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Co-simulation framework of 
discrete element method and 
multibody dynamics models 
Stef Lommen, Gabriel Lodewijks and Dingena L. Schott 

Department of Maritime and Transport Technology,  
Delft University of Technology, Delft, The Netherlands  

Abstract 
Purpose – Bulk material-handling equipment development can be accelerated and is less expensive when 
testing of virtual prototypes can be adopted. However, often the complexity of the interaction between 
particulate material and handling equipment cannot be handled by a single computational solver. This paper 
aims to establish a framework for the development, verification and application of a co-simulation of discrete 
element method (DEM) and multibody dynamics (MBD). 
Design/methodology/approach – The two methods have been coupled in two directions, which 
consists of coupling the load data on the geometry from DEM to MBD and the position data from MBD to 
DEM. The coupling has been validated thoroughly in several scenarios, and the stability and robustness have 
been investigated. 
Findings – All tests clearly demonstrated that the co-simulation is successful in predicting particle– 
equipment interaction. Examples are provided describing the effects of a coupling that is too tight, as well as a 
coupling that is too loose. A guideline has been developed for achieving stable and efficient co-simulations. 
Originality/value – This framework shows how to achieve realistic co-simulations of particulate material 
and equipment interaction of a dynamic nature. 

Keywords Accuracy, Robustness, DEM, Co-simulation guideline, MBD, Two-way coupling 

Paper type Research paper 

1. Introduction 
In the handling of bulk materials, such as iron ore, coal and woodchips, equipment and 
particles interact with each other. Their complex interaction has discouraged the 
advancement of analytical models for dynamic interaction problems, and development of 
handling equipment is mostly done by trial and error of physical prototypes. Replacing this 
part of the design process with inexpensive virtual prototypes would reduce the costs and 
time required to complete a design iteration. However, the required single computational 
method that can capture both particle motions and equipment dynamics does not exist; 
therefore, separate solvers have to be used instead. 

One method to simulate the behaviour of handling equipment is the multibody dynamics 
(MBD) simulation. This method numerically simulates systems composed of multiple bodies 
each having mass, inertia and degrees of freedom (Whittaker, 1970; Wittenburg, 2007; 
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Meijers, 1997). The bodies are connected with each other by means of joints, cables, contacts 
or other kinematic or force constraints. The bodies and constraints lead to the equations of 
motion of the system which can then be solved. Overall, the MBD method has proven to be a 
useful tool for motion analysis of multibody systems (Langerholc et al., 2012). 

The discrete element method (DEM) is a particle-based method that can be used to 
simulate the behaviour of a bulk material. The method computes the individual behaviour of 
each particle, studying its interactions with neighbouring particles and walls (Cundall and 
Strack, 1979). By calculating the interaction forces, the resulting motion can be computed 
with the help of the equations of motion. After collecting all the information of the particles, 
it is possible to study the behaviour and flow of a bulk material. This is a computationally 
intensive method, which has only recently become applicable for large scale problems with 
the recent increase in computational power. 

A combination of both methods could capture both material behaviour and equipment 
behaviour and predict the equipment performance as presented in Figure 1 (Coetzee et al., 
2010). The DEM could compute the loads from the bulk material on the equipment geometry 
and feed these values to the MBD. This method takes these loads and calculates the 
corresponding movements of the geometries. These movements are sent back to the DEM 
program which then can start computing behaviour of the discrete elements and the loads 
on the geometries again. 

By repeating those steps repeatedly over time, both equipment and bulk material 
behaviour are captured by the co-simulation. This approach would allow for investigating 
and improving equipment designs quickly and inexpensively. However, a comprehensible 
approach for coupling these two computational methods was not found. 

This paper establishes a framework for the development, verification and application of 
a co-simulation of DEM and MBD. To that, first, we investigate how the DEM and MBD can 
be coupled, which is a requisite for coupling the equipment model with the material models. 
Then we establish a method for verifying the coupling through series of simple tests with 
known analytical solutions, proving the correctness of the coupling program. Finally, we 
examine the robustness of the coupling, presenting a generic applicable guideline for 
obtaining stable results. 

Section 2 documents the coupling for both directions, from DEM to MBD and from MBD 
to DEM, Section 3 demonstrates that the proposed method of coupling is capable of 
achieving accurate results by examining a selection of scenarios of coupled models where 
the co-simulation is compared to an analytical solution. Section 4 examines the stability of 
the co-simulation and offers an approach to selecting a feasible timestep, as well as a 
suitable communication interval for robustness. 

2. Coupling of an equipment model and a material model 
For a co-simulation of both particulate material and equipment, three software components 
are required as displayed in Figure 1. The first component is the DEM for simulation of 
particle behaviour and forces acting on the equipment. These loads are sent to the MBD 
component which consists of a mechanism of multiple bodies connected to each other 
through cables, joints and contacts. The load on the mechanism affects the position of its 

Figure 1. 
A Co-simulation 
using MBD and DEM 

EC 
35,3    

1482  

D
ow

nl
oa

de
d 

by
 D

E
L

FT
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 A

t 0
3:

10
 0

2 
O

ct
ob

er
 2

01
8 

(P
T

)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-07-2017-0246&iName=master.img-000.jpg&w=239&h=49


bodies and these new positions are sent back to the DEM program. The coupling consists of 
sending the position of the selected bodies from the dynamic model to the particle model and 
sending the load data of the selected bodies from the particle model to the dynamic model. A 
coupling server, the third software component, is used to communicate with the two 
simulation packages, sending input to them and asking for output from them. 

