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Untangling decision tree and real options analyses: a public infrastructure
case study dealing with political decisions, structural integrity and price
uncertainty

M. van den Boomen, M. T. J. Spaan, R. Schoenmaker and A. R. M. Wolfert

Delft University of Technology, Delft, the Netherlands

ABSTRACT
Managerial flexibility in infrastructure investment and replacement decisions adds value. Real
options analysis (ROA) captures this value under uncertain market prices. The concept of ROA is
that future unfavourable payoffs can be deferred as soon as more information about market pri-
ces becomes available. The popularity of ROA is seen in a growing number of case studies on
real assets. Despite its increasing popularity, ROA has not gained a foothold in public infrastruc-
ture decision making. One of the difficulties in the application of ROA is the required estimation
of market variables. To avoid this, a simplified but not correct version of ROA is easily applied,
referred to as a Decision Tree Approach (DTA) to ROA. Another difficulty is that infrastructure
assets are subject to other types of uncertainties, defined here as asset uncertainties. This study
investigates the value of managerial flexibility in a public infrastructure replacement decision.
The uncertainty drivers are the strength of a bridge, political decisions regarding traffic flow and
the price development of construction costs. Three valuation approaches are compared: DTA,
ROA and the DT approach to ROA. Although it is complex, ROA certainly adds value in public
infrastructure decision making when market price uncertainty is prevalent. However, in the
absence of reasonable estimates of market variables, the DT approach to ROA is the best alter-
native. In the absence of market price uncertainties, ROA should be avoided DTA is to
be preferred.
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1. Introduction

The real options analysis (ROA) of the last decade is
advocated as a promising technique in valuing the
flexibility of managerial decisions in infrastructure life
cycle decisions. The theory of real options originates
from financial options valuation. It values financial
options that give a holder the right to defer unfavour-
able payoffs. Groundwork for financial option pricing
was laid by Black and Scholes (1973) and Merton
(1973). Their efforts brought about the famous
Black–Scholes–Merton formula, which provides a
closed-form solution to value European call options.

A call option provides the right but not the obliga-
tion to buy a share of common stock at a predeter-
mined price before or at a predetermined date. An
owner will only exercise the option if the option pay-
off is positive. The market wants to be compensated
for bearing this risk, which is reflected in a risk-
adjusted discount rate, or equivalently, a risk-adjusted

stream of cash flows discounted at a risk-free discount
rate. In response to the closed form formula for a special
case of option pricing, Cox et al. (1979) developed a dis-
crete binominal approach, that uses basic mathematics
and allows for more flexibility in exercising calls and val-
uing options. The approach of Cox et al. (1979) is widely
adopted as a standard for option pricing.

It is easy to draw a parallel between financial
options and ROA. Unfavourable future payoffs on tan-
gible real assets or projects can be deferred by man-
agerial decisions. Real options are for example
expansion, replacement, switching or abandonment of
real assets. The theory behind real options is well-
documented by authors like Amram and Kulatilaka
(1999); Copeland and Antikarov (2003); Mun (2006);
Guthrie (2009); Peters (2016); and Brealey et al. (2017)
and applied in a growing number of case studies in
the literature. For example, a practical spreadsheet
approach to value real options of investment strat-
egies for a garage parking case study is presented by
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de Neufville et al. (2006). In this study, the uncertainty
driving investment decisions is the future demand.

Cheah and Liu (2006) applied ROA to value the
concessions of a government in a private sector
Design, Build, Finance, Maintain and Operate (DBFMO)
project. The authors demonstrated their approach
using a case study on a causeway. The main uncer-
tainty driver in this case study was traffic volume and
growth. A toll road example is provided by Ford et al.
(2002) to encourage wider use of ROA in construction
projects. Chow and Regan (2011) integrated ROA in a
network design optimization challenge with uncertain
demand. Richardson et al. (2013) used ROA to deter-
mine optimized replacement cycles of heavy mobile
equipment under volatile operational expenditures
and long lead times of orders. Kim et al. (2017)
applied ROA in order to value the potential damage
reduction under optimized adaptation strategies and
volatile future climate scenarios. Electricity demand
and public acceptance is driving the uncertainty in a
recent case study for nuclear power plant, investigated
by Cardin et al. (2017).

The commonality in most case studies on ROA is a
sole source of an external uncertainty such as weather
conditions, operational expenses or demand, which
may influence future costs and benefits.

A second observation in the case studies is a lack
of consistency in the use of discount rates. Some
authors use the weighted average cost of capital of an
organization (WACC) with or without a risk premium.
Other authors use a discount rate without explanation.
Some authors use the concept of risk-neutral probabil-
ities in combination with a risk-free discount rate on
bonds, obtained from the ROA theory. These discrep-
ancies demonstrate the major difficulties in applying
ROA theory to real assets.

A third observation is the confusion regarding
approaches to value flexibility: ROA and DTA. In this
context, Neely and De Neufville (2001) introduce the
term “hybrid real option valuation”. The authors clearly
separate non-diversifiable risks from diversifiable risks.
There are no mitigating measures to avoid non-diver-
sifiable risk. In contrast, diversifiable risk can be miti-
gated. ROA theory applies to non-diversifiable market
price uncertainties, which need a different type of
valuation approach than diversifiable asset uncertain-
ties. Some ROA authors like Copeland and Antikarov
(2003) even state that DTA is wrong. However, DTA is
not wrong; the valuation method of options in a DTA
should be aligned to the type of uncertainty involved.
Schwartz and Trigeorgis (2001) sharply describe ROA
as “a special and economically corrected version of

DTA which recognizes market opportunities to trade
and borrow”. To avoid further confusion, De Neufville
and Scholtes (2011) and Cardin et al. (2013) introduce
the phrase “flexibility in engineering design” to desig-
nate that ROA is not the only approach to value real
options. De Neufville and Scholtes (2011) state that for
applying ROA, two conditions must be met: a replicat-
ing market portfolio with shares and bonds should
exist and its compositions should be tradable. In other
words, the market should contain a tradable portfolio
of shares and bonds that exactly mimics the cash
flows of the real asset or engineering project being
considered. De Neufville and Scholtes (2011) conclude
that these conditions seldom apply to real-life engin-
eering assets or projects.

A fourth observation is that ROA case studies on
public infrastructure assets, especially maintenance
and replacement decisions, are hard to find.
Woodward et al. (2014) incorporate real options to
establish adaptive flood management strategies under
an uncertain sea level rise. The study emphasizes that
flexibility has value, which should be incorporated into
the design and life cycle strategies of infrastructure
assets. Herder et al. (2011) identify several barriers as
to why ROA does not seem to gain a foothold in pub-
lic infrastructure investment decisions. One reason
mentioned by the authors is the increased difficulty
for public sector organizations to find underlying com-
parable market information necessary for the correct
valuation of real options. The most prominent barrier
identified by the authors, is the political, institutional
and organizational context in which public investment
decisions are made. Decisions for large public infra-
structure investments are seldom driven by economic
reasons only. Infrastructure investments are often
driven by societal and political interests. Investment
decision may be influenced by anticipation to time
consuming legal environmental impact assessments.
Interesting is also the authors’ observation that ROA
may have problems of reputation, as a consequence
of the financial crises in 2008/2009. Finally, the authors
suggest that public organizations may face problems
of lock-in. Endemic routines in combination with the
absence of a ROA-toolkit could be a barrier for the
application of ROA.

To summarize the literature: there is confusion and
academic debate on the correct valuation of manager-
ial flexibility in engineering practice. In addition, there
is a lag in the application of valuing flexibility in pub-
lic infrastructure decision making. The purpose of this
study is to investigate the valuation of flexibility in
public infrastructure replacement decisions and to

2 M. VAN DEN BOOMEN ET AL.



disentangle the debate on how to correctly value flexi-
bility. In Section 2, a model is developed for the valu-
ation of options in a case study for a common
infrastructure replacement problem. A clear distinction
is made between asset uncertainties and market price
uncertainties. This case study reveals some of the
prominent difficulties in valuing flexibility and espe-
cially in the application of ROA in public sector invest-
ment and replacement decisions. Three approaches
are compared: valuing flexibility of options in the
absence of price uncertainty (DTA), valuing flexibility
of options subject to price uncertainty (ROA), and the
application of the popular but not fully correct DT
approach to ROA. Conclusions are presented in
Section 4.

