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ABSTRACT:

Identification of harvested and fallen trees is a prerequisite for the detection and measurement of changes in forests. This paper presents
a three step approach to monitor harvested and fallen trees based on direct comparison of repeated high density airborne LIDAR data. In
a first step differences between data sets are obtained from a point to point comparison, such that the data can be reduced to the deviating
points only. Secondly, the resulting points are clustered into spatially connected regions using region growing. Finally, individual trees
are extracted from the clusters by analysing their relative proximity and by analysing geometric properties of points in the clusters. Two
data sets, acquired at a four year interval and covering a forest with mainly deciduous trees, are compared. First results show that most
points relating to a change can be extracted and that clustering of these with region growing enables us to efficiently separate harvested
and fallen trees from the remaining trees. Grouped harvested trees could not be separated using the region growing approach due to
touching crowns. Segmentation of these using spectral clustering however identified individual regions well, but the results depend
mainly on the pre-defined number of clusters. Crowns of grouped trees can be therefore separated if the number of trees is known.

1. INTRODUCTION

Changes in forest environments are caused by many natural pro-
cesses and anthropogenic interventions. Natural processes range
from growth, seasonal variations and competition of individual
trees for light and water to disturbances caused by insects, dis-
eases and severe weather conditions like heavy wind gusts and
snow. Anthropogenic processes include interventions such as
clearing, selective removal of individual trees to improve growth
of other trees and selective removal of individual branches to
avoid branches falling down or to make room for paths. Due
to their occurrence at different spatial and temporal scales, from
small to large and from gradual to abrupt respectively, the de-
tection and measurement of changes in forest cover and canopy
structure by means of remote sensing remains a challenging task.

In contrast to data from optical sensors, which provide only two-
dimensional information, airborne laser scanning (ALS) data pro-
vide both horizontal and vertical information. Because of this
three-dimensional nature, ALS data is well suited to detect chan-
ges in forest cover and canopy structure. The principle of ALS is
based on range measurements from an aircraft or helicopter com-
bined with the determination of its position and attitude using a
differential Global Positioning System (GPS) and Inertial Mea-
surement Unit (IMU) (Wehr and Lohr, 1999). Modern multiple
return and full-waveform laser scanners are capable of generating
point clouds with high densities of 100 points/m2 and more de-
pending on the scanner settings and flight altitude. Such scanners
can provide very detailed three-dimensional information on the
structure of trees and forests. If the point density is sufficient to
obtain a full vertical point distribution at individual tree level, this
information can be also used to delineate individual trees (Rah-
man and Gorte, 2008, Reitberger et al., 2009, Hu et al., 2014)
and to extract detailed information about individual trees such as
skeletons and the diameter at breast height (Bucksch et al., 2014).
Likewise, by extracting the crown base height, it was shown by
Popescu and Zhao (2008) that the vertical point distribution can
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be used to extract tree parameters below the canopy surface. Fur-
ther, changes in forests can be detected even at low point densities
by matching the histograms of the vertical point distribution from
repeated airborne laser scans (Næsset and Gobakken, 2005, Yu
et al., 2006). Thus, ALS data provides not only information on
the canopy surface but also on the tree structure below it.

However, studies on changes and dynamics in forests derived
from ALS data are so far still limited due to the limited amount of
multi-temporal ALS datasets. In addition many of these studies
use point clouds with relatively low point densities of approx-
imately ten (Yu et al., 2004) or less points per square meter
(Vastaranta et al., 2012, Vepakomma et al., 2008). Most of such
studies use canopy height models (CHM) to derive changes in
height, to detect harvested or fallen trees and to study tree gap
dynamics. The use of CHMs is practical in most applications as
it reduces the amount of data and therefore benefits simplicity
and efficiency, but it does not exploit the full content of informa-
tion. In addition, the actual tree height is often underestimated in
ALS based tree height assessments due to under-sampling, which
can be only partly corrected by regression models (Leeuwen and
Nieuwenhuis, 2010). Smaller trees, such as suppressed or inter-
mediate trees, might not even be represented in a CHM because
their crowns are partly or totally covered by crowns of more dom-
inant trees. The potential of three-dimensional ALS data to detect
changes in forests is thus often not realized. It has been therefore
suggested to use the full height distribution of multi-temporal
ALS data to detect changes in forests, such as fallen trees, de-
foliation and thinning, more reliably (Vastaranta et al., 2012).

