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Abstract
In this paper, we study the impact of the parameters involved in Heston model by
means of Uncertainty Quantification. The Stochastic Collocation Method already used
for example in computational fluid dynamics, has been applied throughout this work
in order to compute the propagation of the uncertainty from the parameters of the
model to the output. The well-known Heston model is considered and involved
parameters in the Feller condition are taken as uncertain due to their important
influence on the output. Numerical results where the Feller condition is satisfied or
not are shown as well as a numerical example with real market data.

Keywords: Stochastic Collocation; Uncertainty quantification; Implied volatility;
Heston model

1 Introduction
In general, stochastic differential equations governing the prices of certain financial prod-
ucts do not always have an analytical solution. The required numerical approximations do
not contain enough information about the reliability of the output of a certain mathemati-
cal model. Furthermore, randomness can present different inputs, such as different model
parameters, which consequently introduces uncertainty into the solution of the model.
These issues make mathematical models in computational finance a good framework to
apply Uncertainty Quantification. Stochastic volatility models are the focus of this work.
Our objective is to study the propagation of the uncertainty from the input towards its
solution.

In many financial markets as equity and interest rate, the so-called volatility smile ap-
pears as an important feature of pricing models, being the reflection of the not constant
behaviour in market volatilities for options at different strike prices with a single expira-
tion date. It is well-known that the classical Black–Scholes framework is not able to repro-
duce the volatility smile observed in the market, due to the constant volatility assumed.
Stochastic volatility models are an important breakthrough in financial research to avoid
this drawback. Among these more sophisticated models, the Heston model [5] has become
one of the most used by practitioners. It is highly efficient due to its easy computational
implementation by means of numerical methods involving Fourier transforms [2, 3] and
it will be the focus of this work.

The Heston model describes the dynamics of the stock price and the variance based on
a set of parameters which can be uncertain. The variability of the values of the different
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parameters can result in variations of the prices with more impact than perhaps expected.
Despite several other sources of uncertainty, we are concerned here with uncertainty in
model parameters. The main objective is to compute the statistical moments of the output
of interest when the response surface is approximated locally by a polynomial function.

As long as the Heston model contains open parameters, a calibration procedure is im-
portant to fit these parameters to market data. That is, prices obtained with the corre-
sponding mathematical model (in this case, Heston) should match the ones observed in
the market. More precisely, if we have a set of dates and market prices, a suitable calibra-
tion method will provide a set of parameters at each date considered. Once we have these
data, their distributions can be established. This will make pricing more reliable because
we consider a distribution for the parameters. Thus, a general vision on their uncertainty
as well as their impact in the pricing could be obtained. Apart from the calibration pro-
cedure, hedging plays an important role in finance. So the possibility of having an insight
in the impact of uncertain parameters on the Greeks of the Heston model should also be
interesting for practitioners.

This paper is organized as follows: Firstly, the Heston model is briefly introduced. Next,
the mathematical framework for Uncertainty Quantification is introduced as well as the
method considered for computing the propagation of uncertainty, the Stochastic Colloca-
tion Method. Finally, some numerical results for tests where the Feller condition is satisfied
or not and a real market data example will be shown.

2 Methods
Throughout this section, a brief description of the Heston model will be introduced [5].
Then, some aspects and concepts about Uncertainty Quantification (UQ) will be de-
scribed following the notation used by [6, 9]. In order to study the propagation of the
uncertainty from the model parameters to the output, the nonintrusive Stochastic Collo-
cation Method [12] is used as it has the attractive advantage of treating an existing solver
as a black box. Moreover, it can be easily implemented and leads to the solution of un-
coupled deterministic problems, thus being an efficient tool when the number of input
random variables is small.

2.1 Heston model
Considering the Heston model, the dynamics of the stock price as well as the variance
process, under the risk-neutral measure, are given by the following stochastic differential
equations:

dS(t) = rS(t) dt +
√

υ(t)S(t) dWx, (1)

dυ(t) = κ
(
ῡ – υ(t)

)
dt + γ

√
υ(t) dWυ , (2)

dWx dWυ = ρx,υ dt. (3)

Here, S(t) is the underlying stock price, υ(t) is the variance process, Wx and Wυ are two
standard Brownian motion processes with correlation ρx,υ , where κ ≥ 0, ῡ ≥ 0 and γ ≥ 0.
The parameter κ controls the speed of mean reversion of the volatility, γ is the volatility
of the volatility, and ῡ is the long-term of the variance process. An important feature of
the Heston model is the stochastic volatility which allows to reproduce the implied volatil-
ity smile present in many financial markets. Every parameter has a specific effect on the
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implied volatility curve generated by the dynamics so it is interesting to study UQ for the
implied volatility as well as for the prices of certain financial products.

