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SOLAR-SAIL TRANSFERS FROM INVARIANT OBJECTS TO L5 PERIODIC ORBITS

Alvaro Fernandez, Andrew F. Heaton, and Jeannette Heiligers

Delft University of Technology, Delft, The Netherlands,
NASA Marshall Space Flight Center, Huntsville, Alabama,
and Delft University of Technology, Delft, The Netherlands

ABSTRACT

The continuing development of solar-sail technology in com-
bination with the rising interest in a mission to the Sun-Earth
L5 point for heliophysics and the search for Trojan aster-
oids, raises the question of using solar sailing as the primary
propulsion method to enable such a mission. This paper there-
fore investigates a range of solar-sail transfers to the L5 point,
departing from different invariant objects in the neighbour-
hood of Earth: natural and solar-sail displaced equilibrium
points, families of periodic orbits and their associated stable
invariant manifolds. Also, the arrival conditions are varied to
be either natural or solar-sail displaced periodic orbits around
the L5 point. The transfers are obtained using a hybridisa-
tion of different trajectory design techniques. First, a multi-
objective genetic algorithm is applied to obtain near-feasible
initial guesses, which are transformed into feasible transfers
using a differential correction method. Through a continu-
ation on the fixed time of flight, the differential corrector is
subsequently used to reduce the transfer time. As the differ-
ential corrector implements a stepwise constant control of the
solar-sail attitude, a pseudospectral optimisation method is fi-
nally taken at hand to obtain a smooth, continuous control
profile, to, if possible, further reduce the transfer time. This
approach results in fast solar-sail transfers between 396 and
1194 days, depending on the departure and arrival configu-
ration and the assumed solar-sail technology. These results
can serve as preliminary design solutions for a mission to the
Sun-Earth L5 point.

Index Terms— Solar sailing, libration points, L5 mis-
sion, genetic algorithm, differential correction, pseudospec-
tral optimisation.

1. INTRODUCTION

The equilateral libration points of the Sun-Earth system are of
interest for space missions related to space weather observa-
tions and the search for Trojan asteroids. Since these points
are stationary 60 degrees ahead and behind Earth, they pro-
vide observational access to regions of the Sun that are inac-
cessible from Earth or the L1 point. For example, the ACE
satellite at the L1 point allows the detection of geomagnetic

storms approximately one hour before they arrive at Earth. A
spacecraft at the equilateral points would enable a much ear-
lier prediction of such space weather events. Furthermore,
both equilateral points (L4 and L5) are suitable for studying
coronal mass ejections (CMEs). However, only the L5 point
is useful for the study of corotating interaction regions as they
pass by the L5 point first and then Earth and the L4 region.
Additionally, a spacecraft at the L4 or L5 points enables a
side view of events like solar flares and CMEs which would
help in developing a better understanding of these events as
well as the magnetic reconnection that triggers them [1].

Besides for space weather observation missions, the equi-
lateral points are also of interest because of the potential pres-
ence of Trojan asteroids. Bodies in orbit around the L4 and
L5 points are likely to have been there for a long time due
to the stable character of orbits around the equilateral points.
The study of such bodies can therefore help in understanding
the formation of the Solar System. Trojan asteroids have been
found in orbit around the equilateral points of the Sun-Mars,
Sun-Earth, Sun-Jupiter, and Sun-Neptune systems as well as
in systems such as Saturn with some of its moons [2]. In 2010,
NASA’s WISE spacecraft detected asteroid 2010TK7 at the
Sun-Earth L4 point [2]. The fact that the STEREO spacecraft
visited both equilateral points a year before, in 2009, without
spotting asteroid 2010TK7 suggests that there could still be
other asteroids of small size or low albedo which have insofar
not been discovered [2].

Due to the clear scientific relevance of the L5 point, the
literature holds a range of studies on transfers to the trian-
gular points. For example, studies have shown the feasibil-
ity of transfers departing from 200 km altitude parking orbits
around Earth to specific periodic orbits around the L5 point.
These transfers require a ∆V in the order of 4 km/s, depend-
ing on the targeted periodic orbit and desired time of flight
[3, 4]. Solar sails are an excellent means to provide this high
∆V [5]. As an inexhaustible source of low thrust, it can sig-
nificantly decrease, if not completely remove, the need for
an onboard propellant. Moreover, Sood and Howell showed
how, by using the invariant manifolds of Lyapunov orbits in
combination with differential correction and optimisation, the
use of a solar sail decreases the total ∆V for such a mission
[6]. Alternatively, Farres, Heiligers and Miguel used Poincaré



sections and optimal control to compute solar-sail transfers
between the Sun-Earth collinear points and the regions of
practical stability around the equilateral libration points [7].

This paper builds on, and generalises, previous work on
solar-sail transfers to the Sun-Earth L5 point. In particular,
a versatile approach is adopted to obtain solar-sail transfers
departing from a range of invariant objects in the neighbour-
hood of Earth to entire families of L5 periodic orbits. The
invariant objects considered are equilibrium points, periodic
orbits and their associated stable invariant manifolds. While
previous work mostly focused on the planar, two-dimensional
case and targeted specific initial and final conditions (e.g., a
specific Earth parking orbit or a specific L5 point orbit), this
paper considers the three-dimensional case as well as entire
families of periodic orbits for both the initial and final condi-
tions.

2. DYNAMICAL SYSTEM

In order to model the motion of the solar-sail propelled space-
craft (hereafter in short referred to as “solar sail”), we con-
sider the Circular Restricted Three-Body problem (CR3BP)
perturbed with Solar Radiation Pressure (SRP). In such a
model, the Sun and the Earth (primary bodies) move in cir-
cular orbits around their common barycenter exclusively
attracting each other. The solar-sail (third body) motion is
governed by the vector field induced by the gravitational pull
of the primaries and the SRP. The primaries are assumed to
be point masses and the solar sail is assumed to be massless.

