<]
TUDelft

Delft University of Technology

MOHA
A Multi-Mode Hybrid Automaton Model for Learning Car-Following Behaviors

Lin, Qin; Zhang, Yihuan; Verwer, Sicco; Wang, Jun

DOI
10.1109/TITS.2018.2823418

Publication date
2019

Document Version
Accepted author manuscript

Published in
IEEE Transactions on Intelligent Transportation Systems

Citation (APA)

Lin, Q., Zhang, Y., Verwer, S., & Wang, J. (2019). MOHA: A Multi-Mode Hybrid Automaton Model for
Learning Car-Following Behaviors. IEEE Transactions on Intelligent Transportation Systems, 20(2), 790-
796. https://doi.org/10.1109/TITS.2018.2823418

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TITS.2018.2823418
https://doi.org/10.1109/TITS.2018.2823418

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

MOHA: A Multi-Mode Hybrid Automaton Model
for Learning Car-Following Behaviors

Qin Lin™, Yihuan Zhang™, Sicco Verwer, and Jun Wang™, Senior Member, IEEE

Abstract—This paper proposes a novel hybrid model for
learning discrete and continuous dynamics of car-following
behaviors. Multiple modes representing driving patterns are
identified by partitioning the model into groups of states. The
model is visualizable and interpretable for car-following behavior
recognition, traffic simulation, and human-like cruise control.
The experimental results using the next generation simulation
datasets demonstrate its superior fitting accuracy over conven-
tional models.

Index Terms—Hybrid automaton, car-following behavior,
simulation and control.

I. INTRODUCTION

EARNING car-following from real driving data is helpful
for behavior recognition, traffic simulation, and human-
like cruise control. A car-following model bridges environ-
mental variables, like subject vehicle speeds, relative distances
and relative speeds to a leading vehicle, and control variables,
like acceleration or deceleration. Conventional approaches
for representing car-following behaviors mainly include
linear [3], [4] and non-linear models [5], [6]. A gross fitting
strategy is usually used for identification, i.e., fitting a car-
following model on all the collected data. It does not fully
capture driver behavior in different driving scenarios due to
heterogeneities of inter-driver difference [7] and intra-driver
difference [8]. The inter-driver difference, discovering that
different car-following models may apply to different drivers,
is useful for driving behavior modeling and skills evaluation
of individual drivers. The intra-driver modeling basically deals
with the problem that individual drivers change their behaviors
over the data collection period. The research goal in this paper
is learning a general intra-driver model from large-scale human
driving data.
This paper proposes a novel framework to learn a multi-
mode hybrid automaton model (MOHA) averaging driving
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behaviors from thousands of human drivers’ real driving data.
The idea is discretizing environmental variables on a coarse-
grained level and obtaining a stateful model. Distinguished
driving patterns represented by multiple modes are identified
by partitioning such a model into groups of states. Correspond-
ing groups of car-following models are identified on a fine-
grained level from real-value time series data. The underlying
discrete and continuous dynamics of driving behaviors are
discovered using such a hybrid model learning.

Higgs and Abbas [9] deal with pattern mining and divide-
and-rule learning for car-following behaviors. They use time
series segmentation and k-means clustering. The noticeable
disadvantage is that it loses sight of time information. In addi-
tion, the patterns are not interpretable, and the switching
among patterns is not discovered. These problems will be
solved by MOHA in this paper. Another related work in [10]
only uses conventional discrete timed automata, while this
paper models driving behavior using a novel hybrid model
with multiple modes. Verwer et al. [10] only consider a
simple behavior classification problem, while our model is
used for recognition, simulation, and control. This journal
version extends [1] in three important ways. First, the model
in [1] can be only used in an off-line fashion. In this version,
the model is improved to be used on-line by a new state
pattern mining approach to avoid clustering ambiguity problem
in [1] (see Section III A). Such an improvement boosts the
rationality of the model. The model has been validated in
more datasets in this paper. Second, a potential application
of cruise controller simulation is studied, which is not in [1]
but initialized in [2]. This part actually covers an interesting,
novel, and promising topic about learning for control. The
experiments in [2] have also been updated by using the on-
line model in this paper. Third, the model is compared with
the state-of-the-art work [9], which is a future work in [1].

