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ABSTRACT

On interchanges there are higher probabilities of risky situations compared to uninterrupted motorway
sections due to increased speed variability and higher frequency of lane-changes. In this study, we focus
on understanding and modelling drivers’ longitudinal speed behavior when negotiating horizontal ramp
curves in interchanges in the Netherlands. For this purpose, detailed trajectory data of free-moving
vehicles on 29 different curves from 6 different interchanges were collected from video images taken
from a hovering helicopter. Only free-moving vehicles were chosen in order to understand how the road
geometric design affects the (unhindered) driving speeds.

The results of the speed profiles analysis show that for each connection, the speed profiles follow
certain patterns, despite the large heterogeneity among drivers. These speed patterns were found to be
significantly affected by the distance along a connection, the design characteristics of a connection,
vehicle type, and drivers’ heterogeneity. The impact of the distance along the connection on the speed
was found to be significant and non-linear. This indicates that drivers do not maintain constant speeds,
but adapt it along the connections.

These models, which describe drivers’ speed behavior and adaptation along different connections,
are useful for improving current speed behavior models used in different microscopic simulation
packages, and provide designers with a tool to estimate the speeds during the design process. The
insights from this study, and the identified models, are also useful for enhancing the acceptability of
automated vehicles’ longitudinal behavior by adapting it to human like behavior.
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1. Introduction

Despite the fact that interchanges can safely #icdemtly accommodate high volumes of traffic
compared to at-level intersections, they are kntavbe crash prone areas within the freeway system
(McCartt, Northrup, & Retting, 2004). This is due the high level of turbulence resulting from
increased intensity of lane-changes and speedbilétsiaRoad horizontal alignment and the design of
horizontal curves have a large impact on the dgigpeeds and on safety due to additional centtifuga
forces exerted on a vehicle. Especially at horiglor@mp curves in interchanges, drivers need tptada
their speeds from relatively high driving speed&vwed on the motorways (120/130 km/h in the
Netherlands), to lower speeds, in some cases aaddy® km/h. This speed adaptation could increase
the turbulence intensity on the road and lead itical situations (van Beinum, Farah, Wegman, &
Hoogendoorn, 2016). Therefore, understanding divepeed behavior and adaptation when
approaching and negotiating horizontal ramp cuimemterchanges, and the influence of different
design elements on their speed behavior is eskeaatianprove speed predictability and safety.
Additionally, the development of models that caaligtically simulate drivers’ speed adaptation is
useful for improving the existing models for longitnal behavior in microscopic simulation packages,
and for developing speed control systems in autedmnhicles.

In the literature, there are only few studies s detailed trajectory data to understand drivers’
speed adaptation when approaching horizontal ramges in interchanges. Most existing studies used
data collected from GPS signals or naturalisti@ ddtvehicle trajectories on curves on two-lan@lrur
roads. For example, (Palmberg, Imberg, & Thomsd@i,52 used naturalistic data collected in the
euroFOT project in Sweden, and analyzed the speleavibr on seven curves on two-lane rural roads
with posted speed limit of 70 km/h. For each tsipeed data was collected for eleven points alodg ea
curve. Based on this data the researchers crepsad profiles for different drivers and analyzed th
speed pattern in the curves. This analysis leti¢aconclusion that in small radii curves, the speed
reduced significantly within the curvature. Thevature was found to be the most influential fadtor
the speed reduction. In another study by OthmaomBon, and Lannér (2014), the authors used the
SeMiFOT naturalistic database, including 5,922stop7 Volvo cars driven by 28 experienced drivers
to examine the impact of the independent varialtlegree of curvature, travel direction, grade, dpee
limit and road width, on the dependent variablggerational speed, lateral acceleration, yaw ratd, a
lane-changing. The authors used a general linedeh{GLM) technique to model the relationships
between the dependent variables and the influenani@bles. However, the authors used the mean
values of the dependent variables only at threetpan each curve: entrance, middle and exit. They
did not develop models that take into account teadce along the curve.

Cerni and Bassani (2017) used naturalistic data fvehicles equipped with high accuracy GPS
(frequencies L1, L2) in RTK (real time kinematicode to estimate and model the curvatures of
vehicles’ trajectories on two-lane rural roads tedn'operating trajectory’, and compared it to tke a
built horizontal alignment termed ‘designed tragegt Based on this comparison the authors evatlate
the geometric consistency of the road alignmentthadcauses that can lead vehicles to diverge from
the road alignment. The developed model can adsggners in evaluating and predicting the effects
of road alignment on driver lateral behaviour. Blghors in this study did not focus on the longitad
movement and speed change along the curve.

Some researchers used driving simulators to analyzers’ speed behavior on ramp curves and
curves on two-lane rural roads (Bella, 2009; C&l0il5; Montella, Galante, Mauriello, & Aria, 2015),
where the latter was most frequently subject cdaiesh. For example, Calvi (2015) conducted a dgivin
simulator study utilizing the Inter-University R@seh Centre for Road Safety (CRISS) to evaluate the
effects of different curve features on driving gpead lateral positions (trajectories) along a ewn



rural roads. He found that the road cross-sectl@nradius of curve, the visibility condition, atit
presence of a transition curve significantly influae driving speeds and the way a driver negotetes
curve in terms of trajectories and consequently ldteral acceleration. Montella et al. (2015)
investigated continuous speed profiles of individdavers by utilizing the VERA high-fidelity
dynamic-driving simulator. The results of this studearly showed that driving speed is not constant
along the curve and that the deceleration ratesargiderably higher than the acceleration ratees&
results also showed that the"gsercentile of the speed reduction experiencedbiyidual drivers is
more than twice the difference in operating speetivben tangent and curve which emphasizes the
importance of analyzing individual speed profil®ghile this method indeed provides behavioral
insights, it is still limited since drivers mightnhbehave realistically as in real life.

Other researchers used loop detectors to colletlife driving speed data (Liapis, Psarianos, &
Kasapi, 2001). However, this method allows collegtspeed data only at specific locations. The
assumption in these studies is that drivers mairganstant operating speed throughout the horikonta
curves, and that the occurrence of acceleratiordandleration is only on tangents. Previous rekearc
(Farah, van Beinum, & Daamen, 2017; Montella e28l15) has shown that drivers’ speed behavior on
curves is not constant, and that part of the desttgd® process takes place on the curve.