2. Model development for a bridge
replacement

The case study is an existing old bridge in the city
centre of the capital city of the Netherlands. The
bridge was built before 1900. Around 1925, the bridge
was expanded and reinforced. Around 1980, major
renovation work took place. The case study is of inter-
est because it is exemplary for many similar ageing
bridges in an urban environment. Second, the case
study contains multiple uncertainties of a different
nature which need different treatment in a DTA and
ROA. Third, the identified dominant uncertainties are
difficult to quantify but influence the preservation of
capital and the capital investment planning.

The purpose of this case study is to develop an
infrastructure replacement optimization model that is
capable of inclusion of different types of uncertainty
and contains the flexibility to respond to these uncer-
tainties. The approach or method development is gen-
eric; however, the case study and its underlying
assumptions are specific.

Recently, mandatory structural safety investigations
and calculations were carried out for this bridge
according to national standards for structural safety
assessments of existing structures (NEN 8700:2011 nl).
This national standard builds on and is an extension
to the well-known European reference design codes
for new structures (NEN-EN 1990:2002 en). The assess-
ment comprises structural integrity calculations based
on strength-load combinations for an extended design
life of 15 years and assesses for compliance to a safety
limit state at disapproval level. In-depth field investiga-
tions were carried out to assess the load and bearing
capacity of the structure and soil. Motorized traffic
prognoses for the corridor of this bridge are stable

(10,752 motorized vehicles per day in 2020) and show
a slight decline towards 2030 with 10,393 motorized
vehicles per day (Amsterdam 2018). The main concern
is the strength of the piles. In Amsterdam (and other
cities), bridges built around 1900 are founded on tim-
ber piles which are subject to bacteriological deterior-
ation, a process well described by Klaassen (2008) and
Klaassen and van Overeem (2012). This bacteriological
decay of submerged timber piles is not only a Dutch
problem (Nilsson and Bj€ordal 2008, Zelada-Tumialan
et al. 2014). As part of the structural safety assessment,
under-water samples were taken from accessible
wooden piles and analysed, resulting in predictions for
bacteriological decay and residual strength. Also, site
exploration was carried out to evaluate the load-bear-
ing capacity of the soil.

The results of the field investigations were used to
carry out the structural safety assessment calculations
for a reference period of 15 years. The theoretical cal-
culations demonstrate current compliance to the
requirements of the standard (limit state for disap-
proval level). However, the main uncertainty is bac-
teriological decay of the piles and the development of
the load-bearing capacity of the piles. Therefore,
deformation of the bridge will be measured yearly to
guarantee safe usage. In the case that a threshold for
deformation is exceeded, the bridge will be closed for
traffic and immediate replacement will be initiated.

We define a generic probability function bðtÞ to
model the time-variant probability of a premature
unplanned replacement (corrective replacement) when
a certain threshold is exceeded. For the case study,
bðtÞ is the probability that the measured deformation
exceeds the permitted threshold. As a practical
assumption for bðtÞ, first a current failure probability is
estimated based on actual failures. Three ageing
bridges out of an initial population of 160 similar
bridges under investigation, were taken out of service
in the past 2 years because thresholds were exceeded,
which is an approximated 2%. As a conservative future
estimate, a yearly additional percentage of 0.5% is
added for the remaining reference period of 15 years.
This approach can be seen as a managerial strategy of
an asset manager to incorporate a certain level of
additional risk costs as a consequence of a probable
premature replacement. Naturally, such estimates and
decisions are taken by a team of (field) experts.

Bridge failure probability modelling under specific
circumstances is clearly more complex and a research
field on its own. Sa�nchez-Silva and Klutke (2016) pro-
vide a comprehensive overview of fundamental and
state of the art probabilistic degradation models for
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infrastructure ranging from regression analysis to mod-
elling of degradation caused by shocks. In addition, a
time-variant capacity-load approach could be consid-
ered (Leira 2013). However, these mathematical mod-
els need data to validate their statistical properties in
order to establish a time-variant probability for the
remaining life time of a structure. Data to perform
such modelling is currently absent for the case study
and will only become available in the future.

That certainly does not impede the method devel-
opment in the current research which aims to develop
strategies and budget forecasts under uncertain condi-
tions. Dealing with uncertainty is discussed in Section
3. One of the uncertainty reduction approaches is data
gathering and reflective learning. As soon as better
information becomes available, the model is eas-
ily updated.

The consequence of exceeding the deformation
threshold is an immediate replacement with invest-
ment costs that are a factor of 1.5 higher than a pre-
ventive replacement. This factor is based on
experience within the municipality.

A second uncertainty is about urban planning. At
present, cars are allowed in the city centre but ban-
ning cars from the city centre is currently a hot polit-
ical issue in the city council. Its success depends on
the composition of the city council and elections take
place every 4 years. Other cities may face other types
of political decisions. Political decisions are uncertain
and difficult to predict. The probability of this decision
in one of these years is designated with pðtÞ. For the
case study, its value is based on the expected prob-
ability that one of the parties will grow. One could
argue that these types of events are highly uncertain.
However, these events are part of real-life uncertain-
ties that a decision maker faces and addressed in dis-
cussions about infrastructure replacement planning. A
decision to ban cars from the city centre would offer
the opportunity to build a smaller bridge, which
would significantly reduce the future life cycle costs
(investment and maintenance costs). Operational
expenses of the current and new bridges are esti-
mated at 10% of their new investment costs based on
past data. Periodic major overhauls (intermediate large
maintenance works such as asphalt replacement and
conservation work) are included in this figure. The last
uncertainty is the development of construction costs.
Exogenous market forces may influence future con-
struction costs.

The extreme scenarios are to replace the bridge
immediately with a large bridge or wait for another
15 years and build a large or small bridge depending

on political decisions to ban cars from the city centre.
There are two clear incentives for waiting: the benefits
of postponing large investments and waiting for more
information that allows for the building of a smaller
bridge. There is one incentive for not-waiting: the
potential risk costs, more specifically an unexpected
corrective replacement. The question of interest is:
what is the best strategy for this municipality and
what is the value of waiting for information?

A model is developed in two stages for this case
study. The first stage is described as the DT approach,
which omits market price uncertainty. Hereafter the
model is extended with market price uncertainty for
which the ROA approach is incorporated. Finally, the
incorrect application of the ROA theory (the DT
approach to ROA) is applied to evaluate the devia-
tions. The input data for the case study are presented
in Table 1. Planned and unplanned replacements are
designated with preventive and corrective replace-
ments respectively. This is common terminology in
maintenance engineering and allows for using the
indices p and c for preventive (planned) and corrective
(unplanned) replacements. The index u is reserved for
an up-move in the ROA-modelling in Section 2.2.

2.1. Valuing flexibility in the absence of price
uncertainty

Looking at this question from a decision tree perspec-
tive first requires identifying the two events that influ-
ence decisions. The first event is that cars are allowed
in the city centre. This situation is designated as state
large ðLÞ. The second event is that cars are not
allowed in the city centre. This event is designated as
state small ðSÞ. The current situation is state L. A deci-
sion maker cannot influence the events, but can wait
and base future decisions on the outcome of political
decisions made in the Years 4, 8 and 12. In these
years, a transition from state L to S is possible with a
probability of pðtÞ. A transition from state L to S does
not automatically imply that a decision maker will
build a smaller bridge immediately. A decision maker
will maximize the value of potential decisions and
chooses the best option from the range of options
available. A political decision to ban cars from the city
centre, is considered to be irreversible for the com-
ing decades.

The decision nodes (not yet the decisions) and pos-
sible transitions from state L to state S are shown in
Figure 1. For example: in Year 4, there is a probability
of pðtÞ for entering state S and a probability of
1� pðtÞ for remaining in state L. Once in state S there
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is no possibility of transferring to state L. Figure 1 is a
recombined version of an extended tree. Recombining
enhances the efficiency of following recursive calcula-
tions and makes the interpretation of results easier.
The process of recombining decision trees is well
described by Guthrie (2009).

Having identified state S and L and the possible
decision nodes, the decision tree is built. Figure 2
shows the options in a decision node of state L and S.
Figure 3 shows the complete decision tree. The
options in any decision node in state S and L are
defined as:

A ¼ wait; replacef g (1)

In decision nodes of a large state L, a decision
maker is faced with two options each year, except for
the last year. These are illustrated in Figure 2. A deci-
sion node is represented by a non-filled dot. The first
option is to replace the old bridge with a new one.
This is a preventive replacement and requires a large
rebuild including all future life cycle costs LP. The

second option is to wait. Waiting comprises the prob-
ability of an unplanned (corrective) large investment
bðtÞLC and the benefits of postponing the investment
with a probability of 1� bðtÞ, represented by W. The
chance node is designated with a square in Figure 2.
In the last year, the only option left is to replace the
old bridge with a large one: LP. After a replacement
(LP or LC) in any of the nodes the decisions are termi-
nated by a perpetuity of future life cycle costs (invest-
ments and exploitation expenditures). Termination
nodes are represented by a black filled dot in Figure 2
and Figure 3. In every node of the decision tree, there
is a possibility that the decision tree ends, as a conse-
quence of a planned replacement or unplanned
replacement.