The units of mass, distance and time are normalised such
that the total mass of the system is 1, the Sun-Earth distance
is 1 and the orbital period of the Earth around the Sun is 2π.
With these normalised units, the gravitational parameter of
Earth is µ = 3.0034806 · 10−6 and the gravitational parame-
ter of the Sun is 1−µ. We consider a synodic reference frame,
s(X,Y, Z), to study the system, where the X axis is defined
along the Sun-Earth line pointing from the Sun to the Earth,
the Z axis is defined in the direction of the angular momen-
tum of the primaries and the Y axis completes the orthogonal
reference frame.

In frame s(X,Y, Z), the equations of motion can be ob-
tained by including the inertial and non-inertial forces as:

ẍ− 2ẏ =
∂Ω

∂x
+ ax, (1)

ÿ + 2ẋ =
∂Ω

∂y
+ ay, (2)

z̈ =
∂Ω

∂z
+ az, (3)

with Ω = 1
2

(
x2 + y2

)
+ 1−µ

rsb
+ µ
reb

, rsb =
√

(x+ µ)2 + y2 + z2

and reb =
√

(x+ µ− 1)2 + y2 + z2. The acceleration
generated by the solar sail is defined as the vector a =

[ax ay az] and it is produced by the transfer of momen-
tum when solar photons are reflected by the sail. In this
process, the properties of the sail and the solar flux determine
how the force is produced. For the initial analyses in this pa-
per, we assume a perfectly reflecting flat sail and a uniformly
radiating Sun. More complex models account for the optical
properties of the sail and geometry effects [5, 8, 9]. For an
ideal sail, the SRP acceleration acts along the direction of
the sail normal and is conveniently expressed as a function
of the lightness number β. This parameter is defined as the
ratio between the SRP and solar-gravitational accelerations
[5]. Note that near-term values for this lightness number are
β ≤ 0.04 [10]. The SRP acceleration can then be described
in dimensionless units as:

a = β
1− µ
r2sb
〈r̂sb,n〉2n, (4)

where r̂sb = rsb
rsb

, rsb = [x + µ y z]T and n is the sail
normal.

In order to describe the attitude of the sail, we follow [11]
and define an orthonormal reference frame with its origin at
the solar sail and basis {r̂sb,p, q}, where p = r̂sb×k

|r̂sb×k|
and

q =
p×r̂sb

|p×rsb| . The vector k denotes the unit vector along the
Z axis. The sail normal can then be described in the orthonor-
mal frame by two angles, known in the literature as the cone
angle α and the clock angle δ, as n = cosαr+sinα sin δp+
sinα cos δq. The equations of motion can then be expressed
as:

ẍ−2ẏ =
∂Ω̃

∂x
+a

(
− (x+ µ)z

rsbrp
sinα cos δ +

y

rp
sinα sin δ

)
,

(5)

ÿ+2ẋ =
∂Ω̃

∂y
+a

(
− yz

rsbrp
sinα cos δ − x+ µ

rp
sinα sin δ

)
,

(6)

z̈ =
∂Ω̃

∂z
+ a

(
rp
rsb

sinα cos δ

)
, (7)

where a = β 1−µ
r2sb

cos2 α, rp =
√

(x+ µ)2 + y2 and Ω̃ =
1
2

(
x2 + y2

)
+
(
1− β cos3 α

)
1−µ
rsb

+ µ
reb

. The right-hand side
of Eqs. 5-7 consist of two terms of different nature, where
the terms included in Ω̃ accept the form of a potential func-
tion. While the CR3BP is Hamiltonian, the SRP perturbation
breaks this property of the system, but a few exceptions ex-
ist. For the cases where the non-potential terms in the equa-
tions of motion vanish, the system remains Hamiltonian. This
happens when the sail normal is aligned with the direction of
the Sun-sail line (α = 0) and when the sail normal is per-
pendicular to the Sun-sail line (α = ±π). These cases are
of particular interest because the existence of periodic and



quasi-periodic motion around equilibrium points is guaran-
teed. Another important aspect of the dynamical system when
the Hamiltonian structure is preserved is the existence of a
first integral Jc = ẋ2 + ẏ2 + ż2 − 2Ω̃, known as the Jacobi
constant [11]. This constant of motion has important impli-
cations to characterise regions of possible motion and energy
levels of periodic and quasi-periodic motion.

2.1. Invariant objects

Let us express Eqs. 5-7 as a system of first order differential
equations given by:

ẋ = f(x, α, δ), (8)

where x ∈ R6 is a point in phase space. Let us also de-
fine the flow induced by f as φt(x, α, δ) with t ∈ R. A set
S ⊂ R6 is invariant under the flow if for any element u ∈ S,
φt(u, α, δ) ∈ S for any t [12]. When the angles α and δ are
constant they act simply as parameters of the dynamics for
which invariant sets can be defined. A wide variety of invari-
ant sets exist in both the natural and SRP-CR3BP. Such sets
can exist in the form of equilibrium points, periodic orbits,
invariant manifolds or invariant tori. The first three will be
discussed in more detail below, while invariant tori will be
considered in future research.

2.1.1. Equilibrium points

It is well know that the CR3BP exhibits five equilibrium
points known as the Lagrange points. It is also known that
when SRP is included, different families of equilibrium points
emerge [5, 11]. The surfaces of these so-called displaced
equilibrium points are given by the following problem [5]:

−∇Ω = β
1− µ
r2sb
〈r̂sb,n〉2n (9)

〈r̂sb,n〉 ≥ 0 (10)

Note that, when the sail is oriented perpendicular to the Sun-
sail line, the displaced equilibrium points reduce to the five
natural Lagrange points. The displaced counterparts of the
Lagrange points are referred to as SLi with i ∈ {1, 2, .., 5}.

