by resolving the fractures of various scales and geometries using a
general unstructured grid, and then solving for the flow equations using
the finite volume DFM approach. The coarse representation is then
constructed by using agglomeration to either structured (EDFM up-
scaling) or unstructured grids (MSR upscaling). The transmissibilities
between control volumes of upscaled models are extracted from the
solution of the underlying fine-scale DFM model. In our coarse models,
we focus on accounting of the strong transient effects induced by the
shale formations. This entails an adjustment of the effective transmis-
sibilities in coarse models by relating them to pressure.

We implemented all approaches in the Automatic Differentiation
General Purpose Research Simulator (ADGPRS) [48,43,42,47], which
supports a generally unstructured representation of computational grid.
In addition, the ADGPRS simulator also offers the flexibility in coupling
the flow to geomechanics [12], to account for the influence of stresses
on the flow and the conductivity of the fracture network. An effective
upscaling of flow in shale gas systems in combination with geo-
mechanic effects will be a focus of our future work.

2. Gas dynamics in shale

For simplicity, we restrict our approach to a single-phase flow and
assume that the gas phase is represented as a pure gas component
(methane) which is behaving ideally. To describe the physics of gas
transport in the nano-pore scale, we introduce an idealized fluid flow
model based on a recent study made by Lunati and Lee [33]. In this
study, they proposed a conceptual bundle of dual tube model to sta-
tistically predict the performance of shale-gas reservoirs.

The study of flow and transport phenomenon in shale systems en-
tails the analysis of conservation of mass. The general mass balance
equation is used to describe the flow across a single tube. For an ele-
ment (control volume) within the medium, it is defined as:

∂
∂

+ ∇ =
ϕρ
t

qj
( )

. .
(1)

The equation depicts the accumulation of mass, the mass flux
through the system and the physico-chemical interactions, where ρ is
the density, j is the total flux in shale matrix and q is the source term.

The total flux refers to the dominating physical phenomena. In the
modeling process, this is an advective flux due to mean gas velocity and
a diffusive flux due to the gradient of density,

= + = −
∂
∂

ρ D
ρ
x

j j j u .adv diff (2)

The mean gas velocity u( ) is defined as proportional to pressure gra-
dient similarly to Darcy’s law as follow:

= −
∂
∂

k
μ

p
x

u ,
(3)

where k is the absolute permeability tensor and μ is the viscosity of the
gas. Next, we will briefly summarize the model proposed by Lunati and
Lee [33] based on the elementary kinetic theory for an isothermal
system [18].
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2.1. Knudsen number

First we present the definition of the Knudsen number and the mean
free path. Knudsen number, KN , is used in order to determine the ap-
propriateness of the continuum model. It is a widely recognized di-
mensionless parameter, defined as the ratio of the gas mean free path l
and the pore diameter d,

=K l
d

,N (4)

where l the molecular mean free path is defined as the average distance
the molecules of gas travels between two successive collisions with
other molecules. Using kinetic elementary theory, and assuming a
Maxwell-Boltzmann distribution of the velocity, the mean free path
becomes:

= ⎛
⎝

⎞
⎠

l m
σ ρ2

1 ,
(5)

where m is the molecular mass and σ is the cross-sectional area of
collision. For methane = =σ πδ nm0.422 2, using a methane molecular
diameter = °δ A3.8 . Here we assume that the Knudsen diffusion is
dominated which may be affected by the sorption in some shales [4].

2.2. Viscosity and permeability

The viscosity defines the ability of intermolecular collisions to
transfer momentum and based on the elementary kinetic theory of
gases, it is defined as:

= =μ ρlv
k m π

σ
T1

3
2
3

/
,t

B 1
2 (6)

where =v k πm T8 /T B
1
2 is the thermal velocity and

= × − −k 1.38 10 J KB
23 1 is the Boltzmann constant. Note that viscosity is

only a function of temperature; hence it is considered as constant for
isothermal processes.

Based on the Hagen-Poiseuille equation for viscous flow in a pipe,
permeability in the longitudinal direction can be expressed as:

=k κd ,2 (7)

where κ is a dimensionless constant that is related to the configuration
of the flow-paths (1/32 for a circular tube and 1/12 for planar frac-
tures), d is the diameter of a pore or the aperture of a plane fracture.

