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Abstract. This paper presents an approach for updating the epistemic uncertainty

of ultrasonic flow meter measurements under non-ideal flow conditions. Instead of re-

calibrating the instrument to correct its behavior in these difficult working conditions,

a Bayesian calibration of a computer model of the real process is used. The numerical

model is based on Computational Fluid Dynamics (CFD) and a surrogate model is

constructed from a limited number of CFD calculations using kriging. The computer

model predicts the flow rate in dependence of some parameters including the bulk

Reynolds number, which carries information about the true speed of the flow, which

is measured only approximately by an ultrasonic flow meter. Bayesian calibration is

applied and the posterior of the true speed can be derived from the marginal posterior

of the Reynolds number. This pdf has a smaller uncertainty with respect to the

observed data used to fit the model on the condition that sufficiently informative data

are available. If this is the case, the proposed approach is capable not only of reducing

the uncertainty but also the error associated with the flow meter measurements in

non-ideal conditions.

Keywords: uncertainty quantification, ultrasonic flow meter, Bayes, CFD, kriging,
metrology.
Submitted to: Metrologia

1. Introduction and Motivation

Transit-time ultrasonic flow meters (UFM) are one of the most common type of flow

meters used in industrial applications thanks to their versatility, accuracy and ease of use

[1, 2]. The uncertainties in a UFM measurement can either be aleatoric or epistemic.

The former are due to a natural variability in the process being studied and cannot

be reduced by gathering additional knowledge about the system (e.g. uncertainty due

to repeatability). The latter are due to a lack of knowledge about the process under

study and can be reduced, for example, by gathering more data or refining models
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[3]. Drenthen and de Boer [4] claimed that the main sources of epistemic uncertainty

in an UFM are due to the flow velocity profile not being uniform, to inaccurate time

measurements, to geometric tolerances, or installation effects. In this paper we focus on

the uncertainty due to inhomogeneous flow profiles which is usually the most severe.

To reduce the uncertainty due to flow profile inhomogeneity, flow meter

manufacturers recommend positioning the instrument far away from any source of

disturbance, in a location where the flow resembles fully-developed pipe flow as much as

possible. In reality, however, this is not always possible due to the constrained lengths

of pipe installations, and to the persistence of flow disturbances for many diameters

downstream of their source. For the case of a pipe bend, significant flow disturbances

can persist for more than twenty diameters from the bend exit [5]. This can cause

meter errors of several percent (the exact amount depends on the type of UFM) [6]

with associated higher uncertainties. A possible solution to this problem would be re-

calibrating the flow meter for these non-ideal flow conditions but this is not always

possible due to economical constraints or absence of appropriate experimental facilities.

In this paper, a computer model is calibrated using Bayesian inference in order to

estimate epistemic uncertainty due to pipe bends given observations of the system under

test. In this study the observations are the experimental flow-meter measurements and

the computer model is built by combining Computational Fluid Dynamics (CFD) with

a kriging surrogate model.

1.1. Previous work

The application of Bayesian inference for the estimation of measurement uncertainty

is gradually becoming popular in the metrological community. Forbes and Sousa [7]

compared the inverse uncertainty evaluation provided by the Bayesian approach with

the forward uncertainty evaluation provided by the law of propagation of uncertainty and

Monte Carlo methods. They concluded both methodologies are valid but highlighted

that Bayesian approaches can be misleading when nonlinear models are considered.

Similar conclusions were also reached by Elster and Toman [8]. Lira and Grientschnig

extended the Bayesian uncertainty estimation technique in metrology from single-output

models to multi-output models [9]. These and other studies were relevant for the revision

and update of the Guide to the Expression of Uncertainty in Measurement (GUM) [10].

Although important, these studies provided only general guidelines to the application

of Bayesian techniques in metrology.

In the narrower context of flow rate measurements, Bayesian inference has been used

by Kok et al. [11] to calibrate a turbine flow meter proving that, by taking into account

prior knowledge about the flow meter or the calibration procedure, the uncertainty can

be reduced with respect to a standard GUM-based calibration. However, White [12]

noted that the technique produced a bias in the curve, making it useless for some decision

making processes and suggested avoiding informative priors for calibration analyses.

As far as CFD is concerned, its capabilities to reproduce wall bounded flows have
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increased dramatically over the last thirty years both in Reynolds-averaged Navier-

Stokes (RANS) equations [13, 14, 15], Large Eddy Simulations (LES) [16, 17, 18], and

even Direct Numerical Simulations (DNS) [19].

In this paper, Bayesian inference techniques are applied to the problem of flow

rate measurements in a pipe under non-ideal flow conditions caused by a bend.

Uninformative priors are used, and a model based on Computational Fluid Dynamics

and a kriging surrogate is employed to reduce the computational overhead to feed

together with experimental data into the Bayesian procedure. The aim of this study is to

prove that the combination of Bayesian inference and additional information about the

particular configuration (provided by the numerical model) can reduce the uncertainty

and (potentially) the error in the flow rate measurement of a two-path ultrasonic flow

meter.

The paper is organized as follows. The principles of the Bayesian calibration of

computer models and the overview of the proposed approach are presented at the

beginning of Section 2. The working principle of ultrasonic flow meters and an overview

of the flow physics are introduced in Section 2.1 and Section 2.2 respectively. The

experimental set-up is described in Section 2.3. The CFD set up and the surrogate model

are described in Section 2.4. Results and discussion of experiments, CFD simulations

and Bayesian methods are presented and discussed in Section 3. Finally, Section 4

contains some concluding remarks.

