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A time series forecasting based on cloud model similarity measurement

Gaowei Yan1 · Songda Jia1 · Jie Ding1 · Xinying Xu1 · Yusong Pang1,2

Abstract

In this paper, a local cloud model similarity measurement 
(CMSM) is proposed as a novel method to measure the 
similarity of time series. Time series similarity 
measurement is an indispensable part for improving the 
efficiency and accuracy of prediction. The randomness and 
uncertainty of series data are critical problems in the 
processing of similarity measurement. CMSM obtains the 
internal information of time series from the general 
perspective and local trend using the cloud model, which 
reduces the uncertainty of measurement. The neighbor set 
is selected from time series by CMSM and used to 
construct a prediction model based on least squares support 
vector machine. The proposed technique reduces the 
potential for overfitting and uncertainty and improves 
model prediction quality and generalization. Experiments 
were performed with four datasets selected from Time 
Series Data Library. The experimental results show the 
feasibility and effectiveness of the proposed method.

Keywords Time series forecasting · Similarity 
measurement · Cloud model · Uncertainty · Least squares 
support vector machine

1 Introduction

Time series forecasting model has been widely applied to 
the abundant decision making in the fields of natural sci-
ence, engineering, and economic management (De Gooijer 
and Hyndman 2006; Coyle et al. 2005; Jayawardena et al. 
2002). It is used to predict future values by capturing the 
inherent structural characteristics of data based on 
previously collected historical data. Two prediction 
strategies are usu-ally employed in time series prediction 
model. One is the single-step prediction, which reflects 
short-term tendency of subjects and equates the immediate 
prediction. Another is multi-step prediction, which shows 
long-term change over time (Xiong et al. 2013; Bao et al. 
2014). These two strate-gies play disparate roles in 
different circumstances.
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The models for time series prediction can be primarily 
divided into statistical models and artificial intelligence mod-
els. In statistical models, the methods of moving average, 
exponential smoothing, and autoregressive integrated mov-
ing average model (ARIMA), etc., are employed separately 
or combined (Ruta et al. 2011). However, these approaches 
are limited when dealing with nonlinear data, resulting in 
unstable model and inaccurate prediction result (Bhardwaj 
et al. 2013). The artificial intelligence models show strong 
nonlinear mapping ability and therefore, predict time series 
more accurately. Artificial neural network (ANN), extreme 
learning machine (ELM), adaptive neural fuzzy inference 
system (ANFIS), recurrent neural network (RNN), support 
vector machine (SVM), and least squares support vector 
machine (LSSVM) are the key models in the artificial intel-
ligence models. ANN has been extensively applied to many 
areas of time series prediction because of its ability in captur-
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ing the nonlinear flexible and strong learning ability (Coyle
et al. 2005; Khashei and Bijari 2010; Wu and Lee 2015).
Van Heeswijk et al. (2009) applied the ELM to time series
prediction using adaptive ensemble ELM models, which
shows stability and adaptability during series prediction.
Sisman-Yilmaz et al. (2004) employed improved ANFIS in
multivariable time series prediction and achieved good pre-
diction accuracy. In Giles et al. (2001), RNN was applied to
the prediction of time series. Thanks to the loopback structure
and information feedback process, RNN addresses difficul-
ties with non-stationarity, overfitting, and unequal a priori
class probabilities. SVM (Saimurugan et al. 2011) is a dif-
ferent category in machine learning techniques, which uses
risk minimization principle and owns better generalization
ability. LSSVM introduces loss function and kernel func-
tion using SVM as fundamental. In Suykens et al. (2002),
LSSVM was used in time series regression and prediction.
The high training efficiency and strong generalization ability
makeLSSVMachieve good prediction precision in nonlinear
time series forecasting.