If 2κῡ > γ 2, the so-called Feller condition is satisfied and the positivity of υ(t) is guar-
anteed, otherwise it may reach zero. The Feller condition is difficult to satisfy in practice,
so in this work the cases with and without Feller conditions will be considered. This will
allow us to take into account different financial scenarios. The set of random parameters
where UQ is applied to is ξ = {κ , ῡ,γ ,υ0,ρx,υ}. Firstly, we will show some tests where pa-
rameters κ and γ are considered and then, the whole set of parameters will be taken into
account for a numerical test where real market data are considered.

2.2 Stochastic Collocation Method
First of all, we assume a complete probability space (�,F ,Q) and finite time horizon [0, T]
where � is the set of all possible realizations of the stochastic process between 0 and T .
The information structure is represented by an augmented filtration F̄t , t ∈ [0, T] with FT

the sigma algebra of distinguishable events at time T , and Q is the risk-neutral probability
measure on elements of F .

Next, a set ω = {ω1, . . . ,ωnξ
} ∈ � ⊂ Rnξ of events in the complete probability space and

a set ξ = {ξ (1), . . . , ξ (nξ )} of parameters involved in the mathematical model are considered
with parameter space 	 ⊂Rnξ . For every sample ξ (ω) the output should be computed by
a suitable numerical solver. In general, a nonintrusive uncertainty quantification method
consists of a sampling method and a standard interpolation method such as Lagrange in-
terpolation. The sampling method selects the sampling points and returns the sampled
values, being computed by solving the problem considered for the realization of the ran-
dom parameter vector. It is interesting that the computational cost of the sample interpo-
lation in UQ is almost depreciable compared to the cost of expensive existing solvers.

Let us suppose that our problem can be formulated as follows

Lu(x, t, ξ ) = f (x, t), (x, t) ∈ X × (0, T), T > 0, (4)

where L is a linear or nonlinear differential operator depending on random parameters
and x and t are the spatial and temporal coordinates, respectively. Moreover, appropriate
initial and boundary conditions are considered. Next, u(x, t, ξ ) is considered as the output
of interest such as the price of a financial product with maturity T , which does not only
depend on the spatial coordinates x ∈ X ⊂ RnX with nX ∈ {1, 2, 3} and time t ∈ R+, but also
on a vector of nξ random parameters ξ = {ξ (1), . . . , ξ (nξ )} ∈ 	. The random parameters ξ

have a known joint probability density function fξ (ξ ) with finite variance. Each uncertain
input parameter corresponds to one additional random parameter ξ (i) and to a dimension
in the associated probability space �.

The stochastic collocation method is based on one-dimensional Lagrange polynomial
interpolation of the output u(x, t, ξj) at N Gauss quadrature points ξj in 	

u(x, t, ξ )i =
N∑

j=1

uj(x, t)iLj(ξ ), Lj(ξ ) =
N∏

k=1,k �=j

ξ – ξk

ξj – ξk
, (5)

where uj(x, t) = u(x, t, ξj) are the solutions of the governing equations for ξj, and Lj(ξ ) are
the Lagrange polynomials of degree N – 1 for which holds Lj(ξk) = δjk . Then the main
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objectives of UQ are the probability distribution and the resulting approximation of the
statistical moments of the output distribution for u(x, t, ξj), which are given by

μui (x, t) =
∫

	

u(x, t, ξ )ifξ (ξ ) dξ =
N∑

j=1

uj(x, t)izj, zj =
∫

	

Lj(ξ )fξ (ξ ) dξ , (6)

with the quadrature weights zj. The stochastic collocation method can be extended to
multiple inputs using a tensor product of quadrature points

μui (x, t) =
N∑

j1=1

· · ·
N∑

jnξ
=1

uj1,...,jnξ
(x, t)izj1 · · · zjnξ

. (7)