In decision nodes of a small state S, cars are not
allowed in the city centre. This creates an opportunity
for a less expensive replacement with a small bridge.
Again, a decision maker has two options as depicted
in Figure 2: preventively replace the old bridge with a
small one, including all future life cycle costs SP or

Table 1. Data with descriptions, symbols and values (monetary amounts in million e).
Description Symbol Value

Investment in a preventive replacement with a
large bridge

I PL 5

Investment in a corrective replacement with a
large bridge

ICL 1:5 � I PL ¼ 7:5

Investment in a preventive replacement with a
small bridge

I PS 0:6 � IPL ¼ 3

Investment in a corrective replacement with a
small bridge

ICS 1:5 � 0:6 � I PL ¼ 4:5

Yearly operational expenses of large bridges EL 0:1 � I PL ¼ 7:5

Yearly operational expenses of small bridges ES 0:1 � I PS ¼ 0:3

Present value of a perpetuity of investments and
operational expenses of a preventive and cor-
rective replacement with a large bridge

LP and LC See Table 2

Present value of a perpetuity of investments and
operational expenses of a preventive and cor-
rective replacement with a small bridge

SP and SC See Table 2

Probability each year for a corrective replacement bðtÞ 2%þ0:5% � t 8 t

Probability for the decision to ban cars from the
city centre

pðtÞ 30% if t ¼ 4; 8; 12; otherwise 0

Maximum allowable life time extension of
old bridge

T 15 years

Time/period to evaluate in years t 0 � t � T

Technical life cycle of a new bridge n 100 years

Risk-adjusted discount rate of the municipality ra 3:5%

Figure 1. Decision nodes for the case study with recombined branches.
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wait. Waiting encompasses a probability bðtÞ for a cor-
rective replacement with a small bridge SC , and the
benefits of postponing the investment W with a prob-
ability of 1� bðtÞ. If the old bridge remains in place,
the only option left at the expiration date of post-
ponement is a preventive replacement with a small
bridge SP.

The decision tree for the case study combines
Figures 1 and 2 and is presented in Figure 3. The dis-
counted value of perpetual life cycle costs of replace-
ments LP; LC; SP and SC are determined after
definition of the model and presented in Table 2.

The decision tree is solved by using backward
recursion for discounting of costs. Knowing the
boundary constraints at the year in which the possibil-
ity of postponement of a replacement expires (year T),
allows for working back year by year until the present
value at t ¼ 0 is found. A clear and simplified
example of this principle of backward recursion in a
decision tree that contains options and probabilities is
provided by Brealey et al. (2017). The boundary con-
straints at T for the two states are:

VL Tð Þ ¼ LP (2)

VS Tð Þ ¼ SP (3)

L
C

L
P

 
Preventive replacement

with a large bridge

Corrective replacement

with a large bridge

Wait, maintain old brigde

b(t)

1-b(t)
W

L

b(t)

1-b(t)

t t+1 t+2

State L

b(t)

1-b(t)
W

S

b(t)

1-b(t)

t t+1 t+2

S
P Preventive replacement

with a small bridge

S
C Corrective replacement

with a small bridge

Wait, maintain old brigde

State S

Figure 2. Decisions available in a large and small state.
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Figure 3. Full decision tree for the case study.

Table 2. Calculation of boundary conditions: discounted perpetual future life cycle costs without price uncertainty.

Symbol for
perpetuity of
replacements

Life cycle,
n (years)

Investment
(x million e)

Yearly
operational expenses

(x million e)

Present value of
perpetuity of

replacements VI þ VE
(x million e)

Perpetual preventive replacement
of a large bridge

LP 100 I PL ¼ 5 EL ¼ 10% � I PL ¼ 0:5 5.17þ 14.29¼ 19.45

Perpetual corrective replacement of
a large bridge

LC 100 ICL ¼ 1:5 � I PL ¼ 7:5 EL ¼ 10% � I PL ¼ 0:5 7.75þ 14.29¼ 21.95

Perpetual preventive replacement
of a small bridge

SP 100 I PS ¼ 0:6 � IPL ¼ 3 ES ¼ 10% � I PS ¼ 0:3 3.10þ 8.57¼ 11.67

Perpetual corrective replacement of
a small bridge

SC 100 ICS ¼ 1:5 � 0:6 � IPL ¼ 4:5 ES ¼ 10% � I PS ¼ 0:3 4.65þ 8.57¼ 13.17
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where, VLðTÞ and VS Tð Þ are the discounted values in
year T of the cash flows from Year 15 to infinity for a
large and small state, respectively. The values are cal-
culated in Table 2. If the existing bridge still functions
at the end of Year 15, the only decision left is to
replace the bridge with costs LP or SP, depending on
the state.

The present value of a waiting option in a small
state QS t;waitð Þ in a decision node at time t is given
by the recursive relationship:

QS t;waitð Þ ¼ b tð ÞSC þ 1�b tð Þð Þ � EL þ VS t þ 1ð Þ
1þ ra

� �
(4)

The waiting option comprises three cost compo-
nents: (i) the more expensive corrective replacement,
including all future life cycle costs, with a probability
bðtÞ resulting in costs: bðtÞSC , (ii) the yearly regular
maintenance costs of the existing bridge with a prob-
ability ð1� b tð ÞÞ resulting in costs 1� b tð Þð ÞEL and (iii),
the discounted value of all future cash flows with a
probability of ð1� b tð ÞÞ resulting in costs:
ðð1� b tð ÞÞ � VSðt þ 1Þ=ð1þ raÞ. The risk costs bðtÞSC
and operational expenses 1� b tð Þð ÞEL are considered
to be incurred at the time of the decision to wait, as a
principle of prudence. It is also justified to incur these
costs in the middle or end of the year, and discount
them appropriately.

The present value of a preventive replacement in a
small state in a decision node at time t is:

QS t; replaceð Þ ¼ SP (5)

The objective in each decision node in a small state
becomes:

VS tð Þ ¼ min
a2A

QS t; að Þ 84 � t � 15 (6)

VSðtÞ represents the discounted life cycle costs in a
small state, in Year t under optimal decisions. This
equation minimizes the discounted costs of a prevent-
ive investment in a small bridge (SP), including all
future life cycle costs and the discounted costs of
waiting. As an example, the cash flows of recursive
Equation (6), to be evaluated at t ¼ T � 1, are graph-
ically depicted in Figure 4.

Similarly, the recursive relationships in the case of a
large state are:

QL t;waitð Þ ¼ b tð ÞLC þ 1� b tð Þð Þ � EL þ VL t þ 1ð Þ
1þ ra

� �
(7)

QL t; replaceð Þ ¼ LP (8)

The objective function for a large state must
incorporate the possibility of transition from a large

state to a small state and becomes:

VL tð Þ ¼ 1�p tð Þð Þmin
a2A

QL t; að Þ
p tð Þmin

a2A
QS t; að Þ 80 � t � 15

(9)

For example, at the end of Year 12, the decision
maker will know the outcome of the political decision
to ban cars from the city centre in that year. From
today’s point of view, the decision maker will evaluate
the cash flows in a small and large state with proba-
bilities of respectively pðtÞ and 1� pðtÞ. For solving
the recursive relationships, the boundary conditions
LP; LC; SP and SC first need to be determined.

2.1.1. Boundary conditions without price increases

The value in a termination node is estimated by the
discounted value of all future replacements and
exploitation expenditures. Therefore, the boundary
conditions LP; LC; SP and SC are calculated based
on a combination of traditional discounted cash flow
formula for the perpetuity of replacements and the
perpetuity of operational expenses. The generalized
present value of a perpetuity of identical investment
costs is calculated as:

VI ¼ I �
 
1þ 1

1þ ra

� �n

þ 1
1þ ra

� �2n

þ 1
1þ ra

� �3n

þ . . .

!
¼ I � 1

1� 1
1þra

� �n
(10)

where, n is the interval of the replacement cycles and
ra is the risk-adjusted discount rate required by the
organization.

