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Abstract Extensive seabed sediment mapping is

highly relevant to describe marine ecosystems and to

quantify the distribution and extent of benthic habitats.

Compared to traditional mapping methods, primarily

based on bed sampling, multibeam echo sounding

(MBES) is a time-efficient tool to acquire high-

resolution bathymetric and backscatter data over large

areas. We use a Bayesian method for unsupervised

acoustic sediment classification (ASC) of MBES

backscatter data of the Cleaver Bank, Netherlands

Continental Shelf. On these sparsely distributed

backscatter datasets, we tested and evaluated different

Kriging algorithms, showing that Ordinary Kriging

results in a reliable map.We introduce a new approach

to classify interpolated MBES backscatter based on

the Bayesian method for producing full-coverage

sediment maps. Comparison to a traditional sediment

map and in situ measurements shows that this

approach resolves lateral heterogeneities (kilometers).

When evaluating the high-resolution sediment map

obtained from the Bayesian method, based on the

actual backscatter, mapping laterally heterogeneous

sediments significantly improved (meters). In order to

create the optimal sediment map, we aimed to

integrate ASC into existing maps, which, however,

requires quantified spatial uncertainties of both con-

sidered maps. Finally, the low discrimination power of

MBES backscatter for coarse sediments is highlighted

as a shortcoming of current ASC mapping.

Keywords Bayesian method � Multibeam

echosounder � Underwater acoustics � Kriging �
Habitat mapping � North Sea

Introduction

Increasing human activities in the marine environ-

ment, such as fisheries or dredging, affect seabed

habitats worldwide (Kaiser et al., 2003; Halpern et al.,

2008; Foden et al., 2010; Erftemeijer et al., 2012;

Korpinen et al., 2013). The impacts depend on the

magnitude and frequency of the human activities, and

vary with the marine ecosystem in which they occur
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(Halpern et al., 2015). To assess the anthropogenic

impact on the seabed ecosystem and to develop

suitable management strategies, it is necessary to

identify the spatial variability of benthic habitats.

Driving factors of the distribution and abundance of

benthic communities, and hence important for habitat

mapping, are the seabed substrate and grain-size

distribution (Teske & Wooldridge, 2003). Marine

in situ measurement techniques (e.g. grabs, cores and

underwater video footage) reveal detailed information

of the sediment properties and generate, in general, an

accurate representation of the local seabed. However,

the density and coverage of bed sampling are not

always sufficient to represent the sediment hetero-

geneity on the required spatial scales.

In the last decade, different research fields have

advanced remote sensing methods to overcome the

limitations in spatial and temporal information of the

seabed. One of the most rapidly developing research

field is acoustic seabed classification (ASC), where

acoustic remote sensing techniques, such as side-scan

sonar (SSS), singlebeam echosounding (SBES) and

multibeam echosounding (MBES), are used to inves-

tigate the seabed (e.g. Hughes Clarke et al., 1996;

Anderson et al., 2008; Brown et al., 2011; Diesing

et al., 2014; Lurton & Lamarche, 2015; Lamarche &

Lurton, 2018). Extensive experimental and theoretical

research about acoustic scattering shows that the

acoustic echoes from the water–sediment interface

contain information about the seabed (Jackson &

Richardson, 2007). Accounting for the effect of

environmental conditions (e.g. absorption) and sonar

settings (e.g. signal strength, beam pattern), the

backscatter strength can be retrieved from the acoustic

echo received by the MBES. The backscatter strength

is dependent on the acoustic frequency used, angle of

incidence on the seabed and seabed properties,

allowing for sediment characterisation based on

acoustic measurements (Jackson & Richardson,

2007; Anderson et al., 2008). In particular, the MBES

is a powerful tool due to the simultaneous acquisition

of both backscatter and bathymetry data. MBES

measurements are very time efficient compared to

in situ measurements and are of high spatial resolution

(in the order of decimetres to tens of meters, depend-

ing on the system configuration and on the water

depth) (Anderson et al., 2008). The acoustic backscat-

ter, bathymetry, and second-order features (e.g. slope,

rugosity and standard deviation) are used either

individually or in combination for the discrimination

of the seabed characteristics and the production of

sediment or habitat maps (Brown et al., 2011).

Despite the variety of acoustic classification stud-

ies, there is still a lack of seabed sediment maps for a

large part of the world oceans. The reasons are

manifold, for example: (i) lack of time and budget for

MBES surveys, (ii) inclement weather, (iii) solely

acquisition of bathymetry without storage of backscat-

ter, (iv) lack of discrimination power in the signal

close to nadir, (v) inaccessible marine environments

due to hazards, navigation restrictions, renewable

energy devices or marine conservation requirements.

This indicates the need for suitable interpolation and

classification techniques for sparsely distributed

MBES backscatter data to generate full-coverage

sediment maps. In addition, techniques able to com-

bine multiple sources of information about the seabed

from primary or secondary sources, e.g. samples,

bathymetry or historical sediment maps, are highly

important.

The European Union established the European

Marine Observation and Data Network (EMODnet) to

process marine data from disparate sources according

to international standards and to eventually make the

products freely available to marine data users. Data

layers are generated with respect to Bathymetry,

Geology, Seabed Habitats, Chemistry, Biology, Phy-

sics and Human Activities. EMODnet Geology pro-

vides, among other, datasets with information on the

seabed substrate of the European marine areas

(EMODnet, 2016). The seabed substrate maps are

generated by harmonizing existing national maps

(Väänänen et al., 2007), by interpolating existing

sampling data or by expert knowledge in combination

with the above approaches. The geological services of

Norway, the United Kingdom and Ireland established

a multidisciplinary national mapping program includ-

ing acoustic measurements and ground truthing to

produce seabed substrate maps based on ASC. They

are collaborating to advance methods and practice in

seabed mapping through sharing of knowledge and

methods. The seabed sediment maps of the Nether-

lands Continental Shelf (NCS) are in general, besides a

few local studies, based on traditional geological

mapping where grab samples and shallow cores in

conjunction with bathymetry and seismic information

are used (Harrison et al., 1987; Jeffery et al., 1988;

Lindeboom et al., 2008). Still, a few large-scale seabed
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mapping studies, including the NCS and based on

machine learning techniques or geostatistical interpo-

lation methods, were carried out. Stephens & Diesing

(2015) used a Random Forest algorithm to predict

seabed sediment composition in combination with

grain-size data and several environmental predictors

(e.g. bathymetry or current velocity with a resolution

of 0.5–12 km) in the North Sea. Wilson et al. (2018)

extended their approach to produce sediment com-

postion maps of the entire north-west European Shelf

(including the NCS) by applying the Random Forest

algorithm in regions with sparse data coverage and

combining the results with the output of spatial

interpolation in regions with extensive data coverage.

Verfaillie et al. (2006) assessed different methods [e.g.

Kriging with external Drift (KED)] for the interpola-

tion of the median grain size of the sand fraction at the

Belgian Continental Shelf. Maljers & Gunnink (2007)

extended their KED approach by interpolating the full

grain-size distribution curves allowing for the extrac-

tion of NCS maps of all separate fractions as well as

for the derivations, for example, the sand median

(Ds50). Bockelmann et al. (2018) produced full-

coverage maps of the mud content and the sediment

median grain-size (D50) for the entire North Sea using

among other KED. All of these studies used

bathymetry as external-drift variable. A recent com-

prehensive study reflecting Dutch efforts to improve

seabed sediment maps of the NCS using ASC was

carried out by Snellen et al. (2018). They employed

sparsely distributed 300 kHz MBES backscatter data

acquired in five surveys from 2013 to 2015 at the

Cleaver Bank, NCS, to investigate the repeatability of

MBES backscatter-based sediment classification.

