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A ROBUST SATURATED STRATEGY
FOR \bfitn -PLAYER PRISONER'S DILEMMA\ast 

GIULIA GIORDANO\dagger , DARIO BAUSO\ddagger , AND FRANCO BLANCHINI\S 

Abstract. We study diffusion of cooperation in an n-population game in continuous time.
At each instant, the game involves n random individuals, one from each population. The game has
the structure of a prisoner's dilemma, where each player can choose a continuous decision variable as-
sociated with the probability of cooperating or defecting. We turn the game into a positive dynamical
system. Then, we propose a novel strategy that is the saturation of a polynomial function. The strat-
egy requires to each player exclusively the knowledge of her/his own current average payoff, along
with her/his own payoffs in the cooperative and noncooperative equilibria; no information about
other players' payoffs is required. The proposed strategy guarantees local stability of the cooperative
equilibrium if the degree p of the polynomial is greater than or equal to 2. Conversely, the non-
cooperative equilibrium becomes unstable, for p large enough, if and only if a certain Metzler matrix
depending on the payoffs has a positive Frobenius eigenvalue. We prove that the n-dimensional box
of all payoffs between the noncooperative and the cooperative ones is positively invariant. Finally
we show that, for p large, the domain of attraction of the cooperative equilibrium inside this box
becomes arbitrarily close to the box itself.

Key words. prisoner's dilemma, dynamic games, stability, equilibria, invariant sets

AMS subject classifications. 90D, 93A, 93D
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1. Introduction. Diffusion of cooperation in society is a core topic at the in-
tersection between engineering and social science. A common paradigmatic model is
the repeated prisoner's dilemma, for which a variety of versions exist. Starting from
Smale's definition of good strategies in [44], the evolution of cooperation strategies
has been first studied within the framework of asymptotic pseudotrajectories in chain
recurrent flows [11]. In a subsequent work, the same game has been discussed in the
context of stochastic approximation and differential inclusions [10]. There, as well
as in [9], connections with approachability in repeated games with vector payoffs [13]
have also been discussed in detail (an overview is provided below). A common as-
sumption in [9, 10, 11] is that the decision of each player is based on the knowledge
of the whole current average payoff vector. Differently, [32] introduces a simple adap-
tive rule that, as shown by simulations, yields convergence to the cooperative equi-
librium without requiring any knowledge about the mutual dependence of players'
payoffs.

Blackwell's approachability theorem provides conditions for a set to be approach-
able. The present paper links to approachability insofar as the players interact re-
peatedly and adjust their strategies based on the current time-average vector payoff,
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and convergence of the time-average vector payoff to prespecified sets is investigated.
Approachability has been used to prove convergence in different application domains,
such as allocation processes in coalitional games [34], regret minimization [36, 25],
adaptive learning [17, 20, 23, 24], excludability and bounded recall [37], and weak
approachability [47]. In the context of cooperative games with transferable utilities,
the theorem is used to prove that the core is an approachable set under opportune
allocation processes. Within the realm of regret minimization, one wishes to design
strategies such that the nonpositive orthant in the space of regrets is an approach-
able set; there the underlying idea is that a player needs to adapt her/his strategy
based on the current regret to make the nonpositive orthant approachable. It can be
shown that, when all players have nonpositive regrets, the resulting outcome is an
equilibrium for the game. A similar concept can be found in adaptive learning and
evolutionary games [43]. We formulate our game in continuous time. The original
formulation of approachability is in discrete time and has been adapted to continuous-
time repeated games in [25]. There the authors also highlight the connection with
Lyapunov theory. The extension to infinite-dimensional space is due to Lehrer [35].
Approachability shares striking similarities with differential game theory and, as such,
can be studied using differential calculus and stability theory [39, 45]. Approachabil-
ity and differential inclusions [2] are studied in [39]. There the authors also highlight
that Blackwell's theorem is a generalization of von Neumann's minimax theorem [48].
We refer the reader to [45] for a set-valued analytical perspective [1, 3]. Remarkably,
approachable and discriminating sets can be reframed within the context of set in-
variance theory [15]. A core concept in approachability is the one of nonanticipative
strategy, which resembles the same concept in differential games [7, 18, 45, 42, 46].
Note that classical feedback strategies in differential games are special nonanticipative
strategies. A complementary notion is the one of excludability; conditions for a set
to be excludable are discussed in [37] under different circumstances: imperfect infor-
mation, bounded recall, and delayed and/or stochastic monitoring. Another concept
related to approachability is the one of attainability [8, 38]. Attainability can play
a role in different application domains such as transportation networks, distribution
networks, and production networks.

In this paper, we consider an n-player repeated prisoner's dilemma inmixed strate-
gies, where each player may choose to cooperate or defect with probability. The game
describes a scenario where (i) the cooperation of a player benefits the rest of the play-
ers, (ii) defectors benefit from engaging with cooperators, and (iii) full cooperation is
more profitable to anybody than full noncooperation. After introducing a new strat-
egy based on partial information, and studying the evolution of the n-player game, we
extend the model to a population game framework, and we investigate the diffusion
of cooperation in the population. In the case of structured environment, we use a
graph to describe the interaction topology, and we link the strategy to the network
properties; in particular, the connectivity (or degree) of a node (i.e., the number of
neighbors of the corresponding player) reflects in the power coefficient of the strategy.
In such a scenario, once a random player is chosen, s/he plays repeatedly with p play-
ers: we view this as p independent identically distributed experiments. The strategy
captures the joint probability of defecting in all p repeated games (or equivalently,
one minus the probability of cooperating at least once out of p plays).

As a main contribution, we propose a novel saturated strategy where each player's
decision is based on the exclusive knowledge of her/his own current average payoff
and on her/his own payoff in the fully cooperative and fully noncooperative cases.
It is worth stressing that information about the other players is not required, which
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3480 GIULIA GIORDANO, DARIO BAUSO, AND FRANCO BLANCHINI

makes this strategy well suited also for games with incomplete information [4]. We
extend preliminary results in [21], limited to the case of 2-player games, to the game
with n players, and we revisit the game model as a population game with structured
or unstructured interaction environment, providing the following contributions.

\bullet The strategy is a saturated polynomial function parameterized in the degree p,
which represents a patience parameter. For p = 1, we have a linear saturated
strategy, meaning immediate reaction of each player to noncooperation on the
part of the other players; for larger p we have, initially, a patient reaction.

\bullet Patience pays: for p \geq 2, the cooperative equilibrium becomes locally stable.
\bullet By taking p large, we can locally destabilize the noncooperative equilibrium
if and only if a Metzler matrix depending on the system payoffs has a positive
real dominant (Frobenius) eigenvalue.

\bullet There exists a distrust region \scrD in the space of payoffs, for which the non-
cooperative equilibrium solution is an attractor: all of the trajectories origi-
nating in the region converge to noncooperation. The region is characterized
by small initial values of the average payoff for all players (global distrust).

\bullet The hyper-rectangle \scrR \alpha ,\delta in the space of payoffs, associated with the non-
cooperative and the cooperative payoff values, is a positively invariant and
attractive set for the system.

\bullet Trajectories originating in the positive orthant outside the distrust region \scrD 
are ultimately bounded inside the hyper-rectangle \scrR \alpha ,\delta .