Fig. 1 shows a flowchart of the proposed approach. A sym-
bolic representation of time series data provides a high-level
overview of behavioral dynamics. Since time information is
crucial for driving behavior modeling, time difference between
two consecutive distinct events is computed to obtain timed
strings. The learning process benefits from such a timed
representation because it explicitly encodes the underlying
varying-duration behaviors. A state-of-the-art automata learn-
ing algorithm named RTI+ (real-time identification from posi-
tive data) is applied to learn a direct and cyclic graphical model
that describes discrete dynamics. On basis of this discrete
event model, frequent common state sequences as patterns
are extracted and clustered to identify modes. The continuous
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Fig. 1. Flowchart of MOHA. The clustering is first deployed on the states to identify modes (the latent variables under the dotted line). The original numerical

time series data are also clustered correspondingly with the help of the mapping. Different car-following models are trained from the clustered time series
data in these modes. The number of modes determines the number of car-following models needed and the number of clusters in the original time series data.

constant, 0.8

Fig. 2. A simple example of PDRTA. Note that it is only used for illustrating
MOHA learning. It is not the model learned in the experiment.

linear and non-linear car-following models: Helly [4] and
IDM [6] are trained from time series data in individual modes
using a differential evolution algorithm.

This paper for the first time uses a multi-mode hybrid model
to learn car-following behaviors. The results show that the
fitting accuracy is significantly improved over conventional
models. Moreover, the potential application of MOHA is
promising, e.g. a valid car-following model can be derived for
traffic simulations and a human-like controller can be achieved
for car following.

The remainder of the paper is organized as follows.
Sections II and III discuss discrete timed automata learning
and mode identification of MOHA. Experiments are conducted
in Section IV. Another potential application is discussed in
Section V. The conclusion is in Section VI.

II. LEARNING DISCRETE TIMED AUTOMATA FOR MOHA

Learning regular languages or (minimum) deterministic
finite automata (DFA) is still the main task of grammatical
inference [11]. The learning algorithms require discrete event
strings as input. However, lifetime of events is important for
characterizing behaviors. An algorithm for efficient learning
timed automata is proposed in [12]. This algorithm uses the
timed strings (ay, t1)(az, 12) - - - (an, ty) to explicitly represent
discrete events, where a; is the ith event occurring with a time
delay #; from the (i — 1)th event. A probabilistic deterministic
real timed automaton (PDRTA) model defines a probability
distribution over such timed strings. A PDRTA is defined in
Definition 1. An example of PDRTA is illustrated in Fig. 2.

Definition 1: A PDRTA is a 4-tuple (A, &, 7T, H), where
A=1(0, X, A, qo) is a 4-tuple defining the machine structure:

Q is a finite set of states, X is a finite alphabet, A is a finite set
of transitions, and go € Q is the initial state. £ and 7 are the
event and time probability distributions, respectively. £: Q X
% — [0, 1] returns the probability of generating/observing a
given event in a given state. 7 : Q x ‘H — [0, 1] returns the
same but for a given time range [m,m'] € H, where H is a
finite set of non-overlapping intervals in R4. A transition J €
A in a PDRTA is a tuple (g, q’, a, [m, m']), where ¢, q' € O
are the source and target states, @ € X is a symbol and [m, m']
is a temporal guard.

This paper uses the individual vehicle trajectories from
a public dataset named the Next Generation SIMulation
(NGSIM) [13]. Both the I80 and the US101 datasets in
NGSIM provide precise location of each vehicle trajectory
at a sampling frequency 10 Hz. Each dataset contains three
15-minute periods (noted as I80-1, 180-2, I180-3, US101-1,
US101-2, US101-3). Based on the trajectory data, each pair
of consecutive vehicles in a lane is extracted for learning
car-following behaviors. Note that vehicle speed, relative dis-
tance, and relative speed are explanatory variables as inputs.
Longitudinal acceleration is a response variable as an output.