The generalized present value of the perpetuity of
identical yearly operational expenses follows from the
well-known capitalized equivalent worth relationship
(Park 2011):

VE ¼ E � 1
ra

(11)

In which E are the yearly operational expenses.
When yearly operational expenses are not constant as

T-1

(1-b(T-1))S
P

Planned replacement

with a small bridge

TT

S
P

 

Planned replacement

with a small bridge

 b(T-1)SC +(1-b(T-1))EL

T-1 T-1

Risk costs + 

exploitation costs

Figure 4. Cash flows of Equation (6) to be evaluated at year
T-1: replace or wait.
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a consequence of major overhauls or ageing, the life
cycle costs should first be translated into (constant)
equivalent annual costs (EAC) over the life cycle of the
asset by means of the discounted cash flow annu-
ity factor.

Combining VI and VE delivers the total present
value for a perpetuity of preventive replacements at
any time because no price increases are involved yet
(this will be done in Section 2.2). A small correction is
required for calculating the present value of perpetual
replacements, which start with a more expensive cor-
rective replacement. In this case, under the assump-
tion that subsequent future replacements will be
planned, the difference between a preventive and cor-
rective investment needs to be added to Equation
(10). The calculations for the present values of the per-
petuities LP; LC; SP and SC are presented in Table 2.

2.1.2. Results of DTA

With the values for the boundary conditions
LP; LC; SP and SC , the recursive relationships
(Equations (6) and (9)) are solved. The results for the
case study are presented in Table 3. The optimized
strategy is depicted in the bottom part of Table 3 and
in Figure 5. The strategy follows directly from the min-
imum options chosen in the recursive relationships at
decision nodes. The strategy in the bottom part of
Table 3 is read from left to right.

In the first 4 years, cars will be allowed in the city
centre. The strategy here is to wait and to accept the

potential risk of a corrective large replacement (W=LC).
At the end of Year 4, the politics may decide to ban
cars from the city centre. In that case, the strategy is
to replace the old bridge immediately with a prevent-
ive small replacement (SP) at which the options end.
The explanation here is that the risk costs of a correct-
ive small replacement, the operational expenses of the
old bridge minus the benefits of postponement from
Year 4 to 5 including future options, exceed the costs
of an immediate small replacement. In contrast, if the
political decisions taken at the end of Year 4 decide
not to ban cars from the city centre, the best strategy
is to wait. Here, the benefits of delaying the prevent-
ive replacement of a large bridge outweigh the costs
of such a replacement.

The best strategies for all possible scenarios are
derived from the bottom part of Table 3. Assume that
cars are banned from the city centre at Year 8 or Year
12, respectively, then the best strategy for the case
study is a small preventive replacement at the end of
Year 8 or 12 and to accept the probability of an earlier
corrective large replacement. If cars are not banned
from the city centre in Year 8, then the best strategy
is to wait and accept the probability of an earlier cor-
rective large replacement. If cars are not banned from
the city centre in Year 12, then the best strategy is a
preventive replacement for a large bridge. This is
because the increasing risk costs do not allow a fur-
ther postponement of the replacement.

It is obvious that the outcome of the calculations
and the strategy depends on the ratio between the

Table 3. Results of the present value calculations (� million e) for the case study without price uncertainty.
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Option value
VLðtÞ 15.9 15.9 15.7 15.6 15.3 16.8 16.6 16.4 16.1 17.8 17.6 17.4 17.1 19.5 19.5 19.5

VSðtÞ 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7

Strategy
Large W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

Small SP SP SP SP SP SP SP SP SP SP SP SP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 5. Optimized paths for case study subject to structural integrity and political decisions.
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cost components and the risk function. The presented
model allows for easy adaptation of input variables.

Although, backward recursion is hardly ever applied
in present value calculations, the advantage of this
approach is twofold. First, only a few calculations are
required to calculate the expected present value of all
possible scenarios. Second, the backward recursion
provides the decision maker with a strategy.

2.2. Valuing flexibility subject to market price
uncertainty: ROA approach

Technical and political uncertainties are considered in
the previous section. In this section, market price
uncertainty is incorporated into the model. Market
price uncertainty is treated differently than asset
uncertainty because it is a non-diversifiable risk (Cox
et al. 1979, Neely and de Neufville 2001). For the cor-
rect valuation of options under market price uncer-
tainty, a risk-adjustment of the discount rate or cash
flows is required. There are two approaches to obtain
this information from the market. The first is known as
the replicating portfolio approach and the second, the
risk-neutral probability approach and both deliver the
same results.

The replicating portfolio approach directly obtains a
risk-adjusted discount rate rm from the market and
uses actual probabilities for up and down moves of
market prices. The equivalent risk-neutral probability
approach obtains a risk-free discount rate rf from the
market and corrects the up and down moves of mar-
ket prices with so-called risk-neutral probabilities.

Risk-neutral probabilities have no physical meaning.
It is a theoretical concept that allows for discounting
with a risk-free discount rate instead of a risk-adjusted
discount rate. The advantage of using risk-neutral
probabilities is that the risk-free discount rate can dir-
ectly be observed in the market when options are to
be priced over multiple periods. In contrast, the mar-
ket risk-adjusted discount rate rm will change in each
period when asymmetric option payoffs are intro-
duced. Options are asymmetric when their present val-
ues are not a common multiple of a traded security
that mimics the option payoffs. Therefore, the risk-
neutral probability approach often has computation-
ally advantages over the replicating portfolio approach
(Copeland and Antikarov 2003). The risk-neutral proba-
bilities for the case study are defined after the formu-
lation of the mathematical model.

For correct valuation, two important assumptions
underlie the ROA theory: the payoffs of a project are
spanned by traded securities in the market (called a

twin security or spanning asset) and arbitrage profits
do not exist. The latter means that the market is effi-
cient and financial assets are always correctly priced.
There are no possibilities for investors to achieve quick
wins by exploiting price differences between similar
financial assets (Cox et al. 1979, Guthrie 2009, De
Neufville and Scholtes 2011). The validity of these
assumptions for many public infrastructure projects is
questioned by authors including De Neufville and
Scholtes (2011) and Herder et al. (2011). Other authors
like Copeland and Antikarov (2003) and Mun (2006)
argue that the market will always contain replicating
traded securities, even if they are not easy to find.

For the case study, construction prices per unit (X)
are identified as the market state variable or spanning
asset. All cost components in the case study are a
common multiple of the initial construction costs
(Tables 1 and 2). This leads to the special situation of
symmetrical option payoffs for which a constant risk-
adjusted discount rate rm applies. The case study,
however, will use and demonstrate the more generic
risk-neutral probability approach. Results have been
verified with the replicating portfolio approach.

The Central Bureau for Statistics (CBS) in the
Netherlands publishes historical quarterly data on con-
struction costs for bridges and tunnels (CBS, 2017).
The data are calculated based on a compiled bundle
that contains labour, materials and equipment. The
case study assumes that this bundle suffices as the
spanning asset and that somewhere in the market a
tradable replicating portfolio with this spanning asset
and risk-free bonds can be found.

A common convention used to estimate market pri-
ces development is the assumption of a geometric
Brownian Motion (GBM). A GBM assumes that the nat-
ural logarithm of the price X follows a random walk
with an annualized drift l and volatility r:

Xtþ1 ¼ Xt � exp lDtm þ r
ffiffiffiffiffiffiffiffi
Dtm

p
� e

� �
(12)

Dtm is the proportional time step used in the calcula-
tion for the future price development and is 1 for
yearly time steps (Dtm would be 0.25 if quarterly time
steps were used). e~Nð0; 1) is a shock, which is nor-
mally distributed with a mean of zero and a standard
deviation of 1.

The drift l and volatility r are obtained from the
mean and standard deviation of historical log price
differences (equal to the log of the returns). Analysing
the quarterly data of construction prices in the
Netherlands from 2000 until 2017 leads to an annual-
ized drift of 0.015 and volatility of 0.027. Based on
these data, some possible scenarios for the price

CONSTRUCTION MANAGEMENT AND ECONOMICS 9



development of construction costs per unit are
depicted in Figure 6.