2. Proposed approach

The aim of this paper is to present a methodology for correcting the measurements of

a UFM and estimating its uncertainty when the flow is in non-ideal conditions. It is

supposed that the instrument cannot be re-calibrated in situ, and Bayesian calibration

of a computer model of the UFM is used to update the real UFM measurements

instead. This general methodology was introduced by Kennedy & O’Hagan [20], but

here additional assumptions are made.

In general, a Bayesian calibration of a computer model can be performed in three

steps. First, a statistical model relating the measured data to the computer model is

defined:

d = m(θ) + ε+ δ, (1)

where d = [di] ∈ RN are the measured data, ε ∼ N (0, σ2
εI) is the random vector of

measurement errors; θ ∈ RM are the parameters governing the computer model m(·),
and δ ∼ N (µδ,Σδ) is an additive model inadequacy parameter that takes into account

the model output not being equal to the true value of the flow rate [20].

The parameters governing the model can be calibrated using Bayes’ theorem:

π(γ|d) ∝ p(d|γ)π0(γ), (2)

where γ = [θ,µδ, ξ̂], and ξ̂ is a vector of hyperparameters depending on the form of the

model inadequacy covariance matrix Σδ. The term p(d|γ) is the likelihood and provides
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the means for updating the model with observed data. The term π0(γ) is called the

prior distribution and it represents what is known about γ before the data became

available. Note that we denote with π(·) the PDFs relating to non-observable variables,

and with p(·) those relating to observable variables.

Finally, once the elements of γ have been calibrated, they can be fed to the

statistical model of (1) to make predictions of the quantity of interest d̃ at a new θ (after

all the hyperparameters have been fixed to their posterior mean value) by computing

the posterior predictive distribution:

p(d̃|d) =

∫
p(d̃,θ|d)dθ =

∫
p(d̃|θ)π(θ|d)dθ. (3)

In this paper, we select the elements of θ in such a way that the marginal posterior of

one of this elements already contains the information needed for estimating the epistemic

uncertainty of the quantity of interest without needing to apply (3). It is worth noticing

that the proposed approach is completely general, and can be applied to flow rates

measured by any instrument (e.g. pitot tubes, flow meters, etc.).

The case under consideration is that of a two-path ultrasonic flow meter measuring

downstream of a pipe bend. The raw data provided by the UFM are the two flow rates

measured by the two paths d = [ṁ1 ṁ2]. Since so few data (information) is available,

it will be very difficult to infer anything about γ unless a very accurate computer model

is used. Hence, the need for Computational Fluid Dynamics.

Given this statistical model in (1), with Gaussian prior information and Gaussian

experimental noise, the likelihood function is a Gaussian pdf in d:

π(d|γ) =
1√

(2π)z|Q|
exp [− 1

2
(d−m)TQ−1(d−m)], (4)

where γ = [θ,ρ], and ρ is the vector of model inadequacy hyperparamters associated

with δ, z is the size of d, m = m(θ)+µδ, and Q = Qe+Qm+Qδ is a matrix obtained

by assuming an independent Gaussian uncertainty, i.e. Qe = diag(σ2
ε ), Qm = ΣK

being the covariance matrix of kriging, and Qδ = diag(σ2
δ ), where δ is assumed to be

normally distributed with mean µδ and covariance matrix Σδ = Qδ.

CFD simulations of the geometry causing the disturbance are performed at nReb
Reynolds numbers (Reb). It is assumed that the pipe diameter D and fluid kinematic

viscosity ν are constants, hence, the terms Reynolds number, flow rate, or flow speed

used in this paper are interchangeable, and are all related to the average flow speed in

the pipe.

Samples of the flow rate at nx/D distances from the bend (x/D) and nα flow-meter

rotation angles (α) are extracted, thus providing nReb × nx/D × nα flow rate samples

ṁi for the i-th flow-meter path. A kriging technique is used to regress these data and

build a computer model of the form d = [ṁ2 ṁ2] = m(θ), where θ = (x/D,Reb, α).

In this way, a computer model able to replicate the behavior of the UFM in non-ideal

flow conditions could be built.
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The key factor is that, in the simulations, Reb is computed using the speed specified

as inflow condition which corresponds to the true bulk speed of the flow computed as:

Ûb =
1

A

∫
A

|v|dA, (5)

where A is the pipe cross-sectional area, v is the flow velocity vector of an infinitesimal

surface element dA, and the hat over Ûb indicates that this is the true bulk speed of the

flow, as opposed to the one measured by the UFM which is an approximation.

Hence, by calibrating θ, an updated estimate of the true flow rate can be derived

from the posterior of the Reynolds number as:

π(ṁtrue|d, x/D, α,ρ) = π(Reb|d, x/D, α,ρ) · νA
D
, (6)

where ν is the flow kinematic viscosity, A is the pipe cross-sectional area, and D is the

pipe diameter. This method is expected to be able to reduce the epistemic uncertainty

associated with the UFM measurements, provided the observed data are informative

enough to not only identify Reb but also x/D and α. Furthermore, if the computer model

will be able to fit the experimental data well enough, the updated flow rate computed

with this approach will have a smaller error with respect to the experimentally measured

one, thanks to the information about the true flow speed stored in the Reynolds number.

The overview of the entire approach is schematically presented in Figure 1.