2.1.2. Periodic orbits

When the dynamical system is Hamiltonian, both periodic
and quasi-periodic motion around the equilibrium points ex-
ist. In fact, these types of motion generally appear in continu-
ous families. Numerous studies have used symmetric proper-
ties of the system to compute such families of periodic orbits
in the natural system, e.g., [13, 14], and the SRP-perturbed
system, e.g., [15, 16]. We, however do not exploit orbit sym-
metry to find periodic motion. A very general way to im-
pose periodic motion is given by the definition of the map

G : R7 → R6 as [17]:

G(x, T ) = φT (x, α, δ)− x (11)

with x ∈ R6 and T ∈ R>0. Note that the sail attitude is
constant for each family of periodic orbits and therefore α
and δ are fixed parameters of the map G. The search of peri-
odic orbits is then transformed into finding {x, T} that solve
G(x, T ) = 0. Such solutions can be found with a Newton
method given a good initial guess. Let us assume x̂ and T̂ are
a guess for a solution. This guess can be corrected by linearis-
ing the periodicity equation and solving the linear system:

−G(x̂, T̂ ) = JG(x̂, T̂ )

[
δx
δT

]
(12)

where JG denotes the Jacobian of G, and δx and δT denote
the updates to the initial guess. The derivative of φT (x, α, δ)
with respect to the initial point can be obtained with the
state transition matrix (STM) evaluated at time T denoted by
Φ(x, T, α, δ), yielding:

JG =
[
Φ(x, T, α, δ)− I6×6 f(φT (x, α, δ), α, δ)

]
, (13)

where I6×6 denotes the identity matrix. As can be seen, JG
is of size 6 × 7 and is therefore not invertible. However, it
is convenient to fix one of the components, xi, of x to have
control over what periodic orbit is computed. It is enough to
set its variation δxi to zero in Eq. 12, which is equivalent
to eliminating δxi from the updates vector and eliminating
column i from JG, yielding the reduced Jacobian J̃G. The
system can then be solved by inverting J̃G.

Given a solution {x∗, T ∗} for Eq. 11, continuation can
be used to generate the whole family of periodic orbits. We
choose to continue the family in the component xi of x. It
is possible to obtain the unit tangent direction for a family of
periodic orbits, t, as the unit Ker(JG(x∗, T ∗)). The new
guess is then obtained as [18]:[

x̂

T̂

]
=

[
x∗

T ∗

]
+ δSt (14)

where δS is the step size in the continuation.
In order to implement this method for the generation of

families of periodic orbits, an initial guess is required. We
obtained these guesses from the linearised flow at the equilib-
rium points.

An important feature of periodic orbits is their stability
which can be assessed from the eigenvalues of the mon-
odromy matrix M = Φ(x, T, α, δ) for any point in a periodic
orbit. Since we will only generate periodic orbits for the
Hamiltonian case (α = 0 or α = ±π/2), the monodromy
matrix is symplectic. It can be shown that the characteristic
polynomial of any symplectic matrix is reciprocal and conse-
quently, the roots come in reciprocal pairs. Therefore, if λ is
an eigenvalue, λ−1 is also an eigenvalue. It can also be shown



that for periodic orbits in autonomous Hamiltonian systems,
one of the eigenvalues is equal to 1 with an associated eigen-
vector tangent to the orbit. Since the eigenvalues come in
reciprocal pairs, the spectra of the monodromy matrix has the
form [19]:

spec(M) = {1, 1, λ1, λ−11 , λ2, λ
−1
2 }. (15)

The stability indices are then defined as si = |λi+λ−1i |. With
such definition, the behaviour around a periodic orbit can be
described as:

• Hyperbolic: si > 2.

• Elliptic: si < 2. When si = 2 it is said to be parabolic.

• Complex unstable: if λi ∈ C\R
A periodic orbit is said to be stable if si ≤ 2 [20].

In this paper we consider only the planar Lyapunov, ver-
tical Lyapunov and halo families, but several other exist [21].
As a first example, Fig. 1 shows the planar Lyapunov family
around the SL1 point for β = 0.02 and α = 0 and the sta-
bility indices throughout the family. The values of the Jacobi
constant for the smallest and biggest orbits have also been
included for all families of periodic orbits presented. Since
s1 > 2 for the whole family, these orbits are unstable. How-
ever, the s2 index shows that there is a set of more stable pe-
riodic orbits when s2 = 2. For the vertical Lyapunov family
depicted in Fig. 2, it can be seen that, again, s2 = 2 for a set
of orbits. The halo family and its stability indices shown in
Fig. 3 show a range of orbits where both s1 = 2 and s2 = 2,
therefore indicating that a few stable halo orbits exist. Lastly,
the planar Lyapunov family around SL5 and its stability in-
dices depicted in Fig. 4 show that these orbits are stable, as
both indices are parabolic.

2.1.3. Invariant manifolds

Let us assume x0 is a fixed (equilibrium) point of the non-
linear system given by Eq. 8. The stable and center manifold
theorems guarantee, under certain conditions, the existence
of the stable manifold W s, the unstable manifold Wu and
the center manifol W c; all of which are invariant under the
flow. Such manifolds are tangent at x0 to the stable, unstable
and center subspaces given by the stable, unstable and center
directions of the linearisation of the non-linear system [12].
The stable and center manifold theorems also exist for peri-
odic orbits. In that case, the invariant manifolds are tangent at
the periodic orbit to the stable, unstable and center subspaces
which are obtained from the linearisation of the flow around
the cycle after one period, i.e., the monodromy matrix [12].
In this study, both the stable and unstable manifolds associ-
ated to fixed points or periodic orbits are used. Numerically,
these invariant manifolds can be obtained by propagating the
flow from an equilibrium point or a periodic orbit perturbed
in the corresponding stable or unstable direction. The size of
the perturbation selected is 10−5 in dimensionless units.

Fig. 1. Planar Lyapunov family around the SL1 point for
β = 0.02 and α = 0 (top) and its stability indices (bottom).