The main advantage of the data used in this stadyeared to data used in earlier studies, is that it
is field data collected without subjecting drivéosany experimental control. In experiments using
instrumented vehicle, despite being conducted enfifld, it covers only a limited sample of drivers
who know that they are being observed. In drivimgusator experiments, drivers experience no real
sense of risk, and the results depend on the tiydmfid validity of the simulator. Additional advage
of the data collected in this study is that itémtinuous data, so speed profiles can be obtainédop
detector data, on the other hand, speeds are teallealy at specific locations. Therefore, loopedétr
data have a major limitation when speed profilesadinterest.

The main objective of this study is to analyze drév individual speed profiles when approaching
and negotiating different ramp curves based ordtary data collected from the field. By using this
data, it would be possible to understand drivepgesl behavior adaptation when negotiating different
horizontal ramp curves in system interchangesdmibtherland. In a previous study, Farah et alL TR0
we have used this data to develop an operatingdgmresgliction model. This study, on the other hand,
aims to develop longitudinal speed behavior modsla function of the distance along the curve, road
geometric design characteristics, vehicle type @nkrs’ heterogeneity. The road geometric design
characteristics will be selected based on prevatudies that have shown their significant impact on
drivers’ speed behaviors on curves.

The rest of the paper is organized as follows,i@ediwo presents the research methodology,
followed by section three which presents the resnfltthe study. Section four includes the discussio
and section five summarizes and concludes the study

2. Research methodology

This section describes the research methodologyhthe been used in this study, including the
research hypothesis and approach, locations’ setectata collection, and analysis techniques.

2.1 Research hypotheses & approach

To understand drivers’ speed behavior adaptatiatiidual speed profiles) when approaching and
negotiating different ramp curves, detailed trajectiata ofree-movingvehicles are needed. Only free-
moving vehicles were chosen since the main tagéb iunderstand how the road geometric design
affects the driving speeds, i.e. excluding the iohgd leading vehicles. In this study, a free magvin



vehicle is defined as a vehicle of which its predsor is at least 100 meters ahead of the trackedle.
Assuming a speed of 120 km/h, the distance of 16 translates to a time headway of 3 seconds.
Previous studies in the literature (Ahmed, 1999MJ1Q000; Hoogendoorn, 2005) have shown that a
headway of 3 seconds is an acceptable threshattisiimguishing free-moving from following vehicles
The following research hypotheses related to ramsibd characteristics impact on speed are tested:

Hi: The distance along the curve has a significadtreom-linear impact on driving speeds;

H2: As the road curvature increases the driving spksieases (Farah et al., 2017; Montella et al.,
2015; Othman et al., 2014; Russo, Antonio BiancagdBusiello, 2016);

Hs: Driving speeds on left turning curves are higian on comparable right turning curves;

Ha: As the road width increases driving speeds irsgré&alvi, 2015; Morris & Donnell, 2014). The
road width includes the width of the lanes plusribbt and left shoulders;

Hs: As the longitudinal slope increases (uphill) d@rtyspeeds decrease (Imberg & Palmberg, 2015);

Hs: The impact of the longitudinal slope on heavyigkds’ driving speeds is stronger compared to its
impact on cars’ driving speeds (positive interattdfect), (McLean, 1978);

Hz: As the super-elevation increases driving speegtases (Quaium, 2010);

Hs: The impact of super-elevation on driving speedstionger on right curves than on left curves
(negative interaction effect).

The analysis approach included first an exanonatif the individual speed profiles. Based on
these speed profiles insights with respect to dsivipeed adaptation along the ramps were obtained.
Following this, speed prediction models for thefadignt types of connections were developed to test
the above mentioned research hypotheses.

2.2 Locations’ selection

To investigate the impact of different ramp curvesd design characteristics on drivers’ speed
behavior, 6 interchanges with 29 different curvesenselected. The horizontal curves were part of 9
direct connections (mostly right turning traffid2 semi-direct connections (turbines), and 8 irdire
connections (loops), as illustrated in Fig. 1.

The numbers (in yellow) on the curves indicate ¢heve number as specified in Table 1 which
summarizes in more detail the characteristics ®fst#dected curves.

(d) Eemnes ] (e) Hattemerbroek (f) Muiderberg
Fig. 1. The 29 selected curves for the study, being datinoterchanges in the Netherlands.



Tablel

Characteristics of the connections.

Curve Interchange Interchange  Connection Design Radius Turning  No. of No. of Observed
no. namé type type speed (m) direction Lanes cars  Heavy vehicles

(km/h)
1 Semi-direct 70 300 R 2 63 2
2 Semi-direct 70 205.1 L 2 57 16
3 Almere ) Semi-direct 70 205 L 2 60 4
Half Turbine ]

4 (A27,A6) Direct 70 2175 L 2 92 8
5 Direct 70 238.5 R 2 42 8
6 Direct 90 222.1 R 2 53 7
7 Semi-direct 70 225 R 2 47 9
8 Amstel Turbine- Semi-direct 70 230 R 2 108 13
9 (A10, A2) Cloverleaf  semi-direct 50 174 L 2 50 2
10 Indirect 50 55.7 R 1 40 1
11 Diemen Left Trumpet Semi-direct 70 1128 L 2 39 4
12 (A9, A1) Indirect 50 812 R 2 60 4
13 Direct 90 447.3 R 1 52 8
14 Direct 90 460 R 2 63 12
15 Semi-direct 70 280 L 2 61 4
16 Eemnes Turbine- Semi-direct 70 250.7 L 2 75 6
17 (A27, A1) Cloverleaf  Direct 920 670 R 2 56 2
18 Semi-direct 70 216.6 L 1 56 5
19 Indirect 50 76.6 R 1 33 1
20 Indirect 50 76.9 R 1 68 9
21 Direct 90 465 R 3 68 11
22 Semi-direct 90 375 L 2 43 7
23 Hattemerbroek  Turbine- Semi-direct 70 2549 L 2 11 0
24 (A28, AS0) Cloverleaf |ngirect 50 776 R 1 7 1
25 Indirect 50 7.7 R 1 11 1
26 Indirect 50 67.8 R 1 40 9
27 ) Indirect 50 77.9 R 1 106 6
28 '(\i‘gfjirlt;erg Right Trumpet Direct 90 370 R 1 84 7
29 Direct 70 157.7 R 1 63 2

The type of connection (direct, semi-direct andritt) and the design speed are largely dependent
on the connection’s function in the network and titadfic flow. The design of horizontal curves in
ramps of interchanges in the Netherlands is bagetth® design criteria specified in the Dutch road
design guidelines (Rijkswaterstaat, 2015). The rgadmetry of ramps is determined by the design
speed, which is the speed for which the road isidened to provide safe and comfortable drivinge Th
Dutch road design guidelines prescribe three stdrdisign speeds for connectors: 50, 70, and 98 km/
(Broeren, Jong, Uittenbogerd, & Groot, 2015). Thestpd speed limit is decided based on the
operational speed which should normally be the sasitbe design speed (Rijkswaterstaat, 2015).

