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ABSTRACT 

Among the existing Renewable Energy Sources (RES), wind power has become 

significantly important to Transmission System Operators (TSOs) because of two 

reasons, namely: 

i. large Wind Power Plants (WPPs) can be connected to bulk power system at 

transmission level, and 

ii. large WPPs are being built or planned in regions with a high potential for the 

extraction of wind energy and TSOs must facilitate their integration. 

This comes at a time when the electric power industry is undergoing an energy 

transition due to the increasing penetration of RES and decentralized generation while 

discarding fossil fuels to achieve a greener future in the form of a low-carbon power 

system. To accommodate the high penetration of wind power into the existing electrical 

grid infrastructure while TSOs are facing stranded expansion of transmission 

infrastructure, TSOs are investing knowledge and money into safe-guarding grid 

reliability and to meet the required security of supply. As the location of WPPs and 

demand sites are not always close by, transmission of energy has placed a burden on 

transmission links in the existing grid infrastructure. Complexity in terms of interspatial 

dependence and temporal correlation of load and wind power impose a challenging 

operational threat to TSOs. Thus, it is important to emphasize spatial and temporal 

dependency to assess system security as TSOs are paving the way for the transition 

from deterministic to probabilistic reliability management. It is to be noted that system 

security is one of the two aspects of power system reliability, with the other being 

system adequacy. The security level of a power system is determined by the likelihood 

and severity of violations. 

Considering operational threats (line overloading, voltage instability, etc.) as a 

potential future challenge, the aim of this research is to assess the system security in 

terms of overload risk due to transmission line overloading by developing a 

reproducible statistical model which can account for the spatio-temporal dependency 

of load and wind power as joint probability distribution. Both load and wind power are 

exogenous in nature, meaning that they are determined by someone else than the TSO, 

and the TSO will have to adapt its behaviour accordingly. The reasons why load and 

wind power penetration have been chosen as modeling challenges for TSOs in terms of 

system security are: 

i. Uncertainty in electricity load: Due to its nature, electricity load is uncertain and 

supplemented with the spatial distribution of load sites which are not always 

located close to generating sites. 
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ii. Considerable wind power generation: Wind power is characterized by variability 

and uncertain nature, and its generation capacity is dependent on geographic 

location. The European Wind Energy Association expects 50% of the electrical 

energy demand to be met by wind energy by 2050. In addition to wind on land, 

a substantial proportion of wind capacity from the North Sea is anticipated: 150 

GW by 2030 and 350 GW by 2050. 

To account for the above-mentioned challenges in the presence of exogenous 

variables, TSOs need to re-evaluate their system security. As a first step towards 

achieving the research objective, a critical review of current reliability assessment 

practices followed by TSOs on three time-horizons (short-, mid- and long-term) is 

performed to justify the need to adopt an interacted approach in operation and 

planning. It is followed by modeling and forecasting the electricity load in both the 

short-term and long-term horizons since the current practice among TSOs is to treat 

load growth as independent from wind power generation. From the time-horizons 

study, the yearly forecast with an hourly time-span is chosen for the short-term forecast 

based on operational planning while a 4 year-long forecast horizon with a monthly 

time-span is chosen for the long-term forecast based on grid development activities (as 

offshore wind farm construction takes approximately 3 − 4 years). A novel neural 

network-based load forecasting model is developed for the short-term horizon with a 

focus on low forecast error and an innovative attempt at modeling forecast error 

distribution using truncated normal distribution. For the long-term horizon, a new 

forecasting model based on multiplicative error is developed with a focus on low 

forecast error and directional accuracy. Both the models account for temporal 

correlation and Gaussianity of distributions. However, the problem lies with spatio-

temporal dependencies of load and wind power pointing out two critical features: non-

Gaussian nature of data and the complexly dependent relationship between load and 

wind power. 

In the case of continental Europe, the electricity grid is heavily interconnected and 

hence electricity produced in one place can meet the demand elsewhere. This 

transmission of energy comes at a cost for TSOs, where the transmission lines operate 

closer to their operational limits more and more frequently. As such, the risk of 

transmission line overloading and voltage instability cannot be avoided in the future. In 

the attempt to overcome the burden of transmission line overloading, this research will 

encourage TSOs to operate the grid within security limits while considering spatio-

temporal dependency. A probabilistic approach in combination with high-dimensional 

spatio-temporal dependence modeling is proposed in this research. Modeling load and 

wind power as joint probability distribution for studying spatio-temporal dependence 

using vine copula is a novel attempt in this research. Use of vine copula facilitates 

building multi-dimensional copulas out of bivariate copulas as they are easy to estimate 
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and are well understood. This study will consider hourly resolution load and wind power 

data obtained from a U.S. utility spanning three years and spatially distributed in 

nineteen load and two wind power zones. Data collection, in terms of dimension, tend 

to increase in future and to tackle this high-dimensional data, a reproducible vine 

copula sampling algorithm is developed in this research. The developed sampling 

algorithm employs 𝑘 -means, Gaussian Mixture Model and hierarchical linkage 

clustering techniques along with singular value decomposition technique to analyze 

high-dimensional data and ease the computational burden. This is deemed essential 

when the future operating condition will be data-centric and the selection of an 

appropriate clustering technique and copula family is realized by goodness of clustering 

and goodness of fit tests.  

To assess the operational threat in terms of transmission line overloading, a risk-

based security assessment is performed considering the spatio-temporal dependency of 

load and wind power using the developed vine copula modeling. A severity function is 

used to describe the transmission line overloading and a subsequent assessment is 

performed thereby. The overload risk index is treated as a security indicator in this 

research for risk-based security assessment. Probabilistic AC load flow with correlated 

parameters is performed on modified IEEE-39 test case (modified in terms of addition of 

WPPs) with significant wind penetration representing actual U.S. market zones and real-

life load and wind power data from the same U.S. utility. The real-life data is mapped 

onto the test case based on the system data and in order to achieve realistic results. 

Two case studies representing future scenarios of massive wind power penetration and 

lower conventional generation are included to study the importance of spatio-temporal 

dependency. The impact of line overloading is described by the severity function and 

the probability of line overload. Simulation results prove the advantage of addressing 

spatio-temporal dependency to quantify the overload risk index, which is treated as a 

security indicator. 
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SAMENVATTING 

Van de verschillende bronnen van duurzame energie heeft windenergie de speciale 

aandacht van netbeheerders, voornamelijk vanwege de volgende twee redenen: 

i. grote windparken kunnen op het elektriciteitsnet aangesloten worden op 

transportnetniveau, 

ii. grote windparken worden momenteel aangelegd, of zijn gepland, in gebieden 

met een hoog potentieel voor windenergie en netbeheerders moeten de 

aansluiting op het elektriciteitsnet faciliteren. 

Dit gebeurt op een moment waarop de elektriciteitssector een energietransitie 

ondergaat, met name de toenemende integratie van duurzame energie en decentrale 

productie, terwijl de productie met fossiele brandstoffen wordt afgebouwd om een 

groenere toekomst in de vorm van een koolstofneutrale elektriciteitsvoorziening te 

creëren. Om de grootschalige integratie van windenergie in de bestaande elektrische 

infrastructuur mogelijk te maken, terwijl netbeheerders geconfronteerd worden met 

een gelimiteerde uitbreiding van het transportnet, investeren netbeheerders kennis en 

geld in het verbeteren van de betrouwbaarheid van het elektriciteitsnet om aan de 

leveringszekerheid te voldoen. Omdat de locaties van windparken en 

belastingsgebieden niet altijd bij elkaar in de buurt zijn, vormt het transport van 

windenergie een belasting voor de bestaande elektrische infrastructuur. De 

complexiteit van belasting en windproductie wat betreft ruimtelijke afhankelijkheid en 

tijdsafhankelijkheid, vormt een operationele uitdaging voor netbeheerders. Aandacht 

voor ruimtelijke afhankelijkheid en tijdsafhankelijkheid bij het vaststellen van de 

betrouwbaarheid van het elektriciteitsnet wordt daarom belangrijk geacht, aangezien 

netbeheerders de weg vrijmaken voor de overgang van deterministisch naar 

probabilistisch betrouwbaarheidsmanagement. Hierbij moet opgemerkt worden dat 

weerbaarheid tegen fouten in het elektriciteitsnet een van de twee aspecten van 

betrouwbaarheid van elektriciteitsvoorzieningssystemen is, waarbij de andere 

adequaatheid is. De mate van weerbaarheid wordt bepaald door de waarschijnlijkheid 

en het gevolg van verstoringen in het elektriciteitsnet. 

Wat betreft de operationele bedreigingen (zoals overbelasting van lijnen en 

spanningsinstabiliteit) als toekomstige uitdaging, is het doel van dit onderzoek om de 

weerbaarheid te beoordelen in termen van het risico op overbelasting van het 

elektriciteitsnet ten gevolge van de overbelasting van transmissielijnen, door de 

ontwikkeling van een reproduceerbaar statistisch model dat rekening houdt met de 

ruimtelijke afhankelijkheid van belasting en windenergie als gezamenlijke 

kansverdeling. Zowel belasting als windenergie zijn exogeen van aard, d.w.z. ze worden 

niet door de netbeheerder bepaald, en deze zal zijn gedrag dienovereenkomstig 
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moeten aanpassen. De redenen om te kiezen voor de combinatie van belasting en 

windenergie als modelleringuitdaging voor netbeheerders op het gebied van 

weerbaarheid van het elektriciteitssysteem zijn: 

i. Onzekerheid in belasting: De belasting is van nature onzeker en wordt aangevuld 

met de ruimtelijke verdeling van belastingslocaties die zich niet altijd in de buurt 

van de productielocaties bevinden. 

ii. Aanzienlijke productie van windenergie: Windenergie wordt gekenmerkt door 

variabiliteit en onzekerheid en de productiecapaciteit is afhankelijk van de 

geografische locatie. De European Wind Energy Association verwacht dat in 2050 

50% van de elektriciteitsbehoefte zal worden geleverd door windenergie. Naast 

wind op land wordt een aanzienlijk aandeel windcapaciteit verwacht op de 

Noordzee: 150 GW in 2030 en 350 GW in 2050. 

Om rekening te houden met de bovengenoemde uitdagingen in aanwezigheid van 

exogene variabelen, moeten netbeheerders het begrip weerbaarheid van het 

elektriciteitssysteem opnieuw evalueren. Als eerste stap om de onderzoeksdoelstelling 

te bereiken, is een kritische evaluatie van de huidige betrouwbaarheidsanalyse door 

netbeheerders op drie tijdshorizonnen (korte, middellange en lange termijn) uitgevoerd 

om de noodzaak van een geïntegreerde aanpak in de planning en bedrijfsvoering te 

rechtvaardigen. Dit wordt gevolgd door het modelleren en voorspellen van de belasting, 

zowel op de korte als op de lange termijn, aangezien de huidige praktijk van de 

netbeheerders is om de groei van de belasting onafhankelijk van de windenergie te 

beschouwen. In dit onderzoek is gekozen voor een jaarlijkse prognose met een resolutie 

van een uur voor de kortetermijnprognose op basis van operationele planning, terwijl 

een prognosehorizon van 4 jaar met een maandelijkse tijdspanne is gekozen voor de 

langetermijnprognose op basis van netplanning (aangezien de constructie van 

windparken op zee ongeveer 3-4 jaar in beslag neemt). Een nieuw neuraal-

netwerkgebaseerd voorspelmodel voor de belasting is ontwikkeld voor de 

kortetermijnhorizon met de focus op een kleine voorspellingsfout en de modellering 

van de foutdistributie door een afgekapte normale verdeling. Voor de 

langetermijnhorizon is een nieuw prognosemodel gebaseerd op de multiplicatieve fout 

ontwikkeld, met de focus op een kleine voorspellingsfout en goede 

richtingsnauwkeurigheid. Beide modellen houden rekening met tijdsafhankelijkheid en 

Gaussianiteit van de verdelingen. Het probleem zit echter in de ruimtelijke- en 

tijdsafhankelijkheden van de belasting en windenergie, wat op twee essentiële 

kenmerken duidt: de niet-Gaussiaanse aard en de complexe afhankelijkheid tussen de 

belasting en windenergie. 

Wat betreft continentaal Europa, is het elektriciteitsnet sterk met elkaar verbonden 

en kan de elektriciteit die geproduceerd is op de ene locatie voldoen aan de vraag op 

een andere locatie. Dit energietransport brengt kosten met zich mee voor de 
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netbeheerders, terwijl transmissielijnen steeds vaker tegen de grens van hun 

operationele limiet werken. Het risico op overbelasting van transmissielijnen en op 

spanningsinstabiliteit kan in de toekomst niet altijd vermeden worden. Om het risico op 

overbelasting van hoogspanningslijnen te beperken, zal dit onderzoek netbeheerders 

helpen om het netwerk te gebruiken binnen de veiligheidslimieten, daarbij rekening 

houdend met ruimtelijke- en tijdsafhankelijkheid. Met andere woorden, een 

probabilistische benadering in combinatie met een hooggedimensioneerde ruimtelijke- 

en tijdsafhankelijkheid is vereist. De modellering van belasting en windenergie als 

gezamenlijke kansverdeling voor het bestuderen van de ruimtelijke- en 

tijdsafhankelijkheid met behulp van zgn. ‘canonical vine copulas’ is een eerste poging in 

dit onderzoek. Het gebruik van canonical vine copulas vergemakkelijkt het bouwen van 

multidimensionale copulas uit bivariate copulas, omdat deze gemakkelijk te schatten en 

goed te begrijpen zijn. Belastings- en windenergiewaarden afkomstig van een 

Amerikaans energiebedrijf met een resolutie van een uur voor een periode van drie jaar 

en ruimtelijk verdeeld in negentien belastings- en twee windenergielocaties zijn in dit 

onderzoek gebruikt. Het verzamelen van gegevens, in termen van omvang, zal in de 

toekomst toenemen en om dit aan te pakken, is in dit onderzoek een reproduceerbaar 

algoritme voor het combineren van vine copulas ontwikkeld. Het sampling algoritme 

maakt gebruik van een zgn. ‘k-means, Gaussian Mixture Model’ en ‘hierarchical linkage 

clustering techniques’, samen met de ‘singular value decomposition technique’, om 

hoogdimensionale gegevens te verwerken en de rekenlast te verlichten. Selectie van 

een geschikte clusteringstechniek en copula-familie is gerealiseerd door ‘goodness of 

clustering and goodness of fit tests’.  

Om de operationele dreiging in de vorm van overbelasting van transmissielijnen te 

beoordelen, is een risicogebaseerde weerbaarheidsbeoordeling uitgevoerd waarbij 

rekening is gehouden met de ruimtelijke- en tijdsafhankelijkheid van belasting en 

windenergie met behulp van de ontwikkelde vine-copula-modellering. Een 

weerbaarheidsindex is gebruikt om de overbelasting van transmissielijnen te 

beschrijven, waarmee de beoordeling uitgevoerd wordt. De overbelastingsrisico-index 

wordt in dit onderzoek als beveiligingsindicator voor de risicogebaseerde 

weerbaarheidsbeoordeling gehanteerd. Probabilistische wisselstroom load flow met 

gecorreleerde parameters is uitgevoerd op het aangepaste IEEE-39 netmodel 

(aangepast door toevoeging van windenergielocaties) met een significant aandeel 

windenergie die de werkelijke Amerikaanse marktgebieden vertegenwoordigt, met 

reële waarden voor de belasting en windenergie. Deze reële gegevens zijn op basis van 

de systeemgegevens overgebracht op het IEEE-39 netmodel om realistische resultaten 

te bereiken. Twee studies die toekomstige scenario's van grootschalige windenergie en 

een kleine hoeveelheid conventionele productie weergeven, zijn opgenomen om het 

belang van ruimtelijke- en tijdsafhankelijkheid te bestuderen. De impact van een 

lijnoverbelasting wordt weergegeven door de weerbaarheidsindex en de kans op een 
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overbelasting van de lijn. De resultaten van de simulaties onderbouwen de superioriteit 

van het beschouwen van ruimtelijke- en tijdsafhankelijkheid om de beschreven 

overbelastingsrisico-index als weerbaarheidsindicator te kwantificeren. 
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CHAPTER 1  

INTRODUCTION 

1.1 BACKGROUND 

In its attempt to achieve a greener future, the electric power industry has begun 

undergoing an energy transition towards the establishment of a low-carbon power 

system, especially since the increasing penetration of Renewable Energy Sources (RES) 

and decentralized energy generation have decreased reliance on fossil fuels. Since 2009, 

the trend of increasing penetration of RES in power systems, such as wind and solar 

energy, was accelerated by European directives aiming to reduce greenhouse gas 

emissions. This tendency will likely increase in order to meet the targets of the 

European Commission to establish a reliable, competitive and sustainable European 

interconnected power system [Zervos et al., 2011]. Complying to the 2016 Paris 

Agreement [Web2, 2016], such an energy transition radically alters the development 

and design context for the transmission grid, which results in further change or 

adoption of new or alternative technologies and practices in accordance with energy 

policies. By 2030, for instance, renewable energies will dominate conventional 

generation in the European electric power system as per the ENTSO-E Ten Year Network 

Development Plan (TYNDP) [Web3, 2016]. It aims to reduce domestic greenhouse gas 

emissions by 40% and increase RES penetration to at least 27% at the European level. 

In 2017, the total installed additional wind power capacity in Europe was 16.8𝐺𝑊 

(15.6𝐺𝑊 in the EU), an increase of 25% compared to the 2016 annual installations 

[EWEA, 2017]. To achieve the target, Transmission System Operators
1
 (TSOs) need to 

keep the lights on while performing the fundamental tasks of system balancing and 

scheduling with substantial penetration of RES. In recent years, many efforts have been 

made in the field of research and development of alternative probabilistic reliability 

assessment methodology with European projects like iTesla [Web4, 2016], Umbrella 

[Web5, 2016] and GARPUR [Web8, 2017] as compared to the deterministic methods 

(e.g., N-1 criterion) that are still preferred by system operators for grid development 

                                                      
1 A Transmission System Operator (TSO) is an entity entrusted with transporting energy in the form 
of natural gas or electrical power on a national or regional level, using fixed infrastructure which is defined 
by the European Commission. Similar organizational categories in the United States are: Independent System 
Operator (ISO) and Regional Transmission Organization (RTO). 
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and operation planning measures. The reason why deterministic methods are preferred 

is due to their robustness, ease-of-use and achievement of satisfactory results with 

respect to the accepted reliability level obtained so far by TSOs. Within such a 

deterministic approach, a relatively small set of selected, pre-specified credible 

contingencies (e.g. removal of generation units or transmission assets) are identified 

and checked so that the grid does not suffer from line overloading or voltage violation. 

Such a deterministic security assessment fails to check the probabilistic nature of 

system behavior and stochastic nature of exogenous variables. 

As such, it is important to introduce exogenous variables that are explicitly modeled 

in a reliability management task. Exogenous variables are determined external to the 

TSOs, and the latter will have to adapt their behavior accordingly [GARPUR, 2016b]. 

Some examples of exogenous variables are electricity load, wind power, solar power, 

market output, forced outage rates and criticality of supply interruption. Among the 

well-known shortcomings of the current practices of TSOs is that, regardless of the time 

frame, the modeling of exogenous factors is not taken into account in a probabilistic 

manner. Such considerations are known to the operators and influence them, despite 

the fact that it is hardly possible to measure anything quantitatively. TSOs already work 

with the multi-scenario deterministic (power flow based) approach that is combined 

with matrix-based risk appraisal. However, the multi-scenario deterministic approach 

does not take into account the variability and uncertainty associated with exogenous 

variables. It is also imperative to note that these exogenous variables vary throughout 

the year and depend on the geographical area covered by the transmission system. For 

instance, wind and solar power generation are highly variable and uncertain in nature, 

resulting in a more locally distributed generation when compared to the traditional 

system with large centralized generation plants. Their integration into the power grid is 

a real challenge for TSOs, with respect to both infrastructure management and control 

of energy flows. In Germany, for example, wind power generation is concentrated in the 

northern part, solar power generation is concentrated in the southern part and load 

centers are mostly in the mid-western and southern parts of the country [Web1, 2013]. 

The variable nature of wind power with spatial diversity is destabilizing the electric grids 

(e.g., potential blackouts or weakening voltage). Hence, while renewable energy 

resources are significant, their location is non-uniformly distributed both in space and 

time, and often far from load centers. Regarding electricity load, energy consumption 

everywhere has increased tremendously in the last 150 years [ECF, 2010]. In 2015, 

ENTSO-E consumption reached 3,278𝑇𝑊ℎ , which represents a 1.4%  increase 

compared to 2014. By 2016, ENTSO-E consumption had reached 3,322𝑇𝑊ℎ, which 

represented greater stabilization (+0.6%) when compared to 2015 [Web4, 2016]. 

When observing the last 10-year period from 2005 to 2015, the electricity consumption 
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of households fell in the EU-28
2
 by 0.9%. These figures on overall household electricity 

consumption are likely to be influenced, in part, by the average number of persons 

living in each household and the total number of households, both of which are linked 

to demographic events [Web7, 2017].  

Uncertainty in wind power generation and load growth is bundled with the ageing 

power system’s infrastructure. In terms of transmission infrastructure, the European 

electricity grid was built decades ago (nearly 30-40 years) and has provided highly 

reliable electricity to date. For example, TenneT
3
 in the Netherlands has maintained an 

availability level of 99.99% in 2017 [Web9, 2018]. TSOs had a relatively constant 

activity level (one-way generation and consumption) with rather risk-averse and age-

based replacement policies for system security. However, the practices are now being 

challenged with the massive integration of Wind Power Plants (WPPs) and feeding of 

load centers at distributed locations. However, trying to tap more wind power into the 

existing grid is challenging due to its irregular availability and variability. For instance, to 

increase the utilization of wind power, investments in wind farms are concentrated at 

locations with higher average wind speeds. TSOs must cautiously evaluate operation as 

well as future planning when power output fluctuations occur in such spatially 

distributed systems. In addition, it is well known that wind speed is temporally 

correlated at one location and both spatially and temporally correlated in different 

locations. Moreover, the location of WPPs and load centers are not so close by such 

that the non-dispatchable sources can be easily managed or curtailed. This spatial 

diversity imposes a burden on TSOs, which must operate the existing infrastructure 

despite uncertainty in terms of both  demand (load centers) and generation (WPPs). 

In principle, the participation of WPPs in the existing grid is different from 

conventional generators in regarding uncertain and variable output. Such uncertainty 

and variability introduce a level of risk that adversely affects day-ahead operational 

planning decisions. For example, variation in wind power hampers the power system’s 

operation in real-time when WPPs are unable to deliver the required reserve capacities 

in real-time. The embedding of WPPs also raise concerns in terms of the planning and 

upgrading of existing infrastructure concerning the size, location and distribution of 

WPPs. Hence, it is vital to model the inter-spatial dependence and temporal correlation, 

but this should not only be done for wind power. A joint probability distribution, which 

is essentially a multivariate model considering electricity load and wind power, is 

additionally needed. The first step in this process is to obtain a tractable model that 

captures the uncertainties and correlations between both variables. To have a clearer 

understanding of the TSOs’ perspective, Distributed Energy Resources (DERs) like solar 

or battery storage are not considered in this research since it is more pertinent at the 

                                                      
2 This refers to the 28 member states of the European Union 
3 TenneT TSO is the transmission system operator in the Netherlands and in a large part of Germany. 
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distribution level. It is intended that the future power system will be data-centric and 

collecting data from the stochastic sources in terms of spatial and temporal resolution 

will result in a high dimensional database of varied features. This huge chunk of data, 

referred to as big data, is explored in electric power systems such as big data analytics. 

To tackle this high dimensional data, a suitable statistical approach is indeed required to 

mine useful information and ease the computational burden. Although the complexity 

of the electric grid tends to increase in terms of data, models and available tools, recent 

advances in the fields of mathematical programming, statistics, machine learning and 

power system simulation can be leveraged to construct suitable modeling tools to assist 

with system operation activities aiming for security of supply. A blend of a statistical 

model and power system simulation tool is needed, although the selection of a suitable 

method is constrained by the data availability and modeling approach. 

To sum up, there is an immediate requirement for the development of spatio-

temporal modeling of load and wind power as joint probability distribution for three 

reasons. Firstly, inter-spatial dependence and temporal correlation of load and wind 

power in any considered site is important. The literature review (detailed in chapter 4) 

reveals a consideration of load and wind power as independent variables and also some 

instances of temporal or spatial dependence. However, there are no significant findings 

that investigate the spatio-temporal dependence of these two exogenous variables. 

Secondly, a suitable spatio-temporal modeling approach will facilitate the improvement 

of both short-term operational planning and the long-term grid development of power 

grids. For instance, in short-term operational planning, accurate spatio-temporal 

modeling can help in assessing system security in terms of asset overloading or reducing 

operational costs by using forecast values for unit commitment or reducing wind 

curtailment. Similarly, in terms of long-term grid development, appropriate modeling 

can result in  grid development plans that respond to load growth or massive 

integration of wind power. Lastly, a suitable spatio-temporal multivariate model can 

generate a rich synthetic database of normally distributed load and wind power data. 

Such a database will be of immense help to the research community and industry as 

well to assist in developing other statistical tools. 

Due to the fact that the location of WPPs and demand sites are not always close by 

and that the transmission of energy places a burden on the existing grid infrastructure, 

this burden allows transmission lines to function more and more frequently close to 

their operating limits (both physical as well as power rating limits) and exerts 

unexpected stress on them (which can also vary in real-time). To date, for N no. of lines, 

TSOs check that the system is not overloaded for N-1 or N-2 contingencies by a certain 

percentage as specified by TSOs. The overloading percentage is country specific and 

varies from one to another. It can certainly be below or above the rated operating limit 

depending on the security margins (or risks) adopted. In addition, the voltage at all 

nodes is checked to ensure that it is within the required limits. As massive integration of 
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wind power is an important future plan, the risk of transmission line overloading and 

voltage instability cannot be neglected. The traditional approach for TSOs to make sure 

the network is sufficiently robust basically consists of stressing the average forecast and 

verifying that the security of supply is met. In the event of a transmission asset failure, 

system security is certainly under threat and it affects system dynamics which might 

increase the likelihood of line overload, low voltage or even voltage collapse. 

Understanding such challenges requires addressing the spatio-temporal modeling of 

load and wind power. Though achievements have been made in terms of efficient 

forecast of future demand and wind power generation, there are other vital concerns 

corresponding to wind power such as spatio-temporal correlations, variability, non-

normality, non-stationarity, non-dispatchable nature of the energy source (unless there 

is adequate storage) and seasonal patterns to name a few. Some of the reasons leading 

to the transmission infrastructure operating under stress include: 

i. Introduction of new technologies in terms of structural changes [more 

interconnections, variable RES, flexible AC transmission systems (FACTS), high 

voltage direct current (HVDC), and other power electronics-based devices] and 

uncertainty in electricity demand growth; 

ii. Stranded network expansion due to public opposition to the construction of new 

transmission infrastructure, which forces the same aging grid to accommodate 

the massive penetration of RES; 

iii. High variability of operating conditions and bidirectional power flows are 

introduced by stochastic power infeed and stochastic behavior of prosumers; 

and 

iv. New operating policies like liberalization of the energy market and more intense 

trading, coupled with markets and higher demand-side participation. 

The next section will elaborate on the scope of this research. 

1.2 RESEARCH SCOPE 

Prior to answering the question “What is within the scope of this research?” this 

research will attempt to bridge some scientific gaps in terms of: 

 Power system time-horizons: This research starts by revisiting the traditional concept 

of time-horizons and activities performed under each time-horizon by TSOs. 

Traditionally, the three time-horizons and corresponding activities are: long-term 

horizon (system development), mid-term horizon (asset management) and short-

term horizon (system operation). The traditional concept refers to the more 

established actions that are undertaken by TSOs, which are implemented more or 

less separately and can be described within a sequential approach. The transition 

from a sequential to an integrated (or interactive) approach is essential when 
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tackling exogenous variables. Within this research, such an interactive approach has 

been realized when TSOs need to make decisions for system development (in terms 

of constructing new transmission lines, etc.) and when they have to tackle the future 

uncertainty in terms of load growth and wind power generation at spatially 

distributed locations. If TSOs agree to undergo system development, they may face 

some challenges, such as those associated with:  

o Developing a new transmission corridor (plan and execution), which takes 

approximately 8-10 years and the construction of high voltage and extra high 

voltage transmission lines is very expensive; 

o Planning a cost-effective expansion plan to recover the capital expenditure of a 

new transmission corridor built through one zone when the corridor provides 

benefits to consumers in other zones; 

o Building long-distance transmission lines, such as interconnectors to WPPs, 

where high-quality wind is located with the rest of the grid, which also includes 

demand sites; and 

o Expanding the grid’s infrastructure in the digital age means protecting the grid 

from both physical and cyber-attacks. Creating such a smart grid involves 

integrating the cyber system with the physical power system. Although adopting 

a cyber system has and will make the grid more energy-efficient and 

modernized, cyber-attacks can possibly threaten national infrastructure security 

and customer satisfaction. 

 Load modeling in short- and long-term horizons: Due to the fact that the electricity 

load has a seasonal or temporal component, most current studies aim to model 

temporal correlation. While many models exist for short-term load forecasting, it is 

important to develop a model with high forecast accuracy and an efficient way of 

representing forecast error for reliability studies. When compared to the short-

term, long-term forecasting is completely different and involves multiple factors 

(i.e., economics and so on) apart from historical load data. Volatility has been 

identified as a key factor that affects long-term forecasting and was used in 

developing the model. When considering the temporal correlation only and 

ignoring spatial correlation among load growth in different zones under a 

transmission system proved to be inefficient, a multivariate model was developed 

to solve this issue. 

 Spatio-temporal modeling of load and wind power as joint probability distribution: 

Stochasticity of wind makes it difficult to predict accurate wind power output when 

only considering temporal wind behavior, although it is also affected by other 

geographical and technical factors like wind farm topology and wind turbine 

characteristics. Similar spatial patterns among wind power data favored spatial 

correlation studies for wind power and seasonal patterns of load favored temporal 
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correlation studies. It also should not be forgotten that meaningful correlation 

exists between load and wind power because both are significantly affected by 

weather. As the future sees uncertainty in both load and wind power, capturing the 

inherent dependence between load and wind power in different temporal and 

spatial contexts is lacking in the current state and achieved by adopting a 

multivariate modeling approach. 

 Use the developed model for a risk-based security assessment of transmission line 

overloading risk: This research is innovatively attempting to assess transmission line 

overloading risk while addressing spatio-temporal dependence using vine copula. 

The reproducible sampling algorithm uses spatially distributed load and wind 

power data spanning a three years horizon to model joint normal distribution. The 

calculation of overload risk indices are accomplished with probabilistic AC load flow 

and real-life data mapped onto a modified IEEE 39-bus system. A severity function 

is employed to assess the consequences of overloading in terms of likelihood of its 

occurrence and its associated impact. 

One key question that falls under this research scope and has been answered is: “Is 

it a smart idea to operate the grid with the existing infrastructure based on correlation 

studies of demand growth and wind power generation since both are stochastic in 

nature?” The next section describes the main research objective and research questions 

that ensue from the research scope. 

1.3 RESEARCH QUESTIONS  

The main research objective of this thesis is: 

To develop a statistical model that can address the spatio-temporal dependency of 

multiple exogenous variables and, thereby, validate the same developed model to study 

the extent to which the grid can function closer to the operating limits by performing a 

risk-based security assessment in case of transmission line overload. 

Overall, the research questions for this research can be summarized as: 

Q.1. Power system time-horizons 

 What is the implication of different TSO actions taken in different time-horizons 

on power system reliability? 

 Will the traditional concept of time-horizons be valid in future when there is 

uncertain load growth and high penetration of renewable energy into existing 

transmission grid infrastructure? 

Q.2. Load modeling and forecasting in short- and long-term horizons 
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 How should uncertainty in load growth be addressed and what are the 

associated modeling challenges in the short-term and long-term horizons? 

 How can forecast error be accounted for in terms of error distribution in the 

short-term horizon? 

 What is the role of volatility in long-term forecasting and how does it impact the 

modeling framework? 

Q.3. Spatio-temporal modeling of load and wind power as joint probability 

distribution 

 How should load variability and wind power generation for spatially distributed 

locations in a large-scale system be modeled? 

 How can both spatial as well as temporal correlations be effectively addressed? 

 How can high dimensional data be accounted for when the future will be data-

centric? 

Q.4. Use the developed model for a risk-based security assessment of transmission 

line overloading 

 Does the consideration of spatio-temporal dependence of load and wind power 

prove beneficial to quantify the risk of overloading transmission lines? 

 How does the correlation impact the risk values of line overload? 

 How do the risk values of individual lines or the entire system enable the system 

operator to assess system operation condition? 

1.4 ORIGINAL CONTRIBUTION  

This research addresses and validates various novel content related to time-horizons, 

load modeling and forecasting in the short-term and long-term horizons, dependency 

modeling to address spatio-temporal correlation and a risk-based security assessment 

technique for transmission line overloading. The main contributions of this research, 

while answering to the research questions defined in section 1.3, can be summarized 

as: 

 This research re-visited the definition of time-horizons for current and future 

operation and planning of the power system, explicitly describing the drawbacks 

of previous practices and the need for upgrading; 

 This research built models to forecast load in the short-term and long-term 

horizons. A neural network-based load forecasting technique was developed for 

the short-term horizon and the truncated normal distribution for error modeling 

was proposed. For the long-term horizon, a multiplicative error model was 

proposed by addressing the volatility foreseen in long-term forecasting and 

focusing on both directional accuracy and minimal forecast error as well; 
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 This research modeled the inter-spatial dependency and temporal correlation 

between load and wind power as a joint probability distribution to obtain joint 

normal distribution using vine copula. A reproducible sampling algorithm has 

been developed for spatio-temporal modeling, which also tackles the high 

dimensionality of data using clustering and feature extraction techniques; 

 In this research, a risk-based security assessment of transmission line 

overloading is performed taking spatio-temporal dependency of load and wind 

power into account. Using a severity function, the overloading risk is quantified 

by performing a probabilistic AC load flow on the modified IEEE 39-bus system 

with real load and wind power data. A comparative analysis of uncorrelated and 

correlated samples proves the advantage of considering spatio-temporal 

correlation. 

1.5 THESIS STRUCTURE  

This thesis consists of four technical chapters (chapters 2-5) that aim to address the 

above-mentioned research questions, followed by the conclusion and future 

recommendations (chapter 6). It is to be noted that the relevant literature reviews 

pertaining to each topic are included in their respective chapters. A pictorial overview of 

the structure of the thesis is shown in Fig. 1.1. 

Chapter 1: Introduction
Chapter 2: Time-horizons in planning 

and operation of power system

Chapter 3: Modeling and forecasting 
load in short and long-term horizon

Chapter 4: Dependence modeling of 
load and wind power

Chapter 5: Risk-based security assessment of 
transmission line overloading

Chapter 6: Conclusion and future research

Background

Development of statistical models

Performance evaluation

Conclusions

 
Fig. 1.1: Overview of the thesis 
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Chapter 2 lays the foundation of this research by re-visiting TSO actions undertaken 

during operation and planning in the three time-horizons. It also discusses the inter-

dependency of activities in different time-horizons and the obligation to change utilities’ 

current practices. This chapter further serves as an in-depth review of asset 

management. 

Chapter 3 contributes to modeling and forecasting electricity load in the short- and 

long-term horizons. For the short-term horizon, a neural network-based model is 

developed to forecast hourly load and represent forecast error using a new distribution 

method called the truncated normal distribution. Challenges and requirements for 

forecasting in long-term horizon is also discussed in this chapter.  For long-term horizon, 

a multiplicative error model is developed taking volatility into consideration. The 

methodology performance is checked during the Great Recession of 2008 to account for 

directional accuracy.  

Chapter 4 describes the appropriate methodology to address spatio-temporal 

correlation using vine copula. The procedure to model the joint probability distribution 

using dependency modeling is elaborated in the form of a reproducible sampling 

algorithm. To tackle the high dimensional data, clustering and the feature extraction 

technique is employed and described in this chapter.  

Chapter 5 presents the performance of the developed statistical models in the form 

of a risk-based security assessment. It describes the risk of transmission line overloading 

in the form of a severity function and aims at risk quantification. A probabilistic AC load 

flow is run on modified (with addition of WPPs) IEEE test cases and simulation results 

are described to acknowledge the consideration of spatio-temporal correlation for the 

assessment of transmission line overloading risk. 

Chapter 6 is the final chapter and summarizes the key findings and scientific 

contributions from each of the previous chapters of this study. It also gives 

recommendations for future research in relation to forecasting and error modeling, 

extending the study to learn TSO-DSO interaction and the application of big data 

analytics. 