The DEM software component used in this research is EDEM®, a package developed by 
DEM Solutions (2014a). The program can be accessed through the graphical user interface 
or through the extended application programming interface (API). As the data exchange 
needs to occur at regular intervals, a coupling without user intervention through the API is 
highly preferable, as this will eliminate the need for the user to manually couple the 
programs. By writing Cþþ user defined libraries, users can add their own programming to 
the DEM software. The API offers possibilities for user-defined contact models, particle 
body forces, particle generators and MBD coupling. 

The MBD software component used in this research is Adams®, a package developed by 
MSC Software (2014). The program can collaborate with other programs through the 
Adams/Controls package. Previously, the only programs able to connect with the Adams®/ 
Controls package were MSC Software’s EASY5® and MATLAB® from the MathWorks 
Inc., but recently this list has expanded to the Adams® external interface and the Functional 
Mock-up Language. The Adams® external interface offers programmers access to 
Adams®/Solver through a collection of functions in C and exchange information when 
desired. 

Published research on coupling DEM and MBD programs has been limited so far. The 
studies by Yoon et al. (2011, 2012) and Park et al. (2012) investigated the inclusion of 
particles in a MBD package, focussing on the use of the computer’s graphical processing 
unit to perform calculations. Balzer et al. (2016) and Hess et al. (2016) used an open source 
coupling strategy through Functional Mock-up Interface. Edwards et al. (2013) and (Barrios 
and Tavares, 2016) used a coupling specific for high pressure roll grinding. A general 
purpose approach for coupling with Adams® has been written by Elliott (2000), and offers 
several handles how to accomplish a robust and accurate coupling with an external 
interface. Coetzee et al. (2010) modelled a dragline bucket where the DEM code PFC uses an 
external component that calculates the motion of the dragline bucket. A coupling written for 
EDEM® and Adams® by ESTEQ (2008) has been used in the earlier stages of this research. 
This coupling uses MSC. Software’s EASY5® to communicate with Adams® and is 
restricted to outdated versions of EDEM. This made it impossible to use recent versions of 
the EDEM® program and to simulate batches of co-simulations. Therefore, a light coupling 
server has been developed that could interact with the recent versions of both packages 
without the need to configure EASY5® for each co-simulation. 

This coupling server software component is a self-written program which interacts with 
the DEM and MBD components. The coupling server couples the selected MBD bodies and 
the selected DEM geometries, sticking the two models together and behaving as glue 
between the two models. As both DEM and MBD do not simulate at the same speed and do 
not advance with the same timestep, the coupling server has to coordinate the exchange of 
data and the schedule required. For example, a stand-alone DEM simulation advances with 
a timestep of 1e-6 s, while a stand-alone MBD simulation prefers to simulate with a timestep 
of 1e-2 s or more. Running both the codes at the same timestep is undesirable, as this will 
increase the computational costs for the faster simulation and in addition increase 
computational costs because of the overhead of the coupling. Instead, the two simulations 
communicate at a communication interval nDt. This is specified in the coupling and is for 
practical reasons a multiple n of the smallest timestep Dt specified in DEM. The coupling 
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server works for both the directions, coupling the load data from DEM to MBD and the 
position data from MBD to DEM, and this is explained in the following subsections. 

2.1 From DEM to MBD 
The main purpose of linking the bulk material simulation to the equipment simulation is to 
perform the equipment simulation with loads caused by the bulk material. Starting point is a 
vector with the position and trajectory x(t) of a coupled body during a communication 
interval nDt. This vector contains the position, orientation and velocities of the geometry. 
With this data of the geometry, the DEM simulation checks whether particles are in contact 
with the body during the communication interval and calculates the corresponding load 
data F(t) in equation (1): 

x tð Þ ! DEM ! F tð Þ (1)  

The load data F of each coupled body consists of six components: both forces F and torques 
T in three directions. The forces and moments are oriented in the directions of the global 
coordinate system and around the body’s centre of mass. At each communication interval 
nD t, the load data F is requested from the DEM simulation for all the bodies to be coupled. 

However, the load data F(t) cannot be applied directly in the MBD simulation, as this 
value is not necessarily constant during the communication interval nDt. If the load 
calculated in DEM increases every timestep D t as shown in Figure 2, the correct value to be 
communicated with MBD is denoted by the grey area. Unfortunately, the dynamics 
calculation uses the communicated value without regard for its history during 
the communication interval, which in this case leads to an overestimation displayed by the 
Error area. The communicated value should therefore be somewhere between F(t � nDt) and 
F(t). 