\bullet The domain of attraction to the cooperative equilibrium inside \scrR \alpha ,\delta becomes
arbitrarily close to the whole hyper-rectangle as p becomes sufficiently large:
hence the noncooperative equilibrium, even if locally stable, has a local do-
main of attraction in \scrR \alpha ,\delta that is arbitrarily small if p is sufficiently large.

\bullet Under suitable assumptions on the payoffs, the proposed strategy is a good
strategy: it is never profitable for any player to switch from this strategy to
steady defection.

\bullet In relation to a population game formulation, we can design the strategy to
have maximal diffusion of cooperation in the population, which occurs when
the damage for the cooperator is less than the benefit for the defector in
random matching.

\bullet In a structured environment, convergence to the cooperative equilibrium
means that each player cooperates with all of her/his neighbors, thus pro-
viding steady-state configuration of the coevolving network.

The parameter p bears resemblance to the existing concept of ``delay"" of a player in
responding to defectors/cooperators when using the so-called ``inertia strategies"" [5].
The parameter p can also be used to weigh the ``altruistic nature"" of a player who
adopts proportional tit-for-tat strategies; see, e.g., zero determinant memory-one
strategies for discrete-time games developed in [26, 27, 28, 29, 30, 31]. It is worth em-
phasizing the link with risk-seeking behavioral strategies as developed in Kahneman
and Tversky's prospect theory [33]. By increasing p we assume that the players are
increasingly robust against unfavorable events (noncooperation of the other players)
and more sensitive to favorable events (cooperation of the other players).

The game is introduced in section 2, while section 3 presents some needed pre-
liminaries. Section 4 provides stability results, section 5 investigates the system dy-
namics inside \scrR \alpha ,\delta , and section 6 studies the conditions under which the strategy is
good, i.e., no player has interest in abandoning the strategy and defecting. Section 7
provides a population-game perspective. Section 8 discusses a numerical example
and proposes simulations that illustrate the evolution of the game with the proposed
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saturated strategy. Section 9 provides concluding comments and directions for future
work.

2. The \bfitn -player game. In the considered prisoner's dilemma with n players,
each player decides either to cooperate or to defect in order to maximize her/his own
payoff. The average payoff vector [x1 x2 . . . xn]

\top evolves according to a repeated
game, depending on the players' choice. The decision variable associated with player
k is denoted by \omega k \in \{ 0, 1\} , where

\bullet \omega k = 1 means that player k cooperates;
\bullet \omega k = 0 means that player k defects.

Then, the payoff function for player k, resulting from the decision of all the players,
is given by

\phi (k)(\omega 1, \omega 2, . . . , \omega n) > 0.

Since the game is repeated, the outcome is filtered over time. This corresponds to
considering a mixed strategy, namely, a continuous decision variable in the interval

uk1 \in [0, 1],

which represents the cooperation frequency for player k, along with the complemen-
tary variable

uk0
.
= 1 - uk1 \in [0, 1],

which represents the defection frequency. For instance, if uk1 = 1
2 , then player k

cooperates half of the times s/he is involved in a play. In the case of a population,
this number reflects the inclination of the individuals towards cooperation.

Given the instantaneous payoff \phi k of player k, we can define its average payoff
over the time interval (0, \tau ] as

xk(\tau )
.
=

1

\tau 

\int \tau 

0

\phi k(\theta )d\theta .

In principle, the evolution of this variable would lead to an equation that is not
time homogeneous. However, following [45], we can denote the final time as \tau = et

and, with a change of variables, obtain a homogeneous equation for xk(e
t): \.xk(t) =

 - xk(t) + \phi k(t). The variable change does not affect the average computation; only
the interval is changed (see [45] for a derivation). Moreover, since the strategies we
consider are memoryless, they are not affected by time scaling.

In what follows, for brevity, we will denote by xk(t) the (average) payoff of player
k, obtained by averaging the instantaneous payoff \phi k(t) over the time interval (0, et].

The payoff xk(t) of player k evolves over time according to the equation

\.xk =  - xk +
\sum 
\omega \in \Omega 

\phi (k)(\omega 1, \omega 2, . . . , \omega n)u
1
\omega 1
u2\omega 2

. . . un\omega n
,(2.1)

where the sum is extended to all Boolean choices \omega = (\omega 1, \omega 2, . . . , \omega n) \in \Omega = \{ 0, 1\} n.
For instance, if all the players cooperate, then we have uk1 = 1 and uk0 = 0 for all

k, and the payoffs satisfy the equation [45]

\.xk =  - xk + \phi (k)(1, 1, . . . , 1).

In this case, the players converge to the cooperative equilibrium point, which is \=xk =
\phi (k)(1, 1, . . . , 1) for all k.

We work under the following standing assumption.
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Assumption 1. The game payoffs satisfy the following three conditions.
(a) The cooperation of player h is more profitable than noncooperation for all

others: for all k \not = h and for any choice of the \omega i, with i \not = h,

\phi (k)(\omega 1, \omega 2, . . . , 1\underbrace{}  \underbrace{}  
=\omega h

, . . . \omega n) > \phi (k)(\omega 1, \omega 2, . . . , 0\underbrace{}  \underbrace{}  
=\omega h

, . . . \omega n).

(b) Conversely, defection advantages the traitor: for all k and for any choice of
the \omega i, with i \not = k,

\phi (k)(\omega 1, \omega 2, . . . , 0\underbrace{}  \underbrace{}  
=\omega k

, . . . \omega n) > \phi (k)(\omega 1, \omega 2, . . . , 1\underbrace{}  \underbrace{}  
=\omega k

, . . . \omega n).

(c) For all players, full cooperation is more profitable than full noncooperation:

\phi (k)(1, 1, . . . , 1) > \phi (k)(0, 0, . . . , 0) k.

We consider a decentralized strategy in which each player knows in advance
\bullet her/his own payoff in the fully cooperative case, \alpha k

.
= \phi (k)(1, 1, . . . , 1);

\bullet her/his own payoff in the fully noncooperative case, \delta k
.
= \phi (k)(0, 0, . . . , 0).

Note that \alpha k > \delta k for all k, in view of Assumption 1(c).
We consider a repeated continuous-time game with the following rules.
\bullet At each time instant, each player adopts a memoryless strategy exclusively
depending on her/his own payoff xk(t):\Biggl\{ 

uk1(t) = uk1(xk(t)),

uk0(t) = uk0(xk(t)) = 1 - uk1(xk(t)).
(2.2)

\bullet Each player ignores the actions of the other players.
\bullet Each player ignores the payoff functions of the other players.
\bullet All players act continuously in time, selecting at each time instant the strategy
uk1(t), and uk0(t) = 1  - uk1(t), subject to the constraints 0 \leq uk1(t) \leq 1 and
0 \leq uk0(t) \leq 1.

The rationale is that, in practical situations of repeated games (such as, for in-
stance, the transmission problem discussed in section 8.2), an overall cross-surveillance
among players is impossible. Each player must decide whether to cooperate based on
the evaluation of her/his own payoff only. Variables uk1(t) (respectively, uk0(t)) rep-
resent the probability of cooperating (respectively, noncooperating). In a practical
context where the decisions are associated with discrete events, this would roughly
correspond to the fraction of times when the player cooperates in a small interval \Delta t.

Remark 1. Although uk1(t) and uk0(t) could be regarded as probabilities, we are
considering a purely deterministic problem. This is different in nature from the case
of stochastic dynamic games (see [41]).