1.6 CONTRIBUTION OF THIS THESIS TO GARPUR PROJECT  

Power system reliability management aims to maintain power system performance at a 

desired level, while minimizing the socio-economic costs of keeping the power system 

at that performance level. Historically in Europe, network reliability management has 

been dependent on the so-called 𝑁 − 1 criterion: in case of fault of one relevant 

element (e.g. one transmission system element, one significant generation element or 
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one significant distribution network element), the elements remaining in operation 

must be capable of accommodating the new operational situation without violating the 

network’s operational security limits. Not only today but keeping an eye on future, the 

increasing uncertainty of generation due to stochastic energy sources, combined with 

the opportunities provided e.g. by demand-side management and energy storage, there 

is a call for imagining new reliability criteria with a better balance between reliability 

and costs. The GARPUR project designed, developed, assessed and evaluated such new 

reliability criteria to be progressively implemented over the next decades at the pan-

European level, while maximizing social welfare. GARPUR stands for Generally Accepted 

Reliability Principle with Uncertainty modeling and through probabilistic Risk 

assessment. It was a large collaborative R&D project co-funded by the European 

Commission 7th Framework Programme. Detailed information may be found on the 

website of the project [Web8, 2017]. Ensuring good reliability of the transmission assets 

comes at a cost, which motivated the introduction of asset management in the GARPUR 

project. In addition, variability and uncertainty of renewables penetrating into primary 

grid calls for re-evaluation of grid reliability. Major contribution of this research towards 

the project was addressing the gap in terms of data, models and tools for dealing with 

uncertainties for further upgrading reliability management. Fig. 1.2 shows the 

participation of this research in various work packages of project. 

The contribution was distributed in Work Packages (WPs) 2, 4-7, 9. Within WP2, the 

main task involved ensuring the algorithmic feasibility, scalability, and sustainability 

while stating the main practical requirements for the Reliability Management Approach 

and Criterions (RMACs) [GARPUR, 2016a] that was developed in WP2. In an effort to 

analyze the structure of the mathematical formulations developed in WP2, the 

contribution focused on projecting the formulations in the form of feasible (i.e., 

tractable and scalable) algorithmic approximations. WP4 involved long-term planning 

(or grid development) studies, which looked into finding representative credible 

operating states. It aimed at defining how to manage the different uncertainties that 

occur during future operational activities, notably how to synthesize them while 

maintaining the credibility of the assumptions and physical meaning including relevant 

temporal and spatial correlations between them. From this research perspective, the 

focus was on tackling volatility in long-term demand forecasting and proposing a new 

methodology to predict demand growth in the long-term horizon. 
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Fig. 1.2: Participation in GARPUR [Task x,y refers to work package x and sub-task y, Mon refers to Month 

number] 
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Work Package 5 involved mid-term planning studies which aimed at asset 

management decision making process, and it also addressed the long-term 

'maintenance budgeting' problem. An overview of asset management with a more 

detailed description of the different input/output data, decisions, and sub-activities was 

carried out. It started with brief discussion on the two different notions of uncertainty, 

namely macro- and micro- uncertainties that need to be taken into account in the 

assessment of maintenance policies and/or outage schedules. Generative models of 

micro-scenarios were proposed in order to automatically generate the required input 

about uncertainties needed in the proposed algorithms. In order to produce on demand 

with the required flexibility the needed samples of micro-scenarios, it was decided to go 

for the development of a generative model that can be used both for the needs of mid-

term and long-terms studies. In essence, such a generative model of micro-scenarios 

would be a software tool that can be called upon request with a certain number of 

input parameters, and that will generate efficiently a sample (of specified size) of micro-

scenarios described by the relevant output-variables. By this, we mean that the 

generative model will use a probabilistic model from which it will sample a specified 

number of (say yearly) micro-scenarios independently. Though the work aimed to cover 

the specific needs and tools for uncertainty models in the context of the asset 

management tasks covered by WP5, the envisaged methods share many commonalities 

with similar ones envisaged in other WPs of GARPUR, e.g. on the one hand for long-

term system expansion studies and on the other hand for short-term operation 

planning contexts. While we already have taken advantage of the two-fold contexts of 

asset management (namely long-term maintenance policy on the one hand, and mid-

term outage schedule assessment on the other hand) in order to specify a common 

micro-scenario generation tool, it was believed that further work could be carried out to 

fully coordinate the various uncertainty models used in the different GARPUR contexts. 

The work in this WP concluded with future challenges on asset condition monitoring 

and use of big data techniques in asset management, which was envisioned for post-

GARPUR research and development work. 

 Involvement in WP6 aimed at presenting the requirements for adapting available 

tools/models and identifying data needs for probabilistic reliability analysis and optimal 

decision-making in the short-term decision making process. In the GARPUR proposal, it 

was needed to generate sequences of realizations of the exogenous parameters (for 

example, realizations of nodal loads and RES production for each hour of a day). It is 

important to capture both the spatial as well as temporal correlation when generating 

sequences of realizations, and the proposed methodology was the use of vine copula 

models. The proposed method is adequate for generating such sequences or scenarios. 

Along with the specifications for uncertainty modeling, data requirements for 

realization of vine copula methodology was proved to be important. It was experienced 

that data availability is a deciding factor, whether to go for dependence modeling using 
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the joint normal transform or select available features from inadequate data and use 

dependency modeling using vine copula models. And, the selection of a suitable 

method is restricted by the data availability and the daily grid operation processes. 

Work package 7 designed the GARPUR Quantification Platform (GQP), that allowed 

comparison of different reliability management strategies via numerical simulations of 

their application in different applications contexts. Different use-cases of the platform 

were first defined, and the necessary inputs and outputs are defined according to these 

use-cases. Within WP6, a neural network based load forecasting methodology was 

proposed, which was also used in GQP in WP7. 
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CHAPTER 2 

POWER SYSTEM TIME-HORIZONS: 
BACKGROUND AND FUTURE 

2.1 INTRODUCTION 

This chapter aims at answering the first research question Q.1., which deals with power 

system time-horizons, 

 What is the implication of different TSO actions taken in different time-horizons 

on power system reliability? 

 Will the traditional concept of time-horizons be valid in the future when there is 

uncertain load growth and high penetration of renewable energy into the 

existing transmission grid infrastructure?; 

The content of this chapter is based on research papers [Khuntia et al., 2016a, 

Khuntia et al., 2016b] where the key point in answering the research question is by 

exploring the current status of the electrical power system. In the planning and 

operation of power system, actions are taken for different activities and in different 

time-horizons. The purpose of these actions is to secure a high reliability level and a 

persistent security of supply. In power systems context, reliability assessment can be 

divided into two categories; system adequacy and system security. System adequacy is 

generally considered to be the existence of sufficient facilities within the system to 

satisfy the function of the transmission system. System security is concerned with the 

ability of the system to respond acceptably to contingencies. Today’s scenario places 

tremendous stress on transmission assets because of: 

 Development and uncertainty in electricity demand growth. 

 Structural changes [more interconnections, variable RES, flexible AC transmission 

systems (FACTS), high voltage direct current (HVDC) systems, and other power 

electronics-based devices]. 

 New operating policies like liberalization of the energy market, more intense 

trading, coupled markets, higher demand-side participation. 
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This has led the power system reliability specialists to divide their activities into 

three main processes in which sets of decisions are taken [Wood & Wollenberg, 2012]: 

i. Grid development (long-term horizon) 

ii. Asset management (AM) (mid-term horizon) 

iii. System operation (short-term horizon) 

 
Power System Activities 
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Long-term 
[System Development]

Mid-term
[Asset Management (AM)]

Short-term 
[Power System Operation]

Long-term 
AM

Mid-term 
AM
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AM

Operational 
Planning

Real-time 
Operation

Operational 
AM

Real-time 
AM

Technical 
AM

Economical 
AM

Societal 
AM

Time-based
Activity-based

 
 

Fig. 2.1: Classification of the time-horizons according to literature 

 

However, in reality under each of these three main processes, various sub-activities 

are performed on different time-horizons as illustrated in Fig. 2.1. Although the three 

main processes (grid development, asset management, and system operation) are 

described in the literature, there has been no explicit study on the time-horizons (long-, 

mid-, and short-term) and actual time scale (decades, years, months, etc.) that these 

processes focus on. This chapter aims at re-visiting the current state-of-the-art of the 

various activities performed by transmission system operators (TSOs) while reviewing 

the concept of each time-horizon and methodologies developed in the literature. As 

decisions taken in different time-horizons can influence each other, the interactions and 

overlapping are discussed which will help in future decision-making process. The actual 

time scale of these horizons can vary between different activities and has never been 

clearly mentioned in any published literature, which often leads to confusion in 

practice. For example, long-term grid development is performed on a time scale of 

decades, while long-term system operation has a time scale of weeks/months as shown 

in Fig. 2.2. In fact, Fig. 2.2 is first-of-its-kind to classify and distinguish among the time-

horizons, processes and activities. It was developed to understand the concept of three 

processes and horizons. It gives an overview of the activities that are performed in each 

process, and time-horizon and shows the actual time scale of these activities. 
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Fig. 2.2: Actions taken during different time-horizons [Khuntia et al., 2016a] 

Discussion on planning and operation brings ‘reliability’ into the picture. Power 

system reliability has been a subject of interest since the 1960s when [Billinton & 

Bollinger, 1968] published the first article in 1968. Since then, there has been growing 

interest in introducing various methods and theory to pursue reliable power system 

operation [Khuntia et al., 2016a]. In the past three decades, there have been 
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developments in terms of new concepts, models, algorithms, software and its 

applications in assessing power system reliability. With the current pace of uncertainties 

getting introduced in power system operation and adoption of new technologies (RES, 

demand-side management, etc.), it is vital to reformulate the reliability management 

tasks. 

In this chapter, section 2.2 focuses on describing the concept of different time-

horizons and lists the different methodologies developed in various literature till date. 

Section 2.3 discusses the overlapping and interactions among the time-horizons, the 

possibilities for a combined reliability approach, and the challenges for the future. 

Finally, section 2.4 concludes the chapter. 

2.2 REVIEW OF THREE MAIN PROCESSES 

In this section, the three main processes and time-horizons are discussed supported by 

methods and tools developed till date. 

2.2.1 GRID DEVELOPMENT 

Grid development aims mainly at transmission system expansion planning. According to 

[Pereira et al., 1985], grid development can be divided into two parts: 

i. Determining optimal investments in new system capacity. 

ii. Determining system operating cost and supply reliability associated with the 

construction of this new capacity. 

In short, developing the transmission infrastructure is one of the key priorities. An 

adequate transmission network is responsible for a safe, reliable, and efficient delivery 

of electrical energy to the consumers. Thus, grid development aims at providing 

solutions for the future. For an efficient planning, it is important to find the type, 

location, and timing of the network upgrades not only at a minimal cost but also 

considering socio-economic, environmental, legal, and political constraints. Since the 

fact that it generally covers the far future, grid development deals with a large number 

of uncertainties in various domains. 

In practice, grid development is performed on longer and shorter time-horizons. 

Long-term grid development has a time scale of decades and includes the creation of 

grid expansion plans based on load/generation scenarios. In mid-term grid 

development, investments in the grid infrastructure (new connections, substations, 

etc.) are made. In short-term grid development, only small modifications of the network 

are made in the time scale of months. For instance, new protection systems, phase 

shifters to name a few can be installed in this time-horizon. Literature survey, in the last 

four decades, reveals that transmission system expansion planning has evolved due to 

the introduction of various mathematical models and techniques. An extensive list of 
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different models and techniques used in transmission expansion planning are enlisted in 

[Khuntia et al., 2016a]. To facilitate energy transition, there is an immense requirement 

of tools and knowledge-based schemes for decision making to integrate RES under 

market regulations and uncertainties [Milligan et al., 2012, Ugranli & Karatepe, 2016]. 

This is a challenging task because of specific properties of RES like stochastic behavior, 

non-linearities, and non-convexities. At the same time, electricity market also adds to 

the uncertainty [Munoz et al., 2014]. It can be deduced that risk and uncertainties have 

evolved due to advancement in technology, and will be evolving further. For instance, 

some of the novel emerging/prominent approaches for expansion planning are based 

on the least-effort criterion, maximum principle, minimizing the maximum regret or 

maximizing benefits, uncertainties, and security constraints. Introduction of stochastic 

studies are reported in [de la Torre et al., 2008] and use of optimization techniques date 

back to 1990s when [Hobbs, 1995] enlisted the use of optimization methods to tackle 

planning horizon in the electric utility. The reason was that mathematical modeling for 

grid development is a challenging task because of the presence of so many constraints 

and a high level of uncertainty. With this, we move to asset management. 

2.2.2 ASSET MANAGEMENT 

Asset Management (AM) is one of the key components in a transforming electric power 

industry. AM is closely related to grid development and system operation, hence forms 

a bridge between the long-term and short-term horizons. It is defined as the process of 

maximizing the return on investment of equipment over its entire life cycle by 

maximizing performance and minimizing costs (both capital expenditure and 

operational expenditure) at a given risk level [Tor & Shahidehpour, 2006]. The electric 

power industry is undergoing significant changes because of technical, socio-economic 

and environmental developments. The focus of TSOs has been on transmission assets 

that include transmission lines, power transformers, protection devices, substation 

equipment, and support structures. Transmission assets are capital-intensive and there 

is a requirement of utilizing them in the most efficient way. 

CIGRE Joint Task Force JTF23.18 [Bartlett, 2002] describe AM as ‘The Asset 

Management of Transmission and Distribution business operating in an electricity 

market involves the central key decision making for the network business to maximize 

long-term profits, whilst delivering high service levels to customers, with acceptable and 

manageable risks.’ Complying with the needs, TSOs are constantly striving to optimize 

the use of resources available for maintenance and new projects while ensuring system 

reliability is within satisfactory limits. As seen in Fig. 2.1, AM can be classified based on 

time domain and activity domain. The time-domain AM is categorized into long-, mid-, 

and short-term: 

i. Long-term asset management: The time frame ranges from a year and beyond 

and it aims at replacement, refurbishment or up-gradation of existing assets like 
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phase-shifting transformers, reactive devices, and existing connections. This 

involves greater financial risks, and hence proper planning can avoid the risks 

involved in time delays, interest rates, and long-term load diversity. 

ii. Mid-term asset management: The time frame of mid-term ranges from a few 

months to a year, and it involves optimal scheduling of asset maintenance and 

allocation of available resources. The primary aim is to extend the lifespan of 

existing assets through proper maintenance and optimally allocate the available 

generation resources through market modeling. Maintenance cost is the most 

crucial or driving factor and it can be greatly reduced when planned outages are 

scheduled according to the availability of resources during seasonal load 

distributions. So, an ‘optimal’ maintenance plan greatly reduces the possibility of 

unplanned outages. It is also the task of asset managers to check that 

maintenance schedule is planned based on system adequacy and fuel constraints 

on the non-maintainable system, like the availability of water in-flows for hydro 

plants. Reference [Tor & Shahidehpour, 2006] explain the mid-term asset 

management as: 

o minimizing corporate financial and physical risks based on planned and 

forced outages of assets 

o reducing operation costs for supplying customers in a competitive era 

o optimizing the allocation of volatile and limited natural resources for utilizing 

corporate assets 

o extending the lifespan of assets through proper operation and maintenance 

schedules 

o prolonging investment costs for the acquisition of new assets 

iii. Short-term asset management: Short-term asset management is categorized 

into operational asset management (daily and weekly) and real-time asset 

management (outage management). Operational asset management aims at 

minimizing risks involved with assets, both physical and financial, due to load 

demand and hourly prices. Real-time asset management is also called asset 

outage management where contingency analysis forms a vital part. It helps in 

assessing the effect of unexpected outages due to change in weather conditions, 

any sudden breakdown or load fluctuations on the asset condition and 

performance. With technological advancements, real-time monitoring of assets 

is possible because of systems like Supervisory Control And Data Acquisition 

(SCADA) systems, remote terminal units and geographic information system 

(GIS). This has contributed significantly towards better management and 

decision-making process in short-term. 
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Based on the activity aspect, reference [Smit et al., 2006] categorize asset 

management into technical, economical and societal asset management, described 

below: 

i. Technical asset management: Technical asset management refers to asset-

related parameters such as the physical condition of assets, inventory, and 

maintenance. Aging of components is of primary concern that links to the 

physical condition of assets. Other areas in this aspect are the component 

condition, the failure probability of assets, inventory or spare parts and 

maintenance history and/or future planning. 

ii. Economical asset management: Economical asset management evolved when 

technical asset management in many instances proved to be financially unstable. 

As the name suggests, economical asset management refers to financial aspects 

like maintenance costs and other costs related to the procurement of spare 

parts, maintaining the inventory and doing tests and assessment. 

iii. Societal asset management: Societal asset management works closely with 

economical asset management. It refers to how the utilization of asset affects 

the society and the environment. The outage caused in high-priority buildings 

like the hospital is not acceptable. Also, any disturbances in other places like 

schools, government offices or convention centers will impact the status of 

distribution companies. 

To classify the transmission assets falling under the scope of asset management, a 

survey was carried out as part of the GARPUR project and the results are shown in Fig. 

2.3. It revealed that overhead lines, busbars, transformers, circuit breakers and 

protection systems are equally important by 9 TSOs out of 14 participating TSOs. It is 

evident that the grid components are naturally aging, especially when operated close to 

their technical limits, and most of them are subject to hostile external conditions in the 

open air. Asset management encompasses all the activities undertaken by a TSO to 

make sure that these devices are efficiently maintained, and thus can have an extended 

lifespan, or, once they have reached their end of life, are replaced by new ones. 

Inspection of assets and maintenance actions also aims to act as preventive measures 

which objective is to decrease the number of (unexpected) failures, therefore resulting 

in fewer service interruptions and a more efficient management of financial, human, 

and material resources. 
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Fig. 2.3: Answers to question on components considered under asset management (Y-axis is number of TSOs) 

[Khuntia et al., 2016b] 

Aligning with the survey, literature study also reveals there have been explicit 

studies on maintenance of transmission assets, like power transformers, overhead lines, 

cables, and protection devices [Lindquist et al., 2008, Puglia et al., 2014, Velasquez-

Contreras et al., 2011]. With the integration of RES, wind farms have been extensively 

studied from AM point of view in [Nilsson & Bertling, 2007, Puglia et al., 2014]. In 

general, the power transformer represents nearly 60% of the overall costs of the 

network and is ranked as one of the most important and expensive components 

[Jahromi et al., 2009]. Study reveals substantial research on power transformers about 

health monitoring, aging, and oil indicators [Ashkezari et al., 2014]. Similarly, studies 

have been carried out for overhead lines, underground cables, and circuit breakers 

which are more elaborated in [Khuntia et al., 2016b]. With the advent of computational 

tools, information technology (IT), and human-machine interface in the last decade, 

[Kostic, 2003] studied on the application of IT in AM while focusing on energy 

management services. Various computational models and optimization techniques have 

been developed thereafter for maintenance planning, refurbishment, aging, and asset 

monitoring techniques like state diagram, fuzzy technique, ANN, PSO, linear 

programming, and other optimization techniques [Lindquist et al., 2005a, Lindquist et 

al., 2005b]. 

In the current state, one thing that binds together the physical and non-physical 

domains of asset management is data management. CIGRE WG D1.17 gives a clear 

picture of how asset management relies on asset data and information extracted from 

this data that is to be used in future planning [CIGRE, 2010b]. With the advent of 

computational tools and smart meters, a huge amount of data is collected by the utility 

companies that are used later for improving the performance of assets and/or 

maintenance policies. Data requirements for probabilistic concepts in asset 

management are huge and range from inspection rates and mean times to failure to 

probabilities of state transitions. For example, [Billinton & Allan, 1996] studied the 

effect of maintenance on the replacement time for transformers. The study used 
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reliability centered maintenance and a genetic algorithm to optimally schedule 

maintenance activities for the transformer. In the last decade, merging of data 

requirements with Information Technology (IT) and Human Machine Interface is shown 

by the studies of [Kostic, 2003]. It focused on the aspect of integrating IT in asset 

management by utilizing process data (e.g. SCADA systems, Energy Management 

Services (EMS)/Data Management Services (DMS)) in back-end tools such as enterprise 

resource planning, GIS, computerized maintenance management system and other 

analysis tools. The downside with the electric power industry is that utilities have used 

the existing models in an inefficient or wrong manner, and that paves way for data-

mining process. A generic framework of data management that can be potentially used 

in asset management is shown in Fig. 2.4. 
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Fig. 2.4: A framework of data management used in asset management 

 

Another survey on the usage of data in terms of data collection and the usefulness 

of data collection towards asset management is shown in Fig. 2.5. 
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Fig. 2.5: Answers to question on usefulness of data collection for components (Y-axis is number of TSOs) 

[Khuntia et al., 2016b] 

2.2.3 SYSTEM OPERATION 

System operation encompasses operational planning and real-time operation, which 

deals with activities ahead of real time. The duration of this time-horizon ranges from 

minutes/hours to several days ahead, though this can vary among different TSOs. Under 

system operation, reliability is also of primary concern and it is very important to 

maintain both security and adequacy levels at the acceptable levels with minimum 

socio-economic cost. System security level refers to the ability of the system to respond 

to failures [Billinton & Li, 1994, Billinton & Allan, 1996]. This ensures that the dynamics 

induced from any contingency or any operating conditions remain within an acceptable 

level. System adequacy indicates whether there are enough means in the system to 

fulfill its function, also during contingencies. The two sub-levels under system operation 

are: 

i. Operational planning: Operational planning happens in several instances prior to 

the establishment of the system operating conditions. It constitutes the 

preparatory phases before the real-time operation. Also, operational planning 

ensures that right decisions are taken in advance such that reliability 

management is achievable within a prolonged future period of time, called the 

operational planning horizon. The horizon consists of a sequence of target real-

time intervals. The operational planning time-horizon does not have a specific 

point in time, it can be week-ahead (W-1), two days (D-2) or one day (D-1) in 

advance as well as several (n) hours (H-n) before real time. Due to the unspecific 

points in time, operational planning brings significant uncertainties into 

consideration. 

ii. Real-time operation: Real-time operation encompasses system operation for 

time intervals ranging 15 − 60 min. During this time interval, it is assumed that 

the system operating conditions (scheduled generation, demand, inter-area 

exchange, and network configuration) are highly predictable. Fig. 2.6 shows the 

inter-dependency of real-time operation and operational planning. Real-time 



45 

 

operation is a series of activities, which are planned in a sequential manner. It 

starts with the preventive control, with a horizon of 1 − 2 h, and aims operation 

at optimal cost under security constraints. Preventive action is always planned 

and covers failures or unexpected reactions from the system point of view. 

Taking preventive decisions such as switching equipment, rescheduling loads, is 

also part of the sequence. Furthermore, it oversees contingencies, and prepares 

or adjusts the system to take control decisions. Preventive control may be 

followed by two other control strategies, namely corrective control and 

emergency control. Corrective control is the first step taken following preventive 

control. The horizon is 0 − 15 min and aims at maintaining the system intact. 

Emergency action is the control scheme of real-time operation. Both preventive, 

as well as corrective action, may end up in emergency action in the worst-case 

scenario. Emergency action is taken during any unplanned contingency or failure 

when the effect of a contingency is not sufficiently covered by means of 

preventive and corrective actions. 
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- Cover contingencies, prepare/
adjust corrective control plans

- Maintain system intact
- Horizon of 10-15 minutes
- Take corrective actions 
(already planned)
- Cover failures, 
unexpected reactions

- Automatic application of 
heroic actions to avoid 
blackout  

Fig. 2.6: Actions taken during short-term operational planning [Khuntia et al., 2016a] 

Literature study reveals comprehensive methodologies for preventive and corrective 

actions. Load shedding, considered as a corrective action, is studied in various literature 

[Echavarren et al., 2006, Otomega et al., 2014]. Other various mathematical modelling 

and optimization techniques include: PSO [Voumvoulakis & Hatziargyriou, 2010], 

decision [Krishnan et al., 2011, Liu et al., 2014, Xu et al., 2014a], model predictive 

control [Gong & Hiskens, 2008], ant colony system [Church et al., 2011, Ayan et al., 

2015], GA and ANN [Kucuktezcan & Genc, 2012], differential evolution [Xu et al., 

2014b], and various other optimization techniques [Arandian et al., 2014, Kucuktezcan 
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& Genc, 2015]. In system operation, decisions are taken within a limited time. 

Probabilistic risk analysis is already often used in grid development, but the application 

in system operation is relatively new. IEEE and CIGRE have developed task forces 

working on risk analysis and probabilistic techniques for planning and operation 

[McCalley et al., 2004]. Recently, various domains in risk-based planning have been 

studied, like power transfer limit, weather conditions, stability, and reserve generation. 

Reference [Preece & Milanović, 2015] combined probabilistic and fuzzy inference 

systems to categorize different degrees of risk, which facilitates the understanding of 

the planner. The paper focused on stability issues and the methodology was applied to 

a multi-area network, but the concept can also be applied to reliability problems. 

Reference [Ciapessoni et al., 2013] studied the advantages of integrating probabilistic 

and deterministic tools for enhancing security during short-term horizon. Reference 

[Reneses et al., 2006], for the first time, discussed the importance of coordination 

among the time-horizons, stating how long-term decisions impact short-term decisions. 

2.3 ENERGY TRANSITION LEADING TO INTERACTED APPROACH  

Energy transition towards low-carbon future with decentralized generation and massive 

integration of RES make it plausible for the TSOs to shift towards an interacted 

approach over the more conventional sequential approach. In power system reliability 

management, the sequential approach can be understood as long-term grid 

development, via mid-term asset management, towards short-term operation planning 

and real-time operation. The interacted approach resembles a future operating state 

where long-term grid development can interact with short-term operation planning and 

real-time operation. Such an approach entails exchange of information of different 

reliability management activities within the different time-horizons. For example, a 

candidate decision for grid development (long-term horizon) can be passed through the 

assessment of outage scheduling (mid-term horizon) as well as the assessment of future 

operational short-term operational planning (short-term horizon). Then the results of 

this assessment serves as a feedback to grid developers. Fig. 2.7 illustrates this notion 

and the concepts are explained in next sub-section. The aging of the power system 

infrastructure and the increasing penetration of renewable and dispersed generation 

presently induce new threats to the system security. Electricity generation from RES is 

both variable as well as uncertain, which makes their integration into existing traditional 

power systems a challenging task. TSOs are responsible to maintain the required level 

of security of supply with variations from both generations as well as the demand side. 

However, despite the urgency of further development, investment in grid development 

is stagnating. In Germany, for example, many of the projects planned are expecting 

delays [Web1, 2013] and one of the many reasons is public opposition at the local level 

(e.g., with respect to overhead transmission lines). In such situations, TSOs opt to plan 
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their operational planning decisions in an interacted manner based on grid 

development plans and asset management decision-making process. This section 

explains how such an interacted approach is viable in the future. 

2.3.1 CONCEPT OF SEQUENTIAL AND INTERACTED APPROACH 

This chapter reviewed the concept of different main processes and time-horizons in the 

planning and operation of power systems. Not only in terms of timescale but also the 

tasks involved in each of the time-horizons make them different from each other. In 

some cases, short-term planning may work out efficiently, but it may not be adequate 

in identifying the long-term needs of the system. For example, in the short term, a 

lower voltage and less expensive line addition may be adequate but may require an 

expensive upgrade within a decade. In contrast, an initially more expensive and higher 

capacity line might be less expensive in the long term [Milligan et al., 2012]. 
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Operational 
Planning
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Management
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1a

2a

3a

4a 5a

Grid 
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Operational 
Planning
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Management

Interacted

1b 3b

2b

4b 5b

6b

1. Investments on new infrastructure
2. Condition monitoring / maintenance 
3. Operational planning / real-time operation
4. Small modifications of the network: 
    replacement, refurbishment, up-gradation

5. Maintenance planning / cancelling
6. Grid investments vs operational control actions
7. Integrated network design (grid development, 
    asset management, and operational planning)

7

 
Fig. 2.7: Interactions among the three processes [Khuntia et al., 2016a] 

There is always an overlap among the different processes, as illustrated in Fig. 2.7. 

Without discussing this overlap, this work would be incomplete. Small modifications of 

the network can be required because of grid development or because of AM (area-4a in 

Fig. 2.7) and planned maintenance might be canceled during system operation because 

of a contingency (area-5a). In the past, the three processes consisted of more or less 

separate activities. This is illustrated as a sequential approach in Fig. 2.7. For example, 

the Dutch 380 kV ring was developed considering 𝑁 − 2 (𝑁 − 1 during maintenance) 

redundancy (area-1a). As a result, this gave enough room to plan maintenance in AM 

(area-2a), and enough room for operational activities (area-3a). In the future, the 

overlap and interaction between the three main processes are expected to increase, 

because of the developments and energy transition. Earlier studies showed that 
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offshore network redundancy is mostly uneconomical. Onshore spinning generation 

reserve can serve as redundancy for the offshore network to maintain the required 

level of security of supply (area-6b in Fig. 2.7). If redundancy is not created in the 

offshore network (long-term activity), this has consequences for activities in other time-

horizons. 

Several (possible) challenges can be expected for the future as enlisted in Table 2.1. 

Uncertainty modeling is one of the primary challenges followed by big data. The 

management of a large amount of data poses a second challenge. Furthermore, the 

development of new risk tools and clear interpretation of results are of importance, as 

risk analysis is useless if the results cannot be translated into actions. Various projects 

on pan-European electric power system are working towards improving reliability or 

developing a new reliability criterion. Reference [Vefsnmo et al., 2015] in AFTER project 

developed a risk assessment tool to be used in the short-term horizon. The GARPUR 

project has developed new probabilistic reliability criteria taking into consideration the 

three time-horizons [Web8, 2017]. As transmission system planners face numerous 

challenges originated in load growth, increased penetration of RES, economic forces of 

deregulation, and development and integration of new technologies, this research 

presents recent literature to keep up with the advancement. Herewith, identifying load 

and wind power as exogenous variables, the next chapter focuses on modeling and 

forecasting of electricity load in short- and long-term horizons. 

Table 2.1: Future [possible] challenges due to the interaction of different time-horizons 

Challenge Description 

Uncertainty modeling 

Modeling the variability of RES, market uncertainties, and variable 

demand, high-impact-low-probability (HILP) events, operating conditions, 

contingency modeling. 

Data management 
Handling large amounts of data (e.g. WAMS measurements, weather data, 

load data). Collecting suitable failure statistics of network components. 

Tools 

Develop complex methods in academia for easy understanding and use in 

the real world. Risk analysis of large-scale systems with a large amount of 

uncertainties within a reasonable computing time. 

Result interpretation 
Presentation of the results of probabilistic reliability analysis in clear, 

understandable and actionable indices. 

  

2.3.2 GRID DEVELOPMENT AND OPERATIONAL PLANNING: CHALLENGES AHEAD 

Within the transmission system framework, grid development deals with planning and 

decision making that alter transmission capacities either within a TSO’s own network or 

towards other TSOs’ network. An important element of the grid development process is 

to identify and analyze ideas for future expansion plans. To realize such plans, rich 

historical data and accurate forecasts of exogenous variables are crucial in devising 
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future development plans as we look into an uncertain future. This is accompanied by 

more realistic assumptions/expectations of future working conditions that facilitate 

optimal decision making. 

Usually, TSOs employ a detailed model of their own grid and a specific set of 

scenarios (corresponding to load, generation, etc.) in order to simulate how an 

investment option would influence the operation of their grid or the facilitation of the 

electricity market. Decision making is quite uncertain in grid development when the 

time scale stretches to many months and years. This is in contrast to other processes in 

operational time scales such as outage scheduling and system operations when the 

uncertainty level is comparatively low. It is even more challenging when TSOs need to 

cope up with energy transition and aim at future low-carbon generation. Thus, TSOs 

need to make inferences and nearly accurate forecasts to generate more realistic 

market scenarios for the future. The scenarios can be in the temporal scale of 

generation mix (conventional and RES) and load growth, and also spatial distribution of 

generation sites (mostly RES) and load centers. Suitable modeling techniques are 

needed for large-scale integration of RES because of its stochastic nature. The current 

and future integration of large-scale RES is enabled by: 

i. Connection of RES generation to the main network, 

ii. Increasing the Grid Transfer Capability (GTC) between an area with excess RES 

generation and other areas, in order to facilitate a higher level of RES 

penetration.  

Among the RES, wind power has gained significant attention among TSOs and is an 

accelerator in energy transition. By 2050, wind power is envisaged as the largest source 

of power in the EU in the 2050 roadmap [ECF, 2011]. The massive integration of wind 

power cannot be answered by fast grid development activities in terms of transmission 

system expansion. Such a need should be carefully assessed against a possible over-

investment in expansion planning, resulting from an uncertain forecast of wind power 

generation and load respectively. The dilemma with system planners is that 

construction of WPP takes 2-3 years while it may take 8-10 years to plan, execute and 

construct a transmission corridor. Costs incurred in grid upgrade and new infrastructure 

is dependent on locations of wind generation and load centers. In Portugal, to increase 

the wind power penetration from 3% to 13% during the years 2004-2009, revenues 

worth €145 million is reported [Holttinen, 2012]. At the same time, system operation is 

increasingly challenging because with the existing transmission infrastructure, 

transmission assets operate more and more frequently at operating limits and line 

loading with higher currents leads to increased energy losses. Thus, apart from already 

used measures like redispatch, curtailment of wind power and load, this research looks 

into the future for possible solutions in terms of the development of new statistical 
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models for better forecast and use of big data analytics which results in the improved 

risk-based security assessment. 

For operational planning, power grids are equipped with automatic generation 

control to handle any significant deviation and uncertainty in electricity load over time 

scales from seconds to hours. However, it is a challenge with massive penetration of 

distributed WPPs. A common practice among TSOs is to follow the change in net load 

rather than addressing to variation from a single generator or customer load. The same 

theory applies to consideration of aggregated wind power because the relative 

variability of wind power decreases with aggregation of more WPPs. Moreover, the 

number of zero hour output decreases with aggregated wind power over a large 

geographic area [Holttinen, 2012]. For instance, a single WPP can have zero output for 

more than 1000 hours in a year as compared to aggregated wind power in a large area 

which is always greater than zero. An added benefit of considering aggregated wind 

power is that the net installed wind capacity will not be reached at any given instant 

because of physical reasons suggesting same wind speed cannot be experienced over 

the large geographical area. Even if the same wind speed is attained, the technical 

availability is proven to be 95% of the time and the rest result with zero wind power.  

A well-proven case of understanding the need for interacted approach is the case of 

Germany. Germany records a significant amount of onshore and offshore wind in the 

north close to the North Sea. Solar power is recorded in southern part of the country 

and load centers with high demand are located in the western and southern part of the 

country.  With such spatial diversity, electrical energy has to be transmitted to regions 

from surplus north to deficit south. A map depicting a change in Germany’s power 

balance from the year 2015 till the year 2030 is shown in Fig. 2.8. This comes at a point 

when energy transition aims at facilitating 40,000 MW of new generation plant in terms 

of RES by 2020 while slowly shutting down nuclear power plants and other fossil fuel 

generation plants. Energy transition is experienced at a time when the transmission 

system, built 30-40 years ago, have to facilitate the massive integration of variable and 

uncertain RES. In particular, transporting the wind energy from north to meeting 

demand in the south. Thus, the system needs to be optimally operated to maintain the 

required security of supply. At the present state, the long transmission corridor linking 

the north and south was never intended to carry such massive energy. The power 

production in the north has to be curbed because it does not have anywhere to go. This 

feed-in management [Web1, 2018] incurs further costs because wind power producers 

must be compensated when their turbines are switched off. It results in cheap 

electricity prices in the north and when the energy cannot be transported there is re-

dispatch of clean energy. 
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Fig. 2.8: Change in power balance recorded by Amprion [Web2, 2018] 

2.4 CONCLUSION 

Operating the current and designing the future power system with massive penetration 

of wind power must ensure that the system is both secured and adequate at all time 

scales. As different independent actions are taken by TSOs in different time-horizons, 

the nature of these actions vary from one TSO to another as concluded from this 

research. Among the current practices of TSOs, it was learned that the old concept of 

time-horizons, which refers to the sequential approach adopted by TSOs, is challenged 

by exogenous variables as the electric power system undergoes energy transition in the 

form of massive integration of RES and introduction of new technologies. While this 

research aims at studying the interaction of operational planning with grid 

development, the following attributes of exogenous variables need consideration: 

 Electricity load is uncertain by nature. In addition, adaptation to new 

technologies, changing economy and addition of flexible load and energy 

autonomy of households makes it more challenging to forecast load in short- and 

long-term horizons. Suitable models to forecast load in both the time-horizons is 

realized in this thesis in order to generate more realistic market scenarios for the 

future.  