A. Timed Strings Representation

k-means clustering method is used to symbolize numeric
data. The clustering centroids in the I80-1 dataset are
in Table I. A break point finding method is used to determine
the “optimal” number of clusters [14]. The idea is to find the
number of clusters that avoids sharp dropping of the criterion
called “sum of squares within the cluster”. Symbolic strings
are then converted to timed strings. Fig. 3 shows a simplified
example of speed feature to illustrate how the conversion
works. In the experiment, all 3 input features are clustered
at once.

B. Learning PDRTAs

A state-of-the-art machine learning algorithm named RTI+
is used to learn car-following behaviors from unlabeled data.
For more details about this algorithm, readers are referred
to [12]. Traditional state machine learning algorithm starts
by building a large tree-shaped automaton called augmented
prefix tree acceptor from a sample of input strings. Every
state of this tree can be reached by exactly one untimed
string and therefore encodes exactly the input sample. State
merges and transition splits are two main operations of struc-
ture and temporal guards learning in RTI4. A split of a
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TABLE I
CODE BOOK OF k-MEANS CENTROIDS FOR NUMERIC DATA IN THE 180-1 DATASET

Symbols a b c d e f g h i ]

Relative speed centroid (m/s) 0.79 3.02 —2.88 4.82 -3.12 —-098 —9.67 2.52 —7.02 0.12
Relative distance centroid (m) 57.87  36.13 15.63 15.55 204.18  96.09 39.74 2400 2447 10.13
Speed centroid (m/s) 13.69 10.54 7.74 5.94 19.41 17.25 12.99 8.38 10.10 4.12

10,

Speed m/s

(c,0) (b]46)] (& 17)
0 50

(b, 124](c, 29) |
200 250

150
Time

Fig. 3. Discretization of time series data in I80-1. Instead of using complete
symbolic strings with total length 275, the timed string has only 5 tuples as
input: (c, 0)(b, 46)(a, 17)(b, 124)(c, 29). The number next to the symbol in
each tuple denotes the time difference since the last event.

TABLE II
MAPPING BETWEEN TIMED STRINGS AND STATE SEQUENCES

Frames  Timed strings State sequences
1 éslow down, Og S0, S1
2 slow down, 0 S0, S1
3 (const. speed, 0), (slow SO, S2, S1
down, 50)
4 (const. speed, 0), (speed SO, S2, S3, S4

up, 10), (const. speed, 5)
5 (const. speed, Og (speed

up, 6), (const. speed, 15),
(slow down, 5), (speed up,
4), (const. speed, 15)

S0, S2, S3, S4, S2, S3, S4

transition = (q,q’,a, [m,m’]) at time ¢ creates two new
transitions (g, g1, a, [m,t]) and (q,q>,a,[t +1,m']) when
two tails show significantly different behaviors. The algorithm
also greedily merges pairs of states (g, ¢') forming a smaller
and smaller machine that generalizes over samples.

III. IDENTIFYING MODES IN MOHA

Once the timed automaton is learned, a mapping is built
between the observable variables (time series data/symbolic
data) and the latent variables (state sequences) by inputting
the training strings to the model again.

Table II shows the frames mapping between the input timed
strings and the output state sequences for the model in Fig. 2.
The original time series data map to the states by looking at
their timed strings and the corresponding states arrived. The
parameters in numeric car-following models are obtained in

Algorithm 1 Mode Identification With MISSI

Input: Dataset containing N state sequences DS, minimum
substring length L,,;,, support €, cut-off threshold ¢

Output: state clusters (modes) SC

Extract substrings with length greater than L,,;, from DS;

Extract frequent substrings with occurrence greater than ¢;

Subsrtings clustering on their similarity;

For all unique states except initial state in SC do
| majority voting to determine each state’s belonging cluster;

End

each individual cluster of time series data, see Fig. 1.

