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Chapter 1: General Introduction

1.1 Introduction

If someone asks you to prepare a bunch of absolutely identical homemade cook-
ies, your answer would probably be that even if you evenly mix all the ingredi-
ents and use a mold, none of the cookies will be exactly the same. The thickness
of one cookie may simply be different than that of another. If you are asked a sec-
ond time to bake another batch of cookies at a different location, the answer will
not change. As in the previous case, the cookies will not be exactly the same. Dis-
similarity between the cookies of two batches could be even higher as compared
to that within the same batch due to variations in the ingredients, their quality,
and mix level. Changes in variables (e.g. higher or lower volume of ingredients)
would make cookies more or less tasty. Although distortions in cookies’ shapes
would not alter the taste of cookies, they could adversely affect the quality of
visual presentation and decrease the palatability of the cookies.
In a way, human bones are like homemade cookies. Bones of the same type
may look the same, but they are never absolutely identical to each other. Their
shapes and constituents vary within and between individuals due to intrinsic
(individual related) and extrinsic (environment related) factors. Unlike cookies,
deviations in the variables of a bone from their optima could have serious impli-
cations for individuals. Indeed, it is a relatively recent discovery that the shape
of bones could make them either susceptible to skeletal diseases, protect them
against certain diseases, or play a role in the onset and progression of skeletal
diseases [1, 2, 3]. The unifying theme of this thesis is the relationship between
bone shape and skeletal diseases. We have considered 3 types of skeletal diseases
(Section 1.1.1) and have tried to find answer to questions that are directly or in-
directly related to bone shape. In doing so, we have used advanced techniques
such as statistical shape models (SSM), statistical shape and appearance models
(SSAM), and finite element models (FEM).

1.1.1 Skeletal Diseases and Bone Shape

Osteoporosis is one of the most well-known skeletal diseases characterized by
decreased bone strength predisposing the individual to an increased risk of low-
energy fractures [4, 5, 6, 7]. Based on estimations, 200 million individuals world-
wide and 54 million men and women in the United States [6] suffer from the dis-
ease. After the age of 50, approximately 50% of women and 20% of men sustain
osteoporosis-related fractures [5]. Although osteoporotic fractures are observed
in most of the bone types, hip fractures are considered most serious and are asso-
ciated with high morbidity and mortality [8, 9, 10, 11]. In clinical practice, dual-
energy x-ray absorptiometry (DEXA) is the routinely used technique to evaluate
the risk of osteoporosis-related fractures by performing areal bone mineral den-
sity measurements (aBMD) [12, 13, 14]. Nevertheless, the use of BMD alone is
not sufficient to predict all of the osteoporotic fractures [11]. For instance, in a
pilot study performed by Gregory et al. [15], osteoporosis-related hip fractures
could be predicted with 82% accuracy based on BMD measurements alone. Be-
sides BMD, bone geometry, microarchitecture and loading conditions [8, 12, 16]
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Chapter 1: General Introduction