 Variability of wind power tends to decrease with either increase of wind 

generators within a WPP or consideration of aggregated wind power. There may 

be a situation of saturation wind power potential which is a condition explained 

as the maximum wind power that can be extracted upon increasing the number 

of wind turbines over a large geographic region, independent of societal, 

environmental, climatic, or economic considerations. It affects the operational 

planning of TSOs when accurate wind power forecast is needed. And as the 

electrical grid was not planned for massive integration of stochastic generation, 
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this saturation effect might overshadow TSO’s grid development plans (e.g., 

constructing new transmission corridor) to enable the integration.  

As TSOs are collecting a huge amount of chronological load and wind power data, 

this research identifies the key parameters to harness the information from spatially 

distributed chronological data towards assessment of system security. They are: 

 Exogenous variables: Load and wind power 

 Time-horizons: Short-term (and long-term horizon scenarios) 

 Target: Assessment of system security by calculating overloading risk of 

transmission lines 

In the next chapter, modeling and forecasting electricity load in short and long-term 

is explained using two newly developed models. 
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CHAPTER 3 

MODELING AND FORECASTING ELECTRICITY 

LOAD IN SHORT- AND LONG-TERM 

HORIZONS 

3.1 INTRODUCTION 

The need for moving from sequential to integrated interactions among the three time-

horizons was discussed in chapter 2. In addition, it was identified that electricity load 

and wind power are the exogenous variables that need immediate attention in terms of 

modeling for TSOs. This chapter aims at answering the second research question Q.2., 

which deals with load modeling and forecasting in short- and long-term horizons, 

 How should uncertainty in load growth be addressed and what are the 

associated modeling challenges in the short-term and long-term horizons? 

 How can forecast error be accounted for in terms of error distribution in the 

short-term horizon? 

 What is the role of volatility in long-term forecasting and how does it impact the 

modeling framework?; 

The content of this chapter is based on research papers [Khuntia et al., 2016c, 

Khuntia et al., 2016d, Khuntia et al., 2016e, Khuntia et al., 2018d]. Load forecasting is 

essential at the present state when deregulation introduced competitiveness among 

different active market players. This is different from earlier days when electricity 

sectors were regulated and utility monopoly considered short-term load forecast for 

ensuring the security of supply and long-term load forecast for grid development. 

Deregulation along with new players like RES and demand-side management being 

introduced, it is vital to model and forecast load in a more accurate manner. Depending 

on the forecast horizon, modeling of the monthly or hourly timestamps is adopted for 

the model. For the sake of clarity as defined in Fig. 1.2, yearly forecast with hourly time-

resolution is chosen for the short-term forecast based on operational planning while a 

4-year forecast horizon with monthly time-resolution is chosen for the long-term 
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forecast based on grid development activities as offshore wind farm construction takes 

approximately 3 − 4 years. For both the cases, the elemental quantity of interest is net 

system load. 

Load forecasting has always been an important part of the planning and operation 

of electric utilities, i.e., both transmission and distribution companies. With 

technological advancement, change in economic condition and many other factors (to 

be discussed in this chapter), load forecasting is becoming more important. Forecast 

accuracy is largely affected by load impacting factors and actions taken in different 

time-horizons. However, due to its stochastic and uncertainty characteristics, it has 

been one challenging problem for electrical utilities to accurately forecast future load 

demand. In the past as well as in today’s date, load forecasting is an integral part of 

planning for more than just utilities; system operators (transmission and distribution), 

generation companies, energy regulators, and financial institutions have a vested 

interest in load forecast accuracy. For instance, the short-term load forecasting accuracy 

plays a pivotal role in evaluating the long-term planning needs. In the long-term 

horizon, it is more vital to predicting what will eventually be needed than to know 

exactly when it will be needed. Based on time-scale, load forecast can be broadly 

classified into three main categories [Willis & Northcote-Green, 1983]: 

 Short-term load forecast (STLF): The time-period of STLF lasts for a few minutes, 

hours to one-day ahead or a week. STLF aims at economic dispatch and optimal 

generator unit commitment while addressing real-time control and security 

assessment. 

 Mid-term load forecast (MTLF): The time-period of MTLF is a month to a year or 

two. MTLF aims at maintenance scheduling, coordination of load dispatch and 

price settlement so that demand and generation are balanced. 

 Long-term load forecast (LTLF): The time-period of LTLF is few years (>1 year) to 

10–20 years ahead. LTLF aims at system expansion planning, i.e. generation, 

transmission, and distribution. In some cases, it also affects the purchase of new 

generating units. 

Each of the three categories is equally important for the smooth operation of the 

power system, and any error/uncertainty in forecast affects the economy and control 

aspect of the power system. Especially in the mid- and long-term horizons, since load 

forecasting is highly related to the system development, attention has been paid to the 

impact of load forecasting on system design [Willis, 1983] and economics [Ranaweera et 

al., 1997]. An accurate forecast leads to better maintenance plan during mid-term, and 

generation and expansion planning during a long-term horizon. The preciseness of long-

term forecast significantly affects the development of future generation systems. For 

example, construction of a new generation plant takes approximately 5 − 10 years or 

offshore wind farm construction takes ~3 − 4 years and involves a huge amount of 
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capital investment. In order to meet the demand and make the economic growth 

continuous, load forecasting is required for the related electricity utilities. Utilities do 

not want a huge investment going in vain. Both an overestimation as well as 

underestimation of the forecast will result in discontent among utilities and substantial 

investment for the construction of new generation units. So, accurate forecasting helps 

in assessing the needs in relation to planning, designing, environmental admitting to 

constructing step of power plants, and subsequent planning of transmission and 

distribution systems. 

There are dozens of different load forecasting methods that have been used and 

documented during the last 50 years though the majority of them fall into the category 

of STLF. MTLF and LTLF are much less popular as research topics as compared with STLF; 

dozens of papers on STLF are published every year for each paper on MTLF or LTLF. The 

reason, of course, is that forecasting for the mid-term and especially for the long-term is 

a whole different problem from forecasting for the short term. It cannot be done by 

simply fitting a model (either statistical or computational) over a dataset, and then 

extrapolating from it. It is evident from [Box et al., 2008, Chatfield, 2001], that MTLF or 

LTLF is usually ignored because of the complications. Xia et al. [Xia et al., 2010] reported 

the difficulty in accurate forecasting since the factors are not stable random, but rather 

unstable random factors like governance within a country. Leahy and Foley [Leahy & 

Foley, 2012] discussed the impact of the long-term weather forecast and wind 

penetration on electrical load in Ireland. The work showcased the importance to 

consider the combined potential impacts of prolonged cold weather and periods of low 

winds under future projected generation scenarios. Reference [Makridakis et al., 2008] 

clearly stated that long-term forecasting requires a different approach, and suggested 

that these forecasts should be based on (a) identifying and extrapolating mega-trends 

going back in time as far as necessary (e.g. they discuss the variations in the price of 

copper, since the year 1800); (b) analogy and (c) constructing scenarios to consider 

future possibilities. The influence of economic factors on load in the long-term horizon 

becomes only visible on longer time scales or in extreme situations such as the 

economic crisis of 2009 [Troccoli, 2009]. Effect of weather (mostly, temperature) is 

extensively discussed in the work also. It reported that during winter, a drop of 

temperature by 1°C causes an additional power request of about 1.8 GW in France. 

Weather forecast, itself, is difficult in longer horizon. So, it can be concluded how 

complicated load forecasting for mid-/long-term horizon is. The problem of robust 

MTLF/LTLF can be foreseen as principal part of strategies design for substitutable 

development and optimal equipment renovation of energy systems under energy-

saving technical progress. One of the feasible ways here is to design such strategies 

using integral dynamical models employment, as suggested in [Hritonenko & Yatsenko, 

2012]. Here readers may refer to the extensive bibliography in these manuscripts on the 

use of integral dynamic models. Reference [Hong, 2014] performed a study on past, 
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current and future trends in energy forecasting. This paper showcased the trend in 

spatial, STLF, LTLF and energy price forecasting in a lucid manner. It quoted ‘When you 

flick that switch, you expect the lights to go on – but the business of keeping them on is 

not nearly as straightforward’. For example, it is feasible to forecast the next day load of 

a certain zone with less error percentage but quite challenging or even impossible to 

forecast the next summer peak load with a similar accuracy. In such case, it is possible 

to forecast the weather-normalized summer peak load based on average peak weather 

condition for that particular zone. 

In this chapter, section 3.2 focuses on the development of a neural network model 

for short-term load forecast and modeling forecast error using truncated normal 

distribution. Section 3.3 describes the importance of volatility in the long-term load 

forecast and focuses on development of a multiplicative error model for a long-term 

forecast. Finally, section 3.4 concludes the chapter. 

3.2 SHORT-TERM LOAD FORECASTING USING NEURAL NETWORK 

In recent years, the significance of short-term load forecast (STLF) has increased and it 

will continue because over- or under-estimate of the future load has a significant impact 

on the efficiency of operation of any electrical utility. Various operational decisions such 

as economic scheduling of the generating capacity, scheduling of fuel purchase and 

system security assessment are based on such forecasts [De Felice & Yao, 2011]. 

Literature study reveals that short-term load forecasting has been extensively studied, 

and many load modeling and forecasting techniques have been developed [Gross & 

Galiana, 1987, Moghram & Rahman, 1989, Taylor & McSharry, 2007]. These 

methodologies can be broadly classified into two categories: 

i. Traditional or statistical STLF methods like time series, regression analysis and 

gray model, which is based on load patterns. As the name suggests, statistical 

STLF methods forecast load using a mathematical combination (additive or 

multiplicative) of historical load values and other impacting factors like weather. 

These models are easy to interpret because they explain the relationship 

between load and impact factors. But often criticized because of their limitations 

in modeling the non-linear relationship between them. 

ii. Non-traditional or artificial intelligence STLF methods like fuzzy, neural networks 

and other intelligent load forecasting methods. Compared to traditional 

methods, these methods are flexible and can model both non-linearity as well as 

complexity. Their popularity rose with the advent of computers in the early 

1990s. In addition, they are widely accepted because of the fact that they do not 

need any prior modeling experiences and work as a black box. The black box 

uses customizable algorithms that automatically classify the input data and later 

correlate the data with the relevant output values. 
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The scope of this research is forecasting electricity load in the short-term horizon 

using a feedforward neural network. Neural network-based load forecasting is one of 

the most widely used non-traditional load forecasting methods and it is evident from 

literature study [Rui & El-Keib, 1995, Hippert et al., 2001, Baliyan et al., 2015]. 

Reference [Baliyan et al., 2015] can be accessed for a complete review of different 

neural network-based methods developed lately. In the short-term horizon, the 

challenge for planners is not only to forecast load with high accuracy but also to form an 

accurate picture of the day-ahead load profile. The day-ahead load includes point 

forecasts of the load in each hour and also acknowledges the precision, or lack thereof, 

associated with the forecasted value. This research addresses the uncertainty 

associated with day-ahead forecasting and error implication associated with this 

uncertainty. An important question is: What are the need for error and uncertainty 

analysis in short-term load forecasting? One of the vital inputs in the short-term load 

forecast is weather data. Thus, it is evident that for day-ahead load forecast, use of 

weather forecast is the most viable option. There are high chances that online 

operation of weather forecast model introduces the associated error into load 

forecasting model. Reference [Chen et al., 2005] performed a comprehensive study 

showing the significant effect of weather on load forecast. It can also impact the 

training of the neural network as discussed by [Yoo & Pimmel, 1999]. For our research, 

weather forecast error is not considered; rather a historical database of weather 

information (dry bulb and dew point temperature) is used to train the network. In 

addition, statistical properties of forecast errors are studied and performance analysis 

of neural network based model is carried out by making comparisons to the normal 

distribution
4
. 

The rest of the section is organized as follows: sub-section 3.2.1 discusses the neural 

network-based load forecasting methodology. Sub-section 3.2.2 explains the forecast 

steps. Forecast results are demonstrated in sub-section 3.2.3. Sub-section 3.2.4 

discusses the implication of truncated normal distribution to represent forecast error. 

Finally, sub-section 3.2.5 concludes this section on short-term load forecasting using 

neural networks. 

3.2.1 NEURAL NETWORK-BASED SHORT-TERM LOAD FORECAST 

Load forecasting has always gained attention and till today it is still difficult to 

accurately predict load. This is because load time series exhibit seasonality (daily, 

weekly, monthly) and the number of impacting factors increasing with the adoption of 

new technologies. Thus, choosing the right amount of data and a suitable model is 

equally important. For instance, if the inputs to the forecasting model are insufficient, it 

will be difficult or even impossible to come up with an accurate forecast no matter how 

                                                      
4 In this research, the terms normal distribution and Gaussian distribution are synonyms. 
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good the chosen model is. The use of neural networks has been a widely studied 

electricity load forecasting technique since the 1990s [Peng et al., 1992]. This is 

understandable from the fact that neural networks are able to solve non-linear and 

complex problems and hence make them suitable for forecasting problems. Again, this 

is due to the fact that instead of relying on explicit rules or mathematical functions, 

neural networks draw a link between input and output data. Thus, in comparison to 

other traditional and non-traditional models, neural networks hold a good promise for 

the purpose of load forecasting. For our research, historical data for years 2010-2013 

was used to forecast day-ahead load for 2014. The various input parameters for the 

training data is illustrated in Fig. 3.1. An exception in this study is that random 

disturbances, consumer class, and demand-side management are not considered. This is 

because the primary aim of this research is to analyze error and uncertainty in 

forecasted value. It is vital because the associated financial penalties for high error 

values are high considering almost all power system studies (both operational and 

expansion planning) are based on forecast values. 

 

Consumer class

Time-based 
factor

Weather 
conditions

Historical
load data

Demand Side 
Management

Special events

Random 
disturbances

Seasonal effects

Short-term 
load forecast

 
 

Fig. 3.1: Input parameters for training data [Note: Consumer class, random disturbances, and demand-side 

management are excluded in this study] 

A neural network model is described by three distinct features [Weron, 2007]: 

i. Architecture: The architecture describes the neural connections. Typically, 

network elements are arranged in a relatively small number of connected layers 

of elements between network inputs and outputs. The outputs are linear or non-

linear functions of its inputs. The inputs may be the outputs of other network 

elements as well as actual network inputs. The three common neural network 

family models are feedforward, radial based, and recurrent types. One of the 

popular architecture for STLF is feedforward architecture with backpropagation, 
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which uses continuously valued functions and supervised learning. The same is 

employed in this research. 

ii. Processing: This feature describes how a neural network produces output for 

every input and weight based on the training algorithm. It also describes how the 

neural network adapts its weight for every training vector. 

iii. Training: The actual weights assigned to element inputs are determined by 

matching historical time and weather data to historical electricity load data in a 

pre-operational training period. 

For model parameters selection, a systematic approach with regards to the number 

of hidden layers, number of nodes, batch size, epochs, network performance, desired 

activation functions, and training period has to be unambiguously formulated. In this 

research, the gradient descent based Levenberg-Marquardt optimization technique is 

used as it has one of the best learning rates when compared to other available 

functions in forecasting problems [Saini & Soni, 2002]. It is also the fastest 

backpropagation algorithm available with the MATLAB (version 2016a) and supervised 

algorithm as well, although it does require more memory than other algorithms. Neural 

network modeling can be categorized into two groups: the first group corresponds to 

single output node with next hour or next day peak or total forecast load and second 

group corresponds to multiple output nodes corresponding to sequential hourly loads 

for next day (24 hours). The developed model in this research is a three-layered 

feedforward backpropagation network, as shown in Fig. 3.2 with non-linear activation 

function in the hidden layer and linear function for the output layer. More details on the 

forecasting steps are explained in the next section. 

3.2.2 UNDERSTANDING THE FORECAST STEPS 

The neural network dataset is divided into two sets. The first set of data is used to train 

the neural network and called the training dataset. The second set of data is used to 

test the trained neural network-based forecast model. For this research, the training 

dataset comprises four years (2010-2013) load and weather data with hourly resolution. 

Weather data is represented by dry bulb temperature and dew point temperature. An 

additional parameter that is used in training dataset is the type of day (weekday, 

weekend or holiday). It acts like a flag indicating if it is a holiday or a weekend. The 

model is tested on completely out-of-sample data from 2014. 

The inputs are fed into the input layer and multiplied by interconnection weights, 

and then passed through an activation function before passed on to the next layer. The 

mathematical model of the artificial neuron is modeled in a similar manner of the 

biological architectural set-up. Axons and synapses of the neuron are modeled as inputs 

and weights respectively. The strength of the connection between an input and a 

neuron is denoted by the value of the weight. The weighted inputs are added together 
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and passed through a nonlinear activation transfer function in the hidden layer. Finally, 

the activation function controls the amplitude of the output of the neuron. For 

activations, a sigmoid transfer function was used for the hidden layer and pure linear 

transfer function for the output layer. An advantage of sigmoid activation function is, 

unlike the linear function, the output of the activation function is always going to be in 

the range [0,1] compared to [−∞,∞] of the linear function. So the activations are 

bound in a range. The output layer is 24-hour or day-ahead load forecast. Choosing the 

hidden layer is tricky. Though there is no pre-specified rule for ideal selection of 

network layers and neurons in a neural network architecture, it is aimed for a simple 

three-layered architecture for better forecast results following the study [Peng et al., 

1992]. Networks with more than one hidden layer are generally more complex. Again, 

the number of neurons in the hidden layer is chosen based on the fact that 

overspecializing might occur. Overspecializing is similar to overfitting when too many 

neurons lead to loss of generalizing capacity of the architecture. On the other hand, due 

to lack of enough hidden layer neurons, the network may find it difficult to learn the 

behavior of the series. For this research, the model was tested with varying number of 

hidden layer neurons, ranging from ten to fifteen based on [Adepoju et al., 2007]. 

Fourteen neurons were finally used because it offered a better model characteristic and 

this was achieved by training of network. 

Training of the network is evaluated by epochs. An epoch is a single step in training 

a neural network, i.e., one forward pass and one backward pass of all the training 

dataset. In order to train the network for our training dataset, one epoch will be too big 

to feed to the network. Hence, the training dataset is divided into smaller batches. 

Batch size refers to the total number of training examples present in a single batch. 

Each batch consists of 73 training examples, i.e., type of day (1), previous day load (24), 

dry bulb temperature (24), dew point temperature (24). It is often observed that error 

reduction is inversely proportional to the increase in epoch training, but there might be 

instances of data overfitting which will result in an increase in error propagation. To 

infer, the best performance is observed from the epoch with the lowest validation 

error. In this study, best validation performance was observed at epoch 199, as seen in 

Fig. 3.3., and it can be argued that it attained in less number of epochs. 
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Batch:
Type of day (1)

Yesterday’s load (24)
Dry bulb temperature (24)

Dew point temperature (24)

Input layer

Hidden layer
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Load
forecast

Fig. 3.2: Neural network architecture for short-term load forecast 

 
Fig. 3.3: Epoch training of the neural network 
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3.2.3 FORECAST RESULTS 

To assess the effectiveness of the proposed forecast methodology, the Neural Network 

toolbox in MATLAB (version 2016a) [MATLAB, 2017] is used. As discussed in the 

previous section, forecasting electricity load using neural network can be observed as a 

non-linear function influenced by a number of factors, such as historical load, weather-

related factors, time factors, etc.. These factors are modeled as network inputs. The 

flowchart in Fig. 3.4 illustrate the essential steps to forecast load using the neural 

network. The first one involves data preparation. The proposed forecasting model is 

trained off-line using publicly available data from ISO-New England (ISO-NE) [Web7, 

2016]. Historical load, dry bulb temperature, dew point temperature and holiday list 

from state ME under ISO-NE is used. The values in historical load correspond to actual 

system load as determined by metering. Dry bulb and dew point temperature data are 

used as weather-related data. The latter step covers details with regard to network 

architecture and suitable model parameters, i.e., defining type and size of network, 

learning paradigm, network performance function, etc.. The parameters are as given 

below: 

 No. of layers: 3 (Input layer, Hidden layer, 

Output layer) 

 Training dataset: years 2010-2013 with historical 

load and weather data of hourly resolution  

 No of neurons in hidden layer: 10 to 15  Test dataset: Year 2014 

 No of neurons in output layer: 24  Momentum factor (γ): 0.98 

 Activation function of hidden layer: Sigmoid  No of data sets in each batch: 73 

 Activation function of output layer: Linear  No. of epochs for training: 1000 

 Training algorithm: Backpropagation  Learning rate (α): 0.1 

The forecast results are compared with historical data, as shown in Fig. 3.5. The solid 

red curve indicates the historical load over the date range (19/06/2014 – 14/07/2014), 

while the blue curve indicates the forecast results. Weekly load profile corresponding to 

forecast values for the same date range is shown in Fig. 3.6. It illustrates the load profile 

of selected dates and depicts that the load demand is much higher during weekdays 

than the weekends. The load curve reflects the activity of a population with respect to 

electrical power consumption over a given period of time. It gives an insight into the 

consumption pattern of an area. This weekly pattern is repeated more or less 

throughout the year. 
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Fig. 3.4: Flowchart for the development of a supervised neural network-based load forecast model 
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Fig. 3.5: Forecast load  (LF), actual load (LA) and error for the date range (19/06/2014 – 14/07/2014) 

 
Fig. 3.6: Hourly load forecast for date range (19/06/2014 – 14/07/2014) 
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In order to model the statistical uncertainty information, large volumes of historical 

and real-time data are needed. As illustrated in Fig. 3.7, a sliding window is used for 

acquiring continuous statistical information on load influencing factors (i.e., timestamp, 

forecast horizon). Such a framework is adapted from [Makarov et al., 2010]. The time-

frame can be tuned accordingly depending on forecast requirements. The forecast 

resolution is the time interval between two consecutive data records. The time-horizon 

is the length of the look-ahead interval, and the forecast update interval is the time 

interval for updating the forecast. The structure is supported by a table of data 

requirements for STLF as shown in Table 3.1. 
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Fig. 3.7: Day-ahead load forecast structure 

 

Table 3.1: Data Requirements for STLF 

Data Resolution Forecast horizon 

Day-ahead load forecast 1hr  24h 

Hour-ahead load forecast 30mins. 24h 

Real-time load forecast 5mins. 1h 

  

3.2.4 ERROR IMPLICATION 

In STLF, accurate load forecasts are very important because they determine the 

scheduling of generation units for next day or maybe few hours ahead. A slight 

deviation in forecast accuracy results in the suboptimal commitment of generation unit 

in the day-ahead market, which is avoided by utilities. Forecast error on the test set, as 

seen in Fig. 3.8, is defined as the difference between the actual load (LA) and the 
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forecast load (LF). It is evident from the figure that day-ahead load forecast error varies 

within the ±7% range. Few random overshoots above the range of +10% and -20% can 

be observed in the figure, which is excluded for error analysis. Such exclusions are 

wisely chosen because the uncertainty associated with the forecast error plays a vital 

role in influencing the resulting uncertainty obtained from the forecast model.  

 
Fig. 3.8: Load forecast error (%) 

The normal distribution is amongst the most common method to describe load 

forecast error. It can be described by the first two statistical moments, namely, mean 

(𝜇) and variance (𝜎2). The third and fourth moments, namely skewness and kurtosis, 

are often close to zero if the observed distribution is well represented by the normal 

distribution. For error analysis and to check the efficiency of the neural network model, 

two widely used performance metrics called Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸) 

and Coefficient of Variation (𝐶𝑉) are used. Considering two time series, actual load 

𝐿𝐴(𝑡) and forecasted load 𝐿𝐹(𝑡) for time 𝑡 = 1,2…𝑇, the 𝑀𝐴𝑃𝐸 is defined as: 

 
𝑀𝐴𝑃𝐸 =

1

𝑇
∑|

𝐿𝐴(𝑡) − 𝐿𝐹(𝑡)

𝐿𝐴(𝑡)
|

𝑇

𝑡=1

× 100% (3.1) 

 

The coefficient of variation (𝐶𝑉), also called relative standard deviation, measures the 

ratio of the forecast error standard deviation (𝜎) to the error mean (𝜇). For forecast 

error (𝐿𝐹𝐸), 𝐶𝑉 is defined as: 
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 (3.2) 

 

For the neural network-based load forecasting model, the following results are 

obtained: 

𝜇 = −61.89𝑀𝑊;  𝜎 = 351.35𝑀𝑊 

𝑀𝐴𝑃𝐸 (%) = 1.74; 𝐶𝑉 = −5.67 

Both, 𝑀𝐴𝑃𝐸 and 𝐶𝑉 are traditional relative error metrics traditionally reported in the 

forecast-related literature although 𝑀𝐴𝑃𝐸 is more commonly reported. Following the 

traditional method of examining distributions, an error histogram is plotted as shown in 

Fig. 3.9. The histogram is plotted with bin size of 100 so as to exclude the unwanted 

distribution and focus on large forecast errors. Few observations from the histogram 

are: 

 The dotted line shows a normal distribution with the same mean and standard 

deviation as the forecast errors. 

 The observed error distribution, in Fig. 3.9, is more peaked with narrower 

shoulders and larger tails than the normal distribution assumption would 

suggest. Q-Q plot of forecast error is shown in Fig. 3.10 to support the non-

normality assumption. 

 One of the most critical features of the observed distribution is the negative 

mean bias, represented by a mean value of −61.89𝑀𝑊. 

 The histogram shows that load forecast errors does not fit a normal distribution. 

Also, the Q-Q plot, in Fig. 3.10, confirms that error distribution do not follow a 

normal distribution. 

 The actual load forecast error distribution has more mass around zero than what 

a normal probability density function (PDF) would predict. A solution to this 

anomaly is choosing the logistic distribution as it proved to fit the data better. 

The actual distribution used to model load forecast uncertainty is not crucial as 

long as it accurately represents the data. 
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Fig. 3.9: Histogram and normal distribution fit of forecasted error with µ=-61.89 and σ=351.35 

 

Fig. 3.10: Q-Q plot of forecast error distribution  

In this error and uncertainty analysis, load forecast errors are summed for each 

dispatch interval in the past within a sliding window as shown in Fig. 3.7. The sliding 
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window size is selected to collect sufficient statistical information regarding the forecast 

errors. The information can be accumulated separately for each forecast horizon; for 

instance, for the hour-ahead forecast, two hours ahead forecast, and so on. Based on 

the collected statistics, the approach evaluates the percentile intervals (also called 

confidence intervals or uncertainty ranges) for each forecast horizon and different level 

of confidence. These intervals are assumed to be the same in the future dispatch 

interval; that is, for the next hour, the hour after that, and so on. It is used, in later part, 

to analyze the truncated normal distribution of load forecast error.  

Based on the results obtained, intensive approaches for the uncertainty analysis of 

forecast errors is carried out in this study following the work on wind forecast 

uncertainty [Makarov et al., 2010]. The two approaches are described below: 

i. Distribution Fitting Approach: Distribution fitting approach is fitting of probability 

distributions and is based on assumptions about a specific standard form of random 

variables; for example, normal, uniform or Poisson distributions. This approach 

assigns a probability to an event when the random variable takes on a specific, 

discrete value, or falls within a quantified range of continuous values. It is solely 

based on the standard distributions and selected set of its parameters. From Fig. 

3.9, the forecast error distribution is more peaked with narrower shoulders and 

larger tails than the normal distribution assumption would suggest. Hence, selecting 

a distribution model means choosing a standard probability distribution and then 

adjusting its parameters to fit the data. A proposed solution to the above problem is 

fitting the error distribution dataset with truncated normal distribution (TND). A 

mathematically defensible way to preserve the main features of the normal 

distribution while avoiding extreme values involves the truncated normal 

distribution, in which the range of definition is made finite at one or both ends of 

the interval. The PDF of such a truncated normal distribution is written as: 

𝑃𝐷𝐹(𝑥; 𝜇, 𝜎, 𝑎, 𝑏) =

{
 
 

 
 

0 𝑖𝑓 𝑥 ≤ 𝑎
1
𝜎
𝑃𝐷𝐹𝑁 (

𝑥 − 𝜇
𝜎

)

𝐶𝐷𝐹𝑁 (
𝑏 − 𝜇
𝜎

) − 𝐶𝐷𝐹𝑁 (
𝑎 − 𝜇
𝜎

)

0 𝑖𝑓 𝑏 ≤ 𝑥

 𝑖𝑓 𝑎 < 𝑥 < 𝑏 (3.3) 

where, µ is the mean value of non-TND 

σ is the standard deviation of the non-TND 

a, b are upper and lower limits of the non-TND 

 𝑥𝜖(𝑎, 𝑏), −∞ ≤ 𝑎 < 𝑏 ≤ ∞ 

𝑃𝐷𝐹𝑁(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒
(𝑥−𝜇)2

2𝜎2  is the PDF of standard   normal distribution 

𝐶𝐷𝐹𝑁(∙) is the CDF of standard normal distribution 
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The use of truncated normal distribution in wind forecast error has been 

reported in refs. [Xie et al., 2011, Lu et al., 2013]. One of the many reasons to use 

truncated normal distribution is because though normal distribution is a good fit for 

our forecasted error data, for physical reasons it is known that data can never be 

negative. Also, the values of a normal distribution can, in theory, assume any value 

over the range from −∞ to +∞, which may lead to significant computational errors 

in situations where the distribution’s outcomes are constrained. For error analysis, it 

is desirable to consider data within a particular range of interest as per the planner, 

which we might symbolize as [𝐴, 𝐵] , [𝐴, +∞)  or (−∞, 𝐵] , depending on the 

truncation we apply. Following the study of [Billinton & Allan, 1996], the range of 

the truncated normal distribution can be extended, say 99.95% confidence interval 

of [𝜇 − 3.5𝜎, 𝜇 + 3.5𝜎] , to represent a large forecasting error distribution. 

Accordingly, the modified load forecast error, shown in Fig. 3.11, is represented by a 

truncated normal distribution, in which the mean is the hourly power forecast and 

the standard deviation is 5% of the mean: 

 

 

𝑓(𝑥) =

{
 

 
0, 𝑥 < 𝜇 − 3.5𝜎 

                                            𝑜𝑟 𝑥 > 𝜇 + 3.5𝜇

1

𝛼√2𝜋𝜎
. 𝑒
−
(𝑥−𝜇)2

2𝜎2
⁄

, 𝜇 − 3.5𝜎 ≤ 𝑥 ≤ 𝜇 + 3.5𝜎
 (3.4) 

 

where, 𝛼 = ∫ (1/√2𝜋𝜎). 𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
𝜇+3.5𝜎

𝜇−3.5𝜎
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Fig. 3.11: Histogram of modified load forecast error 

 

ii. Empirical Probability Approach: Statistical analysis of load forecast error distribution 

using empirical probability approach is not studied extensively. Empirical probability 

is a type of non-parametric distribution that does not follow any standard 

probability distribution. In this approach, the models make no assumptions about 

the form of the underlying distribution, so no parameter estimates are needed 

[Murphy, 2012]. 

Compared to real-life with physical data, like load forecast error distribution, the 

empirical PDF is simply the histogram. Integrating the PDF using cumulative sum 

produces the empirical CDF. If a sample comes from a parametric distribution (such 

as a normal distribution), its empirical CDF will resemble the parametric 

distribution as in the case of load forecast error shown in Fig. 3.12. The empirical 

CDF assigns probability 1 (y-axis) over n to each of n observations in the analyzed 

dataset. If not, the empirical distribution still gives an estimate of the CDF for the 

distribution. As seen in the left-hand figure of Fig. 3.12, the continuous and stairs 

empirical CDF overlap on each other, thus proving that the distribution is not very 

diverse. The confidence bounds are spaced evenly from empirical CDF.   
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Fig. 3.12: Empirical CDF of forecasted error with µ=-61.89 and σ=351.35 [Sub-image is truncated to ±1000. 

LCB: Lower Confidence Bound and UCB: Upper Confidence Bound] 

3.2.5 DISCUSSIONS 

A neural network-based load forecasting model was designed and implemented. Real 

data from U.S. utility is used to train the neural network architecture and results are 

obtained with a high degree of accuracy (𝑀𝐴𝑃𝐸 of 1.74%). A set of optimized weights 

and the associated biases was obtained after training the network with real load and 

weather data. Forecasting was followed by uncertainty analysis to represent forecast 

error distribution. It was observed that the error distribution does not follow a normal 

distribution. Performance analysis was performed to show that truncated normal 

distribution is a more accurate means of modeling the error distribution. 

3.3 LONG-TERM LOAD FORECASTING CONSIDERING VOLATILITY USING 

MULTIPLICATIVE ERROR MODEL  

Long-term load forecasting plays a vital role for utilities and planners in terms of grid 

development and expansion planning. An overestimate of long-term electricity load will 

result in substantial wasted investment on the construction of excess power facilities, 

while an underestimate of the future load will result in an insufficient generation and 

inadequate demand. As a first-of-its-kind, this research proposes the use of 

multiplicative error model (MEM) in forecasting electricity load for the long-term 

horizon. MEM originates from the structure of autoregressive conditional 

heteroscedasticity (ARCH) model where conditional variance is dynamically 
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parameterized and it multiplicatively interacts with an innovation term of time series. 

Historical load data, accessed from a U.S. regional transmission operator, and recession 

data, accessed from National Bureau of Economic Research, for years 1993-2016 is used 

in this study. The advantage of considering volatility is proven by out-of-sample forecast 

results as well as directional accuracy during the great economic recession of 2008. To 

incorporate future volatility, backtesting of MEM is performed. Two performance 

indicators used to assess the proposed model are mean absolute percentage error (for 

both the in-sample model fit and out-of-sample forecasts) and directional accuracy. 

Load forecasting in the long-term horizon is important for electric utilities and 

planners in terms of grid expansion planning, future investments and revenue analysis 

for long-term decision-making process. Moreover, it plays a vital role in the economic 

and social development of a country (or specific region in case of some utilities). A more 

realistic range of future generation scenarios can be modeled when the electricity 

consumption is increasing at a faster rate in this globalizing world. For instance, annual 

load forecasting is favored among utilities and is one of the common long-term load 

forecasting problems. It can alleviate the disparity between demand and generation, 

thereby maintaining the required level of security of supply. Choosing a right horizon for 

long-term varies from one utility to another based on their policies. Usually a monthly 

or yearly time-step for one to ten years ahead in long-term load forecasting is helpful in 

inter-tie tariff setting and long-term grid investment return problems. 

It is often difficult to forecast load over a such a long planning horizon and it is due 

to the stochastic nature of demand growth and the influential parameters. Most of 

these parameters are, by nature, unpredictable and uncontrollable. Examples are socio-

economic developments, the occurrence of special events and/or climatic conditions, 

and regulatory requirements. Any considerable deviation in forecast results in over 

expenditure on generation/transmission infrastructure or energy resource waste. 

Hence, in order to improve the forecast accuracy in the long-term horizon, attention is 

needed either in terms of improvement of existing employed techniques or development 

of a new technique to consider all the aforementioned factors. Forecast accuracy 

influences the decision making of generation and transmission companies on their plans 

to address future load growth and market volatilities. Based on the forecast, electric 

utilities coordinate their resources to meet the actual demand using a cost-effective 

plan. As we look into the future, in the energy consumption scenario, it is expected that 

electricity will play a major role as we move towards the declined use of de-carbonized 

heat pumps in the residential sector and the addition of electric vehicles (EVs) and other 

hybrid vehicles in the transportation sector. Such transition will have a significant 

impact on the overall load profile. To visualize, Fig. 3.13 depicts the future complexity in 

the context of load forecast, various players in action and the inter-dependency that 

needs attention too. Stochasticity in future scenarios, such as economy (GDP: Gross 

Domestic Product), demographics (change in energy usage of end-users), energy 
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generation mix (renewable energy generation depends on forecasting of a resource like 

wind, solar irradiation) and technology advancement, influences the forecast accuracy 

to a large extent. For utilities, the evolution of prosumer complicates the forecasting 

methodology. A prosumer (combination of words producer and consumer) is a 

consumer that has its own production facility (e.g., rooftop solar panel). Because of 

decentralized power generation, prosumers have evolved recently and played an active 

role in electricity generation and the provision of grid services. Not to be forgotten is 

the spatial complexity as the area expands from the DSO level to multi-TSO level. 

Decisions about grid development are mostly based on the accuracy of predictions of 

both the scale and occurring geographical locations of energy consumption in the long-

term horizon. Any change in the electric consumption patterns is compensated by 

financial incentives and/or electricity tariffs. In such cases, accurate forecasting will 

certainly provide support for the utility (TSO/DSO) to estimate the amount of 

investment needed. 