This can be resolved by averaging the force during the last n timesteps that took place 
since the previous communication time in equation (2): 

F tð Þ ¼
1
n

X
F tð Þ þ F t � Dtð Þ þ F t � 2Dtð Þ þ . . .þ F t � nDtð Þ (2)  

Figure 2. 
Force averaging in 
DEM 
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where F tð Þ is the average force at time t during the communication interval nDt. This 
average force is computed by starting at zero and at each timestep adding the particular 
force data. This operation is performed for all coupled bodies and all of their components 
according to equation (3): 

F tð Þ ! Force averaging ! F tð Þ (3)  

The Adams® solver requests the inputs to the solver to be given at the same time as the 
outputs. This means that if the load data F of time t is fed to the solver, it would return the 
accompanying positions and velocities of the bodies at time t. Unfortunately, the positions 
and velocities at time t were the starting point of equation (1). In fact, at the next 
communication between MBD and DEM the position data at time t þ nDt is required. In 
order to have the MBD solver deliver this, it requires load data at t þ nD t. 

To achieve the load data F t þ nDtð Þ, the available load data F tð Þ have to be extrapolated 
(Elliott, 2000) in equation (4): 

F tð Þ ! Force extrapolation ! F t þ nDtð Þ (4)  

The load data are extrapolated to t þ nDt by finding a quadratic solution based on the last 
three available load data points as displayed in Figure 3. First step is finding a quadratic 
solution displayed in equation (5) which fits the three data points: 

F tð Þ ¼ c1t2 þ c2t þ c3 (5)  

The solution is found by applying Cramer’s Rule (Cramer, 1750) to the system of linear 
equations in equation (6). 

TCc ¼ FC ¼

t2 t 1
t � nDtð Þ

2 t � 1nDt 1
t � 2nDtð Þ

2 t � 2nDt 1

2

6
4

3

7
5

c1

c2

c3

2

4

3

5 ¼
F tð Þ

F t � nDtð Þ

F t � 2nDtð Þ

2

6
4

3

7
5 (6)  

According to Cramer, the three coefficients c1, c2 and c3 can be defined [equation (7)] in terms 
of determinants defined in equations (8), (9), (10) and (11). 

Figure 3. 
Force extrapolation 

required for MBD 
solver 
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c1 ¼
det C1ð Þ

det TCð Þ
; c2 ¼

det C2ð Þ

det TCð Þ
; c3 ¼

det C3ð Þ

det TCð Þ
(7)   

det C1ð Þ ¼
f tð Þ t 1

f t � nDtð Þ t � nDt 1
f t � 2nDtð Þ t � 2nDt 1

�
�
�
�
�
�

�
�
�
�
�
�

(8)   

det C2ð Þ ¼

t2 f tð Þ 1
t � nDtð Þ

2 f t � nDtð Þ 1
t � 2nDtð Þ

2 f t � 2nDtð Þ 1

�
�
�
�
�
�

�
�
�
�
�
�

(9)   

det C3ð Þ ¼

t2 t f tð Þ
t � nDtð Þ

2 t � nDt f t � nDtð Þ

t � 2nDtð Þ
2 t � 2nDt f t � 2nDtð Þ

�
�
�
�
�
�

�
�
�
�
�
�

(10)   

det TCð Þ ¼

t2 t 1
t � nDtð Þ

2 t � nDt 1
t � 2nDtð Þ

2 t � 2nDt 1

�
�
�
�
�
�

�
�
�
�
�
�

(11)  

The three coefficients of equation (7) can then be applied in equation (5) to extrapolate the 
load data F to t þ nD t as shown in equation (12): 

F t þ nDtð Þ ¼ c1 t þ nDtð Þ
2
þ c2 t þ nDtð Þ þ c3 (12)  

This operation is performed for all force and moment components for each body at each 
communication interval. 

Another benefit of the extrapolation of load data is that it works similar to a smoothing 
operation. This will prevent the DEM simulation of feeding erratic forces to the MBD solver 
which could jeopardize the stability of the co-simulation. The stability of a co-simulation will 
be discussed in more detail in Section 4. 

2.2 From MBD to DEM 
The MBD solver calculates the movement of the mechanism based on the external loads 
from DEM and the mechanism modelled in Adams® [equation (13)]. The movements of the 
coupled bodies from the MBD solver are required for the next iteration of the coupling in in 
EDEM®. 