They used an unsupervised ASC method, called the

Bayesian bed-classification method (Simons & Snel-

len, 2009), to classify the surficial sediments.

With the present-day urge for large-scale mapping,

and to understand and identify the spatial and temporal

distribution of benthic organisms, it is essential to

consider the small-scale information and the broad

environmental setting as well (Hawkins et al., 1993).

For this, it is necessary to understand the benefits of

ASC methods and integrate them into the available

traditional seabed sediment mapping methods, as it is

already done for some areas in the EMODnet frame-

work. In this contribution, we address this integration

for the Cleaver Bank area (NCS). We use the sparsely

distributed MBES backscatter data collected during

surveys from 2013 to 2015 and bed samples taken in

the period from 2000 to 2015. Hence, the aims of this

study are defined as follows:

The first aim is to assess the capability of geosta-

tistical modelling, i.e. Kriging interpolation tech-

niques, to overcome and evaluate two issues that can

hinder full-coverage acoustical mapping: (a) the

MBES data can be restricted to inconsistent survey

lines due to time and budget limitations or weather

conditions, and (b) the backscatter data acquired at

nadir have limited discrimination power and therefore

cannot be used for ASC, resulting in gaps within the

sonar swath. Aim 1 thus focusses on the potential of

creating a full-coverage map based on sparse MBES

backscatter data. Therefore, different Kriging tech-

niques are applied to the sparsely distributed MBES

backscatter data and a new approach is introduced to

classify interpolated MBES backscatter data based on

the Bayesian bed-classification method.

The second aim is to compare the sediment maps

obtained from ASC, based on solely MBES backscat-

ter, and Kriging interpolated MBES backscatter,

respectively, with the existing seabed sediment map

in the Cleaver Bank area, which is mainly based on

traditional ground-truth data. Aim 2 thus focusses on

issues that are of importance when integrating the

ASC maps with traditional geological maps.

An important issue that we additionally address is

the current physical limitation of ASC, concerning its

ability to discriminate between the coarser sediment

types.

Materials and methods

Geological setting

The study area, the Cleaver Bank, is located about

halfway between the United Kingdom and the Nether-

lands. This area covers about 1.5% of the entire NCS.

Water depths at the Cleaver Bank range from 25 to

50 m Lowest Astronomical Tide (LAT) except for in

the deep channel (Botney Cut) that crosses the Cleaver

Bank from north-west to south-east, where water

depths reach 70 m LAT (Fig. 2). This subaqueous

palaeochannel is a glacial valley from theWeichselian

glaciation incised into Pleistocene deposits and was

partially filled in with sandy muds prior to the early-

Holocene marine transgression (Botney Cut

123

Hydrobiologia



Formation), probably deposited in a glacio-lacustrine

environment (Cameron et al., 1986). The infill is

overlain by more recent Holocene marine sediments,

varying from mud to sandy gravel with a layer

thickness of 1 to 12 m. In the area surrounding the

Botney Cut, Late-Weichselian glacial deposits are

mapped as the Boulder Bank Formation, consisting of

a blanket till of gravelly sandy clay. Where the

Holocene marine deposits overlie the Boulder Bank

Formation, these deposits are less than 2 m thick and

comprise clean sand and sandy gravel (Fig. 1b)

(Cameron et al., 1986). The Cleaver Bank is the

largest area with coarse sediments on the NCS, with up

to 30% being covered with gravel (Fig. 1a) (Linde-

boom et al., 2008). The abundance of different

sediment types from muddy to rocky bottoms causes

a high benthic biodiversity (Lindeboom et al., 2009;

Coblentz et al., 2015).

Current seabed sediment maps (NCS)

Currently used seabed substrate maps of the NCS are

available at the EMODnet-Geology data portal

(EMODnet, 2016), the Interreg IIIb project MESH

(Mapping European Seabed Habitats) (JNCC, 2018)

or provided by Maljers & Gunnink (2007) and

Stephens & Diesing (2015). Figure 1a shows the

seabed sediment map from the entire North Sea with a

nominal scale of 1000 m by 1000 m in which the

sediments are classified into five sediment classes. The

sediment classes are based on a simplified reclassifi-

cation of the Folk scheme (Folk, 1954). Figure 1b

displays a sediment map of the Cleaver Bank area with

a finer nominal scale of 250 m by 250 m and a

classification into 14 Folk classes, although only seven

classes are present in the present area (EMODnet,

2016). This sediment map is based on grab samples

and shallow cores where the sediment boundaries are

manually refined with bathymetry and seismic infor-

mation (Harrison et al., 1987; Jeffery et al., 1988).

Both maps are downloaded from the EMODnet
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Fig. 1 a Sediment map of the North Sea based on different

mapping methods and datasets (EMODnet, 2016). The nominal

scale is 1000 m by 1000 m. b Seabed sediment map of the

Cleaver Bank based mainly on ground-truth data (EMODnet,

2016). The sediment classes are defined after Folk (1954). The

nominal scale is 250 m by 250 m. The Cleaver Bank area is

marked by the red square in (a)
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website (http://www.emodnet-geology.eu) but only

the fine-scale map of Fig. 1b is used for a comparison

in this study.

Acoustic classification map based on MBES

backscatter

Recently, the Cleaver Bank was acoustically mapped

using MBES backscatter data acquired from 2013 to

2015 by Snellen et al. (2018) (see Fig. 2). They

employed the Bayesian method, in which backscatter

values averaged over the backscatter time series

samples (scatter pixels) within a beam footprint are

used. The method accounts for the intrinsic variability

of the backscatter strength by assuming that the

measured backscatter per beam resulting from a

number of discrete seabed types corresponds to a

sum of Gaussian distributions, where each Gaussian

corresponds to a distinct seabed type (Simons &

Snellen, 2009). By applying the Bayesian decision

rule, the so-called acoustic classes are obtained from

the individual Gaussian distributions. The technique

considers the backscatter strength per beam (or

incident angle) separately. The optimal number of

acoustic classes is estimated by utilizing the outer,

more discriminative beams and applying the goodness

of fit criterion (v2). Seven acoustic classes were

identified (Fig. 2). Since the MBES survey track lines

are separated by up to 1500 m and the backscatter data

around nadir cannot be used for sediment classifica-

tion, the final ASC map contains large data gaps

(Fig. 2). The Bayesian method was developed by

Simons & Snellen (2009) and further extended by

Amiri-Simkooei et al. (2009) and Siemes et al. (2010),

in which more detailed descriptions of the method are

given. The full details of the MBES acquisition and

processing are listed in Snellen et al. (2018).

In situ measurements

The grab sample dataset, as used for the current

research but not used for the maps of Fig. 1, consists of

104 Hamon and Van Veen grab samples. The samples

were taken during the MBES surveys from 2013 to

2015 and a previous survey in 2000. The full grain-size

distribution of each sample was determined by siev-

ing. The location and the determined Folk class of the

104 grab samples are shown in Fig. 2. The analysis of

the grab samples resulted in eight sediment types after

the Folk (1954) scheme. The modified Folk scheme is

used, where the threshold for slightly gravelly classes

is 1%. Three grab samples are classified as gravelly

muddy sand (2) and slightly gravelly sand (1). These

are neglected during the following analysis because

two individual samples are not sufficient to perform a

correlation analysis and a validation test. In addition,

one grab sample was considered untrustworthy due to

inaccurate positioning. The remaining 100 grab sam-

ples are divided into three sets. (1) 46 grab samples
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Fig. 2 Acoustic map of the Cleaver Bank with a resolution of

3 m by 3 m obtained with ASC, using the Bayesian bed-

classification method. Grab sample symbols assign each sample

to the following set: assignment of sediment types to acoustic

classes (square), validation test for ASC (triangle) and

interpolated ASC (circle). The background bathymetry is

displayed in a grey gradient. Location of the Cleaver Bank is

indicated by the red rectangle in Fig. 1a. Black rectangles (a),

(b) and (c) will be referred to later in the paper. The figure is

taken from Snellen et al. (2018) and the layout is slightly

modified
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(square symbol) are used for the assignment of

sediment types to acoustic classes; these samples

represent an arbitrary selection of 70% of the samples

located on or very close (\ 25 m) to the survey track

lines; (2) 23 grab samples (triangle symbol) are used

for validating this assignment; these samples represent

an arbitrary selection of 30% of the samples located on

or very close (\ 25 m) to the survey track lines; (3) 31

grab samples (circle symbol) are used for assessing the

predictive performance of Kriging and the EMODnet

map; these grab samples are located between track

lines with a distance to a track line of 25 m to 750 m

(Fig. 2). In addition, video footage was collected

during the MBES surveys in 2013 and 2015. The

cameras were equipped with two parallel-orientated

sizing lasers to scale the observations at the seabed.