A GBM is a continuous stochastic process, which
can be converted into a discreet simulation process in
the form of a recombining binominal lattice with up
moves U and down moves D (Figure 7). The size of an
up move U is calculated as:

U ¼ exp r
ffiffiffiffiffiffiffiffi
Dtm

p� �
(13)

For a recombining lattice, the size of a down move
D must satisfy:

D ¼ 1
U

(14)

Using Equations (13) and (14), the discrete simula-
tion of the market state variable Xði; tÞ of 1 unit
of construction costs is presented in Appendix Table

A1. The index i represents the number of down moves
D and t represents the time. For example, and
with reference to Figure 7: XUU ¼ Xð0; 2Þ
and XDDU ¼ Xð2; 3Þ.

Equation (15) provides a direct relationship to cal-
culate Xði; tÞ. This relation will be used after develop-
ment of the model to derive equations for the new
boundary constraints.

X i; tð Þ ¼ X 0; 0ð Þ � exp t � 2ið Þr
ffiffiffiffiffiffiffiffi
Dtm

p� �
(15)

The next step is the inclusion of market price uncer-
tainty in the model of the case study. Market price uncer-
tainty affects all cost components which now becomes a
function of the number of down moves i and time t.

The adjusted boundary constraints at expiration
year T are:

VS i; Tð Þ ¼ SP i; Tð Þ (16)

VL i; Tð Þ ¼ LP i; Tð Þ (17)

The discounted value of a waiting option at node
ði; tÞ in a small state is calculated as under the new
circumstances:

QS i; t;waitð Þ ¼ b tð ÞSC i; tð Þ þ 1� b tð Þð Þ

� EL i; tð Þ þ gUVS i; t þ 1ð Þ þ 1�gUð ÞVS iþ 1; t þ 1ð Þ
1þ rf

� �
(18)

In this equation, gU and rf represent a risk-neutral
probability for an up movement and a risk-free dis-
count rate respectively, which will be further explored
after defining the model. The symbol i represents the
number of down moves.
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The discounted value of a preventive replacement
at node ði; tÞ in a small state becomes:

QS i; t; replaceð Þ ¼ SP i; tð Þ (19)

The objective in each decision node in a small state
now reads:

VS i; tð Þ ¼ min
a2A

QS i; t; að Þ 84 � t � 15 (20)

Similar, the discounted value of a waiting option at
node ði; tÞ in a large state becomes:

QL i; t;waitð Þ ¼ b tð ÞLC i; tð Þ þ 1� b tð Þð Þ

� EL i; tð Þ þ gUVL i; t þ 1ð Þ þ 1�gUð ÞVL iþ 1; t þ 1ð Þ
1þ rf

� �
(21)

The discounted value of a preventive replacement
at node ði; tÞ in a large state becomes:

QL i; t; replaceð Þ ¼ LP i; tð Þ (22)

The objective function of a decision node in a large
state needs to incorporate the probability of transfer-
ring from a large state to a small state. Recall that pðtÞ
is only > 0 for nodes 4, 8 and 12. The generic object-
ive function for decision nodes in state L becomes:

VL i; tð Þ ¼ p tð Þmin
a2A

QS i; t; að Þ þ 1� p tð Þð Þmin
a2A

QL i; t; að Þ
(23)

The inclusion of market uncertainty quickly compli-
cates the model. First, it significantly increases the
number of calculations as a consequence of consid-
ered up and down moves. Second, the estimated fluc-
tuations of one unit of investment costs still needs to
be converted to the present values of the future life
cycle costs (perpetuities) of preventive and corrective
replacements at all nodes ði; tÞ. The boundary condi-
tions calculated in Table 2, need to be adjusted to
incorporate price increases. Third, motivated estima-
tions are required for the upward risk-neutral probabil-
ity gU and the risk-free discount rate rf .

We begin with the estimations for the risk-neutral
probabilities and market risk-free discount rate. The
risk-neutral probability approach requires an estima-
tion of a risk-free interest rate. The risk-free interest
rate is a secure bond that serves as a standard for
pricing other risky assets. Since 2009, the financial cri-
sis has caused risk-free interest rates to decline rapidly.
The current short term risk-free interest rate is close to
zero in the Euro-zone. This poses a problem for the
application of ROA and other economic instruments to
value derivatives (Hull and White 2013, ECB 2014,

2017, Frankema 2016). This is an ongoing debate
between econometrists and beyond the scope of this
study, which intends to apply ROA theory in engineer-
ing practice. In accordance with the current policy of
the ECB, the long-term risk-free interest rate for the
case study is estimated from the Euro area yield curve
that contains the long-term structure of the interest
rates of AAA-rated Euro area central government
bonds. Based on the instantaneous forward Euro area
yield curve, an average risk-free interest rate of 0.8% is
estimated for the case study.

The next step is to estimate the risk-neutral proba-
bilities. In the absence of dividends payment or a mar-
ket risk premium and systematic market risks for
holding the spanning assets, the risk-neutral probabil-
ity of an up move is derived by Cox et al. (1979) as:

gU ¼ 1þ rfð Þ�D
U� D

(24)

In the case study, market risk premiums and sys-
tematic market risks are present and cannot be
ignored. The Dutch National Task Force for Discount
Rates advises that for these types of investments (for
costs and benefits) use a 3% market risk premium and
a b-coefficient of 1 [Werkgroep Discontovoet (National
Taskforce for the Societal Discount Rate), 2015]. A b-
coefficient accounts for the systematic market risk. A b
of 1 implies that the net benefits (benefits minus
costs) of the project move along with the economy.
Although benefits are not included in the case
description, benefits are present. The case study just
assumes that the different alternatives have equal
societal benefits whether it will be a large or small
bridge. It is hard to differentiate between social bene-
fits in the case study. If cars are banned from the city
centre, there will probably be benefits to tourism, the
local economy (more restaurants, caf�es) and improve-
ments in air quality. If cars are not banned from the
city centre, the benefits are found in better accessibil-
ity and probably shorter travel times for motor-
ized traffic.

Guthrie (2009) provides an approach to address the
market’s attitude by incorporating a market risk pre-
mium and b-coefficient in the dividend free risk-neu-
tral probability Equation (24):

gU ¼ K�D
U� D

(25)

with:

K ¼ /UXU þ /DXD
X

� �
� market risk premiumð Þ � b

(26)
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The first term between brackets on the right side of
the equation is the expected return on the state vari-
able using the actual probabilities of up and down
moves: uU and uD.

To determine K , first the actual probability of
an up move is calculated based on the observed
data. Cox et al. (1979) recommend to estimate uU

as:

/U ¼ 1
2
þ 1
2
l
ffiffiffiffiffiffiffiffi
Dtm

p
r

(27)

The mean l and volatility r were already obtained
from analysing the historical data of the construction
prices. Knowing that uD ¼ 1� uU, allows for calculat-
ing the risk-adjusted growth factor K and risk-neutral
probabilities gU, and gD ¼ 1� gU.

To complete the analysis, the one period risk-
adjusted discount rate rm for the state variable can
be derived from equivalence relationship between
the risk-neutral probability approach and the repli-
cating portfolio approach. The equivalence between
a market risk-adjusted discount rate rm, the actual
probabilities of up and down moves and the risk-
free interest rate and risk-neutral probabilities in
ROA valuation is in its simplest form, for a one-time
period, represented by (Cox et al. 1979, Copeland
and Antikarov 2003, Guthrie 2009):

V0 ¼ gU � VU þ gD � VD
1þ rf

¼ /U � VU þ /D � VD
1þ rm

(28)

where, V0 ¼ a generic option value, VU ¼ option payoff
after one period in an up-state and VD ¼ option payoff
after one period in a down-state. The risk-adjusted
discount rate rm for one period follows from

Equation (28):

rm ¼ /UVU þ /DVD
V0

� �
�1 (29)

To find rm for the first timestep of the case study
(and the following because of the special situation
of symmetrical option payoffs), VU is substituted
with Xð0; 1Þ, VD is substituted with Xð1; 1Þ and V0
is defined by Equation (28). The intermediate calcu-
lations for the market variables are presented in
Table 4. At this point, it is interesting to notice that
not compensating for the market risk premium and
systematic market risk would result in a risk-neutral
probability for an up move of gU ¼ 0.643 (Equation
(24)) and a risk-adjusted discount rate rm of 1.6%
(Equation (29)). The latter is far below even the risk-
adjusted discount rate of the municipality of 3.5%
and would not provide a realistic result. This obser-
vation demonstrates the difficulty in correctly esti-
mating market variables in an infrastructure
case study.

2.2.1. Boundary conditions under price increases

As a result of the price uncertainty of the develop-
ment of construction costs, the boundary conditions
for the case study change. The case study needs val-
ues for a perpetual stream of life cycle costs indexed
by ði; tÞ for the four types of replacements. Four add-
itional tables like Appendix Table A1 need to be con-
structed for LPði; tÞ; LCði; tÞ; SPði; tÞ and SCði; tÞ.

