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Abstract

Accurate orthologue identification is a vital component of bacterial comparative genomic studies, but many popular

sequence-similarity-based approaches do not scale well to the large numbers of genomes that are now generated routinely.

Furthermore, most approaches do not take gene synteny into account, which is useful information for disentangling

paralogues. Here, we present SynerClust, a user-friendly synteny-aware tool based on SYNERGY that can process thousands of

genomes. SynerClust was designed to analyse genomes with high levels of local synteny, particularly prokaryotes, which

have operon structure. SynerClust’s run-time is optimized by selecting cluster representatives at each node in the phylogeny;

thus, avoiding the need for exhaustive pairwise similarity searches. In benchmarking against Roary, Hieranoid2, PanX and

Reciprocal Best Hit, SynerClust was able to more completely identify sets of core genes for datasets that included diverse

strains, while using substantially less memory, and with scalability comparable to the fastest tools. Due to its scalability,

ease of installation and use, and suitability for a variety of computing environments, orthogroup clustering using SynerClust

will enable many large-scale prokaryotic comparative genomics efforts.

DATA SUMMARY

Genome assemblies for the Escherichia coli dataset were
downloaded from GenBank (Table S1, available with the
online version of this article). Genome assemblies for the
Mycobacterium tuberculosis and Enterobacteriaceae datasets
were sequenced at the Broad Institute and have been sub-
mitted to GenBank (Table S1). The SynerClust tool is avail-
able at https://synerclust.github.io and a Docker image is
available at https://hub.docker.com/r/synerclust/synerclust/.

INTRODUCTION

The number of sequenced microbial genomes has grown
exponentially. Comparative genomic datasets now routinely
include thousands of genomes, drastically increasing or ren-
dering prohibitive the compute time and memory usage for
popular orthologue clustering tools. In particular, tools that
rely upon all-vs-all BLAST searches, including RBH, based on
reciprocal best BLAST hits [1], as well as OrthoMCL [2], Pan-
OCT [3] and PGAP [4], have compute times that scale at least
quadratically with input and may require CPU (central
processing unit) weeks or years for large datasets [5], and

also require prohibitively large amounts of memory. Cur-
rently, the most scalable orthologue reconstruction algo-
rithms are: Hieranoid2 [6], which uses a species guide tree
with a stepwise approach; Roary [7], which uses CD-HIT [8]
to pre-cluster sequences; LS-BSR [9], which uses TBLASTN or
BLASTN; and PanX [10], which uses Diamond [11] and sub-
divides the dataset to perform alignments.

Most existing scalable tools, including Hieranoid2, LS-BSR

and PanX, do not make use of synteny, i.e. conserved gene

order. Particularly valuable for bacterial genomes with

operon structure [12] and high gene density [13], synteny

can help to discriminate between paralogues to improve the

accuracy of orthologue clusters (or orthogroups) [14, 15].

Several existing tools use synteny [7, 16, 17], including

Roary and SYNERGY [18], which has been applied to yeast

[19] and Mycobacterium [20]. However, with the exception

of Roary, which was developed for use on closely-related

genomes [7, 10], tools that incorporate synteny were not

designed to scale to large datasets. With the goal of design-

ing a scalable algorithm capable of accurately clustering a

wider range of genomes quickly, we adapted the original
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SYNERGY algorithm into a new, open-source orthologue clus-
tering tool called SynerClust, integrating features to deal
with challenges encountered in bacteria, such as horizontal
gene transfer. In benchmarking, SynerClust was able to rap-
idly and more completely identify sets of core genes for
datasets that included diverse strains, and used substantially
less memory than other tools.

METHODS

Algorithm

The original SYNERGY algorithm uses a combination of
sequence similarity, synteny and parsimony to reconstruct
the most likely orthogroups and their phylogenies at each
node of a guide tree [18]. Starting from the results of an all-
vs-all BLAST search, the algorithm reconstructs orthogroups
for each common ancestor from tip to root by scoring all
possible trees based on the implicit number of gain and loss
events and the conservation of synteny and homology.
However, SYNERGY was not scalable or made available as an
easily accessible open source software. Here, we implement
SynerClust to further build on the success of SYNERGY, as
well as to enable scalable execution and make the software
easily accessible.