Figure 1: Flowchart of the method.

2.1. Ultrasonic flow meter

An ultrasonic flow meter is a measurement device that indicates the volume of fluid

flowing through the device per unit of time. A flow meter can have one or multiple

paths, a path being the imaginary straight line connecting two sensors sending ultrasonic

pulses to each other. For transit-time UFM the flow speed is an approximation of the
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true bulk velocity obtained by measuring the time difference between a pulse traveling

upstream and one traveling downstream along the same path. The basic equations for

calculating propagation times in the UFM can be written as:∫ d

u

dt = tdown =

∫ d

u

ds

c+ v · e ,
∫ u

d

dt = tup =

∫ u

d

ds

c− v · e (7)

where v is the fluid velocity vector, c is the speed of sound, e is a unit vector of sound

path, ds is an infinitesimal length element along the path, and d and u indicate the

positions of the downstream and upstream sensors respectively. The approximation of

the true flow speed measured by the UFM is obtained as:

Ui =
L

2 cos(φ)
· tup − tdown
tup · tdown

, (8)

where φ is the path axial angle with the pipe centerline, L is the path length, and tup
and tdown are the times the pulse takes to travel upstream and downstream respectively

[21].

If multiple paths are present, the ultimate estimate of the flow speed is obtained

by a weighted average of the flow speed measured along each path:

UUFM =
k∑
i=1

wiUi, (9)

where k is the total number of paths, and different choices of weights are possible.

Finally, the flow rate is approximated by multiplying the flow speed with the pipe

cross-sectional area:

ṁUFM = UUFM · π
D2

4
(10)

2.2. Flow Physics

If a fluid is moving along a straight pipe that after some point becomes curved, the

bend will cause the fluid particles to change their principle direction of motion. A high

streamwise velocity region close to the outer part of the bend and a low streamwise

velocity region close to the inner part of the bend are formed. At the same time, a

secondary motion consisting of a pair of Dean vortices symmetrically counter-rotating

with respect to the pipe symmetry plane is created as shown in Figure 2 [22, 23, 13, 24].

This distorted flow profile persists for many diameters downstream of the bend exit [5].
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Dean vortices

x

y

z

(a) Scheme of the Dean vortices produced

downstream of a pipe bend.

uniform flow

fully-developed 

flow

distorted flow

y

x

(b) Scheme of the flow development in a

pipe with a bend.

Figure 2: Qualitiative images of some characteristics of the flow in a pipe with a bend.

For a 90-degree bend, the flow in the low velocity region can either be separated

or not. This depends on the flow speed and on the curvature ratio κ = Ra

Rc
, where

Ra = D/2 is the pipe radius, Rc being the pipe curvature radius. If the flow is separated,

unsteadiness can be generated thus adding an extra layer of complexity to the flow rate

measurements with ultrasonic flow metering principles as presented in Section 2.1.

2.3. Experimental configurations

The observed data were gathered during an experiment carried out at the Dutch

Metrology Institute (VSL). An uncalibrated two-path OPTISONIC 7300 flow meter

from Krohne GmbH [25] was used to measure the flow rate.

The experimental set up consists of three parts: a 20D-long straight pipe connected

to a 90-degree pipe bend with κ = 0.5 and a straight pipe of variable length extending

downstream of the bend exit as shown in Figure 3. The diameter of the pipe is

D = 0.159 m. The working fluid is air at ambient temperature T = 293 K. The flow

approaching the bend is assumed to be fully developed. The flow meter is positioned at

0, 4 and 10 diameters from the exit of the pipe elbow. At each of these positions, the

instrument is rotated of an azimuthal angle α of 0π, π/3 and π/2 with respect to the

pipe symmetry plane. Different flow velocities are investigated in this experiment as in

Table 1.
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R
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UFM
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4D

10D

x
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P1 P2

 P1
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y
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REF REF REF

 Tested flow meter

Reference flow meter

UFM
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ϕ=π/3

u D

UFM:

REF:

Figure 3: Sketch of the geometry under investigation. P1 and P2 are path 1 and path 2,

respectively. The origin of the reference system is placed at the pipe center immediately

after the bend.

κ (−) x/D (−) α (rad) v (m/s)

0.5 0, 4, 10 0π, π/3, /pi/2 3.2, 5.1, 10.0, 20.0

Table 1: Parameters of the pipe-bend experiment. Note that the velocities are an

average of those measured by the reference flow meter.

Flow-meter measurements were recorded every second for approximately three

minutes for all configurations examined. For each configuration, the arithmetic average

and the standard deviation of the samples were computed as:

µUi
=

1

n

n∑
j=1

U j
i ; σUi

=

√√√√ 1

n− 1

n∑
j=1

(µUi
− U j

i )2, (11)

where U j
i is the j-th measurement of the average speed at the i-th path, and σŪi

represents the aleatoric uncertainty due to repeatability associated with the i-th path.

A reference flow meter was positioned far downstream from the bend to ensure its

performance was not influenced by any sort of disturbance. It is important to highlight
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that the data from the reference flow meter are not used in any way to build the computer

model or to carry out the Bayesian calibration as can be seen from the flowchart of

Figure 1. Its measurements were used only for validation purposes as ground truth to

compute the errors in the values measured by the two-path flow meter under test, and

in those obtained after applying the method proposed in this paper. The reference flow

meter is a SM-RI-X Turbine meter from Elster Instromet [26].