As pore size d becomes very small and comparable to the mean free
pathl, the no-slip condition at the solid boundary is no more applicable
and the equation has to be modified. Brown et al. [7] proposed a cor-
rection to account for the slippage effect as:

⎜ ⎟= ⎡
⎣⎢

+ ⎛
⎝

− ⎞
⎠

⎤
⎦⎥

k l
d σ

κd1 4 2 1 ,
v

2

(8)

where < <σ0 1v is the tangential-momentum accommodation coeffi-
cient that indicates the fraction of molecules that are diffusively re-
flected by the wall. Assuming we have tubes of rough surfaces that
reflects all molecules diffusively, then =σ 1v and substituting with the
definition of mean free path in Eq. (5), the equation simplifies to:

= ⎡
⎣⎢

+ ⎤
⎦⎥

k m
σρd

κd1 4
2

.2

(9)

2.3. Effective diffusivity

The molecular self-diffusion coefficient describes the mass transfer
due to molecular collisions, and therefore is proportional to the thermal
velocity and to the mean free path:

= =D lv
k m π

σ
T
ρ

1
3

2
3

/
,m

T
B

1
2

(10)

When the size of the pore d is comparable to or smaller than the
mean free path of the gas molecules l, the interactions with the solid
walls of the pores become more significant than the intermolecular
interactions. The mass transfer due to the effects of a collision with the
wall is described by the Knudsen diffusion coefficient, obtained by re-
placing l by d in Eq. (10):

= =D dv D
K

1
3

.k
T

m

N (11)

Knudsen diffusion is more likely to be prevailing at lower pressure,
while molecular self-diffusion in nano-pores is dominant at a higher
pressure as intermolecular collisions are more likely. To consider the
contribution of these two mechanisms, the effective diffusion coeffi-
cient introduced by Lunati and Lee [31] is used:

= + −D D K[1 ] ,eff
m

N
1 (12)

which describes their combined effect and tends to Dm when ≪K 1N
and to Dk when ≫K 1N .

2.4. Adsorption and desorption

In shale-gas systems, the gas is stored as a compressed gas in pores
but also as an adsorbed gas to the pore walls and as a soluble gas in
solid organic materials [22]. As the pressure within the reservoir is
depleted by production, the adsorbed gas gets released into the nano-
pores followed by the diffusion of the dissolved gas to the surface of the
pores.

The volume of adsorbed gas in shale formations can be significant;
up till now its significance to production is the subject of many studies
and analyses for different types of shales (e.g. [46,44]), and its con-
tribution is mostly accounted when the pressure has declined to very
low values [17]. For simplicity, we will only include the contribution of
free gas trapped in the rock pores into our simulations which makes the
proposed model representative for an early production from shale-gas
reservoirs.

3. Discrete fracture model

Discrete fracture models, in which the fractures are represented
individually and constrained by geological information, are considered
as one of the most accurate techniques to model fracture networks. The
use of unstructured grids allows the modeling of non-ideal fracture
geometries, such as non-orthogonal and non-planar fracture orienta-
tions.

3.1. Different DFM approaches

Various procedures to solve the flow equations for systems using
unstructured grids can be found in the literature. Using the finite ele-
ment approach (FEM) such as the earliest work of Baca et al. [2] as they
proposed to solve for 2D single-phase flow with heat and solute trans-
port. Juanes et al. [24] presented a more general approach with FEM
for 2D and 3D for single-phase flow in fractured porous media. These
early methods were then extended to handle incompressible two-phase
fluid flow including capillary pressure effect such as in the work of Kim
and Deo [29] and Karimi-Fard and Firoozabadi [26], compositional
multicomponent flow in Hoteit and Firoozabadi [20], and three-phase
flow in Fu et al. [11]. Matthäi et al. [35] presented a control-volume
finite-element (CVFE) approach to accurately quantify two-phase flow
simulation in fractured rock masses using 3D hybrid meshes. Their
work was then expanded to include applications for compressible three-
phase flow in Matthäi et al.[34] and in Geiger-Boschung et al. [13].