are among the many other risk factors that can influence the fracture occurrence.
Referring to previously mentioned study, the accuracy in the prediction of hip
fractures increased by 8% (i.e. up to 90% accuracy) with an inclusion of the prox-
imal femur shape next to BMD measurements [15].
Osteoarthritis (OA) is another serious skeletal disease that decreases level of pa-
tient activity, patient quality of life, and poses a large economic burden on so-
ciety [17, 18, 19, 20, 21]. It has been reckoned that OA affects 10% of men and
18% of women over 60 years of age [17] and it will be the fourth leading cause
of disability worldwide by 2020 [18]. Current joint-preserving interventions to
treat OA consist of lifestyle modification as well as pharmaceutical and surgi-
cal modalities [17]. Nevertheless, these options have limited efficacy. Only a
few of them have been shown to stop or postpone disease progression [17, 22].
To more efficiently deal with the disease, the current focus is to diagnose, pre-
vent and treat the disease at an early stage as possible [17]. Like in the case of
any other diseases, identification of risk factors is one of the keys to discern the
causes of OA and to define individuals who would benefit the most from pre-
vention and treatment options. An extensive effort has been put to determine
multivariate risk factors (e.g. age, gender, hormonal status, genetic factors, bone
density, previous damage, muscle weakness, ligament laxity, obesity, sport activ-
ities) [22] contributing to the onset and progression of OA. In recent years, there
is an increasing interest in bone morphology and its relation with OA. Mounting
evidence points that a slight difference in joint mechanics driven by variability
in the shapes of bones may play a role in the initiation and progression of OA
[3, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. For example, abnormalities in
the contact between the proximal femur and acetabulum (i.e. cam impingement
caused by an aspherical femoral head) have been reported to be strongly corre-
lated with the development of hip OA [24].
There are several other types of lesions that are often caused by an injury and
could progress into OA, if left untreated. One such type of lesion is an osteochon-
dral defect (OCD), which is mostly manifested as the disruption of the articular
cartilage together with its subchondral bone [33, 34]. Another important case
is joint instability caused by induced laxity of ligaments [35] that could become
chronic in time. OCD or chronic instability may be observed in any joint. Ankle
joint is one of the common sites for these injuries. This is partially due to the
high incidence rate of ankle sprain that comprise up to 46% of all sports-related
injuries [36]. Despite extensive research on the risk factors associated with these
lesions and the growing evidence showing that the shape of a bone could in-
crease the risk of sustaining various skeletal diseases, the factors with bone shape
origin have been mostly overlooked in the studies of OCD and chronic instabil-
ity.
Determining the risk factors relevant for the initiation and progression of a dis-
ease, and early identification of an individual who is under risk of sustaining a
disease or post-treatment monitoring of patients is highly important to take pre-
ventive measures and to decide on effective patient-specific treatment strategies.
Besides, bone shape may be one of the risk factors and have something to tell us
about skeletal diseases, as it contributes to the bone strength and to the stability
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Chapter 1: General Introduction

of the joints and determines their kinematics. Considering all these important as-
pects, the main focus of this thesis is on the clinically important problems, which
are associated with the morphology of bones, and either have been overlooked
or necessitate technical improvements. In the remainder of this chapter, clinical
problems that have been handled, the rationale behind these studies, and our
approaches are briefly presented.

1.2 Thesis Outline

In Chapter 2, we provide an overview on the main concepts, methods, and ap-
plications of SSM and SAM in bone research. The main motivation behind this
literature review is to make readers familiar with these models that are powerful
in describing bone shape variations (i.e. SSM), density variations (i.e. SAM), or
both shape and density variations (i.e. SSAM) within a specific population, as
these tools are extensively used in the following chapters.
In Chapter 3, we focus on the prediction of osteoporosis-related proximal fe-
mur fracture load based on FE modelling, as it is a promising alternative to
densitometry-based techniques (e.g. DEXA) in estimating the bone strength and
the risk of fracture under specific loading conditions. In return for their power,
the development of patient-specific FE models is a time-consuming and complex
task, which necessitates the type of expertise that is not commonly available in
clinical settings. To decrease the time and user dependency in the generation of
patient-specific FE models, we present an automated platform. The presented
procedure starts of by fitting a SSAM to a new unseen DEXA scan of the patient,
thereby determining the shape of a patient’s proximal femur as well as its bone
density distribution. The automated process continues with assignment of mate-
rial properties, application of loads and boundary conditions, and discretization
of the proximal femur model. The final outcome of the process is an estimation
of the fracture load calculated using FE analysis.
In Chapter 4, we investigate whether there are statistically significant shape dif-
ferences between the distal tibiae and tali of patients with an OCD and those
of healthy subjects. One of the ultimate reasons to perform this study is that
the etiology of an OCD is still not fully understood. Despite extensive research
aimed to identify the risk factors of OCD (e.g. local avascular necrosis, acute
trauma, chronic microtrauma, metabolic factors, malalignment of the lower limb
[37, 38], the relationship between bone shape and OCD risk in the ankle has been
so far overlooked. To gain insight into three-dimensional (3D) shape variations
in the bones forming the talocrural joint (i.e. the distal tibia and talus), we build
3D SSM of the talus and distal tibia based on the mixed data of the CT scans of
subjects with and without an OCD. Using those SSMs and statistical tools, we
quantitatively compare the bone shapes of both groups.
In Chapter 5, we systematically describe and compare 3D shape variations of the
talus and calcaneus within a population composed of subjects with no known
history of the ankle joint pathology and patients who had developed chronic
ankle instability (CAI) after sustaining lateral ankle sprain. This study was con-