2.4. CFD simulations

In this work, Computational Fluid Dynamics (CFD) is a fundamental part for building

the computer model that will be used in the Bayesian Data Analysis. Because its direct

use in a Bayesian calibration is unfeasible due to the large number of model evaluations

required, a surrogate model of the CFD is built using kriging.

With this in mind, RANS simulations of the geometry under consideration are

carried out for a variety of Reynolds numbers. For each of these simulations, samples

of the velocity vector along the two paths are extracted at the intersection between the

path line and the mesh cells. After discretizing (7), the transit times for a given path can

be estimated and, by substituting them into (8), the flow speed can be computed. This

is assumed to give similar results to those of a real flow meter [27, 28]. In this way, a

database was built relating parameters θ = (x/D,Reb, α) to the numerically-computed

flow rate d = [ṁ1 ṁ2], where ṁ1, ṁ2 are the flow rates measured by each path.

In this study, all computations are performed using OpenFOAM, an open source

CFD toolbox utilizing a second-order, cell-centered, finite-volume method. The SIMPLE

procedure is applied to compute the pressure and the velocity field, the k− ε turbulence

model is used for the turbulent kinetic energy and turbulent dissipation computation.

Steady state simulations are performed on a structured numerical grid, selected after a

grid convergence study, with approximately 10 million cells and y+ ≈ 1 which is adapted

for the different Reynolds numbers. Details of the numerical grid are shown in Figure

4.
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(a) Cross-sectional mesh topology for the

RANS simulations.

(b) Mesh topology at the bend for the

RANS simulations.

Figure 4: Details of the 10M-point CFD mesh.

A no-slip adiabatic boundary condition is imposed on the pipe wall, a constant

speed is specified at the pipe inlet and a constant pressure at the pipe outlet. The inlet

values for the turbulent kinetic energy and the turbulent dissipation are:

k =
3

2
(UbI)2 , ε = Cµ

k
3
2

l
, (12)

where I is the turbulence intensity and is computed as I ≈ 0.16Re
− 1

8
b , Cµ is a turbulence

closure model coefficient that usually has a value of 0.09, and l is the turbulent length-

scale which is approximated as l ≈ 0.038D. Note that the value of the speed specified

at the inlet is the true value of the bulk speed and is used to compute the Reynolds

number. All the combinations of the elements of θ at which the flow rate for both paths

was calculated are reported in Table 2.

Reb(-) Ub (m/s) x/D(-) α(rad)

2.1 · 104 2.0 [0.0, 16.0] [0, 2π)

3.4 · 104 3.2 [0.0, 16.0] [0, 2π)

5.1 · 104 5.0 [0.0, 16.0] [0, 2π)

1.1 · 105 10.0 [0.0, 16.0] [0, 2π)

1.6 · 105 15.0 [0.0, 16.0] [0, 2π)

2.1 · 105 20.0 [0.0, 16.0] [0, 2π)

2.4 · 105 22.5 [0.0, 16.0] [0, 2π)

Table 2: Combinations of elements of θ for which the flow rate was calculated as an

UFM would do. For x/D and α, 25 uniformly distributed samples in the specified

intervals were considered.
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2.5. Kriging and surrogate Model

The posterior distribution of the parameters given the data as expressed in (2) can

be approximated with Markov-chain Monte Carlo methods (MCMC). These methods

require thousands of evaluations of the computer simulation at various θ, which implies

thousands of RANS simulations, thus making the process computationally unfeasible.

Instead, the data from the numerical model is used to build a surrogate model that

permits retrieving the flow rate as computed by the flow meter for any θ much faster

than by performing CFD simulations. Note that no experimental data is required for

this step, only numerical data is used. This is achieved by means of kriging, a regression

technique based on Gaussian processes which can also be formulated in terms of Bayes’

rule. The kriging estimator is able to predict the mean and variance of a quantity

dependent on some parameters. For this particular problem, the quantity of interest

is the flow rate for the two paths of the UFM, and the parameters are given by the

elements of θ. Note that both the kriging mean and variance are used in the statistical

model specified in (1) with likelihood as in (4). The reader is referred to Wikle and

Berliner [29] for an accurate derivation and description of kriging.

3. Results and Discussion

3.1. Experiment

In the experiment, different distances between flow-meter and elbow (x/D), different

Reynolds numbers (Reb), and different flow meter rotation angles (α) were tested. This

was done in order to gather enough data to validate the proposed approach for a variety

of cases. Each measurement was interpreted as a realization of a random variable:

ṁi = di ∼ N (µUi
, σ2

Ui
), (13)

where µUi
and σUi

are estimated for each path as in (11). In this case, σUi
represents

the aleatoric uncertainty only due to repeatability. The quantity of interest is the flow

rate output by the meter obtained as:

ṁexp =
1

2
(ṁ1 + ṁ2) · CF, (14)

where ṁ1 and ṁ2 are the approximations to the true flow rates computed by path 1 and

path 2 respectively, and CF = 0.902‡ is a correction factor applied by the flow-meter

manufacturer.

As already mentioned in Section 2.3, the output of the UFM measurement is

approximately a three-minute time series of the flow rate evaluated at intervals of one

second and correlation between the samples may be an issue. To check for this, the

discrete autocorrelation Ryy at lag l for a discrete signal y(n) was computed as:

Ryy(l) =
∑
n∈Z

y(n)ȳ(n− l), (15)

‡ Krohne GmbH, personal communication, December 2016.
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and normalized by the variance. An example of the result of the autocorrelation study

is reported in Figure 5. The other time series display similar behaviors. It can be seen

that the autocorrelation between the samples is very small thus proving that the samples

are uncorrelated in time.