In response to advancements in technology, which make high
density and multi-view ALS data available, and the ineffective-
ness of CHMs to exploit the full information in ALS data we
assess in this paper how the whole available vertical distribution
can be used to detect harvested and fallen trees. Similar to the
efficient analysis of CHMs the use of all data points for change
detection must not be downgraded by slow and intensive process-
ing. Since the data is of high density, efficient data structures
must be used.
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Figure 1: Aerial image of Kralingse Bos (Source: Municipality
of Rotterdam)

2. DATA AND TEST SITE

2.1 Test Site

The study area is the Kralingse Bos, a forested area of about one
km2 in size and located in Rotterdam in the Netherlands, see Fig-
ure 1. The area is flat with elevations ranging from three meters
below to one meter above mean sea level. The trees are mainly
deciduous containing several species including poplar, willow,
oak, European beech, maple, European hornbeam and European
ash. Tree heights range from approximately 15 to 40 m. The
area is a sustainably managed, recreational and urban forest. The
management of the forest has changed from a more traditional ap-
proach, which included removal of coarse dead wood and dying
trees and branches, to the current more sustainable approach. The
forest is characterized by multiple layers of canopy and trees of
different ages. Decaying fallen trees and branches are left on the
ground, giving substrates for insects, bacteria, fungi and mosses,
and thereby helping to maintain biodiversity.

2.2 Laser Scanning Data

Two ALS data sets, made available by the municipality of Rotter-
dam, are used for this study. The first data, which was acquired
in fall 2008 during leaf-on conditions, has a density of about 30
to 50 pulses/m2 and due to multiple returns per pulse resulted in
up to 200 points/m2. The system scans in front of, below and be-
hind the platform to reduce occlusion effects. Furthermore, cross-
strips were acquired over the whole area. The second data set was
acquired in spring 2012 during leaf-on conditions in cross-strips
with a full-waveform scanner and was subsequently discretized;
see Figure 2 for a digital surface model derived from the data set.
The density is approximately 50 pulses/m2, which, similarly to
the first data set, resulted in up to 200 points/m2 in the forested
area.

3. METHOD

In this section the process to detect harvested and fallen trees is
presented. The basic idea of the method is based on a direct com-
parison of the raw point clouds with subsequent segmentation and

Figure 2: Digital surface model showing the elevations in the
Kralingse Bos in the year 2012

classification. The process is therefore divided into three compo-
nents:

1. Deviating points are determined individually using a modi-
fied cloud to cloud comparison, which identifies differences
between the data sets.

2. The deviating points are further clustered into spatially con-
nected regions.

3. The clusters are classified into objects, such as harvested
trees, undergrowth or noise.

3.1 Identification of Deviating Points

First, the differences between the two point clouds from the dif-
ferent epochs are identified by means of a modified point to point
comparison. The essence of our metric is based on the mean of
distances from a point in the first epoch to its k closest points
in the second epoch, which serves as the reference. This dis-
tance, which is equivalent to the Hausdorff distance described in
Girardeau-Montaut et al. (2005) if k equals one, can be computed
for each point of the first epoch with respect to the second epoch
and is indicative of changes between both epochs. A low value of
this distance indicates that no change has occurred, while a large
value indicates that there has been a change. For example, points
in the first data set, which belong to a tree that exists in the first
data set but not in the second, will have a large distance. For these
points the closest points in the second data set will in fact belong
to structures that still exist, like the ground or neighbouring trees,
which, however, might be far away.

To identify changes more robustly our distance is not computed
as the distance to the single closest point only, but instead as the
mean of distances to the k closest points, where k is a user de-
fined parameter larger than one. Even though this distance au-
tomatically increases for all points as k is increased, it gives a
more robust measure of differences between the data sets. In
this way outliers, which could be caused by measurement errors,
occlusion, varying point densities, effects due to wind or small
changes, are better handled. For the remainder of this paper we
henceforth call this distance the robust cloud to cloud distance.
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To separate changes from non-changes a threshold is defined for
the robust cloud to cloud distance, such that points with a value
above this threshold are classified as change. All remaining points
are not considered to be changes and belong to the same object
in the reference epoch. Rather than using a unique threshold for
all points in the data set, which would give a noisy result if set
too low and exclude changed objects or parts of changed objects
if set too high, the threshold includes two components, a unique
global and a variable local parameter.

