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Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise
limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half
the input wavelength. Here we show experimentally that these two features can be simultaneously achieved using
a relatively simple setup based on Gaussian states and homodyne measurement. Using 430 photons shared between
a coherent and a squeezed vacuum state, we demonstrate a 22-fold improvement in the phase resolution, while we
observe a 1.7-fold improvement in the sensitivity. In contrast to previous demonstrations of super-resolution and
super-sensitivity, this approach is fully deterministic. © 2018 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.6570) Squeezed states; (120.5050) Phase measurement.
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1. INTRODUCTION

Quantum interference of light plays a pivotal role in high-precision
quantum sensing [1], optical quantum computation [2], and quan-
tum state tomography [3]. It is typically understood as two-beam
interference that can be observed, for instance, in a Mach–Zehnder
interferometer or a double-slit experiment. At the output, such
interferometers create an oscillatory pattern with a periodicity given
by half of the wavelength (λ∕2) of the radiation field, which may be
referred to, in analogy to the resolution-benchmark in optical im-
aging, as the “Rayleigh criterion” for phasemeasurements. This limit
can, however, be surpassed using different types of states or mea-
surement schemes [4–10]. In particular, measurement schemes that
are based on parity detection [9,11] or approximate parity detection
via a phase-space relation [8] are utilized to beat this limit with
classical states, i.e., they do not require quantum states [12].
The arguably best-known quantum approach to observe a fringe
narrowing uses NOON states, jψi ∝ jN ; 0i � eiNϕj0; N i.
Surpassing the Rayleigh criterion is referred to as super-resolution
[13,14] and is studied in the context of, e.g., optical lithography [5],
matter-wave interferometry [15], and radar ranging [16].

In quantifying the performance for applications in quantum
sensing and imaging, it is common to evaluate the Fisher infor-
mation [17], or, equivalently, determine the sensitivity in the in-
terferometric phase measurement. Using coherent states of light
the optimal sensitivity is given by 1∕

ffiffiffiffiffi
N

p
, where N is the mean

number of photons of the state [18]. This sensitivity constitutes

the shot noise limit (SNL). Overcoming the SNL is commonly
referred to as super-sensitivity and can be achieved by non-
classical states [1,19–21]. Super-sensitivity based on squeezed
states of light has proven to be a powerful and practical way
to enhance the sensitivity of gravitational wave detectors [22,23].

The effects of super-sensitivity and super-resolution can be ob-
tained simultaneously. For example, optical NOON states offer a
sensitivity with Heisenberg scaling, 1∕N , and a phase resolution
that scales as λ∕2N corresponding to N fringes per half-
wavelength. NOON states thus exhibit an equal scaling in the
two effects. In contrast, this work shows how resolution and sen-
sitivity are tuneable and can, in fact, compete with each other.
Due to the high fragility of NOON states, the complexity in their
generation, and the commonly probabilistic way of generation,
super-sensitivity and super-resolution have been only measured
in the coincidence basis and in a highly probabilistic setting
[6,19,24,25]. It has also been suggested to use two-mode squeezed
vacuum states in combination with parity detection to attain the
two “super-features” simultaneously [26]. However, possibly due to
the complications in implementing a parity detection scheme, it has
so far never been achieved experimentally. The complexity associ-
ated with the two schemes are due to the involved non-Gaussian
states (NOON states) or the non-Gaussian measurements (parity
detection). A natural question to ask is whether the same “super-
features” can be realized using simple Gaussian operations. Here we
answer this question in the affirmative.
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We propose and experimentally demonstrate that, by using
Gaussian states of light and Gaussian measurements, it is possible
to realize a phase measurement that features super-resolution and
super-sensitivity simultaneously. Using displaced squeezed states of
light in conjunction with homodyne detection followed by a data-
windowing technique, we show that the interferometric fringes can
be made arbitrarily narrow while at the same time beating the shot
noise limit. In stark contrast to the NOON state scheme, which, in
any practical setting, is highly probabilistic both in preparation and
in detection, our approach provides a deterministic demonstration
of super-resolution and super-sensitivity.