A. State Subsequence Clustering

This paper proposes an algorithm for mode identification
on state subsequence clustering (MISSI). An overview of
MISSI is shown in Algorithm 1. Jaro-score is used to measure
similarity between two strings [15]. A hierarchical clustering
method is applied on frequent common strings using Jaro-
score as distance. At the beginning, every string represents
a unique cluster, then a hierarchical clustering computes the
pairwise distance between two clusters. For clusters containing
multiple strings, the average distance is computed. In each
iteration, only one pair of clusters is merged. The cut-off
threshold 7 is a user-defined parameter for determining the
number of clusters. The sequences in Table II are used to
explain how MISSI works step by step.

1) Extracting frequent common substrings:
SO, S1; SO, S2; S2, S3; S3, S4; S2, S3, S4; S0, S2,
S3. € is set to 2 in this case, and thus the substring S2,
S1 will not be extracted as a frequent common substring
because it only occurs in one state sequence.

2) Clustering substrings: for instance, 2 clusters are
obtained after a hierarchical clustering:
Substring cluster 1: SO, S1; Substring cluster 2: SO, S2;
S0, S2, S3; S2, S3; S3, S4; S2, S3, S4.

3) Clustering states: State cluster 1 by a majority voting:
S1; State cluster 2: S2, S3, S4.

The initial state SO is not necessary to be classified. Note
that some states will be in multiple substring clusters
(e.g., how to assign S2’s state cluster ID if SO, S2 was in
substring cluster 1 instead of substring cluster 2). To avoid the
ambiguity of states interpretation, ambiguous states are classi-
fied by an additional majority voting. For the aforementioned
case of SO, S2 in substring cluster 1, S2 will be classified
into state cluster 2 because the majority of S2 exists in the
substring cluster 2. A new example arriving string SO, S2,
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clusterl

[0, 542] g #463

[0, 5421 i #398

Real-timed automaton learned from the whole I80-1 dataset. Note that the original solution from RTI4 has 34 states in total. The states with very

[

low frequencies are removed to simplify the model interpretation. For instance, states with event “e” occurring very rarely are not shown in this figure. The
arcs represent transitions between states. The information of timed guards, events, and number of occurrences is also printed next to the arcs, e.g., [0, 542]

J, #619 from SO to S1.

S3, S4, S2, S1 is assigned mode IDs 2, 2, 2, 2, 1 based on
the aforementioned clusters obtained (again, the initial state is
skipped).

B. On-Line Inference

The states estimation is achieved online over arriving stream
data. Starting with the initial state, the observed numeric data
are converted to symbols according to the k-means codebook,
e.g., assigning the observation as “constant” by looking at the
closest centroid. The state is then transited from SO to S2.
The following transition is triggered until a new observation,
e.g. “speed up”, occurs. The time difference is also computed
between two consecutive distinct events. The time guards
in MOHA serves as additional conditions for checking the
transition where the timing is inside a valid time guard, e.g.,
an event with different timings is possible to be triggered by
different transition path. The mode ID and its corresponding
car-following model is obtained because the modes have
already been obtained in the step of state clustering. The
output control variable is computed from the input data. The
generation of car-following traces includes one-step and multi-
step approaches [16]. The one-step approach evaluates the
difference between the computed output with the ground truth
at each time point. The real status of the subject vehicle
is updated from the dataset in the next time point, thus
the error will not be accumulated. The results of one-step
testing are analyzed in Section I'V. The multi-step generation
only sets the initial state of the subject vehicle. During the
generation procedure, real values of the subject vehicle in the
dataset are not used to update its real-time information. The
movement of the subject vehicle is updated completely using
the computation model. The multi-step testing is discussed in
Section V. Note that in both settings, the trajectories of leading
vehicles are directly from the dataset.

IV. EXPERIMENTAL RESULTS

The datasets are split to two sections, i.e. 80% for training
and 20% for testing. k-means discretization and the state
sequence clustering are both conducted only in the training
dataset. To avoid over-fitting and obtain a less biased evalua-
tion, the testing data are not used during clustering. To make a
complete overview of driving behaviors, the whole dataset is
used for model interpretation. As a consequence, some settings
in the training dataset are not necessarily the same as those in
the whole dataset. All the experiments are reproducible with
our shared data and code in our repository.!