Artificial intelligence models are required to be trained
using the time series data. Selecting the appropriate train-
ing set from the time series data is of great importance in
artificial intelligence models since it can increase the qual-
ity of the prediction. Global and local models are two kinds
of training set selection methods (Chen and Lee 2015). In
global model method, all the sequences from the training
domain are used for model training. However, this will lead
to heavy computation and the dissimilarity sequences in the
domain and will disturb the training process, resulting in
low prediction accuracy. Therefore, for large-scale and dis-
similar sequences, local model method is more popular. In
this method, sequences in the training domain that are sim-
ilar to the predictive sequence are selected and used as the
training set for model training. The set that contains all the
similar sequences is called the nearest neighbor set (Chen
and Lee 2015). McNames (1998) proposed a local model
method for the nonlinear time series prediction. It used a
weighted Euclideanmetric method to measure similarity and
employed the cross-validation error to assessmodel accuracy.
Jayawardena et al. (2002) presented the generalized degrees
of freedom, which was used to determine similar sequences.
In addition to the memory function brought by the loopback
structure, in Cherif and Bon (2014), RNN was applied to the
local model, which improved the prediction performance of
the model (Goel et al. 2017). Local neural fuzzy time series
forecasting model based on LSSVM was proposed in Mira-
nian and Abdollahzade (2013). It used hierarchical binary
tree learning algorithm to quickly and effectively select sim-
ilar sequences and obtained a better result in chaotic time
series forecasting. Chen and Lee (2015) employed hybrid
Euclidean distance method to measure the similarity of the

predictive sequence and all sequences for similar sequences
selection.

Time series data show uncertainty. In other words, the data
at some particular time series are not accurate or evenmissed.
The uncertainty is caused by the restriction of acquisition
accuracy of instruments or the detection technology, noise
and bandwidth limit in the transmission process, the general-
ization treatment for data security, and data missing, etc. The
data uncertainty is less considered in the conventional similar
sequences selection methods in the previous models. Thus,
the sequence data for model training are not well selected,
and the final prediction accuracy is affected indirectly. The
cloud model (Li and Du 2007) combines the fuzziness and
randomness of the qualitative concepts in natural language.
It can realize the mapping from the quantitative value to the
qualitative linguistic value, which reduces the impact of the
outliers and missing values. To solve the uncertainty and
improve the effectiveness of prediction, the cloud model can
be combined with LSSVM for similarity measurement and
prediction.

In this paper, a time series forecasting method based on
cloudmodel similaritymeasurement is proposed,which eval-
uates the similarity of time series from the overall level and
local trend and predicts it in combination with LSSVM.

The main contributions of this paper are as follows:

1. Transform the identified time series into digital feature
sequences, reducing the randomness and uncertainty of
the sequence data.

2. Measure the similarity of the time series from both the
overall level and the local trend to improve the accuracy
of the measurement.

3. A local model based on LSSVM is constructed so that
the prediction accuracy has been improved.

The remainder of the paper is organized as follows. In
Sect. 2, we briefly describe the related work about measuring
similarity of series. Section 3 presents the similarity mea-
surement based on the cloud model. Section 4 introduces the
process of proposedmethod.We show the empirical results of
the comparisons between several existingmethods in Sect. 5.
Finally, the conclusions are drawn in Sect. 6.

2 Related work

Similarity measurement plays a key role in the local model
for the selection of nearest neighbor set. Many researchers
use Euclidean distance or its deformation to measure the
similarity of time series (Wang et al. 2013; Keogh et al.
2001; Chiu et al. 2003). However, Euclidean distance has
inherent defects, such as a poor noise robustness and a
lack of deformable identification on timeline (Chiu et al.
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2003). The dynamic time warping (DTW) (Adwan and Arof
2012) can effectively eliminate defects of the Euclidean dis-
tance. Unfortunately, the computationally demanding of this
method restricts its applications. Bernecker et al. (2011) con-
structed the angle sequence using the adjacent segment angle
to approximate time series. In this method, Euclidean dis-
tance is transformed to the angle distance, which is used to
measure the similarity. Symbolic aggregate approximation
method was proposed by Korn and Muthukrishnan (2000).
This algorithm is widely used due to its simple structure and
its independence from specific experimental data. The piece-
wise linear radian representationmethodwas proposed inLin
et al. (2003). It defined the radian distance, and similarity is
measured based on the distance. The experimental results
showed the accuracy and stability of this method in multi-
resolution. Popivanov and Miller (2002) used the wavelet
transform for similarity search in time series. To improve
the prediction accuracy, Wu and Lee (2015) defined a hybrid
distance, which measured the degree of two shape contours
between two time series. In this method, the trend of the
sequences is taken into account. However, all these methods
above do not consider data uncertainty problem.