The video footage is qualitatively analysed and

subjectively labelled with respect to the Folk classi-

fication, since a more quantitative analysis is ham-

pered by the unsteady height of the camera system

above the seafloor and the varying particle suspension

affecting the visibility.

Kriging and Cokriging

Kriging is a geostatistical interpolation technique used

to predict surfaces from a limited amount of sample

data and to assess the uncertainty of these predictions

(Krige, 1951). In this paper, we use Kriging to predict

MBES backscatter for locations without acoustic

measurements. The general equation is

Ẑðs0Þ ¼
Xn

i¼1

kiZðxiÞ; ð1Þ

where Ẑ is the predicted value at an unsampled

location s0; Z is a measured value at the sampled

location xi; n is the number of considered samples

within the interpolation neighbourhood, and ki is the
weight assigned to the measured sample i for predict-

ing Ẑ. A particular strength of the Kriging method is

that ki is not only calculated using the distance from

the measured to the predicted location but also

accounts for the spatial arrangement of the measured

data points. A variogram analysis is the first step for

obtaining the Kriging weights ki. The so-called

semivariogram cðhÞ represents the average variance

between the observations separated by a certain

distance, and describes the structure of the spatial

variability of the investigated variable (Chambers

et al., 2000). The semivariogram is calculated as

(Journel & Huijbregts, 1978)

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

Z xi þ hð Þ � Z xið Þð Þ2; ð2Þ

where N is the number of pairs of sample points

separated by the distance h. The data from this

distance interval h are binned into lag classes. The size

and the number of the lags are chosen according to the

study area. However, the semivariogram will in

general not provide information for all possible

distances. Therefore, it is necessary to fit a semivari-

ance model (e.g. spherical, exponential and stable) to

the semivariogram. The type of the model is selected

based on the nature of the data. For creating the

semivariogram, we follow roughly the rule of thumb

where the product of lag size and number of lags

should be about half the largest distance among all

points (Verfaillie et al., 2006). For the dataset

considered, this means that the semivariogram is

created using a lag size of 1000 m and the number of

lags is set to 20. Finally, the Kriging weights ki are
determined by solving a set of equations (Kriging

system) including the knowledge of the semivariance

model (Goovaerts, 1997).

In geostatistical modelling, sampled data are con-

sidered as the result of a random process. Conse-

quently, the predictions are always associated with

some probability or uncertainty. To this end, the

Kriging system is expressed as follows:

Ẑ1 s0ð Þ ¼ l1 þ e1 s0ð Þ; ð3Þ

where Ẑ1 is the estimated variable at location s0,

decomposed into the deterministic trend l1 and the

random, auto-correlated error e1 at location s0. The

different Kriging methods are variations on Eq. 3.

Ordinary Kriging (OK) estimates l1 for each interpo-

lation neighbourhood separately, where it is assumed

to be locally constant. Simple Kriging (SK) assumes

l1 to be known for the entire area, where it is assumed

to be globally constant. By contrast, Universal Kriging

(UK) describes l1 with a deterministic function.

Cokriging allows to incorporate secondary vari-

ables, in order to improve the predictions. For

example, bathymetry may be used as additional

information in sediment mapping (e.g. Verfaillie
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et al., 2006). Hereto, a second equation is needed for

the integration of a second variable

Ẑ2 s0ð Þ ¼ l2 þ e2 s0ð Þ; ð4Þ

where l2 is a second unknown constant in case of

Ordinary Cokriging (OCK). Two random errors e1 and
e2 are now used and for each of these values both an

autocorrelation and cross-correlation have to be cal-

culated. OCK tries to predict Z1 s0ð Þ in the same way as

OK, but uses the additional information of the

covariate Z2 s0ð Þ. For the Simple, Ordinary and

Universal Kriging and Cokriging, we used the geo-

statistical toolbox of ArcMap10.3.

Validation of Kriging interpolation

Three measures, i.e. the prediction standard error

(PSE), the root mean-square estimation error (RMSE)

and the root mean-square standardized estimation

error (RMSSE), are used to evaluate the prediction and

the corresponding uncertainties of the interpolation.

The uncertainty of the Kriging prediction is given

by the PSE rðs0Þ (smaller values indicate better

predictions). This value is obtained from the solution

of the Kriging system. It is defined as the standard

deviation of the differences between the true and the

estimated value. For instance, if the data are normally

distributed, the true value falls within the interval of

the estimated values (±) PSE with a probability of

95%. The RMSE and RMSSE are calculated by a

cross-validation where one data sample is removed

and the remaining data samples are used to estimate

the removed data sample. The RMSE indicates how

well the algorithm predicts the observed values. The

output value has the same unit as the observation. The

RMSE is written as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD

i¼1

ẐðxiÞ � Z xið Þ
� �2

vuut ; ð5Þ

where D is the number of all samples used for the

interpolation. The lower the RMSE value, the better

the prediction accuracy is. To assess the reliability of

the uncertainty, the RMSSE is used. Thereby, each

estimated error is divided by its prediction standard

error rðxiÞ at the sampled location xi

RMSSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD

i¼1

ẐðxiÞ � Z xið Þ
rðxiÞ

� �2

vuut : ð6Þ

RMSSE should be close to one if the prediction

standard errors are valid. If the RMSSE is greater than

one, the variability in predictions is underestimated. If

RMSSE error is less than one, variability in predic-

tions is overestimated.

Classification of interpolated MBES backscatter

based on the Bayesian method

The workflow to produce a full-coverage sediment

map from sparsely distributed MBES backscatter data

is visualized in Fig. 3. The first step is the interpolation

of the measured MBES backscatter data to retrieve a

full-coverage backscatter map using Kriging. This is

carried out for a specific beam angle and for each

survey separately. The boundaries of the acoustic

classes defined by the Bayesian method per beam

angle and survey are used to obtain acoustic class

maps from the interpolated backscatter data (see step

2, Fig. 3). A detailed description on how the acoustic

class boundaries are defined is given in Simons &

Snellen (2009). The seabed slope in the Cleaver Bank

area is relatively small (\ 5�); therefore, the differ-

ence between the beam angle and the actual incident

angle can be neglected and thus we use beam angles in

our classification. Considering each survey separately

provides acoustic class maps independent of e.g.

acoustic-instrument stability or sonar settings. The

interpolated ASC maps obtained from different sur-

veys are merged by evaluating the PSE (see step 3,

Fig. 3). For each grid cell, the interpolated results

exhibiting a lower PSE are used for the merged ASC

map. Finally, the classification results obtained from

the application of the Bayesian method to the actual

MBES backscatter measurements are compared to

grab samples (see step 4, Fig. 3). Based on their

correlation, the assignment of sediment types to

acoustic classes is carried out. In the following

sections, the interpolated and subsequently merged

acoustic class map will be termed interpolated ASC

map.
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Quantitative comparison of ASC and current

sediment maps with in situ measurements

Finally, to test the reliability of the sediment maps and

to perform a quantitative comparison, error matrices

are used. The error matrix provides different measures

of accuracy, i.e. overall and individual accuracies and

a Kappa coefficient of agreement (Cohen, 1960). The

overall and individual accuracies describe the portion

of correctly assigned sediment types by considering all

samples and only samples of a specific sediment type,

respectively. The Kappa coefficient accounts, in

addition, for the likelihood of coincidental agreement.