F t þ nDtð Þ ! MBD ! x t þ nDtð Þ (13)  

In a way, the MBD solver is always ahead of the discrete element simulation, as it uses 
extrapolated loads to compute the position data. Before the outputs from the MBD solver 
can be applied in the DEM package, coordinate transformation is necessary [equation (14)]. 
Two differences between the codes have to be resolved for a successful co-simulation: 
position versus translation and Euler angles versus orientation matrix: 
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x t þ nDtð Þ ! Coordinate transformation ! x t þ nDtð Þ (14)  

Adams® uses the absolute position of a body x, while EDEM® uses the translation D x of 
the body with the original position x0 of the body as origin. These differences can simply be 
overcome by applying equation (15): 

Dx ¼ x � x0 (15)  

Adams® uses a 3-1-3 body rotation sequence (Kane et al., 1983), and the transformation 
from Euler angles c , u and f to a rotation matrix O can be achieved by equation (16): 

O ¼
cos cð Þcos fð Þ � sin cð Þcos uð Þsin fð Þ � sin cð Þcos fð Þ � cos cð Þcos uð Þsin fð Þ sin uð Þsin fð Þ

cos cð Þsin fð Þ þ sin cð Þcos uð Þcos fð Þ � sin cð Þsin fð Þ þ cos cð Þcos uð Þcos fð Þ � sin uð Þcos fð Þ

sin cð Þsin uð Þ sin cð Þsin uð Þcos cð Þsin uð Þ cos uð Þ

2

4

3

5

(16)  

By default, both programs define the orientation around the current centre of mass. 
At this point, the geometry data at t þ nDt is sent to DEM program. This includes the 

position, velocity, orientation and angular velocity of each coupled body. While the position 
and orientation are needed for correct positioning of the coupled body, this is not true for the 
velocities. These are used for the calculation of contact forces according to the definition of 
the Hertz Mindlin contact model (Mindlin and Deresiewicz, 1953). 

The EDEM® software automatically interpolates the geometry data for all the DEM 
timesteps between t and t þ nDt according to the linear interpolation of the SLERP 
algorithm (Shoemake, 1985). The difference between the non-linear movement and the linear 
interpolation of the SLERP algorithm should be considered when selecting a suitable 
communication time nDt. For example, a circular motion during the time nDt will be 
interpreted as a straight line; therefore, n should be chosen in such a way that this effect can 
be ignored. 

3. Verification of the coupling 
The coupling of the two codes discussed in the previous section is verified in this 
section. The verification process is performed with four different tests, starting with a 
simple test and gradually increasing the complexity. At each simulation experiment, 
the simulation results are compared to the analytical solution. Without such a 
verification, it will remain unclear whether the implemented coupling can produce 
accurate results. 

The four tests have been selected to test the implemented coupling step by step, with 
each test focussing on additional aspects: 

(1) The first test examines whether the implemented coupling can accurately predict 
the contact of a single particle colliding with a wall of a coupled body. Also, this 
test examines if the coupling server is interfacing correctly with Adams®. 
Adams® is given a known load of particle collisions and has to return the 
corresponding behaviour of the body. This test is limited to translations only. 

(2) Aim of the second test is to verify that the coupling server interfaces correctly with 
EDEM®. EDEM® will be given a known motion for a body and has to return the 
corresponding load data to the coupling server. The given motion consists of both 
translations and rotations. 
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(3) The third test verifies that the two-way coupling works for a scenario limited to 
translational forces and movements. 

(4) The final test of the coupling of DEM and MBD method verifies that the two-way 
coupling works for a scenario including rotations and moments. 

The agreement between the co-simulation results and the analytical results is evaluated 
according to the coefficient of determination R2 described by Weisberg (2005). Because both 
the results are based on the same mathematical problem, a very high coefficient of 
determination is to be expected. Correlation should exceed 0.99, demanding high accuracy 
while allowing for numerical scatter in the co-simulation. 

3.1 Particle–wall collision 
The first test of the verification process is a simple test where particles are shot at and 
collide with a geometry. Instead of using two particles in DEM, one of them has been 
replaced with a body whose behaviour is calculated with MBD. Aim of this test is to 
investigate whether a simple collision between particle and geometry can be computed 
correctly. In this first scenario, displayed in Figure 4, a single particle was generated and 
collided with the cube, which only has translational degrees of freedom. 

The particle has a radius of 10 mm, a coefficient of restitution of 0.5 and an initial velocity 
of up = 2 m/s. The cube was at rest at the start of the scenario and has a mass mc of 10 kg. 
Different particle masses mp were used in this test, ranging from 0.01 kg to 10 kg. During the 
simulation, where gravitational forces are absent, the particles collided with the cube, 
transferring their energy according to equations (17) and (18): 

vc ¼
mpup þmcuc þmpCR up � ucð Þ

mp þmc
(17)   

vp ¼
mpup þmcuc þmcCR uc � upð Þ

mp þmc
(18)  

where vp is the velocity after collision, up the initial velocity and mp the mass of the particle 
and vc, uc and mc for the cube. Simulations have been performed with a timestep of 5e-6 s. 

Table I shows the velocities of the colliding bodies after the collision, as well as the error 
according to equation (19). 

Error ¼ 100
vSimulation

vTheory
� 1

� �

(19)  

It can be observed that the test particles of 100 times lighter showed acceptable agreement. 
However, simulations using heavier particles with a particle/cube ratio of 5 and 1 did not 
show good agreement with theory. This is presumably caused by the calculation of the 
particle/wall contact in EDEM®. The built-in contact models all assume that the mass of the 

Figure 4. 
Particle cube collision 
test 
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wall or body is equal to 1e8 kg (Arumugan, 2014), while in fact it should be significantly less. 
This affects the value of the equivalent mass which in turn affects the calculation of the 
damping force. To reduce this error to an acceptable level, users should limit the geometry to 
particle mass ratios to at least 100 to 1 or use a customized contact model that does not 
assume the mass of the geometry. Simulations with high coefficients of restitution CR will be 
affected less as the damping component of the contact force is smaller. 