GDP TechnologyDemographics
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generation

Future scenarios
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Residential

Commercial

Industrial
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Supply
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Regional

Local

Multi-TSO
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Fig. 3.13: Complexity in long-term load forecast [GDP: Gross Domestic Product] 

This research sums up the need for accurate LTLF as, 

 Firstly, moving towards greener future is accredited with development in new 

technology and integration of renewable energy into the primary grid while 

discarding fossil fuels is becoming important. In the Paris Agreement 2016 

[Web2, 2016], it was agreed upon to move towards renewable energy from the 

more conventional energy. Such a move is realized with an accurate and reliable 

forecast of the electrical energy demand. Despite advancements in battery 
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technology, storing energy for the long-term purpose is not the viable option. 

Thus, accurate and reliable forecasting is required for planning the right tools. 

 Secondly, considerable changes in weather factors like temperature, rainfall and 

hot/cold days. Any change in climatic variables will have a direct impact on the 

demand pattern. Erratic weather events posed due to climate change pose some 

serious burden on forecasters to accurately model load growth considering long-

term horizon. 

 Thirdly, maintaining the security of supply during the energy transition. In 

today’s date, existing grids are performing under stress to deliver the growing 

demand in the presence of variable stochastic renewable energy sources. 

 Lastly, the occurrence of events like the great economic recession of 2008 that 

jolted the economic backbone of many countries. Such an event is termed as 

black swan event. A black swan event is an incident that occurs randomly and 

unexpectedly and has wide-spread ramifications. The effect of the great 

recession was widespread and energy investment worldwide plunged into 

tougher financing environment and weakening final demand for energy [Web1, 

2009]. This reminds the importance to study the financial aspects of long-term 

forecasting by energy forecasters in electric utilities. 

Based on the needs, the key contributions of this research can be listed as: 

 Reviews recent advancement in long-term load forecasting in terms of 

techniques and models developed. 

 Provides a comprehensive and critical evaluation of long-term load forecasting 

considering historical volatility. 

 Proposes the use of multiplicative error model (MEM) to model conditional 

mean and to forecast aggregated zonal monthly load. In this research, we 

consider a forecast horizon of 4 years as a solution for electric utilities and 

planners based on the fact that construction of offshore wind farms takes 

approximately 3-4 years depending on the capacity [Khuntia et al., 2016a]. 

The rest of the section is organized as follows: sub-section 3.3.1 gives a background 

on LTLF and volatility, sub-section 3.3.2 introduces MEM and is followed by forecast 

methodology in sub-section 3.3.3. Sub-section 3.3.4 analyses the forecast results based 

on real data. Finally, sub-section 3.3.5 concludes the section. 

3.3.1 BACKGROUND ON LONG-TERM LOAD FORECAST 

Electricity load forecasting in the long-term horizon is an important part of the 

transformation of electric power systems and it has appealed more and more attention 

from both academics and industry. By principle, a load forecasting model aims at a 
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mathematical representation of the relationship between load and influential 

parameters. Such a model is identified with coefficients that are used to forecast values 

by extrapolating the relationship to the desired lead time. Eventually, the accuracy of 

the model depends on both the selected model as well as the accuracy of the estimated 

parameters. Literature study reveals that long-term load forecasting received less 

attention compared to short-term load forecasting. This is because of the complexity 

involved in achieving an accurate forecast. Long-term load forecasting is based on the 

integration of concepts from theoretical foundations of economic theory with 

knowledge on financial, statistical, probability and applied mathematics to make 

inferences about the load growth/fall and technology evolution. Reference [Khuntia et 

al., 2016e] illustrates rationally the concept of long-term load forecasting and also 

presents recent development within the electric power industry. Reference [Hong, 

2014] performed a study on past, current, and future trends in energy forecasting while 

stating the trend in spatial, short-term and long-term load forecasting, and energy price 

forecasting in a lucid manner. Reference [Feinberg & Genethliou, 2005] proposed three 

methods suitable for long-term forecasting as time series approach, econometric 

approach, and end-use approach. For long-term forecasting, all approaches require 

historical data and they are broadly categorized into traditional (or statistical) and non-

traditional (or artificial intelligence AI) based methodologies. 

Traditional methods include regression-based models and time series methods. 

Reference [Saab et al., 2001] proposed univariate autoregressive models to forecast 

load with monthly time-step in Lebanon. Multiple linear regression models were 

proposed in [Mohamed & Bodger, 2005]. Reference [Kandil et al., 2001] implemented a 

knowledge-based expert system to support the choice of the most suitable load 

forecasting model with practical application. However, traditional methods are 

criticized for their weakness of non-linear fitting capability. In AI-based techniques, 

artificial neural network (ANN) is one of the most popular models. Its application in 

forecasting Greek long-term energy consumption for the years ahead is reported in 

[Ekonomou, 2010]. Reference [El-Ela et al., 2009] used ANN on the Egyptian electrical 

network for long-term peak load forecasting. Reference [Xia et al., 2010] reported the 

superiority of ANN for medium and long-term load forecasting in terms of accuracy and 

robustness. Hybrid of fuzzy and ANN are reported in [Chen, 2012] for forecasting 

Taiwan’s annual electricity load and in [Padmakumari et al., 1999] for long-term 

electrical energy consumption in India. Other AI techniques include support vector 

regression models (SVR) [Hong, 2009, Jianjun et al., 2016] and SVR with simulated 

annealing algorithms [Pai & Hong, 2005].  

Use of metaheuristic methods such as genetic programming [Karabulut et al., 2008], 

fruit-fly algorithm [Li et al., 2013], gravitational search algorithm [Abdi & Beigvand, 

2016] and particle swarm optimization (PSO) [Ünler, 2008, AlRashidi & El-Naggar, 2010] 

are also reported. Other methods include long-term forecasting based on partial least 
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squares method [Meng & Niu, 2011] and complete decomposition method [Sun, 2001]. 

Recent study includes forecasting for country-specific such as Spain [Moral-Carcedo & 

Pérez-García, 2017], Greece [Ekonomou, 2010, Angelopoulos et al., 2017], Lebanon 

[Saab et al., 2001], Turkey [Yumurtaci & Asmaz, 2004, Dilaver & Hunt, 2011, Hamzacebi 

& Es, 2014]. More recently, reference [Kaboli et al., 2017] used gene expression 

programming for long-term prediction of electrical energy consumption in ASEAN-5 

countries and projected up to 2030 according to rolling-based forecasting procedure. 

The results are compared with those obtained from ANN, SVR, adaptive neuro-fuzzy 

inference system (ANFIS), rule-based data mining algorithm, gene expression 

programming (GEP), linear and quadratic models optimized by PSO, cuckoo search 

algorithm (CSA) and backtracking search algorithm (BSA). 

It was learned that the developed models aim at predicting accurate peak load or 

electrical energy consumption while comparing with any traditional model. However, 

one aspect that has received less attention in long-term load forecasting, when the 

whole energy scenario is growing in terms of complexity and dynamics, is volatility. The 

concept of volatility is prevalent in financial markets and it refers to the degree of 

erratic variations of a process over time. It is used as a criterion to study the risk 

associated with a financial asset. Reference [Zareipour et al., 2007] showed that power 

markets have greater volatility levels than other financial markets like crude oil, natural 

gas or stock prices. Literature study reveals volatility studies on various electricity 

markets: Spanish, Californian, UK and PJM electricity markets [Benini et al., 2002], 

Ontario and some of its neighboring markets [Zareipour et al., 2007], German market 

[Auer, 2016], Australian electricity market [Boland et al., 2016] to name a few. 

Reference [Li & Flynn, 2004] examined and compared the volatility of 14 deregulated 

markets through the “price velocity” metric. The Nordic pool was studied in [Simonsen, 

2005] considering volatility clustering, log-normal distribution, and long-range 

correlations. In time series forecasting of electrical load, volatility is defined as a 

deviation from the mean which corresponds to risk. An advantage of such an approach 

is that once the time series model is understood, it is possible to simulate the data 

generation for any lead time in the future. Reference [Khuntia et al., 2016d] explained 

the importance of volatility in long-term load forecast, which no work reported earlier. 

Extending the concept of volatility forecast to load forecast in the long-term horizon is 

adopted in this research. 

Volatility is a fundamental issue in financial and econometrics domain, and virtually 

present in all financial decision making. The concept of volatility in financial markets 

refers to the degree of unpredictable fluctuations of a process over time. Volatility can 

be broadly classified into five major types: price volatility, stock volatility, historical 

volatility, implied volatility, and market volatility [Web3, 2018]. In this study, historical 

volatility is used to account for implied volatility. In the financial market, historical 

volatility is understood as how much volatility a stock has had over the past time-frame 



82 

 

(say, 12 months). If the stock price varied widely in the past 12 months, it is considered 

more volatile and riskier. Implied volatility is understood as how much volatility the 

stock will have in the future. In fact, volatility is forecastable because of a number of 

persistent properties: (i) it appears in clusters, (ii) it changes over time and has unusual 

jumps, (iii) it does not grow to infinity and is persistent in specific time-span, and (iv) it 

reacts different for an increase or decrease of the considered entity. For instance, load 

forecast in the long-term horizon takes into account socio-economic factors like 

population growth and gross domestic product (GDP) along with explicit factors like 

historical load and weather data. Presence of economic factors induces volatility, or 

what is called as implied volatility. In fact, implied volatility is generally treated to be the 

best available forecast as it has certain characteristics that can increase the accuracy of 

forecast values. Likewise load, future volatility prediction is an extremely difficult task 

because the actual realization of the future process volatility will be influenced by 

events that happen in the future. Thus, it is important to develop a model that can fit 

the sequence of calm and turbulent periods. Studies reveal that ARIMA technique, one 

of the widely used forecasting techniques, is inadequate in long-term forecasting 

because it suffers from the mean convergence problem [Shumway & Stoffer, 2011]. It 

means that ARIMA forecast converges to the mean of the observations as the forecast 

horizon grows. To address the short-coming and treating volatility as an influential 

parameter, the next section introduces the concept of MEM and its application to load 

forecast in the long-term horizon. 

3.3.2 MULTIPLICATIVE ERROR MODEL FOR LONG-TERM LOAD FORECAST 

Multiplicative error model (MEM) was introduced by Engle in 2002 [Engle, 2002] as an 

adaptation of autoregressive conditional duration model [Engle & Russell, 1998] to be 

used for time series that always receive positive values. Literature study on MEM 

reveals its application in financial risk and volatility forecasting [Lanne, 2006, Han et al., 

2015, Caporin et al., 2017]. A search about the application of MEM in load forecasting 

reveals no information, not even for short-term forecasting which is common among 

forecasters. Hence, the proposed model is first-of-its-kind to introduce MEM for load 

forecasting. As the electricity load is always represented as a non-negative time series, 

MEM is presumed to be a good fit to forecast. The MEM for a non-negative time series 

(𝑦𝑡) on [0, +∞)  and considering ℱ𝑡−1  as information available for forecasting 𝑦𝑡  is 

written as [Engle, 2002]: 

𝑦𝑡 = 𝜇𝑡𝜀𝑡 (3.5) 

 

where, the range of the disturbance 𝜀𝑡 is non-negative on [0, +∞), unit mean and 

unknown constant variance given as 𝜀𝑡|ℱ𝑡−1~𝐷(1, 𝜓) for positive distribution 𝐷. 𝜇𝑡 is 

conditional on ℱ𝑡−1 and positive, described on a parameter vector 𝜃 as: 
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𝜇𝑡 = 𝜇(𝜃, ℱ𝑡−1) (3.6) 

  

When ℱ𝑡−1 includes only historical values of the series, 𝜇𝑡 can be generalized as: 

 

𝜇𝑡 = 𝛿 +∑𝛼𝑖𝜇𝑡−𝑖

𝑝

𝑖=1

+∑𝛽𝑗𝑦𝑡−𝑗

𝑞

𝑗=1

 
(3.7) 

where, 𝛿  is constant, term ∑ 𝛼𝑖𝜇𝑡−𝑖
𝑝
𝑖=1  represent an inertial component, and term 

∑ 𝛽𝑗𝑦𝑡−𝑗
𝑞
𝑗=1  represent more recent observation. Equation 3.7 is referred to as 

referenced MEM of order (𝑝, 𝑞). Model specifications can be modified to adapt to the 

needs of the load forecast. For instance, residuals at 𝑡-th observation denoted as 

𝜗𝑡 = 𝑦𝑡 − 𝜇𝑡 and 𝛼1
∗ = 𝛼1 + 𝛽1, equation 3.7 can be written as: 

 

𝑦𝑡 =  𝛿 + 𝛼1
∗𝑦𝑡−1 + 𝜗𝑡 − 𝛼1𝜗𝑡−1 (3.8) 

 

Equation 3.8 represents an ARMA model with heteroskedastic errors and is the 

cornerstone of this modeling approach. The procedure of finding and validating a 

suitable MEM for a given dataset is discussed in the next section. 

3.3.3 FORECAST METHODOLOGY CONSIDERING REAL DATA 

In order to realize a suitable long-term forecasting model, one must start with a rich 

historical database, construct the model, identify the appropriate model order and 

finally evaluate the forecast results. Fig. 3.14 shows the steps to forecast load using 

MEM. Since MEM falls under time series models, we follow the Box-Jenkins 

methodology of building a model with certain adaptations [Box et al., 2008]. Starting 

from data preparation, the first part involves stationarity checking, data fitting, and 

model identification while checking various statistical properties of the time series. 

Identifying the right model, estimating parameters and checking the model adequacy 

falls under this part. In the second part, MEM is validated for forecasting both as in-

sample fit and out-of-sample prediction. Modeling of MEM starts with the identification 

of autoregressive and moving average parameters of non-negative time series that has 

predictive power regarding the directional change, and later added by persistent error 

specifications that eventually improves forecast. MEM differs from linear regression 

models in the sense that the mean equation, which is a scalar factor, is multiplied with 

the independent and identically distributed (𝑖. 𝑖. 𝑑.) error term. The scalar factor evolves 

in a conditionally autoregressive manner, hence, favorable for forecasting. The 

assumption of 𝑖. 𝑖. 𝑑. means that the error terms behave randomly with constant mean 
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and variance over a considered time-horizon. However, in reality, both the original time 

series as well as error time series are highly correlated and do not behave as an 𝑖. 𝑖. 𝑑. 

process.  
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Fig. 3.14: Flowchart for model identification, selection, and forecast 

 

3.3.3.1 Database generation 

Forecast accuracy strongly depends on the quality of available historical data. A poor 

history, composed only by anomalous or average events, may polarize the analysis and 

affect the quality of the forecast values. For this study, historical data of a specific load 

zone region under a U.S. regional transmission operator [Web4, 2018] and data 

describing economic recession as extracted from National Bureau of Economic Research 

(NBER) [Web5, 2018] is considered. Hourly load data for years 1993-2016 is extracted 

and sampled to monthly aggregated load as shown in Fig. 3.15. The use of monthly 

time-stamp enables in understanding the monthly energy consumption. Recession data 

for years 1993-2012 is used to build the predictor. From Fig. 3.15, it is evident that the 

load growth is on a fairly positive side apart from a few incidents where a downturn in 

demand is observed. Such an incident is the year span of 2006-2009, where the year 

2007-2008 is identified by large variability in demand value because of spikes and 

negative demand growth coincide with the great recession of 2008. The de-

seasonalized data, shown in blue color in Fig. 3.15, helps in obtaining a goodness-of-fit 
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measure. It is achieved by dividing the original data by the seasonal factors (12 months 

as it is monthly aggregated data) to get something that looks more like a straight line. 

 
Fig. 3.15: Monthly aggregated load data and de-seasonalized trend for years 1993-2016 

3.3.3.2 Stationarity and autocorrelation test 

A visual inspection of Fig. 3.15 suggests non-stationary time series with a linear trend 

and seasonal periodicity. Tests reveal that non-stationarity is apparent as both mean 

and variance increase with time. The class of MEM requires time series to be stationary 

so that its statistical (up to the second order moment) properties do not depend on 

time. This is coherent with any time series forecasting because non-stationary time 

series are erratic and unpredictable. Phillips-Perron (PP) test is used for stationarity 

check [Elder & Kennedy, 2001]. For any time series 𝑥𝑡 = 𝑎𝑥𝑡−1 + 𝑒𝑡 where 𝑒𝑡 is the 

residual, PP test checks for the null hypothesis (𝐻0: 𝑎 = 0 vs. 𝐻1: 𝑎 ≠ 0). Use of PP test 

is preferred over the widely used Augmented Dickey-Fuller (ADF) because of its non-

parametric nature. In addition to the steps from ADF test, PP test corrects the statistics 

to account for autocorrelations and heteroscedasticity. The time series is checked for 0 

lags and both the tests reject the null hypothesis with a 𝑝-value of 0.001. Thus, the time 

series is differenced to obtain a stationary time series and next step is to determine the 

presence of autoregressive or moving average terms to correct any autocorrelation that 

exists in the differenced time series. 

To check the presence of correlation, two tests used to check the null hypothesis 

(𝐻0: 𝑛𝑜 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 vs. 𝐻1: 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) are Ljung-Box Q-test (𝑄) and Durbin-

Watson (𝐷) test [Johnson Jr et al., 1987]. The 𝑄-test statistic for 𝑅 residuals, 𝐿 lags is 

written as, 

 
𝑄 = 𝑅(𝑅 + 2)∑(

𝜌(𝑙)2

(𝑅 − 𝑙)
)

𝐿

𝑙=1

 (3.9) 
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where, 𝜌(𝑙) is the autocorrelation coefficient at lag 𝑙. The Durbin-Watson statistic (𝐷) is 

conditioned on the order of the observations (rows) or in this case, is the number of 

months. The 𝐷-test statistic for 𝑛-observations is written as: 

 

𝐷 =
∑ (𝑅𝑖 − 𝑅𝑖−1)

2𝑛
𝑖=2

∑ 𝑅𝑖
2𝑛

𝑖=1

 (3.10) 

Presence of autocorrelation in a time series indicates that the values of adjacent 

observations are correlated. Fig. 3.16 shows the autocorrelation function (ACF) and 

partial autocorrelation function (PACF) plot giving evidence of the presence of 

autoregressive and moving average parameters. The ACF plot reveals the presence of 

significantly large autocorrelations, particularly at every 12th lag. Presence of 

autocorrelation suggests the data is dependent and correlated and needs modification. 

Table 3.2 displays the detailed statistics of original and differenced time series. Taking a 

look at the third and fourth moments of distribution (skewness and kurtosis), it is 

realized that the differenced time series is close to normal. It is slightly left-skewed 

which means that the left tail is longer. Skewness involves the third moment of the 

distribution and kurtosis involves the fourth moment. The outliers in the distribution, 

therefore, have even more effect on the kurtosis than they do on the skewness. In a 

symmetric distribution, both tails increase the kurtosis, unlike skewness where they 

offset each other. The mean and standard deviation have the same units as the original 

data, and the variance has the square of those units. However, the kurtosis, like 

skewness, has no units: it is a pure number. The standard value of kurtosis of a normal 

distribution is 3. 

 
Fig. 3.16: Sample autocorrelation function (ACF) and partial autocorrelation function (PACF) plot of 

differenced time series with significance limit of 20% indicated by blue line 
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Table 3.2: Detailed statistics of load time series 

 Original Differenced 

Mean 154581.1 53.40888 

Max 215379.9 45842.8 

Min 123786.5 -49286.9 

Median 149928.9 433.1667 

Standard deviation 20514.4 17879.6 

Skewness 1.015012 -0.10097 

Excess kurtosis 3.449577 3.005507 

  

3.3.3.3 Volatility check and multiplicative error modeling 

Next step in modeling is to check if the differenced time series shows any cluster of 

volatility and satisfy the homoscedastic assumption of constant variance or 

heteroskedastic behavior. It may happen that squared values of the differenced time 

series exhibit significant serial correlation. It means that values are again dependent but 

serially uncorrelated. So, the sample autocorrelation and partial autocorrelation test is 

repeated for squared residual followed by Q-test and DW-test. The tests re-confirm our 

model selection [Ljung & Box, 1978], and the corresponding plot of autocorrelation and 

partial autocorrelation function is shown in Fig. 3.17. 

 
Fig. 3.17: Sample autocorrelation function (ACF) and partial autocorrelation function (PACF) plot of squared 

residuals with significance limit of 20% indicated by blue line 

The ACF and PACF plots in Fig. 3.17 verifies the presence of conditional 

heteroscedasticity and also facilitates in identifying the appropriate model order for de-

seasonalized differenced time series. As stated in [Engle, 2002], generalized 

autoregressive conditional heteroscedasticity (GARCH) models are a form of MEM and 

form the basis of the proposed model. With reference to equation 3.5, if 𝜇𝑡 is the 

conditional expectation of 𝑦𝑡  w.r.t available information (or historical values), its 

parameters can be estimated by specifying a GARCH for the conditional second moment 

of √𝑦𝑡  while imposing its conditional mean to be zero. Reference [Ahoniemi, 2006] 

augmented the regression model with GARCH error modeling, and the same concept is 
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adapted for this study. The standard model common to both the processes and its 

square while rewriting equation 3.5 is: 

 

 𝑍𝑡 = √ℎ𝑡𝑒𝑡 

 

𝑍𝑡
2 = ℎ𝑡𝑒𝑡

2 

(3.11) 

 

In the squared equation, the dependent variable (𝑍𝑡) is non-negative with conditional 

mean ℎ and a non-negative multiplicative error term 𝑒𝑡~𝑖. 𝑖. 𝑑. (0,1) with unit mean. 

This can be estimated by taking the load residual as the dependent variable of a GARCH 

model. The GARCH model is an extension of the ARCH model, in the way that it allows 

current volatility to be dependent on its lagged values directly. For more information on 

ARCH and GARCH, reference [Bollerslev, 1986] is recommended. The model can be 

estimated by taking 𝑍𝑡 as the dependent variable, with specifications of zero mean and 

an error process. In such case, the conditional variance is then the conditional mean of 

𝑍𝑡
2 [Brooks & Oozeer, 2002]. Rewriting equation 3.5, the GARCH model with order 

𝑝 ≥ 0 and 𝑞 ≥ 0 is defined as [Bollerslev, 1986]: 

 

 𝑍𝑡 = √ℎ𝑡𝑒𝑡 (3.12) 

 

 
ℎ𝑡 = 𝛼0 +∑𝛼𝑖𝑍𝑡−𝑖

2

𝑝

𝑖=1

+∑𝛽𝑗ℎ𝑡−𝑗
2

𝑞

𝑗=1

 (3.13) 

 

for the square root of duration, and where 𝛼0 > 1, 𝛼𝑖 ≥ 0 and 𝛽𝑗 ≥ 0 are constants 

with 

 

 
∑𝛼𝑖

𝑝

𝑖=1

+∑𝛽𝑗

𝑞

𝑗=1

< 1 (3.14) 

 

and 𝑒(𝑡) is independent of 𝑍𝑡−𝑘 , 𝑘 ≥ 1. 

Selecting the right order (𝑝, 𝑞) is achieved by following one of the many order 

selection tests. Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) 

tests are chosen in this study. The reasons for choosing the two criterions are that both 

the tests assess the fit between model predicted and original values and penalize 

models with a larger number of parameters. Tests confirmed the use of order (1,1) 

multiplicative error model. Fig. 3.18 shows the innovation plot for a sample size of 101 

(0-80 range shown in Fig. 3.18), and it can be concluded that clusters of volatility appear 
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in a periodic manner.  The innovation is the difference between the observed value of a 

variable at time t and the optimal forecast of that value based on information available 

prior to time t. Thus, the movement of non-linearity is not only dependent on the 

previous values but for the whole time series, it is uncorrelated. Volatility tends to 

cluster into periods with higher and lower volatility. This effect proves that volatility at 

some time must be dependent on its historical values, say with some degree of 

dependence. 

 
Fig. 3.18: Innovation plot showing clusters of volatility (pointers show the clusters) 

After the model order is identified, maximum likelihood estimator is used in 

estimating the parameters. Regardless of the low standard errors, parameter 

estimation is still feasible. As the sample size runs from 𝑁 → ∞, the probability that the 

value of the estimators shows a large divergence from the true (which is unknown) 

parameter values goes to 0, making it a consistent estimator. Estimation is achieved 

with conditional variance ℎ𝑡~𝑖. 𝑖. 𝑑. (0,1) , and with an assumption that error 

distribution follows student t-distribution, a version of the generalized error 

distribution, whose density is given as, 

 

𝑓(𝑥) =
𝑣𝑒

(−
1
2
|
𝑥
𝜆𝜇
|
𝑣
)
1
𝜇

𝜆2(1+
1
𝑣
)Γ (

1
𝑣
)

 (3.15) 

 

where 𝑣 is the positive measure of fat tail, 𝜆 = √2
−(2 𝑣⁄ ) Γ(

1
𝑣⁄ )

Γ(3 𝑣⁄ )
⁄ , and Γ(. ) is the 

gamma function defined as  Γ(𝑥) = ∫ 𝑦𝑥−1𝑒−𝑦𝑑𝑦
∞

0
. This assumption helps in the better 

modeling of excess kurtosis (in Table 3.2). It also approximates the normal distribution 
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as the degrees of freedom grow to infinity. Presence of fat tail is evident from the Q-Q 

plot in Fig. 3.19. 

 
Fig. 3.19: Q-Q plot of residuals 

3.3.4 RESULTS AND ANALYSIS 

Result analysis consists of two parts: first part consist of in-sample model fit using load 

and economic data followed by out-of-sample forecast, and the second part is checking 

directional accuracy by forecasting for the year 2008 during the great economic 

recession. 

3.3.4.1 In-sample model fit and out-of-sample forecast 

A forecast horizon of 4 years is chosen in this study for both in-sample model fit as well 

as out-of-sample forecast. It is based on the assumption that off-shore wind-farm plant 

needs at least 3-4 years for completion, which is itself a long-term grid development 

action [Khuntia et al., 2016a]. For the in-sample model fit, the study embodies fitting 

the MEM using load data and recession data of years 1993-2008 and then evaluating its 

performance on the data set for years 2009-2012. When assessing point forecasts with 

mean square errors, it appears to be useful to use a longer in-sample period for model 

estimation as followed in this study. Fig. 3.20 shows the in-sample model fit for the 

years 2009-2012. It is clear from Fig. 3.20 that the in-sample model fit is below the 

original values for the last three years (2010-2012) but the year 2009. For the year 2009, 

the original values show a lower peak aggregated load as compared to model fit 

prediction. Hereby, it is essential to note that the economy was just reviving after the 

great economic recession of 2008. Thus, the year 2009 shows a lower peak while the in-

sample model fit does not recognize and is higher. However, the model learns and 

consequently the peak is lower. To check the model accuracy, apart from visual 

inspection, an expected loss function is required to assess the model performance and 

check the model accuracy. Use of appropriate loss function also aims at summarizing 

the accuracy of the point estimate and future distribution. The two loss functions used 
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in this research are Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸) and Mean Squared Error 

(𝑀𝑆𝐸), both being unit-free measures. While the optimal point forecast under mean 

absolute error (without percentage) is the median, 𝑀𝑆𝐸 represents the (conditional) 

mean. For two sets of 𝑛-observations (𝑥𝑖,…,𝑛, 𝑦𝑖,…,𝑛), 𝑀𝐴𝑃𝐸 is defined as 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − 𝑥𝑖
𝑦𝑖

|
𝑛

𝑖=1
 (3.16) 

where 𝑦𝑖  is the original monthly aggregated load and 𝑥𝑖  is the predicted monthly 

aggregated load. In-sample model fit accuracy is achieved with MAPE of 4.98%. 𝑀𝑆𝐸 is 

defined as, 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

2

𝑛

𝑖=1

 (3.17) 

The 𝑀𝑆𝐸, a quadratic and symmetric function, is a measure of how close a fitted line is 

to data points. The smaller the 𝑀𝑆𝐸, the closer the fit is to the data. However, studies 

reveal that median error measures are not sensitive [Armstrong and Collopy, 1992]. 

Thus, we employ Root Mean Squared Error (𝑅𝑀𝑆𝐸), which is just the square root of the 

𝑀𝑆𝐸  and it measures the deviation in terms of 𝑀𝑊 . The 𝑅𝑀𝑆𝐸  describes the 

magnitude of the error in terms that would be relatively more useful to decision 

makers. It can be argued that both 𝑀𝐴𝑃𝐸  and 𝑀𝑆𝐸  are less appealing because 

percentages do not have obvious implications for decision making. While 𝑀𝐴𝑃𝐸 is scale 

independent, 𝑀𝑆𝐸 is more sensitive to a few large errors than to many small errors. In 

addition, squared error terms may be more difficult for decision makers to understand. 

The 𝑅𝑀𝑆𝐸 is calculated as the distance, on average, of a data point from the fitted line, 

measured along a vertical line. For in-sample model fit, calculated 𝑅𝑀𝑆𝐸 is 7.7 ×

103𝑀𝑊. 

 
Fig. 3.20: In-sample fit  for years 2013-2016 with a MAPE of 4.98% 



92 

 

No forecasting analysis is complete without performing out-of-sample forecasts. For 

better out-of-sample forecasts, the most crucial choice is splitting the series between 

training and test periods. Unfortunately, no study exists so far that discusses how to 

choose the decision point [Hansen & Timmermann, 2012]. In this study, training dataset 

of 1993-2012 is chosen to forecast the next four years (2013-2016). The accuracy of the 

MEM is improved with backtesting technique where the aim is to achieve a dynamic 

model that can address the future volatilities. With 48 months as forecast horizon and 

monthly timestamp, the MEM is built every month and forecasts ahead 48 months. The 

forecast result compares with original values and averages the error. In such a manner, 

the out-of-sample result improves as the model learns and adapts from past results. Fig. 

3.21 shows the out-of-sample forecast results with MAPE of 7.09% and 𝑅𝑀𝑆𝐸 of 

1.09 × 104𝑀𝑊. A high error percentage as compared to the in-sample model fit is 

understood from the long forecast horizon. 

 
Fig. 3.21: Out-of-sample forecast for years 2013-2016 with 95% confidence interval both upper and lower and 

a MAPE of 7.09% 

To better evaluate the model accuracy, Monte Carlo simulation is run for 500 

sample paths by choosing a confidence interval of 95%. The motivation behind 

calculating range forecasts this way is to evaluate the likelihood that a particular 

forecast will be accurate within a specified confidence bound. In this way, the values 

within the confidence interval of the conditional mean describe the considerable range 

of values of the point on the line. Thus, the conditional mean for all values of time series 

indicates how much the entire MEM prediction can considerably move from sample to 

sample. It eases in predicting the range of likelihood values that an observation in the 

next time step may take. The confidence interval of the out-of-sample forecast presents 

a range for the mean rather than the distribution of individual data points. Fig. 3.21 

shows a comparative analysis of out-of-sample forecast and the Monte Carlo simulation 

results. Both the forecast as well as confidence intervals from the two outputs are 

virtually indistinguishable. To understand the intervals, a value of 0.05 corresponds to 
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predicted upper and lower intervals where there is a 5% chance that original values will 

not be in that range. 

It is implicit that forecast error measure increases with forecast horizon. Thus, to 

check the forecasts, both in-sample model fit as well as the out-of-sample forecasts are 

evaluated by means of their 𝑀𝑆𝐸-values. A comparison of 𝑀𝑆𝐸 for the 48 months 

horizon for both in-sample model fit and out-of-sample forecast is shown in Fig. 3.22. 

The error difference is quite large at the beginning of the horizon and increases in the 

middle, evident in 13-36 months. An exceptional performance of out-of-sample forecast 

is observed when it outperforms the in-sample model fit results. The error comparison 

graph reveals that out-of-sample forecasts better reflect the information available to 

the forecaster in real time. 

 
Fig. 3.22: Comparison of Mean Squared Error (𝑀𝑆𝐸) values for in-sample model fit and out-of-sample forecast 

While evaluating the forecast results, we take a glimpse back at Fig. 3.19 and 

observe that the data is skewed to the right. The Q-Q plot also displays sizeable excess 

kurtosis or fat tails. Also referring to Table 3.2, the high skewness and kurtosis value is 

an indicator of non-normal time series. To verify the claim, Jarque–Bera (JB) test is 

considered in our study. It is usually used for large datasets because other normality 

tests are not reliable for large datasets. The JB-test verifies the null hypothesis 

(𝐻0: 𝑛𝑜𝑟𝑚𝑎𝑙 vs. 𝐻1: 𝑛𝑜𝑛 − 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛). The JB-test statistic is written as 

[Jarque & Bera, 1987]: 

𝐽𝐵 = 𝑁 (
𝑠2

6
+
(𝑘 − 3)2

24
) (3.18) 

where, 𝑁  is the sample size, 𝑠  is the skewness coefficient and 𝑘  is the kurtosis 

coefficient. A value of 1 from JB-test indicates the data is non-normally distributed. The 

residual distribution is fitted with Student’s t-distribution, which has a thicker tail and is 

thus more tolerant of extremes. The study is repeated by including both fat-tails and 
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volatility to verify if the forecast improves and the result is significant. Fig. 3.23 shows 

the forecast for years 2013-2016 with and without accounting for fat-tails. The inclusion 

of fat-tail is significant because it represents a greater likelihood of extreme events 

occurring similar to the financial crisis, also called the black swan event [Taleb, 2007]. 

Some notable features of volatility that should be clearly mentioned are: volatility 

appears in clusters apparent from Fig. 3.19, volatility changes over time and that jumps 

in the volatility are unusual, volatility does not grow to infinity; it rather stay within 

some spans, and the fourth characteristic is that the volatility reacts differently on a 

drop in the demand than it does for an increase in the demand. The estimated MEM 

parameters are shown in Table 3.3. To support the range for in-sample model fit, one of 

the assumptions in the study is that a t-statistic > 2 in magnitude correspond to 

approximately a 95% confidence level. The t-statistic column is the parameter value 

divided by the standard error and is normally distributed for large samples. It measures 

the number of standard deviations the parameter estimate is away from zero. 

 
Fig. 3.23: Forecast for years 2013-2016 with and without incorporating fat-tails 

Table 3.3: Multiplicative Error Model parameters 

Parameter Multiplicative error model values Standard errors t-statistic 

𝛼  1.368271e+07 0.000153268 7.22314e+10 

𝛼1 0.703561 0.012491 40.1238 

𝛽1 0.0241376 0.0201932 1.5713 

  

3.3.4.2 Directional accuracy of forecast methodology 

The second part of result analysis is checking directional accuracy during the year 2008 

when the great economic recession hit the whole world and the U.S. was largely 

affected. Since the data is from U.S. utility, it was decided to check the robustness of 
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the proposed model during that period. The loss functions were used to evaluate the 

accuracy of the proposed methodology. However, their usage does not distinguish the 

direction of errors. In other words, the positive forecast errors (i.e., when historical 

values more than forecasted values) and negative forecast errors (i.e., when historical 

values less than forecasted values) are counted equally in the error metrics. It can be 

agreed that ignoring the direction of errors simplifies the efforts of evaluating 

forecasting accuracy. Nevertheless, it should be noted that the directions of errors often 

have an economic impact in long-term forecast applications. For example, in power 

system planning, positive forecast errors (i.e. historical values more than forecast 

values) can result in planning inadequate capacity and in turn loss of load service. On 

the other hand, negative forecast errors (historical values less than forecast values) can 

result in wasting of resources by deploying more capacity than necessary. Note that 

economic loss corresponding to losing load (due to positive errors) is often different 

from that corresponding to resource wasting (due to negative errors). 

An out-of-sample forecast is performed for the year 2008 with a training dataset of 

years 1993-2007. When economic factors play a pivotal role, the need to study market 

movements is important. Not many forecast studies include the significance of 

directional forecasting and how its accuracy supports the statistical parameters. Fig. 

3.24 shows the two overlapped time series. A long period of uniform load growth was 

interrupted in the early 2000s till mid-2000s.  In fact, the 2000s show two distinct jumps 

in historical load data (seen in Fig. 3.15): one was triggered by energy crisis because of 

fluctuating oil prices, and one was prompted by the great recession of 2008. Since then, 

load growth has regularly displayed volatility relative to the pre-2000s. As the real load 

growth has not changed much over time, still large fluctuations tend to be concentrated 

over somewhat short periods, thus embodying directional accuracy along with 

improved and accurate forecast result is preferred. 

 
Fig. 3.24: Forecast during the great recession of 2008 
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3.3.5 DISCUSSIONS 

This chapter proposes a novel implementation of MEM to forecast electricity load in the 

long-term horizon. The proposed forecasting model aims at accurate forecasting of the 

monthly aggregated load for a horizon of 4 years (or 48 months) and the error metrics 

used in validating the model are mean squared error and mean average percentage 

error. To account for future volatility, the proposed MEM is built upon recession data 

accessed from NBER. MEM is able to model the volatility in time series by accounting 

for conditional variance. The term conditional variance in MEM denotes the 

dependency on past sequence of events and is quite contrasting to unconditional which 

implies long-term behavior assuming null knowledge on past events. Moreover, the 

discovered non-linearity could be well handled using MEM. The two performance 

indicators for this research are: point forecast with a low error percentage as proved by 

mean error metrics for both in-sample and out-of-sample forecasts, and the directional 

accuracy during the great recession. The inclusion of heteroscedastic errors improves 

forecast performance and also shows that it is possible to predict the direction of 

change of residuals in the presence of conditional heteroscedasticity, even if the 

residuals themselves cannot be predicted. 