Define the functions

\sigma k(xk(t)) =

\biggl[ 
sat[0 1]

\biggl( 
\alpha k  - xk(t)

\alpha k  - \delta k

\biggr) \biggr] p
,(2.3)

where p is a positive integer and sat[0,1] is the saturation function:

sat[0,1](\xi ) =

\left\{     
0 for \xi < 0,

\xi for 0 \leq \xi \leq 1,

1 for \xi > 1.
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Then, the proposed strategy for each player is\Biggl\{ 
uk1(xk(t)) = 1 - \sigma k(xk(t)),

uk0(xk(t)) = \sigma k(xk(t)).
(2.4)

Remark 2. For each player, the proposed strategy is exclusively based on her/his
own average payoff (xk(t)) and on her/his own payoff in the fully cooperative (\alpha k) and
fully noncooperative (\delta k) cases; no information about the other players is required.
If the current average payoff of a player is lower than expected (which must be due
to noncooperation of some other players), then s/he can decide to stop cooperating,
without any actual knowledge of the decision/strategy of the other players. For in-
stance, consider m vendors who agree on a fair common price for their product (which
would result in a certain average profit for each of them, based on an expected de-
mand); if one vendor decides to secretly break the deal and lower the price to attract
more customers, then the other vendors see their current cumulative profit decrease
with respect to their expectation and, based on this information only, they can de-
cide, in turn, to reduce the price (up to the minimum level) to contrast the negative
trend. As we will show, the proposed strategy allows a player to properly react to
noncooperation, even without having any explicit knowledge of the other players and
of their strategies. Parameter p has a fundamental role and represents patience: p = 1
induces a linear reaction to values of xk that are smaller than \alpha k, while p = 2 induces
a weaker quadratic reaction, and so on.

In this framework, our main goal is to establish which values of the payoffs and
of the patience parameter p lead to cooperation, given the proposed strategy.

3. Invariance of the payoff polytope. Given x = [x1 x2 . . . xn]
\top , \omega =

(\omega 1, \omega 2, . . . , \omega n), and \Phi (\omega ) = [\phi (1)(\omega ) \phi (2)(\omega ) . . . \phi (n)(\omega )]\top , the dynamical system
can be written in vector form as

\.x =  - x+
\sum 
\omega \in \Omega 

\Phi (\omega )u1\omega 1
(x1)u

2
\omega 2
(x2) . . . u

n
\omega n

(xn),(3.1)

where \Omega = \{ 0, 1\} n. Denoting by

\scrV = conv\{ \Phi (\omega ), \omega \in \Omega \} (3.2)

the convex hull of all the 2n points \Phi (\omega ), with \omega \in \Omega , the following result holds.

Theorem 3.1. The polytope (3.2) is robustly positively invariant and attractive
for system (3.1) for any choice of the payoff functions in vector \Phi (\omega ) and for any
possible choice of the functions uk1(t) \in [0, 1] and uk0(t) = 1 - uk1(t).

Proof. For any choice of uk\omega k
(t) \in [0, 1], it can be shown by induction that

v
.
=

\sum 
\omega \in \Omega 

\Phi (\omega )u1\omega 1
u2\omega 2

. . . un\omega n
\in \scrV .(3.3)

In fact, for n = 2,

v =
\sum 
\omega \in \Omega 

\Phi (\omega 1, \omega 2)u
1
\omega 1
u2\omega 2

= \Phi (1, 1)u11u
2
1 +\Phi (1, 0)u11(1 - u21) + \Phi (0, 1)(1 - u11)u

2
1 +\Phi (0, 1)(1 - u11)(1 - u21),
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where u11u
2
1, u

1
1(1 - u21), (1 - u11)u

2
1, (1 - u11)(1 - u21) are nonnegative and sum up to

one; hence v is in the convex hull \scrV . Assume that the assertion is true for a given n.
If we add a new variable (n+ 1), we can write v as

v = un+1
1

\sum 
\omega \in \Omega 

\Phi (\omega , 1)u1\omega 1
u2\omega 2

. . . un\omega n
+ (1 - un+1

1 )
\sum 
\omega \in \Omega 

\Phi (\omega , 0)u1\omega 1
u2\omega 2

. . . un\omega n
.

Since the two sums are in the convex hull, their convex combination belongs to the
convex hull as well. Therefore, the inclusion (3.3) holds for any n.

Then, we can write the system as

\.x =  - x+ v, v \in \scrV ,

where \scrV is any convex and compact set (in our case, a polytope). We show that \scrV 
is positively invariant and attractive for this system. Indeed, consider the support
functional \psi of \scrV , defined in accordance with [40], as \psi (z) = maxv\in \scrV z

\top v. Then
\scrV = \{ v \in \BbbR n : z\top v \leq \psi (z) for all z \in \BbbR n\} .

Consider the function \zeta = z\top x with z \not = 0 arbitrary. Since, for all v \in \scrV , it
is z\top v \leq \psi (z) for any z, then \.\zeta =  - z\top x + z\top v \leq  - z\top x + \psi (z) =  - \zeta + \psi (z).
Necessarily we have lim supt\rightarrow \infty \zeta \leq \psi (z) for all z; hence any trajectory x(t) converges
to the set \scrV , and this proves that \scrV is attractive. Also, in view of the differential
inequality \.\zeta \leq  - \zeta +\psi (z) derived above, the actual trajectory is bounded as \zeta (t) \leq \=\zeta (t),

where \=\zeta (t) is the solution of \.\=\zeta =  - \=\zeta + \psi (z), which monotonically converges to \psi (z).
Therefore, if z\top x(t0) \leq \psi (z) for any z (hence, x(t0) \in \scrV ), then z\top x(t) \leq \psi (z) for any
z (hence, x(t) \in \scrV ) for all t \geq t0. This proves the positive invariance of the set \scrV .

Theorem 3.1 entails the following result, which will be crucial in assessing whether
the strategy is good (cf. Definition 6.1 in section 6).

Corollary 3.2. If n - r players defect (namely, uk\omega k
= 0 for k = r + 1, . . . , n),

then the trajectory x(t) of system (3.1) converges to the convex hull of the 2r points
\Phi (\omega 1, \omega 2, . . . , \omega r, 0, . . . , 0) with \omega i \in \{ 0, 1\} for all i = 1, . . . , r.

The next corollary ensures that the overall system is positive, namely, that the
positive orthant is a positively invariant set for the system, regardless of the chosen
strategy and payoff functions.

Corollary 3.3. For any choice of the payoff functions in vector \Phi (\omega ) and of the
strategy functions uk1(t) \in [0, 1] and uk0(t) = 1 - uk1(t), system (3.1) is positive.

4. Stability analysis of cooperative and noncooperative equilibria. In
this section, the results in [21] are generalized to the n-dimensional case. First we
show that, when the proposed strategy is adopted with p \geq 2, the cooperative point
is a robustly stable equilibrium.

Theorem 4.1. For any choice of the payoff functions, the cooperative point \=x =
\Phi (1, . . . , 1), namely \=xk = \alpha k for all k, is a locally asymptotically stable equilibrium
for system (3.1) with strategy (2.4), provided that p \geq 2.