However, if the number of uncertain parameters increases, approximations based on ten-
sor product grids suffer from the curse of dimensionality since the number of collocation
points in a tensor grid grows exponentially. In these cases, we can consider sparse tensor
product spaces as first proposed by Smolyak [10]. More precisely, the Smolyak sparse grid
stochastic collocation method for the approximation of statistical quantities is used to re-
duce the exponential increase of the number of tensor product quadrature points with the
dimensionality nξ as follows, see [12],

μui (x, t) =
∑

w∈W (w,nξ )

(–1)w+nξ –|w|
(

nξ – 1
w + nξ – |w|

) N(w1)∑

j1=1

· · ·

· · ·
N(wnξ

)
∑

jnξ
=1

u(ξj1,w1 , . . . , ξjnξ
,wnξ

)izj1,w1 · · · zjnξ
,wnξ

, (8)

with w the sparse grid level, |w| = w1 + · · · + wnξ
, and

W (w, nξ ) =
{

w ∈Rnξ : w + 1 ≤ |w| ≤ w + nξ

}
(9)

for w > 0. The sparse tensor product grids are here built upon Clenshaw–Curtis abs-cissas
as they are particularly efficient since the resulting sparse grids are nested. This hierarchi-
cal sampling property allows for reusing the samples when increasing the order if a more
accurate response of the model is required. Moreover, we can find in the literature differ-
ent works on the faster-converging accuracy of Clenshaw–Curtis points than the obtained
with Gaussian points ([11]).

3 Numerical results and discussion
In the literature several numerical methods have been used to solve the mathematical
models stated for pricing financial products such as finite differences [1], finite elements
[8] or Monte Carlo [4]. We consider a class of highly efficient numerical pricing techniques,
the class of Fourier-based numerical integration methods, the COS-method being one of
them. Its main idea is to replace the probability density function appearing in the risk-
neutral formula by a Fourier cosine series expansion, which has a closed-form relation
by means of the characteristic function. Some examples about the performance of the
method as well as more details are shown in [2] and [3].
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Table 1 Deterministic parameter setting for the put option

S0 K τ r v̄ v0 ρx,υ

100 140 2.0 0.05 0.05 0.05 –0.9

If we focus on pricing a financial instrument, such as a put option, for every sample of
the parameters involved in the mathematical model governing the price of the product,
we will obtain a value given by the chosen numerical solver. Then, the propagation of the
uncertainty from the model parameters to the output is dominated by the computational
cost of the numerical solver. Due to this, it is important to choose an efficient numerical
method with a low computational cost. In this work, put options have been considered
(Table 1) but exotic financial products could also be taken such as variance swaps or cliquet
options.

3.1 Tests
Among the whole set of possible random parameters, κ , ῡ and γ have an important role
as they are involved in the Feller condition. As a first approach and in order to simplify
the results to visualize some conclusions, only parameters κ and γ have been considered.
Thus, we obtain a two-dimensional problem for UQ. Tests where Feller condition is satis-
fied or not have been carried out. The numerical results shown in this section will give us
an insight in the impact of the variability of κ and γ on the output of the stated problem.
All the computations have been done for time τ = 2 and the deterministic values for the
parameters can be seen in Table 1.

The probability distribution of the uncertain parameters has to be fixed as the Stochastic
Collocation method is based on a transformation to an artificial space. Then the colloca-
tion points are computed in this new stochastic space whose properties are already known
and the probability of the solution is built with Lagrange interpolation. In previous works
like [7] the exponential convergence of the Stochastic Collocation method is shown for
uniformly distributed uncertain parameters so in this work, uniform distribution has been
chosen to generate the random parameters.

The results have been computed using nine interpolation points in each direction of the
domain, that is eighty-one collocations points (Fig. 1(a)). However, having in mind a higher
dimensional problem, a Smolyak approximation has been considered in order to reduce
the computational time so the number of points is reduced to twenty-nine (Fig. 1(b)). Al-
though in this case the improvement is not very noticeable, an important time reduction is
expected for higher dimensions, because an increase of the number of uncertain param-
eters turns into an increase of the number of collocation points where the approximate
solution is computed by the COS-method.