In order to solve the uncertainty problem in time series
data, a time series prediction method based on cloud model
was proposed for the first time (Jiang et al. 2000). In this
method, cloud model is employed to represent knowledge,
and the predictive knowledge is divided into quasiperiodic
regularity and current tendency. The final prediction results
are obtained by two different granularities of prediction
knowledge. In Zhang et al. (2004), a similarity measurement
based on cloud droplets distance was proposed. According to
the cloud droplets distribution, the cloud similarity algorithm
based on interval was presented in Cai et al. (2011). Zhang
et al. (2007) considered digital characteristics of cloudmodel
as vectors and proposed likeness comparingmethod based on
cloud model, which is successfully used in collaborative fil-
tering recommendation system. In Li et al. (2011), two kinds
of normal cloud model, which were based on the expecta-
tion curve and maximum boundary curve, respectively, were
proposed for the similarity calculation. The maximum and
minimum close degree based on cloud model was proposed
in Lu and Qin (2014).

Although traditional cloudmodels can handle uncertainty,
these similarity measurement methods are complicated and
computationally demanding. To simplify this, Sun et al.
(1964) proposed an Overlap based Expectation curve of
Cloud Model (OECM) algorithm. In this paper, the OECM
algorithm is employed to measure similarity for selecting
nearest neighbor set and is combined with LSSVM model
for forecasting.

3 Similarity measurement based on cloud
model

3.1 Cloudmodel

Cloud model can describe the fuzziness and randomness of
concepts and implement the transformation between a qual-
itative concept and its quantitative linguistic value. The brief
description of cloud model is shown as follows.

Definition 1 (Li and Du 2007) Suppose that U is a quanti-
tative numerical universe of discourse and C is a qualitative
concept inU . If value x ∈ U is a random implementation of
concept C , and the membership degree μC (x) ∈ [0, 1] of x
belonging to C is a random variable with tendency:

μ : U → [0, 1], ∀x ∈ U , x → μ(x). (1)

The distribution of x in universe of discourseU is defined
as a cloud, and each x is called a cloud drop.

Three numerical characteristics Ex , En, and He are
employed to reflect the property of concept in the normal
cloud model. Expectation Ex is the mathematical expecta-
tion of the points belonging to a qualitative concept in the
universe. Entropy En represents the uncertainty measure-
ment of a certain concept. Hyper entropy He is the uncertain
degree of entropy (Li 2000).

Definition 2 (Li et al. 2011) If x ∼ N (Ex, En′2), where
En′2 ∼ N (En, He2), the membership degree of the quali-
tative concept C satisfies:

μC (x) = e
−(x−Ex)2

2En′2 . (2)

The distribution of x in universe of discourse U is called
as a normal cloud.

As similar as the normal distribution, the droplets that
have significant contributions for the qualitative concept are
mostly in the range: [Ex − 3En, Ex + 3En]. The cloud
droplets that are located outside of [Ex − 3En, Ex + 3En]
are called the small probability event. It does not affect the
overall characteristics of the cloud model if we do not take
them into account. This is the “3En”rules of normal cloud
(Li and Du 2007).

The transformation between a qualitative concept and its
quantitative instantiations can be realized by the forward
cloud generator (FCG) and the backward cloud generator
(BCG) (Li andDu2007). In this paper,BCGeffectively trans-
forms the accurate data of certain number into the qualitative
concept by digital characteristics Ex , En, and He. A new
backward cloud algorithm of the cloud X information was
proposed (Liu et al. 2004). The expression is as follows:

Step 1 For the sample points: xi (i = 1, 2, . . ., n), get its
sample average X̄ = 1

n

∑n
i=1 xi , a first-order sample absolute
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Fig. 1 Supremum and infimum of clouds C1 and C2

central moment 1
n

∑n
i=1 |xi − X̄ |, and sample variance S2 =

1
n−1

∑n
i=1 |xi − X̄ |2.

Step 2 Obtain the expectation: Ex = X̄ .
Step 3 Calculate the entropy:

En = √
π/2 × 1

n

∑n

i=1
|xi − Ex |.

Step 4 Calculate the hyper entropy:

He =
√
S2 − En2.

3.2 Overlap-based expectation curve of cloudmodel

The OECM algorithm as a measurement method is used to
measure similarity degree of cloudmodels. In this algorithm,
overlap degree is proposed to describe the overlapping part of
two clouds and converted to similarity degree. The algorithm
can be described as follows.