2. MATERIALS AND METHODS

An illustration of the basic scheme is shown in Fig. 1. A vacuum
squeezed state is combined with a coherent state of light at the
entrance to a symmetric Mach–Zehnder interferometer. The
Wigner function at the input is given by

W in�x1; p1; x2; p2�
�W jαi�x1; p1�W jξi�x2; p2�

� 2 exp�−2��x1 −α�2� p21��
π

·
2P exp

�
−2
�
P2ς2x22� p22

ς2

��
π

; (1)

where xn and pn are the amplitude- and phase-quadratures; α is
the amplitude of the coherent state; and ς � e−r , where r denotes
the squeezing parameter and P represents the purity of the
squeezed state. In the scheme, an amplitude-modulated coherent
state and a phase-squeezed vacuum state interfere on the first
beam splitter of the interferometer. Then the resulting state ac-
quires a relative phase shift Δϕ, next interferes on the second

beam splitter, and finally, one of the outputs is measured. As
we used weak input signals, a homodyne readout scheme was em-
ployed. Figure 1 illustrates the trajectory of the output state in
phase space for different phase shifts.

If the interferometer is operated near a dark fringe, i.e., biasing
the phase shift such that most of the light exits the second output
of the interferometer, the phase-squeezed vacuum state will be
detected. Thereby, the shot noise around the bias is suppressed
and the phase sensitivity improved. The approach of feeding
the commonly unused input mode with a vacuum squeezed state
is equal to the proposal by Caves [20] to beat the shot noise limit
in phase measurements. However, since the phase response for
Caves' scheme reads N cos2�ϕ∕2�, which is an oscillating func-
tion with a period equal to λ∕2, the resolution coincides with the
mentioned “Rayleigh criterion” for phase measurements. In the
following we show that by implementing a homodyne windowing
scheme, the setup yields super-resolution and super-sensitivity.

The quadrature measurement of the homodyne detector is di-
vided into two bins set by the “bin size” a: if the phase quadrature
p̂ is measured, we categorize two different results, which are as-
sociated with the intervals jpj ≤ a and jpj > a. We describe such a
measurement strategy by the projectors

Π̂0 �
Z

a

−a
dpjpihpj; Π̂1 � Î − Π̂0: (2)

The measurement observable can thus be written as
Π̂ � λ0Π̂0 � λ1Π̂1, where λ0 � 1∕erf � ffiffiffi

2
p

a� and λ1 � 0 are
the eigenvalues associated with the two measurement outcomes.
Now the detector response is found by evaluating hΠ̂i, which, in
the idealized case of Π̂ � jp � 0ihp � 0j, i.e., a → 0, and a pure
squeezed vacuum state, yields

hΠ̂ia→0;P�1 �
2ς2 exp

�
− 2ς2jαj2 sin2ϕ
2ς2�ς2−1�cos ϕ��ς4−1�cos2ϕ��ς2�1�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ς4 − 1�cos2ϕ� 2�ς2 − 1�ς2 cos ϕ��ς2� 1�2

p :

(3)
The full width half-maximum (FWHM) of this function fol-

lows 1∕jαj for jαj → ∞, thereby indicating that the interference
fringes become narrower as α is increasing and thus demonstrat-
ing super-resolution. It should be stressed that setting a � 0 is an
idealization, as it means a projection on an infinitely squeezed
state, i.e., even-number state. However, it points out that the op-
erator Π̂ is in some sense an approximation of the parity operator
[9,11]. Considering instead a realistic setting where a ≠ 0 and the
squeezed state is not pure (P < 1), the response function reads

hΠ̂i � 1

2 erf
� ffiffi

2
p

a
ς

�
�
erf

� ffiffiffiffi
2

c1

r
c−

�
� erf

� ffiffiffiffi
2

c1

r
c�

��
; (4)

where

c� � a� 1

2
jαj sin ϕ

and

c1 �
P2ς2�ς2�cos ϕ� 1�2 � 2�1 − cos ϕ�� − cos2 ϕ� 1

4P2ς2
: (5)