Proof. If \=xk = \alpha k, then \sigma k(\=xk) = 0 and uk1 = 1 for all k. Therefore, only one
term in the sum survives and the system equation becomes

\.x =  - \=x+\Phi (1, 1, . . . , 1) = 0;

hence \=x is an equilibrium point. To prove its stability, since the function \sigma k(xk) with
p \geq 2 is continuously differentiable at xk = \alpha k, we can apply a linearization criterion.
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We have seen that \sigma k(\alpha k) = 0. By differentiating \sigma k(xk) with respect to xk, we have

d\sigma k(xk)

dxk
=

\Biggl\{ 
 - p(\alpha k - xk)

p - 1

(\alpha k - \delta k)p
for xk \leq \alpha k,

0 for xk > \alpha k,

which is also zero at xk = \alpha k. Therefore, the derivative of all the terms

u1\omega 1
, u2\omega 2

, . . . , un\omega n

is zero at xk = \alpha k and the Jacobian at the cooperative equilibrium is J =  - I, where
I is the identity matrix. This implies local asymptotic stability.

Also the noncooperative point is an equilibrium, whose instability can be ensured
under suitable assumptions, since a player moving away from the noncooperative
equilibrium increases the payoffs of all other players.

Before stating this result, we need to show the invariance of the hyper-rectangle

\scrR \delta ,\alpha = \{ x \in \BbbR n : \delta i \leq xi \leq \alpha i, i = 1, . . . , n\} .

Proposition 4.2. The hyper-rectangle \scrR \delta ,\alpha is positively invariant for system (3.1)
with strategy (2.4).

Proof. We show that \.xi \geq 0 when xi = \delta i, while \.xi \leq 0 when xi = \alpha i. This
implies positive invariance of \scrR \delta ,\alpha [15, 16].

Let us consider the game from the standpoint of player 1. Since the coopera-
tion of other players is profitable by assumption, the payoff of player 1 in the fully
noncooperative case is \delta 1 = \phi (1)(0, 0, . . . , 0) \leq \phi (1)(0, \omega 2, . . . , \omega n), while in the fully
cooperative case it is \alpha 1 = \phi (1)(1, 1, . . . , 1) \geq \phi (1)(1, \omega 2, . . . , \omega n). If x1 = \delta 1, then
player 1 is not cooperating, namely, \omega 1 = 0; hence u11 = 0 and u10 = 1. Then

\.x1 =  - \delta 1 +
\sum 
\omega 1=0

\phi (1)(0, \omega 2, . . . , \omega n)u
1
0u

2
\omega 2
. . . un\omega n

\geq  - \delta 1 +
\sum 
\omega 1=0

\phi (1)(0, 0, . . . , 0)[1]u2\omega 2
. . . un\omega n

=  - \delta 1 + \phi (1)(0, 0, . . . , 0) =  - \delta 1 + \delta 1 = 0.

If x1 = \alpha 1, player 1 is cooperating, namely, \omega 1 = 1; hence u11 = 1 and u10 = 0. Then

\.x1 =  - \alpha 1 +
\sum 
\omega 1=1

\phi (1)(1, \omega 2, . . . , \omega n)u
1
1u

2
\omega 2
. . . un\omega n

\leq  - \alpha 1 +
\sum 
\omega 1=1

\phi (1)(1, 1, . . . , 1)[1]u2\omega 2
. . . un\omega n

=  - \alpha 1 + \phi (1)(1, 1, . . . , 1) =  - \alpha 1 + \alpha 1 = 0.

The same argument can be repeated for all players, and this completes the proof.

We are now ready to introduce a result on the attractiveness of \scrR \delta ,\alpha .

Proposition 4.3. The hyper-rectangle \scrR \delta ,\alpha is attractive for system (3.1) with
strategy (2.4); hence there cannot be equilibria in \BbbR n \setminus \scrR \delta ,\alpha .
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Proof. Along the same lines as in the proof of Proposition 4.2, assume that the
payoff for player 1 is \=x1 < \delta 1. Hence, strategy (2.4) will lead the player to defect,
since u11 = 0 and u10 = 1, thus \omega 1 = 0. Then, for x1 = \=x1,

\.x1 =  - \=x1 +
\sum 
\omega 1=0

\phi (1)(0, \omega 2, . . . , \omega n)u
1
0u

2
\omega 2
. . . un\omega n

\geq  - \=x1 +
\sum 
\omega 1=0

\phi (1)(0, 0, . . . , 0)[1]u2\omega 2
. . . un\omega n

= \delta 1  - \=x1 > 0.

Since the derivative is positive, \=x1(t) converges to its limit \=x1(\infty ) from below. If we
assume by contradiction that \=x1(\infty ) < \delta 1, then the above expression for the derivative
ensures that lim inft\rightarrow \infty \.x1(t) \geq \delta 1 - \=x1 for all \=x1 < \delta 1; however, this is in contradiction
with x1(t) \rightarrow \=x1(\infty ) < \delta 1.

The case \=x1 > \alpha 1 can be handled similarly and, in both cases, the reasoning is
the same for all players.

Now define the n\times n matrices

N =
\bigl[ 
\Phi (0, 0, . . . 0) \Phi (0, 0, . . . 0) . . .\Phi (0, 0, . . . 0)

\bigr] 
,

M =
\bigl[ 
\Phi (1, 0, . . . 0) \Phi (0, 1, . . . 0) . . .\Phi (0, 0, . . . 1)

\bigr] 
,

D = diag\{ \alpha 1  - \delta 1, \alpha 2  - \delta 2, . . . , \alpha n  - \delta n\} 

and note that, in view of Assumption 1(a), the matrix [M  - N ]D - 1 is Metzler (i.e., it
has nonnegative off-diagonal entries). We remind that the dominant eigenvalue (i.e.,
the eigenvalue with the largest real part) of a Metzler matrix is real [12, 19].

These considerations enable us to address the following question: does there exist
a panic region, a subset of the polytopic payoff region such that, when starting from a
point inside this region, all players feel betrayed and refuse to cooperate? The panic
region would hence be the domain of attraction of the noncooperative equilibrium
point within the polytopic payoff region. The following result shows that we can
prevent the existence of a panic region by choosing p large enough, provided that
matrix [M  - N ]D - 1 has a positive real eigenvalue. The vanishing of the panic region
for large values of p can be linked to the stability of cooperation in multiplayer social
dilemmas; see, e.g., [29, page 16428]: in fact, p can be viewed as a behavioral trait
parameter that measures the altruistic nature of the players.

Theorem 4.4. Consider system (3.1) with strategy (2.4). If matrix [M  - N ]D - 1

has a positive real eigenvalue, then the noncooperative equilibrium \^x = \Phi (0, . . . , 0)
(i.e., \^xk = \delta k for all k) is unstable for p large enough. Conversely, if [M - N ]D - 1 has
no real positive eigenvalues, then, for any choice of p, the noncooperative equilibrium
is locally attractive for all initial conditions xk > \delta k such that xk  - \delta k \leq \epsilon for \epsilon > 0
small enough.

Proof. If \^xk = \delta k, then \sigma k(\^xk) = 1 and uk1 = 0, uk0 = 1 for all k. Hence, the
system equation becomes \.x =  - \^x + \Phi (0, 0, . . . , 0) = 0, which means that \^x is an
equilibrium point.