Definition 3 Assume that there are two clouds C1 and C2 in
universe of discourse U (Sun et al. 1964), which are shown
in Fig. 1. The overlap degree is defined as:

ol(C1,C2)

= 2(sup{C1α} − inf{C2α})
(sup{C1α} − inf{C1α}) + (sup{C2α} − inf{C2α}) ,

(3)

where sup{Ciα} and inf{Ciα}(i = 1, 2) are supremum and
infimum of cloud Ci expectation curve, respectively. The
similarity degree of C1 and C2 is defined as:

Sim(C1,C2) = μ − α

1 − α
· ol, (4)

whereμ represents the certainty degree of the intersection of
the C1 and C2, and α is the certainty degree of cloud model
“3En”rules.

3.3 Information fusion similarity measurement

In the previous similarity measurement, the variation ten-
dency of sequence is not taken into consideration, resulting
in the incompleteness of information in the process of
measurement. In this paper, information fusion similarity
measurement based on cloud model is proposed. The def-
inition can be described as follows.

Definition 4 Assuming that there are series X = {x1, x2,
. . . , xn} and Y = {y1, y2, . . . , yn}, the trend sequences of X
and Y are TX = {x2 − x1, x3 − x2, . . . , xn − xn−1} and TY =
{y2− y1, y3− y2, . . . , yn − yn−1}, which can be qualitatively
represented as shown in Fig. 2. The degree of information
fusion similarity between X and Y , SimI F (X , Y ), is defined
as:

SimI F (X , Y ) = avg{Simg(X , Y ), Siml(TX , TY )}, (5)

where avgmeans the average and Simg(X , Y ) is the degree of
global similarity between X and Y , which reflects the global
similarity level of time series. The computational formula is
as follows:

Simg(X , Y )

= min{Sim(X1, Y1), Sim(X2, Y2), . . ., Sim(Xm, Ym)},
(6)

where min means the minimum and Sim(Xi , Yi ), i =
1, 2, . . .,m represents the degree of basic similarity between
the i th segment of X and Y . Similarly, Siml(TX , TY ) is the
degree of local trend similarity, which reflects the variation
trend. The computational formula is as follows:

Siml(TX , TY )

= min{Sim(TX1 , TY1), Sim(TX2 , TY2), . . ., Sim(TXm , TYm )},
(7)

where Sim(TXi , TYi ), i = 1, 2, . . .,m represents the degree
of basic similarity between the i th segment of TX and TY .

The steps of employing the cloud model method to calcu-
late the degree of information fusion similarity between X
and Y are as follows:

Step 1 Calculate the trend sequence TX , TY of X and Y ,
respectively.

Step 2 Divide the sequence of X , Y , TX , and TY into m
segments.

Step 3 Calculate the digital characteristics of all segments
through BCG algorithm.
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Fig. 2 Representation of cloud model for time series. a Original time
series. b The qualitative representation of X and Y . c Trend time series.
d The qualitative representation of TX and TY

Step 4 Calculate the Simg(X , Y ) and Siml(TX , TY ) using
OECM algorithm.

Step 5 To obtain the degree of information fusion similar-
ity according to Eq. (5).

Table 1 Description of training set

Output Input

ŷr+h yr , yr−1, . . ., y2, y1

ŷr+h+1 yr+1, yr , . . ., y3, y2

· · · · · ·
ŷt−1 yt−h−1, yt−h−2, . . ., yt−h−r+1, yt−h−r

ŷt yt−h, yt−h−1, . . . , yt−h−r+2, yt−h−r+1

4 Predictionmodel based on similarity
measurement

4.1 Sample construction

Assume that the time series {y1, y2, . . ., yt−1, yt } are col-
lected at equally spaced time, where t represents the current
moment. The objective of time series forecasting is to esti-
mate the value of future time t + h, ŷt+h as formula (8):

ŷt+h = f (yt , yt−1, . . ., yt−r+1), (8)

where f is the prediction model, h represents the horizon of
prediction, and r is the number of time lags. If h = 1, we
call it as the single-step prediction, and if h > 1, we call it
as the multi-step prediction (Chen and Lee 2015).

The term current vector is called query sequence q:

q = {yt , yt−1, . . . , yt−r+2, yt−r+1}. (9)

In order to obtain ŷt+h , the corresponding training set of
query sequence is constructed, where the proper lags r are
determined. The training set is presented in Table 1.