3.1.1 Test 1: Feller condition satisfied
The first numerical experiment carried out is when Feller condition is satisfied. Values for
implied volatility and put option prices have been computed using the COS-method for
every sample of κ and γ where κ will vary in [5, 10] and γ in [0.1, 0.3]. In Fig. 2(a)–(b)
the highly satisfactory performance of the interpolation method in this case can be seen.
Nine points in each direction have been taken and put prices and implied volatility values
at these points have been computed using the COS-method. Then, in order to compute



Suárez-Taboada et al. Journal of Mathematics in Industry  (2018) 8:5 Page 6 of 12

Figure 1 Stochastic Collocation points for full and sparse grids

Figure 2 Results for Test 1 (Feller condition satisfied)

the values in the whole domain, the Lagrange interpolation has been used. In Fig. 2(c)–(d)
the standard deviations for the implied volatility and put prices are depicted.

3.1.2 Test 2: Feller condition not satisfied
In the numerical results to follow, we will focus on the case where the Feller condition is
not satisfied, for which κ will vary in [0.5, 1.0] and γ in [0.2, 0.4]. Again, values for implied
volatility and put option prices have been computed for every sample by the COS-method.
Analogously to the previous test, the fine performance of the method can be observed in
Fig. 3(a)–(b) as well as the standard deviations for the implied volatility and put prices in
Fig. 3(c)–(d).
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Figure 3 Results for Test 2 (Feller condition not satisfied)

3.1.3 Test 3: mixed Feller condition
We are also interested in cases where a mixed Feller condition holds. In the numerical
results to follow, κ will vary in [0.4, 11.0] and γ in [0.05, 0.5]. Thus, the Feller condition
can be either satisfied or not at sample points considered in these domains. In this case
where the Feller condition is satisfied at some points of the domain considered for κ and
γ , we see a highly satisfactory performance of the interpolation method in Fig. 4(a)–(b) as
in previous subsections. It is remarkable that the behaviour is completely different from
the ones shown in previous cases. This should be related to the strestch range of values of
the parameters. In Fig. 4(c)–(d) the standard deviations for the implied volatility and put
prices are shown.

After having an insight in the three cases we can describe some conclusions. If the Feller
condition is satisfied, the implied volatility and the put price increase with increasing κ and
decreasing γ . The response surface is close to linear, despite the large parameter domain.
When the Feller condition is not satisfied, the response is much more nonlinear. For the
mixed Feller condition case, the response is even more nonlinear being partly caused by
the largest parameter ranges used. For the cases with the Feller condition satisfied, and not
satisfied, the standard deviation converges quickly whereas the convergence is slower for
the mixed Feller condition case, because of the nonlinearity of the response. The standard
deviation of the nonlinear solution for the case Feller not satisfied is smaller than for the
case Feller satisfied, being the input uncertainty in the former case smaller. However, the
standard deviation for the mixed case is highest.

3.2 Numerical test with real market data
A numerical test for the whole set of parameters is shown. These values are taken from
real market data and some pre-processing is needed in order to apply UQ to this particu-
lar case. More precisely, EuroStoxx50 option prices spanning from the 19/09/2006 to the
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Figure 4 Results for Test 3 (Mixed Feller condition)

Figure 5 Spot values of the Eurostoxx50

22/04/2008 have been analyzed. Note this set of prices includes times of the market crisis.
In Fig. 5 spot values of the Eurostoxx50 for the period the model has been calibrated are
shown. The calibration based on optimization over the market data results in the set of
values of the parameters and the corresponding distributions. We will deal with a five-
dimensional problem as five parameters are considered so the dimensionality of the prob-
lem is increased with respect to the numerical test showed in the previous section. The
projections and the marginal probability density functions (PDFs) of the five-dimensional
input is given in Fig. 6. It shows that the input parameters are correlated and that the den-
sities can be multi-modal. These effects are taken into account by evaluating the Lagrange
polynomial interpolation at the set of points of Fig. 6.
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Figure 6 Input data

Figure 7 Cumulative density function (full tensor)

The computational cost is about 8 minutes as the Smolyak approximation is considered
for the post-processing where stochastic collocation method is involved. Throughout this
test the put option deterministic parameters are the same as the ones of the previous an-
alytical tests collected in Table 1.