Finite element procedures are generally more computationally
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expensive than the standard finite-volume discretization, the latter
being the most popular choice among the majority of existing reservoir
simulation techniques. Karimi-Fard et al. [25] offered a simplified DFM
model based on a finite volume approach. The method is applicable to
discretization based on the connection list [32] and offers significant
improvement in the efficiency of DFMs using unstructured grids.

In this work, we follow the approach proposed by Karimi-Fard et al.
[25] where an unstructured control volume finite-difference technique
with a two-point flux approximation is used. For a 2D problem, the
matrix blocks are represented by polygons while fractures are re-
presented by segments. The fracture thickness is not represented in the
grid domain but only in the computational domain for flow rate eva-
luation, which consequently simplifies the griding of the fractured do-
main. The mean properties of the grid block as well as the evaluated
variables are defined in nodes, at the centroid of each corresponding
control volume which is representative of the entire grid block. In ad-
dition, the transmissibility at a fracture intersection is evaluated in a
way that eliminates intermediate control volumes at the intersection.
While for multiple fractures intersecting at a point, a star-delta con-
nectivity transformation is used. This improves the numerical stability
and time step size for the simulation.

3.2. Discretized equations

The mass balance equation for single phase, single component shale
system after substituting with all the derived coefficients corresponding
to each of the transport phenomena in shale gas can be described as:

∂
∂

= ∇ ⎡
⎣⎢

+ ∇ +
+

∇ ⎤
⎦⎥

+
ϕρ
t

ρ
μ

K κd p D
K

ρ q
( )

. (1 4 ) .
1

. .N
m

N

2

(13)

As we integrate the partial differential equation (13) over a finite
control-volume, we introduce porosity (ϕ) into the flux term to upscale
the equations from a cylindrical nanotube to nano-porous media. This
allows the flux to take place across a fraction of the grid-block interface
(ϕ A. ) equivalent to a stack of (n) tubes,

=n π d ϕA
4

,ij
2

(14)

where n represents a certain number of tubes and Aij is the interface
between the grid blocks i and j.

The discretized flow term is then represented in terms of a list of
connected control volumes, where the flow rate is related to the pres-
sure gradient by a transmissibility term. For each control volume (V),
we express the flow rate across each one of its interfaces with the
neighboring cells as:

= + −Q ϕ λT T p p[ ]( ),ij A D j i (15)

which represents the flow rate from Vi to Vj. The cell to cell transmis-
sibility presented here accounts for the coefficients corresponding to
the advective flux and diffusive flux, TA and TD respectively. The term λ
is the ratio ρ

μ
and along with the porosity ϕ, they are both computed

using upstream weighting (upwind).
The transmissibilities are defined at the interface using a harmonic

average of the properties within the connected blocks,

=
+

T
α α

α α
.ij

i j

i j (16)

The half transmissibility, αi, is then defined for each of the flow re-
gimes:

• for advection

= + ⎯→⎯ →
α

A
D

K κd n f(1 4 ) . ,i
ij

i
N i i

2
(17)

• for diffusion

=
+

⎯→⎯ →
α

A
D

D
K

m
RT

n f
(1 )

. ,i
ij

i

m

N
i i (18)

while αj is computed in the exact same manner but using the corre-
sponding subscript j. Both indexes are obtained from the connection
list.

In equations (17) and (18),Aij is the area of the interface between
the neighboring Vi and Vj, Di is the distance between the centroid of the
interface and the centroid of Vi ,

⎯→⎯ni is the unit normal to the interface
inside Vi and

→
fi is the unit vector along the direction of the line joining

the control volume centroid to the centroid of the interface as illu-
strated in Fig. 1.

To evaluate the transmissibility for a connection between two
fractures, an intermediate control volume V( )0 is introduced at their
intersection, Fig. 2. The purpose of this node is to redirect the flow and
to allow for thickness variation, without the need to estimate variables
at this location. This is presumed from the assumption that such in-
termediate control volume will typically have similar properties to the
adjacent cells and has a much smaller volume.

As for systems made of more than two fractures intersecting at a
point, the transmissibility computations follow an analogy to electrical
circuits “star-delta” transformation for networks of resistors proposed in
Karimi-Fard et al. [25]. Therefore, transmissibility for each connection
pair of n intersecting fractures is computed by:

∑
≃

=

T
α α

α
.ij

i j

k

n

k
1 (19)

Integrating Eq.(13) over each control volume and expressing flow

Fig. 1. Geometrical representation of adjacent control volumes and the para-
meters included in transmissibility computation.