4.2 Neighbor selection

In neighbor selection, our goal is to select the neighbor set
of query sequences through measuring and ranking the sim-
ilarity degrees between query sequence and each of training
set.

Following the information fusion similaritymeasurement,
we can proceed to calculate the similarity degrees of q and
each of training set. The similarity degrees are sorted in
descending order, and the first k sequences are selected as
the neighbor set of q.

4.3 Predictionmodel

In this subsection, a brief description of LSSVM (Suykens
et al. 2002) is given,which is used to predict the future values.
As the modification of standard SVM formulation, it is usu-
ally available to solve the function estimation and nonlinear
regression problems.
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Fig. 3 Flowchart of proposed time series prediction method

A linear function in primal weight space can be expressed
as:

y(x) = ωTφ(x) + b, (10)

where x, y ∈ R. φ(·) is the nonlinear mapping function from
the input space to a high-dimensional feature.ω is the weight
vector, and b is a bias term.

Considering a training set (xi , yi ), i = 1, 2, . . ., n, the
objective function of LSSVM in the primal weight space can
be described as follows:

min J (ω, e) = 1

2
ωTω + 1

2
γ

n∑

i=1

e2i , (11)

which is subject to the constraints:

yi = ωTφ(xi ) + b + ei , i = 1, . . ., n, (12)

where γ is the regularization factor and ei represents regres-
sion error of the i th sample. The Lagrangian function for
Eqs. (11) and (12) is as follows:

L = J −
n∑

i=1

αi {ωTφ(xi ) + b + ei − yi }, (13)

where αi is the Lagrange multipliers. Then, this optimization
problem can be transformed into solving linear equations:

[
0 lnT

ln K + γ −1ln

] [
b
a

]

=
[
0
y

]

, (14)

where ln = [1, 1, . . ., 1]T , y = [y1, y2, . . ., yn]T , a =
[a1, a2, . . ., an]T , and K is a kernel matrix defined as Ki j =
K (xi , x j ). In order to avoid dimension disaster in the high-
dimensional feature space, the radial basis function (RBF) is
used as the kernel function, and it is given by

K (x, xi ) = e−‖x−xi‖2
σ2 , (15)

where σ is the width of the RBF. Finally, the estimating
function of LSSVM is represented as:

y(x) =
n∑

i=1

αk K (x, xi ) + b. (16)

The learning and generalization ability of LSSVM is
influenced greatly by regularization parameter γ and kernel
function width σ 2, which are usually determined by using
grid search algorithmwithK-fold cross-validation (Arlot and
Celisse 2010).

In this paper, the LSSVM is trained by adopting the idea
of local model (McNames 1998). The proposed prediction
model is divided into three steps: sample construction, neigh-
bor selection, and query prediction. The frame structure of
prediction model is shown in Fig. 3. The specific algorithm
flow is described in Algorithm 1.
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Algorithm 1 The proposed prediction algorithm
Input: A time series y = {y1, y2, . . ., yr , yr+1, . . ., yt }.
Output: The estimated value ŷt+h .
Step 1. Preprocess the dataset y and obtain query sequence q =
{yt , yt−1, . . . , yt−r , yt−r+1}, training set
s1 = {yr , yr−1, . . ., y2, y1},
s2 = {yr+1, yr , . . ., y3, y2},
· · · ,
sp = {yt−h, yt−h−1, . . ., yt−h−r+2, yt−h−r+1},
(p = t − h − r + 1).
Step 2. Calculate q ′ and s′ (the digital characteristics of q and s).
for i = 1, 2, . . ., Nt do
Step 3. Calculate the similarity degree Simi

I F of q ′ and s′.
end for
Step 4. Sort SimI F in descending order.
Step 5. Select the first k sequence from s to form neighbor set.
Step 6. Train LSSVM with the neighbor set.
Step 7. Obtain ŷt+h by putting q into LSSVM.

In this algorithm, Nt represents the number of forecasting
points. For each input q corresponding to the forecasting
point, the neighbor set is selected from training set and used
to train a LSSVM model.