Results

Geostatistical modelling

The Kriging methods are applied to the MBES

backscatter data acquired in 2013 and 2014/2015

separately. The backscatter data retrieved from the

beam angle of 48� (± 1�, 47�–49�) at starboard-side
are used for the interpolation. These beam angles have

high discrimination power and appeared to have low

noise. An optimal fit to the semivariance of the

observed data is obtained by using the exponential and

stable semivariance model for Kriging and Cokriging,

respectively. Cokriging uses full-coverage bathymetry

data with a grid cell size of 100 m as a secondary

variable. In order to find a suitable interpolation

method for the generation of full-coverage sediment

maps of the MBES data, we compare the results of

OK, SK, UK as well as OCK, SCK and UCK. From the

RMSE and RMSSE values, it is found that the

Cokriging methods perform slightly better than the

Kriging. The different Kriging techniques Ordinary,

Simple and Universal perform almost equally well

with respect to the RMSE and RMSSE values

(Table 1).

To further investigate the slightly better perfor-

mance of the Cokriging methods, the correlation

between bathymetry and backscatter for the 2013 and

2014/2015 data is shown in Fig. 4. The Pearson

Correlation Coefficient, a standard measure of linear

bi-variate correlation (i.e. between two variables),

indicates a very weak correlation for the 2013 data

(R = 0.16) and a medium correlation for the

2014/2015 data (R = 0.61) between bathymetry and

backscatter. The varying correlation between the

datasets is caused by the fact that the datasets cover

different seabed areas. It shows that the correlation

between bathymetry and backscatter strongly depends

on the location in the study area. In the study of Asli &

Marcotte (1995), a better performance for SCK and

OCK over SK and OK is observed for a correlation

coefficient [ 0.4. That would indicate an improved

performance by incorporating bathymetry only for the

2014/2015 datasets. However, these observations are

not reflected in the performance test using the RMSE

and RMSSE. There is no significant difference

between the OK and OCK performance from the

2013 to the 2014/2015 dataset observed.

To get insight into the added value of bathymetry

data in predicting backscatter in between the track

lines, which is not captured by the RMSE and RMSEE

that only consider a single eliminated measurement,

we removed a full track line from the dataset. In Fig. 2,

the removed track line is indicated by the black

rectangle (a). The Pearson correlation coefficient

between predictions and actual values is 0.74 and

0.75 for both OK and OCK, respectively. This

Fig. 3 Workflow to produce a full-coverage ASC sediment map from sparsely distributed MBES backscatter data
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indicates no significant improvement by incorporating

bathymetry as a secondary variable for predicting the

backscatter values in between the track lines. Consid-

ering these results, the computational time and that the

backscatter data can be seen as a variable without a

constant mean, we selected OK as the most suitable in-

terpolation method for MBES backscatter in our study

area.

The interpolated backscatter map for the 2013 and

2014/2015 data using OK and the MBES backscatter

from all track lines is visualized in Fig. 5a and d. The

uncertainty of the OK predictions is represented by the

PSE in Fig. 5c and f. The uncertainty map shows that

the most reliable predictions are achieved on the

survey track lines (PSE = 0 dB) and that uncertainty

increases with distance to the MBES track lines

(PSE = 2–3 dB). Locations close to multiple or

crossing survey lines show lower uncertainties,

demonstrating more reliable predictions caused by

an increase of MBES data. PSE values above 3 dB in

these maps show untrustworthy predictions, due to the

total absence of data and resulting data artefacts, such

as those found at the eastern border of the 2014/2015

data.

Generation of the map presenting acoustic classes

The outcomes from the Bayesian method are used to

produce an acoustic class map from the interpolated

backscatter data (see step 2, Fig. 3). The boundaries of

the seven acoustic classes for the backscatter data of

the 48� beam angle, which are used to classify the

backscatter data into distinct classes, are shown in

Table 2. The classification of the backscatter data into

classes based on the Bayesian method allows for the

merging of the results from 2013 and 2014/2015 to a

single map. The production of the single maps is based

on the PSE, which are shown in Fig. 5c and f (see step

3, Fig. 3). The individual acoustic class maps obtained

from the 2013 and 2014/2015 datasets are displayed in

Fig. 5b and e, respectively. The merged acoustic class

map is shown in Fig. 6a. A number of small stripe

Table 1 Evaluation of six different interpolation techniques with respect to the application to the MBES backscatter data acquired in

2013 and 2014/2015

OK SK UK OCK SCK UCK

RMSE 1.27/1.09 1.31/1.09 1.27/1.09 1/0.78 1.01/1.09 1.04/0.81

RMSSE 0.72/0.75 0.67/0.75 0.72/0.75 1.68/0.99 1.99/0.75 1.04/0.83

OK, SK, UK, OCK, Simple Cokriging (SCK) and Universal Cokriging (UCK) are tested. The RMSE and RMSSE are used for the

evaluation of the predictions and corresponding uncertainties. The first value corresponds to the 2013 dataset and the second to the

2014/2015 dataset
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Fig. 4 Relationship between water depth and backscatter for the a 2013 and b 2014/2015 MBES backscatter dataset
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artefacts in N–S direction remains in the merged

acoustic class map. These artefacts occur in overlap

regions of the 2013 and 2014/2015 data due to the

probability of misclassification per acoustic class for

each dataset.

(a) (b) (c)

(d) (e) (f)

Fig. 5 OK interpolated full-coverage MBES backscatter map

and corresponding PSEmap for the a, c 2013 and d, f 2014/2015
backscatter dataset, respectively. MBES backscatter from the

47�–49� beam angle of all track lines is included within the

interpolation. b, e Acoustic class map received from the

classification of the full-coverage MBES backscatter map using

the Bayesian results (see Table 2)
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To test the influence of different beam angles and

different datasets on the ASC, the acoustic class

boundaries for the 54� (± 1�, 53�–55�) beam angle are

listed in Table 2 as well. Table 2 shows that the

boundaries differ per beam angle and per dataset. It

demonstrates the importance of applying the interpo-

lation and acoustic classification to each beam angle

and dataset separately. To test the validity of our

approach, where only the backscatter data from a

specific beam angle range are used and the datasets are

considered separately, the interpolated and merged

ASC map of the 54� beam angle is visualized in

Fig. 6b. Both maps show the same pattern (Fig. 6a, b)

and the lower classes (2–4, green to yellow) corre-

spond well. However, only in areas represented by

high acoustic classes (5–7, orange to purple) a

difference of up to one acoustic class is visible (yellow

in Fig. 6c), where the acoustic classes of the 54�

Table 2 Acoustic class boundaries for both the 2013 and 2014/2015 MBES backscatter datasets of the 48� and 54� beam angles in

decibels

Beam Dataset 1 2 3 4 5 6 7

48� 2013 - ?/- 45.6 - 45.6/- 40.9 - 40.9/- 37.9 - 37.9/- 34.3 - 34.3/- 30.9 - 30.9/- 28.7 - 28.7/

?

2014/

2015

- ?/- 37.9 - 37.9/- 35.1 - 35.1/- 32.4 - 32.4/- 29.4 - 29.4/- 25.7 - 25.7/- 22.9 - 22.9/

?