A. Model Interpretation

One of the main advantages of MOHA is its interpretability.
The learned model from the whole I80-1 dataset is illus-
trated in Fig. 4. All modes are distinguished with different
colors. There are loops with significantly large occurrences
in Cluster 6, e.g., state sequence: “S1-S6-S11-S16-S1” with a
corresponding symbolic transition loop: “d-j-c-j”. The relative
distances of “c” and “d” are very close, cf. Table I, but having
negative and positive relative speed, respectively. They are
associated with “j”, which has a very small speed difference.
This sequence can be interpreted as steady car-following
behavior at short distances, i.e., adapting the relative speed
to the leading vehicle.

Similarly, the loops in Clusters 2 and 4 represent the behav-
iors of steady long distance and steady medium distance
car-following respectively. An intermediate state S15 in Clus-
ter 5 indicates how to transfer out of Cluster 6. For example,
“S6-S15-S4” with transitions “h” and “i”, i.e., slowing down
and speeding up to catch up, from the short distance following
in Cluster 6 to the medium distance following in Cluster 4. The
time split can also be seen in two branches of [0, 37],i and

I'The source code, shared data and animated video can be found in our
repository: https://bitbucket.org/anjutalg/carfollowingrti
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TABLE III
INTERPRETATION OF CLUSTERS IN THE I80-1 DATASET

Cluster ID Dominant states Dominant symbolic loops Description
1 Remaining states - Intermediate process and infrequent states
2 17, 21 b-g Steady long distance car-following
3 7,13,20 - Intermediate process
4 4,9, 10, 14 h-i Steady medium distance car-following
5 15, 19 - Intermediate process
6 1,2,6, 11, 12, 16 c-d-j Steady short distance car-following

[38,542], i from S15. They share the same symbolic transition
condition but have distinct time guards. This means the speed-
up action “i” is followed by a short or long duration of “h”,
i.e., after how much time the subject vehicle notices that its
relative distance has been expanded and begins to catch up.
A complete car-following example in the I80-1 dataset is also

shown via an animated video in our repository.

B. Competing Methods

The following classical or state-of-the-art methods are
also implemented in this paper for a fair and convincing
comparison.

o Gross fitting: It uses a single car-following model.
By comparing with the traditional method of gross fitting,
we can investigate how much improvement can get using
multiple models.

o Symbolic clustering: The clustering is deployed with the
same setting as the state sequence clustering directly on
the symbolic data. The comparison with symbolic clus-
tering shows the value of clustering latent state sequences
instead of clustering observable symbolic sequences.

o Higgs: It is a state-of-the-art method proposed by Higgs
and Abbas [9]. It first segments multi-variate time series
data by minimizing their variance by a bottom-up strat-
egy. The segments are initialized with equal length. Then
a pair of the adjacent segments with the lowest merge cost
is merged in each iteration. The mean values representing
the segmented piece-wise data are clustered by k-means
method.

o State model: It is also based on the learned timed
automaton. Without partitioning the model into modes,
individual models are trained in each state. It introduces
a large amount of parameters but helps us to investigate
the benefit of clustering states.

The root-mean-square error (RMSE) is a widely used indi-
cator for evaluating the acceleration error of car-following
models. In addition, to overcome overestimation in high
and low values, some papers [17], [18] use speed’s relative
error (RE), absolute error (AE), and mix error (ME) as
additional indicators, which are defined as follows:

gsim __ greal 2
RE = (371) M
\

<(ssim _ sreal)2>

(Sreal)2

AE = )

1 (ssim _ sreal)z
(‘sreal ’)

where s*" and s are the computed and the real val-
ues respectively. (s) is the average value defined as (s) =
% >iLis ).

Table IV and Table V show the comparison using aforemen-
tioned indicators and their standard deviations. The average
improvement of MOHA over gross fitting is summarized
in Table VI and Table VII. Note that here a single-step
approach is deployed for both training and testing. A multi-
step approach will be also tested for a trajectory simula-
tion in Section V. Readers are referred to [16] for a more
detailed explanation about the difference. The runtime on the
Intel 3.1-GHz i7 processors is also compared in Table VIII.