Heavy vehicles percentage (based on the obsertajlalathe selected curves ranged from 0% to
28% (Average= 11%; Std.= 7%). The percentage ofjheahicles could have a significant impact on
the observed speeds, especially on ramps withamdydriving lane (i.e., no overtaking possibility).

2.3 Data Collection and Processing

2The numbers in between brackets indicate the nigvfehe motorways.



Trajectory data of free-moving vehicles were dedifm stabilized video images taken with a
frame rate of 12 images per second. The cameraneasted under a hovering helicopter for a period
of 25-30 minutes above each curve. The camerRiesilica's Giga E5 megapixel camera with a Pentax
lens. The trajectory data were collected when the®mostly clear weather and the wind directioa wa
north, with a speed of 3-5 m/s. The helicopter hedeat a height between 450 and 550 meters,
depending on the size of the interchange. The médaimages were then stabilized using a dedicated
tool called ‘ImageTracker’ developed at the Delftikérsity of Technology. For detailed information
on the applied method to stabilize the aerial izafhages and derive the trajectory data see Knmsppe
et al. (2012).

The trajectory data of the vehicles need to be geeed and analyzed to calculate vehicles’
individual speeds. Prior to this, a filtering teiue was applied to reduce the noise in the datahwh
is caused by inaccuracies in the detection of #gfecles. For this purpose, the Fast Fourier transfo
algorithm was applied (Brigham & Brigham, 1974).fahtunately, the tracking was not perfect, so the
automated tracking was followed by a manual tragkihase, where the trajectories have been plotted
on top of the images and the missing trajectorysphave been added using interpolation and the
automated trajectories have been checked for gualitis way, the positions were quite accurateh wit
a deviation of maximum 1 meter.

Besides the vehicle trajectories, information aagkeometric design of the interchanges, and more
specifically the curves’ features, such as the remalb lanes, radius, super-elevation, and longitaidi
slopes, were obtained from Civil3D maps acquiredmfrthe Dutch National Road Authority
(Rijkswaterstaat). The curve radii were measurethfthe white marking on the left side of the road.

To analyze the speed data as a function of thardist the geometric features of the road design
needed to be calculated for every 10 meters. This done by measuring all the features of the road
design (such as road width, curvature, super-atavatongitudinal slope) at critical points, i.e.
(beginning of transition curve, end of transitiamae, mid curve, and end of curve). Then the vaines
between these critical points were calculated tgdr interpolation.

2.4 Speed prediction model formulation

With the chosen data collection method, there anéiphe observations for each vehicle on the same
curve. As a result, these observations are (sgredrrelated. Similarly, since more than one viehie
observed on each curve, the speed observationgsd tehicles might be correlated. Also, since some
curves are part of the same connection (for examplees 1, 2, and 3 in Almere interchange), tleedp
observations on these curves might also be coeckldiis type of data is termed multilevel data(se
Fig. 2). To account for these correlations amorgydifferent observations at the vehicle level, eurv
level, and connection level, a Mixed Model (McCuaho& Neuhaus, 2001) with both fixed and random
effects was applied. Specifically, the correlatioetween speed observations is accounted for by
including random effects associated with both tlusters (connections, curves and vehicles) and the
units of analysis nested within these clustersg@dmbservations). Random effects allow the ressdual
associated with the longitudinal measures on theeaait of analysis to be correlated, and therefore
takes into account the clustering effect. Each eotion may have different number of curves, andieac
curve may have a different number of vehicles olexkr The distance or time points at which the
dependent variable, in this case the vehicle sgeateasured can also differ for each vehicle. Such
data sets can be considered to have four levelel Barepresents the clusters of curves in a cdiomgc
Level 3 the clusters of vehicles in a curve, Le¥etpresents the units of analysis (vehicles),lawe!

1 represents the longitudinal (repeated) measuaee rover distance (observations of speed).



Higher Level Clustering
(Level 4)

Connection
No.
Curve
2

Lower Level Clustering
(Level 3)

Curve
n

Vehicle Units of Analysis
1 (Level 2)
‘ o . I [ .
Obs. Obs.

S T I R

Observations
(Level 1)

Fig. 2. Multilevel data.

The developed models were estimated using the Metitt Model command in SPSS 22 (SPSS,
2013). The analysis was conducted for each typeoohection separately (direct, semi-direct, and
indirect). The general specification of the mixeddal, follows the defined research hypothesesjsand
shown in Eqg. (1).

— 1 2 3 Type
Spv,c,cn(xc) = .800 + .BDistance "X+ :BDistance ’ xcz + :BDistance ' x(:3 + .BVehicleType ’ 617 +
Di ti
Beurvature * Curvature(xc) + Bpirection * 6C frection 4 ﬁSuperElev -SuperElev(xc) + ﬁLongSlope ’
LongSlope(xC) + ﬂRoadWidth ' RoadWidth(xc) + ﬁDirection - Curvature Curvature(xc) '

sgirection BLongsiope -enicie Type * LongSlope(x.) - 55ype + oy t Uoc t Hoen + H1(Xc) + €y en
)

where;

SPy,cen speed for vehiale in curvec, and connectionn as a function of the distance
(dependent variable);

Boo average speed for the population;

B vector of corresponding parameters to bienated;

517Pe is an indicator with a value of 1 if velddl is heavy vehicle, and 0 if car;

gpirection is an indicator with a value of 1 if it isft curve and O if it is right curve;

Curvature(x.) is a scale variable representing the curvaifithe road (1/km.);

SuperElev(x,) is a scale variable representing the supsagébn (%);

LongSlope(x.) is a scale variable representing the longitalglope of the road (%);

RoadWidth(x.) is a scale variable representing the width afirm.);

X distance along the curve measured rel&titikee nose (m.);

Uow vehicle-specific resid(effect of clustering at vehicle levelly,~N (0, gy,);

Hoc curve-specific residusfféct of clustering at curve level). ~N(0, 0y.);

Uoen connection-specific resid@dfect of clustering at connection level)
Hocn~N(0, 0ocn);

Uy is the random effect for the distance variahle N(0, g,);

Epc.cn is the observation specific error tesyn .,,~N(06"2 );

The vehicle-specific random constasgt, captures unobserved preferences which affectpéeds
behavior of the same vehicle (individual driveragndom effect). The curve-specific random effagt)



captures unobserved effects related to the fattthigavehicles drove on the same curve, while the
connection-specific random effegty(,,) captures the unobserved effects related to tttdlat several
curves belong to the same connection. We testéerelitt polynomial order relationship between the
speed and the distance, and found the third ognpmial to fit the best. We also took into accoan
random effect for the distance variable, to accdontlifferent magnitude effects of the speed cleang
along the distance for different vehicles (i.evers).