54� 2013 - ?/- 45.7 - 45.7/- 42.4 - 42.4/- 39.1 - 39.1/- 36.2 - 36.2/- 33.2 - 33.2/- 30.0 - 30.0/

?

2014/

2015

- ?/- 39.9 - 39.9/- 36.7 - 36.7/- 32.2 - 32.2/- 28.4 - 28.4/- 25.4 - 25.4/- 21.7 - 21.7/

?

The boundaries are obtained from the application of the Bayesian classification method to the datasets. For further insights into the

determination of the class boundaries we refer to Simons & Snellen (2009) and Snellen et al. (2018)

(a) (b) (c)

Fig. 6 Acoustic class map received from the MBES backscatter of the a 48� and b 54� beam angles. c Map showing difference in

acoustic classes between the maps visualized in (a) and (b)
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beams are generally lower than those of the 48� beams.

Also, these differences are more prominent for the

2014–2015 data (Fig. 6c). Factors contributing to the

difference are both the interpolation of the backscatter

values and the intrinsic probability of misclassification

due to the overlap of backscatter corresponding to the

acoustic classes. In addition, different beam angles

might sense different substrate/sediment classes on the

seabed.

In the next section, the focus will be on sediment

type instead of acoustic class where the results are

compared with in situ measurements.

Conversion from acoustic class to sediment map

As a first step towards integrating the ASC results into

sediment maps (in general displaying Folk class), the

acoustic classes have to be converted to Folk classi-

fication scheme.

The approach taken uses the original ASC results

(not interpolated), since the seabed area represented by

grab samples is much closer to the spatial resolution of

the original ASC results (3 m by 3 m) compared to the

interpolated ASC results (100 m by 100 m).

Figure 7 displays the relationship between acoustic

classes and 46 grab samples (acoustic class at the grab

sample location is determined by counting the most

frequently occurring ASC class within a radius of

25 m around the grab sample). The order of Folk

classes attempts to represent increasing mean grain

sizes. A general correspondence between increasing

acoustic class to increasing mean grain size is

observed. Acoustic class 1 is not sampled and cannot

be assigned to a sediment type (labelled with ‘uN’).

Acoustic class 2, 4 and 7 correspond mainly to sandy

mud, sand and sandy gravel, respectively. All other

acoustic classes indicate some ambiguity in the

relationship between sediment type and acoustic class

e.g. where an individual acoustic class is assigned to

two or three different Folk classes or where one Folk

class is represented by several acoustic classes over-

lapping with another Folk class representation. These

results are slightly different from the assignment of

Folk class to acoustic class by Snellen et al. (2018),

using the same ASC results but 77 grab samples

instead of only 46. They assigned sand only to acoustic

class 4 compared to classes 3 and 4 here.

The final assignment of Folk class to acoustic class

is shown in Table 3. Using the 23 independent grab

samples to validate the assignment of Folk classes to

acoustic classes results in an overall accuracy of 83%

and a Kappa coefficient of 0.55, indicating good

agreement with the grab samples. It is noted that the

performance to discriminate between individual Folk

classes is lower for the coarser sediments (sand to

gravelly sand) compared to the finer sediment (sandy

mud to muddy sand).

To further test the assignment of sediment type to

ASC results, the results are qualitatively compared to

the video footage. Here, it is visualized on a

representative example in Fig. 8. There is a good

overall qualitative agreement between acoustic clas-

sification and video footage (Fig. 8), where both the

sM mS S gS msG sG

Sediment type

1

2

3

4

5

6

7

A
co

us
tic
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3 1

3 3 1

2

1 4 3 1

4 3 12

1 4

Fig. 7 Correlation plot between acoustic class and sediment

type (Folk, 1954) using the 46 grab samples and the acoustic

classes obtained from the Bayesian classification method

Table 3 Assignment of Folk class to acoustic class

Sediment type ‘uN’ sM sandy mud mS muddy sand S sand gS gravelly sand msG muddy sandy gravel sG sandy gravel

Acoustic class 1 2 3 3–4 5–6 5–6 6–7

Acoustic classes are obtained from applying the Bayes classification method, as previously described by Snellen et al. (2018)
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acoustic classification and the video footage indicate

an increase in gravel content from location 1–3. Based

on the visual inspection, the assignment to sand for

video imagery 1, to gS or msG for video imagery 2 and

to gS, msG or sG for the video imagery 3 is plausible,

even if the mud content is hardly recognizable and a

distinction between mud and sand is not feasible based

on the video footage.

Based on the validation test and the verification

with video footage, it can be concluded that the

assignment of Folk classes to acoustic class is reliable,

but, as seen in Table 3, not unique. The approach

(Table 3) is used to convert the interpolated ASC

results to a full-coverage sediment map (Fig. 9a).

Comparison of the interpolated ASC

and traditional sediment map

In this section, we will qualitatively assess the

accuracy of the interpolated ASC (Fig. 9) and

EMODnet sediment map (Fig. 1b) by using the

remaining 31 independent grab samples. Table 4

presents the results of comparing the 31 grab samples

with the two sediment maps. The OK achieves an

overall accuracy of 65% and a Kappa coefficient of

0.50. This indicates fair agreement between the

samples and the map. These values are similar for

those obtained by the EMODnet map (65% and 0.54).

When regarding the individual accuracy for both

maps, the Botney Cut (sM) is resolved equally well

(both 100%). The EMODnet fine-scale map shows

(a) (b)

Fig. 8 aVideo footage recorded at location (1), (2) and (3). The
video footages are subjectively labelled as (1) sandy bed, (2)

slightly gravelly bed and (3) gravelly bed. b Small area of the

sediment map based on ASC with a resolution of 3 m by 3 m.

The location of that area is marked by a black rectangle (b) in

Fig. 2. The video footages are marked by blue triangles. White

area indicates no data for ASC
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especially good agreement with the areas indicated by

sand in the samples, whereas the interpolated ASC

map indicates better agreement for mS and the coarser

sediment samples. The latter is partly due to the

necessity of assigning multiple types to a single

acoustic class to account for the ambiguity in the

relation of sediment type to acoustic class. This

approach comes along with a decrease in discrimina-

tion power between the individual sediment types.

As a final step in this section, we quantitatively

compare the interpolated ASC and EMODnet sedi-

ment maps (Fig. 9b). The comparison reveals an

overall agreement of 51%. As in the previous assess-

ment (Table 4), the comparison map shows that for the

Botney Cut in particular, a very good agreement is

found, where both maps indicate sM which also

matches with the grab samples. However, in other

parts of the maps where sM was assigned in the ASC

map, differences occur where sediments were in

general assigned to sand in the EMODnet map

(Fig. 1b). Further disagreements are linked to the

larger sediment heterogeneity in the ASC map in the

gravelly sand and sandy gravel classes, and may thus

actually be an important improvement (see ‘‘Discus-

sion’’). These types of differences should be accounted

for when integrating the ASC maps into the existing

sediment maps of the NCS and are discussed in the

following sections.

(a) (b)

Fig. 9 a Full-coverage sediment map based on interpolated

ASC map (Fig. 6a) and 46 grab samples (Table 3). b Map

comparison between full-coverage sediment map (Fig. 9a) and

the existing EMODnet seabed sediment map (Fig. 1b). ‘‘No

data’’ implies that either the Folk sediment type is not available

in one of the maps or an acoustic class is unassigned in the

interpolated ASC map
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Relationship between backscatter values

and grain-size fractions

In the previous section, we aimed to reduce the

ambiguity related to the assignment of acoustic class

to sediment type by assigning multiple sediment types

to an acoustic class (adapted from Snellen et al., 2018).