To assess stability, since the saturation function compromises differentiability at
\^x (this was not the case for the cooperative point \=x with p \geq 2), we need to consider
the right limit of the Jacobian at the noncooperative equilibrium (namely, the limit
for xk \rightarrow \^x+k ), which is J =  - I + p[M  - N ]D - 1.
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This expression of the Jacobian is correct if we neglect saturation in the functions
\sigma k(xk). In this case, evaluating the functions without saturation at the point \^x gives\biggl( 

\alpha k  - xk
\alpha k  - \delta k

\biggr) p\bigm| \bigm| \bigm| \bigm| 
xk=\delta k

= 1

for any p. The corresponding derivative is

d

dxk

\biggl( 
\alpha k  - xk
\alpha k  - \delta k

\biggr) p\bigm| \bigm| \bigm| \bigm| 
xk=\delta k

=
 - p

\alpha k  - \delta k
.

Now consider the derivative of the term v in (3.3). At the considered point, uk0 = \sigma k =
1 and uk1 = 1  - \sigma k = 0. Therefore, only the terms

\prod n
i=1 \sigma i and (1  - \sigma k)

\prod n
i=1,i\not =k \sigma i

for k = 1, . . . , n, yield a nonzero derivative. The derivative of
\prod n

i=1 \sigma i with respect to
xk, computed at the noncooperative equilibrium, is given by

 - p
\alpha k  - \delta k

n\prod 
i=1,i\not =k

\sigma i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
x=\^x

=
 - p

\alpha k  - \delta k

and is associated with the column vector \Phi (0, 0, . . . 0) (which explains the structure
of matrix N). For terms of the type (1 - \sigma k)

\prod n
i=1,i\not =k \sigma i, the derivative with respect

to xk, computed at the noncooperative equilibrium, is

p

\alpha k  - \delta k

n\prod 
i=1,i\not =k

\sigma i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
x=\^x

=
p

\alpha k  - \delta k

and is associated with the term \Phi (0, . . . , 0, 1, 0, . . . , 0), with the 1 in the kth position
(which explains the structure of matrix M), while the other derivatives are zero,
because (1 - \sigma k) is zero at the noncooperative equilibrium.

Under differentiability assumptions, the proof would be completed. Indeed, since
matrix p[M  - N ]D - 1 is Metzler, the Jacobian J =  - I + p[M  - N ]D - 1 is Metzler
as well and has eigenvalues \lambda i =  - 1 + p\theta i, where \theta i are the eigenvalues of matrix
[M  - N ]D - 1. If there is a positive \theta i, then J has a positive eigenvalue for p large
enough; hence the equilibrium is unstable for such a choice of p.

Yet, to complete the proof, we need to address the issue of the nondifferentiability
of the function at \^x. Note that the off-diagonal entries of J are strictly positive.
Assume that [M - N ]D - 1 has a positive real eigenvalue \theta . Let \eta be the left Frobenius
eigenvector associated with the positive Frobenius eigenvalue \lambda =  - 1 + p\theta > 0 of J .
Then, the inequality \eta > 0 is satisfied componentwise and \eta \top J = \lambda \eta \top .

By changing the variables as zk = xk  - \delta k, we show that there exists a simplex
of the form \scrS \epsilon = \{ z : zk \geq 0 and \eta \top z \leq \epsilon \} such that any solution starting in
the interior of \scrS \epsilon reaches the face \eta \top z = \epsilon . This implies that the equilibrium \^x
(corresponding to zk = 0 for all k) is unstable. To this aim, let us write the system
as \.z = Jz + O(z), where O(z) is an infinitesimal of order greater than 1. In view
of Proposition 4.2, provided that \epsilon > 0 is small enough to ensure that \scrS \epsilon is inside
the hyper-rectangle \scrR \delta ,\alpha , any solution starting in \scrS \epsilon with z(0) > 0 (componentwise)
remains positive, because the hyper-rectangle is positively invariant. Now, consider
the function \zeta = \eta \top z. Its derivative \.\zeta = \eta \top \.z = \eta \top [Jz + O(z)] = \lambda \zeta + \eta \top O(z)
is positive in the simplex \scrS \epsilon if \epsilon > 0 is small, since the first term dominates and
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A

D

C

B

Fig. 1. The payoff polygon (green), the invariant rectangle \scrR \alpha ,\delta (blue), the distrust region
of trajectories converging to the noncooperative point D (red), and the region of attraction to the
cooperative point A inside \scrR \alpha ,\delta (dashed).

both \lambda > 0 (by assumption) and \zeta = \eta \top z > 0 (because \eta and z are componentwise
positive). Hence, the solution reaches the face \eta \top z = \epsilon .

Conversely, if [M  - N ]D - 1 has no positive real eigenvalues, then its dominant
Frobenius eigenvalue is negative or zero and, for any p, all the eigenvalues of J have a
negative real part. Hence, J is Hurwitz stable for all p. With the same argument as
above, based on a simplex, we can prove attractivity of the noncooperative equilibrium
starting from all initial conditions zk(0) positive and small enough.

Remark 3. Even when the noncooperative equilibrium is unstable, it admits a
nontrivial region where trajectories converge to it. This is a distrust region (cf.
Figure 1), characterized by low values of the payoffs:

\scrD = \{ x \in \BbbR n : 0 \leq xk \leq \delta k \forall k = 1, . . . , n\} .

For any initial condition in the distrust region \scrD , all the functions \sigma k(xk) are sat-
urated, \sigma k(xk) = 1; hence no one cooperates: uk1 = 0 and uk0 = 1. The equations
become

\.xk =  - xk + \phi (k)(0, 0, . . . , 0) =  - xk + \delta k;

hence xk(t) \rightarrow \delta k.
If the noncooperative equilibrium is not stable, then an ``escape region"" is of the

form xk > \delta k for all k, according to the proof of Theorem 4.4.

5. Dynamics in the hyper-rectangle \bfscrR \bfitalpha ,\bfitdelta . As shown in Proposition 4.3,
the hyper-rectangle \scrR \alpha ,\delta is attractive for the system. A related issue to investigate
is then the behavior of the system when the state is inside \scrR \alpha ,\delta . We will prove
that, for p sufficiently large, the domain of attraction to the cooperative point inside
the positively invariant hyper-rectangle \scrR \alpha ,\delta (the dashed rectangle in Figure 1) gets
arbitrarily close to \scrR \alpha ,\delta . Therefore, even when the noncooperative equilibrium is
stable, its domain of attraction \scrS \epsilon (defined in the proof Theorem 4.4) gets smaller
and smaller as p increases.

To simplify the notation, we consider the change of coordinates

\xi k
.
=
\alpha k  - xk
\alpha k  - \delta k

,(5.1)

which maps \scrR \alpha ,\delta into the hyper-cube

\scrC = \{ \xi \in \BbbR n : 0 \leq \xi k \leq 1 \forall k = 1, . . . , n\} .(5.2)

The cooperative point now corresponds to \xi = 0.
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Theorem 5.1. Consider the scaled hyper-cube

\scrC \lambda = \{ \xi \in \BbbR n : 0 \leq \xi k \leq \lambda \forall k = 1, . . . , n\} .(5.3)

For any positive 0 < \lambda < 1, there exists p\lambda such that the state converges to the
cooperative point \xi = 0 for any initial condition \xi (0) \in \scrC \lambda and for all p \geq p\lambda .