3. Resaults

This section presents the results of the speedgsdirst, to illustrate the changes in the driygspeeds

of observed vehicles, both cars and heavy vehialleen approaching and negotiating different curves.
This is in order to understand the relation betwsgeed and distance. Then this is followed by the
estimated models to test the research hypothesssred earlier.

3.1 Speed profiles analysis

Fig. 3 presents several examples of the speediggddnalysis. The 0 m - point refers to the
beginning of the ramp nose.

20— I

20 I I I I I

0 50 100 150 200 250 300 350 400 450 ~100 0 100 200 300 400 500
Distance (m) Distance (m)
(a) Amstel indirect connection (curve 10; radius/o) (b) Eemnes indirect connection eut9; radius 76.6 m)
160 160
140 1 140 1
Z120f 1
E 100 1
T sor 1
2
@ 60r 1
401 1 40F 1
20 ‘ ‘ ‘ ‘ ‘ 20l ‘ ‘ ‘ ‘ ‘ ‘
200 -100 0 100 200 300 400 400 500 600 700 800 900 1000
Distance (m) Distance (m)
(c) Amstel semi-direct connection (curyeatlius 225 m) (d) Eemnes semi-directnection (curve 18; radius 216.6 m)
160 = 160
] 140 4
] Z120- 1
] g 100F 1
] T so0F ’
D
) & 6ot i
401 1 40+ —
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ s s 20l ‘ ‘ ‘ ‘ ‘ ‘
250 -200 -150 -100 -50 O 50 100 150 200 250 200 -100 0 100 200 300 400 500
Distance (m) Distance (m)
(e) Almere direct connection (curve 4; radius 27) (f) Eemnes direct connetficurve 14; radius 460 m)

Fig. 3. Vehicles’ speed profiles on different curves (bines represent speed profiles of individual cgregn
lines represent speed profiles of individual heaefyicles; red and yellow dotted lines representtleage
driving speeds for cars and heavy vehicles, resdyt calculated every 10 meters).



It can clearly be seen that the speeds of heavigleshare lower compared to the speeds of cars as
expected. It is also clear that for each connectiespite the large heterogeneity among driveeseth
are certain patterns characterizing the speedigsofi

Fig. 3(a) and 3(b) present the speed profiles diréat connections at the Amstel and Eemnes
interchanges in the Netherlands, while Fig. 3(a) &(d) present the speed profiles of semi-direct
connections, at the same interchanges. In an epdger by Farah et al. (2017) it was found that th
absolute change of speeds of vehicles travellingndinect connections is larger compared to that on
semi-direct connections. This can be clearly seethése figures. The authors associated this to the
curvature, and also to the number of lanes. Aregm®ed number of lanes was found in the literature t
increase driving speeds (Kockelman & Ma, 2010).

Fig. 3(e) and 3(f) present the speed profiles dficles driving on direct connections. Here the
changes in drivers’ speed profiles when negotidtiege curves are relatively small. The reasomaits t
these curves have usually larger radiuses.

We investigated the driving speeds at the nosel@ttaion where drivers are no longer allowed to
change lanes), which, according to the step th@Rijkswaterstaat, 2015) applied in the Netherlands,
the design speed at the nose should be one step tban the design speed for the motorways (120
km/h), i.e. 90 km/h. By gradually decreasing theisory speed, abrupt changes in speed can be
prevented, creating safer motorways. Fig. 4 prestm results, which clearly show that the median
speeds at the nose on the semi-direct and diraoections are higher than the design speed of 20 km
at the nose. Furthermore, the speed variabilitthese connections is higher compared to the indirec
connections. Notice that in Fig. 4 the number ofreztions is 14, as the semi-direct connections and
some of the direct connections are composed obtvtbree curves with one nose, as shown in Fig. 1.

145 T T T T T T T

135 1 Indirect connections Semi-direct connections -
3 |

‘ 130885 L

- _
|
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(=}
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! |

1 -+ 1
|
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| 4
. !

|
.
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1
(0
(IH
{T

Direct connections

(=)
(=}
T
},
+

Driving speed at nose [km/h]
8
T
i
i

S
O
T
|

30 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Connection Number
Fig. 4. Boxplot of the driving speeds at nose (km/h) ofdiféerent connections (the red line represents the

median speed, the bottom and top of the box inglitte 2% and 7%' percentiles respectively, the T-bars are the
whiskers, and the red plusses are outliers).

From the results presented in Fig. 3 and Fig. dantbe summarized that drivers mostly follow the
same speed profile pattern (i.e. decelerate arelexate approximately at the same locations) laut st
from different initial driving speeds. Heterogegeitmong drivers have a large impact on the absolute
speed profile. Therefore, the speed prediction fndlaa will be proposed should take drivers’
heterogeneity and the non-linear form of the speefile into account. The variation in the initsgdeeds
(at 0 m — ramp nose) chosen by different drivergmwhegotiating curves could be used for the
development of personalized active safety systeuw) as curve speed warning systems (Palmberg et
al., 2015).
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3.2 Speed prediction model estimation results

The following subsections present the estimaticulte of the speed prediction models for each
type of connection, separately. We start with presg the results of the speed prediction modetHer
indirect connections3(2.1), followed by the semi-direct connectiordsd.2), and the direct connections
(3.2.3. Table 2 summarizes the dataset that was usdtidanodels’ estimation. Curve number 4 was
excluded from the direct connection estimation nhedee it has a very large radius compared to the
other curves, and it is the only left turning cuaraong right turning curves.

Table 2
Dataset used for the models’ estimation.