12



Chapter 1: General Introduction

ducted, as risk factors with bone shape origin have been in general disregarded.
During this study, we use a similar methodology as described in Chapter 4.
Chapter 6 differs from Chapters 3-5 and Chapters 7-8 with its scope. It does not
directly address the association of bone shape with a specific skeletal disease (i.e.
investigation of potential risk factors or early identification of a disease or long-
term monitoring of a patient with a disease). Instead, we focus on the bone shape
itself, and analyze 3D shape variations and (a)symmetry of the lower extremity
bones (i.e. the fibula, tibia, talus and calcaneus). This study was motivated by the
fact that the lower extremity bones are often assumed to be bilaterally symmetric
in clinical assessments and research studies (e.g. Chapter 4). However, there is a
lack of sufficient documentation on 3D shape variations and (a)symmetry of the
lower extremity bones. Therefore, we evaluate whether (1) bone shape patterns
in both sides of an individual are alike, (2) bone shapes vary based on gender,
and (3) intra-subject bone shape variations are smaller than inter-subject varia-
tions using 3D spatially dense descriptions of the bones and advanced statistical
techniques, namely 3D SSM and distance based permutational statistics.
In Chapter 7, we present a registration scheme for computed tomography (CT)
and freehand-tracked ultrasound (US) data of the talocrural joint, which can be
used for noninvasive detailed longitudinal monitoring of morphologic changes
in the bone shapes. The main motivation behind this study was that US imag-
ing is the preferred technique as compared to CT, magnetic resonance imaging
(MRI) and arthroscopy in the detection of an OCD or longterm monitoring of
patients with a disease [33, 39, 40, 41] due to its inherent properties, such as non-
invasiveness and cost-effectiveness. Nevertheless, interpretation and compari-
son of US images over time is difficult without having access to anatomical data
provided by other imaging modalities, such as CT. Therefore, we proposed the
registration scheme based on evolutionary approaches to make interpretation
and comparison of US images over time possible. To assess the robustness of
the registration algorithm to different initialization positions, and the sampling
of US data, two different tests are applied on a dataset collected from cadaveric
ankles. Moreover, a practical case study is performed by using the presented
registration scheme to evaluate whether US imaging could be an alternative to
CT for pre-operative planning of arthroscopic access to anterior talar OCDs.
In Chapter 8, we propose a new diagnostic technique to discriminate OCDs in
the ankle joint and assess its feasibility using experimentally-validated 2D finite-
difference time-domain models of the ankle joint. Specifically, we tackle the
limited ability of US waves in conventional US imaging to penetrate through
bones so that we could benefit from the inherent non-invasiveness and cost-
effectiveness of US. The main working principle of the new technique is the
transmission of ultrasonic waves from one side of the ankle joint in such a way
that they could propagate through the entire joint space of the ankle and record-
ing the transmitted waves at the other side. When the recorded US signal devi-
ates from the one associated with a healthy joint, the presence of OCDs is identi-
fied. In this chapter, within the scope of the study, the effects of the variables of
the ankle joint (i.e. the width of the joint space), those of the US transducer (i.e.
the positioning of the US transducer acting as transmitter), and the defect (i.e.
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width, depth and location) on acoustic wave response are analyzed.
In Chapter 9, we provide some concluding remarks, summarize the studies pre-
sented in the preceding chapters, and present some suggestions for future re-
search.
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2.1 Introduction