Next, the single particle is replaced by a stream of particles, each with a mass of 0.01 kg 
and hitting the cube with their own initial speed of 2 m/s minus the current speed of the 
cube. Particles are created at a rate of 200 particles per minute. Because of the incoming 
momentum of the particles, the cube starts accelerating, although the rate of acceleration 
decreases because of the increasing distance between the starting point of the particles and 
the position of the cube, requiring the particles to travel longer before they collide with the 
cube. Figure 5 shows the velocity and displacement of the cube calculated by the co- 
simulation and theoretical calculations based on equation (17). It can be observed that the 
agreement between co-simulation and theory is very good as the coefficients of 
determination R2 exceed 0.999. This proves that the collision between particle and body is 
computed correctly. 

3.2 Motorized rotating pendulum 
The second test of the verification process used a box filled with particles connected to a 
pendulum, rotating at a constant angular velocity. Aim of this test is to assure that the 

Figure 5. 
A stream of particles 

hitting the cube, 
causing it to 

accelerate 

Table I.  
Particle–geometry 

collisions with up = 2 
m/s and mc = 10 kg  

mp 

mc

mp  

Theory Simulation Error (%) 
vp vc vp vc p c  

0.01 kg   1,000   � 9.97e-1   3.00e-3   � 9.98e-1   3.02e-3   0.141   0.672 
0.02 kg   500   � 9.94e-1   5.99e-3   � 9.95e-1   6.03e-3   0.130   0.642 
0.1 kg   100   � 9.70e-1   2.97e-2   � 9.74e-2   2.94e-2   0.365   0.783 
1 kg   10   � 7.27e-1   2.72e-1   � 7.56e-1   2.75e-1   4.31   0.943 
2 kg   5   � 5.00e-1   5.00e-1   � 5.54e-1   � 5.10e-1   10.8   2.09 
10 kg   1   5.00e-1   1.50e0   3.87e-1   1.62e0   22.7   7.84   
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coupling server correctly updates the position of the body in EDEM® and whether the load 
calculated in EDEM® corresponds with the theoretical approach. This will be achieved by 
comparing the forces acting on the joint of the pendulum predicted by the simulation to the 
gravitational and centrifugal forces of the box with particles. As the interaction forces do not 
affect the motion of pendulum, the forces on the joint and the torque required for the rotation 
can be calculated by equations (20), (21) and (22): 

Fx ¼ � mv 2r cosu (20)   

Fy ¼ mv 2r sinu þmg (21)   

Tz ¼ Fxrsin u � Fyr cosu (22)   

m ¼ Rmp þmc (23)  

In this test, the pendulum has a mass m according to equation (23), consisting of Rmp of 
236.6 kg and mc of 10 kg. The pendulum has a horizontal starting position and rotates 
counter-clockwise at a constant angular velocity v of 72 deg/s. The radius r of the pendulum 
is 1.5 m, and gravity is acting at 9.81 m/s2. Figure 6(a) shows the simulation of the motorized 
pendulum. 

Figure 6(b) shows the torque required for rotating the particle box at the prescribed 
angular velocity. First, the box in the simulation needs to be accelerated to the 
prescribed angular velocity which results in a mismatch during the first 0.25 seconds as 
equations (20) and (21) assume constant velocity. For the remainder of test, it can be 
seen that the predictions of the co-simulation match very well with the theoretical 
approach based on equation (22), resulting in a coefficient of determination of 0.999. 
This confirms that the coupling server and EDEM® calculate the expected load output 
well while given a known input, both for translational movements as well as rotational 
movements. 

Figure 6. 
Motorized pendulum 
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3.3 Translating spring damper system 
The third test of the verification process uses a box of particles connected to a translational 
spring damper system (Figure 7). Aim of this test is to investigate whether the coupling 
server and MBD process the load input correctly and if it results in the desired response of 
the system. This test is again limited to translational forces and movements. The response 
of the spring damper system can be described according to equations (23) and (24): 

m
d2x
dt2 þ cd

dx
dt
þ kx ¼ mg (24)  

The box has a mass of 100 kg and the particles have a mass of 261.8 kg, while the spring has 
a constant k of 5,000 N/m, preloaded at 100 N and the damper has a damping coefficient cd of 
500 Ns/m. The particles have a coefficient of restitution CR of 1 to exclude damping from the 
particles. 