Connection type No. of curves No. of vehicles No. of observations

Indirect 8 270 16724
Semi-direct 12 798 28672
Direct 8 627 24989
Total 29 1774 73485

The data were analyzed using a mixed effect moddl maximum likelihood (ML) estimation
(Raudenbush & Bryk, 2002). Following a stepwisatsigy suggested by Singer and Willett (2003) and
Shek and Ma (2011), several models were testedseltimeluded (1) an unconditional model which
examines any mean differences in the speed acrdséduals, (2) an unconditional speed model (that
served as a baseline model) to explore whethespiked curves are linear or curvilinear, (3) second
order (quadratic) polynomial model, and (4) thirdey (cubic) polynomial model to determine if the
rate of change in speed accelerate or decelerdte distance, (5) adding additional explanatory
variables related to the road design and vehigle,tgnd (6) examination of two additional covar@anc
structures beside the Unstructured (UN), whichtheeCompound Symmetric (CS) and First-Order
Autoregressive (AR1). The UN covariance structuggquires no assumption in the error structure
(Singer, 1998), is commonly used in longitudinaladand often offers the best fit. The CS structure
allows to examine whether the variance and corogldietween each pair of observations are constant
across the distance points. Finally, the ARl caané structure assumes the variance to be
heterogeneous and the correlations between twoerdjdistance points to decline across measurement
occasions. In the first four models the UN covar@amwas assumed. The intercept and linear slope of
the distance were allowed to vary across indivisluaVlissing data were handled through
pairwise/likewise deletion. The results in termsté Akaike's Information Criterion (AIC) and
Schwarz's Bayesian Criterion (BIC) are presentethinle 3. The model with the lowest AIC and BIC
was chosen as the best model. From the resultaleT3, it is clear that the models with the UN
covariance structure outperformed the other tygeowariance structures. The subsections below go
in detail in each selected model.

Table3
AIC and BIC for the different models and differeainnections.
Indirect connections Semi-direct connections Direct connections
AlC BIC AlC BIC AlC BIC
Q) 123779.4 123794.9 163105.0 163121.5 157984.2 158000
(2 105260.2 105291.1 138428.9 138462.0 120881.9 120914
©)] 91310.8 91341.6 138452.9 138486.0 117801.9 117834.4
4 91348.1 91379.1 138471.8 138504.8 116625.0 116657.5
(5A) UN 89536.3 89567.2 135895.7 135928.7 115258.9 115291.4
(5B) Cs 93285.1 93308.2 145909.6 145934.4 122171.3 122195.7

(5C) AR1 93285.1 93308.2 145909,6 145934.4 122171.3 122195.7
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3.2.1. Speed prediction model for indirect connections

The speed prediction model estimation resultsHferimdirect connections are presented in Table 4.
The vehicle-specific residual was found to be stigally significant. This accounts for individual
heterogeneity between drivers within the modebthrer words, each driver has an individual intercep
which deviates from the mean intercept of the grolipis approach estimates a single variance
parameter which represents how spread out the mandtercept is around the common intercept
(following a Normal distribution). The vehicle-sgic residual, as shown in Table 4, has a verydarg
value compared to the observation specific ernontdhis mean that the variance resulting from the
drivers’ heterogeneity is much larger than thearge resulting from the explanatory variables. The
curve-specific residual (level 3) was not foundbéostatistically significant. This could be expkdnby
the fact that several characteristics of the cuaveslready included in the model as covariatdslay
capture the between curve variation. Therefore,came conclude that any correlation in the speed
observations of different vehicles driving on tlaenge curve are captured by the curve characteristics
The connection-specific residual (level 4) was &smd to be insignificant. This indicates thatveérs
do not adapt their driving style to a specific cection.

Table4

Speed prediction model estimation results for ecticonnections.
Fixed Effects Egimate  Std. Error t Sig.
Boo Intercept (mean) 101.361 4.4864 22.593 <0.0001
Byenicte Type y:r:z:cll:)type (I=car,0=heavy 34714 29953 1202 0197
Beurvature Curvature (1/km.) -0.3550 0.0087 -40.550 <0.0001
Broadwidth Road width (m.) 0.1490 0.0353 4.216 <0.0001
BLongstope Longitudinal slope (%) -0.4820 0.1066  -4.520 <0DOO
,Bgistance Distance (m.) -0.1516 0.0065 -23.196 <0.0001
,Bgistance Distancé (m?) 0.000165 2.7452E-6 60.241 <0.0001
,Bgistance Distancé (m.3) 3.2066E-8 2.0783E-9 15.429 <0.0001
Bvenicie Type Longsiope Interaction effect (%) 0.48082 0.1070 4.493 <0100
Random Effects Edgimate Std.Error WaldZ Sig.
Uop VehiclelD: intercept (var) 3368.8261 296.311  11.36%0.0001
Uy Distance (var) -5.9570 0.53157 -11.206 <0.0001
Epc.en Residual 9.8067 0.10907 89.913 <0.0001

As expected, and confirming the research hypothdsesibed in section 2.1, there is a significant
negative effect of the curvature and the longitatigtope (uphill) on the speed, and a positivectfbé
the road width on the speed. The type of the veluigs not found to be statistically significantwewer,
the interaction effect between the vehicle type #wedongitudinal slope was found to be positivd an
significant, indicating that the effect of the ldtuglinal slope on heavy vehicles is stronger comgao
cars. Furthermore, and opposite to previous studies suggested constant speeds on curves, the
distance along the curve was found to have a siginif and non-linear relation with speed. All iredit
connections were right turning curves and therefborgas not possible to test the impact of theseur
direction variable on speeds. All variables, exdeptvehicle type, were statistically significartthe
95% confidence level. The random effect of theatlise is statistically significant (p < 0.0001),
suggesting that the impact of the distance on geed varies significantly between vehicles (i.e.
drivers). In terms of effect size, considering #stimates and the influencing factors’ values, the
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distance, vehicle type and longitudinal slope haesbiggest impact on speeds, followed by the sicon
order of the distance, curvature and the road wilthl lastly the interaction between the vehictety
and the longitudinal slope, and the third ordediefance.

3.2.2. Speed Prediction Model for Semi-Direct Connections

Table 5 presents the speed prediction model estimedsults for the semi-direct connections.

Table5

Speed prediction model estimation results for sgingiet connections.
Fixed Effects Egimate  Std. Error t Sig.
Boo Intercept (mean) 66.2747 1.2894  51.398 <0.0001
Brenicte Type ?/’;:LCI'S type (1=car, 0=heavy 190g37  0.8545 22.333 <0.0001
Beurvature Curvature (1/km.) -0.80107 0.02062 -38.845 <0.0001
Bewrvebirection g::i‘éeht‘;"ecmn (1=left 9.4251 0.8462  11.138 <0.0001
BLongstope Longitudinal slope (%) -0.4159 0.0436 -9.522 <0100
Bsuperetevation Super-elevation (%) 1.003 0.0538 18.641 <0.0001
Bhistance Distance (m.) 0.0031 0.0013 2.288 0.022
Bistance Distancé (m2) “4.2655E- 1 5065E-6  -2.831  0.005
B3 istance Distancé (m.3) 1.9937E-9 0.0000 2.749 0.006
Bvenicle Type * LongsSiope Interaction effect (%) 0.3798 0.0451 8.413 <0.0001
Bpirection = superelevation Interaction effect (%) -0.8316 0.0565 -14.705 <0DO
Random Effects Estimate Std. Error  WaldZ  Sig.
oy VehiclelD: intercept (var) 394.774 20.6893 19.0810.0001
1y Distance (var) -0.3529 0.0228 -15.439 <0.0001
Epcen Residual 4.888 0.0421 116.107 <0.0001