5 Experimental results

The experimental results of four time series data are pre-
sented, aiming to evaluate the effectiveness and feasibility of
the proposed method. All the time series data are obtained
from the Time SeriesData Library (TSDL) (Hyndman 2013),
which is an open repository of time series datasets. These
four time series data are also used in Wu and Lee (2015)
and Veloz et al. (2016). The four time series data are: (a) the
Laser dataset, which is from the fluctuations of a far-infrared
laser and measured in a physics laboratory experiment; (b)
Sunspots, which contain the annual amount of observed
sunspots from 1700 to 1987; (c) ESTSP2007 dataset, which
is from the European Symposium on Time Series Prediction
competition 2007; (d) Poland electricity load, which presents
the electricity load values of Poland from 1990s. Table 2 lists
the total size, training size, test size, minimum, maximum,
and mean of four time series datasets.

To evaluate the similarity between the k sequences of the
nearest neighbor subset and the query sequence, the unitary
evaluation index is employed.

Definition 5 Suppose that the nearest neighbor subset of the
query sequence is selected from the training set, and the
match degree is defined as:

Match = 1 − p

k
·
∑k

i=1 var(si − q)
∑p

i=1 var(si − q)
, (17)

where var means the variance and k and p are the num-
ber of neighbor subset and training set, respectively. From
the definition, the higher the match degree is, the higher the
similarity degree is.

Experiments verify the effectiveness of the proposed
method in different prediction horizons. In single-step pre-
diction, the impact of different nearest neighbor set size
k on the prediction accuracy is analyzed. Considering the
influence of time complexity, the experiment compares the
computational time of several measurement methods. In
addition, the different prediction models combined with
CMSM method are compared. In multi-step prediction, we
obtained the prediction errors of four datasets in five steps,
ten steps, and 15 steps, respectively. Different similaritymea-
surement methods are contrasted in multi-step prediction as
well.

Evaluating the accuracy and reliability of the prediction
results is an important part of forecasting analysis. In this
paper, four error indices are considered: root-mean-squared
error (RMSE), mean absolute error (MAE), normalized
root-mean-square error (NRMSE) (Wu and Lee 2015), and
normalized mean square error (NMSE) (Veloz et al. 2016).
These error indices are shown as follows:

MAE = 1

Nt

Nt∑

i=1

∣
∣yi − ŷi

∣
∣, (18)

RMSE =
√∑Nt

i=1 (yi − ŷi )
2

Nt
, (19)

NRMSE = RMSE

ymax − ymin
, (20)

NMSE = 1

var(yi ) × Nt

Nt∑

i=1

(yi − ŷi )
2
, (21)

where ŷi is the predicted value of corresponding observation
yi and Nt is the total number of the test set. ymax and ymin

Table 2 Description of
experimental datasets

Time series Total size Training set size Test set size Minimum Maximum Mean

Laser 10,093 5600 100 2 255 59.82

Sunspot 288 221 67 0 269.3 78.53

Poland 1601 1500 101 0.618 1.349 0.966

ESTSP2007 875 800 75 18.9 29.20 23.13
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Table 3 Match degree obtained from different measurements

Dataset Method Query Sequence

1 2 3 4

Laser DTW 0.936 0.973 0.716 0.231

HD 0.956 0.972 0.971 0.984

MSD 0.957 0.973 0.972 0.984

VC 0.957 0.973 0.972 0.983

CMSM 0.934 0.969 0.962 0.956

Sunspot DTW 0.633 0.703 0.754 0.702

HD 0.834 0.829 0.822 0.822

MSD 0.836 0.826 0.820 0.823

VC 0.838 0.833 0.824 0.818

CMSM 0.782 0.769 0.725 0.751

Table 4 Errors of single-step prediction for two datasets

Model Laser Sunspot

MAE RMSE MAE RMSE

DTW 1.185 2.449 19.76 25.57

HD 1.412 3.328 19.59 25.34

MSD 1.519 3.795 19.22 25.56

VC 1.281 3.045 18.31 24.56

CMSM 0.987 1.554 17.53 24.04

are the maximum and minimum values of the dataset. These
four indices are very effective to evaluate absolute forecasting
error.

5.1 Single-step prediction

TheLaser andSunspot datasets are used in single-step experi-
ments. To verify the effectiveness of theCMSM, four existing
methods are considered for comparison: Hybrid Distance
(HD) (Wu and Lee 2015), Morphology Similarity Distance
(MSD) (Men et al. 2015), DTW, and Vector Cosine (VC).