Fig. 2. Vertical Lyapunov family around the SL1 point for
β = 0.02 and α = 0 (top) and its stability indices (bottom)

3. TRAJECTORY DESIGN

3.1. Genetic algorithm

A genetic algorithm (implemented using the Matlab R© func-
tion ga.m) is taken at hand to solve a multi-objective optimi-
sation problem in which a set of decision variables defines
a guess for the transfer and the quality of that guess is as-



Fig. 3. Northern halo family around the SL1 point for β =
0.02 and α = 0 (top) and its stability indices (bottom)

Fig. 4. Planar Lyapunov family around the SL5 point for
β = 0.02 and α = 0 (top) and its stability indices (bottom)

sessed in terms of its infeasibility, εI , and the time of flight
(TOF). Note that the decision variables vary depending on the
case, i.e., the type of invariant object used as initial condition,
which will each be discussed below.

3.1.1. Departure from collinear equilibrium points

If the initial condition is a natural collinear equilibrium point
(L1 orL2) or a solar-sail displaced collinear equilibrium point
(SL1 or SL2), the vector of decision variables, x, is defined
as:

x = [df τf αf ] (16)

Given a family of periodic orbits around the (displaced) L5

point, the first variable, df , determines the dimensionless size
of the periodic orbit as the largest distance from the periodic
orbit to it associated equilibrium point. This variable allows
to target transfers to entire families of orbits, as opposed to
works that target one particular periodic orbit [4, 6]. The sec-
ond variable, τf , determines the insertion point into the or-
bit which is obtained from propagating the flow over a time
τfT , where T is the periodic orbit period, starting from some
reference point. Finally, a third variable, αf , determines the
constant cone angle of the sail which is used in the backwards
integration from the insertion point over a five year period.
Figure 5 depicts these variables and their effect on the trajec-
tory.

The unstable manifolds originating from the (displaced)
collinear equilibrium points are also integrated over a five
year period, only forwards in time. However, note that these
unstable manifolds enter a complex region around Earth for
the natural Lagrange points [7] which can cause issues in the
adopted approach. Therefore, for such cases, the trajectory
starts from the equilibrium points perturbed in the direction
of the unstable manifold but including a solar-sail acceler-
ation where the solar sail is pitched at a fixed, zero degree
angle with respect to the incoming solar radiation. It can be
shown that with such an attitude and the solar-sail technology
considered, the spacecraft diverts away from Earth.

The initial guess transfer is then given by the union of the
unstable manifold of the (displaced) equilibrium point and the
backwards flow from the periodic orbit at the point of min-
imum euclidean norm in dimensionless phase space. This
value is used as the infeasibility objective, εI . Together with
the corresponding time of flight, the genetic algorithm creates
a Pareto front that gives a range of potential initial guesses
that vary in feasibility and time of flight. Ideally, the initial
guess selected for the next steps of the trajectory design pro-
cess is the guess which is sufficiently feasible and has the
smallest time of flight, where, by sufficiently feasible, it is
meant that the differential correction can converge to a feasi-
ble solution from the initial guess.

As an example, Fig. 6 shows the pareto front obtained for
transfers from the natural L1 point to an SL5 solar-sail planar
Lyapunov orbit for β = 0.02. The initial guess highlighted
in red is depicted in Fig. 7. In terms of objective values, this
initial guess achieves a feasibility of εI = 0.0344, which cor-
responds to an error in position of 2.15 · 106 km and an error
in synodic velocity of 0.9292 km/s. The time of flight equals
TOF = 738 days, while the values for the decision variables



are: x = [df τf αf ] = [0.1858 0.3227 28.89], where
αf is given in degrees.

Fig. 5. Schematic of genetic algorithm decision vector vari-
ables.

Fig. 6. Example of the Pareto front obtained with the genetic
algorithm for transfers from the natural L1 point to the family
of SL5 solar-sail planar Lyapunov orbits with β = 0.02.

Fig. 7. Example of initial guess from the Pareto front for a
transfer from the natural L1 point to the family of SL5 solar-
sail planar Lyapunov orbits with β = 0.02.

3.1.2. Departure from periodic orbits around collinear libra-
tion points

When the departing invariant object is a periodic orbit within
an orbit family around the L1, L2, SL1 or SL2 points, the
decision vector in Eq. 16 is expanded to:

x = [d0 τ0 df τf αf δf ]. (17)

Equation 17 now also includes decision variables to select the
best size of the departing orbit, d0, and the best departure con-
dition along that orbit, τ0. Furthermore, if the departing peri-
odic orbit is a three-dimensional orbit, the angle δf considers
a solar-sail attitude component in the out-of-plane direction
in the backwards propagation from the L5 region.

Since the periodic orbits around the collinear equilibrium
points are unstable, they have associated unstable manifolds.
The decision vector expressed in Eq. 17 defines a departure
periodic orbit and the departing point. The departure condi-
tions are propagated along the unstable manifold for a five
year period—The initial guess is then again obtained as the
union of the trajectory along the unstable manifold of the pe-
riodic orbit and the backwards flow from the periodic orbit
around L5 or SL5at the point of minimum euclidean norm in
dimensionless phase space.

The unstable manifolds of the natural periodic orbits
around the collinear equilibrium points do not present the
complex region around Earth that the manifolds associated to
the natural collinear equilibrium points do. Nevertheless, the
initial guesses benefit, in terms of TOF, from using the sail at
a zero degree angle with respect to the incoming solar flux.



Therefore, the approach described for the unstable manifolds
of the collinear Lagrange points is also adopted for the un-
stable manifolds of natural periodic orbits. When departing
from solar-sail periodic orbits, their associated unstable man-
ifolds already have a sail attitude aligned with the incoming
flux. Therefore the true unstable manifolds are used.

3.1.3. Departure from stable manifold

The final case considered is the one where the solar-sail
spacecraft is assumed to be launched as a secondary payload
on a mission were the primary spacecraft is injected onto the
the stable manifold of a particular halo orbit around the L1

point where the stable manifold passes closest by Earth. It is
further assumed that the solar sail is deployed at some point
along that stable manifold. The vector of decision variables
then is:

x = [τ0 α0 δ0 df τf αf δf ] (18)

where τ0 determines the departing conditions along the pri-
mary spacecraft trajectory; if Tp is the transfer time for the
primary spacecraft along the stable manifold, the solar sail is
deployed at τ0Tp. The variables α0 and δ0 are the cone and
clock angle for the segment departing from the stable mani-
fold of the periodic orbit which is again propagated for five
years. The remaining variables are analogous to the ones de-
scribed in the previous cases. Note that δ0 and δf are only
used if the problem considered is not planar.