Statistical shape models (SSM) and statistical appearance models (SAM) are two
types of statistical models that respectively describe the average shape and aver-
age density distribution together with the main modes of variation of shape and
density distribution within a population. SSM and SAM are generally created
based on a training dataset that provides the model with a-priori knowledge
about the expected shape and density distribution of bones. In many applica-
tions, SSM and SAM are fitted to new unseen sets of images. Active Shape Mod-
els (ASM) and Active Appearance Models (AAM) are probably the best known
methods that are used to respectively fit SSM and SAM to a new set of two-
dimensional (2D) or three-dimensional (3D) images [42, 43].
The possibility of fitting SSM and SAM to new unseen images creates many op-
portunities that could be used for facilitating the study, diagnosis, and treat-
ment of skeletal diseases. For example, 3D SSM can be used in generation of
3D patient-specific bone models from 3D sparse data or from a set of 2D images.
These patient-specific models are used in a variety of medical applications in-
cluding in vivo bone motion tracking [44] and computer aided orthopedic surg-
eries [45, 46, 47, 48].
When a 3D patient-specific bone model is correctly reconstructed from a set of
2D images by using 3D SSM, the method basically provides us with an excellent
bargain: the level of detail normally obtained by 3D imaging for the price of 2D
imaging. The use of 2D imaging modalities means significantly reduced imag-
ing costs, decreased exposure of patients to radiation, the possibility of repetitive
follow-up imaging, and ultimately many new opportunities for improved diag-
nosis and treatment.
The bone research community has recently realized the potential of SSM and
SAM. In this paper, we present an overview of SSM and SAM, and their appli-
cations in bone research. First, the main concepts and algorithms are presented.
Most of the technical details are presented in Appendix A that is organized in
parallel with the main text and provides the interested reader with the details
of algorithms. Second, the applications of SSM and SAM in bone research are
discussed.

2.2 Statistical Models of Shape and Appearance

Statistical models of shape and appearance are basically composed of two com-
ponents: 1. the average shape or appearance and 2. the main modes of variation
of shape or appearance from the average values. Based on these two compo-
nents, they could describe the shape and/or density distribution of the bones
within a certain population of individuals. The population may, for example, re-
fer to healthy individuals with a shared ethnical background or to patients with
a certain type of skeletal disease such as osteoporotic patients. The main idea is
that the shape and density distribution of the bones of every individual within
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that population could be obtained by adding the contributions of (a limited num-
ber of) the principal modes of variation to the average shape and/or density dis-
tribution. There are, however, two steps that need to be taken. First, one needs
to determine the average shape and/or density distribution and the principal
modes of variation within the population of which the individual is a member
(Section 2.2). Second, one needs to use a fitting algorithm to determine what the
contributions of the principal modes of variations are to the shape and/or den-
sity distribution of the bones of that particular individual (Section 2.3).

2.2.1 Statistical Shape Models

SSM are either developed in 2D or 3D. For 2D SSM, x-ray or dual-energy x-ray
absorptiometry (DXA) images are generally used. 3D SSM are often built us-
ing computed tomography (CT) or magnetic resonance imaging (MRI) images.
A number of training images need to be first collected from a sufficiently large
number of bones that represent the variation of shape within the statistical pop-
ulation for which the SSM is going to be built.
The first step in obtaining the average shape and the principal modes of vari-
ation is to find a way for representing the shape of bones. Among the various
techniques available for shape representation (see Appendix A), landmarks are
used most frequently in representing the shape of bones. In this method, the
coordinates of a number of bony landmarks, xi , describe the shape of the bone
(Fig. 2.1).

Figure 2.1: Two examples of manually positioned bony landmarks on
radiographs.