Proof. The equations (2.1), (2.3), and (2.4) in the new variable \xi become

\.\xi k =  - \xi k + \^\alpha k  - 
\sum 
\omega \in \Omega 

\^\phi (k)(\omega 1, . . . , \omega n)\^u
1
\omega 1
. . . \^un\omega n

,

where \^\alpha k = \alpha k

\alpha k - \delta k
and \^\phi (k) = \phi (k)

\alpha k - \delta k
, while\Biggl\{ 
\^uk1 = 1 - \xi pk,

\^uk0 = \xi pk,

since saturations are not active inside the invariant hyper-rectangle. The right-hand
side is the sum of the linear term  - \xi k and a polynomial in the variables \xi ph:

\.\xi k =  - \xi k +
\sum 

jh\in \{ 0,1\} 

\mu j1,j2...,jn(\xi 
p
1)

j1(\xi p2)
j2 . . . (\xi pn)

jn .

Since \xi = 0 is an equilibrium, the constant term of the polynomial is zero, \mu 0,0...,0 = 0,

and indeed \^\alpha k = \^\phi (k)(1, 1, . . . , 1). The equation above holds for all \xi in the set \scrC , which
is invariant, since it is the transformed set of \scrR \alpha ,\delta . To prove convergence for all initial
states in \scrC \lambda , we introduce the copositive Lyapunov function V (\xi )

.
= maxi\in \{ 1,...,n\} \xi i.

The set \scrC \lambda is defined by 0 \leq V (\xi ) \leq \lambda . Define the maximizer set as the set of indices
where the maximum is achieved: \scrM (\xi ) = \{ i : \xi i = V (\xi )\} . Then, the Lyapunov
derivative of V can be written in accordance with [16] as \.V (\xi ) = maxk\in \scrM (x)

\.\xi k. We

show that, for p large enough, \.V (\xi ) is negative in \scrC \lambda for any \lambda < 1: if \xi \in \scrC \lambda and
k \in \scrM (\xi ), then

\.\xi k =  - \xi k +
\sum 

jh\in \{ 0,1\} 

\mu 
(k)
j1,j2...,jn

\xi j1p1 \xi j2p2 . . . \xi jnpn

\leq  - \xi k +
\sum 

jh\in \{ 0,1\} 

| \mu (k)
j1,j2...,jn

| \xi j1p1 \xi j2p2 . . . \xi jnpn

\leq  - \xi k +
\sum 

jh\in \{ 0,1\} 

| \mu (k)
j1,j2...,jn

| \xi j1pk \xi j2pk . . . \xi jnpk

\leq  - \xi k +
\sum 

h=1,2,...n

\nu 
(k)
h \xi hpk < 0(5.4)

for some positive numbers \nu 
(k)
h . Given \lambda < 1, we can always find p\lambda such that, for all

k and all p \geq p\lambda , the polynomial in (5.4) is negative in the set \scrC \lambda , where 0 \leq \xi k \leq \lambda ,
because the dominant linear term is negative. Hence, for p \geq p\lambda , the Lyapunov
derivative of V is negative for V (\xi ) \leq \lambda , V (\xi ) \not = 0, as long as \xi \in \scrC \lambda . Since the
hyper-cube \scrC is invariant, the proof is completed.

Remark 4. When p tends to infinity, it squashes down the function \sigma k(xk) to
zero for all xk \in (\delta k, \alpha k], which means that the player k is numb to noncooperation
of others and cooperates. This result could be obtained alternatively by adopting the
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trivial open-loop strategy \sigma k(xk) \equiv 0 for all xk \in (\delta k, \alpha k]. However, an open-loop
strategy is not satisfactory because it makes the players blind to defection of others:
adopting a feedback strategy is fundamental, because it allows the players to monitor
the actions of others (even though indirectly, by monitoring the evolution of their own
payoffs) and react to betrayals. For this reason, we are particularly interested in finite
values of p: it is always possible to find a finite value of p that ensures convergence
to the cooperative point, and at the same time keeps all players sufficiently aware of
the context and able to react if needed. Indeed, the proposed strategy is conceived so
that each player, exclusively based on its own payoff, can enforce a retaliation against
betrayal. This crucial aspect is analyzed in the next section.

We conclude the section pointing out that, instead of the considered strategy, we
could consider the more general class of sigmoidal functions, which (a) are continuous
and strictly decreasing in the interval (\delta k, \alpha k); (b) have a single inflexion point; (c)
satisfy \sigma (\alpha k) = 0, \sigma (\delta k) = 1, \sigma \prime (\alpha k) = \sigma \prime (\delta k) = 0; and (d) are constant outside
(\delta k, \alpha k) and, respectively equal to 0 for xk \geq \alpha k and to 1 for xk \leq \delta k. For instance,
\sigma (\xi k) = \xi k[1 - (1 - \xi k)

q] + (1 - \xi k)\xi 
p
k, with \xi k defined as in (5.1) and q and p positive

integers, could be one of such functions. Remarkably, in the case of a sigmoidal
function we would have no hope of destabilizing the noncooperative point. Indeed,
since the derivative at the noncooperative point (corresponding to \xi k = 1 for all k) is
zero, \sigma \prime (1) = 0, and the linear part of the system is stable, we would always have local
stability of the noncooperative equilibrium. Therefore, by properly choosing p and q,
we could at most design a sigmoidal function so that, inside the rectangle \scrR \alpha ,\delta , the
domain of attraction of the cooperative point is larger than the domain of attraction
of the noncooperative point.

6. A good strategy? It is interesting to assess whether the proposed strategy
is good, according to the next definition.

Definition 6.1. The saturated strategy in (2.4) is good if no player benefits from
abandoning the strategy and choosing uk0 (steady noncooperation).

We assume that if at least one player does not cooperate, then all other players
benefit from full noncooperation.

Assumption 2. If \omega i = 0 for some indices i \in \scrI , then

\phi (k)(0, 0, . . . , 0) > \phi (k)(\omega 1, . . . , 0\underbrace{}  \underbrace{}  
=\omega i

, . . . \omega n) for all k /\in \scrI . \diamond 

Theorem 6.2. Given system (3.1) under Assumption 2, if one of the players
defects and the others adopt the strategy (2.4), then for any choice of p the system
converges to the noncooperative equilibrium: xk = \delta k for all k.

Proof. If player 1 defects, then, in view of Corollary 3.2, x(t) converges to the
convex hull of the points \Phi (0, \omega 2, . . . , \omega n). If player k does not defect, due to As-
sumption 2, her/his payoff xk(t) decreases to values below \delta k: lim supt\rightarrow \infty xk(t) \leq 
\phi (k)(0, 0, . . . , 0) = \delta k. On the other hand, when xk \leq \delta k, the strategy saturates to
\sigma k(\delta k) = 1 for any p. Therefore, asymptotically, \.x =  - x + \phi (k)(0, 0, . . . , 0), which
yields xk(t) \rightarrow \delta k for all k.

Hence, the saturated strategy (2.4) is good. Remarkably, the players have no
information beyond their own current payoff xk and their own \alpha k and \delta k: their
reaction against the defector relies on this knowledge only.
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7. A population-game perspective. Let us consider a random player i play-
ing against a random player j, and let player i's payoff matrix be

F =

\biggl[ 
\alpha \gamma 
\beta \delta 

\biggr] 
.(7.1)

The above entries represent the payoff of player i when both players cooperate (\alpha ),
player i only defects (\beta ), player j only defects (\gamma ), and both players defect (\delta ). Player i
chooses the row, while player j chooses the column. The matrix of player j is sym-
metric and can be ignored. Assumption 1 leads to the payoff ordering

\beta > \alpha > \delta > \gamma .(7.2)

Let the distribution of cooperators and defectors in the population be u1(x) and u0(x),
respectively, where u1 + u0 = 1 with u1, u0 \geq 0, and consider the mixed strategy

u = u(x) =

\biggl[ 
u1(x)
u0(x)

\biggr] 
.