3.2. Multiple shooting differential corrector

The transfers obtained with the genetic algorithm are not yet
feasible nor time-optimal. We use a multiple shooting dif-
ferential corrector to first obtain feasible trajectories and then
reduce the time of flight.

First, the guesses are discretised on n = 30 nodes. Each
node contains a point in phase space, a cone angle, a clock
angle and a temporal variable. They can be expressed as:

Xi =


xi
αi
δi
ti

 for i ∈ {1, 2, ...n} (19)

A feasible trajectory for a given TOF, T0, with constraints g0
and gf on the initial and final nodes is obtained as the solution
to the following problem:

g0(X1) = 0 (20)

φti(xi, αi, δi)− xi+1 = 0 for i = {1, 2, ...n− 1} (21)

gf (Xn) = 0 (22)
n−1∑
i=1

ti − T0 = 0 (23)

The constraints g0 and gf depend on the departure and arrival
conditions selected. We can rewrite Eqs. 20-23 as S (X) =

0, with X = [XT
1 ,X

T
2 , ...X

T
n ]T . Then, an initial guess X̂

can be updated by solving the linear system:

− S(X̂) = JS(X̂)δX, (24)

where JS(X) =

Jg0(X1) 0 · · · · · · · · · · · · 0

Φ̃1 f1 −E 0 · · · · · · 0

0 Φ̃2 f2 −E 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · Φ̃n−2 fn−2 −E 0

0 · · · · · · · · · Φ̃n−1 fn−1 −E
0 · · · · · · · · · · · · · · · Jgf (Xn)
u · · · · · · · · · · · · u 0


,

(25)
with fi = f(φti(xi, αi, δi), αi, δi), E = [I6×6 06×3], u =
[01×8 1] and Φ̃i = Φ̃(xi, ti, αi, δi). The 6 × 8 matrix Φ̃ is
an expanded STM that includes the variation of φti(xi, αi, δi)
with respect to αi and δi, i.e., Φ̃ = [Φ ∂φt

∂α
∂φt

∂δ ] [6].
For some cases, the variables of the initial and final node,

as they appear in Eq.19, need to be changed to define the con-
straints on them. Furthermore, the addition or elimination of
variables for the outer nodes requires the Jacobian of S(X),
as it appears in Eq. 25, to be slightly modified to account
for the variables used. Nevertheless, the general structure of
JS(X) is maintained.

3.2.1. Transfers considering fixed periodic orbits

Let us assume we want to fix node X1 or Xn to lie on a
specific periodic orbit. Such periodic orbit can be described
by a phase space point x0, a period T and cone and clock
angles α = 0, π/2 and δ = π/2, respectively. Then the node
Xi with i = 1, n needs to satisfy:

Ḡ(xi, t) = φt(x0, α, δ)− xi = 0, (26)

for some t ∈ [0, T ). If such constraint is implemented for the
initial or final point, the node needs to include a variable for
t in Eq. 26. Additionally, αn and δn for the last node are not
necessary as the attitude of the sail for the fixed periodic orbit
is fixed. The initial and final nodes can then be expressed as:

X1 =


x1

α1

δ1
t1
t∗1

 Xn =

[
xn
t∗n

]
, (27)

where t∗1 and t∗n are used for the variable t in Eq. 26 for the
fixed periodic orbit of the initial and final nodes respectively.
Lastly, the Jacobian of Ḡ needed for the Newton method can
be obtained as:

JḠ = [−I6×6 f(φt(x0, α, δ), α, δ)] (28)



3.2.2. Transfers between a collinear equilibrium point and
families of periodic orbits around the (displaced) L5 point

This case is equivalent to fixing x1 to the desired departure
collinear equilibrium point, xfixed, and imposing the con-
straint given by Eq. 11 to Xn. The first node can then be
expressed as in equation 19, whereas the last node only re-
quires of a phase space point and the period of the orbit it
belongs to. Therefore,

X1 =


x1

α1

δ1
t1

 Xn =

[
xn
Tn

]
. (29)

The constraints on the outer nodes are then:

g0(X1) = x1 − xfixed, (30)

gf (Xn) = G(xn, Tn). (31)

If Xn defines a periodic orbit from an specific family, the
constraint given by Eq. 31 will generally set the last node to
orbits belonging to that family. Since the families are contin-
uous, the case where gf sets the last node to a family of peri-
odic orbits different from the one used for the initial guess is
unlikely unless the periodic orbit of the initial guess is close
enough to a bifurcation point.

3.2.3. Transfers between families of periodic orbits

If the initial point, x1, is constrained to be on a periodic orbit,
the variables for the initial node, X1, as they appear in Eq.
19, are not sufficient to define the departing periodic orbit. It
could be possible to expand X1 with an extra variable, T1,
which would be the period of the initial periodic orbit and im-
pose Eq. 11 to the initial node in a similar way as was done for
the last node with Eq. 31. However, this does not work well
in practice because the departing periodic orbits considered
are generally unstable and the proposed differential corrector
would have difficulties converging to fast transfers. There-
fore, in order to be able to let the initial node belong to a
family of unstable periodic orbits around the collinear equi-
librium points, a more robust periodicity constraint is imple-
mented. Let us consider a set defined by a point x, a param-
eter T and fixed cone and clock angles α and δ respectively.
The complete set can be expressed as:

Γ = {y : φt(x, α, δ)− y = 0 for t ∈ [0, T )}. (32)

Then, the set Γ defines a periodic orbit if for any v ∈ Γ,
G(v, T, α, δ) = 0. This can be expressed as:

G̃(x, T, t) = φT (φt(x, α, δ)α, δ)− φt(x, α, δ) = 0, (33)

with t ∈ [0, T ). Equation 33 is a more robust periodicity
constraint as it allows to impose periodicity not at x but at

φt(x, α, δ). By the theorem of existence and uniqueness of
differential equations [12], if φt(x, α, δ) belongs to a peri-
odic orbit, so will x. This method can be successfully imple-
mented in the differential corrector.