3.4 CONCLUSIONS 

Till date, research has focused on univariate distributions to model load or wind power, 

and they are univariate because they show the probability density function of only one 

variable. The choice for univariate models is credited with features like easiness to 

ensure robustness. In addition, they are considered to be sufficient for short lead times 

because weather variables like wind and irradiation that affect wind and solar forecast 

tend to change in a smooth fashion over short time frames. The same was witnessed for 

load forecasting in the short-term horizon using a feedforward neural network 

architecture. And to describe the forecast error distribution, section 3.2 proposed 

truncated normal distribution as a suitable option. However, a shortcoming of using 

univariate distribution, keeping future uncertainties in mind, is the fact that one cannot 

catch the dependencies and correlations when the exogenous variables evolve in both 

space and time. Hence, a multivariate modeling approach is required. In simplest words, 

a multivariate model is able to describe the multiple variables (or distributions) which 

can be regarded as a set of univariate distributions. In such cases, univariate distribution 

is called marginal distribution while the multivariate distribution is named as joint 

probability distribution because it reveals the joint probability density function. In the 

next chapter, marginal distributions comprising of load and wind power are modeled as 

joint probability distribution using vine copula. 
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It was learned that distributions of load are usually fat-tailed and skewed and the 

same follows for wind power which will be discussed in the next chapter. In building a 

multivariate dataset of load and wind power, it can be well understood that the 

marginal distributions do not conform to normality assumption and the dependencies 

between the variables are misleading too. Thus, the normal assumption of correlation 

coefficient to calculate the dependence between two variables is challenged. 

Moreover, learning dependencies over correlation is important when modeling 

multiple variables that evolve in both space and time. Few limitations of correlation 

coefficient are identified as: 

i. The correlation coefficient measures the linear association between random 

variables. It fails to capture the non-linear dependencies that exist between 

load and wind power. 

ii. As correlation is described as a scaled covariance, the correlation coefficient is 

always influenced by the distribution of marginals. 

iii. Correlation expresses the dependence numerically as a number rather than 

describing it as some function to illustrate the non-linear association. 

iv. Lastly, a correlation coefficient of one does not indicate a positive dependence 

and a zero correlation does not indicate independence. 

Based on the limitations, the next chapter introduces the spatio-temporal 
dependence modeling of load and wind power as a multivariate model using vine 
copula. 
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CHAPTER 4 

SPATIO-TEMPORAL MODELING OF LOAD 

AND WIND POWER 

4.1 INTRODUCTION 

This chapter aims at answering the third research question Q.3., which deals with 

spatio-temporal modeling of load and wind power as a joint probability distribution for 

the short-term horizon, 

 How should load variability and wind power generation for spatially distributed 

locations in a large-scale system be modeled? 

 How can both spatial as well as temporal correlations be effectively addressed? 

 How can high dimensional data be accounted for when the future will be data-

centric? 

The content of this chapter is based on research papers [Khuntia et al., 2018a, 

Khuntia et al., 2018b]. Spatial distribution of WPPs and load centers make it plausible to 

study the inter-spatial dependence and temporal correlation for the effective working 

of the power system. Both load and wind power, are characterized by uncertainty and 

variability that are also identified as two future bottlenecks. In this chapter, the concept 

of vine copula is introduced to model spatio-temporal dependence efficiently. Use of 

vine copula facilitates building multi-dimensional copulas out of bivariate copulas as 

they are easy to estimate and are well understood. Hourly resolution of load and wind 

power data obtained from a U.S. regional transmission operator spanning three years 

and spatially distributed in nineteen load and two wind power zones are considered in 

this research. Data collection, in terms of dimension, tend to increase in future and to 

tackle this high dimensional data, a reproducible sampling algorithm using vine copula is 

developed. The sampling algorithm employs 𝑘-means, Gaussian Mixture Model (GMM) 

and hierarchical linkage clustering techniques along with singular value decomposition 

technique to ease the computational burden. Selection of appropriate clustering 

technique and copula family is realized by the Goodness of Clustering (GoC) and 

Goodness of Fit (GoF) tests. The chapter concludes with a discussion on the importance 
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of spatio-temporal modeling of load and wind power and the advantage of the 

proposed sampling algorithm using vine copula. 

The rest of this chapter is organized as follows: sub-section 4.2 presents a 

background on spatio-temporal modeling of load and wind power till date and why 

there is a need for a joint probability distribution. Sub-section 4.3 introduces copulas 

and vine copulas for spatio-temporal modeling. Sub-section 4.4 presents the modeling 

framework using vine copulas and explains each step lucidly with simulation results. 

Finally, sub-section 4.5 concludes the chapter. 

4.2 BACKGROUND 

The future sees tremendous renewable energy in-feed to the existing electric grid 

network at both transmission and distribution level. This is accompanied by uncertainty 

in load growth for which TSOs have to prepare the system in a secure and adequate 

manner where the key performance indicator is the security of supply. In accordance to 

the Paris Agreement 2016 [Web2, 2016], the move from conventional energy (fossil fuel 

and nuclear power plants) towards renewable energy is adopted globally. Trying to tap 

more of renewable energy into the existing grid is however challenging, pertaining to its 

irregular availability, variability, and link to varying atmospheric factors. For instance, to 

increase the utilization of renewable energy, it is understood that investments in wind 

farms are concentrated at locations with higher average wind speeds and solar farms at 

locations with higher average solar insolation. TSOs have to cautiously evaluate 

operation as well as future planning when power output fluctuations occur for such 

spatially distributed systems. An accurate knowledge of time and spatial features is then 

beneficial to model the behavior of the power system under different RES penetration. 

Wind generation is driven by wind patterns, which tend to follow certain 

geographical spatial correlations. Till date, modeling of wind power focused on a single 

wind farm (or aggregation of wind power in single WPP). In this manner, they do not 

account for potential information from neighboring sites, for example, other WPPs or 

meteorological stations. Spatial modeling is vital when wind power error in a WPP 

might propagate to WPPs in other locations during the following period when they are 

affected by same meteorological factors. As a massive integration of wind power is 

witnessed in Europe and U.S., considering inter-spatial dependence along with temporal 

correlation is important for wind power modeling. Load modeling follows the same path 

and to understand we consider aggregated load forecast of a load zone. For load 

modeling with historical data for a specific temporal scale, it is likely to obtain the 

forecasts between the maximum and minimum values of the training set. Between the 

two extrema, there might be some hot or cold days which went unnoticed in the 

training set. But, if we include the historical data from the closest load zone, there is a 

high possibility that the hot and cold days are taken into consideration. This is because 
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electricity load is affected by weather parameters and, hence, the energy usage of 

adjacent load zone is also taken into the new training set. 

It is evident that incorporating inter-spatial dependence can help improve the 

modeling accuracy and thus the trend has been towards exploiting all of the available 

data in modeling. The first step is to obtain a tractable model that captures the 

uncertainties and correlations among the exogenous variables. 

Before we dive into details, it is to be noted that, 

 This research is performed at the transmission level and assumed that WPPs are 

connected to the transmission system. Hence, aggregated zonal load and wind 

power are our exogenous variables. 

 The spatio-temporal model presented in this research is aimed at short-term 

power system application such as the static security assessment. 

 It is intended that solar power and other DERs are concentrated at the 

distribution level and, thus, excluded in this research. 

 Interaction of transmission and distribution system operators is excluded from 

this research. 

 The terms dependence and correlation are used frequently. Correlation is a 

natural dependence measure for a multivariate dataset. Specifically, in this 

research, dependence refers to a non-linear association that exists between load 

and wind power as both spatial and temporal aspect is considered. However,  

correlation is used to describe the dependence and for further reading, 

reference [Embrechts et al., 2002] is recommended. 

4.2.1 BRIEF BACKGROUND ON SPATIO-TEMPORAL STUDY OF LOAD 

The spatio-temporal features of electricity load can be explained by two underlying 

spatio-temporal processes, namely weather and human activities [Shi et al., 2017]. The 

weather of adjacent neighborhoods or cities tends to be more alike than those far 

apart. Similarly, human activities in adjacent neighborhoods tend to be highly 

correlated. Electricity load has a long-anticipated factor due to its very strong 

seasonality feature, i.e., daily, weekly, and monthly, along with weather-based variation 

although the weather-based variables that affect load can differ according to location. 

Accounting for temporal correlation is explained by relatively regular load profiles which 

is an outcome of aggregation of a large number of loads. This is referred to as seasonal 

or temporal component. Due to the fact that electricity load has seasonal or temporal 

component, most previous studies aimed at modeling temporal correlation while 

overlooking spatial correlation among load variation in different zones. [Melo et al., 

2014] performed spatial load forecasting to determine spatial resolution. In a previous 

study, [Melo et al., 2012] study the distribution of load variability in a city and the 

relationships among different areas into account. Considering spatio-temporal aspect of 
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electricity load will result in more accurate modeling. It will be possible to realize 

extreme values beyond a fixed target load from the training spatio-temporal dataset 

which results from different load profiles in different zones. Most of spatio-temporal 

studies focused at distribution level where the target is residential homes and data is 

collected from advanced metering infrastructure (AMI) [Tascikaraoglu & Sanandaji, 

2016] and without the use of AMI [Shin et al., 2011]. A dynamic spatio-temporal model 

was developed in [Shi et al., 2017] taking Southern California’s electricity load time 

series. However, this research aims at presenting a viewpoint and criticality of spatio-

temporal modeling from the transmission level. 

4.2.2 BRIEF BACKGROUND ON SPATIO-TEMPORAL STUDY OF WIND POWER 

Stochasticity of wind makes it difficult to predict accurate wind power output by only 

considering temporal wind behavior when it is affected by other geographical and 

technical factors like wind farm topology and wind turbine characteristics [Lenzi et al., 

2017]. As such, it is a common belief among researchers that for the spatial pattern, the 

dependence is relatively stronger for elements that are closer to each other [Osborn et 

al., 2011]. The stochastic and variable nature of wind power has its implications on 

power system reliability, spinning reserve, and to some extent on operating cost. 

Literature study reveals that inter-spatial dependence and temporal correlation was 

studied separately until recently [Louie, 2014a, Haghi & Lotfifard, 2015, Malvaldi et al., 

2017, Wei et al., 2017]. A spatial study of wind power in different zones in UK was 

studied in [Miranda & Dunn, 2007] using a multivariate regression model. The study 

showed a multivariate time series model for real wind speed data from multiple sites is 

complicated in nature, particularly the presence of a large number of wind sites. 

Reference [Maisonneuve & Gross, 2011] proposed a wind regime model for planning 

studies. The study aimed at modeling both seasonal and diurnal trends of wind power 

and its correlation to the same trends of electricity load. In the temporal aspect, 

transformation and standardization of non-Gaussian and non-stationary characteristics 

of wind power are studied in [Brown et al., 1984Torres et al., 2005] by application of 

regression models. Use of copula for spatio-temporal scenario studies is reported in 

[Tastu et al., 2013] and more discussion is followed in section 4.3. Reference 

[Papavasiliou et al., 2015] address spatial correlation for wind power modeling using a 

noise vector based regression model in an attempt where a single multivariate time 

series model is decoupled into distinct univariate time series models. In a large 

clustered  WPP, spatio-temporal correlations of wind have significant impacts on the 

overall uncertainty of wind power outputs [Wan et al., 2003]. Such erratic characteristic 

has significant impact on power system planning and operation [Miettinen & Holttinen, 

2017]. 
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4.2.3 BRIEF BACKGROUND ON SPATIO-TEMPORAL STUDY OF LOAD AND WIND 

POWER 

It was learned that load data exhibits strong seasonality that favored temporal 

correlation studies. In reality, an easy and effective load prediction for tomorrow can be 

realized by using historical load data from the same day of week or month. This is based 

on studying large autocorrelations between the same days of the week or month. Such 

a dependence characteristic is also observed in spatial data. A similar spatial pattern 

among wind power data favored spatial correlation studies for wind power. Not to be 

forgotten that meaningful correlation exists between load and wind power because 

both are significantly affected by weather. A suitable spatio-temporal multivariate 

model should capture both inter-spatial dependence as well as temporal correlation 

embedded in the multivariate dataset. Capturing the inherent dependence between 

load and wind power in different temporal and spatial context is achieved by adopting a 

multivariate modeling approach. There is an immediate need for the development of 

spatio-temporal modeling of load and wind power as joint normal distribution for three 

reasons. Firstly, inter-spatial dependence and temporal correlation of load and wind 

power in any considered site are important. From sub-sections 4.2.1 and 4.2.2, the 

literature study revealed consideration of load and wind power as independent 

variables and also some instances of temporal or spatial correlation. However, there are 

no significant findings that investigate the spatio-temporal dependence of these two 

exogenous variables. Secondly, a suitable spatio-temporal modeling approach will 

facilitate improving both short-term operational planning and long-term grid 

development of power grids. For instance, in short-term operational planning, an 

accurate spatio-temporal modeling can help the TSO in assessing system security in 

terms of asset overloading or reducing operational costs by using forecast values for 

unit commitment or reducing wind curtailment. Similarly, in terms of long-term 

planning, accurate modeling can result in assessing grid development plans to answer 

the load growth or massive generation of wind power. For example, in this research, 

control area of U.S. regional transmission operator is considered (more details about 

the dataset follow later in section 4.4). As of 2016, 1GW of installed wind power along 

with other generation sources serve large load centers along the east coast and mid-

western region [Web6, 2018]. Under the renewable portfolio standard, 11.3% (32GW) 

and 13.9% (42GW) of the total load are expected in the years 2021 and 2026 in the 

form of massive integration [Web7, 2018]. A map of future wind farm projects is shown 

in Fig. 4.1 [Web8, 2018]. Lastly, a suitable spatio-temporal multivariate model can 

generate a rich synthetic database of normally distributed load and wind power data. 

Such a database will be of immense help to research community and industry as well to 

develop other statistical tools. Examples of online tools to visualize the most promising 

areas where wind farms can be profitably installed are IRENA [Web10, 2018] global 

atlas and NREL’s [Web11, 2018] wind prospector. However, the data extracted from 
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these wind atlases lack the clarity when they are used to learn the behavior of power 

system operation in shorter time-horizons (15 mins or 1 hour). 

 

 

 

Fig. 4.1: Map of future wind farm projects under one of the US regional transmission operator (blue shade is 

the control area and red dots are the planned wind farms) 

The key contributions of this chapter can be listed as: 

 The chapter discusses the work performed till date on spatio-temporal modeling. 

Also, it reviews the challenges associated with multivariate modeling while 

serving as a short literature study for future research work. 

 A detailed framework of copula and vine copula is presented. A first-hand 

application of vine copula to address spatio-temporal correlation is described in 

this work. 

 It is intended that future power system will be data-centric and collecting data 

from stochastic sources in terms of spatial and temporal resolution will result in 

a high dimensional database of varied features. This huge chunk of data, referred 

to big data, is explored in electric power systems in terms of big data analytics. 

To address the need for such analytics, this chapter presents a suitable statistical 

approach, which is indeed required to study the dependence among the 

multivariate variables. As a solution, this research developed a reproducible vine 

copula-based sampling algorithm using clustering and feature extraction 

technique to tackle the high dimensional data. 

 A reproducible sampling algorithm to model spatio-temporal correlation using 

canonical vine is developed. A spatio-temporal vine copula is employed to model 

a spatio-temporal dataset of size, say 𝑛 + 1, which is composed of one central 

location and its 𝑛-neighbors in space and time. The first tree of the vine is 

realized by spatio-temporal bivariate copulas, reflecting the fact that the 

dependence structure changes over space and time. And the selection of 
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bivariate copulas is an added benefit of spatio-temporal vine copulas. Bivariate 

spatio-temporal copulas are a convex combination of different copula families 

that are parameterized by spatial and temporal distance (also called marginal 

distributions or conditional bivariate distributions). The remainder of the vine, 

i.e. the vine of the variables conditioned under the value of the central location, 

is modeled as a 𝑛-dimensional vine. 

4.3 SPATIO-TEMPORAL MODELING USING COPULA AND VINE COPULA 

A suitable spatio-temporal model should be developed such as to capture both inter-

spatial dependence as well as temporal correlation embedded in the multivariate 

dataset. To realize such a model, the modeling framework can be divided into four 

major tasks: 

 Understanding spatio-temporal covariance and correlation 

 Modeling one-dimensional marginal distributions 

 Modeling stochastic dependence using copula 

 And, spatio-temporal modeling using vine copula 

While the first task involves understanding the concept of spatio-temporal 

covariance and correlation, the rest three tasks focus on modeling. Apparently, it is 

important to capture these three modeling aspects. For example, if the marginal 

distributions remain the same, the joint probability distribution can change due to 

changes in the dependence structure. Obtaining the right joint distribution given the 

marginals is, however, a non-trivial problem, since there exist an infinite number of joint 

distributions with the same marginals, corresponding to an infinite number of stochastic 

dependence structures between the random variables, i.e., load and wind power. The 

next sub-sections elaborate on the four major tasks. 

4.3.1 UNDERSTANDING SPATIO-TEMPORAL COVARIANCE AND CORRELATION 

It is important to describe and understand the concept of spatio-temporal covariance 

and correlation structure for dependence modeling of multivariate time series. 

Covariance is a measure to indicate the extent to which two random variables change 

in tandem while correlation is a special case of covariance and defined as a measure to 

represent how strongly two random variables are related. Correlation matrix is 

calculated when the considered variables are not comparable. Otherwise, the input 

data must be normalized, and then the normalized covariance matrix can be used. 

However, choosing covariance over correlation is advantageous as it remains 

unaffected by the change in space and time. Such a characteristic is useful in spatio-

temporal studies. 
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The spatio-temporal dependencies at different lags can be computed by the 

empirical spatio-temporal covariance function as explained in [Cressie & Wikle, 2015]. 

For any spatial lag ℎ  and time lag 𝜏 , the estimated empirical spatio-temporal 

covariance 𝐶𝑜𝑣𝑒𝑚𝑝  is written as, 

𝐶𝑜𝑣𝑒𝑚𝑝(ℎ; 𝜏) = 

                  
1

|𝑁𝑠(ℎ)|

1

|𝑁𝑡(𝜏)|
∑ ∑ (𝑦𝑠𝑖(𝑡) − �̂�𝑠𝑖) (𝑦𝑠𝑗(𝑟) − �̂�𝑠𝑗)

𝑡,𝑟∈𝑁𝑡(𝜏)𝑠𝑖,𝑠𝑗∈𝑁𝑠(ℎ)

 (4.1) 

where, 

 
�̂�𝑠 =

1

𝑇
∑𝑦𝑠(𝑡)

𝑇

𝑡=1

  

𝑁𝑠(ℎ) refers to the pairs of spatial locations with spatial lag ℎ, 𝑁𝑡(𝜏) refers to the pairs 

of timestamp pairs with time lag 𝜏, and |𝑁(∙)| refers to the cardinality of the set 𝑁(∙). 

𝑦𝑠(𝑡) is the seasonality differenced random variable at any two spatial locations 𝑠𝑖 

and 𝑠𝑗  at timestamp 𝜏  and 𝑇  is the total number of timestamps. In this study,  

Equation 4.1 is valid for time series that are stationary both in space and time. Hence, 

an adequate differencing operation is required to make the original time series 

stationary. The empirical (also stationary) spatio-temporal correlation 𝜌𝑒𝑚𝑝 at spatial 

lag ℎ and time lag 𝜏 is then written as, 

 

𝜌𝑒𝑚𝑝(ℎ; 𝜏) =
𝐶𝑜𝑣𝑒𝑚𝑝(ℎ; 𝜏)

𝐶𝑜𝑣𝑒𝑚𝑝(0; 0)
 (4.2) 

In equation 4.1, the spatial lag ℎ  between any two spatial locations 𝑠𝑖  and 𝑠𝑗  is 

calculated as [Cressie & Wikle, 2015], 

 

ℎ = ⌈
𝑑(𝑠𝑖 , 𝑠𝑗)

𝑀𝑎𝑥𝐷𝑖𝑠𝑡
× 𝑀⌉ (4.3) 

where, 𝑑(𝑠𝑖 , 𝑠𝑗) is the geographical distance between any two spatial locations 𝑠𝑖  and 

𝑠𝑗, 𝑀𝑎𝑥𝐷𝑖𝑠𝑡 is the maximum geographical distance between the two spatial locations 

and 𝑀 is the maximum spatial lag. 

4.3.2 MODELING ONE-DIMENSIONAL MARGINAL DISTRIBUTIONS 

Within the framework of multivariate distribution, the univariate distribution is called 

marginal distribution while the multivariate distribution is named as joint probability 

distribution because it reveals the joint probability density function. The one-
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dimensional marginal distributions, also called the marginals, capture the stochastic 

behavior of the individual random variable 𝑋. The marginal cumulative density function 

(𝐶𝐷𝐹) of 𝑋 is defined as: 

 
𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) (4.4) 

An important property of 𝐶𝐷𝐹 is that the cumulative distribution function of 𝑋 applied 

to 𝑋 itself yields a uniformly distributed random variable. Mathematically, it can be 

written as [Kurowicka& Cooke, 2006]: 

 

𝐹𝑜𝑟 𝑥𝜖[0,1]: 𝑃(𝐹𝑋(𝑋) ≤ 𝑥) = 𝑃(𝑋 ≤ 𝐹𝑋
−1(𝑥)) = 𝐹𝑋[𝐹𝑋

−1(𝑥)] = 𝑥 (4.5) 

It is to be noted that equation 4.5 forms the base of Monte-Carlo sampling method. 

And, a numerical simulation technique like Monte-Carlo approach is generally applied in 

order to explore and exploit the impacts of wind power uncertainty on the power grid 

whilst considering load. However, this creates a heavy computational burden due to the 

necessarily large sample size and hence it is not preferred in this research. Now, using 

equation 4.5, sampling a random variable 𝑋 with 𝐹𝑋 can be performed by first sampling 

a random realization 𝑦 from a uniform random variable 𝑌 in [0,1], and then applying 

the transformation 𝑥 = 𝐹𝑋
−1(𝑦). In such case, the samples 𝑥 follow the distribution 𝐹𝑋. 

It can be extended for sampling from real measured data by using the empirical 𝐶𝐷𝐹. 

The sampling method in equation 4.5 is effective for sampling any single random 

variable whose 𝐶𝐷𝐹 is known. When multiple correlated random variables need to be 

sampled, this methodology is inadequate since it does not capture any measure of the 

dependence between the random variables. However, the marginal 𝐶𝐷𝐹𝑠 are still 

important as will be seen in the next section when copula is introduced. 

4.3.3 MODELING STOCHASTIC DEPENDENCE USING COPULA 

In multivariate analysis, modeling stochastic dependence is a challenging task because 

the variables within the multivariate dataset do not always have standardized marginal 

distributions. To answer such challenge, one solution is that the dependence between 

multiple correlated random variables can be captured by different measures of 

dependence. For general multivariate random variables, Spearman’s rank coefficient 

can be used to study the non-linear, monotonic relationship between two random 

variables [Embrechts et al., 2001]. Spearman’s rank coefficient helps in defining the 

dependence structure based on rank with specific functions, called copula functions. 

Copulas are functions that couple the marginal distribution functions of the random 

variables into their joint distribution function and therefore describe the dependence 

structure between these random variables [Sklar, 1959]. Using copula functions, it is 

possible to simulate two random variables that are correlated according to rank 
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correlation by first simulating a copula and later transforming the obtained ranks into 

respective marginals. 

The name copula has its origin from Latin word which means “bond“ or “couple“. 

Thus, copulas are functions that couple multivariate distribution functions to their one-

dimensional uniform marginal distributions functions [Nelsen, 2007]. And the 

advantage is that the joint distribution function is built based on two independent tasks 

comprising the modeling of the dependence and the modeling of the marginal 

distribution functions. Use of copula is not new in the field of electric power systems. 

Literature study reveals the use of Gaussian copulas to evaluate short-term scenarios 

for wind power generation [Pinson & Girard, 2012, Hagspiel et al. 2012], wind power 

forecasting error [Wei et al., 2017], transmission network planning [Park et al., 2015] 

and empirical copulas for modeling the dependence structure between the wind speed 

and the wind power output [Gill et al., 2012]. 

Copulas are used to describe the dependence between random variables and they 

need to be both estimated as well as calibrated. By definition, two random variables 𝑋 

and 𝑌 with 𝐹𝑋, 𝐹𝑌 are joint by copula 𝐶 if their joint distribution can be written as 

[Morales et al., 2008]: 

 
𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) (4.6) 

The function 𝐶 is therefore defined on uniformly random variables, and the 𝐶𝐷𝐹s can 

be used to map the uniformly random variables to 𝑋 and 𝑌. A copula is a probability 

distribution function, which is used to join or combine several marginal distributions 

into a joint distribution. The foundation theory of copula is based upon Sklar’s theorem 

[Sklar, 1959]. Let 𝑋 = {𝑋1, 𝑋2, 𝑋3…𝑋𝑛}  be a 𝑛-dimensional random vector with a 

continuous marginal 𝐶𝐷𝐹 {𝐹1, 𝐹2, 𝐹3…𝐹𝑛}. The relationship between multivariate 𝐶𝐷𝐹 

𝐻 of 𝑋 is written as: 

 

𝐻(𝑋) = 𝐶(𝐹1(𝑋1), 𝐹2(𝑋2), … , 𝐹𝑛(𝑋𝑛))    𝑋 ∈ 𝑅
𝑛 (4.7) 

where unique function 𝐶: [0, 1]𝑑 → [0, 1] is called the copula. A function 𝐶: [0,1]𝑛 →

[0,1] is called an 𝑛-dimensional copula if it satisfies the following conditions: 

 𝐶(𝑢1, … , 𝑢𝑛) is increasing in each component 𝑢𝑖. 

 𝐶(𝑢1, … , 𝑢𝑘−1, 0, 𝑢𝑘+1, … , 𝑢𝑛) = 0 for all 𝑢𝑖𝜖[0,1], 𝑖 ≠ 𝑘, 𝑘 = 1,… , 𝑛. 

 𝐶(1, … ,1, 𝑢𝑖 , 1, … ,1) = 𝑢𝑖 for all 𝑢𝑖𝜖[0,1], 𝑖 = 1,… , 𝑛. 

 For all (𝑎1, … , 𝑎𝑛), (𝑏1, … , 𝑏𝑛)𝜖[0,1]
𝑛 with 𝑎𝑖 < 𝑏𝑖, 
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∑…

2

𝑖1=1

∑(−1)𝑖1+⋯+𝑖𝑛𝐶(𝑥1𝑖1 , … , 𝑥1𝑖𝑛) ≥ 0

2

𝑖𝑛=1

 (4.8) 

where 𝑥𝑗1 = 𝑎𝑗  and 𝑥𝑗2 = 𝑏𝑗  for all 𝑗𝜖{1, … , 𝑛}. 

For a thorough understanding, it is advised to follow [Patton, 2009] which reviews 

the use of copulas in econometric modeling and Genest et al. [Genest et al., 2009] for 

an elaborate bibliometric overview of copulas. Algorithm 4.1 describes the steps to 

sample two random variables using copula. 

 

Algorithm 4.1:  Sampling of two correlated random variables using copula 

 Inputs: Two uniform independent random variables 𝑈𝑟1, 𝑈𝑟2 (say load and wind power), correlation 

coefficient, copula function.  

 Outputs: Sampled distributions 

1 Sample two uniform random variables 𝑈𝑟1, 𝑈𝑟2, and obtain the realizations 𝑢𝑟1, 𝑢𝑟2.  

2 𝑢1 = 𝑢𝑟1: presents sampling of the rank distribution 𝑈1 

3 Calculate copula function 𝐶12|𝑢1,𝜌𝑟12, i.e., the conditional distribution of 𝑈2 for rank correlation 𝜌𝑟12 and 

given 𝑢1. 

4 Sample the rank distribution 𝑈2: 𝑢2 = 𝐶12|𝑢1,𝜌𝑟12
−1 (𝑢𝑟2), using the inverse copula function. Outcome can 

be either 0 or constant, depending on the value of independent sample 𝑢𝑟2  

5 Transform the rank distributions according to the marginals: 𝑥1 = 𝐹1
−1(𝑢1) and 𝑥2 = 𝐹2

−1(𝑢2) 

6 End 

 

Note that for a given rank coefficient, different copula functions can be used. A 

particular instance of Algorithm 4.1 is the use of a Gaussian copula. When using the 

Gaussian copula, the overall method in Algorithm 4.1 is called the joint normal 

transform [Papaefthymiou & Kurowicka, 2009]. The mean of the Gaussian copula is zero 

and the covariance matrix is: 

 

 𝑅 = (
1 𝐶𝑜𝑣
𝐶𝑜𝑣 1

) (4.9) 

 

A property of the Gaussian copula is that the covariance 𝐶𝑜𝑣 can be computed from the 

rank correlation of  𝑋 and 𝑌 as follows: 

 

𝐶𝑜𝑣 = 2𝑠𝑖𝑛 (
𝜋

6
𝜌𝑟(𝑋, 𝑌)) (4.10) 

 

Note that 𝐶𝑜𝑣 is not the covariance between 𝑋 and 𝑌 but the covariance used in the 

Gaussian copula. The equation above links this covariance with the rank coefficient of 𝑋 

and 𝑌. The above procedure describes the joint normal transform for two random 
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variables. The procedure can be generalized to n random variables by applying the 

above to all pairs of random variables. The resulting Gaussian copula will be n-

dimensional. The application of joint normal transform can be used for any system with 

following data availability: 

 Marginal distributions: The system load distribution, wind speed distributions 

and solar power generation at each generation node of the system. 

 Dependence structure: The product moment correlation matrix is calculated 

from the rank correlation matrix, between all pairs of exogenous parameters. 

For spatio-temporal modeling, we first discuss the possibilities of using copula and 

its limitations for multivariate correlated variables. Algorithm 4.1 works adequately 

when all required data is available because it is needed to calculate the correlation and 

then later use copula to model the stochastic dependence. In reality, not all required 

data is available. The reason can be anything from bad measurement devices to 

confidential information or just ‘stochasticity’. When the problem involves high 

uncertainty, mutual correlations between the stochastic inputs is not possible and 

hence the joint normal transform is not recommended.  However, in such cases, we 

typically try to capture the most important dependence relations and leave others 

unspecified. 

For temporal studies, statistical dependence is revealed through correlations. The 

linear correlation coefficient measures the linear association in the interval [−1,1] 

[Embrechts et al., 2001], and it is a measure of linear association which is invalid for 

spatio-temporal studies. Reference [Le et al., 2015] showed that for wind power, linear 

correlation coefficients fail to provide sufficient information on the temporal scale 

about the total generation whether it will be at par the threshold or not. This is because 

dependence relations are non-linear even when coupled with data on the marginal 

distributions of wind power at each wind farm sites. Therefore, being able to calculate 

the dependence in wind power independent of marginal distributions is of great 

advantage for system planners as it allows modeling wind power generation more 

accurately. Such bottlenecks associated with the linear correlation coefficient are 

answered with copulas.  

A big advantage of copulas over correlation is modeling fat-tailed distributions, as it 

is not possible in terms of correlations because the variance of such distributions can be 

infinite. The fat-tailed character of marginal distributions of load time series is 

established and discussed in chapter 3. The stronger tail dependence, as well as skewed 

behavior of time series, can be easily justified with copulas. Tail dependence measures 

how large the distribution is when multiple time series have extremely large values. 

Copulas can be used to exploit this kind of distribution, which is basically the 

dependence between two random variables in the upper-right and lower-left quadrants 

of their domains [Nelsen, 2007]. 
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Copula estimation is tricky in higher dimensions. The selection of an appropriate 

copula function is very important, as inappropriate selection can lead to unacceptable 

errors. Of all copulas, the Gaussian copula is the most commonly used copula due to its 

computational convenience. However, in this study, a more comprehensive approach is 

adopted by first testing a number of standard copulas on multivariate datasets as 

presented in [Louie, 2014b]. A bottleneck encountered with copulas is that they 

perform better for bivariate distributions and that the individual pattern of chosen 

random variables must be described by the same parametric family of univariate 

distributions. Moreover, multivariate copulas are neither good; hence, vine copulas are 

preferred as they allow a more flexible dependence structure. 

4.3.4 SPATIO-TEMPORAL MODELING USING VINE COPULA 

Vines are a representation of high dimensional copulas that are constructed from a 

sequence of nested bivariate copula components called ‘pair-copulas’. They are flexible 

because any combination of bivariate copulas can be used for the pair-copulas. Vine 

copula models decompose a multivariate copula into a set of bivariate copulas and each 

bivariate copula can be described as a branch of a graph connecting two consecutive 

marginal distributions or their conditional bivariate distributions. The multivariate 

distribution is a combination of univariate marginal distributions and the distribution of 

the copula. This is a more practical way to represent high dimensional copula problems. 

Vine copulas allow to flexibly combine bivariate copulas to form multivariate copulas 

leading to distributions of higher dimensions, thus, allowing to build vine copulas that 

are aware of separating distances across space and time. To achieve this, the building 

blocks of vine copula are composed out of convex combinations of bivariate copulas. 

The weights of the convex combination as well as the copulas’ parameters are defined 

by the distance over space and time, thus modeling spatial and temporal correlation. 

This explains the motivation to use vine copula for spatio-temporal modeling of non-

Gaussian datasets, where the non-Gaussianity not only refers to marginal distributions 

but also to the dependence structure between locations. 

Vine copula follows a nested tree structure with edges and nodes. By definition, a 

vine copula on 𝑛 variables is a nested set of trees 𝑇𝑗  where the edges of the 𝑗𝑡ℎ  tree 

become the nodes of the (𝑗 + 1)𝑠𝑡 tree for 𝑗 = 1,… , 𝑛. In general, vine decompositions 

are referred to as regular vines (𝑅-vines). A regular vine on 𝑛 variables is defined as a 

vine in which two edges in tree 𝑗 are joined by an edge in tree 𝑗 + 1 only if these edges 

share a common node. Each edge in the regular vine may be associated with a 

conditional rank correlation and a copula, and each node with a marginal distribution. 

All assignments of rank correlations to edges of a vine are consistent and each one of 

these correlations may be realized by a copula. Based on the bivariate and conditional 

bivariate distributions, the joint distribution can be constructed. Use of vine copulas to 
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tackle power system uncertainty is reported in [Sun et al., 2016, Sun et al., 2017, Wang 

et al., 2018a] and probabilistic forecast for multiple wind farms in [Wang et al., 2018b]. 

A regular vine can be decomposed to either, 

i. 𝐷 (drawable) – vine where each node in 𝑇𝑗  has a degree of at most 2 and 

conditioning is done sequentially, or; 

ii. 𝐶 (canonical)  – vine in which each tree 𝑇𝑗  has a unique node of degree 𝑛 − 𝑖 

where the first variable is used as a conditioning variable for the following ones. 

1 2 3 4
2,1 3,2 4,3

13|2 24|3

14|23

 
Fig. 4.2: 𝐷-vine on four variables 

In 𝐷-vine, conditioning is performed sequentially whereas in 𝐶-vine the first variable 

is used as conditioning variable for the following ones. Fig. 4.2 shows the 𝐷-vine on four 

uniform variables labeled 𝑋1, 𝑋2, 𝑋3, 𝑋4.  Distributions specified by conditional rank 

correlation on a 𝐷-vine can be sampled, and an algorithm to execute it is presented in 

Algorithm 4.2, which can be expanded from 4 to 𝑛 variables. The algorithm involves 

sampling four independent uniform [0,1]  variables 𝑈1, 𝑈2, 𝑈3, 𝑈4 . The conditional 

correlation between variables (𝑖, 𝑗) given 𝑘 is given as 𝜌𝑟𝑖𝑗|𝑘. The 𝐶𝐷𝐹 for 𝑋𝑗  given 𝑈𝑖  

under the conditional copula with correlation 𝑟𝑖𝑗|𝑘 is given as 𝐹𝜌𝑟𝑖𝑗|𝑘;𝑈𝑖
(𝑋𝑗). 

 

Algorithm 4.2:  Sampling of 4 uniform random variables using 𝐷-vine 

 Inputs: Four uniform random variables {𝑋1, 𝑋2, 𝑋3, 𝑋4}, conditional rank correlations and corresponding 

CDFs ({𝐹1, 𝐹2, 𝐹3, 𝐹4)  

 Outputs: Sampled distributions 

1 𝑥1 = 𝑢1.  

