<]
TUDelft

Delft University of Technology

Towards a Realistic Scheduler for Mixed Workloads with Workflows

llyushkin, Alexey; Epema, Dick

DOI
10.1109/CCGrid.2015.74

Publication date
2015

Document Version
Accepted author manuscript

Published in
15th IEEE/ACM Int'l Symp. on Cluster, Cloud and Grid Computing

Citation (APA)

llyushkin, A., & Epema, D. (2015). Towards a Realistic Scheduler for Mixed Workloads with Workflows. In
15th IEEE/ACM Int'| Symp. on Cluster, Cloud and Grid Computing: Doctoral Symposium (pp. 753-756)
https://doi.org/10.1109/CCGrid.2015.74

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/CCGrid.2015.74
https://doi.org/10.1109/CCGrid.2015.74

Towards a Realistic Scheduler for Mixed Workloads with Workflows

Alexey Ilyushkin
Delft University of Technology
Delft, the Netherlands
a.s.ilyushkin@tudelft.nl
PhD student

Abstract—Many fields of modern science require huge
amounts of computation, and workflows are a very popular
tool in e-Science since they allow to organize many small,
simple tasks to solve big problems. They are used in astron-
omy, bioinformatics, machine learning, social network analysis,
physics, and many other branches of science. Workflows are
notoriously difficult to schedule, and the vast majority of
research on workflow scheduling is concerned with scheduling
single workflows with known runtimes. The goal of this PhD
research is to bring more realism to the problem of workflow
scheduling in actual systems. First, in real systems, multiple
workflows may be contending for the available resources.
Second, task runtime estimates are not always known, and
task runtime estimates may be wrong. Third, workflows are
usually not the only type of jobs submitted to a system, there
may for instance also be parallel applications and bags-of-
tasks. Accordingly, the purpose of this PhD research is to
create and analyze policies for online scheduling of workloads
of workflows with and without known task runtimes that also
contain jobs of other types. We are in the process of simulating
policies, and we will validate our results by means of an
implementation and real-world experiments with the KOALA-W
workflow processing system.

Keywords-scheduling; workloads; workflows;

I. PROBLEM STATEMENT

Workflows (WF) are a very popular tool in e-Science [1],
[2]. A typical application of WFs is DNA sequencing
in bioinformatics. There they allow to perform massively
parallelized sequencing of millions of nucleic acids, and the
amount of data generated by these WFs is often gigabytes
to terabyte [3]. Among all the job types in the workloads of
modern large computing environments such as clusters and
datacenters, WFs constitute one of the most difficult types
of jobs to schedule [4]. Their sizes can reach thousands or
hundreds of thousands of tasks and are virtually unbounded,
and the amount of required resources for a single WF can
significantly fluctuate during its execution. Almost all of
the research in WF scheduling has focused on scheduling
single WFs with known task runtimes. However, in reality,
schedulers may have to schedule an arrival stream of WFs,
their task runtimes may not be known in advance, and
workloads usually do not solely consist of WFs, but of other
application types as well. Therefore, the goal of my PhD
thesis is to design and analyze policies for scheduling WFs

Dick Epema
Delft University of Technology
Delft, the Netherlands
d.h.j.epema@tudelft.nl
Supervisor

with unknown task runtimes that are part of mixed workloads
that arrive at a system—both by means of simulations, and by
means of the design and implementation of, and experiments
with the WF scheduler KOALA-W as part of the KOALA
multicluster scheduler.

Many techniques for offline WF scheduling [5]-[7] have
been investigated, but the amount of research in online
scheduling workloads partially or completely consisting of
WFs is much smaller. The streaming nature of a job arrival
process makes it important to consider online scheduling
algorithms that are able to solve scheduling problems in a
dynamic way. There only a few works that consider an online
stream of WFs. For example, in [8] the authors use a Directed
Acyclic Graph (DAG) composition approach and task runtime
information to prioritize the tasks using HEFT [5]. (A WF
can be represented in a form of a DAG and these two
notions are often used interchangeably.) In [9], a stream of
arriving WFs is used and the ideas from [8] are extended by
considering the critical path for each WF. In [10], the Pegasus
planner [11] and the DAGMan [12] batch WF executor are
used. However, all of these works suppose the knowledge of
WF task runtimes.