The scaling of the FWHM is preserved for a general value a,
i.e., FWHM ∝ 1∕jαj. In Fig. 2(a) we plot the FWHM improve-
ment as a function of the squeezing parameter ς and
the bin size a. It is clear from this plot that the super-resolution

Fig. 1. Scheme of the approach. A coherent state jαi and a vacuum
squeezed state jξi are interfered on the first beam splitter. Insets show
Wigner functions of the respective states, simulated for ς � 1

e and
α � 10. In one of the resulting modes, a variable phase shifter is placed.
At the second beam splitter the modes interfere again, producing the
depicted Wigner functions. Eight superimposed distributions illustrate
the effect of the phase shift, that is, each distribution is separated by
π
4 . If at Δϕ � 0 the squeezed vacuum state leaves the upper arm, the
coherent state exits the lower one. Finally, the state is projected onto
the quadrature eigenstate hpj and partitioned by Π̂.
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feature only depends weakly on the degree of squeezing, and a
similar conclusion is found for the purity of the state. The only
critical parameter for attaining high resolution is the mean photon
number of the input coherent state. More details and a derivation
may be found in Supplement 1.

We now turn to the investigation of the sensitivity using the
above scheme. The sensitivity can be found using the uncertainty
propagation formula,

σ � ΔΠ̂∕jd∕dϕhΠ̂ij; (6)

where ΔΠ̂ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΠ̂2i − hΠ̂i2

p
, and for our measurement operator

it follows

σ �
			c321 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 − c2�c2π∕2
p

∕�exp�−2c2−∕c1��c 01c− � αc1 cos ϕ�

� exp�−2c2�∕c1��c 01c� − αc1 cos ϕ��
			; (7)

with the notations c 01 � d
dϕ c1 and c2 � erf


 ffiffiffiffiffiffiffiffiffi
2∕c1

p
c−
��

erf

 ffiffiffiffiffiffiffiffiffi

2∕c1
p

c�
�
. For a specific parameter regime defined by the

purity P, the bin size a, and the squeezing parameter ς, this sen-
sitivity beats the shot noise limit. In Figs. 2(b) and 2(c) we plot
the sensitivity σ relative to the shot-noise-limited sensitivity as a
function of the bin size and the squeezing parameter for two dif-
ferent purities. It is shown in Fig. 2(c) that it is possible to achieve
super-sensitivity in a setting where the squeezed state is impure.
In conclusion, both super-sensitivity and super-resolution can be
achieved in a practical setup for the parameter space shown in
Fig. 2(c). Furthermore, sensitivity and resolution features are nei-
ther independent nor fixed with respect to each other, but can be
varied by the homodyne windowing technique. A discussion of
the ultimate sensitivity may be found in Supplement 1.

We proceed by discussing the experimental realization de-
picted in Fig. 3. A squeezed vacuum state and a coherent state
with a controllable photon number is injected into the input ports
of a polarization-based Mach–Zehnder interferometer. The
polarization basis ensures high stability and quality of the inter-
ference. Furthermore, it allows for simple control of the relative
phase shift. The phase shift is varied by a half-wave plate mounted
on a remote-controlled rotation stage. One output of the inter-
ferometer is measured with a high-efficiency homodyne detector
exhibiting an overall quantum efficiency of 93%, given by 99%
efficiency of the photo diodes and 97% visibility to the local os-
cillator (LO). The relative phase of the two input beams of the
interferometer as well as the phase of the LO is actively stabilized
via real-time feedback circuits, thereby recreating the scheme in

Fig. 1 and projecting the output on the p̂ quadrature. A detailed
description may be found in Supplement 1.