2 𝑥2 = 𝐹𝜌𝑟12;𝑥1
−1 (𝑢2).  

3 𝑥3 = 𝐹𝜌𝑟23;𝑥2
−1 (𝐹𝜌𝑟13|2;𝐹𝜌𝑟12;𝑥2(𝑋1)

−1 (𝑢3)).  

4 𝑥4 = 𝐹𝜌𝑟34;𝑥3
−1 (𝐹𝜌𝑟24|3;𝐹𝜌𝑟23;𝑥3(𝑋2)

−1 (𝐹𝜌𝑟14|23;𝐹𝜌𝑟13|2;𝐹23;𝑥2(𝑥3)
(𝐹𝜌𝑟12;𝑥2

(𝑥1))

−1 (𝑢4)))  

5 End 
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Fig. 4.3: 𝐶-vine of CDF (𝑢 𝜖 [0,1]) with five trees 

Fig. 4.3 illustrates a graphical representation to represent the joint density 

decomposition using 𝐶-vine. In general, a 𝐶-vine copula selects a root node in each tree, 

and all pair-wise copulas connecting with this node are modeled and conditioned on all 

of the previous root nodes. The nodes of Tree 1 correspond to marginal density 

functions while each edge corresponds to pair-copula density given as 𝐶2,3|1 in Tree 2. 

The notation means that the copula model between variable 2 and 3 is conditional on 

1. The full density of this 𝐶-vine copula is given by: 

 

𝐶(𝑈1, … , 𝑈6) = 𝐶5,6|1234(𝑈4,5|123, 𝑈4,6|123) 

. 𝐶4,5|123(𝑈3,4|12, 𝑈3,5|12). 𝐶4,6|123(𝑈3,4|12, 𝑈3,6|12) 

. 𝐶3,4|12(𝑈2,3|1, 𝑈2,4|1). 𝐶3,5|12(𝑈2,3|1, 𝑈2,5|1). 𝐶3,6|12(𝑈2,3|1, 𝑈26|1) 

. … 

… 

… 

𝐶1,2(𝑈1, 𝑈2). 𝐶1,3(𝑈1, 𝑈3). 𝐶1,4(𝑈1, 𝑈4). 𝐶1,5(𝑈1, 𝑈5). 𝐶1,6(𝑈1, 𝑈6) 

(4.11) 

The conditioned variables 𝑈𝑖|𝑣, 𝑖 ∈ {2, . . ,6} and 𝑣 ∈ {{1}, {1, … ,4}}, are derived through 

the copulas in the preceding tree (e.g. from tree 1): 

 

𝑢𝑖|1 ≔ 𝐹𝑖|1(𝑢𝑖|𝑢1) =
𝜕𝐶1𝑖(𝑢1,𝑢𝑖)

𝜕𝑢1
 at 𝑢1, 

𝑖 ∈ {2, … ,6} 
(4.12) 
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One of the bottlenecks often encountered is modeling dependence structure of 

variables with the mixed type of dependencies (e.g., tail dependencies, asymmetries). 

However, adopting such a modeling framework facilitates in addressing the bottleneck 

by modeling each pair-copula as different parametric copula function to model the 

complex dependence structure. 

To understand the spatio-temporal modeling using vine copula model, a spatio-

temporal random field 𝛨 is considered such that 

 
𝛨: 𝑆 x 𝛵 x Φ ⟶ ℝ (4.13) 

where 𝑆 corresponds to the spatial domain, 𝑇 corresponds to the temporal domain and 

both with an underlying probability space Φ. For a section of the spatio-temporal 

random field defined as 𝛨 = (ℎ(𝑠0, 𝑡0), ℎ(𝑠1, 𝑡1) …ℎ(𝑠𝑛 , 𝑡𝑛)) of size 𝑛 + 1, the section 

consists of one pivotal location and its 𝑛-neighbors in distinct spatio-temporal locations 

(𝑠0, 𝑡0), (𝑠1, 𝑡1) … (𝑠𝑛 , 𝑡𝑛) ∈  𝑆 x 𝛵. Normally some spatial locations would be sampled 

at multiple time instances. And as the dependence structure changes over space and 

time, the first tree of the vine is realized by spatio-temporal bivariate copulas. The rest 

of the vine, i.e. the vine of the variables conditioned under the value of the central 

location, is modeled as some 𝑛-dimensional 𝐶-vine. To understand the functional 

capability of 𝐶-vine, Fig. 4.4 shows an example of spatio-temporal 𝑛-dimensional 𝐶-vine 

copula. The temporal extension of the spatial copula at different time lags for 3 spatial 

locations with Euclidean distance defined as ℎ𝐸 ≔ ‖𝑠𝑖 − 𝑠𝑗‖, 𝑠𝑖  ∀ 𝑖, 𝑗 ∈ {0,1,2,3}  & 

𝑡𝐶 = 1…𝑛. This should not be confused with spatial lag ℎ explained in sub-section 

4.3.1. Every curved connection is modeled by the same spatio-temporal copula 𝐶ℎ𝐸,𝑡𝐶 

but with different spatial and temporal distances, ℎ𝐸  and 𝑡𝐶  deduced from the indicated 

spatio-temporal locations. It is already assumed that marginals are stationary and 

combining them with multivariate copula results in a multivariate distribution of the 

spatio-temporal random field. And this multivariate distribution is later used for 

application studies like simulation or prediction. 
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Fig. 4.4: Spatio-temporal 𝑛-dimensional 𝐶-vine copula  

4.4 MODELING FRAMEWORK AND ASSESSMENT BASED ON REAL DATA 

A numerical analysis is essential to understand the modeling framework. This section 

describes the real data used as input, the developed sampling algorithm used for vine 

copula construction and the output sampled dataset. Algorithm 4.3 explains the 

developed algorithm step-by-step and each step of the algorithm is further explained in 

sub-sections. All computation is performed in MATLAB (version 2017b) environment on 

an Intel Core i7 with 8 cores and 8GB RAM. 
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Algorithm 4.3:  High dimensional spatio-temporal dataset modeling using vine copula 

 Inputs: High dimensional dataset of size (𝑑 x 𝑁), representing 𝑀 data points and 𝑁 features.  

 Outputs: 𝑆 x 𝑁 dimensional sampled dataset 

1 Perform clustering to partition the high dimensional data. 𝑘 number of clusters are selected after 

performing GoC test on sample size 𝑆  

2 Feature extraction of 𝑘 clusters using singular value decomposition (SVD) 

3 Calculate copula function and construct vine copula models for 𝑘 clusters. Choice is different 

copula functions can be tested and GoF test is performed to select the best copula function 

4 Simulate the copula function for 𝑘 clusters using cluster weight obtained in Step 1  

5 Reconstruct dataset from low to high dimension with all features using eigenvectors from Step 2 

6 Output as 𝑆 x 𝑁 dimensional sampled dataset 

7 End 

4.4.1 INPUTS 

For this research, publicly available load and wind power data are taken from one of 

the U.S. regional transmission operator [Web4, 2018]. Aggregated zonal load data 

(nineteen numbers) and wind power data (two numbers) spanning three years with 

hourly resolution is used in this study and is shown in Fig. 4.5. The load and wind 

power from each zone is described by a distinct time series corresponding to a distinct 

position in space defined as the weighted centroid. Such a weighted centroid is 

required to calculate the spatial correlation using the geographical coordinates of 

zones. Since the exact coordinates are treated confidentially by utilities, an 

approximated weighted centroid is defined in this research to locate an approximated 

‘center’ of load zones and wind power generation zones. A detailed explanation of the 

latitudes and longitudes to calculate the approximated weighted centroid is available 

in Appendix A1. The weighted centroid approach is able to describe the approximate 

dependencies between zones and a more realistic relationship is determined by the 

actual size of the zone. It can be argued that the resulting dependency will be affected 

by such aggregated data and approximated weighted centroid approach. However, 

such an approach still provides valuable information about dependencies. The three 

market regions are MIDATL, WEST and SOUTH and a detailed composition of these 

regions with load and wind power zones is shown in Table 4.1. 

To visualize the complexity, scatter plot with marginal histograms of four load 

zones (AP, CE, DAY and DUQ) and one wind power zone (WEST) under the WEST zone 

is shown in Fig. 4.6. The marginal histograms (in the diagonal) reveal non-Gaussian 

nature while the scattered plots reveal the non-linear dependencies and also suggest a 

weak correlation. This does not mean lack of relationship, but rather a lack of linear 

relationship. In such cases, the marginal distributions do not conform to normality 

assumption and the dependencies between the variables are misleading too. This is 

valid for dependence studies between individual load and wind power, between 

different load zones and even between the output of two wind power zones. 
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Fig. 4.5: Map showing the control areas of PJM with load and wind power zones’ approximated weighted 

load centroid () and wind power centroid (X) 

Table 4.1: Load and wind power zones as seen in Fig. 4.5 

Market region Load zone Wind power zone 

MIDATL AE  MIDATL 

 BC   

 DPL   

 JC   

 ME   

 PE   

 PL   

 PN   

 PS   

 RECO   

WEST AEP  WEST 

 AP   

 ATSI   

 CE   

 DAY   

 DEOK   

 DUQ   

 EKPC   

SOUTH DOM  - 

The 𝑚 load zones (ten MIDATL, eight WEST and one SOUTH) and 𝑛 wind power 

zones (one MIDATL and one WEST) for 𝑡 time length (hourly resolution with a horizon 

of three-years) are written as: 
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𝑋 = [

𝐿1(𝑡1) ⋯ 𝐿𝑚(𝑡1) 𝑊1(𝑡1) ⋯ 𝑊𝑛(𝑡1)

𝐿1(𝑡2) ⋯ 𝐿𝑚(𝑡2)
⋯ ⋱ ⋯

𝐿1(𝑡𝑡) ⋯ 𝐿𝑚(𝑡𝑡)

𝑊1(𝑡2) ⋯ 𝑊𝑛(𝑡2)
⋯ ⋱ ⋯

𝑊1(𝑡𝑡) ⋯ 𝑊𝑛(𝑡𝑡)

] ∈ ℝ𝑡×𝑁 (4.14) 

where 𝑁 refers to total measurements (𝑚+ 𝑛). For spatio-temporal modeling, we first 

visualize spatial correlation for the original data. Equation 4.3 is used to calculate the 

spatial lags. In this research, 𝑀𝑎𝑥𝐷𝑖𝑠𝑡 between any two zones (including load and 

wind power zones) is 1235 kilometers and 𝑀 is 34 based on the minimum distance 

between any two zones. The spatial correlation plot, shown in Fig. 4.19, correspond to 

correlation coefficient between load zones in MIDATL and WEST. The correlation 

calculation uses hourly interval aggregated load on individual load zone for the years 

2014 to 2016. The correlation coefficient for 𝐴 and 𝐵 is calculated using covariance, 

written as: 

 
𝜌𝐴𝐵 =

𝐶𝑜𝑣(𝐴, 𝐵)

𝜎𝐴𝜎𝐵
 (4.15) 

where, 𝜎𝐴, 𝜎𝐵 are the standard deviation and 𝐶𝑜𝑣(𝐴, 𝐵) is the covariance of 𝐴 and 𝐵. 

Correlation plot reveals a weak correlation between zones. This lack of correlation 

between load zones is important to determine potential investment deferment in 

generation and planning interconnector capacity to utilize the lack of correlation. 

To account for temporal correlation, the time series is checked for seasonality. It is 

to be noted that the same procedure was followed in chapter 3 while forecasting load 

in the long-term horizon. Presence of seasonality is evident in load time series and as 

an example, the original load time series from zone AE of MIDATL for the year 2014 

with hourly resolution is shown in Fig. 4.7. And, Fig. 4.8 shows the peaks corresponding 

to the weekly trend. It is understood that electricity load data shows daily and weekly 

periodicity. Thus, the data needs to be differenced at both 24 and 168 lags, and this is 

checked and repeated for all load data. Backward differencing is normally used, and 

the 24
th

 and 168
th

 difference address the periodicity. For a time series 𝑦𝑡 , the 

transformation is written as: 

 △24△168 𝑦𝑡 = (1 − 𝐿24)(1 − 𝐿168)𝑦𝑡 (4.16) 
  

where, △ is the difference operator and 𝐿 is the lag operator. After the lag operator 

polynomials ((1 − 𝐿24)(1 − 𝐿168)) are created, both are multiplied to get the desired 

lag operator polynomial. The differenced time series for zone AE of MIDATL is shown in 

Fig. 4.9 which is deseasonalized. Similarly, to account for temporal correlation in wind 

power data, all the wind data is analyzed. Fig. 4.10 shows the original wind power time 
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series. Wind power data also show distinctive seasonal and diurnal patterns as seen in 

Fig. 4.11. However, after checking for lags, seasonal differencing is performed for wind 

power data for 24 lags. So, equation 4.16 is modified for wind power as: 

 △24 𝑦𝑡 = (1 − 𝐿24)𝑦𝑡  (4.17) 

As the multivariate dataset is pre-processed with seasonal differencing to remove the 

periodicity, the second step in preparing the data is performing normalization. 

Normalization serves the purpose of bringing the multivariate variables into the same 

scale. For the load data, Z-score scaling is introduced to standardize the data for each 

zone as represented in [Shi et al., 2017]. Z-scores is the most commonly used method 

and it converts all indicators to a common scale with an average of zero and standard 

deviation of one. However, the wind power was normalized with respect to the 

installed wind capacity by comparing each of the datasets from different zones. Thus, 

the normalized wind power (𝑊𝑛𝑜𝑟𝑚𝑖
) for each zone and hour 𝑖 is calculated as, 

 

𝑊𝑛𝑜𝑟𝑚𝑖
=

𝑊𝑖

𝐶𝑎𝑝𝑖𝑛𝑠𝑡
 (4.18) 

 

where 𝑊𝑖  is the actual wind power produced for hour 𝑖 and 𝐶𝑎𝑝𝑖𝑛𝑠𝑡  is the installed 

wind capacity of the zone. 
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Fig. 4.6: Scatter plot with marginal histograms of original data of four load zones (AP, CE, DAY, DUQ) and one 

wind power zone (WEST) 
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Fig. 4.7: Original load time series  with hourly resolution (Year 2014 and zone AE) 

 
Fig. 4.8: Original load time series showing the weekly periodicity (Year 2014 and zone AE) 

 
Fig. 4.9: Load time series of zone AE after seasonal differencing at lags 24 and 168 
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Fig. 4.10: Original wind power time series with hourly resolution (Year 2014 and zone WEST) 

 
Fig. 4.11: Original wind power time series for 24-hour duration (Year 2014 and zone WEST) 

Following the pre-processing steps, the multivariate dataset is normalized and is 

free of any trend and seasonality. To account for the large-sized dataset and to ease 

computational burden, the sampling procedure starts with performing clustering and 

followed by feature extraction. The problem addressed here is extracting the required 

features when the number of clusters is unknown. With such an approach, the method 

also reduces the dimensionality of the dataset. 

4.4.2 STEP 1 (DATA CLUSTERING) 

The power system network operates with a wide range of operating conditions and 

deals with non-uniform multivariate data from demand and energy injection centers. 

Both electricity load and wind power generation patterns are determined by different 

drivers depending on time and location as both vary with respect to time and space. 
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The data collected, corresponding to the peak value, does not always come from a 

single collection model and rather multiple models. Such high dimensional data often 

come with many highly correlated variables and succeeding in selecting all variables in a 

group of correlated variables can be very difficult. Clustering helps in partitioning the 𝑀-

data points into groups of similar statistical characteristics or 𝑘 clusters. The aim of data 

clustering is to discover the “natural” group(s) of a set of patterns in a multivariate 

dataset. Use of cluster analysis is widespread in any discipline that involves a study of 

multivariate data. Till date, many clustering algorithms have been proposed based on 

different application scenarios. And the associated literature on clustering is vast as 

hundreds of clustering algorithms have been recommended in the literature. For an 

overview of different clustering algorithms, readers can refer to surveys [Berkhin, 2006, 

Law, 2006] where the different clustering algorithms are discussed. Fig. 4.12 shows a 

classification of clustering algorithms. Literature study reveals that the most important 

way to classify clustering algorithms is partitional versus hierarchical clustering [Law, 

2006]. Partitional clustering aims at creating a flat partition of the set of objects with 

each object belonging to one and only one group. On the other hand, hierarchical 

clustering aims at creating a tree of objects, where branches merging at the lower levels 

correspond to higher similarity. In this research, we will examine three widely used 

clustering algorithms used in analysis multivariate datasets: the k-means, Gaussian 

Mixture Model (GMM) and Hierarchical Linkage (HL) algorithms. Out of the three, GMM 

is a special case as it is a mixture-based clustering and its statistical nature gives us a 

solid foundation for analyzing its behavior. 

 

Clustering algorithms

Heurestic-based Model-based Density-based

Kernel-based
Mode seeking 
(mean shift)

Spatial 
clusetring

Mixture 
model 

(Gaussian 
mixture, 

latent class)

Pattern matrix
Proximity 

matrix

Prototype-based 
(k-means,
k-medoid)

Linkage methods 
(hierarchical, 

single-link, 
complete-link )

Graph 
theoretic 

(spectral, min-
cut)

 

Fig. 4.12: Classification of clustering algorithms [Law, 2006] 
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𝑘-means is the most widely used unsupervised clustering technique as it is easy to 

understand and implement [Hartigan et al., 1979]. 𝑘 -means clustering aims at 

partitioning 𝑀-data points into 𝑘-clusters, where each data point belongs to the cluster 

with its nearest mean. The 𝑘-means clustering works as an objective function where the 

aim is to minimize a squared error function, 

 

 
𝑚𝑖𝑛∑∑‖𝑥𝑖

(𝑗)
− 𝑐𝑗‖

2
𝑀

𝑖=1

𝑘

𝑗=1

 (4.19) 

 

where ‖𝑥𝑖
(𝑗)
− 𝑐𝑗‖

2
 is a chosen distance measure between a data point 𝑥𝑖

(𝑗)
 and the 

cluster center 𝑐𝑗. In contrast to simplicity, 𝑘-means has problems in discovering clusters 

that are not spherical in shape. It also encounters some difficulties when different 

clusters have a significantly different number of points. Since it is a minimization 

function, 𝑘-means also requires a good initialization to avoid getting trapped in a poor 

local minimum. It makes a number of assumptions about the data and it does not 

search through every possible partitioning of the data, hence, it was opted to test GMM 

and HL techniques. Gaussian mixture model (GMM) is a clustering algorithm to estimate 

probability function by using a finite linear combination of Gaussian model in which the 

weights of each Gaussian component is defined as a prior probability of each 

component. A step-by-step explanation of GMM clustering is available online [Web12, 

2018]. GMM clustering technique uses the probability of a sample to determine the 

feasibility of it belonging to a cluster. And, to obtain the optimal model parameters, 

Expectation-Maximum (EM) optimization approach is used rather than maximum 

likelihood estimation because it avoids infinitely possibility problem for some sparsely 

distributed single points.  

Compared to both 𝑘-means and GMM, hierarchical linkage (HL) clustering technique 

builds clusters incrementally. The clustering technique begins by assigning each sample 

to its own cluster (top level), and at each step, the two clusters that are most similar are 

merged. It continues until all of the clusters have been merged. In comparison to 𝑘-

means, there is no need to specify a 𝑘 parameter as one can navigate the layers of 

hierarchy to see which number of clusters is optimum. In addition, 𝑘-means clustering is 

usually more efficient run-time wise compared to GMM and HL clustering since 𝑘 value 

is usually specified.  

After deciding the clustering algorithms, choosing the right number of clusters is 

important to validate the chosen clustering algorithm. To select the right number of 

clusters, GoC test is performed using Davies-Bouldin index (DBI) and gap statistics index 

(GSI). A detailed explanation about the GoC tests is included in Appendix A2. 𝑘 values 

ranging {2,… ,10} were assessed using DBI and GSI statistics to choose the number of 

clusters. DBI quantifies the average similarity between the chosen number of clusters 
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[Davies et al., 1979]. In theory, it is desirable for the clusters to be as distinct from each 

other as possible and hence, the clustering technique which minimizes the DBI value is 

the ideal one for GoC test. Lower values of DBI correspond to better clustering validity. 

The results from GoC test for DBI is shown in Fig. 4.13(a). From the figure, values of 

{𝑘 = 2,2,2} are obtained for the three clustering techniques. The second GoC test is GSI, 

which compares the within-cluster dispersion to its expectation under an appropriate 

null reference distribution [Tibshirani et al., 2001]. Fig. 4.13(b) shows the GoC test and 

corresponding GSI values. Gap statistics is maximized at 𝑘 = 10 for 𝑘-means and HL 

clustering. For GMM, gap statistics is maximized at 𝑘 = 2. 

 

(a) 

 

(b) 

Fig. 4.13: GoC test and corresponding (a) DBI values (b) GSI values 

GoC test is required to carefully select the number of clusters 𝑘. If k is too small, the 

GMM is unable to well capture the distribution of data, (especially when 𝑘 = 1, GMM 

will degenerate to Gaussian maximum likelihood). On the other hand, if 𝑘 is too large, 

except for computation complexity, a severe overfitting problem will result. Based on 

the GoC tests, 𝑘 = 2 is chosen in this study to generate a large sample size of 

𝑆 = 30000 from the pre-processed historical dataset. Such a large sample size is 

chosen to guarantee a good accuracy of the estimated value. Clustering results in 

sorting the multivariate dataset (𝑋) into homogeneous clusters (𝑋𝑘 ⊂ 𝑋, for 𝑘 = 1,2) 
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which are strongly related to each other and thus provide similar information. Next step 

is feature extraction from the clusters which selects a small subset of actual features 

and remove redundant features. 

4.4.3 STEP 2 (FEATURE EXTRACTION) 

In spatio-temporal modeling, feature extraction in the form of dimension reduction is 

reasonable given that the true spatio-temporal feature often exists on a lower 

dimensional structure [Cressie & Wikle, 2015]. As the name suggests, dimensionality 

reduction is the process to transform a high dimensional dataset into a low dimensional 

space, while retaining most of the useful information from the original data. The 

principle behind such a transformation is that the useful information in the original high 

dimensional dataset can be represented by a small number of features. Generally, in a 

high dimensional space, the data points do not spread-out randomly but, rather, in a 

certain structure that can be easily exploited. Thus, dimensionality reduction can 

circumvent this problem by reducing the number of features in the data set before the 

training process. Doing this reduces the computation time and the resulting features in 

low dimension take less space to store. Other advantages of dimensionality reduction 

are easy interpretation and visualization, because of the low dimensional space. 

However, if not performed correctly, there are high chances that dimensionality 

reduction will result in information loss. And there is no way to extract the lost 

information from low dimension to high dimensional space. Reference [Law, 2006] 

classify dimensionality reduction into three types: 

i. Feature selection and feature weighting: Feature selection, also known as 

variable selection, deals with the selection of a subset of features that are most 

appropriate for the task at hand. A feature is either selected (because it is 

relevant) or discarded (because it is irrelevant). Feature weighting, on the other 

hand, assigns weights (usually between zero and one) to different features to 

indicate the saliencies of the individual features. 

ii. Feature extraction: In feature extraction, a small set of new features is 

constructed by a general mapping from the high dimensional data. The mapping 

often involves all the available features. 

iii. Feature grouping: In feature grouping, new features are constructed by 

combining several existing features. Feature grouping can be useful in scenarios 

where it can be more meaningful to combine features due to the characteristics 

of the domain. 

In this research, feature extraction is chosen. Before performing feature extraction, 

the clustered observations using 𝑘-means from the original domain are transformed to 

the rank-uniform domain via the empirical cumulative distribution function (𝐸𝐶𝐷𝐹). 
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Thus, each clustered dataset 𝑋𝑘 is transformed to 𝑌𝑘  in the [0,1]𝑁 domain. Such a 

transformations help in reducing the sensitivity of feature extraction techniques. 

Feature extraction is a standard statistical method for simplification of high 

dimensional multivariate datasets. It helps in filtering out irrelevant data pertaining to 

datasets in return for more pertinent and informative data. In this research, singular 

value decomposition (SVD) is employed to perform principal component analysis (PCA) 

since it is efficient and numerically robust [Wall et al., 2003]. Given an arbitrary 𝑝 × 𝑞 

matrix 𝑋 ∈ ℝ𝑝×𝑞, then there exists matrices 𝑈 and 𝑉 (both with orthogonal columns), 

and positive numbers 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 (where 𝑟 = min (𝑝, 𝑞)), such that: 

 𝑋 =∑𝜎𝑘

𝑟

𝑘=1

𝑈𝑘𝑉𝑘
𝑇 = 𝑈𝐷𝑉𝑇 (4.20) 

with 𝑈𝑘  and 𝑉𝑘  denoting the 𝑘𝑡ℎ  column of 𝑈  and 𝑉 , respectively, and 𝐷  is a 𝑝 × 𝑞 

matrix for which the numbers 𝜎𝑘  (the singular values) are placed on the main diagonal. 

For a proof, see e.g. [Wall et al., 2003]. In this research, it is assumed that the singular 

values are arranged in descending order: 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 ≥ 0. For a given matrix 𝑋 

we use the notation 𝜎𝑖(𝑋) or 𝜆𝑖(𝑋) to denote the 𝑖-th (ordered) singular or eigenvalue, 

respectively. If there is no danger of confusion, the explicit reference to the matrix will 

be suppressed. Recall that there is a useful relationship between the singular values of a 

matrix 𝑋 ∈ ℝ𝑝×𝑞 and the eigenvalues of the related matrices 𝑋𝑋𝑇 and 𝑋𝑇𝑋: 

 𝜎𝑖(𝑋) = √𝜆𝑖(𝑋𝑋
𝑇) = √𝜆𝑖(𝑋

𝑇𝑋) (4.21) 

where 𝑖 = 1:min (𝑝, 𝑞). This connection will be used extensively in the analysis below. 

SVD is a computational method often employed to calculate principal components 

for a dataset. The set of principal components for each cluster will represent the 

original data, and they are determined by computing the eigenvalues and eigenvectors 

of the corresponding correlation matrix. It determines an optimal linear transformation: 

𝑦 = 𝐴𝑥, for 𝑝-dimensional data 𝑥 into another 𝑞-dimensional transformed vector 𝑦 for 

each cluster 𝑘. The linear transformation matrix 𝐴 is optimal from maximal information 

retention criterion (𝐼𝑅𝐶) viewpoint, given as: 

 

𝐼𝑅𝐶 =
∑ 𝜆𝑗
𝑝
𝑗=𝑚+1

∑ 𝜆𝑖
𝑝
𝑖=1

 (4.22) 

This 𝑞 -dimensional transformed vector (𝑞 < 𝑡 ) defines the reduced number of 

variables. For each cluster 𝑘 obtained in Step 1 (sub-section 4.4.2), PCA is performed in 

three steps, (i) centralize the data and compute the mean, (ii) then generate scatter 

matrix and compute eigenvalues (𝜆) and eigenvectors (𝑚), and (iii) project the data 

comprising principal components. The eigenvectors, arranged in descending order 
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according to decreasing information content, represent the principal components of the 

clustered dataset, whereas the eigenvalues indicate to total variance accounted for by 

each principal component. Eigenvalues are obtained with respect to the covariance 

matrix to obtain relative importance of principal components. And the descending 

order of 𝑞 -dimensional transformed vector 𝑦  allows for straightforward feature 

extraction as well as dimensional reduction by discarding elements with lowest 

information content. Thus, feature extraction on each 𝑌𝑘  results in low dimensional 

dataset ℋ𝑘 ∈ ℝ𝑡
𝑘×𝑞, where 𝑡𝑘 represents the number of observations in cluster 𝑘. It is 

to be noted that eigenvectors are later used in Step 5 in the resampling step. 

4.4.4 STEP 3 (VINE COPULA CONSTRUCTION) 

Till now, for each cluster, we have extracted the features based on which vine copula 

will be constructed for spatio-temporal modeling. For high-dimensional distributions, 

there are a significant number of possible pair-copulae constructions. Thus, the next 

step is describing a multivariate dependence structure with vine copula and selecting a 

bivariate copula family for each edge in the selected vine as well as estimating its 

parameters. For vine copula modeling, the obtained observations in Step 2 should be 

fitted in the uniform domain. Such a uniform transformation is achieved by 𝐸𝐶𝐷𝐹s of 

ℋ𝑘 to obtain ℂ𝑘. In this research, families of bivariate copulas, namely, Gaussian 

copulas, Student’s-t copulas, asymmetric Clayton and its corresponding 90°, 180° and 

270°rotational copula types are implemented in 𝐶-vine. Construction of 𝐶-vine tree 

starts with selecting a root node, which is achieved by generating Kendall rank 

correlation matrix and adding the correlations across each location with respect to 

other locations [Genest & Favre, 2007]. The location with highest value of Kendall rank 

correlation coefficient is chosen as root node followed by other nodes in the tree. 

After selecting the root node, estimating the conditional copulas in the tree is 

performed. To select the appropriate copula, GoF test is performed to check the 

copulas that can be rejected. Goodness of Fit (GoF) techniques are used for assessment 

whether a distribution is suitable to describe a data set or not. The null hypothesis for 

the GoF test states that the data is sampled from a normal distribution. When the 𝑝-

value is greater than the predetermined critical value, the null hypothesis is accepted 

and thus we conclude that the data fits well or is normally distributed. Two GoF tests 

used in this study are Kolmogorov-Smirnov (K-S) and Cramer-von Mises (CvM) test. Both 

the tests are based on estimated 𝐸𝐶𝐷𝐹. The idea of using 𝐸𝐶𝐷𝐹 in testing normality of 

data is to compare the 𝐸𝐶𝐷𝐹 , based on the data with the 𝐶𝐷𝐹  of the normal 

distribution, to see if there is a good agreement between them. The K-S test is a non-

parametric test and is used to check if a sample comes from a hypothesized continuous 

distribution. The K-S statistic (𝐷) is written as [Stephens, 1986]: 
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𝐷 = 𝑠𝑢𝑝𝑥|𝐹ℎ(𝑥) − 𝐹𝑜(𝑥)| (4.23) 

where, 𝐹ℎ(𝑥)  is the 𝐸𝐶𝐷𝐹  of hypothesized distribution and 𝐹𝑜(𝑥)  is the 𝐸𝐶𝐷𝐹  of 

observed distribution.  A powerful and refined version of K-S test, called the Cramer-von 

Mises (CvM) test is also used in this study. The CvM statistic (𝜔2) is written as 

[Stephens, 1986]: 

 

𝜔2 = ∫ [𝐹ℎ(𝑥) − 𝐹𝑜(𝑥)]
2𝑑𝐹𝑜(𝑥)

∞

−∞

 (4.24) 

Following the GoF test, 𝐸𝐶𝐷𝐹s of different copula selection for each cluster at one 

branch of tree is shown in Fig. 4.14. For 𝑘 = 1, 𝑝-value is 0.8950 (K-S test) and 0.8765 

(CvM test) and 270° rotated Clayton copula is selected. Similarly, for 𝑘 = 2, 𝑝-value is 

0.2441 (K-S test) and 0.2422 (CvM test) and 180° rotated Clayton copula is selected. A 

high 𝑝-value indicates that it is a good fit since the acceptable level is ≥ 0.05. This is 

repeated for each bivariate copula in rest of the tree. 

 
(a) 

 
(b) 

Fig. 4.14: 𝐸𝐶𝐷𝐹 for estimated copulas (black line represents the selected copula) 

4.4.5 STEP 4 (VINE COPULA SIMULATION) 

Step 4 operates in coordination with step 3 in terms of vine copula simulation. For the 

chosen sample 𝑆, each parametric cluster-model generates samples ℂ𝑘  of size 𝑡𝑆
𝑘 × 𝑞, 

where 𝑡𝑆
𝑘 = 𝑆 ×𝑊𝑘  and 𝑊𝑘  is the weight of cluster 𝑘. Construction of 𝐶-vine is based 

on 𝑊𝑘  obtained in Step 1 (sub-section 4.4.2). Once the model has been stated and 

estimated, a key question is to check whether the initial model assumptions are 

realistic. Again, a GoF test is performed on 𝐶-vine for each cluster. The chi-square (𝜒2) 

test is used to graphically represent GoF. Likewise K-S and CvM tests, the chi-square test 

is used to test if a sample of data came from a population with a specific distribution. At 

one branch of the tree, for 𝑘 = 1, 𝑝-value is 0.9290 (K-S test) and 0.9122 (CvM test), 
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and for 𝑘 = 2, 𝑝-value is 0.1145 (K-S test) and 0.1095 (CvM test) is calculated. A 

graphical comparison of GoF for K-S test and chi-square test is shown in Fig. 4.15.  

 
(a) 

 
(b) 

Fig. 4.15: 𝐸𝐶𝐷𝐹 of K-S test and chi-square (𝜒2) CDF plot for (a) 𝑘 = 1, and (b) 𝑘 = 2 showing the GoF in vine 

copula simulation 

4.4.6 STEP 5 (RESAMPLING) 

Performing inverse 𝐸𝐶𝐷𝐹 transformation (𝐸𝐶𝐷𝐹−1) on the sampled output to retrieve 

high dimensional data is achieved in this step. In the first step, samples of each cluster 

ℂ𝑘  are transformed back to the domain of ℋ𝑘  of size 𝑡𝑆
𝑘 × 𝑞  by transforming ℂ𝑘  

through 𝐸𝐶𝐷𝐹−1 of original dataset ℂ𝑘. The second step is transforming ℋ𝑘 to high 

dimensional space ℝ𝑡𝑆
𝑘×𝑁, denoted by the dataset 𝑌𝑘. And the last step involves the 

transformation of 𝑌𝑘  in the  [0,1]𝑁  domain to original dataset 𝑋𝑘 through 𝐸𝐶𝐷𝐹−1. In 

the end, the high dimensional sampled dataset is �̅� = �̅�1 ∪ �̅�2 ∪ …∪ �̅�𝑘 ∈ ℝ𝑆×𝑁 , 

where �̅�𝑘 corresponds to the sampled dataset for cluster 𝑘. 

In order to evaluate the performance of 𝐶-vine sampling, two-sample Kolmogorov-

Smirnov (K-S) test is employed for the historical and simulated dataset for each variable 

in the multivariate dataset to check the null hypothesis that they are drawn from the 

same marginal distribution. It is easy to confuse the two-sample K-S test (which 

compares two groups) with the one sample K-S test used in Step 3, also called the K-S 

GoF test, which tests whether one distribution differs substantially from theoretical 

expectations. The two-sample K-S test statistic quantifies a distance between the 

empirical distribution functions of two samples. Theoretical description of the two-

sample K-S test is included in Appendix A2. 

A resampling method is employed to randomly generate comparison samples from 

the historical and sampled datasets based on [Sun et al., 2016]. For each of the 21 

variables, 200 data points from the historical dataset and 400 data points from the 

sampled dataset were drawn in random. And the process was iterated for 500 times. 

Thus, the total number of times the K-S test performed is (500x21) times. Fig. 4.16 

shows the ECDF plot against the p-values calculated from K-S test. In the test, reference 
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dataset is the historical dataset plotted against itself, which has a uniform distribution. 

And the sampled dataset from the sampling procedure is also perfectly uniform, 

aligning to reference dataset p-values. Thus, we can conclude that the sampled dataset 

does not suffer from information loss. 

 
Fig. 4.16: Two-sample K-S test for historical and sampled dataset 

4.4.7 OUTPUT 

Following all the steps, the output obtained is a high dimensional sampled dataset with 

hourly time steps. When handling high dimensional dataset, computational efficiency is 

a vital concern. For this research, a mix of k-means clustering and C-vine sampling 

accounted for a computation time of 25.88 seconds. Fig. 4.17 and Fig. 4.18 shows the 

sampled load and wind power time series of zone AE and WEST respectively. A visual 

inspection of Fig. 4.18 shows some negative data points in the sampled dataset. The 

presence of negative values in the sampled wind power dataset is because wind power 

is treated as a negative load in the sampling procedure. Pair-wise comparison of 

histograms and scatter plots for the marginal distributions represented by four load 

zones and one wind farm zone under WEST market region, same as in Fig. 4.6, is shown 

in Fig. 4.19. The histograms in diagonal of the figure show the normally distributed 

marginals with heavy tail characteristic while the scattered plots reveal non-linear 

dependence between the variables. Now we compare the spatial correlation plot for 

the load zones in the sampled dataset with respect to the original data for zones 

MIDATL and WEST. The spatial correlation plot for the original dataset is shown in Fig. 