For this case, the initial and final nodes are expressed as:

X1 =


x1

α1

δ1
t1
T1
t̃1

 , Xn =

xnTn
t̃n

 , (34)

where t̃1 and t̃n are used for the variable t in G̃. The con-
straints on the initial and final node are then:

g0(X1) = G̃(x1, T1, t̃1) = 0, (35)

gf (Xn) = G̃(xn, Tn, t̃n) = 0. (36)

To include the new periodicity constraints, the Jacobian of G̃
is needed for the Newton method and it can be expressed as:

JG̃ = [(Φ(T, φt(x, α, δ), α, δ)− I6×6)Φ(t,x, α, δ)

f(φT (φt(x, α, δ), α, δ))

(Φ(T, φt(x, α, δ), α, δ)− I6×6)f(φt(x, α, δ), α, δ)]

(37)

Note, that in section 3.2.2, the constraint G could be used
to set the final node on a family of periodic orbits. This is
possible only because such orbits are stable. The constraint
G̃ can also be used in such transfers, but the results obtained
are almost identical.

3.2.4. Transfers between the stable manifold of an orbit
around a collinear equilibrium point and families of periodic
orbits around the (displaced) L5 point

This case corresponds to the scenario where the solar sail is
launched as a secondary payload and the primary spacecraft is
injected into the stable manifold of an orbit around a collinear
equilibrium points. The multiple shooting differential correc-
tor is described for the general case, but here only the case
where the primary spacecraft targets a halo orbit around the
L1 point is considered.

The constraint Ḡ in Eq. 26 can be used as the constraint on
the initial node. However, the point x0 that defined the fixed
periodic orbit now corresponds to the closest point to Earth of
the selected periodic orbit stable manifold. The angles α and
δ are the cone and clock angles for the selected periodic orbit
of the primary mission.

The node X1 needs to include the variable t? for the di-
mensionless time spent on the stable manifold. For the con-
straint on the final node, gf , both G (Eq. 11) and G̃ (Eq.
33) can be used. However, we choose the stronger periodic-
ity constraint G̃. Therefore, the initial and final node can be



expressed as:

X1 =


x1

α1

δ1
t1
t?

 , Xn =

xnTn
t̃n

 (38)

and the constraints on them are

g0(X1) = Ḡ(x1, t
?) = 0, (39)

gf (Xn) = G̃(xn, Tn, t̃n) = 0. (40)

3.2.5. Optimisation with the multiple shooting differential
corrector

So far, the differential corrector described will compute trans-
fers for a fixed TOF. In order to optimise the transfers with
respect to the TOF, first the initial guess given by the ge-
netic algorithm is converged with the differential corrector to
a feasible trajectory with the TOF, T0, of the initial guess.
This solution is then used to compute a new solution for a
TOF= κT0, with κ < 1. This process is iterated until the dif-
ferential corrector cannot converge. Then, the factor κ is in-
creased to allow smaller steps in the continuation. We use κ ∈
[0.95 0.98 0.99 0.999 0.9995 0.9999 0.99999].

3.3. Optimal control solver PSOPT

The transfers obtained with the differential corrector are not
necessarily optimal in the sense that the optimality conditions
of the problem under consideration have not been checked or
used to compute the solution. Therefore, we use the optimal
control solver PSOPT, which is a C++ implementation of the
direct Legendre pseudospectral method [22]. We set the ob-
jective as the TOF and include event constraints on the initial
and final nodes. When the departing point is a collinear equi-
librium point, the event constraint is defined by simply setting
the initial node equal to the desired departing collinear equi-
librium point. When the initial or final node are constrained
to belong to a periodic orbit, we take the orbit given by the
differential corrector, express it in a Fourier series and set the
node to satisfy such series for some value of the angle that pa-
rameterises it. This angle is optimised as an static parameter
in PSOPT.

4. RESULTS

We first apply the methodology described for transfers be-
tween the collinear equilibrium points and natural and so-
lar sail families of planar Lyapunov periodic orbits (PLOs)
around the L5 and SL5 points. This results in the time of
flights for the differential correction + continuation (DC) and
PSOPT approaches as in Table 1 for a range of lightness num-
bers.

When comparing the results obtained with the differential
corrector and with PSOPT, PSOPT sometimes converges to
slightly different transfer times for transfers starting from the
natural or displaced L1 points. This is mainly due to the fact
that the initial guesses for these cases include close Earth ap-
proaches or multi-revolution spirals around Earth, which in-
troduces convergence difficulties for both methods. The dif-
ferences are most noticeable for lightness numbers of 0.01
and 0.05. On the other hand, when the transfers depart from
the natural or displaced L2 points, both PSOPT and the dif-
ferential corrector converge to practically the same solution.

Generally, the optimised transfers with PSOPT are very
close to the ones obtained with the differential corrector +
continuation, indicating that PSOPT is not capable of fur-
ther reducing the TOF beyond that obtained with the differ-
ential correction + continuation. It is therefore concluded that
the differential corrector in combination with the continua-
tion method is an efficient tool to optimise the transfers con-
sidered. Therefore, from this point on, only the differential
corrector will be used to optimise the trajectories.

Table 2 shows the results obtained for transfers between
families of planar Lyapunov orbits around the collinear equi-
librium points and the (displaced) L5 point. The results show
that it is always faster to travel between families of natural
periodic orbits. When comparing the TOF for transfers de-
parting from the collinear equilibrium points and transfers de-
parting from families of periodic orbits it can be seen that, for
some cases, the differential corrector converges to faster so-
lutions when departing from an equilibrium point than when
departing from a planar Lyapunov periodic orbit around it.
Generally, both cases have very similar TOFs with the excep-
tion of the cases with β = 0.01. In these cases, departing from
periodic orbits can reduce the TOF by over 100 days. Figure
8 shows the TOF as a function of the lightness number for
transfers departing from both the collinear equilibrium points
(top) and from planar Lyapunov orbits around them (bottom),
where the suffix “n” or “s” denotes natural and solar-sail or-
bits respectively, and the prefix “L” denotes departure from
Lyapunov orbits. It is then clear that the larger the lightness
number, the smaller the TOF. It can also be seen that the im-
provement in TOF with respect to an improvement in the sail
performance decreases with increasing lightness number.