ME = 3)

‘sreal‘

real

« MOHA and state model outperform gross fitting and other
two clustering models. Both of them are based on the
learned timed automata. State model uses much more
parameters, e.g., 34 models in a 34-state automaton. The
training of the state model does not take too long since
the data are split over more models, and fewer data lead
to a fast convergence. Such an overfitting problem is due
to too few data during the training. To balance the bias
(fitting error) and the variance (model complexity), it is
suggested to use MOHA with high accuracy and low
complexity.

o Symbolic method is the third best model with competing
performance. However, such a model-free pattern min-
ing method can only serve as a clustering tool rather
than a control model generating the following vehicle’s
trajectories.

« RMSE of acceleration is a more sensitive indicator of
larger magnitude. Due to an integral relation from accel-
eration to speed, the speed’s error has been smoothed and
thus has a smaller magnitude. In addition, the testing is
essentially a one-step prediction evaluation, i.e., the error
will not be accumulated. Therefore, the improvement is
less obvious than the multiple-step prediction.

o The symbolic labeling, the timed automata learning, and
the sequence clustering are quite efficient in computation
cost. They are promising in car-following model cali-
bration on large scale data. Among all the clustering
methods, the Higgs model takes the longest time on
clustering due to the time-consuming segmentation.

V. A HUMAN-LIKE CRUISE CONTROLLER

The drawbacks of an automatic cruise control (ACC) system
lie on an inconsistency between systems and human drivers,
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TABLE IV
TESTING DATA ERROR IN NGSIM DATASETS: HELLY MODEL
Helly
Mean £ Sid. 801 1802 1803 UST0I-T USI01-2 USI013
Gross 09981503343 14641503971 1.6424103754 1.642910.2859  1.541310.3051  1.3454+0.3402
RMSE (m/s2) Symbolic | 0.931940.3218  1.377440.3623  1.5648+0.3836  1.60054+0.2916  1.365620.2170  1.301240.2812
Higgs 1.0999-£0.5240  1.4207+£0.3743  1.6216£0.3693  1.6273+£0.2999  1.4753+£0.3402  1.3220+0.2971
MOHA 0.922540.3156  1.365940.3653  1.555240.3714  1.596240.2875  1.345240.2054  1.2984+0.2767
State Model | 0.912240.3231  1.3648+0.3629  1.55414+0.3778  1.5899+0.2781  1.3405+0.2064  1.2962+0.2775
Gross 0.004310.2848  0.0278L0.0103  0.0339L0.0194  0.0450L0.0949  0.031510.0682  0.045120.0780
RE (m/s) Symbolic | 0.01454+0.0080  0.0267-£0.0103  0.0269+0.0100 0.0186+0.0081  0.0178-:0.0068  0.0245+0.0107
Higgs 0.050740.0304  0.0266+0.0506  0.027440.0555  0.0355+0.0689  0.02504+0.0399  0.044340.0511
MOHA 0.01460.0082  0.0265+0.0102  0.02692-0.0100  0.01882-0.0085  0.01782:0.0068  0.0244--0.0106
State Model | 0.014440.0081  0.0266+0.0104  0.02694+0.0101  0.018540.0081  0.017740.0068  0.0244+0.0107
Gross 0.014850.0095  0.0257+0.0092  0.041250.0244  0.0278£0.0097 _ 0.0199£0.0049  0.0329£0.0115