4.20(a) and Fig. 4.20(b). Similarly, for the sake of visual comparison, the spatial 

correlation plot for the sampled dataset comparing the load zones for MIDATL is shown 

in Fig. 4.20(c) and for WEST is shown in Fig. 4.20(d). The correlation color map is 

adjusted to the same scale (𝜌 = [0,1]) While Fig. 4.20(c) accounts for more positive 

correlation, Fig. 4.20(d) displays some very strong correlation as well as some zero 

correlation. Understanding the variety in spatial correlation is WEST is understood by 

the long separation (distances) between the load zones. To further check the 
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dependency in the multivariate sampled output, the correlation coefficient is calculated 

for the dataset using equation 4.15. The detailed table of correlation coefficients is 

shown in Table 4.2. The values represent a non-linear dependence among the variables 

in the multivariate dataset calculated from bivariate copula. And, it should not be 

confused with the well-known linear correlation coefficient. Fig. 4.21 shows the overall 

spatial correlation including all load and wind power zones. Again, for visual 

comparison, Fig. 4.21(a) shows the correlation for original dataset and Fig. 4.21(b) 

shows the correlation for the sampled dataset.  

Inferencing the correlation coefficients suggests positive, zero and negative 

correlation as well. Minimum variance is obtained for maximum negative correlation 

(𝜌 = −0.2675) and maximum variance in case of maximum positive correlation (𝜌 =

1). A negative correlation means that high values of the one dataset are matched with 

low values of the other, while positive correlation means that high values of the one 

dataset are always matched with high values of the other. This matching has a direct 

impact on the behavior of the sum: negative correlation prevents extreme values from 

happening at the same time, while positive correlation urges coincidence of extreme 

events. In terms of physical significance, a positive correlation between load and wind 

power explains the fact that both tend to increase and decrease at the same time, 

thereby facilitating load following task of the power system. On contrary, a negative 

correlation suggests that increase in load demand is identified by a decrease in wind 

power generation (and vice versa), thereby asking for more production from load 

following plants in the power system. The presence of a negative correlation between 

load and wind power is of physical significance. It explains the need to balance out the 

wind power fluctuations in different zones with corresponding load fluctuations to 

maintain a steady supply. In context of this study, it is fairly understandable that more 

wind farms will be integrated under the control area as shown in Fig. 4.1. In fact, the 

two wind power zones show a weak correlation of 0.54 which is understandable from 

their location. The reason for the negative correlation between load and wind power is 

explained by the fact that wind often blows during a period of low electricity demand. 

To suffice the negative correlation, the zones need to have adequate transmission 

connection so as to utilize the generated wind power at the location with high demand. 
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Fig. 4.17: Sampled load time series  with hourly resolution of zone AE 

 
Fig. 4.18: Sampled wind power time series  with hourly resolution of zone WEST 
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Fig. 4.19: Scatter plot with marginal histograms of sampled output of four load zones and one wind power 

zone  
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(b) 

 

(d) 

 

(a) 

 

(c) 

Fig. 4.20: Spatial correlation plot of different load zones (a) original dataset MIDATL zone, (b) original dataset 

WEST zone, (c)  sampled dataset MIDATL zone, and (d) sampled dataset WEST zone 
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(a) 

 

(b) 

Fig. 4.21:Spatial correlation plot of load and wind power zones of (a) original dataset, (b) sampled dataset 
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On the interaction of load and wind power, discussion on the correlation between 

them is vital as it ascertains the capability of wind power to equalize the changes in load 

fluctuation. Due to the location constraint of wind power, WPPs are usually far away 

from load centers.  Fig. 4.22 shows the overall correlation between each zone pair (both 

load and wind power) as a function of their approximate distance. The zone pair 

corresponds to Table 4.2 and the location details are provided in Appendix A1.  

 

(a) 

 

(b) 

Fig. 4.22: Spatial correlation of load and wind power zone pairs under (a) MIDATL and (b) WEST 

The correlation between zone pairs could vary because of changes in their installed 

wind power capacity. Since an approximated centroid approach is employed in this 

research, the exact relationship will also be influenced by the actual size of the zones. 

Although the correlation patterns will be affected, these patterns still provide useful 

information. The load-wind power zone pairs in MIDATL show significant weak and 

negative correlation when compared to WEST. Thus, in order to meet the increased 

demand in one load zone within the MIDATL market zone, a potential interconnector 

will benefit the system operator to supply the increased demand by wind power 

generated in another zone. The notion of weak correlation with the increase in distance 

does not hold valid for the sampled dataset. While in MIDATL, there are instances of 

zero correlation for the load-load pair, the zero correlation is independent of the 

distance between the zones. Surprisingly, WEST has no instances of zero correlation 

between the load zones even when the separation is ~800kms. The variations will 

sometime occur in the same directions and help the system, and on other times in 

opposite directions making load following more difficult. Although understanding the 

correlation of wind power output is important for the incorporation of wind, it will be 

more critical for determining the regulation reserves necessary as the correlation of 

changes in wind power and load. In such case, system operators will seek to 

supplement the peak demand from conventional generation sources or energy storage 

if available. 
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4.5 CONCLUSIONS  

This research can be concluded with five distinct sections: 

Addressing spatio-temporal correlation of load and wind power: In this research, a 

canonical vine based sampling methodology is developed to address spatio-temporal 

correlation for the high-dimensional multivariate dataset. With increased penetration of 

wind power into the existing grid, it was deemed vital to model the complex 

interdependencies introduced by wind power along with electricity load. The study 

revealed that chronological simulation of the multivariate dataset (load and wind power 

in this case) using vine copula is possible with conditional distribution calculated by 

multivariate copula to model the inter-spatial dependence and temporal correlation 

simultaneously. Such a modeling technique is realized with the developed reproducible 

sampling algorithm and it can be employed for power system studies (such as security 

assessment studies, generation and transmission expansion planning, optimal outage 

scheduling, stochastic unit commitment) involving a massive integration of stochastic 

generation. 

Advantage of vine copula modeling: In stochastic optimization for multi-temporal 

problems, a set of scenarios is defined to describe the uncertainty associated to 

demand and generation at each temporal scale. Use of vine copulas facilitates in 

generating such scenarios for multi-temporal optimization simulations. And, the 

application ranges to scenarios necessary in stochastic programming, which is a critical 

decision tool in power systems analysis, economic dispatch, and planning problems. 

Ease of computational burden: The developed sampling algorithm introduces a 

systematic way of reducing the original high dimensional dataset to low dimensional 

space while maintaining essential properties of the original dataset. With TSOs 

collecting a large amount of data, the future can be seen as data-centric in terms of 

large sized high-dimensional data with various features that can surely challenge 

computational efficiency. To tackle the high dimensionality and variability of data sets, 

the proposed model is able to ease the computational burden by employing clustering 

and feature extraction techniques. 

Reproducing the methodology to include solar power: This research aimed at 

addressing spatio-temporal correlation from TSO point of view. And, that is the reason 

for choosing aggregated zonal load and wind power. To include solar power, this 

sampling methodology can be extended and reproduced if distribution feeder data is 

available for load, wind and solar power. 

Future challenge in terms of microscale modeling: Advantage of the developed 

model is that wind farms with poor historical measurements or future planned wind-

farms, parameters can be estimated with the spatio-temporal vine copula according to 

their geographical locations. However, one of the future challenges is modeling 
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microscale dependence using vine copula since it cannot explain the dependence within 

the grouped data.  
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CHAPTER 5 

SPATIO-TEMPORAL MODELING FOR 

STATIC SECURITY ASSESSMENT 

5.1 INTRODUCTION 

This chapter aims at answering the fourth research question Q.4., which deals with the 

use of the developed model in chapter 4 for a risk-based security assessment of 

transmission line overloading risk, 

 Does the consideration of spatio-temporal dependence of load and wind power 

prove beneficial to quantify the risk of overloading transmission lines? 

 How does the correlation impact the risk values of line overload? 

 How do the risk values of individual lines or the entire system enable the system 

operator to assess system operation conditions? 

The content of this chapter is based on research paper [Khuntia et al., 2018c] and it 

aims at validating the developed spatio-temporal model for static security assessment. 

The security level of a power system is determined by the likelihood and severity of 

security violation. In this chapter, a risk-based security assessment (RBSA) is performed 

on transmission line overloading considering spatio-temporal dependency of load and 

wind power penetration using vine copula. The research work is inspired by growing 

WPPs and uncertainty in load growth as we look into a low-carbon future power 

system. Location of WPPs and load sites are not always close by, hence, the 

transmission of energy puts a burden on existing grid infrastructure. This unwanted 

burden necessitates transmission lines to operate more and more frequently close to 

their operating limits. As the future sees a massive integration of wind power, the risk 

of transmission line overloading cannot be avoided. Complexity in terms of inter-spatial 

dependence and temporal correlation of wind power and load impose challenging 

operational threat in terms of transmission line overloading to system operators and 

grid planners. 

The aim is to adopt a probabilistic approach to extract information on operating 

conditions and use appropriate metrics to identify the suitable model to give sufficient 
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confidence with respect to assessment of the future operation of the system for a given 

generation capacity, load or market scenario. Therefore, this chapter addresses the 

advantages of modeling load and wind power as a joint probability distribution using 

the canonical vine to address the spatio-temporal dependence. Probabilistic AC optimal 

power flow is performed on a modified IEEE 39-bus system with significant wind 

penetration and real load and wind power data from a U.S. utility. The data is mapped 

onto the test-case to achieve realistic results. Load flow calculation can help in 

performing steady-state voltage and overload evaluations for post-disturbance system 

conditions. In this research, the probability of line overload is calculated from load flow 

and the severity function describes the risk of line overloading. Two case studies 

depicting future operating conditions of massive wind power penetration with reduced 

fossil fuel and nuclear power generation are considered. Simulation results prove the 

advantage of addressing spatio-temporal dependency to quantify the overload risk 

index, which is treated as a security indicator. 

The rest of this chapter is organized as follows: sub-section 5.2 presents a 

background on spatio-temporal modeling in risk-based security studies and an overview 

of probabilistic approach in transmission line overloading studies. Sub-section 5.3 

discusses database generation and preparation for RBSA studies. Sub-section 5.4 

discusses the two case studies along with result analysis. Finally, sub-section 5.5 

concludes this chapter. 

5.2 BACKGROUND 

The electric power system infrastructure is subjected to increasing stress due to 

fundamental changes in both generation and demand side. A larger picture of such 

stress is encountered in the form of transmission loading pattern.  

 On the generation side, integration of stochastic generation sources in the form 

of variable RES is a challenging task for TSOs. Among the RES, wind power has 

gained significant attention among TSOs because of three reasons, namely, 

o large WPPs can be connected to bulk power system at the transmission level, 

o large size WPPs are being built/planned in regions with high potential for 

wind energy and TSOs have to facilitate their integration, and, 

o TSOs are more and more limited by local constraints to build new 

transmission infrastructure in time. 

Over the last decade, electricity production from WPPs has reached considerable 

levels in various parts of Europe and the U.S. [TechRep, 2010, TechRep, 2015, 

Milligan et al., 2015]. Expansion of WPPs in terms of farm-size and unit capacity 

is significant at transmission level and its integration possesses challenges for 

TSOs both in terms of operation and security [TechRep, 2016]. This study 
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assumes massive wind power penetration occurs at transmission level and is 

deemed quite challenging for TSOs in planning and decision making. To have a 

clear view from TSO perspective, DERs like solar or storage is not considered in 

this study since it is more prominent at the distribution level.  

 On the demand side, the advent of new technologies and growing number of 

variable generation sources at the distribution level is challenging itself. The 

traditional power system network was designed for the passive load without any 

plans for communication and digitalization. 

In such cases, the system is being asked to perform in ways and in a context for 

which it was not designed, eventually resulting in performance under increasing stress. 

The European electricity grid, for example, a meshed and complex network, was built 

decades ago and has provided highly reliable electricity till date. In an event of a 

transmission asset failure, system security is certainly under threat and it affects system 

dynamics which might increase the likelihood of line overload, low voltage or even 

voltage collapse. As the security of supply is at risk, one of the ways to address the issue 

is to perform an overload analysis. Literature study reveals some commonly used 

indices like overload, cascading overload, low voltage and voltage instability [Ni et al., 

2003a]. To account for the mentioned developments in reliability management, TSOs 

need to re-evaluate the system security [Khuntia et al., 2016a]. One such way is 

identified in this research, which constitutes dependence studies between load and 

wind power as a necessary modeling aspect. A discussion on the need for spatio-

temporal modeling of load and wind power is presented followed by a probabilistic 

model for line overload and calculation of system risk index. 

5.2.1 NEED FOR SPATIO-TEMPORAL MODELING OF LOAD AND WIND POWER 

The location of WPPs and load sites are not always close-by such that the non-

dispatchable sources can be easily managed or curtailed. This spatial diversity imposes a 

burden on the TSOs who have to operate the existing infrastructure with uncertainty 

from both ends, i.e., load and wind power. The participation of WPPs into existing grid is 

different from conventional generators in terms of location and output generation, 

which is uncertain and variable. It adversely affects day-ahead operational planning 

decisions that introduce a level of risk for TSOs. For example, variation in wind power 

hampers power system operation in real-time when WPPs are unable to deliver the 

required reserve capacities in real-time. Embedding of WPPs raise concerns in terms of 

planning and upgrading of existing infrastructure in terms of size, location and 

distribution of WPPs [Xie et al., 2011]. Though achievements have been made in terms 

of the accurate forecast of future load and wind power generation, there are other vital 

concerns corresponding to wind power such as spatio-temporal dependency, variability, 

non-normality, non-stationarity, non-dispatchable (unless there is adequate storage) 
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and seasonal patterns to name a few. Wind speed is temporally correlated at one 

location and for different locations wind speed is both spatially as well as temporally 

correlated [Osborn et al., 2011]. A statistical space-time model considering terrain, wind 

speed and direction was proposed in [Xie et al., 2014]. Spatial dependence of wind for 

transmission line overloading is found in [Li et al., 2015]. It is to be noted that spatial 

dependency within multiple wind-farms as studied in [Morales et al., 2010a] is out of 

the scope of this research. Addressing temporal correlation for both load and wind 

power can be found in [Usaola, 2010, Morales et al., 2010b, Abdullah et al., 2013]. To 

the best of our knowledge, no study has reported the importance of addressing spatio-

temporal dependency of load and wind power till date. It is important to address the 

spatio-temporal dependency from the transmission point of view when TSOs are facing 

stagnant expansion planning because (i) weak transmission capacity causes reduced 

integration capacity of WPPs (ii) redundant transmission capacity results in resource 

waste. 

5.2.2 BACKGROUND ON POWER SYSTEM RISK ASSESSMENT STUDIES 

Bulk interconnected power systems with distributed and geographically isolated 

generators and demand centers constitute a majority of the power network. With 

increasing RES and other DERs, the present day power systems are dynamic in nature 

with network topology changing more and more frequently with the change in demand. 

As nuclear power plants and fossil fuel plants are phased out to include more RES in 

form of massive wind power penetration, uncertainty in load demand actuates the 

power network to operate at loading limits; thus making it susceptible to blackout 

under minor/major disturbances. In order to operate the power system economically, 

the state of the system has to be identified as secure/insecure. Security assessment 

studies aim to balance the system security as well as the economy for power system 

operation. Power system security can be divided into two, namely, static and dynamic 

security. Static security analysis targets steady-state post-disturbance conditions, 

namely it is assumed that the system reaches operating equilibrium after a disturbance 

and it is checked whether system limits are violated. Dynamic security analysis targets 

system stability after a disturbance, and therefore it is investigated whether the system 

can reach a new state of equilibrium after a disturbance. Sometimes static security 

reliability assessment can be referred by literature as adequacy assessment, and 

dynamic security reliability assessment can be met simply as security reliability 

assessment. A classification hierarchy is shown in Fig. 5.1. Another way of classification 

is based on assessment techniques. The three schemes of security assessment are, 

namely, (i) deterministic security assessment that is more traditional and considers a set 

of most credible contingencies resulting in high operating costs, (ii) probabilistic security 

assessment that considers probabilistic indices LOLP (Loss of load probability for 

likelihood of events) and EENS (Expected energy not supplied for both likelihood as well 
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as severity of events), and (iii) risk-based security assessment (RBSA) that considers 

both likelihood and severity of events allowing the power system to operate closer to or 

beyond its limits. Further, RBSA is categorized as; (i) static RBSA that considers the risk 

of overload and voltage violations and (ii) dynamic RBSA that considers the risk of 

instability in terms of voltage and swing transient. The deterministic security 

assessment methods get usually many conservative results in overload analysis. With 

recent advancement and more adoption of risk theory in power system, the risk 

assessment method is gradually evolving and acknowledged. 

Security

Overload security Voltage security Dynamic security

Transient 
instability 

(early-swing)

Oscillatory 
instability 
(damping)

Low voltage
Unstable 
voltage

Line overload
Transformer 

overload

Static security

 

Fig. 5.1: Classification of power system security [McCalley, 2005] 

This research focuses on static RBSA in terms of transmission line overload violation 

identified as a risk by developing a spatio-temporal modeling technique using vine 

copula. The risk assessment method is proposed for operational planning. Such a 

modeling framework will facilitate TSOs to improve short-term operational planning 

decisions while coordinating long-term grid development plans (e.g., integrating more 

WPPs) and increase the security margins and decrease the idle capacity reserves and 

related costs. In regard to transmission line overload, literature study reveals the study 

of static RBSA with ‘N-1’ contingency [McCalley et al., 1999], risk visualization using 

Poisson distribution [Ni et al., 2003a, Ni et al., 2003b], online static RBSA with 

forecasted operating condition [Arya et al., 2006], possibility and severity of risk 

occurrence [Dai et al., 2001]. 

Risk assessment by computing risk indices based on over-limit probability and 

severity to recognize system weakness more realistically is entailed in this study. In 

power system studies, risk assessment is performed in four steps [Ni et al., 2003b]: 

i. describe an index that represents system risk, 

ii. select a system state and calculate its probability, 

iii. evaluate the outcome of the system state, and 

iv. calculate the risk index. 

For any operating condition, the risk associated with 𝑖 th state 𝑆𝑖  at time 𝑡  is 

calculated for all possible values of probability and severity associated with it can be 

written as [Ni et al., 2003b], 
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𝑅𝑖𝑠𝑘𝑡 =∑𝑃𝑟𝑜𝑏𝑡(𝑆𝑖)𝑆𝑒𝑣𝑡(𝑆𝑖)

𝑛

𝑖=1

 (5.1) 

 

where 𝑃𝑟𝑜𝑏𝑡(𝑆𝑖) is the state probability, 𝑆𝑒𝑣𝑡(𝑆𝑖) is the associated severity of state 𝑖, 

and 𝑛 is the total number of system states. The line overload probability can be 

measured by the probability mass function of line flows. Reference [Ni et al., 2003b] 

categorized severity function into three types, namely, discrete, continuous and 

percentage of rating violation severity function. The concept of severity functions has 

been used in recent studies [Xie et al., 2014] to investigate transmission line 

overloading in power systems with wind and load-power generation correlation. 

PR

S
ev

90% 100%0

1

NV

 
Fig. 5.2: Linear severity function of line overload (PR: Percentage of Rating, NV: Near Violation) 

Fig. 5.2 shows the severity function as a continuous function of real line power as a 

percentage of rating (𝑃𝑅) and severity (𝑆𝑒𝑣), written as a function of 𝑗-th branch 

apparent power flow 𝐹𝑗 and rated apparent power flow 𝐹𝑗
𝑚𝑎𝑥   

 

𝑃𝑅 =
𝐹𝑗

𝐹𝑗
𝑚𝑎𝑥 𝑥100% 

𝑆𝑒𝑣𝑗 = {
0,                         (𝑃𝑅 100⁄ ) < 0.9

10(𝑃𝑅 100⁄ ) − 9, (𝑃𝑅 100⁄ ) ≥ 0.9
 

(5.2) 

 

When the line flow exceeds 90% of its rating, near violation for overload takes place 

which increases linearly as power flow exceeds the limit. Severity function signifies the 

extent of security violation and helps in quantifying the severity. In the case of 

transmission line overload, severity function is defined for each line and the apparent 

power flow in the line determines the associated risk. For each line, the severity 

function defined in equation 5.2 evaluates to 1 at the deterministic limits, i.e., 100% of 
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line apparent power flow rating. It is to be noted that higher risk values do not 

necessarily indicate a larger interruption of security of supply and vice-versa. For 

example, a 130% overload of a transmission line might have higher risk value than a 

130% overload of another transmission line but it does not necessarily lead to 

increasing the monetary penalty incurred due to unavailability of the security of supply. 

5.2.3 SCOPE OF THIS RESEARCH 

It was learned that despite the sustainable features of wind power, the spatial 

distribution of WPPs and load sites contribute to the change in operating conditions of 

the power system. The associated risk of change in operating conditions must be 

quantified and fully explored. In this study, calculation of risk indices is accomplished 

with probabilistic AC optimal power flow, which is used for the analysis of joint 

probability distributions resulting from the vine copula sampling algorithm. The choice 

for optimal power flow (OPF) is to determine a steady-state operating point that 

optimizes the use of system resources while maintaining operational constraints such as 

voltage regulation, generator limits and line flow limits. This proves helpful in static 

security assessment studies. OPF ensures that for every load scenario there is an 

optimal amount of power generated and restricted into a set of constraints to ensure its 

operational success. OPF is formulated as a nonconvex, nonlinear constrained 

optimization problem and a variety of algorithms have been used to solve it. In this 

research, one of the widely used optimization technique “interior-point method” is 

used for solving the OPF problem. The interior-point method is famous among power 

flow researchers due to their robustness and convergence characteristics. Another 

advantage of using the interior point method is that it is able to solve both linear and 

nonlinear problems. The stopping criterion is generally based on the coefficient of 

variation when it is less than a certain value.  

As such, the accuracy of computed risk indices depends on the accuracy of power 

flow results. Such a power flow analysis provides a suitable tool to study the 

relationship between the bus injection fluctuations in terms of near violation and 

overload in system operation state. Presence of WPPs introduces uncertainty in the 

normal operating state. Hence, the line power flows influenced by the stochastic 

generation introduce uncertainty in bus injections which might lead to transmission line 

overload. In addition to wind power, uncertainty in load growth contributes equally 

towards the problem.  

The key contributions of this research can be listed as: 

 A novel attempt to assess transmission line overloading risk while addressing 

spatio-temporal dependency using vine copula is made in this study. The 

sampling algorithm uses real-life data from nineteen spatially distributed load 

and two wind power zones spanning three years horizon from a U.S. utility to 

model the joint probability distribution.  
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 The sampled output is mapped onto a modified IEEE 39-bus system to achieve 

realistic results based on two case studies representing future scenarios of high 

wind power penetration with reduced fossil fuel and nuclear power generation. 

RBSA is performed on transmission line overloading by performing probabilistic 

AC optimal power flow and considering spatio-temporal dependence of load and 

wind power. Risk quantification of overloading is achieved as a product of 

probability and severity of overload. 

5.3 DATABASE GENERATION AND PREPARATION  

For this study, publicly available load and wind power data are taken from U.S. regional 

transmission operator [Web4, 2018]. Aggregated zonal load data (nineteen numbers) 

and wind power data (two numbers) spanning three years with hourly resolution is used 

in this study. To study the spatial correlation, geographical coordinates of zones are 

needed. Since the exact coordinates are treated confidential, an approximated 

weighted centroid has been defined to locate the ‘center’ of load zones and wind power 

generated zones. As in chapter 4, the three market zones are MIDATL, WEST, and 

SOUTH. To visualize the complexity, scatter plot with marginal histograms of four load 

and one wind power zone under the WEST zone is shown in Fig. 5.3. The marginal 

histograms (in the diagonal) reveal non-Gaussian nature while the scattered plots reveal 

the non-linear dependencies and suggest a weak correlation as well. 

 
Fig. 5.3: Scatter plot with marginal histograms of original data of four load zones and one wind power zone 

The proposed risk assessment is validated using the modified IEEE 39-bus system 

with a base value of 100 MVA. A modified version of the IEEE 39-bus system with WPPs 

and updated conventional generation capacities is considered in this study. The original 

test case consists of 39 buses, 10 conventional generators and two WPPs at bus 34 and 

37, and 46 transmission lines with net demand in the network of 6254.23𝑀𝑊 and net 

generation capacity of 7367𝑀𝑊. The modified topology with wind farms and divided 

zones according to real data is shown in Fig. 5.4. Next step is to map the real-life data 
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onto the IEEE 39-bus system by scaling the real-life data to match test-case parameters. 

A scale ratio is defined as, 

𝑆𝑐𝑎𝑙𝑒 𝑅𝑎𝑡𝑖𝑜 =  
maximum coincident peak demand of real − life data

sum of active power demand across all buses in test − case
 (5.3) 

Taking into account large wind power penetration, generation capacity of conventional 

generation sources (such as nuclear and fossil fuels) is lowered and is met by wind 

power generation [Papaefthymiou & Dragoon, 2016, Web8, 2018]. Generation cost 

data is obtained from [Bukhsh et al., 2016]. In addition, there is no topological change in 

terms of addition of new transmission lines, which gives us the option to assess the 

overloading risk on existing grid network. The two cases studied in this research are: 

Case I: The first case considers a 7.5% increase in system load to 6725.05𝑀𝑊. The 

total generation is 8167.87𝑀𝑊  including 2640𝑀𝑊  of wind at bus 34 and 37 

respectively. For the MIDATL, the net load is 2355.13𝑀𝑊  and net generation is 

4877.871𝑀𝑊  including 1760𝑀𝑊  of wind power. For the WEST, the net load is 

3752.1𝑀𝑊  and net generation is 3500𝑀𝑊  including 880𝑀𝑊  of wind power. For 

DOM, there is only an increase in demand to 617.82𝑀𝑊. 

Case II: The second case considers a 9% increase in system load to 6817.11𝑀𝑊. 

The total generation is 7712.86𝑀𝑊 including 2760𝑀𝑊 of wind. For the MIDATL, the 

net load is 2447.19𝑀𝑊 and net generation is 3792.861𝑀𝑊 including 1760𝑀𝑊  of 

wind power. For the WEST, the net load is same as Case I and net generation is 

3360𝑀𝑊 including 1000𝑀𝑊 of wind power. For DOM, net load and generation are 

the same as in Case I. 
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Fig. 5.4: Modified IEEE 39-bus system divided into three market zones (MIDATL, WEST, DOM) 
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For the two cases, a comparative analysis of uncorrelated and correlated load and 

wind power samples is performed. In the case of uncorrelated samples, synthetic wind 

power data using Weibull distribution and random samples of load taking the load at 

each bus as mean values is considered. This also serves as benchmark data to assess the 

correlated samples. The formula for the probability distribution function (PDF) of wind 

power is expressed mathematically as: 

 
𝑓(𝑣; 𝛾, 𝛼) =

𝛾

𝛼
(
𝑣

𝛼
)
𝛾−1

𝑒𝑥𝑝 {− (
𝑣

𝛼
)
𝛾

} 

 

𝑣 > 0, 𝛾 > 0, 𝛼 > 1 

(5.4) 

where, 𝑣 is the wind speed, 𝛾 is the shape parameter and 𝛼 is the scale parameter. 

Though 𝛼 significantly depends on wind farm location, we consider a single value as the 

sole intention of this research work is to generate aggregated zonal wind power and 

thereby not considering different wind farm sizes. For the uncorrelated study, 𝛾 = 2 

and 𝛼 = 11 are used to generate uncorrelated wind power for the probabilistic AC OPF 

[Carrillo et al., 2014]. Similarly, random load samples are generated from mean values 

of load at each bus [Bukhsh et al., 2016]. Technically, generated samples of load and 

wind power are uncorrelated and a correlation plot for Case I is shown in Fig. 5.5. 

For generating correlated samples, real data is modeled using Algorithm 4.3 to 

generate a joint normal distribution with correlated samples. The correlation plot for 

Case I is shown in Fig. 5.6. Inferencing the plot suggests both positive and negative 

correlation. The correlation coefficients -0.2675, 0 and 1.0 represent slightly negative 

correlation, perfectly uncorrelated and perfectly correlated. It is important to 

understand the significance of correlation coefficients. If load and wind power 

generation were positively correlated, they would tend to increase and decrease at the 

same time, and adding wind would help the load following task of the power system. 

On contrary, if the correlation were negative, the wind would tend to decrease when 

load increases (and vice versa) and this would require more from the load following 

units in the system. The presence of a negative correlation between load and wind 

power is of physical significance. It explains the need to balance out the wind power 

fluctuations in different zones with corresponding load fluctuations to maintain a steady 

supply. 
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Fig. 5.5: Correlation plot for the uncorrelated load (L1…L23) and wind power (W1,W2) for Case I 

 
Fig. 5.6: Correlation plot for the correlated load (L1…L23) and wind power (W1,W2) for Case I 
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5.4 RESULTS AND DISCUSSION  

For the inter-spatial dependencies and temporal correlations between load and wind 

power, two extremes of completely uncorrelated and completely correlated samples are 

considered. Such extreme scenario evaluations will enable us to gain insight into the 

importance of considering correlation for assessing transmission line overloading risk. 

Thus, for each Case I and II, there are two cases of uncorrelated and correlated samples. 

All modeling work is performed in MATLAB (version 2017b) environment using the 

Matpower package [Zimmerman et al., 2011] on an Intel Core i7 with 8 cores and 8GB 

RAM. Matpower’s deterministic power flow is used to implement the probabilistic OPF. 

Probabilistic OPF is built based on a deterministic one because the OPF that Matpower 

uses is a deterministic OPF. In general, the function of deterministic power flow study 

can be stated as, 

 
𝑧 = 𝑔(𝑥) (5.5) 

where 𝑥 is the vector of input variables which includes active power injection 𝑃𝑖  at each 

bus, reactive power injection 𝑄𝑖  at each 𝑃𝑄 bus and voltage magnitude 𝑉𝑖  at each 𝑃𝑉 

bus and slack bus; 𝑧 is the vector of output variables which include bus voltage 𝑉𝑖  at 

each 𝑃𝑄 bus, bus angle 𝜃𝑖  (except slack bus), branch active power flow 𝑃𝑖𝑗 , reactive 

power flow 𝑄𝑖𝑗 , and apparent power flow 𝑆𝑖𝑗 . For the probabilistic power flow problem, 

the input random variables 𝑥1, … , 𝑥𝐾 are probabilistic distributions of 𝑃𝑖  and 𝑄𝑖 . When 

wind power is included in probabilistic power flow, an additional random input variable 

is introduced as the wind power of the WPPs. The output information is probabilistic 

distributions of 𝑉𝑖  , 𝜃𝑖  , 𝑃𝑖𝑗 , 𝑄𝑖𝑗 , and 𝑆𝑖𝑗 . 

The problem of OPF is the allocation of given load amongst the generating units in 

operation so that the overall cost of generation is minimum. In OPF, the entire set of 

equality and inequality constraints, all the necessary and sufficient conditions of control 

parameters etc. must be satisfied thoroughly. The objective function can take various 

forms such as fuel cost, transmission losses, and reactive sources allocation. The 

objective function of interest in this research is the minimization of the total production 

cost of scheduled generating units. Various techniques have been proposed to solve the 

OPF problem, for example, non-linear programming, quadratic programming, linear 

programming, and interior point methods. In this research, the interior point method is 

used to solve the OPF problem by using Matpower Interior Point Solver (MIPS). For a 

thorough understanding of MIPS, readers are referred to [Zimmerman & Wang, 2016]. 

A flowchart showing data collection, dataset preparation, generating correlated 

samples using Algorithm 4.3 described in chapter 4 and running power flow with the 

calculation of risk indices is shown in Fig. 5.7. 
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All lines are monitored for overload risk though special attention is given to line 

connecting WPPs and the next nearest bus to rest of the grid, i.e., line 20-34 and line 

25-37 for the modified IEEE 39-bus system. Both the lines have a rated capacity of 

900MVA. The impacts of load and generation correlation on line overload risk are 

studied. It can be understood that fluctuation of high wind power can be easily 

compensated by the grid, provided it is distributed among the strong lines connecting 

to immediate load sites or the presence of a conventional generator bus that can 

regulate its generation depending on the needs of high or low wind power generation. 
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Fig. 5.7: Flowchart showing the computation of severity function starting from data collection to running 

power flow. The map shows the control areas of PJM with load (L1…Lm) and wind power (W1…Wn) zones’ for t 

time frames and approximated load centroid () and wind power centroid (X) 
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5.4.1 CASE I 

In Case I, we consider WPPs at bus 34 (1760MW) and bus 37 (880MW) to compensate 

the reduced conventional generation as well as load growth. Running probabilistic AC 

load flow, Fig. 5.8(a) and Fig. 5.8(b) show the loading of all the lines for uncorrelated 

and correlated load and wind power samples. Branch indices correspond to Matpower 

branch indices. The figures give an overview of most loaded lines and we focus on lines 

20-34 and 25-37 (indices 34 and 41) as shown in Fig. 5.9 and Fig. 5.10. Because the 

number of convergence changes for each power flow case, the probability of 

occurrence vs. apparent power flow of line was mapped. A closer look at the figures 

reveal the advantage of considering spatio-temporal dependence in terms of line 

overloading occurences. 

Fig. 5.9 shows a considerable decrease in line overloading risk where the probability 

of overload during both near violations as well as overload is less than halved. On the 

other hand, Fig. 5.10 reveals not much success in considering spatio-temporal 

dependency. Loading of line 25-37 at 100% is marginal. This could be understood as the 

net load being higher than generation capacity. To understand the risk index of the 

overall system, Table 5.1 shows the risk indices for Case I. Recalling from equation 5.1, 

risk indices correspond to values when the lines are overloaded by 90% or more of their 

rated capacity. The overload risk index is measured by the probability of line overload 

and corresponding severity. Line 20-34 which connects 1600MW of wind power to rest 

of the grid shows a remarkable decrease of line overload by more than 50% when the 

correlation is considered. Similarly, overload risk of line 25-37 decreases by 12.3%. Since 

the two lines are considered vital when connecting the massive WPPs into rest of the 

grid, such a decrease in overload risk can be considered beneficial in comparison to the 

construction of a new line in the same corridor. For the entire system, there is a 

decrease in the overload risk index from 4.6010 to 3.7840. 
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(a) 

 
(b) 

Fig. 5.8: Line apparent power flow (MVA) vs. branch indices after running OPF for (a) uncorrelated load and 

wind power in Case I, (b) correlated load and wind power in Case I. Red marks represent the maximum line 

capacity. Blue arrows represent the line index under consideration. 
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Fig. 5.9: Empirical probability distribution of power flow of line 20-34 (index 34) for uncorrelated and 
correlated load wind power for Case I. Line rating of line 20-34 is 900MVA. 

 

 
 
Fig. 5.10: Empirical probability distribution of power flow of line 25-37 (index 41) for uncorrelated and 
correlated load wind power for Case I. Line rating of line 25-37 is 900MVA. 
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If we consider the generation facility in WEST, influx of 880MW of wind at bus 37 is 

accompanied with other generation sources at bus 37, 30 and 39 which is responsible 

for the heavy loading of lines 2-3, 2-25 and 25-37. The risk index of line 25-37 fairly 

decreases with spatio-temporal modeling. Moreover, variation in wind production is 

compensated by already available generation at bus 37 that accounts for a slightly low-

risk index. Net risk indices of the three lines decrease by 10.38% with consideration of 

correlation. The other two lines that are heavily loaded are 6-11 and 16-19. The risk 

index of 6-11 remains more or less constant with or without considering correlation. It 

is to be noted that a new load site at bus 6 and an increase of load at buses 7 and 31 

without any changes in the generation can be considered as responsible for such 

overloading. One proposed solution for such case is building an interconnection 

between bus 34 and 11 or other nearby buses. Overloading of line 16-19 is explained by 

the addition of WPPs at bus 34 accompanied by generation at bus 33. Consideration of 

correlation leverages overloading which decreases by 25% and it can be considered 

advantageous for TSOs. 