Although in much of the research on WF scheduling,
knowledge of the runtimes of WF components (tasks) is
assumed, in many cases these runtimes are actually not known
in advance. Several runtime estimation algorithms [13], [14]
that usually use statistical methods to estimate the runtime
of tasks or of whole WFs have been investigated, but these
methods almost always provide inaccurate results. Some
systems employ user runtime estimates, but often these are
even more inaccurate. Therefore, it is a challenge for a
scheduler to process jobs with unknown runtimes or with
inaccurately predicted runtimes.

Of course, there are many other job types and the WFs
are not the only group of interest for researchers. Here
could be considered single query jobs like http requests,
MapReduce jobs, parallel applications (MPI), and parameter
sweep applications (bags-of-tasks). These job types can be
represented in the system model as a background load which
exists by default and the scheduler should cope with it.

First, we have proposed a set of online scheduling policies
to schedule workloads of WFs in a distributed environment

with unknown task runtimes [4]. We have investigated these

policies with simulations with realistic synthetic workloads.

Each WF in our experiments consists of 30-600 tasks. To
compare the proposed policies and to assess their performance
we have utilized different system-oriented and user-oriented
metrics.

Second, we will introduce runtime estimates in our model
and we will analyse and compare the old and new simulation
results to adjust our policies. In particular, we are planning to
check how the runtime estimation error affects the scheduling
quality and how the structure of a WF can help to improve
the runtime prediction to get better scheduling results. In
order to check how our design can manage bigger WF sizes,
we are going to start experimenting with medium-sized
WFs containing thousands of tasks. If these experiments
are successful, we will try to process very large WFs
with hundreds of thousands of tasks, such as our BTWorld
workflow [15].

Third, to bring realism to our work, we will extend the
model of our simulated computing system. We are planning
to consider multi-core processors, other resource types such
as storage, and communication delays. Moreover, we will
implement the ideas obtained from the simulations in the
KoALA' scheduler by adding to it a WF scheduling module
KOALA-W with a runtime estimation algorithm. To validate
our simulation results, we will perform real experiments on
our DAS-4? system. Furthermore, we are going to address the
problem of simultaneous execution of multiple large WFs
with multiple independent schedulers, when they need to
compete for shared computing resources.

II. UNKNOWN TASK RUNTIMES

As the first part of this PhD research, which has been
completed, we have proposed and analyzed with simulations
four scheduling policies for scheduling workloads of WFs
with unknown task runtimes. The main distinguishing feature
of these policies is the number of processors they reserve for
WFs towards the head of the waiting queue in order to deal
with fluctuations in their Level of Parallelism (LoP). The
LoP of a WF at a certain point before or during its execution
is the maximum number of processors the WF can ever need
during the remainder of its execution. We have also proposed
a simple LoP estimation algorithm. We have tested it on
five popular WF structures and showed its accuracy. The
proposed WF scheduling policies are:

1) The Strict Reservation (SR) policy tries to reserve
the LoP processors and can be considered as an
implementation of the classical FCFS policy for WF
scheduling.

2) The Scaled LoP (SLoP) policy behaves similar to the
SR policy albeit with a lower reservation target, and

lwww.pds.ewi.tudelft.nl/koala
2www.cs.vu.nl/das4

—e— SIPHT = —e— Montage |
—e— Mixture —e— LIGO
SI0M b 1
z
2
5
=
10° ‘ I L |
0.0 0.2 0.4 0.6 0.8 1.0
Utilization
(a) Strict Reservation policy
—e— Montage —e— Mixture |
—e— LIGO —e— SIPHT
SI0T b 1
z
2
3
=
10° s g ‘
0.0 0.2 0.4 0.6 0.8 1.0

Utilization
(b) Backfilling policy

Figure 1: The mean slowdown of workflows as a function
of the utilization for the different policies and for each of
the four workload types (the vertical axis is in log scale).

in the boundary case when the scaling factor f = 1 it
is equal to it.

3) The Future Eligible Sets (FES) policy analyses the
workflow DAG to a certain depth to calculate the
required number of processors for reservation. It
employs the same algorithm we use to calculate LoP,
and for lookup depth oo it is similar to the SR policy.

4) The Backfilling (BF) policy does not use the processor
reservation at all and places any eligible tasks on the
processors sequentially processing WFs in the queue.