AE (m/s) Symbolic | 0.012740.0059  0.0245£0.0092  0.0256+0.0097  0.016540.0060  0.0164--0.0048  0.020740.0079
Higgs 0.015940.0092  0.0346+0.0179  0.03600.0258  0.02060.0106  0.0180+0.0055  0.0290-:0.0143
MOHA 0.012840.0059  0.02434+0.0091  0.0256+-0.0095 0.0166+0.0061  0.0156--0.0047  0.0201-£0.0075
State Model | 0.012640.0060  0.024340.0092  0.02564+0.0096  0.0164+0.0059  0.01774+0.0068  0.020040.0075
Gross 0.0184+0.0194 0.0261£0.0092  0.0422F0.0168  0.0201£0.0109 _ 0.0219F0.0064 _ 0.0348+0.0128
ME (m/s) Symbolic | 0.013240.0063  0.0250£0.0092  0.0258+0.0093  0.0170£0.0062  0.0172:£0.0052  0.0219+0.0081
Higgs 0.016640.0099  0.036740.0211  0.037240.0221  0.0216+0.0114  0.01884+0.0063  0.0314+0.0161
MOHA 0.013340.0063  0.024840.0091  0.0258--0.0092  0.017120.0064  0.016240.0051  0.0211--0.0078
State Model | 0.013120.0064  0.02494+0.0092  0.025740.0093  0.0169+-0.0061  0.0161--0.0051  0.0211--0.0078
TABLE V
TESTING DATA ERROR IN NGSIM DATASETS: IDM MODEL
DM
Mean + Std. I80-1 1802 1803 USIO0I-1 USI01-2 USI0I-3
Gross 1.0917L£0.8706 14327103938 1.6060L04151 1.6334L04064 1480102717 1.3180L0.2793
RMSE (m/s?) Symbolic | 0.98574+0.4282  1.3610+0.4298  1.5341+0.3654  1.5563£0.2550  1.3875:0.1992  1.2964-£0.2524
Higgs 1.067940.7976  1.38714£0.3972  1.5860+£0.4262  1.5862-£0.2578  1.4594-£0.2041  1.3025+0.3390
MOHA 0.9798+0.4340  1.328040.3908  1.5289+0.3659  1.55551+0.2567 1.363420.1992  1.2944:-0.2497
State Model | 1.017440.4718  1.3254+0.3810  1.533240.3842  1.55834+0.2510  1.396640.2693  1.29714-0.2690
Gross 0.0799£0.2204  0.0360+0.0108  0.0338+0.0191 _ 0.0419£0.0936  0.0514L0.0916 _ 0.057220.1030
RE (m/s) Symbolic | 0.015940.0083  0.026220.0107  0.0265+0.0102  0.01804:0.0080  0.0185-0.0071  0.0293:0.0104
Higgs 0.0468+0.0335  0.0302+0.0734  0.0265+0.0507  0.0355+0.0689  0.0210+£0.0117  0.04810.0713
MOHA 0.015240.0086  0.0261+0.0109  0.0264+0.0102  0.01804-0.0080  0.0179+-0.0070  0.0239--0.0104
State Model | 0.015340.0082  0.026140.0109  0.0264+0.0101  0.01814+0.0081  0.01824+0.0071  0.02414-0.0106
Gross 0.0263F0.0119  0.0297+0.0093 _ 0.0410+0.0238 _ 0.0174£0.0094  0.0171£0.0072 _ 0.0285+0.0122
AE (m/s) Symbolic | 0.013740.0065  0.0240-£0.0095  0.0253+0.0098  0.0160£0.0057  0.0162-:0.0049  0.0210+0.0077
Higgs 0.023440.0137  0.030840.0184  0.03854+0.0295  0.0175+0.0089  0.0170+0.0059  0.0267+0.0135
MOHA 0.01350.0067  0.02372-0.0094  0.02512-0.0098  0.01592-0.0057  0.01572-0.0049  0.0200--0.0077
State Model | 0.013940.0068  0.023740.0094  0.025140.0098  0.016040.0057  0.016040.0052  0.020140.0077
Gross 0.0289E0.0173  0.034310.0094 0.04310.0166  0.0187£0.0106 0.0192E0.0112  0.0346L0.0130
ME (m/s) Symbolic | 0.014240.0067  0.02450.0094  0.0254+0.0093  0.016540.0060  0.01730.0053  0.02162-0.0079
Higgs 0.0233+0.0131  0.032840.0201  0.0385+0.0210  0.01904:0.0102  0.017240.0061  0.03602:0.0150
MOHA 0.01394-0.0069  0.0243+0.0095  0.025240.0093  0.0165+0.0060  0.0163+-0.0053  0.0210--0.0079
State Model | 0.014140.0067  0.024340.0095  0.025240.0093  0.0165+0.0060  0.0166+0.0055  0.02104-0.0079
TABLE VI TABLE VII