To further investigate this issue, the relationship

between actual backscatter value and sediment prop-

erties is considered. In Snellen et al. (2018), the

ambiguity was analysed with respect to the relation-

ship between backscatter and the median grain size. In

this study, we investigate the relationship between

backscatter and individual grain-size fractions to

identify grain sizes causing the ambiguity with respect

to the used system wavelength. For this, we use the

grain-size distributions of the 77 grab samples which

are located on or close (\ 25 m) to the MBES track

lines. The backscatter values are averaged over a

maximum radius of 25 m around the grab sample. To

take into account imperfect sonar calibrations and the

angular dependency of backscatter, we used normal-

ized backscatter values between - 1 and 1 where the

angular dependency is eliminated (Gavrilov & Par-

num, 2010). Figure 10 shows the normalized

backscatter values as a function of three measures of

grain-size fractions (fine, medium, coarse). The first

measure considers grains smaller than 0.5 mm and

thus smaller than the acoustic wavelength of the

MBES (5 mm). The second measure focusses on grain

sizes roughly around the acoustic wavelength from 0.5

to 16 mm (here called the medium fraction). The last

measure considers the percentage of grains larger than

16 mm.

Figure 10a shows a negative correlation between

backscatter values and the percentage of the fine

fraction (\ 0.5 mm). Figure 10b illustrates a positive

correlation between backscatter and percentage of the

medium (0.5–16 mm) fraction. This shows that an

increase in the amount of grains similar to the acoustic

wavelength is positively correlated to backscatter.

Table 4 Error matrices

using 31 grab samples for

(a) EMODnet sediment map

and (b) interpolated ASC

sediment map

Grap samples

Folk class sM mS S gS msG sG Total

(a)

sM 5 0 0 0 0 0 5

mS 0 0 0 0 0 0 0

S 0 2 9 0 0 0 11

(g)S 0 0 0 0 0 2 2

gS 0 0 0 2 0 2 4

msG 0 0 0 0 0 0 0

sG 0 0 1 2 2 4 9

Total 5 2 10 4 2 8 31

Individual accuracy 100% 0% 90% 50% 0% 50%

Overall accuracy 65% Kappa coefficient 0.54

(b)

1 (-) 0 0 0 0 0 0 0

2 (sM) 5 0 4 0 0 0 9

3 (mS/S) 0 1 3 0 0 0 5

4 (S) 0 1 2 2 0 0 4

5 (gS/msG) 0 0 1 1 1 1 6

6 (gS/msG/sG) 0 0 0 0 1 5 5

7 (sG) 0 0 0 1 0 2 2

Total 5 2 10 4 2 8 31

Individual accuracy 100% 50% 50% 25% 50% 88%

Overall accuracy 65% Kappa coefficient 0.50
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However, considering Fig. 10c, a slight decrease in

backscatter values with increasing percentage of grain

sizes coarser than 16 mm is observed. This observa-

tion is contrary to the common assumption that coarser

sediments are more likely to result in higher backscat-

ter strength (Goff et al., 2004; De Falco et al., 2010). It

indicates that in particular the amount of very coarse

grains (coarser than 16 mm using an MBES with a

frequency of 300 kHz) might induce the ambiguity. In

addition, it shows that there is no one-to-one relation-

ship between grain size and backscatter for the entire

grain-size spectrum.

Discussion

Geostatistical modelling

The performance tests and validation with indepen-

dent sediment samples in this study show that

geostatistical modelling, such as Kriging or Cokriging,

is a suitable tool to fill the data gaps in MBES

backscatter measurements to achieve full-coverage

maps (Fig. 9a). The performance of the OK, SK and

UK techniques does not differ significantly. Regarding

UK, the reason might be that the backscatter data do

not have a global trend. In that regard, UK fits a

constant value to the data, the same as OK, instead of a

deterministic polynomial function (Eq. 3). The rela-

tively small difference between the SK and OK

performance indicates that the choice of the station-

arity of the deterministic trend (global or local) does

not have a strong impact (see ‘‘Materials and

method’’). We did not use anisotropic Kriging, since

the backscatter data are not directed in any way. In

general, the values of the error matrices indicate that

the Kriging results are reliable, considering that other

studies using geostatistical modelling and supervised

ASC achieved similar overall accuracies ranging from

65 to 80% and Kappa coefficients between 0.3 and 0.6

(Diesing et al., 2014; Stephens & Diesing, 2014).

Although several studies have shown that the use of

bathymetry in geostatistical modelling improves the

prediction of seabed sediment distribution (Verfaillie

et al., 2006; Maljers & Gunnink, 2007; Lark et al.,

2015), importing bathymetry as a second variable did

not improve the prediction performance in our study

on ASC bed classification, where a correlation anal-

ysis reveals a low correlation between backscatter and

bathymetry. Similar results were found in Bockel-

mann et al. (2018), where the evaluation of the map

confidence indicated no significant improvement by

using KED (incorporating bathymetry as a secondary

variable) compared to OK. Even though bathymetry,

hydrodynamics and sedimentary processes control the

sediment distribution in the marine environment, pre-

existing coarser sediments (e.g. due to a glacial

history) do not always comply with present-day

marine sedimentation processes. This implies that

the successful application of multivariate geostatisti-

cal modelling depends on the local conditions of the

study area. To account for complex geological

processes, which has influenced the current sediment

distributions on the seabed, we may need other

interpolation methods allowing the use of arbitrarily

(a) (b) (c)

Fig. 10 Correlation between normalized backscatter values

and weight percentage of grain-size fraction. a Fine fraction:

clay to medium sand (\ 0.5 mm), b intermediate fraction:

coarse sand to medium gravel (0.5–16 mm) and c coarse

fraction: coarse gravel and larger ([ 16 mm). The dots represent

the measurements and the line shows the linear regression

results. In (c) only the measurements with a percentage C 5%

are used for the linear regression
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complex forms of regression, for example Regression-

Kriging (Bockelmann et al., 2018; Thill, 2018).

In the present study, only the backscatter data from

a specific, highly discriminative, beam angle range are

considered for obtaining an interpolated full-coverage

map. The need for this approach is explained by

Table 2, where a large difference in backscatter values

of the acoustic class boundaries between the different

datasets (i.e. 2013–2014 and 2015) and beam angles

(i.e. 48� and 54�) is seen. This is due to the facts that

(1) the backscatter is dependent on the incident angle

(Jackson & Richardson, 2007), (2) the datasets from

2013 to 2014 and 2015 cover a different seabed area

but also that, (3) e.g. acoustic-instrument stability,

environmental conditions or survey methods might

have changed between the surveys and post-process-

ing was not able to account for these factors.

Alternatively to account for the first issue, the angular

effect can be removed allowing the use of the full

range of backscatter measurements for the interpola-

tion. However, this would hamper the comparison

between acoustic classes determined from different

uncalibrated MBES backscatter datasets because the

relative backscatter values are not directly

comparable.

Comparison of the ASC, interpolated ASC

and traditional sediment map

In the quantitative assessment, the different perfor-

mances of the interpolated ASC and EMODnet

sediment maps were not apparent. To further inves-

tigate the differences between the ASC, the interpo-

lated ASC and EMODnet maps, we qualitatively

compare a certain area of the Cleaver Bank in more

detail, visualized in Fig. 11. It is shown that the OK

method is capable of mapping more detailed seabed

sediment heterogeneity (orders of km’s) than the

EMODnet map. Both maps show a different pattern

for the coarser sediments in that area (Fig. 11a, b). The

easterly and south-westerly located grab samples

indicating msG or sG are in agreement with the

interpolated ASCmap (except two samples) but do not

agree with the EMODnet map. A closer examination

in Fig. 11c demonstrates that the Bayesian method is

able to resolve fine-scale spatial heterogeneities

(orders of tens of meters) indicated by the agreement

of the sG bed sample with the revealed gravelly patch

located within a relatively homogeneous area of

muddy sand (green). This coarse sediment patch is

resolved neither in the interpolated ASC nor in the

traditional EMODnet sediment map.