To visualise the transfers, Fig. 9 shows transfers for three
cases: departing from L1, departing from a natural planar
Lyapunov orbit around L1 and departing from a natural halo
orbit around L1. In all three cases, the target orbits belong to
the natural planar family around L5 and the sail performance
is assumed to be β = 0.02. The transfer from the family
of halo orbits has been included to demonstrate the capabil-
ity of the differential corrector for non-planar cases. Figure
10 shows a three-dimensional close-up of the transfers in the
neighbourhood of Earth. The TOF for the three cases is rela-
tively similar.

The last case considered is when the solar sail is deployed



Table 1. TOF in days for transfers from the collinear equilibrium points to families of planar Lyapunov periodic orbits around
the L5 and SL5 points

β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05
Method DC PSOPT DC PSOPT DC PSOPT DC PSOPT DC PSOPT
L1→ natural PLOs 943 962 612 613 486 486 434 435 402 418
L1→ solar-sail PLOs 1094 1061 729 727 575 574 512 513 478 524
SL1→ natural PLOs 1094 1019 685 686 563 570 512 525 481 496
SL1→ solar-sail PLOs 1194 1136 801 803 651 664 589 605 555 611
L2→ natural PLOs 846 846 599 598 481 480 429 428 396 396
L2→ solar-sail PLOs 941 940 712 711 571 570 508 508 474 477
SL2→ natural PLOs 920 919 672 671 551 550 494 493 458 457
SL2→ solar-sail PLOs 1015 1014 784 783 642 647 575 574 509 494

Table 2. TOF in days for transfers from families of planar Lyapunov orbits around the collinear equilibrium points to families
of planar Lyapunov orbits around the L5 and SL5 points

β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05
Natural PLOs around L1 → natural PLOs 862 622 483 433 404
Natural PLOs around L1 → solar-sail PLOs 978 728 580 513 476
Solar-sail PLOs around SL1→ natural PLOs 947 668 545 500 455
Solar-sail PLOs around SL1→ solar-sail PLOs 1041 804 641 576 525
Natural PLOs around L2 → natural PLOs 812 579 454 427 405
Natural PLOs around L2 → solar-sail PLOs 902 686 559 490 460
Solar-sail PLOs around SL2→ natural PLOs 908 684 546 500 456
Solar-sail PLOs around SL2→ solar-sail PLOs 920 672 551 494 458

Fig. 8. Time of flight as a function of the lightness number
for transfers departing from the collinear equilibrium points
(top) and from planar Lyapunov orbits (bottom).

along the stable manifold, i.e., along the trajectory of the pri-
mary spacecraft towards a natural halo orbit. Such transfer is
assumed to be along the stable manifold of the target halo or-
bit. The assumed halo orbit is characterised by a maximum di-
mensionless displacement of 0.01 dimensionless length units

Fig. 9. Transfers to natural periodic orbits around L5 depart-
ing from L1 and departing from a natural planar Lyapunov
and a natural halo orbit around L1.

from L1, which is equivalent to 1.49 million km. The depart-
ing point for the primary mission is at 0.47 million km from
Earth and with an initial velocity of 1.15 km/s. It is also as-
sumed that the sail performance is β = 0.02. The TOF for
the primary mission is 237 days. Figure 11 shows the trans-



Fig. 10. Close-up of the transfers from Figure 9 in the neigh-
bourhood of Earth

fer obtained with the differential corrector and Fig. 12 shows
a close-up in the neighbourhood of Earth. The black arrows
show the sail normal throughout the transfer. The TOF for the
solar sail is 138 days for the first segment where the primary
spacecraft goes from the neighbourhood of Earth to the point
of separation of the solar sail spacecraft and 652 days for the
second segment where the solar sail actively transfers to the
L5 region.

Fig. 11. Transfer for the secondary payload case with β =
0.02

Fig. 12. Close-up in the neighbourhood of Earth for the trans-
fer shown in Fig. 11

5. CONCLUSIONS

We investigated solar-sail transfers between invariant objects
in the neighbourhood of Earth and families of periodic or-
bits around the (displaced) L5 point. The novel methodology
introduced allows to consider fixed points, fixed periodic or-
bits, full families of periodic orbits and the stable manifold
of orbits, showing the versatility of the differential corrector
approach. Initial guesses were computed with the use of a
genetic algorithm. Such guesses converge to feasible trajec-
tories with a versatile multiple shooting differential correc-
tor which allows to consider whole families of periodic orbits
as departure and arrival conditions of the transfers. The dif-
ferential corrector then selects the best orbits to depart from
and to target. The multiple shooting differential corrector in
combination with a continuation method furthermore allows
to reduce the TOF of the transfers. Lastly, the optimal con-
trol solver PSOPT was used to attempt to further optimise the
trajectories.

The results show that the genetic algorithm successfully
obtains sufficiently feasible transfers that can then converge
to feasible trajectories with the differential corrector. The
optimal control solver PSOPT generally obtains very similar
transfers to the ones obtained with the differential corrector
+ continuation, proving the latter to be a powerful tool for
the problem under consideration. However, the control pro-
file used in the differential corrector is of constant step-wise
cone and clock angles, whereas PSOPT can offer a more con-
tinuous profile.

Fast solar-sail transfers taking between 396 and 1194



days, depending on the sail performance and the case, were
computed. For the range of lightness numbers, β, explored,
the TOF decreases with increasing β. It was also seen that
the improvement in TOF with respect to the sail performance
decreases with increasing β. Furthermore, for most cases,
departing from periodic orbits is faster than when depart-
ing from equilibrium points. This is specially true when
β = 0.01. Finally, it is always faster to travel between natural
invariant objects than to travel between solar-sail invariant
objects.