Experimental parameters of Laser and Sunspot datasets
are set as r = 10 and k = 50. Table 3 shows the match
degrees of four query sequences in Laser and Sunspot
datasets, which illustrates the validity of searching the near-
est neighbor set. The similarity measurement results are very
similar among all the methods. Therefore, we can get better
prediction results bymodelingwith the neighbor set, because
the selected neighbor set and the test sequences are close to
each other in numerical and trend.

The MAE and RMSE of prediction results are presented
in Table 4, where bold values indicate the best results of all
methods. The results show that the CMSM method achieves
the minimum error when compared with other methods in
single-step prediction. Figure 4 shows the corresponding
forecasting results of the two datasets. All of these methods

have a good approximation to the real values,which verify the
effectiveness of local model in single-step prediction. Com-
bined the error histogram in the details of Fig. 4 with Table 3,
it can be seen that the similarity measurement proposed in
this paper can get better prediction results based on local
modeling among all these approaches. In addition, the pre-
diction error (MAE, RMSE, NRMSE, NMSE) distribution
obtained by modeling the Laser dataset using five different
methods, respectively, is shown in Fig. 5. It also indicates
that the CMSM method has the best prediction performance
among the five methods.

The prediction performance is affected by the value of k.
Figure 6 shows the MAE obtained by different measurement
methods in Laser dataset, with k increasing from 30 to 150.
It can be observed that the prediction errors of these methods
have a decreasing trendwith the increase of k, but the process
is fluctuated. The CMSM method shows a good accuracy
among all methods when k is small. Moreover, the MAE
of the CMSM method owns the smallest variation with the
increase of k, and thus its performance is stable. Although
the errors of all methods are decreasing, the time complexity
increases with the increase of k. Therefore, the relationship
between the prediction accuracy and the time complexity
should be considered in the selection of parameter k.

The prediction results of ANFIS, optimally pruned
extreme learning machine (OPELM) (Grigorievskiy et al.
2014), back-propagation neural network (BPNN), SVM, and
LSSVMcombinedwith the CMSMmethod, respectively, are
displayed in Fig. 7 in terms of MAE and RMSE in Laser
dataset. This bar diagram shows that the LSSVM model
achieves the minimum MAE and RMSE in Laser dataset.
It is clear that the combination of LSSVM and CMSM is a
good choice among all models.

5.2 Multi-step prediction

There are three main multi-step prediction strategies: direct
strategy, recursive strategy, and combination strategy (Grig-
orievskiy et al. 2014). In recursive strategy, errors accumulate
with the increase of the prediction step since each prediction
has some error. Direct strategy based on true values of time
series is more accurate than recursive. Combination strategy
coincides with the direct strategy in the first step. But the
dimension of the model increased because all predicted val-
ues act as new input. Therefore, direct strategy is selected in
multi-step prediction experiments.

Laser and Sunspot datasets are used in the multi-step
experiment, and the results are compared with HD. In Laser
dataset, the sample size is k = 150, and in Sunspot dataset,
the sample size is k = 90. The comparison results are shown
in Table 5. As the table shows, the CMSM method outper-
forms HD in terms of RMSE. Figure 8 shows errors change
of two datasets in different steps, and the errors become big-
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Fig. 4 Comparison of single-step prediction using the different methods in Laser and Sunspot datasets. a Laser result. b Laser details. c Sunspot
result. d Sunspot details
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Fig. 5 Comparison of the error distribution with five methods using the box plot in Laser dataset. aMAE. b RMSE. c NRMSE. d NMSE

ger with the step increasing. CMSM method obtains a good
prediction accuracy in small step. However, it cannot avoid
accuracy decreasing when the step increases.

Table 6 showsmulti-step prediction errors of four datasets
in other steps. The bold values represent the best results. The
error indices MAE and RMSE are used to evaluate predic-

tion performances of different methods. The CMSMmethod
significantly outperforms other methods in terms of both
MAE and RMSE. The experimental results demonstrate the
availability of CMSM method. Unlike CMSM time series
forecasting method, these four methods are incapable of
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dealing with the vague and missing data under uncertain cir-
cumstances, which leads to poor performance.