In Figure 1 we show the simulation results for two the
most diverse scheduling policies which we proposed for
online scheduling of WFs with unknown runtimes. We used
three WF structures, namely Montage, LIGO and SIPHT [4],
and four workloads. Three workloads consist only of a single
WEF type, and the fourth one contains an equal mixture of all
the considered WF structures. As can be seen from Figure 1a
and Figure 1b, the mean job slowdowns significantly differ
between the Strict Reservation policy and the Backfilling
policy. Our experiments showed that any form of preemptive
processor reservation when scheduling workloads of WFs

with unknown task runtimes only decreases the system’s
performance.

III. THE BENEFIT OF KNOWN TASK RUNTIMES

As the second part of this PhD research, which we have just
started at the time of writing, we will, again with simulations,
investigate the benefit of using (estimates of) task runtimes
in online WF scheduling. The execution of multiple similar
WEF applications can be used to collect and analyze statistical
runtime information, such as the execution times of WF
tasks, their memory consumption, etc. However, when the
workload is highly diverse, this approach may not be very
useful. Thus, in our planned simulations we are going to
introduce task runtime estimates which we will vary in a
certain range to see how the estimation error affects the
quality of the scheduling decisions and the values of our
performance metrics. The runtimes for workloads we are
going to generate are based on the traces data from real
systems using the information from workload archives. It is
also possible to drive our simulations using real traces.

Knowing runtimes could be really useful when executing
WFs with fluctuating LoP, since then the scheduler has much
more information about tasks that can unlock other tasks
to fill the gaps in the schedule. Obviously, exploiting the
structural information about a WF makes no sense when
runtime estimates are not available. The only important
property which can be derived then is the LoP.

IV. SCHEDULING MIXED WORKLOADS

It is hard to imagine a computing system completely
dedicated to running WFs. Rather, systems will have to
deal with mixed workloads consisting of multiple application
types, with in addition to WFs also parallel applications,

MapReduce jobs, bags-of-tasks and parameter sweeps, etc.

In fact, WFs may only make up a small fraction of actual
workloads. The scheduling of multiple job types in a single
system is complicated because different application types
have different resource and time requirements. Additionally,
inappropriate coordination may cause race conditions and
interlocking when multiple jobs compete for the same
resource.

In addition to WF we are planning to consider two extra

application types, which are also quite common in e-Science.

These are conventional parallel applications (PA) which
require a fixed set of processors for a certain amount of
time, and bags-of-tasks (BoT) which represent a group of
small single-processor tasks. Any other system or user activity
can be easily represented as a background load. Here we
can see two possible approaches for processing the mixture
workload. The first one supposes the existence of a single
queue for all the job types. The second one uses distinct
queues for each job type. The priorities for each application
type (or for each queue) can be assigned automatically to

KOALA Scheduler 1

¢
3

Runtime
Database

Queue 1 (workflows)

[[Job1 |]| Job2 |] [JobN|]

Workflow
Scheduling
Module

Queue 2 (other type)

[[Job1 |]| Job 2 |] { JobN|]

Scheduling
Module

Mixed Queue

[[sob 1 ﬂ| Job 2 |] { JobN|]

KOALA Scheduler N

Figure 2: The KOALA scheduler.

achieve, for instance, fair shares of computing resources or
to prioritize a certain job type.

For example, when WFs, PAs and BoTs arrive to the
system, and the required number of processors for WFs and
PAs is high, then BoTs with their small tasks can easily
“flood” the system, delaying the processing of WFs and PAs.
In opposite, a large WF or PA can easily occupy a significant
part of system’s resources and delay BoTs. Moreover, the
WFs can introduce even more uncertainty with their LoP
fluctuations. It means that static prioritization in this situation
can be harmful.

We will also try to apply approaches which we designed
for WFs to process other simpler job types, for instance, by
dynamically combining BoTs in WF-alike structures for load
balancing purposes.