A squeezed vacuum state is generated by parametric downcon-
version in a 10 mm long periodically poled potassium titanyl
phosphate (KTP) crystal embedded in a 23.5 mm long cavity
comprising a piezo-actuated curved mirror and a plane mirror in-
tegrated with end-facet of the crystal. A Pound–Drever–Hall
(PDH) scheme is adopted to stabilize the cavity resonance.
The downconversion process is pumped by a 45 mW continuous-
wave laser beam operating at 532 nm, such that squeezed light is
produced at 1064 nm. To stabilize the pump phase, the radio-
frequency signal used also for cavity stabilization is down-mixed
with a phase shift of 90°. Using a 5 mW local oscillator, we ob-
serve 6.5(1) dB shot noise suppression at 5 MHz sideband fre-
quency, while the anti-squeezed quadrature is 11.3(1) dB
above shot noise. The squeezed-state parameters read, on average,
P � 0.58 and ς � 0.47. A complete characterization of the
squeezed light source is presented in Supplement 1.

The coherent input state is produced by an electro-optical
modulator (EOM) at a sideband frequency of 5 MHz. The
chosen frequency ensures the creation of a coherent state far
from low-frequency technical noise and with an amplitude
jαj2 that is conveniently controlled by the modulation depth
of the EOM.

(a) (b) (c)

Fig. 2. Performance of the protocol for α � 10 under variation of the bin size and squeezing parameter. (a) Improvement of the FWHM compared to
the Rayleigh criterion (2π∕3). The achieved FWHM is extracted numerically from the response of a pure state. The improvement is monotonic in the
sense that a smaller bin size a always leads to a higher resolution. (b) Maximum sensitivity compared to the SNL. The region with negative values describes
the parameter space where the SNL is surpassed. The threshold is marked by the bold line. (c) Unlike case (b), we set the purity P � 1∕2.

Fig. 3. Experimental implementation. A vacuum squeezed state, cre-
ated by parametric downconversion, and a coherent state, generated via
an electro-optic modulator (EOM), are sent into a polarization-based
Mach–Zehnder interferometer (MZI). A quarter-wave plate in combina-
tion with a motorized half-wave plate (Δϕ) forms the equivalent phase
shift of a MZI where the two modes are spatially separated. The piezo
transducers P1 and P2 stabilize the phase between the input states and
the local oscillator (LO), respectively. A half-wave plate in front of the last
polarizing beam splitter is used to balance the photocurrent in the ho-
modyne detector (HD). All cubes represent polarizing beam splitters.
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To measure the interferometer’s output state at 5 MHz, the
electronic output of the homodyne detector is down-mixed at this
frequency, subsequently low-pass filtered at 100 kHz, and then
digitized with 14 bit resolution. For each phase setting, 106 sam-
ples are acquired at a sampling rate of 0.5 MHz. The data is re-
corded on a computer for post-processing that includes the
dichotomic windowing strategy given by Eq. (2) in which we
set the bin size a � 1∕2. After dividing the data according to
a, we calculate hΠ̂i as well as the standard deviation for each phase
setting from the data. Finally, σ is computed according to Eq. (6).
The term ΔΠ̂ in Eq. (6) is extracted directly from the data.
Instead of calculating the derivative of hΠ̂i also directly, it is esti-
mated from the theoretical model of hΠ̂i fitted to the data. This
approach is chosen to increase the confidence in the computation
of σ, and a comparison between this and a direct evaluation is
shown in Supplement 1. In the panels on the right of Fig. 4,
σ is shown in comparison to the theoretical model given
by Eq. (7).

3. RESULTS AND DISCUSSION

The results for a mean photon number of 33.6 and 430, with a
mean of 2.8 photons contained in the squeezed state and an over-
all efficiency of circa 84%, are shown in Fig. 4 and compared with
theoretical predictions. The latter is denoted by solid lines. It is
clear from the plots that the scheme exhibits super-resolution as
well as super-sensitivity for certain phase intervals. We expect that
the resolution and sensitivity improves as the mean photon num-
ber is increased. This expectation is confirmed in Fig. 5 where the
measurement of these two features for increasing photon numbers

in the coherent state is depicted. Specifically, at jαj2 � 427 we
obtain a 22-fold improvement in the phase resolution compared
to a standard interferometer and a 1.7-fold improvement in the
sensitivity relative to the shot noise limit.