0 50 100 150 200
0.058

0.064

0.070

ṁ
(m

3
/s

)

0 50 100 150 200

l (s)

−1

0

1

R
y
y

(−
)

Figure 5: Time series and autocorrelation plot for the experiment at x/D = 4.0,

Reb = 2.1 · 104, α = 0π. The red line indicates the zero-value of the autocorrelation.

This could be anticipated by thinking that, even at the smallest flow speed of 3.2

m/s, the flow in the pipe moves of 3.2 m after each second, thus making evident that

two successive UFM measurements can be hardly correlated.

The effect of the elbow on the flow meter performance can be studied by looking

at the relative error between the UFM measurements and the corresponding reference

values. For a normally distributed quantity, we can write:

erel ∼ N (
ṁref − ṁexp

ṁref

· 100,
σ2
ref + σ2

exp

ṁ2
ref

· 1002), (16)

where ṁref is value of the flow rate as measured by the reference flow meter, and σref
is its repeatability assumed to be 0.2%§.

Figure 6a shows that the flow rate is overestimated at small flow rates and

underestimated at large flow rates. This looks like a bias in the UFM measurements

that can be due to the instrument not being calibrated. This dependence of the relative

error on the flow speed can also be observed in the CFD results although it is not as

strong as in the experimental case. The relative error seems to reduce as the flow moves

away from the bend exit, although the trend is not that clear for the smallest flow rates

at x/D = 10, which can be due to installation effects.

The effect of the bend can also be noted by looking at the repeatability of the

measurements as a function of the distance from the elbow exit as shown in Figure 6b.

§ VSL, personal communication, March 2016.
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Repeatability is larger at locations close to the bend exit and becomes smaller as the

flow develops because the unsteadiness of the flow generated by the bend decays as the

flow moves further downstream. It can be also noted that, because of the presence of

the bend, the uncertainty due to repeatability is of the same order of magnitude of the

relative error, thus contributing significantly to lowering the performance of the UFM.

This issue is expected to significantly hamper the Bayesian calibration from learning

anything about x/D or α, which are quantities that are not so closely related to the

flow rate as the Reynolds number is.

0 2 4 6 8 10
x/D (−)

−4

−3

−2

−1

0

1
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R
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at
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e
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r(

%
)

v = 3.2 m/s
v = 5.1 m/s

v = 10.0 m/s
v = 20.0 m/s

(a) Relative error as function of distance from

the elbow exit for different flow velocities

averaged over α.
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)

v = 3.2 m/s
v = 5.1 m/s
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(b) Repeatability as a function of distance

from the elbow exit for different flow velocities

averaged over α.

Figure 6: Relative error and repeatability from the experiment on the pipe bend.

The aleatoric uncertainty due to repeatability is not the only source of uncertainty

associated with the UFM measurements. An estimate of the other sources of uncertainty

can be derived from reproducibility information with varying x/D and α for a given flow

rate. Note that the uncertainty due to repeatability is obtained by performing multiple

measurements at a given θ = (x/D,Reb, α), while the uncertainty due to reproducibility

is obtained by performing multiple measurements with varying x/D and α for the same

Reb. Figure 7 shows all the pdf’s of the experimental measurements, each experiment

at a given x/D-α combination is plotted as a Gaussian with repeatability as standard

deviation. An estimate of the additional sources of uncertainty can be computed by

fitting all the pdf’s for a given flow speed by means of a kernel density estimate [30, 31]

and taking the standard deviation σ̂ of this new probability distribution. This represents

the spread of the UFM measurements at a given flow speed. Note that σ̂ can only be

evaluated if a large number of experimental data is available. This may not be the

case and therefore reproducibility is not incorporated in the MCMC but just added

a-posteriori for the sake of completeness.
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Figure 7: Probability density functions of the experimental measurements of both paths

as a function of the flow rate.

Hence, (13) can be updated to:

di ∼ N (µUi
, σ2

Ui
+ σ̂2), (17)

which gives a more complete representation of the uncertainty associated with the

experimental measurements. As can be observed, the data is very noisy and therefore,

for this particular test case, getting any meaningful information from the posterior will

be already an achievement since it is expected the data to be very little informative

about x/D and α.

3.2. CFD simulations

A grid refinement study with 5M-, 10M-, and 15M-point meshes was carried out to

reduce discretization errors and ensure sufficiently accurate results. Figure 8a indicates

that there is little difference between the results of the three grids, with the streamwise

velocity profiles of the two finer grids almost overlapping. The maximum error of the

coarse and medium grid with respect to the fine grid was computed. While the coarse

grid has, at each x/D, a maximum error over 10%, the medium grid maximum error is

about 1%. Hence, a grid of 10M points was chosen for the continuation of this study.
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Figure 8: Results of the grid convergence study.

Significantly more important is the choice of the turbulence model. RANS

simulations are generally good at reproducing flow in straight pipes but encounter some

challenges in pipe bends. This is mainly because the isotropic eddy viscosity assumption

of the most commonly used class of linear eddy-viscosity models is violated when the

flow meets the bend. Possible solutions to this problem are using anisotropic turbulence

models such as nonlinear eddy viscosity models or Reynolds-stress models or resorting

to Large Eddy Simulations (LES) [33]. However, since this paper focuses on industrial

applications, we concentrate on testing the performance of the popular and practical

isotropic k − ε [34] model and its Launder-Sharma variation [35].