The success in predicting seabed sediments via

interpolation methods depends amongst other things

on the relation between the spatial distribution of the

measurements and the seabed heterogeneity. The

larger the seabed heterogeneity, the higher the mea-

surement density needs to be. MBES backscatter

provides a high and regularly spaced sample density.

However, the sample density can be partly considered

as artificially high because the measurements are

clustered along the track lines. Clustering of samples

can even yield to a reduced accuracy of Kriging

methods (Zimmerman et al. 1999). However, the

regularly spaced MBES backscatter measurements

have the advantages that without any a priori knowl-

edge, sediment heterogeneities are sampled in a more

systematic way. This is in contrast to interpolation

based only on sediment samples. They are often a

collection from different sources and therefore often

randomly distributed and appear in clusters. This

results in a varying spatial resolution of the interpo-

lated map and increases the likelihood of omitting

certain sediment patches. The seabed heterogeneity

varies within the marine environment and the sedi-

ment type due to the physical processes of sediment

transport and deposition. For example, Buscombe

et al. (2017) showed that, in a river environment,

typical length scale or distance over which sediment

types occur was larger for finer sediments than coarse

sediments, and that immobile sediments had the

shortest length scales. In our study area, these

observations are visible in Fig. 2. Fine sediments,

indicated by low acoustic classes (low backscatter

values), are homogeneous and occur in extensive

areas, e.g. Botney Cut, NW and SE of the Cleaver

Bank (see Fig. 2), whereas areas with high acoustic

classes appear to be more heterogeneous. The remain-

ing coarse and less mobile glacigenic sediments are

sparsely distributed, redistributed or partly overlain by

more recent marine sediments, possibly yielding to the

patchy pattern of the coarse sediments. Geostatistical

methods account for the above mentioned spatial

dependency of sediments by modelling the spatial

distribution of the observations (Juan et al., 2011).

Consequently, the probability to map sediment hetero-

geneities in between the adjacent MBES track lines is

increased, indicating the advantage over deterministic
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interpolation methods. In general, the prediction of the

fine sediments in the Cleaver Bank area can be

considered as more reliable compared to the coarser

sediments.

Integration of different sediment maps

A quantitative comparison between the interpolated

ASC and the EMODnet sediment map reveals an

overall agreement of 51% (Fig. 9b). In particular, it is

important to deal with the areas of disagreement to be

able to successfully integrate ASC results into existing

sediment maps. In order to do so the strengths and

weaknesses of the different methods need to be

addressed. Table 5 presents a qualitative overview of

the uncertainties related to sediment maps based on

in situ measurements and ASC. The interpolation of

in situ measurements results mostly in high uncertain-

ties due to the limited amount of samples, whereas

MBES backscatter provides large data coverage

enabling interpolation with low uncertainties. The

assignment of sediment type to in situ measurements

can be very precise. However, a low uncertainty still

exists caused for example by a potential washing out

of the fine fraction or the inability of the sampling

equipment to retrieve the coarse fraction. Due to the

physics of acoustic scattering, a clear assignment of

backscatter values or acoustic classes to sediment type
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Fig. 11 Subset of the sediment maps obtained from a OK

combined with Bayesian method (interpolated ASC) and b high-

resolution ASC, using the Bayesian method plotted on top of the

EMODnet map. The EMODnet map has a nominal scale of

250 m by 250 m and the interpolated ASC has a grid size of

100 m by 100 m. The high-resolution ASC has a grid size of

3 m by 3 m. The location of the area is marked by a black

rectangle (c) in Fig. 2. c Subset of the high-resolution ASC

sediment map
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is hampered as indicated in Fig. 10. In addition, the

uncertainty corresponding to the assignment of sedi-

ment type to in situ measurements has to be added to

the ASC as well because these sediment types are used

for the assignment to the acoustic class.

For a full integration of both maps, the uncertainties

need to be spatially quantified. A first step is taken in

this contribution where we found 17% of global

uncertainty (equal to 83% overall accuracy) along the

track lines for the assignment of sediment type to

acoustic class based on 23 independent samples. This

value is a first estimate of the contribution belonging to

the lower right box (Table 5). This uncertainty is

relatively low indicating a reliable assignment. One

explanation is that in the assignment of sediment type

to acoustic class the uncertainty is at least partly

accounted for by assigning multiple sediment types

(Folk class) to one acoustic class. The 83% overall

accuracy indicates that this is a way to reduce the

uncertainty related to the assignment of sediment

properties to acoustic data. However, it also implies a

lower discrimination between different sediment

types. Figure 5c and f indicate an uncertainty of up

to 2.5 dB (PSE) between the track lines. Using the

PSE and acoustic class boundaries (Table 2) for the

2013 and 2014/2015 dataset, the average prediction

uncertainty for the acoustic class map is estimated. On

average, there is an uncertainty of 19% for the entire

survey area that the acoustic classes are expected to

deviate by one acoustic class. This is an estimate of the

contribution of the lower left box in Table 5. It is not

possible to quantify the uncertainties of the EMODnet

map (in situ measurements) due to lack of information

(upper left box, Table 5).

Due to the lack of local uncertainties, here, a focus

is on the differences between the interpolated ASC

map and EMODnet map as a first step towards

integrating the maps. Figure 12 shows the areas where

the two maps correspond and differ. For the latter, we

defined three types of areas, indicated by

(a) the zones where sM is classified on the ASC

map and S on the EMODnet map (a1, a2 and

a3),

(b) differences due to heterogeneity of the seabed

sediments,

(c) zones where a larger extent of the distributions

of coarser sediments are identified on the ASC

map (c1, c2 and c3).

In area (a1), no samples are available in this study,

so classification is based on backscatter (see Fig. 2).

Jeffery et al. (1988) highlight that the one sample used

for the traditional map is more than 1 km away. In area

(a3), the ASC classification of sM is contradicted with

all ground-truth samples (Fig. 2), revealing sand (S),

which corresponds to the EMODnet map (Table 4

confirms the higher individual accuracy for sand in the

EMODnet map). Still, the acoustic classification

clearly indicates lower backscatter values in the

acoustically measured data. For area (a2), not only

this study indicates lower backscatter and low acoustic

classes but also a study carried out in 2004 and based

on a SBES campaign reveals similar results (Snellen

et al., 2011). This implies that the surface properties

may differ from sediments in the grab samples. For

Table 5 Qualitative overview of uncertainties in the production of sediment maps

Interpolation Assignment

In situ measurements High

[–]

(Harrison et al., 1987; Jeffery et al., 1988; Verfaillie

et al., 2006; Maljers & Gunnink, 2007)

Low

[–]

Acoustic classification Low Moderate

18.9% = 1 acoustic class difference

0.1% C 2 acoustic class difference

(this paper)

17%, j = 0.64 (this paper)

20–35%, 0.3\j\ 0.6

(Diesing et al., 2014)

In the literature, no values are readily available for the interpolation step in case of seabed cores/samples, i.e. traditional mapping

(upper left box) or for the uncertainty due to the sampling methods (upper right box). For the sediment classification based on

acoustic measurements, values in this paper show good performance in both the assignment of sediments to classes (lower right box)

and the interpolation techniques (lower left box). The symbol [–] indicates that no uncertainty value was found in literature
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example, fluid mud may affect acoustic backscatter

(Williams et al., 2009). In side-scan sonar observa-

tions in the swales of two offshore sand ridges on the

NCS, Van Dijk et al. (2012) showed that muddy

veneers over coarse rubble and thin sand veneers on

clay both result in mottled acoustic facies of low

backscatter intensity (white spots). To resolve this

issue, additional samples should be taken, using a

closed Box Corer instead of an open Van Veen

sampler, since the latter is known to underestimate

mud content (van Heteren & Van Lancker, 2015).