The cumulative probability distribution function (CDF) of the put option prices is com-
puted by a Monte Carlo simulation of the data points and by the Stochastic Collocation
method as we can see in Fig. 7 to 10. In Fig. 7 and 8, the approximations for level ω = {1, 2}
are shown. Both the number of points and the accuracy of the tensor product grid approx-
imation increases faster with ω. In Fig. 9 the approximations for the full tensor for level
ω = 2 and the sparse grid for level ω = 5 are shown to compare the results with a compa-
rable number of points (2433 points and 3125 points, respectively). In Fig. 10, the sparse
grid approximations up to level ω = 5 is shown to compare the results to the tensor grid
with ω = 2.
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Figure 8 Cumulative density function (sparse grid)

Figure 9 Comparison of cumulative density functions (full tensor and sparse grid)

Figure 10 Comparison of cumulative density functions (sparse grid)

The convergence behavior is compared in Tables 2 and 3 with the Monte Carlo solution
as function of the level ω and the number of points. The mean and standard deviation
are integral quantities and therefore the mean and standard deviation errors can converge
non-monotonically due to cancellation of errors. The L1 error is added as a stronger con-
vergence measure, which shows a monotonic convergence in this case.



Suárez-Taboada et al. Journal of Mathematics in Industry  (2018) 8:5 Page 11 of 12

Table 2 Convergence full tensor ω = 1, 2. Monte Carlo solutions mean 3.6879e+01 and standard
deviation 5.9820e–01

ω = 1 ω = 2

Points 243 3125
Mean 3.7059e+01 3.6884e+01
Std. Dev. 5.6508e–01 5.8003e–01
Mean error 1.7918e–01 4.6750e–03
Std. Dev. error 3.3129e–02 1.8174e–02
L1 error 1.9722e–01 3.4194e–02

Table 3 Convergence sparse grid ω = 1, 2, 3, 4, 5. Monte Carlo solutions mean 3.6879e+01 and
standard deviation 5.9820e–01

ω = 1 ω = 2 ω = 3 ω = 4 ω = 5

Points 11 61 241 801 2433
Mean 3.7765e+01 3.7338e+01 3.6779e+01 3.6926e+01 3.6842e+01
Std. Dev. 8.5236e–01 6.0479e–01 6.8795e–01 5.94229e–01 6.1646e–01
Mean error 8.8542e–01 4.5846e–01 9.9622e–02 4.6040e–02 3.7463e–02
Std. Dev. error 2.5416e–01 6.5885e–03 8.97506e–02 3.9754e–03 1.8257e–02
L1 error 9.0194e–01 4.6129e–01 1.4612e–01 5.5369e–02 4.9122e–02

The conclusion of this section is that the accuracy of the sparse grids interpolation tech-
nique is comparable to that of the full tensor grids as function of the number of points. The
additional advantage of sparse grids is that the number of points grows more slowly with
the level than the full tensor grids, such that more convergence information and smaller
point sets are available. Levels ω = 1 and ω = 2 of the full tensor should therefore be com-
pared to the sparse grids on levels ω = 3 and ω = 5 with approximately the same number
of points, respectively. In this case, the number of points for most of the levels is larger
than the 84 data points in the Monte Carlo simulation. However, the number of computa-
tions in the Stochastic Collocation method is independent of the number of data points.
Stochastic Collocation could therefore be faster than Monte Carlo simulation at an ac-
ceptable accuracy, in cases in which a larger set of market data points is available.

The good performance of the method is seen as both cumulative density functions are
close one to each other.

4 Conclusions
The impact of the uncertainty provided by the randomness of the parameters in the Hes-
ton model is studied by means of Uncertainty Quantification. In particular, the Stochastic
Collocation Method is used to study the propagation of the uncertainty from the input of
the model to the solution.

It is challenging to apply techniques already used in fluid dynamics to computational
finance and on the other hand, the good performance of this kind of methods is stated
through the tests considered in this paper. Firstly, the analytical tests show an insight of
the impact of the variability of κ and γ on the output of the problem. If the Feller condition
is satisfied, the response surface is close to linear but if Feller condition is not satisfied, the
response is much more nonlinear. For mixed Feller condition, due to the largest parameter
range, the response is even more nonlinear and the standard deviation is largest than for
the tests where Feller condition is satisfied.

Then, a real market data test is considered where the number of model parameters in-
creases turning it into a five-dimensional problem for Uncertainty Quantification. In con-
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sequence, despite suffering from the curse of dimensionality as the number of collocation
points also increases, Smolyak sparse grid Stochastic Collocation Method is used to re-
duce the computational cost of the method.

Having in mind the importance of the calibration and hedging procedures, the study
of the impact of uncertain parameters on the Greeks and the distribution of the model
parameters would make pricing more reliable. Furthermore, it would be interesting to
extend these studies to exotic products such as variance swaps and cliquet options.
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