The variables vehicle type, curvature, longitudislaipe and the interaction between the vehicle
type and the longitudinal slope have a statisycsithnificant impact on the speeds, and the diveabif
impact is similar as in the speed prediction mddethe indirect connections. The road width was no
found to significantly impact the speeds, while Huper-elevation was found to have a significant
positive impact on the speeds. In other words, drigtuper-elevation leads to higher driving speeds.
This is logical, since higher super-elevation supfmcounterbalance the lateral acceleration thed
feels when negotiating a horizontal curve. Thedio®m of curve was also found to be statistically
significant. Drivers drive faster on left turningrges. A negative interaction effect was found lestw
the direction of curve and the super-elevationiciaithg that the influence of higher super-elevaim®
lower on left curves. Finally, the distance aloing turve was found to have a significant and noealt
impact on the driving speeds, similarly as foritigirect connections.

In terms of effect size, considering the estimated the influencing factors’ values, vehicle type
and curve direction have the biggest impact ondgpdellowed by the curvature, longitudinal slope,
super-elevation, and the interaction effects. lya#itle first, second and third order of distancectthe
least impact on the speeds. This is also appammtFigure 3 (c) and (d).

3.2.3. Speed Prediction Model for Direct Connections

The speed prediction model estimation resultsterdirect connections are presented in Table 6.
The results show that the variables vehicle typeyature, distance and road width are significant
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predictors of speeds. The effect of the longitudstape on speeds was not found to be statistically
significant. In terms of effect size, the vehicipd has the largest impact on speed followed by the
distance, curvature and road width, and lastlyheysecond and third order of distance.

Table 6

Speed prediction model estimation results for diceanections.

Fixed Effects Edgimate  Std. Error  t Sig.

Boo Intercept (mean) 93.9915 0.6246 150.474 <0.0001

Bveniclerype Vehicle type (1=car, O=heavy vehicle) 6.5964 0.27024.407 <0.0001

Beurvature Curvature (1/km.) -0.7309 0.0227 -32.171 <0.0001

Broadwidth Road width (m.) 0.1278 0.0161 7.897 <0.0001

:Béistance Distance (m.) -0.03299 0.00136 -24.225 <0.0001

Baistance Distancé (m2) 3.095E-6 1.5819E-6  1.956  0.050

,Bgistance Distancé (m3) 5.226E-8 2.0119E-9 25.978 <0.0001

Random Effects Egimate  Std. Error  WaldZ  Sig.

Hov VehiclelD: intercept (var) 189.5456 10.8295  17.5080.0001

I Distance (var) -0.2430 0.02054 -11.831 <0.0001

Ep,cen Residual 4.3574 0.04001 108.899 <0.0001
3.2.4. Comparison of the estimated models for the thrpestyf connections

Table 7 summarizes and compares the estimates ohfliencing factorsfiked effectsfor the
three types of connections following the estimatemtiels in the previous section. The values in bold
are the three most influencing factors in termsiné effect.

Table7
Comparison of the estimates of the influencingdexfixed effectsfor the three types of connections

Fixed Effects Estimates

Indirect Semi-direct Direct
Boo Intercept (mean) 101.361 66.2747  93.9915
Bvenicie Type Vehicle type (1=car, O=heavy vehicle) 3.8714 19.0837 6.5964
Beurvature Curvature (1/km.) -0.3550 -0.80107 -0.7309
Broaawidtn Road width (m.) 0.1490 - 01278
Bcurvebirection Curve direction (1=left; O=right) - 9.4251 -
BLongstope Longitudinal slope (%) -0.4820 -0.4159 -
Bsuperetevation Super-elevation (%) - 1.003 -
Bhistance Distance (m.) -0.1516 0.0031 -0.03299
Bbistance Distancé (m?) 0.000165 -4.2655E-6 3.095E-6
Bhistance Distancé (m>3) 3.2066E-8  1.9937E-9 5.226E-8
Bvenicle Type » Longstope  Interaction effect (%) 0.48082 0.3798 -
Bpirection « superelevation  INteraction effect (%) - -0.8316 }

It can be seen from Table 7 that for the threedygfeconnections, vehicle type has a large impact
on the speeds, with the largest impact on the sémit connections. For the indirect connectiores th
distance and the longitudinal slope are the mdhtencing factors besides vehicle type, while foe t
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semi-direct connections, it is the curvature andvewdirection, and for the direct connections ithe
distance and the road width. It can also be noficad Table 7 that the road width, longitudinalpsto
and super-elevation are significant for some ofdbtenections’ types. This could be the result ef th
factors’ range of values and their variability the different connections. For example, the rarfge o
values of the longitudinal slope for the direct wections (-0.911, 2.698) is much smaller than ffier t
semi-direct (-12.444, 4.600) and indirect connexti¢4.198, 11.089), and therefore, this factoras
significant for the direct connections. The impadtthe distance is most dominant at indirect
connections. This is also confirmed by the speefllps presented in Figure 3. Therefore, the distan
is an important factor, especially at the indireshnections. The second order of distance hasaalso
relatively considerable impact on driving speedindirect connections, while the third order has a
relatively small but significant impact on the dnig speeds at the three types of connections.

Table8
Comparison of the estimates of tiaedom effect$or the three types of connections

Estimates
Random Effects Indirect Semi-direct Direct
oy VehiclelD: intercept (var) 3368.8261 394.774 18964
Uy Distance (var) -5.9570 -0.3529  -0.2430
€yccn REsidual 9.8067 4.888 4.3574

As shown in Table 8, in all three speed predictimuels it is clear from the variance explained by
the random effect of the intercept compared ta¢saluals, that the heterogeneity among driversahas
much stronger impact on the variability in speeds\gared to the road design characteristics. It can
also be seen that this variability between driverore dominant for the indirect connections daid
by the semi-direct connection, and lastly by threaticonnections.

3.2.5. Impact of influencing factors on the driving speeds

Fig. 5 illustrates the impact of the influencingtfars included in the models on the driving speeds.
These figures were created by varying each timelected factor of interest, while holding all other
influencing factors constant. The values of th&gricing factors were chosen to reflect their mean.