To increase scalability, SYNERGY was modified to select rep-
resentative sequences for each orthogroup at every internal
node of the guide tree (Figs 1a–e, and S1). Using only a sub-
set of sequences decreases the search space and, thus, run-
time. Once orthogroups are identified for the children of a
particular node (Fig. 1e), FastTree2 [21] is used to compute
a phylogenetic tree of all sequences within each orthogroup
at that node, and a distance threshold is used to determine
how many representative sequences are used in subsequent
steps.

To improve the accuracy of orthologue and paralogue clas-
sification, SynerClust first groups together the most syntenic
orthogroup pairs, then adds the remaining most similar
pairs to build final clusters. SynerClust additionally delays
merging paralogues until the algorithm reaches the root
node, so that inparalogues, defined as genes that arose from
a duplication that occurred after the most recent common
ancestor (MRCA), can be distinguished from outparalogues,
defined as genes that arose from a duplication that predated
the MRCA. These modifications prevent the generation of
clusters that are too large due to the inclusion of improperly
classified inparalogues (see the Supplementary Material).

Benchmarking

In order to compare the quality of orthogroups obtained
using SynerClust to those obtained using other tools, we
examined consistency of gene functional annotations within
orthogroups for the Escherichia coli and Enterobacteriaceae
datasets using previously established orthology benchmark-
ing metrics (http://orthology.benchmarkservice.org/cgi-bin/
gateway.pl) [22], which included the mean Schlicker
similarity score [23] for gene ontology (GO) terms [24] and
Enzyme Commission (EC) [25] numbers (see

the Supplementary Material). As GO and EC annotations
were available for <50% of clusters, we also calculated anal-
ogous functional similarity metrics based on KEGG (Kyoto
Encyclopedia of Genes and Genomes) [26] and Pfam [27]
annotations, which were available for >75% of clusters (see
the Supplementary Material).

RESULTS

To assess SynerClust’s speed and scalability, we compared
its run-time and clustering quality to those of four ortho-
logue clustering tools selected to represent popular or scal-
able algorithms: RBH [1], Hieranoid2 [28], Roary [7] and
PanX [10]. When possible, all tools were run on three test
datasets representing organisms having different genome
sizes, sequence divergence and syntenic conservation
(Fig. 2, Table S1): a small set of highly curated E. coli; a
larger, more diverse set of Enterobacteriaceae covering five
genera; and a dataset of over 1000 highly syntenic Mycobac-
terium tuberculosis strains.

In our benchmarking, SynerClust and Roary were by far the
fastest and most scalable tools in terms of CPU time
(Fig. 2a), and run-time for both tools scaled similarly with
dataset size. However, Roary used substantially more mem-
ory than SynerClust (Fig. 2b), and Roary’s memory usage
did not scale as well with dataset size. SynerClust’s run-time
and memory usage both were highly scalable, since its over-
all run-time grew linearly with the proportion of unique
genes per genome (Table S2). The run-times of RBH, Hiera-
noid2 and PanX increased drastically on our Enterobacteria-
ceae dataset, especially for RBH (Fig. 2a), as did the memory
usage for PanX (Fig. 2b), showing substantially less capacity

IMPACT STATEMENT

While large genomic studies promise to unlock critical

insights into the biology and evolution of microbes

including, for example, antibiotic-resistant bacteria,

they require that computational tools also scale to pro-

cess large volumes of data quickly, accurately and at

reasonable computational expense. Orthology prediction

underpins many comparative genomics studies, and is

important for classifying and assigning functions to

genes, since this reveals important aspects of gene biol-

ogy and evolution. Current orthologue prediction tools

struggle to quickly and accurately predict orthologues

from large collections of microbial genomes. SynerClust

is a new, easy-to-use tool that enables more complete

and rapid identification of orthologues and paralogues in

large datasets of thousands of bacterial genomes. Their

accurate identification enables reconstruction of more

reliable phylogenetic trees, inference of gains and losses

of specific genes over evolutionary time, and identifica-

tion of sets of core genes that define a group of organ-

isms, such as a species.
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for scaling (see the Supplementary Material). Therefore, we
did not run RBH, Hieranoid2 or PanX on our largest dataset,
because their requirements exceeded reasonable CPU or
memory availability.