The results presented in Figure 8b show the velocity profile in the symmetry plane

of a pipe with a 90-degree bend with κ = 0.312. This test case was experimentally

investigated by Kalpakli et al. [32] and numerically by Roehrig et al. [36]. It can be

seen that neither of the two eddy-viscosity models is able to capture the behavior of the

fluid in the inner part of the bend. This is consistent with the results by Roehrig et al.

and implies that our computational model will not be able to exactly reproduce the real

dynamics of the flow and, hence, the UFM behavior. In the end, the k − ε model was

preferred for this study for it proved to be stabler than its Launder-Sharma variation.

Samples of the flow rate along lines corresponding to the two paths of the flow

meter (ṁiCFD
) are extracted as explained in Section 2.4 and compared to the actual

flow meter measurements (ṁiexp). Figure 9 shows this comparison for α = 0π, π/3, π/2

for the smallest flow speed tested. Results for the other flow speeds are similar.
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Figure 9: Evolution of flow rate with x/D for different α both for experimental and

simulated flow meter measurements at v = 3.2 m/s. P1 and P2 refers to path 1 and

path 2 of the UFM. The confidence intervals represent the repeatability associated with

each experimental measurement.

For α = 0π, close to the bend exit, an important difference between the simulations

and the experiments can be observed. For this α, the flow meter paths are parallel to

the pipe centreplane, which is also the plane about which the flow is symmetric as shown

in Section 2.2. Hence, theoretically, the two paths should ’see’ almost the same flow

profile and, therefore, measure almost the same flow rate, the only difference being due

to one path being located slightly more downstream than the other. This is the case

only for the CFD data. The experimental data shows a different behavior with the

second path measuring a larger flow rate than the first one. This is an indication that,

in the experiment, the flow profile had been distorted not only by the elbow, but also

by something else, for example by the presence of a small step between the junction of

two consecutive pipes, or by the entire set up not being exactly horizontal. This is an

additional epistemic uncertainty that our CFD is not able to take into consideration.

This problem is not present for α = π/3 or α = π/2, where flow inhomogeneity

dominates, and for which the trend between CFD and experiments is quite similar

(although there are quantitative differences).

It is immediately observed that CFD and experiments come in closer agreement

as the distance from the bend exit is increased: already after x/D = 4, the CFD data
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are within the confidence intervals of the experimental data, although the differences

between the measurements of the two paths are larger than in reality. This phenomenon

can be a problem if the ultimate objective was to obtain a better estimate of the mean

of the flow rate, because on one side the computer model is not accurate enough to

exactly reproduce the behavior of the flow meter in these conditions, and on the other

side the quality and quantity of the UFM measurement is too low. This means that,

for every MCMC sample of θ = (x/D, Reb, α), the computer model will return a flow

rate that is close to what the real UFM would measure but not exactly. Hence, in the

majority of cases, the true flow rate associated with a given Reynolds number sample

will be close to the real true flow rate but it will not be exactly it, thus making it hard

to systematically obtain a better estimate of the mean of the flow rate with respect to

what the meter under test is measuring. Building a more accurate computer model of

the meter under test could be a solution to this problem, for example by using more

advanced (and more computationally expensive) turbulence models or CFD simulations

(e.g. LES), or by better modeling the geometry under consideration. Another option

would be to have more high-quality data from the measurement instrument.

3.3. Kriging

Once the CFD results have been sampled, we have a database of flow rate values

for the two paths for a variety of θ. In the present study, flow rates have been

recorded for 25 equidistant locations downstream of the bend exit x/D, 25 equidistant

flow meter rotation angles α, and 7 Reynolds numbers Reb, thus adding up to 4375

different θ samples. This tensor-product grid sampling technique is one of the most

naive approaches in that it is not guaranteed to minimize the variance of the kriging

predictor, thus potentially adding further uncertainty to the statistical model. To rule

out this possible problem, it is sufficient to evaluate the variance of the kriging built with

this tensor-product grid samples at a sufficiently large number of randomly distributed

points in the θ-space. The maximum of this variance was found to be in the order

of O(10−6), which is one order of magnitude smaller than the uncertainty associated

with the repeatability of the experimental measurements and, in principle, can be

neglected. However, for the sake of completeness, we will take also this uncertainty

into consideration while building the statistical model of (1).

There are two kinds of checks that must be carried out to ensure kriging is a good

approximation of the CFD response. The first is controlling that the data used for the

regression, i.e. the 4375 CFD samples of the flow rate, are regressed correctly, and the

second is to check how well the experimental data are predicted by the surrogate model.

In the first case, an exact match between kriging and CFD data is not expected

since the former is not used as an interpolation technique but rather as a regression.

Hence, an approximate agreement like the one in Figure 10a is sufficient to assess the

quality of the method, even though a larger spread of the points is observed at high flow

rates.
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Figure 10: Agreement of Kriging with CFD and experimental data.

As seen in Section 3.2, CFD results do not reproduce experimental results exactly.

Hence, a surrogate model based on CFD results is not expected to exactly reproduce

experimental results either. This is shown in Figure 10b. However, it can be noted

that the agreement between Kriging and experimental results is fairly good at low flow

rates and gets worse with increasing flow speed as already observed in Figure 10a.