Fig. 2. Connection between two fracture segments with an intermediate control
volume used for flow computation only.
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Fig. 3. Discreization of matrix domain using a cartesian grid, while fracture are discretized by the matrix cell boundaries in EDFM.

Fig. 4. Example coarse block k with DFM fine-scale unstructured cells in the background (a) represents the fine-scale cells from which the average matrix pressure of
the coarse scale are calculated (b) fine-scale fracture cells used to calculate average fracture pressure in the coarse scale.

Fig. 5. Mass flux Qij through the matrix-fracture interface computed from the
fine-scale DFM solution.

Fig. 6. Iso pressure curves are extracted from the solution of the fine-scale DFM model to define the coarse-scale regions.

Fig. 7. The construction of the regions imposes a one-dimensional scheme for
the connectivity list to define the exchange of flow between the regions and
fracture.
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rates using eq.(15) provides the discrete form of the flow equations
which are solved to obtain the pressure profile for the fully resolved
model and for the determination of the upscaled model parameters.

4. Upscaling

In this section, we elaborate on the upscaling models that aims to
approximately reproduce the same flow behavior of the fine-scale DFM
model with a lower number of degrees of freedom (grid-blocks) for
cases where transient effects are important. We propose two different
methods to achieve that objective, in a procedure that is based on two
distinct steps. The first step concerns the building of the coarse grid and
the second step is to determine the upscaled transmissibility informa-
tion from the solution of the DFM model as explained in the previous
section.

4.1. EDFM upscaling

The upscaling approach developed here is an extension to the work
of Li and Lee [31], where they propose an embedded discrete fracture
modeling (EDFM) technique. Based on this approach, the matrix do-
main is discretized separately with a structured Cartesian grid, while
the fractures intersecting these matrix blocks are discretized by the
matrix cell boundaries, see Fig. 3. The coupling of these two domains
was made through a connectivity index based on the concept of the
wellbore productivity index (PI). In their work, Li and Lee prescribe an
analytical approach to approximate this index.

In our study, we generate the coarse-model grid using Cartesian
blocks for the matrix. However, we use a numerical approach (up-
scaling) for characterizing flow between the matrix and the fracture.
The fractured domain is first resolved based on an unstructured grid,
established using a standard Delaunay triangulation scheme Shewchuk
[38]. The coarse grid is then defined over the detailed model using a
conformal aglomeration of fine-scale degrees of freedom. The fully re-
solved DFM model is then run up to a steady-state condition. The nu-
merical integration over the coarse-grid blocks is used to provide the
transmissibilities for the coarse model.

In general terms, transmissibility expresses the block to block mass
flow rate in terms of the difference in pressure between the two blocks:

Table 1
Example fracture system common properties for test cases.

Matrix porosity ϕ (%) 6
Fracture aperture (mm) 1
Reservoir temperature °F 300
Gas viscosity μ (cp) 0.01
Reservoir initial pressure (bar) 200
Producing well BHP (bar) 100

Fig. 8. Matrix-fracture transmissibility plot over time extracted for a specific
coarse grid-block.

Fig. 9. Transmissibility plotted as a function of upwinded pressure.

Fig. 10. L2 error plotted over time, for each of the upscaling application on the synthetic fracture network.
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Fig. 11. L2 error plotted over time, for the upscaling application on the large fracture network.

Fig. 12. EDFM upscaling results of shale-gas dynamics using constant transmissibility, on the left side the results correspond to 1000 days of production and on the
right side the results for the 5000 days simulation. (a) and (b) represents the upscaling results, (c) and (d) are the DFM averaged results.
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=
−

T
μ
ρ

Q
p p( )i j

k i j
k

i
k

j
k,

,

(20)

From the solution of the fine-scale DFM model, we have matrix
pressure pi

k and fracture pressure p j
k corresponding to each block k and

the flow rate between themQi j
k
, . For pressures this is accomplished using

a pore volume weighted average of the pressures within the fine-scale
cells associated with coarse block k, see Fig. 4.