The second step involves defining the bony landmarks on a number of train-
ing bone shapes. The landmarks should be defined such that they consistently
refer to the same anatomical location on every instance of the bone shape. We
therefore speak of a concept called correspondence, meaning that the landmarks
placed on all training instances should correspond to each other. The simplest
way for ensuring correspondence is manual positioning of the landmarks on the
periphery of bones in training images. The persons who perform the manual po-
sitioning of landmarks should be anatomically trained so that they consistently
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assign the landmarks to anatomical locations found on training images. Once
a few clearly and uniquely defined landmarks are manually positioned on ev-
ery training image, the other landmarks can be automatically placed in between
those manually positioned landmarks by interpolation. Despite its simplicity,
manual positioning becomes prohibitively difficult and time-consuming for 3D
images as well as for large datasets of 2D images. That is why automated meth-
ods might be needed for establishing correspondence in large 2D and 3D datasets
(see Appendix A).
Once the landmarks are positioned on the training images and the correspon-
dence between the landmarks is established, the different bones within the train-
ing database are aligned to eliminate the variations between the training in-
stances that are caused by factors other than variation in shape. For example,
rotations and translations of training images with respect to each other are elim-
inated during the alignment procedure. There are certain algorithms for auto-
mated alignment that are described in Appendix A among which Generalized
Procrustes Analysis (GPA) [49, 50, 51, 52, 53] is the most widely used algorithm.
After alignment, the coordinates of the bony landmarks are assumed to represent
only shape variations. The average shape of bones, x̄ , can be easily calculated
as:

x̄ =
1
N

N

∑
i=1

xi (2.1)

where N is the number of training instances. In order to calculate the variation of
shapes from the mean shape, one could calculate the covariance matrix, S , that
measures the variation of different shapes, xi , from the mean shape x̄ by:

S =
1

N − 1

N

∑
i=1

(xi − x̄)(xi − x̄)T (2.2)

Principal component analysis (PCA) is then performed on the covariance matrix
to calculate the most important modes of variation of the training shapes, φi ,
from the mean shape, x̄. The principal modes of variation are ordered in the de-
scending order of the percentage of shape variation explained by that principal
mode of variation. Therefore, the importance of the first few modes of varia-
tion in describing the shapes of other individuals within the population is much
more than the importance of other modes (Fig. 2.2). The bones of other indi-
viduals within the population, x , not present in the training dataset can be then
described as:

x = x̄ +
c

∑
s=1

bsφs (2.3)

where bs values describe the contributions of the first c modes of shape variation
to the average shape of the bone. The number of modes retained depends on the
desired accuracy in description of the bone shape. In general, a larger number of
retained modes results in a more accurate description of the bone shape. For a
more detailed explanation of the above-mentioned procedures see Appendix A.
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Figure 2.2: The percentage of shape variations explained by different
shape modes in a 2D statistical shape model of the femur (a) together
with the first three modes of shape variation (b-d).

2.2.2 Statistical Appearance Models
While SSM provide useful information regarding the shape of bones, they do not
contain any information regarding the density distribution within bones. SAM,
on the other hand, can describe the average density distribution within bones
as well as the main modes of variations of density distribution from the mean
values. Since density distributions are often obtained from the intensity of gray
values within medical images, SAM are also called statistical intensity models.
To generate a SAM, one needs to capture information related to the pixels/voxels
(e.g. pixel intensities) within the training bone instances. It is also important to
make sure that the settings and illumination properties of different imaging ma-
chines that might result in different gray values for the same bone density do
not influence the SAM. The gray values are therefore normalized in a normaliza-
tion procedure that tries to eliminate the effects of machine settings and global
illumination properties. In a process somewhat similar to the one used in gen-
eration of SSM (see Appendix A), the average density distribution, ḡ , and the
main modes of variation of the density distribution from the average values, φg
, are calculated. The density distribution of another bone, g , can be described as:

g = ḡ + φgbg (2.4)

where bg is the vector that describes the contributions of the principal modes
of variation in density distribution to the average density distribution of that
particular bone. Similar to shape, only a limited number of the principal modes
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of variations are generally retained for describing the density distribution within
a particular bone (Fig. 2.3).

Figure 2.3: The percentage of variation in appearance explained by
different modes in a 2D statistical appearance model of the femur (a),
together with the first three modes of appearance variations (b-d).

2.2.3 Combined Statistical Models

In order to explain shape and density distribution simultaneously and to discard
the correlations between shape and density distribution, the SSM and SAM can
be combined into a so-called combined statistical shape and appearance model
that describes both shape and density distribution. See Appendix A for the de-
tails of the applied procedure.