The local parameter is calculated as follows. For each individual
data point in the first data set the k closest points in the second
data set are considered. At each of these k points the mean of the
distances to its k nearest neighbours in its own, i.e. the second,
data set is calculated. We further take the mean of these values;
thus overall the mean of k2 distances. The local parameter thus
depends on the local spread between points in the reference data,
making it adaptable to variations in point density caused by ei-
ther the scanning or the object geometry. It can be understood as
a normalization distance for our robust cloud to cloud distance.
The local threshold further adapts automatically to increases in
the robust cloud to cloud distance caused by choosing larger num-
ber of closest points k. The second component of the threshold,
the global parameter Tg , is a unique user defined value added on
top of the local values and functions solely as a buffer.

The above described method is implemented using a kd-tree data
structure to search for nearest neighbours. In this way the neigh-
bourhood of each point can be analysed and for each point the
robust cloud to cloud distance can be efficiently determined.

3.2 Clustering of Deviating Points

To extract single trees the identified deviating points are first seg-
mented into clusters which separate the differences into spatially
connected regions. Here region growing is used with the point
having maximal robust cloud to cloud distance as seed. Start-
ing from this seed the cluster is grown to close-by neighbour-
ing points. Close-by neighbouring points are defined as a subset
of the k nearest neighbours, which must be classified as change
and which are within a distance of one meter to the seed. From
these points the cluster is grown further in a similar manner un-
til all candidate points are added to the cluster. This procedure
is stopped when no more candidate points are available for the
cluster. Subsequently a new cluster is grown from the remaining
points starting again at the point having the maximal robust cloud
to cloud distance as seed. This is iterated until no more points are
available as seeds.

3.3 Individual Tree Extraction

In the last step these clusters are analysed to identify whether they
are in fact trees or other objects. All clusters with a low amount
of points are removed in order to exclude small objects result-
ing either from minor changes, such as small damages to trees,
or noise. Further, clusters containing only undergrowth, which
can be identified by their low elevation and spatial distribution,
are removed. The remaining clusters should be further classified
as trees if applicable. It is expected that this can be done using
the geometric shape of the clusters and a principal component
analysis (PCA) on the neighbourhood of each point to identify
stems. A comparable approach has been presented by Bremer et
al. (2013) previously. At each point the three eigenvalues and
eigenvectors are calculated using a PCA on the coordinates of the
point in question and its k nearest neighbours. Due to the elon-
gated and cylindrical shape of stems the points on a stem are char-
acterized by a large first eigenvalue compared to the other two

Figure 3: A tree coloured by normalized largest eigenvalue at
each point. The arrows depict the directions of the corresponding
eigenvectors.

eigenvalues. Further it is assumed that for stem points the largest
eigenvalue corresponds to an eigenvector that points in vertical
direction. The three eigenvalues of points in tree crowns on the
other hand have mainly similar values. As can be seen in Figure
3, a cluster can be classified as a tree if the lower part of that clus-
ter consists of points with large first eigenvalue compared to the
other two eigenvalues and the corresponding eigenvector point-
ing in vertical direction. The upper part of the cluster contains
points with a relatively small first eigenvalue that is similar to the
other two eigenvalues.

4. RESULTS

The first and second step of the described method have been ap-
plied to a subset of the test site covering an area of 100 times
100 m with a high number of removed trees and changes in the
undergrowth between the years 2008 and 2012. The correspond-
ing results are described in this section. For the classification of
individual trees further research is required.

4.1 Identification of Deviating Points

To identify points in the 2008 data, which deviate from the points
in the 2012 data, the robust cloud to cloud distance was com-
puted, with k set to ten. Similarly the local parameter was ob-
tained by considering the ten nearest neighbours in the 2012 data.
The global parameter Tg was set to 0.5 meters. Using this set-
ting the number of points in the 2008 data was reduced from
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Figure 4: Side view of a small forest patch in 2008 (top left) and 2012 (top right) where two trees have been removed. The robust cloud
to cloud distance calculated with k = 10 is given in the bottom left and the points identified as change in the bottom right image using
a global threshold Tg of 0.5 m.

1,146,848, including ground points, to 92,659, thus a reduction of
more than 90 percent. These 92,659 points are expected to sam-
ple objects that disappeared between 2008 and 2012. The results
and the original data for a small forest patch can be seen in Figure
4. In the upper left and right images the cross sections of a small
forest patch is presented in the years 2008 and 2012, respectively.
A closer look reveals that not only two trees have been removed
but also the point density in undergrowth and tree crowns differs.
The resulting robust cloud to cloud distance can be seen in the
lower left image and shows that for some parts of the removed
trees the closest points in the reference data is as far as five me-
ters away, which strongly indicates a change. In the lower right
image of Figure 4 only the points which remained after applying
the threshold are shown. All parts of the removed trees are classi-
fied correctly as change, but also some smaller patches from other
trees and undergrowth are classified as change. These classifica-
tions do not necessarily have to be wrong, but are not desired and
therefore have to be removed at a later processing step.