Based on our functional annotation metrics (see Methods),
all tested tools performed similarly, indicating that they all
worked well in grouping genes having similar functional
annotations (Figs 3, S2 and S3). However, the number and
size of orthologue clusters varied among tools. Importantly,
many comparative genomics analyses are dependent upon
accurate calculation of a single copy core (SCC) to highlight
core conserved functions among groups of organisms and
to serve as a substrate for phylogenetic analysis. SynerClust
consistently yielded one of the largest SCCs for each of our
benchmarking datasets (Fig. 4). For the more diverse Enter-
obacteriaceae dataset, SynerClust produced the largest
number of SCC clusters, whereas Roary significantly under-
clustered orthologues (see the Supplementary Material),
resulting in an unrealistically low set of 172 SCC genes as
compared to SynerClust’s 1156 genes (Fig. 4). This is consis-
tent with previous observations that Roary works best when
clustering closely-related genomes [10]. For the more
closely-related, single-species E. coli dataset, SynerClust
yielded a 14% larger SCC than Roary, while Hieranoid2
substantially under-clustered orthologues (Table S3), result-
ing in substantially (38%) fewer SCC clusters than Syner-
Clust (Figs 3 and S4, Table S3, Supplementary Material).
Finally, on the largest and most closely-related M. tubercu-
losis dataset, Roary generated a slightly (6%) larger SCC
than SynerClust, but used far more memory (600% more;
Fig. 2b). Of the 291 SCC genes unique to Roary, 80% had
large size discrepancies (>50% of the longest gene length),
including examples of orthogroups containing sequences
that measured as little as 10–20% of the length of the others
in the same cluster; the majority of the rest belonged to
M. tuberculosis repetitive gene families known to be difficult
to sequence and analyse. Of the 144 SCC genes unique to
SynerClust, only 5% had large size discrepancies (>50% of
the gene length) and 3% represented repetitive gene
families.

DISCUSSION

Our benchmarking results showed that SynerClust is able to
rapidly identify orthologue relationships in bacteria at least
as completely as previous tools, using a fraction of the mem-
ory (Table S2), on all three of our test datasets. Only Roary
was faster; however, this came at a cost of higher memory

Fig. 1. Overview of the SynerClust algorithm. (a) Input phylogeny:

example of a phylogenetic guide tree. SynerClust traverses the input

phylogeny from the leaves to the root, iteratively computing sequence

similarity and synteny, combining information from the children of

each internal node. First, leaves B and C (children) are processed at

internal node G (parent). Second, node G and leaf A are processed at

internal node J. This second step is used as an example in the algo-

rithm explanation below. (b) Initial clustering for node J: initial clusters

of orthogroups are constructed from BLAST+ results between represen-

tative sequences of child orthogroups. A lenient cut-off (E value

1�10�5) is used, and hits with at least 80% identity to the best hit are

kept. After filtering, only reciprocal hits are used to build a graph from

which each set of connected orthogroups becomes a cluster (orange

groups). (c) Calculation of syntenic fraction: a syntenic fraction for a

specific orthogroup (orthogroup coloured in black) is calculated by

dividing the number of shared neighbours within a 6 kb distance win-

dow (coloured in purple or red) by the total number of neighbours

between two genomes (shared or unshared). For each cluster, a syn-

tenic similarity matrix is built using the mean of all pairwise syntenic

fractions. (d) Final clustering: final orthogroups for the current parent

node are defined from the initial clusters by first looking for highly

syntenic pairs, then for remaining pairs of reciprocal best hits. Child

orthogroups that remain unmerged are marked as paralogues (poten-

tial inparalogues) of their best hit. At the next node, if they are still not

part of an orthogroup, the mark is kept; otherwise it is removed.

(e) Representative selection: for each parent orthogroup, representa-

tive sequences from child orthogroups are aligned (using MUSCLE [35])

and used to build a tree (using FastTree2 [21]). Groups of highly simi-

lar sequences are defined by applying a sequence similarity threshold

(red boxes). The longest sequence is then selected as a representative

for all other sequences within a set mutational distance. This is

repeated by selecting additional representatives until all sequences

are represented.