2.3 Search Algorithms

Once the statistical models of shape and appearance are created, the only remain-
ing aspect is to fit the models to (a set of) unseen images. In different applications
and contexts, the process of fitting a statistical model of shape and/or appear-
ance to a new set of images may be called a search, matching, registration, or
fitting process. Regardless of their names, all those procedures try to do one
thing: finding bs values in Eq. 2.3 or bg vectors in Eq. 2.4 such that the statistical
models of shape and appearance are fitted to the bone seen on the new images
as well as possible. One can therefore conclude that search algorithms are opti-
mization algorithms that try to minimize the difference between the shape and
density distribution represented by the statistical model and the shape and den-
sity distribution of the bone seen on a new set of images by adjusting bs values
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or bg vectors. In addition to traditional optimization algorithms, two specific lo-
cal search algorithms called active shape models (ASM) and active appearance
models (AAM) are often used for fitting statistical models of shape and appear-
ance to images. While ASM only uses shape data for finding the best fit, AAM
uses both shape and appearance data available in the images for finding the best
fit of the model to the images. The technical details of the search algorithms can
be found in Appendix A.

2.4 Applications

2.4.1 Bone Model Reconstruction
3D patient-specific models are generally derived from pre-operative CT or MRI
images [54]. Nevertheless, those two imaging modalities are expensive, and
CT imaging exposes patients to high doses of radiation. Therefore, 3D/3D or
3D/2D registration techniques that enable construction of 3D models from intra-
operative data such as ultrasound, fluoroscopy, optical images, 3D digitized
points [55] or 2D images such as x-ray are of great interest. Some of the most
important methods used for registration of 3D statistical models of shape and
appearance to 2D and 3D image are reviewed here. These methods can be cat-
egorized into two main groups, namely feature-based and intensity-based tech-
niques. For an extensive review of the related techniques, the reader is referred
to Markelj et al. [55].
Feature based registration methods use geometrical entities such as sets of points,
edges, contours, or surfaces [56]. The main principle of feature-based registra-
tion methods is to minimize the distance between the 3D features extracted from
the 3D statistical models and the corresponding 3D or 2D features obtained from
images [44, 55].
One representative study that used feature-based registration for reconstructing
3D patient-specific bone models is reported in reference [46]. The first step of
their method is to build a 3D SSM of the relevant anatomy from CT images. The
interventional data, i.e. bone surface points, were extracted from ultrasound im-
ages of a cadaveric bone that was not used in the construction of the statistical
model. To generate a 3D patient-specific model of the bone, the statistical model
was matched to the bone surface points by using a well-known method for rigid
registration, i.e. iterative closest point algorithm (ICP). In this method, the shape
parameters are found in such a way that the distance between the corresponding
features of model and those of the ultrasound images is minimized [46].
In another study, Fleute et al. suggested a method to represent the complete
surface of the bone of interest from very sparse 3D point data. In the proposed
method, the ICP global search algorithm is used to estimate the rigid-body trans-
formation before applying the non-rigid local registration based on a simulated
annealing technique and the downhill simplex algorithm [47]. An alternative
method to reconstruct 3D patient-specific model from sparse 3D intra-operative
point data is explained in reference [48]. Based on that method, a SSM is built
and is registered to sparse 3D point data by updating the shape parameters such
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that the least square error between the model data and the interventional data is
minimized. Rajamani et al. also consider incorporation of a regularization term,
namely Mahalanobis distance of the estimated model, to more robustly guess the
parameters of the model [48].
Registration methods can be also used for matching 3D statistical models to 2D
image data (Fig. 2.4). In another study of Fleute et al., a variation of ICP is
used to match a 3D statistical model to the contours of a bone extracted from
intra-operative x-ray images [57]. Zheng et al. introduced a method to build
up a patient-specific 3D bone surface model from calibrated 2D x-ray images.
The proposed method basically establishes correspondence between the appar-
ent contours of the 3D SSM’s bone surface and the edge points identified in 2D
images. The estimated 2D point pairs are back-projected to 3D to build a set of
3D points. Thus, the 2D/3D reconstruction problem is converted to a 3D/3D
reconstruction problem. Afterwards, the 3D point pairs are registered to the cor-
responding 3D point set generated by deforming the SSM [58].
The previously mentioned methods establish the correspondence explicitly and
that may result in matching wrong point pairs. Several methods have been pro-
posed to avoid such inaccuracies. One of the alternatives is the use of distance
maps to determine the correspondence implicitly. Kurazume et al. introduced a
method that estimates the position and shape parameters of 3D statistical model
from two fluoroscopic images by using a distance map [59]. Hurvitz et al. pro-
posed an intensity-based method to reduce the frequency of incorrect correspon-
dences as well as to discard the possible edge detection problems that may be en-
countered in the studies that use interventional images [60]. They first build up a
CT-like intensity atlas similar to AAMs. The registration of the statistical model
to a few fluoroscopic images is a recursive process. It starts with generation
of an instance of the statistical model based on some initially-estimated trans-
formations, and of simulated x-ray projection images known as digitally recon-
structed radiographs (DRR). Following generation of DRRs, the correspondence
is established between DRRs and fluoroscopic images. As a result of correspon-
dence, unknown transformations are re-estimated. The above-mentioned steps
continue repeatedly until the convergence condition is satisfied for the transfor-
mation estimates [60].
Another intensity-based method is described by Tang et al. [61]. They use a hy-
brid 3D shape model that can be implemented in the point distribution model
scheme proposed by Cootes et al. [62]. In the 3D shape reconstruction step, a
recursive process is applied to determine the patient-specific shape by optimiz-
ing a similarity measure (gradient correlation in that study) between the DRRs
of the shape model and the 2D interventional images. Moreover, as the shape
model used in the study cannot provide information on image volume to gener-
ate DRRs, Tang et al. grow the surface of the model inward to simulate image
volume and the thickness of the cortical bone [61].