Under the assumption that the yearly operational
expenses Eði; tÞ after replacement remain a fraction of
the initial construction costs and are subject to the
same uncertainty as the state variable Xði; tÞ, the
expected discounted value at ði; tÞ of a continuation
of operational expenses with growth rate g and a

Table 4. Intermediate calculations of market variables.
Symbol Value Description Source

X(0,0) 1 State variable: one unit of construction costs –
r 0.027 Annualized volatility of observed historical price data of construction costs Data analysis
l 0.015 Annualized mean of observed historical price data of construction costs Data analysis
U 1.027 One up move of the state variable Equation (13)
D 0.974 One down move of the state variable Equation (14)
uU 0.789 Actual probability of an up move Equation (27)
uD 0.211 Actual probability of a down move 1 – Equation (27)
mrp 3% Market risk premium Data
b 1 Coefficient for systematic market risk Data
K 0.986 Risk-adjusted growth factor Equation (26)
gU 0.228 Risk-neutral probability of an up move Equation (25)
gD 0.772 Risk-neutral probability of a down move 1 – Equation (25)
rf 0.8% Risk-free interest rate Data
rm 0.039 Risk-adjusted discount rate Equation (29)
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risk-adjusted discount rate rm, is in generalized form
given by:

E VE i; tð Þ½ � ¼ E i; tð Þ � 1þ g
rm � g

(30)

This formula is derived from a standard discounted
cash flow gradient annuity factor in which we allow n
to approach infinity (Park 2011, Sullivan et al. 2012).
The actual expected annual growth rate g is 0.0159
and follows from:

1þ gð Þ ¼ /UXU þ /DXD
X

(31)

As a consequence of the assumptions mentioned
above, its equivalent relationship in the risk-neutral
world reads as (Guthrie 2009):

E VE i; tð Þ½ � ¼ E i; tð Þ � K
Rf � K

(32)

where, Rf ¼ 1þ rf :
In generalized form, the discounted value of a per-

petuity of repeating risky replacement costs Iði; tÞ with
interval n at ði; tÞ is derived as:

E VI i; tð Þ½ � ¼ Iði; tÞ �
 
1þ 1þ g

1þ rm

� �n

þ 1þ g
1þ rm

� �2n

þ 1þ g
1þ rm

� �3n

þ . . .

!
¼ I i; tð Þ 1

1� 1þg
1þrm

� �n
(33)

Due to the above-mentioned assumptions (all cost
elements are proportional to the state variable Xði; tÞ),
its risk-neutral equivalent expression is (Guthrie 2009):

E VI i; tð Þ½ � ¼ I i; tð Þ 1

1� K
Rf

� �n (34)

Again, a small correction for the one-time occur-
rence of a more expensive corrected replacement
needs to be made. To be accurate, the difference in
investment costs between a preventive and corrective
replacement needs to be added to Equation (33) or
(34) to calculate the perpetuity of a corrective replace-
ment, followed by future preventive replacements.

The discounted expected values capture all prob-
able future cash flows for each i and t. This has been
verified by an alternative calculation in which the
actual or risk-neutral probabilities throughout the
binominal lattice are used to calculate the expected
values of the cash flow at Year t and discounting
these values to the present with rm or rf depending
on the probabilities used (an equivalent but more
time-consuming calculation).

Combining the relationships (Equations (15, 32 and
34)), correcting them for proportional fractions of cost
components (Table 1) to the state variable Xði; nÞ as
expressed in Table 5 and rewriting the relationships,
results in direct equations for the case-specific bound-
ary conditions underprice uncertainty.

LP i; tð Þ ¼ k1 � X 0; 0ð Þ exp t� 2ið Þr½ �

� 1

1� K
Rf

� �n þ k4 � K
Rf � K

2
4

3
5 (35)

LC i; tð Þ ¼ k1 � X 0; 0ð Þ exp t� 2ið Þr½ �

� k2 � 1ð Þ þ 1

1� K
Rf

� �n þ k4 � K
Rf � K

2
4

3
5 (36)

SP i; tð Þ ¼ k1 � k3 � X 0; 0ð Þ exp t� 2ið Þr½ �

� 1

1� K
Rf

� �n þ k4 � K
Rf � K

2
4

3
5 (37)

SC i; tð Þ ¼ k1 � k3 � X 0; 0ð Þ exp t� 2ið Þr½ �

� k2 � 1ð Þ þ 1

1� K
Rf

� �n þ k4 � K
Rf � K

2
4

3
5 (38)

2.2.2. Results of ROA

At this point, the case study has all the information it
needs to solve the risk-neutral recursive relationships
(Equations (20) and (23)). The results of the final recur-
sive calculations are shown in Appendix Tables A2, A3,
A4 and A5. The optimized strategy underprice uncer-
tainty is shown in Appendix Tables A4 and A5 and

Table 5. Input data for case-specific boundary
conditions subject to price uncertainty. The pro-
portional values k are derived from Table 1.

k1 ¼ 5

k2 ¼ 1:5

k3 ¼ 0:6

k4 ¼ 0:1

I PL i; tð Þ ¼ k1 � Xði; tÞ

ICL i; tð Þ ¼ k2 � I PL i; tð Þ ¼ k1 � k2 � X i; tð Þ

I PS i; tð Þ ¼ k3 � I PL i; tð Þ ¼ k1�k3 � X i; tð Þ

ICS i; tð Þ ¼ k2 � I PS i; tð Þ ¼ k1�k2�k3 � X i; tð Þ

ELði; tÞ ¼ k4 � I PL ¼ k1�k4 � Xði; tÞ

ESði; tÞ ¼ k4 � I PS ¼ k1�k3�k4 � Xði; tÞ
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equals the strategy without price uncertainty (Figure
5). A decision maker should wait for political decisions
on banning cars from the city centre and incur the
risk costs under the current assumptions until Year 12.
Only when entering a small state (a decision to ban
cars from the city centre) the current bridge should
immediately be replaced by a small bridge.

The volatility of construction prices does not influ-
ence the strategy in the case study. This is deducted
from Appendix Table A4. All the strategies in one col-
umn are identical. There is no incentive to act purely
on the volatility derived from analysis of historical con-
struction prices.

2.3. The DT approach to ROA

The difficulty in applying ROA in engineering practice
lies in the establishment of reasonable assumptions
for market behaviour as demonstrated in Section 2.2.
A spanning asset or twin security needs to be found
and analysed. Assumptions that predict future prices
are required for the process (Table 4). Systematic mar-
ket risks and risk premiums need to be estimated. A
prediction of the future risk-free interest rate should
be obtained from the financial market. Unfortunately,
risk-free interest rates fluctuate and are only constant
for an agreed term. Presently, the short-term risk-free
interest is close to zero in the Netherlands. Solutions
to value real options under zero or negative risk-free
interest rates are not readily available and require in-
depth economic expertise.

It is understandable that in engineering practice,
ROA is adapted to become what is often called a DT
approach to ROA. Price development is modelled
according to standard ROA practices, for example a
GBM expressed in a recombining binominal lattice.
However, the difference is that instead of
calculating with risk-neutral probabilities ðgU; gD) and

discounting the adapted cash flows with a risk-free
discount rate rf , actual probabilities ðuU; uD) are used
and discounted with the minimum accepted rate of
return of the organization (ra ¼ 3.5% in the case
study). This also affects the perpetuities of the bound-
ary constraints which are now calculated by using the
annual growth rate g and the organization’s discount
rate ra. Performing these calculations for the case study
results in an option value VL; DT approach to ROA ð0; 0Þ of
26.6 instead of 22.9. The optimized strategy does not
alter in the current case study. This DT approach to
ROA is incorrect in its definition of ROA because it
allows for the possibility of arbitrage on the finan-
cial market.

2.4. Comparison

The purpose of this study is methodology develop-
ment and to demonstrate how and when to apply dif-
ferent approaches: DTA, ROA and the DT approach to
ROA. Table 6 summarizes the three approaches used
for the case study. The approaches that value options
without (DTA, Section 2.1) and with market price
uncertainty (ROA, Section 2.2) show a difference in
option value. This difference is a consequence of two
different approaches and their underlying assump-
tions. The basic rule for applying ROA instead of DT is
whether or not market prices are involved.