V. AN IMPLEMENTATION OF WORKFLOW SCHEDULER

The final step of my PhD research will be the imple-
mentation of the scheduling policies in a real system to
check their practicability and detect any possible technical
problems. For this purpose we will use KOALA scheduler. The
implementation will be deployed on the Dutch supercomputer
DAS-4 (or even on the future DAS-5). Figure 2 shows the
diagram of KOALA scheduler with the KOALA-W module
for WF scheduling when operating in multi-scheduler mode.
Each scheduler can have multiple queues for different
job types or a single shared queue. Runtime information
are collected and consolidated in the runtime database.
The prediction module provide necessary information for
scheduling subsystems of KOALA, such as runtime and
memory consumption estimates. Multiple schedulers can
share a common resource space and can compete for the
resources.

VI. TIMELINE

The timeline of my PhD research includes the following
five points (Table I):

1) The development of four scheduling policies for online
workflow scheduling and their implementation in the

2)

3)
4)

5)

Table I: My PhD Research Timeline.

Phase Duration | Results (future)

Scheduling workloads of workflows with unknown runtimes | 1.5 years | Simulator, LoP estimation, 4 policies

Scheduling workfloads of workflows with runtime estimates | 6 months | New scheduling policies, runtime estimation algorithms
Scheduling mixed workloads 6 months | Improvements in the simulator, new policies
Scheduling very large workflows 6 months | Review of the existing policies

Improving system model, implementation of KOALA-W 1 year Better system model, working workflow scheduler

DGSim [16] simulator. Additionally, we proposed the
Level of Parallelism approximation technique.

The implementation of runtime estimations in the
simulated model and the creation of new scheduling
policies.

Modification in the simulator to schedule mixed work-
loads. Running trace-driven simulations.

Scheduling of very large workflows and adjustment, if
necessary, of the policies.

Improving the system model, transferring the successful
approaches validated in the simulator to the KOALA
scheduler and performing real-world experiments on
the DAS-4 (DAS-5) system.

ACKNOWLEDGMENT

This research is supported by the Dutch national program
COMMIT.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

REFERENCES

L. J. Taylor et al., Workflows for e-Science.
London Limited, 2007.

Springer-Verlag

G. Juve et al., “Characterizing and profiling scientific work-
flows,” Future Generation Computer Systems, vol. 29, pp.
682-692, 2013.

C. Cantacessi et al., “A practical, bioinformatic workflow
system for large data sets generated by next-generation
sequencing,” Nucleic Acids Research, vol. 38, pp. el71-e171,
2010.

A. Ilyushkin, B. Ghit, and D. Epema, “Scheduling workloads
of workflows with unknown task runtimes,” in /5th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Comput-

ing, 2015.

H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 13, pp. 260-274, 2002.

S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Cost-
driven scheduling of grid workflows using partial critical
paths,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, pp. 1400-1414, 2012.

H. Zhao and R. Sakellariou, “Scheduling multiple DAGs onto
heterogeneous systems,” in 20th International Parallel and
Distributed Processing Symposium, 2006.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Z. Yu and W. Shi, “A planner-guided scheduling strategy for
multiple workflow applications,” in International Conference
on Parallel Processing-Workshops, 2008.

C.-C. Hsu, K.-C. Huang, and F.-J. Wang, “Online schedul-
ing of workflow applications in grid environments,” Future
Generation Computer Systems, vol. 27, pp. 860-870, 2011.

K. Lee et al., “Adaptive workflow processing and execution
in Pegasus,” Concurrency and Computation: Practice and
Experience, vol. 21, pp. 1965-1981, 2009.

E. Deelman et al., “Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems,” Scientific
Programming, vol. 13, pp. 219-237, 2005.

J. Frey, “Condor DAGMan: Handling inter-job dependencies,”
Tech. Rep., 2002.

L. Yang, A. Bundy, C. Hughes, and D. Berry, “Fast, but
approximate, workflow-runtime estimation using the bell-curve
calculus,” 2007.

A. M. Chirkin, A. Belloum, S. V. Kovalchuk, and M. X.
Makkes, “Execution time estimation for workflow scheduling,”
in Proceedings of the 9th Workshop on Workflows in Support
of Large-Scale Science, 2014.

T. Hegeman et al., “The BTWorld use case for big data
analytics: Description, mapreduce logical workflow, and
empirical evaluation,” in /IEEE International Conference on
Big Data, 2013.

A. Tosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, and
M. Livny, “Inter-operating grids through delegated match-
making,” in Proceedings of the ACM/IEEE Conference on
Supercomputing, 2007.