Figure 8 shows the velocity and position of the box of particles during the simulation. 
Because of weight of the particles and the box, the box drops down in search for a new 
equilibrium. Because of the damper present in the system, the velocity is reduced, damping 

Figure 7. 
Schematic of 

translational spring 
damper system 

Figure 8. 
System response 
predicted by the  

co-simulation 
compared to the 
system response 

according to  
equation (24) 
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the system and gradually slowing down the box. It can also be observed from Figure 8 that 
the response predicted by the co-simulation correlates well with the response following from 
equation (24), resulting in a determination coefficient of 0.998. This proves that the coupling 
server and MBD software Adams® properly transform the translational forces of the 
particles to translational movements of the mechanism. 

3.4 Torsional spring damper system 
The final test of the coupling of DEM and MBD method is performed by confirming the 
response of a torsional spring and damper system. Aim of this test is to verify that the MBD 
software Adams® and DEM software EDEM® are coupled correctly to the coupling server, 
both for translations and rotations. The motor of the pendulum example in Section 3.2 has 
been replaced by a torsional spring with a stiffness k of 40 Nm/deg and a torsional damper 
Cd of 20 Nms/deg. The system can then by described by equations (23) and (25): 

d2u

dt2 I þ
du

dt
Cd þ ku ¼ mgr cosu (25)  

where I is the moment of inertia and the load on the system is determined by the mass of the 
box mc = 50 kg, the total particle mass Rmp = 266.4 kg and the angle of the pendulum u . 
The initial position of the pendulum is horizontal. 

In Figure 9, the angular velocity and rotation of the pendulum are shown. Due to the 
weight of the box with particles, the pendulum started accelerating. The torsional spring 
prevents the pendulum from reaching vertical position, whereas the torsional damper 
reduces the angular velocity. When the outcome of the simulation is compared to the 
equation of motion it becomes clear that the coupling of DEM and MBD produces very 
accurate results with a determination coefficient of 0.999. 

This final test concludes the verification process of the coupling method described in 
Section 2. This proves that the developed coupling of DEM and MBD works as expected 
and is capable of accurately simulating systems where particles and mechanisms 
interact. 

Figure 9. 
Response of system 
calculated by a 
coupled simulation 
compared to the 
equation of motion in 
equation (25) 
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4. Coupling stability 
Besides an accurate co-simulation of DEM and MBD, a robust coupling is also desired. 
Without robustness, simulations will fail or produce considerable errors. Both the 
solvers of the DEM and MBD have their own preferences for achieving a stable 
simulation with the lowest possible computational costs. However, when the two 
solvers are coupled in a co-simulation, these preferences sometimes conflict and need to 
be resolved. This section focuses on the stability of a co-simulation and aims to provide 
users with a guideline for robust and stable co-simulations while minimizing 
computational costs. 

4.1 Stability of DEM 
The stability of a DEM simulation is determined by the size of the timestep D t or D tDEM, 
which is the stepsize the simulation uses to advance through time. It is essential that these 
timesteps are not too large, as contacts need to be detected in time in order to calculate the 
interaction forces correctly. If the selected timestep is too large, overlap between the 
particles might be aggravated, causing a disproportional response from the contact model. 
This response consists of interaction forces which are too large and leads to a large 
acceleration of the particle, therefore resulting in a large displacement during a timestep. It is 
likely that the next contacts of the particle will also be disproportional, initiating a chain 
reaction of unstable contacts which will result in the explosions of particles, a scenario well 
known by DEM users. 

Choosing a stable timestep size is a topic of interest for many DEM users, as a very 
conservative estimate of the timestep will raise computational costs significantly. One of the 
available guidelines of choosing a suitable timestep is the definition of the Rayleigh timestep 
shown in equation (26) (Ning, 1995). This is the amount of time required for the propagation 
of a surface wave through a particle and has proven to be a useful tool for estimating a 
suitable timestep. 

DtR ¼ pR
ffiffiffiffi
r

G

r
1

0:1631� þ 0:8766ð Þ
(26)  

Users are recommended to take a fraction gR of the Rayleigh timestep DtR of 20per cent for 
systems with high coordination numbers (=>4) and up to 40per cent for lower coordination 
numbers (DEM Solutions, 2014b). 

Another guideline for determining the critical timestep is based on the eigenfrequency v 
of a single particle (O’Sullivan and Bray, 2004) shown in equation (27). Here, a safety factor 
g v of 0.8 is commonly considered to ensure a stable integration. 

Dtv ¼ 2
ffiffiffiffiffi
m
kn

r

(27)  

The value for Dtv is usually smaller than Rayleigh critical timestep D tR, as pointed out by 
Yade-DEM (2015). For example, the critical timestep Dtv for the particles of the material 
model is 20 per cent of D tR, while for the large-scale model this ratio increases to 31 per cent. 
It can be concluded that the critical timestep based on the eigenfrequency Dtv is slightly 
more conservative than the Rayleigh critical timestep DtR when the safety factors gR and 
g v are considered. In case of simulation scenarios where particles collide at high velocities, 
smaller timesteps should be taken to avoid disproportional response of the contact model. 
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4.2 Stability of MBD 
The solver of a MBD simulation works completely different from the DEM simulation. As 
opposed to solving the governing equations in discrete timesteps in the DEM, the Adams®/ 
Solver solves governing equations of the model in continuous time. Adams® default solver 
GSTIFF uses backward differentiation formulas and fixed coefficients for prediction and 
correction, based on the work of Gear (1971). It is a variable step size integrator, which 
means that the internal MBD simulation time does not advance at constant intervals, as it 
actually can slow down and reverse if the corrector has trouble converging. 