Whitmarsh et al. proposed an intensity-based method to reconstruct both 3D
shape and bone mineral density distribution (BMD) from a single 2D DXA image
as interventional data (Fig. 2.4) [64, 65]. They first set up a statistical model sim-
ilar to AAMs described by Cootes et al. [66]. Following this step, the combined
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Figure 2.4: The different steps involved in matching a 3D SSM with
a DXA scan [63]. First, digitally reconstructed radiographs (DRRs)
are generated by projecting an instance of the 3D statistical shape and
appearance model. The generated DRRs are then compared with the
DXA scan. The parameters of the statistical shape and appearance
model are adjusted such that the 2D projection of the model instance
matches the DXA scan as well as possible.

model is registered to a DXA image. During a recursive process of registration,
the model parameters are updated repeatedly such that the similarity measure
between the DRRs and the DXA image is optimized [64].

2.4.2 Osteoporosis

Low bone mass caused by osteoporosis increases the risk of bone fractures. There
are several techniques to measure bone mass per unit volume (volumetric bone
mineral density, vBMD, g

cm3 ) or per unit area (areal bone mineral density, aBMD,
g

cm2 ). These techniques include DXA, quantitative ultrasound (QUS), quantita-
tive computed tomography (QCT) and digital x-ray radiogrammetry [67]. The
most widely used way of assessing bone mass in clinical practice is based on
aBMD measures derived from DXA scans [52, 13, 63]. However, low BMD mea-
sures alone are not sufficient to explain all osteoporotic fractures [68]. This is
due to the fact that other factors such as the shape of bones contribute to their
strength as well and may be potential risk factors for fractures. Therefore, several
methods are proposed to evaluate the fracture risk by taking other possible risk
factors into account. It has been, for example, established that the shape of the
proximal femur is a risk factor for femoral neck fractures [8]. Referring to the re-
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sults of several studies, Gregory et al. indicate that larger hip axis length, larger
neck width, and larger neck-shaft angle are associated with an increased risk of
femoral neck fractures [8]. However, these geometric properties are highly cor-
related with each other.
In order to determine independent shape factors that are correlated with higher
risks of fracture, Gregory et al. used ASM in their study [15]. They found that
the morphology of the femur quantified using ASM may be helpful for identify-
ing the individuals who are at increased risk of proximal femoral fracture [15].
On the other hand, an alternative method to improve the prediction of hip frac-
ture is suggested by Goodyear et al. [13]. The authors use statistical shape and
appearance models to capture shape and texture information within the femoral
head and neck. Goodyear et al. indicate that modes of variations, derived from
the statistical model that is built from DXA training images, enhance prediction
of hip fracture when they are used in combination with BMD [13]. It should be,
however, noted that identifying shape modes that may be related to increased
risk of fracture is of purely diagnostic value as bone shape factors cannot be
modified in the advanced ages when osteoporotic fractures normally occur.
Furthermore, assessment of hip fracture using aBMD measurements derived
from DXA is limited by its two-dimensionality. To overcome this limitation,
vBMD can be used together with 3D structural measurements obtained from
QCT for fracture risk evaluation. However, QCT is expensive and exposes pa-
tients to high radiation doses. With the aim of keeping DXA as the standard