=
∑
∑

∈

∈
p

v ϕ p
v ϕi

k i k i i i

i k i i (21)

The mass flow rate Qi j, is determined from the sum of fluxes crossing
the fractures interface within the coarse block k as shown in Fig. 5.
Matrix-matrix and fracture-fracture transmissibility, on the other hand,
are computed in the exact same way used for DFM with the only dif-
ference that we are using a Cartesian grid to represent the matrix. Note
that for simplicity we are considering a homogeneous matrix and
therefore we do not deal with permeability upscaling in our EDFM
model.

4.2. MSR upscaling

The use of the structured grid for the coarse model has certainly a
practical aspect. However, it masks some of the flow dynamics and

features observed in the fine-scale flow solution. Therefore, we propose
another upscaling technique that tackles the stated problem and also
portrays the extended transient effects prevalent in tight formations
more accurately. The proposed method suggests the use of a flow-based
gridding technique to capture the spatial variability within the matrix
in a similar way to the work of Karimi-Fard et al. [27].

Based on the fact that pressure variation inside the matrix behaves
like a diffusion process, the matrix is divided into regions using iso-
pressure curves obtained from the pressure solution of a discrete frac-
ture model. As in the previous upscaling technique, we obtain the so-
lution of the fine-scale model using the shale-gas model. Next, we use
this pressure solution for the construction of the multiple-subregion
model as shown in Fig. 6; the shapes of the iso-pressure curves are
strongly dependent on the fracture geometries. Note that the pressure
inside the fractures is not changing significantly due to their high
permeability.

The number of subregions in the upscaled model depends on the
pressure levels selected from the DFM solution. Once the coarse-grid
geometry is defined, the next step entails the determination of the
connectivity map that will be used for our coarse-scale simulation.
Fig. 7 shows a sample of the upscaled domain, indicating that the setup
of these regions implies a one-dimensional character which allows the
representation of the connections using a linear sequence as shown.

Next, we can perform a simulation with the coarse-scale model
using a similar finite volume scheme. Therefore we need to determine

Fig. 13. EDFM upscaling results of shale-gas dynamics using the upgraded transmissibility in terms of upwinded pressure, on the left side the results correspond to
1000 days of production and on the right side the results for the 5000 days simulation. (a) and (b) represents the upscaling results, (c) and (d) are the DFM averaged
results.
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the upscaled transmissibility to describe the exchange of flux from one
subregion to another (Matrix-Matrix) or into a fracture (Matrix-
Fracture). The average pressure of each adjacent region and the flux
across the interface is also captured from the fine-scale DFM solution.

5. Numerical examples

In this section, we present applications of the proposed upscaling
approaches. The two methods are applied to a single phase compres-
sible shale-gas flow in two dimensions. The general properties of the
reservoir domain are summarized in Table 1. For simplicity, in all the
cases, the matrix rock is considered to be isotropic and homogeneous.
All fractures are fully open and considered to be identical to simplify
the comparison.

The simulation scenario in the fully resolved model is obtained by
drainage of the reservoir domain through a producing well perforated
in the fracture network. Since the system is isolated by no-flow
boundaries, the pressure of the domain will get depleted with time and,
after a transient period, will reach a pseudo-steady state.

Fig. 8 depicts an example of the matrix-fracture transmissibility over
time for a typical coarse block, indicating the pseudo-steady state Darcy
flow at which the upscaled transmissibility is recorded.

The use of pseudo-steady state transmissibility is generally accep-
table for conventional Darcy problems, where permeability is assumed
as an intrinsic porous medium property. However, the flow physics in
ultra-low permeability formations imposes a non-linear character on

the relationships between the flow rate and the pressure drop.
Therefore, we introduce a modification to account for the prevailing
transient effects by relating the upscaled transmissibility to pressure.
This is done by simply fitting a linear relationship to the same trans-
missibility we have extracted. Here we consider transmissibility as a
function of the upwinding pressure in each coarse block as shown in
Fig. 9.