This is because the absolute error between kriging and the experiment (or CFD) grows

proportionally to the flow rate, but it can be shown that the values taken by the relative

error do not change much throughout the data set. Furthermore, as expected, the

median relative error of the kriging with respect to the CFD is approximately 0.8%,

which is smaller than the median relative error with respect to the experimental data

(3.6%).

3.4. Bayesian Data Analysis

The posterior probability distribution π(γ|d), where d = [ṁ1 ṁ2] contains the

flow rate measured by the two paths of the meter under test, can be approximated

using Markov-Chain Monte-Carlo (MCMC) methods, as implemented in the PyMC

package [37]. For simplicity, instead of π(γ|d) we will write π(θ|d), to highlight the

posterior of the parameters of θ is the result we are interested in. PyMC operates by

creating a Markov process whose stationary distribution is the specified posterior. Three

uninformative flat priors were selected for the elements of θ as π0(x/D) ∼ U(0.0, 16.0),

π0(Reb) ∼ U(2.1 · 104, 2.4 · 105), and π0(α) ∼ U(0π, 2π). Note that the minimum and

maximum values of each prior was chosen to be at the boundaries of the θ-space used to

build the kriging surrogate model. Specifying values outside of these boundaries would

force kriging to extrapolate at some point during the MCMC sampling, which is not
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ideal. As explained in Section 2, the little information provided by the experimental

data makes it hard for the Bayesian calibration to infer something about θ and the

hyperparameters of the model inadequacy. This is why an accurate computer model

such as CFD is needed. In this context, very narrow uniform priors can be specified

for the model inadequacy hyperparameters as π0(µδi) ∼ U(−s · µUi
, +s · µUi

), and

π0(σδi) ∼ U(−s · σUi
, +s · σUi

), where µUi
and σUi

are the experimental mean and

repeatability as defined in (11). Note that the priors for the hyperparameters are

centered in zero and the scaling factor s is arbitrarily chosen to be equal to 10−1, thus

meaning that the corrections provided by the model inadequacy parameters can be at

maximum one order of magnitude smaller than the experimental values. This is why

the prior intervals for these parameters are regarded as narrow: the allowed corrections

by the hyperparameters have only a marginal influence.

The number of iterations of the MCMC was set to 40000, with a burn-in of 16000

samples. Out of the 24000 samples left, only one in every three was chosen (thinning)

to reduce correlation between successive samples. Hence, in the end, only 8000 samples

are considered as a result of the MCMC. Finally, a kernel density estimation routine was

used to compute the probability density function of the parameters and of the quantity

of interest.

One way of evaluating model fit is to compare the posterior predictive distributions

(ppd’s) of the flow rate for path 1 and 2 with the observations used to fit the model.

The ppd is defined as in (3) and can be easily obtained at the end of the MCMC

samples with PyMC [37]. Figures 11a and 11b demonstrate high goodness of fit because

the experimental data pdf’s lie in high-probability regions of the posterior predictive

distribution.
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Figure 11: Example of results of a MCMC simulation.
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After making sure the model fits the data adequately, one can use the MCMC

samples of the Reynolds number to derive an estimate of the uncertainty in the flow

meter readings. This is done by transforming the samples of the Reynolds number in

samples of the true flow rate as:

ṁtrue = Reb ·
ν · A
D

, (18)

and then by computing the pdf of the new quantity by a kernel density estimate. Figures

12a and 12b show that the pdf computed with the methodology presented in this paper

has a smaller uncertainty than that associated with the experimental measurements.

This result is an update of the epistemic uncertainty caused by the presence of the

bend, and was obtained despite the large uncertainty associated with the experimental

data. Note that no aleatoric uncertainty is present anymore because the computer model

is deterministic.
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Figure 12: Example of flow rate pdf’s before and after the application of the

methodology. Note that the reference values have an uncertainty of 0.2% and that

(x/D,Reb, α) refer to the most upstream path.

It can be seen from Figure 13a and Figure 13b that the UFM measurements are

only very little informative about x/D or α, thus making it extremely challenging to

infer anything about the mean value of the true flow rate. This was expected since these

quantities are much less related to the flow rate than the Reynolds number is.
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Figure 13: Marginal posterior pdf’s after the application of the methodology. Note that

the values pf (x/D,Reb, α) refer to the most upstream path.

It should be noted that the uncertainty of the experimental data of Figure 12 is given

by the sum of repeatability and reproducibility as specified in (17). The uncertainty due

to reproducibility could be calculated only thanks to the large number of experimental

data available collected for validation purposes. However, it is not readily available in

normal industrial situations. This is why it was not included in the MCMC procedure,

and was added only a-posteriori in the plots of Figure 12 to convey a more realistic and

complete picture of the uncertainty associated with an experimental measurement. It

must be stressed that, since only experimental repeatability is used in the MCMC, if

the data are not informative then the posterior uncertainty will be at best comparable

with the experimental repeatability. On the other hand, when the data are informative,

the posterior uncertainty is reduced also compared to experimental repeatability only.

Theoretically, the proposed approach is able to both reduce the uncertainty and

error associated with a given measurement but, in practice, this is not always possible

because of the availability and/or quality of the data. The results of the methodology

with high-quality synthetic data are shown in the Appendix to prove the full potential

of this approach.