6. REFERENCES

[1] Gopalswamy, N., Davila, J. M., Cyr, O. C. St., Sittler,
E. C., Auchère, F., Duvall, Jr. T. L., Hoeksema, J. T.,
Maksimovic, M., MacDowall, R. J., Szabo, A. and Col-
lier, M. R., “Earth-Affecting Solar Causes Observatory
(EASCO): A potential International Living with a Star
Mission from Sun-Earth L5,” Journal of Atmospheric
and Solar-Terrestrial Physics, vol. 73, no. 5-6, pp. 658–
663, 2011.

[2] John, K. K. and Graham, L. D. and Abell, P. A., “In-
vestigating Trojan Asteroids at the L4/L5 Sun-Earth La-
grange Points,” 2015.

[3] Llanos, P. J., Miller, J. K. and Hintz, G. R., “L5 Mission
Design Targeting Strategy,” in AAS/AIAA Astrodynami-
cist Specialist Conference, Kauai, Hawaii, USA, 2013.

[4] Lo, M. W., Llanos, P. J. and Hintz, G. R., “An L5 Mis-
sion to Observe the Sun and Space Weather, Part I,” in
AAS/AIAA Astrodynamicist Specialist Conference, San
Diego, California, USA, 2010.

[5] McInnes, C. R., Solar Sailing - Technology, Dynamics
and Mission Applications, Springer, 2017.

[6] Sood, R. and Howell, K., “L4, L5 Solar Sail Trans-
fers and Trajectory Design: Solar Observations and Po-
tential Earth Trojan Exploration,” in 26th AAS/AIAA
Space Flight Mechanics Meeting, Napa, California,
USA, 2016.

[7] Farrés, A., Heiligers, J. and Miguel, N., “Road Map
to L4/L5 with a solar sail,” in AIAA 2018-0211 Space
Flight Mechanics Meeting, Kissimmee, Florida, USA,
2018.

[8] Rios-Reyes, L. and Scheeres, D. J., “Generalized Model
for Solar Sails,” Journal of Spacecraft and Rockets, vol.
42, no. 1, pp. 182–185, 2005.

[9] Campbell, B. A. and Thomas, S. J., “Realistic Solar
Sail Thrust,” in Advances in Solar Sailing, pp. 407–435.
Springer, 2014.

[10] Heiligers, J., J. M. Fernandez, O. R. Stohlman and W.
K. Wilkie (2018), “Trajectory Design for a Solar-Sail
Mission to Asteroid 2016 HO3,” in AAS/AIAA Astrody-
namics Specialist Conference. Snowbird, Utah, USA.

[11] Farrés, A., “Transfer Orbits to L4 with a Solar Sail in
the Earth-Sun System,” Acta Astronautica, vol. 137, pp.
78–90, 2017.

[12] Perko, L., Differential Equations and Dynamical Sys-
tems, vol. 7, Springer Science & Business Media, 2013.

[13] Breakwell, J. V. and Brown, J. V., “The Halo Family of
3-Dimensional Periodic Orbits in the Earth-Moon Re-
stricted 3-Body Problem,” Celestial Mechanics, vol. 20,
no. 4, pp. 389–404, 1979.

[14] Howell, K. C., “Three-Dimensional, Periodic, Halo or-
bits,” Celestial Mechanics, vol. 32, no. 1, pp. 53–71,
1984.

[15] Waters, T. J. and McInnes, C. R., “Periodic Orbits
Above the Ecliptic in the Solar-Sail Restricted Three-
Body Problem,” Journal of Guidance, Control, and Dy-
namics, vol. 30, no. 3, pp. 687–693, 2007.

[16] Heiligers, J. and Macdonald, M. and Parker, J. S., “Ex-
tension of Earth-Moon Libration Point Orbits with Solar
Sail Propulsion,” Astrophysics and Space Science, vol.
361, no. 7, pp. 241, 2016.

[17] Szebehely, V., Theory of Orbit: The Restricted Problem
of three Bodies, Elsevier, 2012.

[18] Keller, H. B., “Lectures on Numerical Methods in Bi-
furcation Problems,” Applied Mathematics, 1987.

[19] Arnold, V. I. and Kozlov, V. V. and Neishtadt, A. I.,
Mathematical Aspects of Classical and Celestial Me-
chanics, vol. 3, Springer Science & Business Media,
2007.

[20] Farrés, A., “Contribution to the Dynamics of a Solar Sail
in the Earth-Sun System,” Doctorial thesis, Universitat
de Barcelona, 2009.

[21] E. J. Doedel, A. V. Romanov, R. C. Paffenroth, H. B.
Keller, D. J. Dichmann, J. Galn-Vioque, and A. Van-
derbauwhede, “Elemental Periodic Orbits Associated
with the Libration Points in the Circular Restricted 3-
Body Problem,” International Journal of Bifurcation
and Chaos, vol. 17, no. 08, pp. 2625–2677, 2007.

[22] Becerra, V. M., “Solving complex optimal control prob-
lems at no cost with PSOPT,” in Computer-Aided Con-
trol System Design (CACSD), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 1391–1396.


	 Introduction
	 Dynamical System
	 Invariant objects
	 Equilibrium points
	 Periodic orbits
	 Invariant manifolds


	 Trajectory design
	 Genetic algorithm
	 Departure from collinear equilibrium points
	 Departure from periodic orbits around collinear libration points
	 Departure from stable manifold

	 Multiple shooting differential corrector
	 Transfers considering fixed periodic orbits
	 Transfers between a collinear equilibrium point and families of periodic orbits around the (displaced) L_5 point
	 Transfers between families of periodic orbits
	 Transfers between the stable manifold of an orbit around a collinear equilibrium point and families of periodic orbits around the (displaced) L_5 point
	 Optimisation with the multiple shooting differential corrector

	 Optimal control solver PSOPT

	 Results
	 Conclusions
	 References