The proposed method based on CMSM, which uses the
three characteristics to represent time series from the overall
level and local trend, can avoid the influence of outliers to a
certain extent. Therefore, there is a high degree of similarity
between the neighbor set and query sequence. Figure 9 shows
the average computation time in three different steps of four
datasets for eachmethod. On the one hand, computation time
is related to the size of datasets. On the other hand, it is related
to their owncharacteristics for allmeasurementmethods. The
sequence is segmented to measure similarity in the CMSM
method. It results in slight increase of the computation time.
However, it is still faster than the DTW method.

Table 5 RMSE performance comparison of multi-step prediction
between HD and CMSM

Step Laser Sunspot

HD CMSM HD CMSM

2 8.627 3.188 41.10 39.24

3 12.27 6.629 48.31 43.76

4 10.90 8.197 47.85 45.75

5 14.04 8.248 48.50 47.13

6 13.97 6.097 49.25 54.13

7 11.18 6.199 49.07 58.01

8 13.87 5.591 53.29 49.28

9 12.22 6.199 48.93 49.25

10 21.53 6.831 50.06 50.49

11 13.43 7.084 51.87 56.12

12 17.99 14.45 58.73 61.16
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Fig. 8 Changes in RMSE for Laser and Sunspot datasets with increas-
ing step in multi-step prediction

6 Conclusions

A time series forecasting method based on cloud model
similarity measurement has been proposed in this paper. The
raw and difference sequences of query sequence and train-
ing set are transformed into digital characteristic sequences
by using the BCG algorithm, respectively. Then, OECM
algorithm is employed to calculate their similarity, and the
neighbor set of query sequence is selected. Finally, the
LSSVM model is trained with the neighbor set and used
for forecasting. The novelty in this method is the use of the
cloud model and the obtainment of additional information
from the raw series.Cloudmodel effectively solves the uncer-
tainty of measuring similarity by transforming quantitative
data into qualitative series. Two-tier features of series are
extracted from the general perspective and local trend. This
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Table 6 Errors of multi-step
prediction for four datasets

Dataset Step Error DTW HD MSD VC CMSM

Laser 5 MAE 2.945 2.652 3.154 3.030 2.401

RMSE 10.40 8.619 10.23 8.932 7.611

10 MAE 2.860 3.502 3.205 3.191 2.944

RMSE 7.039 7.683 6.650 7.071 6.775

15 MAE 4.669 4.745 4.871 5.332 4.084

RMSE 9.735 11.15 11.26 10.86 9.514

Sunspot 5 MAE 36.65 34.39 32.46 33.38 31.59

RMSE 53.42 49.42 47.91 49.49 46.21

10 MAE 35.22 34.47 34.20 34.32 35.70

RMSE 51.63 50.29 49.75 50.70 51.00

15 MAE 51.73 53.27 51.07 50.77 49.52

RMSE 73.13 73.04 70.39 69.66 68.98

Poland 5 MAE 0.029 0.026 0.026 0.025 0.027

RMSE 0.043 0.041 0.040 0.039 0.042

10 MAE 0.040 0.038 0.039 0.034 0.036

RMSE 0.058 0.052 0.054 0.051 0.050

15 MAE 0.041 0.043 0.046 0.043 0.039

RMSE 0.059 0.060 0.064 0.063 0.055

ESTSP2007 5 MAE 0.776 0.775 0.806 0.812 0.792

RMSE 1.037 0.990 1.014 1.037 0.961

10 MAE 1.264 1.168 1.181 1.166 1.120

RMSE 1.684 1.557 1.517 1.506 1.406

15 MAE 1.606 1.453 1.474 1.426 1.282

RMSE 2.168 2.023 1.967 1.976 1.681
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Fig. 9 Computation time comparison of various methods in all datasets

improves the measurement accuracy, which is favorable in
subsequent prediction. The comparison of prediction results
with different modeling methods shows that the proposed
method is an excellent local prediction model. Meanwhile,
the OECM algorithm and LSSVM are utilized for similarity
measurement and prediction, respectively, and their combi-

nation obtains a good performance. Experimental results of
the four time series have verified that the proposed method
can achieve credible prediction accuracies in single-step and
multi-step prediction.

In the proposed prediction model, the selection of time
lags and the number of the nearest neighbor samples is a
challenging task. Therefore, the next step we will focus on is
selecting number of neighbor samples. In addition, the time
complexity increases with the introduction of a variety of
optimization methods. How to balance the relationship of
forecast accuracy, forecast stability, and time complexity is
worthy of further consideration.
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