When high-quality data are not available, the question of the best position for

the measurement instrument immediately arises. For an UFM, the optimal position

suggested by the manufacturers is far away from any source of disturbance. However, as

stated in the introduction of this paper, this is not always possible. Hence, if this method

is to be applied for correcting the UFM measurements in non-ideal flow conditions, the

best position for the real UFM providing the data for the Bayesian calibration is where

the computer model is reproducing the real process with the highest accuracy. This

depends from certain parameters as shown in Section 3.2 and cannot be framed in a
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general rule.

4. Conclusions

In this paper an approach has been presented which is able to update the uncertainty

associated with ultrasonic flow meter measurements under non-ideal flow conditions.

The methodology in itself is completely general and can be used for any kind of flow

rate measurement technique, provided that a computer model of the process under

consideration can be built.

Flow meter measurements in non-ideal flow conditions are characterized by larger

errors and uncertainties than in ideal flow conditions. The typical solution would be to

re-calibrate the instrument but this is not always possible. In this paper, we propose to

calibrate a computer model of the UFM using Bayesian techniques instead. The case

under consideration is that of a pipe bend and CFD simulations are used to simulate

it. An experiment was carried out to gather the necessary data for validation of the

methodology but the method can be applied even if only one data point is available.

Markov-Chain Monte Carlo samples are needed to approximate the posterior pdf and

therefore a kriging surrogate of the CFD was adopted to speed-up the process. The

computer model simulating the UFM measurements takes the Reynolds number, the

distance of the UFM from the bend exit, and the UFM azimuthal angle with respect

to the flow symmetry plane as inputs. The fundamental point lies in the fact that the

Reynolds number is computed using the true bulk speed of the flow, and therefore its

posterior also carries this information, thus providing the mean to update the initial

flow rate estimate by the real UFM.

When few data that are little informative are available, the posterior uncertainty

will be at best comparable with the one in the data, and the error might not be

systematically reduced as shown in Section 3.4. However, if more and/or high-quality

observed data are available, the procedure will systematically reduce both the error and

the uncertainty thus providing a more accurate measurement of the flow rate than that

from the UFM. This is shown in the Appendix.
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Appendix

The fundamental idea of the paper relies heavily on advancements in computational

fluid dynamics up to a point where results of a computer model can be trusted to be

reproducing the real physical process with a high level of accuracy. What ’high level’

means is dependent on the application. For the case of a flow in a pipe bend, this means

that the computer model is able to predict the dynamics of the flow in such a way that

the flow rate measured as an ultrasonic flow meter would do is reasonably close to the

experimentally measured quantity.

Although still reproducing the flow dynamics in a pipe bend approximately, the

literature suggests that the computer models at our disposal are accurate enough for this

purpose. Hence, the accuracy of computer models is not an obstacle for the application

of this methodology to real-life problems. The true obstacle consists in the subtle

discrepancies between the real-life geometries and the geometry used in the simulations.

The latter are sometimes sketchy approximations of the former so that, in the end, it

is as if a different geometry was simulated. The authors believe that these differences

yielded to the results of Figure 9.
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Therefore, a test case with synthetic data was also studied to illustrate the potential

of the proposed approach. The synthetic data were randomly selected from the CFD

samples and random noise extracted from a normal distribution of the form N (0, σ2
synth)

(with σsynth = 0.05 · ṁi) was added to them in order to simulate aleatoric and epistemic

uncertainty.

The same approach outlined in the paper above was followed, with the only

difference that now the agreement between the computer model and the synthetic data is

much better. As with noisy experimental data, the outcome of the process is a reduction

in the uncertainty associated with the flow rate measurements but also a reduction of

the error as shown in the examples of Figure 14.
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(a) Comparison of posterior of true

flow rate with synthetic flow meter

measurement at x/D = 3.2, Reb = 2.1 ·
105 and α = 0π.

(b) Comparison of posterior of true

flow rate with synthetic flow meter

measurement at x/D and α for data at

x/D = 2.0, Reb = 5.4 · 104 and α = π/3.

Figure 14: Example of flow rate pdf’s before and after the application of the

methodology with good-quality synthetic data. Note that the reference values have

an uncertainty of 0.2% and that (x/D,Reb, α) refer to the most upstream path.

This is because the synthetic data are informative enough to allow the computer

model to identify also the distance from the bend and the angle at which they were

acquired thus helping it to identify the Reynolds number much more accurately. This

can be seen from Figure 15. As can be seen, the posterior of x/D and α are much more

informed by the data than with the noisy experimental data yielding posteriors such

those in Figure 13. Indeed the proposed approach reduced the uncertainty in 100 % of

the cases and reduced the error in 95% of the cases.
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(a) Marginal posterior of x/D and α for

data at x/D = 3.2, Reb = 2.1 · 105 and

α = 0π.
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(b) Marginal posterior of x/D and α for

data at x/D = 2.0, Reb = 5.4 · 104 and

α = π/3.

Figure 15: Marginal posterior pdf’s after the application of the methodology to synthetic

data. Note that the values pf (x/D,Reb, α) refer to the most upstream path.

In general, there are three possible ways to increase the chances to obtain an error

reduction from the proposed approach:

• Gathering more data would provide more information and allow the methodology

to identify the elements of θ more accurately.

• Gather high-quality data, that is data with small measurement uncertainty, would

provide more information as well.

• Use a more accurate computer model. This implies better modeling of the geometry

under study and/or more accurate CFD techniques.