It is interesting to compare these results with a scheme exploit-
ing pure optical NOON states, which exhibit super-resolution
and super-sensitivity at the same photon-number scaling. Using
such states, a similar improvement in resolution and sensitivity
would require a 23-photon and a 3-photon NOON state, respec-
tively. Importantly, this only holds for a lossless scenario. As of
today, an optical 5-photon NOON state has been produced
which in principle will yield a 5-fold improvement in resolution
and a 2.2-fold improvement in sensitivity [27]. However, this
realization is intrinsically probabilistic and thus does not exhibit
super-sensitivity in a deterministic setting. To the best of our
knowledge, we found that the presented results constitute the first
demonstration of super-resolution and super-sensitivity in a
deterministic setting.

In summary, we proposed and experimentally demonstrated a
simple approach to the simultaneous attainment of phase super-res-
olution and phase super-sensitivity. The approach is based on
Gaussian squeezed states andGaussian homodynemeasurement fol-
lowed by a windowing strategy, which is in stark contrast to pre-
viously proposed schemes realized with impractical and fragile
NOON states, or high-efficiency parity detection. Our work is
of fundamental interest as it highlights the fact that the observation
of super-resolution is not a special quantum effect associated with
non-Gaussian quantum states [6] or non-Gaussian measurements
[7]. In conclusion, we find that the actual quantum feature—that
is, super-sensitivity—may co-exist with the super-resolution feature
without using advanced non-Gaussian states or non-Gaussian mea-
surements. Assuming that the measurement’s figure of merit is
phase sensitivity, we cannot find an advantage in exploiting super-
resolution in a Gaussian-noise-governed context. Furthermore,

(a)

(b)

Fig. 4. Results achieved for an input state with (a) jαj2 ≈ 30.7
(N ≈ 33.6) and (b) jαj2 ≈ 427 (N ≈ 430). Left: The fringe after apply-
ing the dichotomy operator Π̂. A dashed line follows the fringe of a stan-
dard interferometer. Its FWHM is (a) 5.7 and (b) 22.2 times larger
compared to our result. Right: The sensitivity derived from the exper-
imental data. In a range of about �0.1 rad, the SNL was surpassed
by a factor of (a) 1.5 and (b) 1.7. The uncertainty of each data point
is well within the “□” symbol. We attribute the symmetric deviations
at the wings to a systematic anomaly in the set phase shift controlled by
the HWP.

(a) (b)

Fig. 5. Summary of experimental results. The solid orange lines are
theoretical predictions derived from the measured squeezing parameters
and displacement amplitude. Each cross symbolizes a measurement run.
The uncertainties are much smaller than the symbol size. (a) The
FWHMunder variation of the total average photon number of the input
state. It always beats the Rayleigh criterion of 2π∕3. Comparing the theo-
retically predicted FWHM proves a stable performance of the setup.
(b) A comparison to four sensitivity limits. As for the resolution, the theo-
retical prediction affirms our experimental results. The SNL was outper-
formed throughout the experiment at a scaling of N −0.56; the Heisenberg
scaling of 1∕N is, however, not attainable. Using no windowing
(a → ∞), a better sensitivity and a scaling of N −0.57 can be achieved;
however, it comes at the cost of super-resolution. The ultimate bound
of our protocol follows N −3∕4, assuming no losses and restrictions on
the squeezing degree.
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we present the trade-off between resolution and sensitivity for the
first time and show that significant super-resolution can be achieved
at the cost of negligible increase of sensitivity at the scale of a fraction
of SNL. This holds also in the presence of loss and classical Gaussian
noise (discussed in Supplement 1). Our result sets a benchmark to
evaluate super-resolving strategies, particularly under realistic imper-
fect conditions.

Funding. Lundbeckfonden; Det Frie Forskningsråd (DFF)
(0602-01686B, 4184-00338B); Grantová Agentura České
Republiky (GACR) (GB14-36681G).

See Supplement 1 for supporting content.
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