Table 5.1: Comparison of line overload risk indices for Case I 

Index Line Uncorrelated Correlated 

3 𝟐 − 𝟑 0.7688 0.7075 

4 𝟐 − 𝟐𝟓 0.6024 0.5331 

13 𝟔 − 𝟏𝟏 0.9841 0.9815 

27 𝟏𝟔 − 𝟏𝟗 0.9571 0.7127 

34 𝟐𝟎 − 𝟑𝟒 0.6746 0.3118 

41 𝟐𝟓 − 𝟑𝟕 0.6128 0.5374 

 Total 𝟒. 𝟔𝟎𝟏𝟎 𝟑. 𝟕𝟖𝟒𝟎 

 

An extensive suite of 30000 Monte Carlo simulation (MCS) was performed. The 

choice of sample size is kept the same as in vine copula sampling from chapter 4. MCS is 

one way to solve probabilistic OPF which often serves as accuracy reference. MCS firstly 

samples the random variables and then for each sample a load flow case is solved to 

obtain all states. Based on the load flow results of all samples, scenarios are generated 

randomly from PDF. Table 5.2 compares the number of samples converging in the 

probabilistic OPF problem. The number of correlated cases converging is on a higher 

side as compared to uncorrelated samples. This is certainly helpful as the empirical 

probability distribution of power flow of lines contains a higher number of feasible 

states. 
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Table 5.2: Comparison of uncorrelated and correlated samples converging in Case I 

Total samples Uncorrelated Correlated 

30000 15914 28493 

 

5.4.2 CASE II 

Compared to Case I, Case II considers a slight increase in net wind power penetration 

while a slight decrease in net system load. WPPs of 1760MW at bus 34 and 1000MW at 

bus 37 are used to compensate for lowering of conventional (nuclear and fossil fuel) 

generation units and load growth. Numerically, a 1.5% equivalent increase of wind 

power penetration and 5.5% decrease in overall generation compared to Case I is 

considered for probabilistic AC load flow. Fig. 5.11(a) and Fig. 5.11(b) shows the loading 

of all the lines after running the power flow. A comparative figure showing the loading 

of lines 20-34 and 25-37 is shown in Fig. 5.12 and Fig. 5.13. From Fig. 5.12, it is evident 

that the loading of line 20-34 at 100% significantly decreases when spatio-temporal 

dependency is considered. A remarkable decrease in loading proves the advantage of 

addressing correlation. However, Fig. 5.13 shows the heavy loading condition of line 25-

37 at slightly higher than 100%. Though there is a decrease in line loading at nearly 

100%, an increase in wind power generation in WEST still does not compensate for the 

high zonal net load. 
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(a) 

 
 

(b) 

Fig. 5.11: Line apparent power flow (MVA) vs. branch indices after running OPF for (a) uncorrelated load and 

wind power in Case II, (b) correlated load and wind power in Case II. Red marks represent the maximum line 

capacity. Blue arrows represent the line index under consideration. 
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Fig. 5.12: Empirical probability distribution of power flow of line 20-34 (index 34) for uncorrelated and 
correlated load wind power for Case II. Line rating of line 20-34 is 900MVA. 

 
 
Fig. 5.13: Empirical probability distribution of power flow of line 25-37 (index 41) for uncorrelated and 
correlated load wind power for Case II. Line rating of line 25-37 is 900MVA. 

Table 5.3 shows the overload risk indices for the total system and some heavily 

loaded lines. The net system risk index is lowered by 15.23% when the correlation is 

considered. In both Case I as well as Case II, it is noticed that the same set of lines are 
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often overloaded. In the WEST, risk indices for lines 2-3, 2-25 and 25-37 decreases 

considerably after accounting for correlation although there is an increase of wind 

power generation at bus 37. In the MIDATL, lines 6-11 and 16-19 show an increase in 

risk index when correlation is considered. It can be understood that risk indices are 

seriously affected with consideration of spatio-temporal dependency. The proposed 

solution of adding an interconnection between bus 34 and 11 or other nearby buses is 

still considered to be a proposed solution to combat the increase in risk index. An 

increase of load at bus 16 accounts for a marginal increase in risk index for line 16-19. 

The positive aspect is seen in the form of low overall risk index of the total system with 

consideration of spatio-temporal dependency. 

Table 5.3: Comparison of line overload risk indices for Case II 

Index Line Uncorrelated Correlated 

3 𝟐 − 𝟑 0.8553 0.7009 

4 𝟐 − 𝟐𝟓 0.5582 0.4025 

13 𝟔 − 𝟏𝟏 0.9660 0.9846 

27 𝟏𝟔 − 𝟏𝟗 0.8467 0.8564 

34 𝟐𝟎 − 𝟑𝟒 0.3670 0.1616 

41 𝟐𝟓 − 𝟑𝟕 0.5617 0.4158 

 Total 𝟒. 𝟏𝟓𝟒𝟖 𝟑. 𝟓𝟐𝟏𝟕 

 

Similar to Case I, the number of correlated samples converging is higher than the 

uncorrelated samples. The performance of correlated samples is nearly the same with 

the similar number of converging states (~28𝑥𝑥𝑥 states). This indicates the advantage 

of considering correlated samples as a higher number of feasible states correspond to 

better insight on system operating condition. 

Table 5.4: Comparison of uncorrelated and correlated samples converging in Case II 

Total samples Uncorrelated Correlated 

30000 11943 28562 

5.5 CONCLUSIONS  

To answer the urgent need of relevant tool and risk quantification measures for 

transmission line overloading, a novel attempt of using vine copula for spatio-temporal 
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modeling to perform a risk-based security assessment of transmission line overloading 

is presented. Real load and wind power data are mapped onto a modified IEEE 39-bus 

system representing different market zones of U.S. utility. Use of real data with 

probabilistic AC OPF analysis gives a more realistic behavior of grid performance in 

terms of realistic risk indices. The main outcomes of this chapter can be listed as: 

 Use of vine copula to model joint normal distribution addresses spatio-temporal 

dependency. In order to quantify the risk, this is seen important in future 

because of the massive integration of wind power into existing grid 

infrastructure. Joint normal distribution is important as it points out to two key 

properties: the non-Gaussianity of marginal distributions and the complex 

dependence structures. The reproducible sampling algorithm generates 

correlated samples that are then mapped onto the test case for risk assessment. 

It was also observed that the number of converging states for correlated samples 

is nearly the same for both the cases. High number of converging states 

corresponds to exploring high number of operating states. 

 Probabilistic AC OPF allows measuring the probability of line overload. Overload 

probabilities contribute significantly to the risk index of both lines and also the 

whole system. Risk quantification is achieved by combining the probability with 

the severity of line overload. For studying the overload risk indices for 90% 

loading or more, the probability of overload is taken into account and the 

corresponding probabilistic risk indices are calculated. The proposed risk 

quantification technique is able to qualitatively interpret the numerical values 

corresponding to risk indices. 

 The two cases studied in this research can be regarded as future scenarios 

aiming at low-carbon electricity generation in the form of massive integration of 

WPPs. Risk indices for the overall system vary significantly for the two cases and 

a high number is seen for Case I. The reason can be understood as an increase in 

both load and wind power as compared to Case II. For both the cases, 

overloading of lines 6-11 and 16-19 indicate the need for future expansion 

planning to address the issue. 
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CHAPTER 6  

CONCLUSION AND FUTURE RESEARCH 

6.1 CONCLUSION 

The primary objective of this research was to develop a statistical model to address the 

spatio-temporal dependence of load and wind power and to use the model to perform 

a risk-based security assessment of transmission line overloading in a future power 

system with high wind power penetration and lower fossil fuel or nuclear power 

generation.  The conceptual framework developed in this research has been described 

in this way: 

“The developed spatio-temporal model addresses the dependence between electricity 

load and wind power. Consideration of this dependency in system security assessment 

(short-term horizon) gives a better picture of the risk value associated with transmission 

line overloading. The quantified risk can support the alleviation of long-term 

investments to a certain extent.” 

The results derived from this research can be summarized in three parts: 

FIRST PART (RE-VISITING TSO ACTIONS IN OPERATION AND PLANNING): 

The first part of this research focused on preparing a solid background on state-of-the-

art TSO actions in three time-horizons. Time-horizons and corresponding activities are 

long-term (grid development), mid-term (asset management), and short-term (system 

operation) horizons. With respect to time-horizons in the planning and operation of 

transmission networks, a critical review has been performed to identify the gaps in 

current practices and requirements for future planning. The review is accompanied by 

an extended analysis of the asset management decision-making process. The extended 

analysis is performed for two important reasons:  (i) the ageing of existing assets, and 

(ii) the advent of new technologies that are incompatible with the existing 

infrastructure. Uncertainty related to load growth and wind power penetration exerts 

stress on the transmission grid infrastructure which causes them to work at operating 

limits. In addition, the presence of uncertainty induces a risk of overloading which is 

described by a severity function in this research. A survey on “assets considered under 
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asset management” with pan-European TSOs revealed that overhead transmission 

lines, busbars, transformers, circuit breakers and protection systems are considered 

equally important. For this research, risk associated with the overloading of 

transmission lines due to load growth and wind power penetration is considered with a 

special focus on spatio-temporal dependency because of the spatial distribution of load 

sites and WPPs that results in stress on transmission lines for energy transmission. In 

addition, building a new transmission corridor is more challenging in terms of its 

economic and social impact when compared to investments in other transmission 

assets. This leads to the second part of the result analysis where statistical models 

developed in this research are described.   

SECOND PART (DEVELOPMENT OF STATISTICAL MODELS FOR FUTURE POWER 

SYSTEMS): 

Statistical models for modeling and forecasting electricity load in the short-term and 

long-term horizons were developed in this research. For the short-term horizon, a 

neural network-based load forecasting technique was developed, aiming at better 

representation of forecast error distribution. With this research, truncated normal 

distribution was proposed to represent forecast error distribution. An important 

advantage of truncated normal distribution is that it plays the role of a normal 

distribution after removing the outliers,  which also helps describe the statistical 

properties of forecast error. The long-term forecast considered aggregated load and 

volatility in long-term forecast as driving factors. A multiplicative error model was 

developed with a forecast horizon of 4 years conforming to the fact that off-shore wind 

farm construction (long-term grid development activity) takes 4 years to complete. With 

the developed load models, it was possible to account for uncertainty in load growth in 

terms of temporal scale only. Upon accounting for temporal as well as spatial 

correlation and considering wind power as another variable, a multivariate modeling 

approach was deemed necessary. Thus, a vine copula modeling technique was 

developed to account for the spatio-temporal dependency of load and wind power. A 

temporal horizon spanning three years and spread across ten different locations 

consisting of load and wind power is used in this research. In addition, hourly load and 

wind power data obtained from a U.S. utility is used to further develop the statistical 

model. The joint probability distribution incorporates the one-dimensional marginal 

distributions of load and wind power. In reality, one-dimensional marginal distributions 

are insufficient to calculate the joint probability distribution. They are sufficient if load 

and wind power are independent random variables. However, studies reveal that load 

and wind power demonstrate dependency and cannot be treated as independent 

random variables. However, obtaining the joint probability distribution, given the 

marginal distributions, is a non-trivial problem since an infinite number of joint 

probability distributions exist with the same marginal distributions, corresponding to an 



175 

 

infinite number of stochastic dependence structures between random variables such as 

load and wind power. The use of vine copula facilitates building multi-dimensional 

copulas out of bivariate copulas as they are easy to estimate and interpret. Copulas 

provide a more detailed description of the dependence structure between several 

random variables since they represent multidimensional functions that link marginal 

probability distributions functions of the random variables to their joint probability 

distributions functions. The final step in this research is performance evaluation of the 

vine copula model by performing a risk-based security assessment of the transmission 

line overloading, described in the third and final part. 

THIRD PART (PERFORMANCE EVALUATION):   

One of the challenges identified in wind power generation is that places with high 

potential for bulk or large WPPs (say, several hundred of MW) are often located far 

from demand sites. Bundled with available capacity in transmission lines and its actual 

loading level, it imposes significant stress on transmission assets for transporting energy 

from generating to load sites as they work more frequently at operating limits. The 

choice of transmission line for this research was explained in the first part.  

Therefore, why is there a need to consider the spatio-temporal dependence of both 

load and wind power in operational planning studies? The third and last part of this 

research aimed to answer this question by evaluating the vine copula model for security 

assessment in case of transmission line overloading. Two case studies representing 

future scenarios with massive wind power penetration and reduced fossil fuel or 

nuclear power generation were described and the developed model was evaluated.  A 

severity function of line overload was used to calculate the overloading risk and the 

overload risk index was treated as a security indicator in this research. Considering both 

the temporal and spatial correlation of load and wind power proved to be beneficial in 

alleviating the overloading risk in terms of quantifying the overload risk index. 

6.2 ANSWERS TO RESEARCH QUESTIONS 

Q.1. What is the implication of different TSO actions taken in different time-

horizons on power system reliability? Will the traditional concept of time-

horizons be valid in the future when there is uncertain load growth and high 

penetration of renewable energy into the existing transmission grid 

infrastructure? (chapter 2) 

A.1. The first research question forms the cornerstone of this research. In the 

planning and operation of the electric power system, different independent 

actions are taken by TSOs in different time-horizons to secure a high 

reliability level. The nature of actions varies from one TSO to another, as 
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stated in the literature review conducted in this research. It was revealed 

that the old concept of time-horizons, which refers to the sequential 

approach adopted by TSOs, is challenged by uncertainty in load growth, 

massive penetration of wind power and other DERs and development and 

integration of new technologies. A critical review of current practices 

identified the challenges that TSOs encounter, with only a few of these 

answered in this research. The system is expected to perform in ways and in 

a context for which it was not designed, resulting in an increasingly stressed 

performance. The system not only becomes heavily loaded and vulnerable to 

disturbances, but also places security of supply at risk. Surveys involving 

European TSOs revealed transmission lines to be of critical importance, and 

hence were subsequently chosen to be analyzed in this research on 

overloading risk. To study the impact of transmission line overloading when 

there is uncertainty in demand growth and massive integration of wind 

power, a spatio-temporal model to learn the dependencies among load and 

wind power has been developed. An accurate model will help TSOs 

reconsider their decisions to construct new lines or invest in other 

transmission infrastructure to combat the stress level of transmission lines. 

Q.2. How should uncertainty in load growth be addressed and what are the 

associated modeling challenges in the short-term and long-term horizons? 

How can forecast error be accounted for in terms of error distribution in the 

short-term horizon? What is the role of volatility in long-term forecasting and 

how does it impact the modeling framework? (chapter 3) 

A.2. To address the first part of the research question, a neural network based 

load forecasting model was designed, implemented and trained with real 

data and results were obtained with a high degree of accuracy. With this 

model, truncated normal distribution to model forecast error is proposed and 

used in the GARPUR project studies. Compared to short-term load 

forecasting, it was realized that long-term forecasting requires a different 

approach which is based on (i) identifying and extrapolating mega-trends 

going as far back in time as necessary, thus resulting in a rich historical 

database (ii) addressing volatility, and (iii) constructing scenarios to consider 

future possibilities. Moreover, it was realized in this thesis that volatility is 

forecastable because of a number of persistent properties: (i) it appears in 

clusters, (ii) it changes over time and has unusual jumps, (iii) it does not grow 

to infinity and is persistent in a specific time-span, and (iv) it reacts differently 

to an increase or decrease of the considered entity. In this thesis, the novel 

attempt of using a multiplicative error model to forecast load in long-term 

horizon is presented with the aim of achieving an accurate long-term forecast 

methodology. The reason behind choosing a multiplicative error model to 
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forecast in long-term horizon is supported by the fact of dealing with 

volatility that cannot be addressed with ‘conventional’ time series methods. 

The multiplicative error model inherits many properties from the theory of 

ARMA models like volatility clustering, fat tails and mean reversion, which 

assists in learning the statistics of volatility in time series. The term 

conditional variance in the multiplicative error model denotes its dependency 

on a past sequence of events in contrast to the unconditional, which implies 

long-term behavior assuming null knowledge of past events. In this study, 

consideration of conditional variance has resulted in improved forecast (both 

low forecast error and directional forecast as well) for long-term horizon. 

Though both conditions are vital in volatility forecasting, usage of conditional 

variance in multiplicative error model improves forecast accuracy. A relevant 

result is the inclusion of heteroskedastic errors that improves forecast 

performance and also shows that it is possible to predict the direction of 

change of residuals in the presence of conditional heteroskedasticity, even if 

the residuals themselves cannot be predicted. The two performance 

indicators for this long-term forecasting study are: point forecast with a low 

error percentage as proved by mean error metrics for both in-sample and 

out-of-sample forecasts, and directional accuracy during the Great Recession 

of 2008. 

Q.3. How should load variability and wind power generation for spatially 

distributed locations in a large-scale system be modeled? How can both 

spatial as well as temporal correlations be effectively addressed? How can 

high dimensional data be accounted for when the future will be data-centric? 

(chapter 4) 

A.3. To tackle the multiple variables and the non-Gaussian distribution as well as 

non-linear relationship of load and wind power, it was concluded in A.2. that 

dependencies over correlation must be learned and it also addresses the 

need to model spatio-temporal correlations. With the increased penetration 

of wind power into the existing grid infrastructure, it is vital to model the 

complex interdependencies introduced by the stochastic generation sources 

along with the system load. A combination of dependency modeling and 

machine learning techniques forms the basis of this research to model high-

dimensional spatio-temporal dependency. The modeling of stochastic 

dependence has been a cornerstone in the research on multivariate 

uncertainty analysis and the most promising approach is the use of the vine 

copula model to address spatio-temporal dependency. Among the varieties 

of copula types and vine copula models, a canonical vine-based high-

dimensional spatio-temporal modeling approach is presented in this study. 

Use of copula type is validated by performing Goodness of Fit tests, namely, 
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Kolmogorov-Smirnov and Cramer-von Mises tests. Followed by copula type 

selection, construction of the canonical vine is made on cluster weight for 

each cluster. Prior to copula type and vine copula model selection, machine 

learning techniques are employed for data mining and feature extraction to 

reduce the high-dimensional data to low-dimensional. Clustering helps in 

partitioning the data into groups of similar statistical characteristics and 

choosing the right number of clusters is important to validate the clustering 

algorithm. In this study, k-means, Gaussian mixture model (GMM) and 

hierarchical linkage (HL) clustering techniques are assessed. Determining the 

optimal number of clusters and appropriate clustering method is based on 

the performance of clustering validation indicators, namely, the Davies-

Bouldin index and gap statistics index. Followed by clustering, upon 

predicting that future power systems will be data-centric, the computational 

burden can be predicted for high dimensional modeling and this thesis 

addresses the problem in terms of efficient modeling by using singular value 

decomposition and principal component analysis to extract the features for 

each cluster and thereby reduce the problem to one that is low-dimensional. 

The proposed sampling methodology is reproducible and able to capture the 

spatio-temporal dependency among twenty one different sites of load and 

wind power over a time span of three years by employing a conditional 

density function calculated using the multi-dimensional canonical vine copula 

function. In addition, tail dependencies are addressed by copulas with lower 

values of 𝑝-value. 

Q.4. Does the consideration of spatio-temporal dependence of load and wind 

power prove beneficial to quantify the risk of overloading transmission lines? 

How does the correlation impact the risk values of line overload? How do the 

risk values of individual lines or the entire system enable the system operator 

to assess system operation conditions? (chapter 5) 

A.4. A new attempt to use vine copula for spatio-temporal modeling to perform a 

risk-based security assessment of transmission line overloading is presented. 

Real load and wind power data is mapped onto modified IEEE 39-bus system, 

representing different market zones of U.S. utility. Use of real data with 

probabilistic AC OPF analysis gives a more realistic indication of grid 

performance. The main outcomes of this research can be listed as such: 

i. Use of vine copula to model joint normal distribution addresses spatio-

temporal dependency. Developing risk quantifying strategies is 

important to the future because of the massive integration of wind 

power into the existing grid infrastructure. Joint normal distribution is 

also significant as it points out two key properties: the non-Gaussianity 

of marginal distributions and the complex dependence structures. The 
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reproducible sampling algorithm generates correlated samples which are 

then mapped onto the test case for risk assessment. 

ii. Probabilistic AC OPF allows the probability of line overload to be 

measured. Risk quantification is achieved by combining the probability 

with the severity of line overload. When studying the overload risk 

indices for 90% loading or more, the probability of overload is taken into 

account and the corresponding probabilistic risk indices are calculated. 

The proposed risk quantification technique is able to qualitatively 

interpret the numerical values corresponding to risk indices. Using real 

data on the modified IEEE 39-bus system shows more realistic risk 

indices, and simulation results show the advantage of considering spatio-

temporal dependency. 

The two cases considered in this study can be regarded as future 

scenarios aiming for low-carbon generation in the form of massive 

integration of WPPs. Risk indices for the overall system vary significantly for 

the two cases though a high number is seen in Case I due to an increase in 

both load and wind power as compared to Case II. In both cases, overloading 

the lines 6-11 and 16-19 indicates that the issue needs to be addressed in 

future plans. 

6.3 RECOMMENDATIONS AND FUTURE WORK  

This thesis addressed the research questions in terms of statistical modeling and risk 

assessment but there were additional challenges encountered during the course of 

research with respect to data, models and acceptance of methodology.  

6.3.1 IN TERMS OF FORECASTING AND ERROR MODELING 

The neural network model developed in this thesis has the possibility of further 

improvements in terms of optimizing the neural network weights by using heuristic 

optimization of neural network weights which will result in improving forecast accuracy. 

In the future, inclusion of random disturbances, consumer class, and demand side 

management as input parameters for forecast is also possible. Paving the way towards 

future research by including distributed generation while forecasting load in long-term 

horizon can be beneficial. In this thesis, the authors implicate that load forecast can 

correspond to total load in presence of distributed generation like wind and solar, 

which is treated as negative load. 

6.3.2 IN TERMS OF PRACTICAL REALIZATION AND TSO-DSO INTERACTION 

The forecast methodology for both the short-term as well as long-term horizon and 

modeling of high-dimensional spatio-temporal dependency presented in this thesis can 
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be foreseen to be widely adapted with the advent of smart grids and increased 

participation of stochastic generation sources. It paves way for the system operators to 

move beyond decision making under past observations. And, yes the biggest challenge 

of any modeling technique is the feasibility in terms of practical realization. The 

selection of a suitable method is restricted by the data availability and the daily grid 

operation processes. A number of factors influence the uncertainty in load and RES 

forecasting. 

Since the modeling technique is presented from TSOs’ point of view, a possible 

extension of this study is the inclusion of solar power that will require an active 

interaction of DSOs. Thus, it can be concluded that for a more pragmatic methodology, 

it is recommended to devise a multivariate problem taking load, wind and solar power 

together. Temporal analysis of multiple data while considering the spatial complexity 

will provide useful insights and better coordination of TSO-DSO activities in terms of 

load patterns in various locations across different time-frames (calendar seasons). 

Output from such a spatio-temporal analysis will facilitate both the operators to plan 

their grid development and/or maintenance activities in a more optimized way. The 

penetration of power electronic devices introduces stability issues and with the 

presented modeling technique, it can be extended to transient stability studies. 

6.3.3 IN TERMS OF BIG DATA ANALYTICS 

With respect to high-dimensional spatio-temporal modeling, it will be beneficial to 

include asset failure data for future research. The impact of weather on asset failure 

rate is already a key research topic and inclusion of possible impact of load and wind 

power on assets will be advantageous. The huge amount of data needed for such 

modeling will be handled as big data. In conclusion, big data will have a large impact on 

the management of utilities in case of fast deployment of ICT and intelligent sensing 

within the transmission network. There are many challenges which would affect the 

success of big data applications in future for utilities. Reduced cost of storage with 

advancement of cloud based data analytic technology will enable the data analysts and 

scientists to easily extract the information from large volumes of data. Presently, 

experience in integrating big data with current framework is limited. In particular, 

analytics must be supported by true optimization models to automate the maintenance 

planning and outage scheduling. It is intended to discover correlations or patterns to 

make holistic decisions and with the help of analytics utilities can consider all aspects of 

a decision – the financial side, the maintenance side, as well as the operations side. 

Also, real application of big data is the ability to understand what data sample is 

required, ways to analyze and interpret, and then use it. Without completed fields, or 

validated data, analysis is not possible. So good amount of effort is needed in the future 

to be spent to develop more advanced and efficient algorithms for data analysis that 

can be easily accepted by utilities. In the end, effective maintenance will be a result of 
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quality, timeliness, accuracy and completeness of information related to machine 

degradation state, based on which decisions are made. In terms of tractability and 

scalability, reducing the computational burden is possible by exploring machine learning 

techniques in terms of advanced clustering algorithm and feature extraction. 
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APPENDIX A1 

This appendix supplements data for Chapters 4 and 5. The data supplied here is 

primarily taken from PJM website, namely: 

1. Load data: http://www.pjm.com/markets-and-operations/ops-

analysis/historical-load-data.aspx  

2. Wind power data: http://www.pjm.com/markets-and-operations/ops-

analysis.aspx  

3. Zone map: http://www.pjm.com/-/media/about-pjm/pjm-zones.ashx?la=en  

4. https://www.pjm.com/-/media/committees-

groups/subcommittees/irs/postings/pjm-pris-task-3a-part-a-modeling-and-

scenarios.ashx?la=en  

5. http://www.pjm.com/committees-and-groups/subcommittees/irs/pris.aspx 

All links were last accessed on 3
rd

 April, 2018.  

 

 
Fig. A.1: PJM zones showing the different load zones with spatial centroid () and wind zones with spatial 

centroid (X)  

http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx
http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx
http://www.pjm.com/markets-and-operations/ops-analysis.aspx
http://www.pjm.com/markets-and-operations/ops-analysis.aspx
http://www.pjm.com/-/media/about-pjm/pjm-zones.ashx?la=en
https://www.pjm.com/-/media/committees-groups/subcommittees/irs/postings/pjm-pris-task-3a-part-a-modeling-and-scenarios.ashx?la=en
https://www.pjm.com/-/media/committees-groups/subcommittees/irs/postings/pjm-pris-task-3a-part-a-modeling-and-scenarios.ashx?la=en
https://www.pjm.com/-/media/committees-groups/subcommittees/irs/postings/pjm-pris-task-3a-part-a-modeling-and-scenarios.ashx?la=en
http://www.pjm.com/committees-and-groups/subcommittees/irs/pris.aspx


184 

 

Fig. A.1 shows the nineteen load zones and two wind power zones considered in 

the study. The exact latitude and longitude of different zones are treated confidential 

by PJM and hence an approximated centroid (latitude and longitude) is calculated 

detailed in Table A.1. Based on the approximated centroid, distances between two 

locations are calculated and shown in Table A.2. 

Table A.1: Zones with corresponding latitude and longitude 

 

Zones Latitude Longitude 

AP 39.200221 -79.460021 

AEP 38.670387 -82.316467 

ATSI 41.181128 -81.422454 

AE 39.638103 -74.862243 

BC 39.454384 -76.463511 

CE 41.220909 -88.926116 

DAY 39.892241 -84.300872 

DPL 38.429811 -75.658752 

DOM 37.277908 -77.713205 

DEOK 39.205276 -84.508239 

DUQ 40.631050 -80.088999 

EKPC 37.564059 -84.096252 

JC 40.806355 -74.502451 

ME 40.078942 -76.507456 

PL 40.997343 -75.875742 

PE 40.179742 -75.524180 

PN 40.940380 -78.394347 

PS 40.498296 -74.474985 

RECO 41.085461 -74.150889 

MIDATL 40.664836 -76.232764 

WEST 38.943206 -82.868506 
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Other useful links used in extraction of spatial data and calculation of spatial lags: 

1. https://www.latlong.net/ 

2. http://www.pjm.com/markets-and-operations/etools/data-miner-2/data-

availability.aspx 

3. https://www.nhc.noaa.gov/gccalc.shtml 

 

  

https://www.latlong.net/
http://www.pjm.com/markets-and-operations/etools/data-miner-2/data-availability.aspx
http://www.pjm.com/markets-and-operations/etools/data-miner-2/data-availability.aspx
https://www.nhc.noaa.gov/gccalc.shtml
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APPENDIX A2 

A2.1 TWO SAMPLE KOLMOGOROV-SMIRNOV TEST 

The two sample Kolmogorov-Smirnov (K-S) test is a  nonparametric test that compares 

the cumulative distributions of two data sets. The test statistic reports the maximum 

difference between the two cumulative distributions, and calculates a p-value from 

that and the sample sizes. Some key properties of KS-test are: 

 K-S test is non-parametric in nature. 

 It does not assume that data are sampled from Gaussian distributions (or any 

other defined distributions). 

 The results of K-S test do not change if any data transformation is applied (such 

as logarithmic). Because the maximum distance between any two frequency 

distribution remains the same irrespective of transformation. 

Given two samples, it tests if their distributions are the same. It starts with 

computing the observed CDFs of the two samples and computing their maximum 

difference. For two samples, 

𝑋: 1.2, 1.4, 1.9, 3.7, 4.4, 4.8, 9.7, 17.3, 21.1, 28.4 

𝑌: 5.6, 6.5, 6.6, 6.9, 9.2, 10.4, 10.6, 19.3 

Now, the combined sample is sorted in order to compute the ECDFs as shown in table 

below: 

Table A2.1: Combined sample of X and Y and corresponding ECDFs 

Combined 𝑿 and 𝒀 in ascending 

order 
𝑭𝑿 𝑭𝒀 

1.2 0.1 0.0 

1.4 0.2 0.0 

1.9 0.3 0.0 

3.7 0.4 0.0 

4.4 0.5 0.0 

4.8 0.6 0.0 

5.6 0.6 0.1 

6.5 0.6 0.2 

6.6 0.6 0.4 
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6.9 0.6 0.5 

9.2 0.6 0.6 

9.7 0.7 0.6 

10.4 0.7 0.8 

10.6 0.7 0.9 

17.3 0.8 0.9 

19.3 0.8 1.0 

21.1 0.9 1.0 

28.4 1.0 1.0 

 

In this research, MATLAB function kstest2 reports the test statistics. For this example, 

p-value with a significance level of 95% is used to reject the null hypothesis.  

 

MATLAB script: 

 

clear all 

clc 

  

x=[1.2, 1.4, 1.9, 3.7, 4.4, 4.8, 9.7, 17.3, 21.1, 28.4]'; 

y=[5.6, 6.5, 6.6, 6.9, 9.2, 10.4, 10.6, 19.3]'; 

[h1,p1,k1] = kstest2(x,y) 

cdfplot(x) 

hold on 

cdfplot(y) 

 

Output: 

p1 = 0.0473 

k1 = 0.6000 

 

Fig. A2.1 illustrates the overlay plots of two ECDFs. The difference between their 

distributions is significant at the 5% level (p = 4%). The K-S test statistic is the 

maximum difference between these functions. And in this case, it is 0.6. 
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Fig. A2.1: Plots of the two ECDFs (𝐹𝑋 and 𝐹𝑦) 

A2.2 GOODNESS OF CLUSTERING (GOC) TEST 

A2.2.1 DAVIES-BOULDIN INDEX (DBI) 

The Davies-Bouldin Index identifies clusters which are far from each other and 

compact. For 𝑛𝑐  clusters, the DBI is defined as: 

 

𝐷𝐵𝐼 =
1

𝑛𝑐
∑𝑅𝑖

𝑛𝑐

𝑖=1

 (1) 

where, 𝑅𝑖 = max𝑗=1…𝑛𝑐,𝑖≠𝑗(𝑅𝑖𝑗) , 𝑖 = 1…𝑛𝑐  

𝑅𝑖𝑗 =
𝑠𝑖+𝑠𝑗

𝑑𝑖𝑗
, 𝑑𝑖𝑗 = 𝑑(𝑣𝑖 , 𝑣𝑗), 𝑠𝑖 =

1

‖𝑐𝑖‖
∑ 𝑑(𝑥, 𝑣𝑖)𝑥∈𝑐𝑖

 

 

where, 𝑑(𝑥, 𝑦) is the Euclidean distance between 𝑥 and 𝑦, 𝑐𝑖  is the cluster 𝑖, 𝑣𝑖  is the 

centroid of cluster 𝑖, and ‖𝑐𝑖‖ refers to the norm of 𝑐𝑖. Since the objective is to obtain 

clusters with minimum intra-cluster distances, small values for DBI are interesting. 

Therefore, this index is minimized when looking for the best number of clusters. 

A2.2.2 GAP STATISTICS INDEX (GSI) 

The gap statistic compares the total within intra-cluster variation for different values of 

𝑘 with their expected values under null reference distribution of the data, i.e., a 

distribution with no obvious clustering. First, assume that there are a set of samples 

{𝑥𝑖}, then by the use of the clustering method, the resultant clusters 𝐶1, 𝐶2, … , 𝐶𝑘 can 

be obtained. For any cluster 𝐶𝑟, the sum of the pair wise distance 𝑑2(𝑥𝑖 , 𝑥𝑗), for all 

points in cluster 𝑟 is calculated. And the sum of within-cluster dispersion 𝑊𝑘  is defined 

the following equation 
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𝑊𝑘 =∑
1

2𝑛𝑟
∑ 𝑑2(𝑥𝑖 , 𝑥𝑗)

𝑖𝑗∈𝐶𝑟

𝑘

𝑟=1

 (2) 

As to the central concept of the gap statistic, it is to compare the log(𝑊𝑘) with its 

expectation under a reference distribution. It is defined 

 
𝐺𝑎𝑝𝑛(𝑘) = 𝐸𝑛

∗{log(𝑊𝑘)} − log(𝑊𝑘) (3) 

 

where 𝐸𝑛
∗  denotes expectation with a sample of size 𝑛 of the reference distribution. 

The optimized number of clusters 𝑘 is decided by 𝐺𝑎𝑝𝑛(𝑘). Note that, the logarithm of 

the 𝑊𝑘  values is used, as they can be quite large. The gap statistic measures the 

deviation of the observed 𝑊𝑘  value from its expected value under the null hypothesis. 

The estimate of the optimal clusters 𝑘 will be value that maximize 𝐺𝑎𝑝𝑛(𝑘) (i.e, that 

yields the largest gap statistic). This means that the clustering structure is far away 

from the uniform distribution of points. 
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APPENDIX A3 

A3.1 ARMA MODEL 

Definition 1: An autoregressive process of order 𝑝 ≥ 1 is defined as 

 

 𝑋𝑡 = 𝑏1𝑋𝑡−1 +⋯+ 𝑏𝑝𝑋𝑡−𝑝 + 𝜖𝑡  

 

where {𝜖𝑡}~𝑁(0, 𝜎
2). The time series {𝑋𝑡} generated from this model is called 𝐴𝑅(𝑝) 

process. 

 

Autoregressive (AR) model represents the current value of the process 𝑋𝑡 as a linear 

combination of past values of the process together with some white noise. That is, 

current state is completely determined by the past values 𝑋𝑡−1, … , 𝑋𝑡−𝑝 and some 

random error 𝜖𝑡. In the above definition, a stochastic process {𝑦𝑡} is called a white 

noise, denoted as {𝑦𝑡}~𝑁(0, 𝜎
2), if 𝐸𝑦𝑡 = 0, 𝑉𝑎𝑟(𝑦𝑡) = 𝜎2 and 𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑠) = 0 for all 

𝑠 ≠ 𝑡.  

The model can be viewed as a classical linear regression model without intercept. 

In practice, modeling the time series without intercept is no restriction, since it is 

common in time series analysis to subtract the mean from the data before proceeding 

with further analyses. 

 

Definition 2: A moving average process with order 𝑞 ≥ 1 is defined as 

 

 𝑋𝑡 = 𝜖𝑡 + 𝑎1𝜖𝑡−1 +⋯+ 𝑎𝑞𝜖𝑡−𝑞  

 

where {𝜖𝑡}~𝑁(0, 𝜎
2). The time series {𝑋𝑡} generated from this model is called 𝑀𝐴(𝑞) 

process. 

 

Moving Average (MA) models represents the current value as a linear combination of a 

white noise process realizations, so the value of 𝑋𝑡 can be considered completely 

random. 

 

By combining AR and MA processes, we arrive at an autoregressive moving average 

process. 
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Definition 3: The autoregressive moving average (ARMA) process of orders 𝑝 and 𝑞 is 

defined as: 

 𝑋𝑡 = 𝑏1𝑋𝑡−1 +⋯+ 𝑏𝑝𝑋𝑡−𝑝 + 𝜖𝑡 + 𝑎1𝜖𝑡−1 +⋯+ 𝑎𝑞𝜖𝑡−𝑞  

 

where {𝜖𝑡}~𝑁(0, 𝜎
2), 𝑝, 𝑞 ≥ 0 are integers. We write {𝑋𝑡}~𝐴𝑅𝑀𝐴(𝑝, 𝑞). The time 

series {𝑋𝑡} generated from this model is called 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process. 

 

It is often useful to represent linear ARMA processes using backshift operators. 

Namely, denote 

 

𝑏(𝑧) = 1 − 𝑏1𝑧 − ⋯− 𝑏𝑝𝑧
𝑝  and 𝑎(𝑧) = 1 + 𝑎1𝑧 + ⋯+ 𝑎𝑞𝑧

𝑞 , 

 

for 𝑧 ∈ ℂ and further define the backshift operator 𝐵 as 

 

𝐵𝑋𝑡 = 𝑋𝑡−1, 𝐵𝑘𝑋𝑡 = (𝐵𝑘−1)𝐵𝑋𝑡 = 𝑋𝑡−𝑘, 𝑘 ∈ ℕ 
 

We can then rewrite the ARMA process in a simple form as 

 

 𝑏(𝐵)𝑋𝑇 = 𝑎(𝐵)𝜖𝑡  
 

One advantage of using the polynomial representation of ARMA model is that lot of 

properties of ARMA models can be determined by exploring the polynomials 𝑏(𝑧) and 

a(𝑧). 
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