Stability of the results is guaranteed by the corrector of the solver that monitors the error 
in the solution and checks if this is smaller than the specified corrector error tolerance. The 
corrector can force the solver to reduce its stepsize or repeat the previous steps at a smaller 
interval. It can be helpful to use the modified corrector instead of the original in models that 
have discontinuities in their force functions, for example when interacting with DEM. The 
modified correct only applies error control on a limited set of variables such as 
the displacements and is less strict on the prediction errors of the load data from DEM. The 
complete implementation of the corrector can be found in the Solver’s manual (MSC 
Software, 2013). 

Other variants of the GSTIFF solver are the WSTIFF solver (van Bokhoven, 1975), which 
uses variable coefficients instead of the GSTIFF’s constant coefficients based on the 
assumption that the timestep does not change. Each time the timestep changes, the GSTIFF 
solver introduces a small error, while the WSTIFF solver prevents this. This makes 
WSTIFF is a more suitable solver for simulations with discontinuous forces such as 
contacts or interaction with other discrete functions such as the DEM. 

4.3 Stability of co-simulation 
The two different solvers’ approaches cause some challenges when it comes to combining 
MBD and DEM. Elliott (2000) demonstrates several examples where the co-simulation 
results are not computed accurately, because of combination of a continuous MBD solver 
and an external discrete solver. The MBD solver selects its own timestep, and only requires 
the error tolerance to be configured. However, each time a communication takes place, a 
timestep is forced in the MBD solver. The maximum MBD timestep D tMBD therefore 
depends on the DEM timestep D tDEM and the communication interval n [equation (28)]: 

DtMBD # nDtDEM (28)  

The stability of the coupling is investigated by examining co-simulations of the spring- 
damper system from Section 3.3. Table II presents the accuracy and costs of co-simulations 
using different DEM timesteps D tDEM and communication intervals n. It shows three 
coefficients of determination: for the position x, velocity v and force F acting on the 
geometry. Most important is the accuracy of the position of the geometry, as an inaccurate 
position can lead to missed contacts and false contact forces. Accurate simulations have 
been marked grey when the correlation between the simulation and the analytic solution is 
above 0.99. 

When the interval is chosen too large, the computed velocity starts to deviate from the 
analytical solutions. This is shown in Figure 10 when DtDEM = 1e� 4 and n = 25. This is 
undesirable, as the geometry velocity is part of the contact interaction force calculation and 
therefore an error can propagate through the system. The determination coefficient of the 
load data on the geometry is less high compared to the position and the velocity of the 
geometry. This is mainly caused by the discrete nature of the particle contacts and often 
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compensated at the next communication interval. For example, when the interaction force is 
exaggerated this triggers larger than accurate acceleration of the geometry, while at the next 
communication the contact force is likely to be underestimated due to the aggravated 
displacement of the geometry during the interval. However, this behaviour tends to escalate 
into instability the more iterative steps are taken, as the coupling is in fact too loose. 

When the interval is chosen too small and the MBD solver is forced to have a very small 
timestep DtMBD, the accuracy of the solution is affected as well [equation (28)]. Figure 11 
shows an example where a small DEM timestep DtDEM = 1e–5s is chosen in combination 
with a communication interval of n = 1, here the computed solution starts to differ from the 
analytical solution. By forcing the MBD simulations to use a very small timestep, numerical 
scatter is amplified, resulting in the so-called pinging of the mechanism. The pinging can be 
observed from the erratic curve of the velocity and position of the geometry in Figure 11. 
The proposed force extrapolation of Section 2.1 reduces this problem, as it also acts as a 
smoothing operator, although it obviously does not eliminate this problem. 

The computational costs of a co-simulation also depend on the selection of the 
communication interval n. The critical timestep of the MBD solver is usually much larger 
than the DEM. Simply connecting both software components with n = 1 can be undesirable, 

Figure 10. 
Example of unstable 

coupling: the 
communication 

interval is too large  
D tDEM = 1e–4 s 

Table II.  
Effect of different 

timestep and 
communication 

interval  
D tR = 5.21 

e–4s  

ts = DtDEM(s) DtMBD(s) 
n ¼

DtMBD

DtDEM
(–)  

ttotal (h: min: s) R2 of x R2 of v R2 of F  

1e-5   1e-5   1 4:03:43 0.09660 0.58219 0.00185    
5e-5   5 0:53:54 0.85019 0.96361 0.02700    
1e-4   10 0:36:29 0.99985 0.99995 0.68607  

2.5e-4   25 0:28:06 0.99999 0.99998 0.99117    
5e-4   50 0:25:29 0.99999 0.99998 0.99559    
1e-3   100 0:23:53 0.99998 0.99985 0.19334    
1e-2   1000 0:02:23 0.35532 0.02900 0.00065 