We demonstrate the capabilities of the upscaled models presented in
this work first on a small-scale synthetic fracture network
(100× 100m2) to highlight the inaccuracy that results from using a
pseudo-steady-state transmissibility in shale-gas problems. Then we
represent the application of a realistic case on a fracture network ob-
tained from the outcrop analysis of the Whitby Mudstone Formation
(WMF) (5500× 7000m2), the exposed counterpart of the Posidonia
Shales buried in the Dutch subsurface and a possible target for un-
conventional gas [21].

5.1. Synthetic fracture network

5.1.1. EDFM upscaling
The fracture domain is resolved with an unstructured grid made of

5458 cells (5223 triangles for the matrix) that will be the base for our
fine-scale solution. A coarse grid for the EDFM upscaled model is made
up of 42 blocks (6× 7).

To extract the matrix-fracture connectivity information, we run the
DFM simulation on the fine-scale problem and we record the

Fig. 14. MSR upscaling results of shale-gas dynamics using constant transmissibility, on the left side the results correspond to 1000 days of production and on the
right side the results for the 5000 days simulation. (a) and (b) represents the upscaling results, (c) and (d) are the DFM averaged results.
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transmissibilities for each coarse block.
In our first upscaling attempt, we used a constant transmissibility

factor, which is representative of the late time pseudo-steady state re-
gime. The obtained upscaled solution, Fig. 12, demonstrates a large
error which indicates that results from using a steady-state transmissi-
bility are not consistent due to transient effects introduced by the shale-
gas dynamics. Notice, that in our upscaled model based on EDFM, the
transient effects described in Section 2 are present in the evaluation of
matrix-matrix flux. However, they are not sufficient to represent the
transient regime at a larger (reservoir) scale.

To improve the upscaling results with EDFM, we introduced the
modification to account for the prevailing transient effects in low per-
meability shale-gas reservoirs. This is done by relating the extracted
transmissibility to the upwinding pressure associated to each coarse
block, Fig. 13. The results of an upscaled simulation with pressure-de-
pendent transmissibility demonstrate a significant reduction in the
error against the fine-scale results. This example indicates that the in-
troduction of the shale-gas dynamic, described in Section 2 or in other
models (e.g. [23]), is not sufficient to fully resolve the transient effect
typical for shale systems at a large scale.

5.1.2. MSR upscaling
In this approach, we follow the upscaling workflow based on the

Multiple-Sub-Region approach. The fine-scale model is run for a rela-
tively short period of time (about 1000 days) in order to extract the
regions. We use 4 pressure levels to generate 41 regions in total. Once

the coarse model is set up, we proceed on the extraction of the trans-
missibilities to represent the matrix-matrix and matrix-fracture ex-
change by running the DFM model for a considerable amount of time
until the pseudo-steady state is reached.

Fig. 14 shows the results of the upscaling solution using the constant
pseudo-steady-state transmissibility at two different time steps com-
pared to the DFM solution. We also perform the upscaling using
transmissibility taken as a function of the upwinded pressure and we
compare it again to the fine-scale solution as in Fig. 15. Notice, that in
our MSR upscaled model, the flow in the matrix is assumed to follow a
Darcy law unlike the EDFM model discussed before.

Fig. 10 represents the L2 errors, computed over time, for the dif-
ferent upscaling we performed. The graph highlights the reduction in
error as we introduce the transmissibility modification to account for
the shale-gas transients; it also indicates that the flow-based grids are
more accurate in capturing these effects. In general, the MSR model is
capable to accurately capture the shale-gas dynamics at coarse scale
even without additional modifications for the transient regimes. That
indicates the importance of capturing the small-scale heterogeneity
patterns even without any modification of dynamic models at a large
scale.

5.2. Large scale fracture network

We now consider an application of the upscaling models on the
larger complex network. This model is discretized using 19,727

Fig. 15. MSR upscaling results of shale-gas dynamics using pressure dependent transmissibility, on the left side the results correspond to 1000 days of production and
on the right side the results for the 5000 days simulation. (a) and (b) represents the upscaling results, (c) and (d) are the DFM averaged results.
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unstructured cells (15,972 triangles for the matrix). The coarse model
for the EDFM upscaling was defined using 100 blocks (10×10 square
blocks), while for the MSR upscaling it was defined using 106 regions.
Similarly to the previous example, the defined workflow is followed to
obtain the upscaled models that correctly accounts for the shale-gas
dynamics. The simulation results are shown in Fig. 16 and 17 while the
L2 error plots are shown in Fig. 11.