Georgescu et al., Microbial Genomics 2018;4
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usage and lower clustering quality, particularly when

applied to a more diverse strain set. SynerClust was built on

a version of SYNERGY with improved scalability, Synergy2

(http://synergytwo.sourceforge.net), that introduced repre-

sentative sequences and has been applied to studies of Fuso-

bacterium [29] and the enterococci [30]. However, for gene

families with multiple paralogues, Synergy2 could not read-

ily distinguish inparalogues from outparalogues, and was

not sufficiently scalable. This motivated the development of

SynerClust, with additional improvements that made it
amenable to orthogroup clustering of thousands of
genomes.

SynerClust makes efficient use of computational resources
by replacing all-vs-all sequence-similarity computations
with representative subsets. Incorporating synteny for dis-
entangling paralogues increases accuracy by giving the
orthogroup clustering algorithm increased ability to pin-
point the correct orthologue from among a set of

Fig. 2. SynerClust runs fast and uses less memory than other tools. (a) Run-times indicate estimated CPU time (for details see

Table S2). (b) Memory usage value indicated is the peak value.

Georgescu et al., Microbial Genomics 2018;4
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paralogues, which helps to compensate for inaccuracies that
may result from using representative sequences, which is
essential for scaling (see the Supplementary Material).

SynerClust is made more robust to errors in the input phy-
logeny and to gene loss events by delaying merging of
paralogues until after all available information has been
taken into account in the last algorithm step, allowing for
more accurate orthogroup refinement. As SynerClust tra-
verses the tree from leaves to root, genes that appear to be
inparalogues at early steps find appropriate orthologues at
later steps as the algorithm approaches the root (Fig. S5).
This situation can occur when one branch of the phylogeny
has lost a paralogue, or when a strain contains genes
obtained through horizontal gene transfer.

The ability to rapidly obtain a more complete SCC is criti-
cally important for comparative genomics and accurate

reconstruction of phylogenies. In both our E. coli and Enter-
obacteriaceae datasets, SynerClust identified the largest set

of SCC clusters without sacrificing cluster size, while main-

taining fast run-time. In contrast, Roary’s performance on
the diverse Enterobacteriaceae dataset was greatly reduced,

and both Hieranoid2 and PanX had substantially longer
run-times. We did not benchmark LS-BSR [9], as this tool has

been shown to be less sensitive than Roary [7]. While

further studies are needed to demonstrate that SynerClust’s
high performance extends across all bacterial and eukaryotic
datasets, we have shown that SynerClust has high perfor-
mance across a wide range of dataset sizes and phylogenetic
diversity.

For ease of use, we simplified installation and minimized
software dependencies. On a typical Linux system, Syner-
Clust only requires installation of BLAST+, Python 2.7, and
the Python libraries Numpy and NetworkX. We also pro-
vide a Docker [31] image at https://hub.docker.com/r/syn-
erclust/synerclust/. The user will normally not need to alter
default settings and the software can be run in series or par-
allel. Alternate sequence similarity search tools such as Blat
[32], Diamond [11], CD-HIT [8] or UBLAST [33] could be used
instead of BLAST+, potentially allowing for even faster run-
times. While a guide phylogenetic tree is needed as input to
determine the order in which nodes are compared, we
sought to make SynerClust user friendly and able to work
from different starting points in terms of knowledge of the
dataset phylogeny: if an accurate tree is unavailable, Syner-
Clust can be run iteratively, first using an approximate tree
(generated using AMPHORA marker genes [34] or using a k-
mer based approach), and then using a tree built from the
SCC clusters generated (see the Supplementary Material). In
addition, it is simple to expand an initial dataset and only

Fig. 3. Consistency of function within SynerClust orthogroups is similar to that of other methods. Scoring metrics for different tools

on the E. coli dataset: mean Schlicker EC score, mean Schlicker GO score, KEGG orthology Jaccard similarity, KEGG pathway Jaccard sim-

ilarity and Pfam Jaccard similarity. ‘Pairs’ indicates that a mean is taken over all pairwise combinations, whereas ‘clusters’ indicates

a mean over the clusters. Error bars represent the SD. Similar results are seen for the Enterobacteriaceae dataset (Fig. S3).
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perform computation for the newly added species or groups
of species. SynerClust is freely available at https://synerclust.
github.io.
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