Comparing the ROA (Section 2.2) with the DT
approach to ROA (Section 2.3) also shows a difference
in option values but here the explanation is clear: the
DT approach to ROA is an incorrect application of the
ROA theory. However, all these applications still result
in the same strategy for the case study. This is a con-
sequence of construction prices with low drift and
volatility, and a market discount rate close to the dis-
count rate of the organization.

Table 6. Comparison of different valuation methods for the case study.

Case study bridge replacement DTA ROA
DT approach to ROA (wrong
application of ROA theory)

Uncertainties � Strength of bridge
� Political decisions

� Strength of bridge
� Political decisions
� Prices (drift and volatility)

� Strength of bridge
� Political decisions
� Prices (drift and volatility)

Assumptions for prices � Constant
� No drift
� No volatility

� GBM
� Drift and volatility obtained from

historical data

� GBM
� Drift and volatility obtained from

historical data
Assumptions for discount rate � Static: minimum acceptable rate

of return provided by
organization

� Dynamic: influenced by market
forces (trading)

� Use of equivalent risk neutral
probability approach and risk-free
discount rate

� Static: minimum acceptable rate
of return provided by
organization

Option value VLð0; 0Þ 15.9 22.9 26.6
Replacement Strategy Identical Identical Identical

Option values expressed in discounted costs (�million e).
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3. Discussion

Section 2 is focused on model development for an
infrastructure replacement decision under different
types of uncertainty, including the managerial flexibil-
ity to respond to these uncertainties. Although a spe-
cific case study is used to demonstrate the model
development, the approach is generic and in principle
applicable to a wide range of design, build and oper-
ate decisions. The approach identifies the uncertainties
and managerial options, which are combined in a
decision tree. The decision tree is solved with back-
ward recursion. Each decision node is evaluated for
the best option out of a range of options for all pre-
vailing states of uncertainty at that particular time.

The underlying mathematics for solving a decision
tree (the backward recursion) are generic but the
modelling of a decision tree and the inclusion of dif-
ferent types of uncertainty in a ROA/DTA is not.
Probably the major barrier in the practical application
of the method is the identification and quantification
of uncertainties. Perminova et al. (2008) conducted a
comprehensive research on defining uncertainty in
projects. The authors observe the absence of a com-
mon understanding on the definition of uncertainty in
and between different disciplines such as project man-
agement and economics. Uncertainty is not self-
explanatory. Uncertainty is often used to designate
the probability of events, but also as the probable
outcome of these events to which others refer to as
risk. A third definition of uncertainty is the unknown
unknown: events that cannot be anticipated on
because they are totally unknown. The current
research follows a commonly applied convention in
the discipline of project management for the defin-
ition of uncertainty and defines uncertainty as a (time-
variant) probability of an event. Perminova et al.
(2008) conclude that reflective learning and informa-
tion sharing are methods to manage and reduce
uncertainty and stress the importance of future
research to develop tools that assist managers in deci-
sion making under uncertainty. The current study
developed one of these tools by integrating different
types of uncertainty in a DTA/ROA. Neely and De
Neufville (2001) referred conceptually to such an
approach as “hybrid” real options.

Section 2 already emphasizes the importance of
separating market price uncertainty from other types
of uncertainty as they require different treatment in
discounting approaches. The case study in Section 2
also demonstrates the difficulty in estimating expected
values of the uncertainty variables. Expected values
can be obtained by wide range of approaches such as

expert judgement, data-analysis, testing, using refer-
ence data of similar assets or projects and mathemat-
ical prediction modelling. Hereafter, uncertainty
bounds for the expected value of variables need to be
defined. Again, various approaches are available to
model uncertainty bounds such as using random
walks (geometric or arithmetic Brownian Motions),
shock models, working with (time-variant) probability
distributions or with non-probabilistic uncertainty
bounds as does the info-gap decision theory and the
sensitivity analysis approach. When uncertainty varia-
bles influence each other, more sophisticated techni-
ques like Markov chains, Baysian networks, and
artificial learning come into view.

Uncertainty modelling is complex (Perminova et al.
2008, Scope et al. 2016, Ilg et al. 2017). And even uncer-
tainty models are subject to uncertainty. Would that be a
reason for practice to refrain from the application of DTA
and ROA? To answer this question, we first argue that
uncertainty is inherent to every analysis conducted,
including conventional LCC analysis. An extensive
research on uncertainty in LCC modelling was conducted
by Scope et al. (2016). The authors identify numerous
approaches for dealing with uncertainty and classify
these approaches in deterministic, probabilistic, possibil-
istic and practical methods. The above mentioned tech-
niques identified by the current study are easily classified
within these categories. Scope et al. (2016) also observe
the absence of a holistic model in dealing with uncer-
tainty in LCC analyses and conclude that choosing the
right approach does not follow generic decision rules.
Although uncertainty approaches can be grouped, their
selection and application remain case-specific. Therefore,
the authors stress the importance of developing case
studies and learning by example.

The current research is a case-specific application of
uncertainty modelling. A DTA/ROA incorporates all
possible scenario’s in a condensed decision tree and
the backward recursion provides for choosing the best
option in any decision node. By navigating through
the tables with results, the best strategy in each deci-
sion node and uncertainty state is provided
(Appendix A).

That still leaves the issue of selecting and quantify-
ing uncertainties which may refrain practitioners from
the application of DTA/ROA. Modelling price uncer-
tainty is not an insuperable obstacle, because the ROA
theory offers well-defined approaches and, historic
price indices of construction costs and materials are
often available. The estimation of boundary con-
straints, especially the perpetuities of replacements
and life cycle costs under price uncertainty, are not yet
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available in the engineering economy discipline and
only partly available in the ROA discipline. This
approach has been developed in the current research.

A difficult part in the application of ROA is estimat-
ing long-term market variables, required for the calcu-
lation of the risk neutral probabilities. A pragmatic
solution is to omit this process and discount with
fixed discount rates. In Section 1, De Neufville and
Scholtes (2011) provide arguments that support this
pragmatic solution. Second, the discrepancy between
short-term market behaviour and long-term infrastruc-
ture life cycles, also calls into question the long-term
validity of these risk neutral probabilities.

The second category of uncertainty is the infrastruc-
ture asset or project-related uncertainty. The current
research demonstrates how these types of uncertainty
can be incorporated in a DTA/ROA. A pragmatic
approach based on failure data and expert judgement
is used to provide reasonable estimates. Although reli-
ability modelling of infrastructure is complex, often
reasonable and pragmatic estimates for the current
type of calculations suffice.

Taking the case study as an example, the strategy
for the first 4 years is to wait and see what happens
in Year 4. At present deformation, monitoring is initi-
ated. In 4 years’ time, results of measurements will
become available and the model can be adjusted with
better predictions for the probability of exceeding a
deformation threshold in the future. Deformation
monitoring is also initiated on other bridges in this
city, which will provide the data required for establish-
ing uncertainty bounds. This process of managing and
reducing uncertainty is an example of reflective learn-
ing as referred to by Perminova et al. (2008) and an
example of a practical method for dealing with uncer-
tainty as referred to by Scope et al. (2016).

4. Conclusions

This study investigates the application of DTA and
ROA in a common public infrastructure challenge, that
of replacing a bridge in an urban environment. The
concept of DTA and ROA is an incentive to wait for
more information that allows decision makers to opti-
mize future decisions. This managerial flexibility has
value, which should be incorporated into traditional
investment or replacement analyses. Both DTA and
ROA can capture the value of flexibility.

The theory of ROA originates from valuing financial
options and is strongly tied to the behaviour of finan-
cial markets. Therefore, applying ROA requires a care-
ful estimation of market variables such as the choice

of a spanning asset whose price can be observed in
the market, market risk premiums, systematic market
risks and risk-free interest rates. The estimation of mar-
ket variables is subject to an inherent uncertainty
regarding long-term market behaviour.

In the last decade, an academic debate on real
options has revealed some interesting perspectives. A
growing number of case studies demonstrate the
application of ROA on real assets and advocate a
wider application. Other literature warns against using
ROA formula in the absence of price uncertainty. Two
mistakes are easily made: ROA is applied to value flexi-
bility in the absence of market price uncertainty and a
DT approach to ROA is applied to value flexibility sub-
ject to market price uncertainty. It is correct to apply
ROA to value flexibility subject to market price uncer-
tainty and apply DTA to value flexibility in the absence
of market price uncertainty.