Tests with different values for k showed that with a low value of
k often a relatively small robust cloud to cloud distance is cal-
culated for parts of actually removed trees, where for example
undergrowth is close to the stem, where the stem is close to the
ground or where the crowns of trees are very dense. A larger
value for k reduced this effect slightly. Even though the robust
cloud to cloud distance increases globally for a larger k the points
corresponding to change can still be isolated from points that do
not correspond to changes. To separate the actual change from
noise a low value for the global component Tg of the threshold
was sufficient and can be in the order of half a meter to a meter.
If set too low or equal to zero, a large number of points are clas-
sified wrongly as change and if set too large real changes might

not be spotted. This is similar to the behaviour of using a unique
threshold value for all points, but the two component threshold
performs better in areas with changing point densities.

A wide range of effects that can cause differences between the
data sets in the tested area are apparent. These range from dif-
ferences caused by the natural or anthropogenic changes in the
area, like growth, and differences caused by the acquisition like
scanning geometry, point density or noise. Nevertheless the most
significant large scale changes have been correctly identified us-
ing our direct comparison approach.

4.2 Clustering of Deviating Points

The points identified as change have been further clustered into
spatially connected segments using the described region growing
method. Due to the algorithm starting at the points with largest
robust cloud to cloud distance the initial clusters correspond to
large changes and result mostly in large clusters containing hun-
dreds to thousands of points. These corresponded mainly to indi-
vidual trees and groups of trees. On the other hand, the clusters
that are found later, i.e. those clusters that have seeds with a lower
robust cloud to cloud distance, corresponded to smaller changes.
These clusters are generally small, consisting of tens of points or
less, and very frequently just single points. To avoid formation
of dozens of such tiny clusters the new clusters were formed only
if the remaining seeds had a robust cloud to cloud distance of at
least 1.5 m. Finally, small clusters with less than 100 points re-
sulting from seed points with robust cloud to cloud distance larger
than 1.5 m were removed in a post-processing step. The result is
shown in Figure 5. Indeed mainly complete trees are left after
clustering and cleaning up small clusters. All detected harvested
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Figure 5: Resulting objects identified as change after region growing and removing of clusters smaller than 100 points. The points are
coloured by their elevation.

trees are present including their crown and most of the stem. Sev-
eral small patches of undergrowth are still included and should be
removed in another processing step.

Next to segmentation by region growing it is proposed to use an
approach based on spectral clustering. Here the implementation
described by (Chen et al., 2011) will be tested. In this approach
the spatial connectedness of neighbouring points is used to seg-
ment the point cloud into a predefined number of clusters. First
tests have shown that spectral clustering is suitable to delineate
neighbouring trees. However the main disadvantages at the mo-
ment are the long computation time and the requirement of know-
ing the number of clusters in forehand.

5. CONCLUSIONS

In this paper a method to detect harvested and fallen trees from
repeated airborne laser scanning data was presented. In a first
step all points that deviate from the reference data were identified,
thereby greatly reducing the amount of data for further process-
ing. Next, spatially connected points were clustered and small
groups of the resulting points are removed. In the final result
the removed trees can be identified by a human operator. Further
research is however required to learn how the used parameters,
like the number of considered closest points k, the global compo-
nent Tg of the threshold, and the region growing threshold can be
optimized. Further research is also still needed to automatically
identify individual trees from the clustering results.

The advantages of the proposed method over methods based on
canopy height models are an increase of accuracy due to the ex-
ploitation of the three dimensional information in the data and
the ability to detect changes below the canopy surface. Consider-
ing more than one closest point in the cloud to cloud comparison

and using a local threshold has shown to decrease adverse effects
caused by measurement errors, occlusion, varying point densities,
effects due to wind or small changes.

In the future the results of the presented method will be validated
using small patches in the test site and then applied to the full
area. In addition the method will be tested on a data set from
2010, which was acquired during the leaf-off season, in order
to test the effect of leaves. It is further planned to compare the
obtained results to results from methods based on canopy height
models.
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