The average payoff across the population at time t is then u(x(t))\top Fu(x(t)). Also,
the average payoff across the population and across time, namely, from 0 to t, is

\.x(t) =  - x(t) + u(x(t))\top Fu(x(t)).(7.3)

Indeed, consider the time-average expected (over opponent's play) payoff defined as

\Gamma (s) =
1

s

\int s

0

(u\top Fv) d\tau \in \BbbR .

If we rescale the time window using s = et, take x(t) = \Gamma (et) and differentiate with
respect to t, we obtain the differential equation (7.3). Note that, after rescaling the
time window, we have

x(0) =

\int 1

0

(u\top Fv)d\tau \in \BbbR .

Equation (7.3) is in the same spirit as in Hart and Mas-Colell's paper [25] on
continuous-time approachability (with the calculation of the average payoff analogous
to the one in (2.1)). Adopting the strategy (2.4), system (7.3) becomes

\.x =  - x+ \alpha + (\beta + \gamma  - 2\alpha )\sigma (x) + (\alpha + \delta  - \beta  - \gamma )\sigma (x)2.

The result in Theorem 4.4 translates into conditions for the diffusion of coopera-
tion in a population of individuals. To see this, consider that, because of the symmetry
in the payoff matrices of the game, it holds that

p[M  - N ]D - 1 =
p

r

\biggl[ 
 - g l
l  - g

\biggr] 
,

where r
.
= \alpha  - \delta > 0, g

.
= \delta  - \gamma > 0, and l

.
= \beta  - \delta > 0. Conditions for the existence

of positive eigenvalues for [M  - N ]D - 1 then translate into conditions on the trace
and determinant of the above matrix. In particular, we have positive eigenvalues if
l > g. This condition means that when a cooperator meets a defector, the damage
for the cooperator is less than the benefit for the defector. Under this condition, in
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Fig. 2. Coevolving networks for p = 5 (left), p = 10 (center), and p = 15 (right).

a population of ``patient"" and ``farsighted"" cooperators (this means that p is large
enough), the cost of cooperating with defectors is relatively small, and therefore it
turns out that all players end up cooperating.

The population scenario suggests a second interpretation of the results if we view
p as the number of repeated plays between player i and p different opponents j,
assuming that, at each iteration, player i defects with probability (\alpha k - xk

\alpha k - \delta k
). If we view

the repeated plays as p independent identically distributed experiments, the joint
probability of defecting in all p plays (or equivalently, one minus the probability of
cooperating at least once out of p plays) is given by\biggl( 

\alpha k  - xk
\alpha k  - \delta k

\biggr) 
\underbrace{}  \underbrace{}  
iteration 1

\cdot 
\biggl( 
\alpha k  - xk
\alpha k  - \delta k

\biggr) 
\underbrace{}  \underbrace{}  
iteration 2

. . .

\biggl( 
\alpha k  - xk
\alpha k  - \delta k

\biggr) 
\underbrace{}  \underbrace{}  
iteration p

.

From the invariance of the payoff polytope, the above joint probability is equal to
the mixed strategy (2.3). The convergence to the cooperative equilibrium means
that every player ends up cooperating with all of her/his p neighbor players. If
we imagine a network where the nodes are the players, and we add a link (i, j)
any time player i cooperates with player j, we can construct a coevolving network
which, in the case of convergence to the cooperative equilibrium, has degree p for
each node. Figure 2 depicts three different coevolving networks for p = 5, p = 10,
and p = 15. By ``co-evolving network"" we mean that the topology of the network
evolves together with the probability of cooperation. In this context, the probability
of cooperation between any two players determines the probability of forming a link
between the corresponding nodes. Thus, Figure 2 displays the steady-state topology
configuration when all players cooperate with probability 1 and each player has 5, 10,
or 15 neighbors.

Remark 5. It is interesting to compare the proposed saturated strategy with repli-
cator dynamics in evolutionary games, where the cooperation frequency in a popula-
tion increases if the cooperators perform better than the defectors. In particular, the
continuous-time replicator dynamics is given by

\.xs(t) = xs(t)
[u(s, x(t)) - \=u(x(t))]

\=u(x(t))
,

where s is a generic strategy, xs is the portion of the population playing that strategy,
\=u(x(t)) is the average payoff across the population, and u(s, x(t)) is the instantaneous
payoff obtained by playing s in a population whose strategies are distributed accord-
ing to x(t). A first difference is that the proposed strategy is a feedback on the current
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payoff which is averaged over time, while in the replicator dynamics the average across
the population is considered but not the average over time. A second difference is
that the dynamics (7.3) describes the evolution over time of the average payoff (over
time and across the population), while the replicator dynamics captures the dynamics
on the portion of cooperators and defectors; therefore, the two dynamics model dif-
ferent quantities (the payoff in one case, the portion of cooperators/defectors in the
other). A third difference is that, in our case, the portion of cooperators increases or
decreases based on the current average payoff over time and across the population,
while in the replicator dynamics the instantaneous payoff obtained from cooperating
is compared with the average payoff across the population. Hence, although the idea
of averaging across the population is a common point, it plays a different role in the
two cases.

8. Numerical examples.

8.1. A 2-player game. Consider a 2-player game with the payoff matrix\biggl[ \bigl( 
\phi (1)(1, 1), \phi (2)(1, 1)

\bigr) \bigl( 
\phi (1)(1, 0), \phi (2)(1, 0)

\bigr) \bigl( 
\phi (1)(0, 1), \phi (2)(0, 1)

\bigr) \bigl( 
\phi (1)(0, 0), \phi (2)(0, 0)

\bigr) \biggr] 
=

\biggl[ 
(4.5, 4.0) (0.5, 4.5)
(6.0, 1.0) (1.5, 2.0)

\biggr] 
,(8.1)

and adopt the strategy (2.4). If p = 1, the cooperative equilibrium A = (\alpha 1, \alpha 2) =
(4.5, 4.0) is unstable, while the noncooperative equilibrium D = (\delta 1, \delta 2) = (1.5, 2.0) is
asymptotically stable, as illustrated in Figure 3, left. Note that there are trajectories
that converge to the cooperative equilibrium for some high initial values.

To destabilize the noncooperative equilibrium D, let us derive the matrix \Theta =
[M  - N ]D - 1, which in the present instance is given by

\Theta =

\biggl( \biggl[ 
0.5 6.0
4.5 1.0

\biggr] 
 - 
\biggl[ 

1.5 1.5
2.0 2.0

\biggr] \biggr) \biggl[ 
3.0 0.0
0.0 2.0

\biggr]  - 1

.

To investigate stability, let us consider the matrix

 - I + p\Theta =

\biggl[ 
 - 1 - p

3
2p
3

5p
4  - 1 - p

2

\biggr] 
,

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Fig. 3. Evolution of the system with payoff matrix (8.1) and strategy (2.4). Blue trajectories
converge to the cooperative equilibrium, red trajectories to the noncooperative equilibrium. Left,
p = 1. Right, p = 3.
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which becomes unstable with a strictly positive eigenvalue when p > 2; hence, D
becomes unstable. We simulate the system for p = 3: for this value of the parameter
that captures the patience of the players, D becomes unstable and, as expected, the
proposed saturated strategy guarantees convergence to the cooperative equilibrium
for all trajectories originating in the invariant payoff polygon having vertices (4.5, 4),
(0.5, 4.5), (1.5, 2), and (6, 1). Some trajectories originating from low initial payoffs
for both players still converge to the noncooperative equilibrium. This is shown in
Figure 3, right. For details on the 2-player game, the reader is referred to [21].