At the same time, ROA has not gained foothold in
public infrastructure investment decisions. The domin-
ant reasons are its complexity, its difficulty in estimat-
ing market variables and the political context of
public decision making. Investment or replacement
decisions in public infrastructure are seldom driven by
economic reasons alone. The current research, how-
ever, demonstrates with a case study that ROA can be
applied to public sector investment decisions when
market prices are observable. Second, even after high-
level political investment decisions are made, there is
no reason to ignore the value of flexibility and to
address the question of timing.

The complexity of ROA is easily reduced by an
incorrect application of ROA (referred to as the DT
approach to ROA) that partially omits the process of
estimating market variables. Here experts on ROA
claim that this will lead to an incorrect valuation of
flexibility under uncertain market prices. However, in
the case study used in this research, the differences in
these monetary values resulting from the application
of different methods do not result in different opti-
mized strategies. Although the monetary values of
flexibility differ, the optimized replacement strategy
does not alter because the discount rate of the organ-
ization is close to the discount rate obtained from the
market. Second, the case study demonstrates that hav-
ing capital-intensive options (replace or wait and
accept risk costs) quickly dominates the impact of the
volatility of market prices.

This leads us to the primary conclusion of this
research. In the absence of market price uncertainty,
ROA should be avoided and DTA used instead. In the
presence of market price uncertainty, ROA is the first
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choice to value the flexibility of engineering options.
However, when market variables like market prices,
systematic market risks, risk premiums and risk-free
interest rates, cannot reasonably be estimated, the DT
approach to ROA is the best approximation for ROA. If
the discount rate of the organization is close to the
discount rate that would be obtained from the market,
and capital-intensive options are involved, then it is
very unlikely that the DT approach to ROA will result
in a different strategy. These conditions often apply to
public infrastructure assets.
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Appendix A

Table A1. Tabular representation of the binominal lattice for the state variable Xði; tÞ: yearly price increases of 1 unit of con-
struction costs with a move up U ¼ 1:027 and move down D ¼ 0:974. The number of down moves is represented by i.
X(i,t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1.00 1.03 1.05 1.08 1.11 1.14 1.17 1.21 1.24 1.27 1.31 1.34 1.38 1.42 1.45 1.49
1 0.97 1.00 1.03 1.05 1.08 1.11 1.14 1.17 1.21 1.24 1.27 1.31 1.34 1.38 1.42
2 0.95 0.97 1.00 1.03 1.05 1.08 1.11 1.14 1.17 1.21 1.24 1.27 1.31 1.34
3 0.92 0.95 0.97 1.00 1.03 1.05 1.08 1.11 1.14 1.17 1.21 1.24 1.27
4 0.90 0.92 0.95 0.97 1.00 1.03 1.05 1.08 1.11 1.14 1.17 1.21
5 0.87 0.90 0.92 0.95 0.97 1.00 1.03 1.05 1.08 1.11 1.14
6 0.85 0.87 0.90 0.92 0.95 0.97 1.00 1.03 1.05 1.08
7 0.83 0.85 0.87 0.90 0.92 0.95 0.97 1.00 1.03
8 0.81 0.83 0.85 0.87 0.90 0.92 0.95 0.97
9 0.79 0.81 0.83 0.85 0.87 0.90 0.92
10 0.77 0.79 0.81 0.83 0.85 0.87
11 0.75 0.77 0.79 0.81 0.83
12 0.73 0.75 0.77 0.79
13 0.71 0.73 0.75
14 0.69 0.71
15 0.67
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Table A4. Tabular representation of the optimized strategy at ði; tÞ in a large state L based on recursive Equation (23). Years 4,
8 and 12 represent the transitionary nodes where a switch to a small state could occur. The optimized strategy in a large state
is to postpone the planned replacement LP until year 12 years and incur the risk of a premature corrective replacement W/LC .
VL(i, t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

1 W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

2 W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

3 W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

4 W/LC W/LC W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

5 W/LC W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

6 W/LC W/LC W/LC W/LC W/LC W/LC LP LP LP LP

7 W/LC W/LC W/LC W/LC W/LC LP LP LP LP

8 W/LC W/LC W/LC W/LC LP LP LP LP

9 W/LC W/LC W/LC LP LP LP LP

10 W/LC W/LC LP LP LP LP

11 W/LC LP LP LP LP

12 LP LP LP LP

13 LP LP LP

14 LP LP

15 LP

Table A2. Tabular representation of the present values VLði; tÞ at ði; tÞ of optimized decisions at each node in a large state L
based on recursive Equation (23). Years 4, 8 and 12 represent the transitionary nodes where a switch to a small state could
occur. At Year 0, the initial enforcement expenditures are incorporated.
VL(i, t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 22.9 23.4 23.8 24.2 24.5 27.5 27.9 28.2 28.5 32.4 33.0 33.4 33.7 39.4 40.4 41.5
1 22.1 22.5 22.9 23.2 26.0 26.4 26.8 27.0 30.8 31.2 31.7 32.0 37.3 38.3 39.4
2 21.4 21.7 22.0 24.7 25.1 25.4 25.6 29.2 29.6 30.0 30.3 35.4 36.3 37.3
3 20.6 20.8 23.4 23.8 24.1 24.3 27.6 28.1 28.4 28.7 33.5 34.5 35.4
4 19.8 22.2 22.5 22.8 23.0 26.2 26.6 27.0 27.2 31.8 32.7 33.5
5 21.0 21.3 21.6 21.8 24.8 25.2 25.6 25.8 30.1 31.0 31.8
6 20.2 20.5 20.7 23.5 23.9 24.2 24.5 28.6 29.4 30.1
7 19.4 19.6 22.3 22.7 23.0 23.2 27.1 27.8 28.6
8 18.6 21.2 21.5 21.8 22.0 25.7 26.4 27.1
9 20.1 20.4 20.6 20.9 24.3 25.0 25.7
10 19.3 19.6 19.8 23.1 23.7 24.3
11 18.6 18.7 21.9 22.5 23.1
12 17.8 20.7 21.3 21.9
13 19.7 20.2 20.7
14 19.1 19.7
15 18.6

Table A3. Tabular representation of the present values VSði; tÞ at ði; tÞ of optimized decisions at each node in a small state S
based on recursive Equation (20).
VS(i, t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 18.6 19.1 19.6 20.1 20.7 21.2 21.8 22.4 23.0 23.6 24.3 24.9
1 17.6 18.1 18.6 19.1 19.6 20.1 20.7 21.2 21.8 22.4 23.0 23.6
2 16.7 17.1 17.6 18.1 18.6 19.1 19.6 20.1 20.7 21.2 21.8 22.4
3 15.8 16.3 16.7 17.1 17.6 18.1 18.6 19.1 19.6 20.1 20.7 21.2
4 15.0 15.4 15.8 16.3 16.7 17.1 17.6 18.1 18.6 19.1 19.6 20.1
5 14.6 15.0 15.4 15.8 16.3 16.7 17.1 17.6 18.1 18.6 19.1
6 14.2 14.6 15.0 15.4 15.8 16.3 16.7 17.1 17.6 18.1
7 13.8 14.2 14.6 15.0 15.4 15.8 16.3 16.7 17.1
8 13.5 13.8 14.2 14.6 15.0 15.4 15.8 16.3
9 13.1 13.5 13.8 14.2 14.6 15.0 15.4
10 12.8 13.1 13.5 13.8 14.2 14.6
11 12.4 12.8 13.1 13.5 13.8
12 12.1 12.4 12.8 13.1
13 11.8 12.1 12.4
14 11.5 11.8
15 11.2
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Table A5. Tabular representation of the optimized strategy at ði; tÞ in a small state S based on recursive Equation (20). The opti-
mized strategy is to immediately replace the current bridge with a preventive small replacement SP when entering a small state.
Entering a small state depends on political decision in Year 4, 8 or 12.
VS(i, t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 SP SP SP SP SP SP SP SP SP SP SP SP

1 SP SP SP SP SP SP SP SP SP SP SP SP

2 SP SP SP SP SP SP SP SP SP SP SP SP

3 SP SP SP SP SP SP SP SP SP SP SP SP

4 SP SP SP SP SP SP SP SP SP SP SP SP

5 SP SP SP SP SP SP SP SP SP SP SP

6 SP SP SP SP SP SP SP SP SP SP

7 SP SP SP SP SP SP SP SP SP

8 SP SP SP SP SP SP SP SP

9 SP SP SP SP SP SP SP

10 SP SP SP SP SP SP

11 SP SP SP SP SP

12 SP SP SP SP

13 SP SP SP

14 SP SP

15 SP
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