Fig. 5(a) illustrates that the driving speeds oriralirect connection with a radius of 300 meters,
road width of 9.15 meters (including one drivingdaright shoulder and left shoulder), and longitad
slope of 6%, decrease up to a distance of appraeiynd850 meters downstream of the nose, and after
this point the speeds increase again. The reldipfis not-linear, but polynomial of the third ordee.
cubic). It can be noticed that the speeds of car$igher than the speeds of heavy vehicles, asdwou
be expected. Fig. 5(b) illustrates the interaceffiect between the longitudinal effect and the gighi
type, and as a function of the curvature. It cagd®n that as the curvature increases the dripegds
decrease. The impact of the longitudinal slopdefihdirect connection on the speeds of cars isstim
negligible compared to the impact of the longitadiisiope on the speeds of heavy vehicles.

Fig. 5(c) presents a comparable analysis to Fa. it for the semi-direct connections. As can be
clearly seen in the results, the changes in thedsps a function of the distance measured relatitiee
nose are much more smaller compared to that fointieect connections. It can also be noticed that
there is a slight increase in the speeds, althaegi mild. As expected, the driving speeds of heavy
vehicles are lower than those of cars. The speait for heavy vehicles on motorways in the
Netherlands is set to 80 km/h. The driving speedkefi curves are higher than the driving speeds on
right curves. Fig. 5(d) illustrates the interactigffiect between the super-elevation and the curgatu
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direction for both cars and heavy vehicles. Theaotpf the increase in super-elevation is strooger
right curves than on left curves. As the superaien increases the driving speeds also increase.

Fig. 5(e), similar to 5(a) and 5(c), shows the desnof the driving speeds as a function of the
distance relative to the nose on direct connectibigsclearly a non-linear relationship. The chasin
the speeds are, however, milder compared to thegtetonnections, but more prominent than the semi
direct connections. This is counter intuitive, ag evould expect a consistent decreasing effedtign

5(f) the impact of the curvature on the drivingegie is also illustrated. We can see a decreagmin t
speed as the curvature increases.
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Fig. 5. Impact of various influencing variables on the dgrgzspeeds on indirect connections (a, b); sensiedir
connections (c, d); and direct connections (e, f).
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4. Discussion

Using trajectory data for 29 ramp curves, driverslividual speed profiles and speed behavior
adaptation were analyzed. Furthermore, longitudapgled behavior models were developed. In the
developed speed prediction models for the threesty connections, different polynomial orders were
examined, and a cubic relation (third order polyrardunction) was found to best fit the speed dega
a function of the distance along the curve (meabuetative to the nose, the reference point). This
confirms the first hypothesi$if), and clearly proves that drivers do not maintainstant speeds when
negotiating curves, especially on indirect conmmastj but continuously adapt their driving speeds
supporting the conclusions of previous studiesdfraat al., 2017; Montella et al., 2015; Montella,
Pariota, Galante, Imbriani, & Mauriello, 2014). Tbearvature and direction of curve were found to
significantly affect the driving speeds. As thevaiure increases, driving speeds decrease confirmin
the first research hypothesid, as well the findings of earlier studies (Faralalet2017; Montella et
al., 2015; Othman et al., 2014; Russo et al., 20ltGyas also found that the driving speeds on left
turning curves are higher compared to comparaglg turning curves (confirmingls). This result
contradicts previous findings by Othman et al. @04nd Calvi (2015) who did not find significant
differences in the driving speeds between leftrigitt turning curves. One possible explanatiortfier
higher speeds on left curves, is the sight distarigeh is larger on left turning curves compareddgbt
turning curves, which allows drivers to make largeticipatory eye movement (Lehtonen, Lappi,
Koirikivi, & Summala, 2014) leading drivers to fesdfer with higher driving speeds. This is in hwi¢h
earlier research by Shinar, McDowell, and RockyEd77) who found that the search patterns on right
and left curves are not symmetrical: visual exansito the right on right curves are greater than e
movements to the left on left curves. The road lwidas found to increase significantly the driving
speeds (confirmingls) on the indirect and direct connections, but motlee semi-direct connections.
For all indirect connections, there is only onevidiigy lane per connection which widens as the cureat
increases. For the semi-direct and direct connestithis can vary between 1 and 3, with most cases
with 2 lanes. Further research should investigdte the road width in semi-direct connections does
not affect drivers’ speed similarly as the indiraot direct connections. The longitudinal sldfge) énd
the interaction between the longitudinal slope gnadvehicle typeHs) significantly affect the driving
speeds of vehicles on the indirect and semi-daechections, but were not found to significantlieaf
the speeds on the direct connections. This is, iermyexpected as the mean value and especially the
variance of the longitudinal slopes of the diramtrections (0.25%, 0.59%) are much smaller compared
to the indirect (-0.82%, 8.94%) and semi-directramiions (0.44%, 3.19%). The impact of steeper
longitudinal slopes on heavy vehicles’ speeds amgel than on passenger vehicles as reflectecein th
direction of impact (positive) of the interactidifieet. Finally, curves with higher super-elevatiaiues
lead to higher driving speedd) on the semi-direct connections. Super-elevatiaa mot found to be
statistically significant for the direct and inditeconnections using the dataset in this studythieur
research is needed into the forces that act orhclgewhen negotiating these connections to better
understand the reasons behind these results. Hadveeinteraction effect between the curve digetcti
and super-elevation for the semi-direct connectiadgates that the increase in speeds as the curve
super-elevation increase is larger on right turmiagyes compared to left turning curves. This iaths
that drivers are more sensitive to super-elevatadnes on right curves compared to left turningrear
(Hs). This might be because on left curves driverseHaxger sight distance than on right curves, and
therefore can adapt their driving curvature to oedthe centrifugal force acting on them. On right
turning curves, on the other hand, the sight destas shorter, which averts drivers from takinggsiby
increasing their driving curvature and encroaclimg the adjacent lane or shoulder.
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These results have implications on multiple aspéoctsuding road design guidelines and road safety,
development of automated vehicles’ controllers aydtems, and development of microscopic
simulation platforms. The following paragraphs gt elaborate on these different aspects.