SUMMARY OF IMPROVEMENT IN EACH DATASET:
HELLY MODEL (IN PERCENTAGE)

180-1 2 3 US101-1 2 3
RMSE 757 6.1 5.31 2.84 12.7 3.50
RE 8452 4.68 20.65 58.22 4349 4590
AE 1351 545 37.86 40.29 21.61 3891
ME 2772 996  20.85 41.24 26.03  39.37

because the control algorithm of an ACC focuses more on
mathematical modeling rather than driving behaviors or habits
[19]. A valid car-following itself can be used as a controller
which mimics real drivers’ behaviors.

A human-like ACC system is learned using MOHA from
a real car-following training dataset. The speed error of
simulated traces and the real ones is evaluated in the testing
dataset. The generation steps are as follows: 1). The subject

SUMMARY OF IMPROVEMENT IN EACH DATASET:

IDM MODEL (IN PERCENTAGE)

180-1 2 3 US101-1 2 3
RMSE 1025 7.3l 4.80 4.77 7.88 1.79
RE 80.98 27.50 21.89 57.04 65.18  58.22
AE 48.67 2020 38.78 8.62 8.19  29.82
ME 5190 29.15 41.53 11.76 15.10 3931

vehicle starts from the initial state. 2). The speed, relative
speed, and relative distance are computed online. Note that
we only control the following vehicle, i.e., the trajectory
of the leading vehicle is from the dataset. 3). The current
cluster of the subject vehicle is determined by its current
state using the online inference discussed in Section III-B,
and then the parameter of car-following model is selected to
generate the desired acceleration. 4). The status of the subject
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TABLE VIII

COMPARISON OF RUNTIME

Models Symbolic labeling (s) ~ Automata learning (s)  Clustering (s)  Training (s)  Testing (s)  Total (s)

Gross - - - 488.24 3.84 492.08

Symbolic 69.72 - 53.75 2653.35 53.98 2830.80

Higgs - - 832.89 1534.62 33.95 2401.46

Proposed 69.72 16.09 24.56 2054.52 14.41 2179.30

State model 69.72 16.09 - 1690.41 22.36 1798.58
TABLE IX

COMPARISON OF SIMULATED TRAJECTORY

Indicators Proposed Gross PID controller
RE (m/s)  0.1298+0.0861 0.1558+0.1156  0.2466+0.2852
AE (m/s)  0.0968+0.1053  0.13204+0.1322  0.11054-0.0875
ME (m/s)  0.08821+0.0869  0.11974+0.1175  0.136040.0973

vehicle, including speed, relative speed, and relative distance is
continuously updated online using the acceleration computed
in the last time step as well as the information of the leading
vehicle from the dataset. This approach is compared with a
standard PID controller. The results of comparing speed error
in Table IX show that the proposed model outperforms others.

VI. CONCLUSION

In this paper, a novel hybrid model called MOHA is learned
from numeric car-following data. The model is easily visualiz-
able and interpretable for the study of car-following behaviors.
Experiments demonstrate that MOHA achieves high model
fitting accuracy. Besides the general usage in traffic simulation,
the proposed model can be used for subject drivers’ decision-
making by recognizing or predicting surrounding vehicles’
car-following states and designing a more human-like car-
following controller.

The imperfections of the proposed method include two
aspects. First, compared with classic method, the proposed
model has higher complexity, though all processing steps can
be automated. Second, from safety’s perspective, a data-driven
design of ACC system lacks theoretical guaranty, because
it might be learned from poorly skilled drivers, though the
proposed model is indeed an averaging model learned from
thousands of human drivers.

In the near future, the complexity problem will be addressed
using model selection and model abstraction from for-
mal methods domain. The safety problem of learning-based
model can be overcome by using hybrid model checking.
Car-following is a relatively simple driving scenario. We also
have some undergoing work on applying automata learning
lens for complex driving scenarios like lane change intention
prediction using non-deterministic automata, social behavioral
interaction using timed automata and game theory, etc.
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