8.2. Channel sharing in wireless communication. Wireless communication
is an important field to which control theory can provide several contributions, for
instance, to control how a wireless channel is shared among several transmitters (see,
e.g., [14] and the references therein); the main problem is to maximize transmission
while avoiding congestion problems. Consider the case of frequency division multiple
access, in which the radio frequency channel is split into several smaller subchannels,
each with its own frequency range and allocated to a single transmitter only. Problems
may arise due to greedy transmitters that start using more subchannels than the
allocated one: this leads to degradation of the success rate in transmission for all
messages that are sent using a subchannel that is used by more than one transmitter
(we call this phenomenon congestion for simplicity). In terms of quantity of messages
that are successfully sent, all transmitters have lower performance in the case of full
congestion (each transmitter uses the whole bandwidth) than in the ideal situation
(each transmitter uses its allocated subchannel only). On the other hand, a single
transmitter can see its performance definitely improve if it unilaterally decides to use
more subchannels while all others use their assigned subchannel only.

A game-theoretic approach to this problem is very popular (surveys are, for in-
stance, [6, 22]). Adopting the paradigm in [6, Example 2 and Figure 4], we can
distinguish between two transmission modes for each transmitter.

0: Broadband: Noncooperation. This selfish transmission mode (using the
whole bandwidth instead of the assigned subchannel) would benefit a single trans-
mitter that adopts it, but would cause performance degradation for the others and
rapidly cause congestion (typically due to conflicts caused by simultaneous packet
transmission [14]) if adopted by several transmitters.

1: Narrowband: Cooperation. In this transmission mode, each transmitter
uses exclusively the subchannel assigned by a network supervisor to optimize the
channel. This leads to a fair and efficient transmission.

For the n-transmitter problem, all the conditions in Assumption 1 are verified:
(a) is met because the cooperation of transmitter h is more profitable than non-

cooperation for all other transmitters (there is less congestion);
(b) is verified, because a transmitter that uses more bandwidth than the assigned

subchannel is advantaged, if the others stick to their assigned subchannel only;
(c) full cooperation is more profitable than full noncooperation, because full con-

gestion induces a severe performance drop.
The problem fits nicely in our setup. Each transmitter can be reasonably assumed

to be aware exclusively of the expected performance in the fully cooperative and in
the fully noncooperative case, and of the current performance. Hence, our saturated
strategy can be employed. The decision variables uk1 and uk0 = 1 - uk1 represent how
prone transmitter k is to transmitting in narrowband/broadband mode. (The strategy
can be implemented also in a P-persistent transmission scheme by suitably altering
the transmission probability; see [14] for details.)
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Table 1
Payoffs for narrowband transmitters (cooperating players) and broadband transmitters (non-

cooperating players) as a function of the fraction of narrowband transmitters.

Fraction of narrowband transmitters 1 3/4 1/2 1/4 0
Narrowband transmitter payoff 1 0.4444 0.2857 0.2105 -
Broadband transmitter payoff - 1.3333 0.8571 0.6316 0.5

Given n equal transmitters, consider their payoff in terms of successful transmis-
sion rate (typically megabits/sec). If c transmitters cooperate and d = n  - c defect,
then the unitary payoff will be, respectively,

P1 =
a

n
f(d)

for the transmitters that cooperate and

P0 =
b

n
f(d)

for the transmitters that defect, with b > a. Function f(d) represents the performance
degradation due to congestion and conflicts. It is a strictly decreasing function, with
f(0) = 1, so that full cooperation means an equal performance a/n for all transmitters,
and with bf(n) \ll a. This means that, if all transmitters operate in broadband mode,
then the individual payoff is strongly reduced for all of them. We assume that, for all
d = 0, 1, . . . , n - 1,

b

n
f(d+ 1) >

a

n
f(d);

hence any single transmitter has the interest to switch to broadband mode (so that d
increases by 1) for any fixed decision of the others. We can rewrite the condition as

b

a
>

f(d)

f(d+ 1)
.

Remark 6. The knowledge of the function f is not required to implement the
saturated strategy. All information needed by the transmitters is given by the fully
cooperative payoff \alpha i = a

n , the fully noncooperative payoff \delta i = b
nf(n), and the

coefficient p of the control function.

We now provide a simulation of the system evolution with the saturated strategy
in the case of n = 4 transmitters, with a = 4, b = 12, and

f(d) =
n

n+ 5d
,

leading to \alpha i = 1 and \delta i = 0.5. Table 1 shows the payoffs for both narrowband and
broadband transmitters as a function of the fraction of narrowband transmitters.

When the transmitters decide their behavior based on the saturated strategy
with p = 5, their payoff evolution is shown in Figure 4. Starting from the randomly
taken initial condition x(0) = [1.4449 0.2997 1.3192 1.0372]\top , as expected, the four
transmitters converge to the cooperative point \=x\alpha = [1 1 1 1]\top . However, at time
t = 10 the first transmitter switches to broadband mode and starts defecting, u10 = 1.
Initially it has an advantage. Then, all the other transmitters detect a reduction of
their performance and start switching to broadband mode as well. As a consequence,
the payoffs converge to the noncooperative equilibrium \=x\delta = [0.5 0.5 0.5 0.5]\top and all
transmitters are penalized, including the ``traitor.""
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Fig. 4. Evolution of the wireless problem with n = 4 and p = 5. The system initially converges
to the cooperative point \=x\alpha = [1 1 1 1]\top . At time t = 10, player 1 starts defecting (u1

0 = 1) and the
system eventually converges to the noncooperative point \=x\delta = [0.5 0.5 0.5 0.5]\top .

9. Concluding discussion. We have studied diffusion of cooperation among
selfish players in a problem modeled as a repeated n-player prisoner's dilemma in
continuous time. For the same model, we have provided an interpretation as an
n-population game involving at each time n random individuals, one from each popu-
lation. We have shown that the game can be turned into a positive dynamical system,
and we have proposed a parameterized strategy that enforces cooperation for suitable
values of the parameter. The strategy is original, as it builds on minimum knowledge
on the part of the players, and has an explicit expression that allows us to provide
convergence proofs, exploiting Lyapunov methods and Metzler matrix theory.

Future work includes (i) extending the analysis to heterogeneous populations,
which use the strategy with different parameters (different level of patience or far-
sightedness); (ii) studying the coevolving network and its stability, as well as con-
nections with random networks, scale free networks, and small world networks; and
(iii) investigating different scenarios that involve neutral players in addition to coop-
erators and defectors, and where players can transition across the three categories in
accordance to controlled or uncontrolled transition rates.

Results from the above settings can be then applied to different domains, in-
cluding (i) cybersecurity with distributed detection and counterattack strategies, (ii)
demand side management in which the consumers (players) adopt different levels of
responsiveness to cooperation, and (iii) coalitional aggregation of power producers,
in which the producers (players) may opt to cooperate and join coalitions; they can
then sign contracts with an aggregator that is responsible for managing production
schedule and cash flow from and to the producers.
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