In area (b), the ASC map represents high spatial

heterogeneity of coarse-grained sediments, supported

by sediment samples. The individual accuracy for

msG and sG in Table 4 and the example in Fig. 11

corroborate these findings. Although the number of

samples in the traditional map, on which the

EMODnet map is based, seems sufficient in the east

of area (b), the main sG area in the western part of area

(b) (olive in Fig. 12b) is largely void of samples

(Jeffery et al., 1988).

In area (c1), both maps indicate coarse sediments.

However, the area is positioned slightly differently in

the two maps and the ASC identifies a larger area of

coarse sediments, which are corroborated by samples

(see Fig. 11a, b). For (c2) coarse sediments were not

identified in the EMODnet map (sM/mS), whereas

these were identified in the ASC map. In that area, two

samples indicating coarse sediments plead for the

ASC map. For area (c3), the coarse sediment region is

less extensive in the EMODnet map, in which parts

were labelled as S, where the ASC map classified gS/

msG/sG. These coarser sediments were corroborated
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by 6 out of 6 samples (Fig. 2, see also Table 4 for msG

and sG where ASC performs better).

In general, it can be concluded that for the areas

where the two maps differ, the ASC maps represent

spatial heterogeneous areas better, but more samples

are needed to further assess the differences.

In case more knowledge on uncertainties of

produced seabed maps are available, regions of high

accuracy and low uncertainties could be determined.

These regions can be further used as training and

validation datasets for supervised and unsupervised

classification methods applied to newly acquired

MBES datasets. Lark et al. (2015) proposed the

geostatistical linear mixed model (LMM) as an

approach to incorporate new available MBES data

into existing sediment maps. This procedure would

lead to an update of seabed maps using datasets that

allow higher spatial resolutions. In this approach, the

information contained in the existing maps (e.g.

EMODnet) would be considered as fixed (categorical)

variables and the new datasets (e.g. backscatter) are

considered as continuous covariates to generate an

updated map with higher spatial resolution.

Current limitation of ASC based on MBES

backscatter

Despite the major advantages of ASC in sediment

mapping, at its current stage backscatter-based ASC is

hampered by its restricted ability to assign sediment

type (e.g. Folk class) to a distinct acoustic class, in

particular, for coarser sediments (S to sG).

It is shown that specific grain-size fractions affect

the backscatter differently in this study and no one-to-

one relationship between grain size and backscatter for

the entire grain-size spectrum exists (Fig. 10). There-

fore, for example, sediments with a high percentage of

large grains ([ 16 mm) might result in the same

backscatter values as sediment containing mainly

small grains (\ 0.5 mm).

These insights are useful in understanding the

relationship between backscatter and specific sedi-

ment properties and subsequently to generate an

appropriate classification scheme for the assignment

of sediment properties to acoustic class (backscatter).

However, we need to consider that the backscatter

strength is dependent on other seabed properties such

as sediment bulk density, seafloor roughness, volume

heterogeneity, discrete scatterers and sediment

layering (Jackson & Richardson, 2007; Williams

et al., 2009; Ivakin, 2012) even if several studies have

shown a strong relationship to mean grain size, grain-

size distribution or shell or gravel content for a specific

study area (Goff et al., 2000; Collier & Brown, 2005;

Simons et al., 2007; Medialdea et al., 2008; De Falco

et al., 2010).

By investigating the influence of mean grain size

for well-sorted sediments on backscatter strength,

under ideal laboratory conditions, Ivakin & Sessarego

(2007) observed a transition from positive to negative

correlation where the fraction betweenmean grain size

and acoustic wavelength exceeds 1. The authors

hypothesized that the decrease might be explained

with the appearance of a different dominating scatter-

ing regime. Buscombe et al. (2017) described this

situation as a mixed Rayleigh-geometric regime where

a transition from Rayleigh to geometric scattering

occurs. With increasing acoustic frequency the sedi-

ment (with a specific grain size) cannot be described as

a continuous medium anymore and the individual

grains have to be considered as discrete scatterers.

This demonstrates the strong influence of the trans-

mitted frequency on the relationship between

backscatter and the presence of coarse grains. Similar

observations were found by Eleftherakis et al. (2014).

Buscombe et al. (2017) postulated that the lack of

discriminatory power in the gravel fraction was due to

the transitional scattering regime. However, the

organic content [e.g. remaining seagrass fragments

(Kostylev et al., 2003; De Falco et al. 2010)], or small-

scale topography (scales comparable or smaller than

the signal footprint, and therefore below the resolution

of the beam footprint) have an influence on the

backscatter as well and might affect the results (Lurton

et al., 2017).

This knowledge is crucial for efforts aiming to

increase the discrimination performance. Recent stud-

ies have demonstrated that multispectral backscatter

data indeed reveal that areas, showing the same

acoustic responses for one frequency, differ in the

acoustic response of a second frequency (Hughes

Clarke, 2015; Brown et al., 2017). This implies that the

use of different frequencies might be an appropriate

approach to improve seabed sediment classification

(Hughes Clarke, 2015) and resolve ambiguities.
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Conclusions

This study introduces an approach to interpolate

backscatter data available along MBES trajectories

with large track spacing and their classification into

distinct acoustic classes based on the Bayesian bed-

classification method. It is shown that the Kriging

techniques Ordinary, Universal and Simple perform

almost equally well, and that due to a lack of a global

trend with the depth, incorporating bathymetry as a

second variable in Cokriging did not improve the

interpolated map. The acoustic class map is converted

to a sediment map displaying Folk classes by using

grab samples. When quantitatively comparing the

resulting interpolated ASC Folk class map with

sediment samples, an overall accuracy of 65% was

obtained; a similar value was obtained when evaluat-

ing a more traditional sediment map with the same

samples (from EMODnet). However, a qualitative

comparison pleads for a better performance of the

interpolated ASC map. This is indicated by more

precisely mapped seabed sediment heterogeneities in

an order of km’s. The evaluation of the high-resolution

sediment map obtained from the Bayesian method,

which employs the actual backscatter, demonstrates

that mapping laterally heterogeneous sediments is

improved up to an order of meters.

Considering the increasing use of ASC efforts and

the large amount of existing traditional sediment

maps, we aimed to integrate ASC into existing

sediment maps, in order to optimize sediment map-

ping. A manual integration reveals that the knowledge

of the spatial distributions of the uncertainties of each

map is of high importance. The uncertainties in the

interpolated full-coverage ASC sediment map are due

to both the Kriging interpolation of the MBES

backscatter data and the assignment of sediment to

acoustic class. For the EMODnet map, the uncertain-

ties are not known. A successful automatic and

objective integration would lead to improved marine

seabed sediment maps with higher spatial resolution

and quantified uncertainties. The improved sediment

maps advance marine habitat mapping since sediment

types are one of the main driving factors for the

distribution of benthic organisms.

The study reiterates the shortcoming of the ASC

method, caused by the fact that no one-to-one

relationship exists between grain size and backscatter

for the entire grain-size spectrum in our study area.

This ambiguity reduces the discrimination between

sediments and therefore needs to be accounted for

during the integration. The dependency of the rela-

tionship between grain size and backscatter on acous-

tic frequency has been described in the literature and

provides a way to mitigate the effect of the ambiguity

on the acoustic classification. Multispectral backscat-

ter classification is therefore considered as an impor-

tant future research area to optimize ASC methods.
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