We notice that the MSR model is generally more accurate than the
EDFM upscaling. The error plots in Fig. 11 indicates that in EDFM
upscaling, the error is overall higher and more dispersed compared to
the MSR upscaling. In MSR model, the error can be higher in certain
regions, especially with smaller volume, as these regions are more
sensitive to the linear fit imposed on the extracted transmissibilities. On
the other hand, EDFM upscaling require less work to implement as only
the matrix-fracture connectivity data is extracted from the fine-scale
solution while matrix-matrix connectivity can be easily computed
analytically for Cartesian grids. We also observe that when fitting a
linear relationship to flow data from the fine-scale solution to compute
the upscaled transmissibilities, a generally better fit is obtained when
flow based coarse grids (MSR) are employed compared to the Cartesian
blocks (EDFM).

6. Concluding remarks

In this work, shale-gas dynamics were implemented in Discrete

Fracture and Matrix (DFM) model in order to capture the highly de-
tailed geological features of shale formations. The approach employs a
finite volume discretization on a generally unstructured grid, which can
efficiently resolve complex fracturenetworks. We thoroughly in-
vestigated and proposed the application of two systematic upscaling
techniques that honor detailed fracture characterizations and applic-
able to flow in shale-gas systems. Moreover, the proposed methods are
linked to the results of accurate DFM simulation for the extraction of
upscaling parameters.

The first upscaling approach can be seen as an adaptation of the
EDFM method of Li and Lee [31], as the coarse scale is made of
structured grid blocks and the fractures are embedded within. In this
approach, the governing dynamic of shale-gas system is applied to both
fine-scale DFM and upscaled EDFM models without any modification.
This method has an advantage of being easier to apply as we propose a
semi-analytical approach for defining the coarse-model transmissibility
and only the matrix-fracture connections are upscaled from the DFM
solution.

Next, we propose a second upscaling model, which uses a flow-
based gridding technique and can be seen as an adaptation of the MSR
upscaling technique [27,15] for shale-gas dynamics. The regions are
obtained from the DFM flow simulation, which depicts the pressure
diffusion character of shale gas under production. Then, we extract the
upscaling parameters, in the case of matrix-matrix and matrix-fracture
connections, similarly to the original approach. In this method, the flow

Fig. 16. Comparison between EDFM upscaled solution (100 coarse block) for the large-scale fracture system using shale-gas formulation and a pressure dependent
transmissibility, on the left side the results correspond to 10,000 days of production and on the right side the results for the 50,000 days simulation, (a) and (b)
represents the upscaling results, (c) and (d) are the DFM averaged results.
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in the upscaled blocks is following simple Darcy assumptions without
introducing an additional shale-gas dynamic model in the coarse-scale
MSR blocks. Using the flow based regions to form the upscaled blocks
offers an improved accuracy in replicating the flowing profile of the
DFM solution with a significant reduction in the number of grid cells.

Using numerical examples of naturally fractured media, we identi-
fied an additional transient phenomenon related to the numerical
homogenization used in the construction of both coarse models. We
have shown that to depict the transient character of low permeability
shale gas, one needs to consider the pressure dependency in the para-
meters defining the mass transfer across the regions. For that, we cor-
related the transmissibility to the upwinding pressure and obtained
more accurate results, which we validated against the fine-scale DFM
solution. While gas flow in EDFM upscaling is following a modified
shale-gas dynamic, it is still not enough to capture accurately the fine-
scale flow regime. On the other hand, the MSR approach only employs
the classic Darcy flow and still is capable to capture the fine-scale dy-
namic with better accuracy.

In this work, we used a global upscaling approach that is most
convenient for shale-gas field simulation. The practical development of
shale-gas fields can be divided into separate isolated blocks each of
which drained by an individual well; as the low permeability of these
formations limits to almost none the interference between wells. This
aspect allows us to run global DFM flow simulation for each isolated
block and can be considered an achievable objective for determining

the upscaled parameters. The use of a global flow solution with no flow
boundaries is the key optimization and advantage over many of the
available upscaling techniques that rely on local flow problems with
specified boundaries to obtain the upscaling parameters.
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