Implications for road design guidelines and roadesa

The conclusion that drivers’ speeds along rampesiare not constant has considerable implications
for road safety and road design guidelines. Thel iesign and drivers’ speed selection should be
compatible to increase road safety. In this stitdyas found that median speeds at the nose on semi
direct and direct connections are higher than #sgth speed of 90 km/h at the nose. Entering and
negotiating curves with speeds higher than thended design speed and higher speed variability on
curves increase the likelihood of accidents (Abikyl-& Radwan, 2000). Higher speeds cause higher
side friction demand and longer stopping distamdech requires curves with larger radius and higher
super elevation in order to provide safe roads éimb& Palmberg, 2015). Almost all considered
interchanges’ ramp curves in this study were [anld designed in the seventies or eighties. Vehicle
technologies have greatly developed during thetese decades enabling vehicles to drive withdrigh
speeds and higher stability than before. This c@aldly explain the gap found between the design
speeds of these ramp curves and the actual drspagds of vehicles. When further investigating the
existing road signs on these curves in the figldjais found that about one third of the curves dib n
have any posted speed limit or advisory speed bigits, one third of the curves had advisory speed
signs, and the remaining curves had posted speédsigns. The literature on advisory speed signs i
contradictory (Comte & Jamson, 2000), indicatinagf tiirivers may or may not adhere to these advisory
speeds. Based on the speed observations of tlig, sta clear trend could be identified between the
speeds and the advisory and speed limit signsn leaalier study it was found that advance warning
signs by themselves are not as effective at reduspieeds as when they are used in conjunction with
chevron sight boards and/or repeater arrows (Q@mar007). It was also found that drivers take eurv
radius into account rather than speed limit (Othraial., 2014). Therefore, improving curve design
guidelines by considering drivers’ actual speedgoerance and improving horizontal curve signing
practices are both crucial to increase the comifigtibetween the design speeds and actual driving
speeds (Mattar-Habib, Polus, & Farah, 2008; Pdhadlatschek, & Farah, 2005). Infrastructure and
technological countermeasures, such as variablsagesigns, transverse bars, variable and mandatory
Intelligent Speed Adaptation (ISA) systems, andcan-advice using infrastructure-to-vehicles
communication can contribute to reducing the gagvéen the actual driving speeds and the speeds
intended by the actual road design (Carsten & T4185; Comte & Jamson, 2000).

Implications for the development of automated JVekic

What becomes apparent from the speed profilestenédtimated models is that the speed variability
among drivers (i.e., inter-individual differencaés)much larger than the speed variability along the
curves for the same driver (see for example Fig))2the variability explained by the random inapt

for VehiclelD is much larger compared to residuaiance in all of the three models. These largerin
driver differences indicate that different drivdrave different comfort levels and preferences when
negotiating horizontal ramp curves. This is reléwainen, for instance, developing automated vehicles
controllers and control strategies. It is expedtet the acceptance of automated vehicles by driver
would increase if the vehicle is programmed to @rmvore similarly to the preferred driving behavior
and driving style of each driver (Basu, Yang, Hungen, Singhal, & Dragan, 2017; Scherer et al.,
2015). Additionally, in the first phase of integrat automated vehicles in mixed traffic, composéd o
automated and traditional vehicles, when the patietr rate is still relatively low, programming
automated vehicles to drive similarly to otherficatand thus reducing speed variability among ek,

is expected to be beneficial for safety (Aarts &n\&chagen, 2006).
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Implications for microscopic simulation models

The developed models can be used to further enteartgalidate the existing models in microscopic
simulation platforms for determining the drivingeggls of simulated vehicles on curves. Microscopic
simulation models, such as VISSIM (Fellendorf & ¥ech, 2010) and AIMSUN (Barcel6 & Casas,
2005), are largely used by the engineering communitassess different road design alternatives in
terms of traffic operations. Therefore, improvihg tnodels that simulate the speed behavior of le=hic
is an important building block. In VISSIM (Fellendié Vortisch, 2010), for example, it is possibke t
define a reduced speed area. Following the VISSEhuml once the vehicle reaches the beginning of
this area it is assigned a new desired speed frithinvthe speed distribution assigned to its veshicl
class, which can possibly also be a higher speleel.dEceleration process is initiated accordindpéo t
user-defined deceleration value (PTV, 2011). Bypashe developed models in this study that take int
account the distance along the curve, it would desible to predict the speed of the vehicle aldweg t
curve and the speed behavior adaptation.

Another potential improvement of the existing spaemtiels in microscopic simulation platforms is a
further refinement of the stochastic behavior @fehs by the inclusion of driver heterogeneity. s
important as this study has shown that thereasgelvariability among drivers in their speed adaph
when negotiating curves.

5. Conclusions & futureresearch

The detailed analysis of the speed profiles ofalekitraversing different curves shows that drivers
deceleration and speed adaptation do not occurantgngent road sections, as some previous studies
have assumed, but continues into the curve. Thifiraes the findings by Montella et al. (2014) and
Farah et al. (2017). It was found as well that dedpe variability among drivers, there is a certa
pattern describing how drivers adapt their drivepgeds. Speed prediction models for each type of
connections (indirect, semi-direct and direct) waegeloped using third order polynomial function fo
the distance. It was found that the distance atbegamp (measured relative to the nose area)taffec
significantly the driving speeds and has the largepact on indirect connections. We also found tha
the curvature, the super-elevation, the longituditape, road width, and the vehicle type signifitya
affect the driving speeds.

This study demonstrated that this type of datashlasge potential to reveal insights into drivers’
behavior when negotiating curves. Developing suolets, which utilize disaggregate data to describe
more realistically drivers’ speed behavior and gpggaptation along different connections, are usefu
for improving simulation models and defining thesifications of automated vehicle controllers. The
results of this study also have implications onekisting design guidelines and the proposed measur
to reduce the gap between actual driving speedshendesign speeds. Advances in technology, such
as, Intelligent Speed Adaptation (ISA) systems, amdar advice using infrastructure-to-vehicles
communication can contribute to reduce this gap.

The main drawback of this study is the lack of ghss into drivers’ characteristics and relevant
human factors that are expected to play an impbrtde in the determination of the speeds drivers
chose to drive. Future research should focus omrstahding the determinants of different driving
speed entry of drivers, and the implications ongirabability of road accidents. Such insights can b
applied, for example, in personalization of riskkmiag systems.

This study collected speed data in good weatheditions; future research should as well collect
similar data in poor weather conditions (e.g. réog), to better understand the impact of weather
conditions on driving speeds (also in relationi® toadway surface). Also road friction is an intgot
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factor when investigating curve design, future aesle should include measurements of side friction
(Donnell, Wood, Himes, & Torbic, 2016), and takestfactor into account. The impact of the turning
direction of the curve on the driving speeds wdyg tested for the semi-direct connections, andfoiot
indirect and direct connections. This is becaudaa¥ of left turning curves in the sample of theactt
and indirect connections. Future research shogld ialestigate the impact of the turning directidn
the curve on indirect and direct connections.

Extracting lateral position data of a vehicle patten negotiating a curve was possible from the
recorded trajectory data, however measurementsenogs relatively large and thus requires further
investigation. Curve negotiation strategy, corngticeg, and steering corrections are also important
understand vehicle lateral dynamics when negotjatirves and further research into this is esdentia
to improve curve design and safety.
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