1e-4   1e-4   1 0:15:08 0.99973 0.99992 0.71259    
5e-4   5 0:05:10 0.99999 0.99998 0.99687    
1e-3   10 0:03:57 0.99998 0.99992 0.39737  

2.5e-3   25 0:03:07 0.99992 0.72059 0.02915    
5e-3   50 0:02:35 0.97173 0.47166 0.00438    
1e-2   100 0:00:22 0.35368 0.03011 0.00070    
1e-1   1000 0:00:22 0.02381 0.00002 0.00004   

Multibody 
dynamics 

models  

1495  

D
ow

nl
oa

de
d 

by
 D

E
L

FT
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 A

t 0
3:

10
 0

2 
O

ct
ob

er
 2

01
8 

(P
T

)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-07-2017-0246&iName=master.img-009.jpg&w=345&h=133


as this requires both the components to run at the same speed and may result in additional 
computational costs while accuracy does not improve. It can be observed from Table II 
that co-simulations with a communication interval n = 1 dramatically increases 
computational costs with a factor of up to eight, because at each DEM timestep the two 
software components communicate with each other. As the communication interval 
increases, the computational costs decrease because the MBD solver is not forced to use very 
small increments. Simulations with a DEM timestep of 1e-4 s and an interval of 100 or more 
have even lower computational costs; however, their low costs are because of instability of 
the co-simulation, causing all the particles to leave the computational domain which affects 
the computational costs dramatically. 

A guideline for achieving a stable and efficient co-simulation is shown in Figure 12 and 
consists of the following steps:  
� For the DEM, a stable timestep has to be determined, based on the Rayleigh critical 

timestep DtR or the eigenfrequency critical timestep Dtv . This needs to consider 

Figure 11. 
Another example of 
unstable coupling: 
pinging of the MBD 
solver because the 
communication 
timestep is too small 
DtDEM = 1e-5s 

Figure 12. 
Achieving a stable  
co-simulation 
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particle masses, stiffness and impact velocities characteristic for the simulation. A 
safety factor g needs to be considered; however, a very conservative factor will lead 
to an unnecessary increase in computational costs.  

� The MBD solver needs to be chosen based on the presence of contacts in the 
simulation and the nature of the interaction between particles and equipment. If the 
interaction is intermittent or contacts are causing abrupt events in the simulation, 
the WSTIFF solver is recommended. The corrector and its error tolerance need to 
reflect the nature of the simulation. If the simulated system contains discontinuities 
such as contacts that are high impact collisions between geometry and particles, the 
modified corrector can be used, as it is less strict on force prediction errors.  

� The communication interval n needs to be chosen in such a way that the DEM code 
is provided with sufficient updates of the geometry’s position in order to prevent a 
disproportional response from the contact model. A value of n = 5 can be selected as 
initial value. For simulations with a small D tDEM and a large geometry mass a 
higher value for n can be helpful to prevent forcing the MBD solver to use small 
timesteps, reducing the risk of pinging.  

� The stability of the co-simulation can be tested by experimenting with the 
communication interval n. By examining co-simulations with different intervals, the 
quality of the results can be assessed. A communication interval that is too 
large can be recognized by comparing the velocity profiles of the geometries to the 
derivative of the position data. An interval that is too small can be identified by 
examining the forces acting on the geometry. If these forces are extremely erratic, it 
is likely that the MBD will have difficulties in successfully computing the 
accompanying velocities and displacements.  

� If the co-simulation is found to lack stability, its settings need to be reconfigured. A 
first step in achieving a more robust solution is to alter the communication interval, 
depending on the evaluation. If changing the communication interval does not 
produce the desired effect, the MBD solver needs to be reconfigured. As a last resort, 
as this has the largest impact on the computational costs, the DEM timestep can be 
lowered. 

5. Conclusions 
This paper shows how a DEM model can be successfully coupled with a MBD model 
into a co-simulation. By exchanging load and position data, both models can cooperate 
and together compute the interaction between bulk material and handling equipment. 
The two computational methods have been coupled in two ways, which consists of 
coupling the load data on the geometry from DEM to MBD and the position data from 
MBD to DEM. 

The coupling has been tested thoroughly in several scenarios, starting with a simple 
scenario of a single collision between particle and geometry and concluding with a complex 
scenario combining translation and rotation. All tests clearly demonstrated that the 
coupling is successful in predicting particle-equipment interaction. 

A guideline has been developed for achieving a stable and efficient co-simulation. The 
robustness of the coupling has been assessed, demonstrating cases where the coupling is too 
tight, as well as the effects of a coupling that is too loose. When the proposed guideline for a 
stable co-simulation is adopted, this coupling technique is ready for simulating large scale 
material–equipment interactions. 
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Future work will combine this developed coupling framework with a MBD model of 
real scale industrial equipment and large-scale DEM material models into a co- 
simulation. How accurate this co-simulation performs in predicting equipment 
performance will be investigated through on-site validation of a grab with iron ore 
pellets. 
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