modality while improving hip fracture predictions, Whitmarsh et al. suggest
to use a statistical model of both the 3D shape and BMD distribution [63]. The
basic steps of the proposed method are generation of the statistical model and
registration of it onto DXA images. Following the registration process, the es-
timated model parameters are used for hip fracture discrimination. Based on
their results, the model parameters enhance the predictive ability of DXA de-
rived aBMD [63]. Thus, the proposed method has the potential to improve hip
fracture risk estimation.
Vertebral fractures are also of interest. Various semi- and fully-quantitative meth-
ods are proposed for diagnosing and describing vertebral fractures. As for quan-
titative methods, vertebral fractures are determined based on assessment of de-
crease in the anterior, middle, and posterior heights of vertebral bodies. Al-
though quantitative methods are objective and reproducible, they have limited
ability to distinguish between vertebral fracture and vertebral deformity [69].
Semi-quantitative assessment of vertebral fractures is performed by expert radi-
ologists or trained readers. Semi-quantitative methods benefit from additional
information such as typical changes in image texture when endplate fracture
occurs. That kind of information is not normally used in quantitative meth-
ods even though it could be helpful for distinguishing deformity from fracture.
Semi-quantitative assessment is, however, more subjective particularly for mild
fractures [70]. With the aim of combining some of the advantages of quantitative
techniques with those of semi-quantitative techniques, Roberts et al. defined
a quantitative approach [71] in which statistical shape and appearance models
were built for vertebrae at different levels, i.e. lumbar spine, lower, and up-

24



Chapter 2: Statistical Shape and Appearance Models of Bones

per thoracic spine. Following the construction of shape models, shape param-
eters are defined by fitting the model to each vertebra in the training set. On
the other hand, appearance parameters are determined after the generation of
statistical appearance models. Subsequently, linear discriminant fracture clas-
sifiers are trained by using the defined parameters. They concluded that the
quantitative classifiers are more efficient compared to the standard height ra-
tio method for detecting vertebral fractures particularly the mild ones [71]. In
another study, Roberts et al. found that the quantitative classifiers of vertebral
fracture require a detailed and accurate segmentation of the vertebral endplate.
As manual segmentation of vertebra is a time consuming task, Roberts et al.
proposed a method to semi-automatically segment the vertebra from DXA im-
ages. During the segmentation process, a variant of AAM is used. Based on the
results, an appearance based classifier is found to be adequate for detecting ver-
tebral fractures, although there is a sensitivity loss of 7% compared to manual
segmentation [72]. Afterwards, the semi-automatic detection method based on
AAM was applied to spinal radiographs with the purpose of evaluating the ac-
curacy of the method in locating vertebrae on radiographs [70]. There are also
some other (semi-)automatic segmentation techniques that have been developed
to segment vertebrae using the ASM [73, 74, 75] and AAM algorithms [76]. It is
not easy to compare the methods proposed in above-mentioned studies against
each other, because the techniques are evaluated on different datasets that might
have variations in their image and annotation qualities. It is, however, clear
that the proposed (semi-) automatic segmentation techniques decrease the time
required to locate vertebra in images and have the potential to be nearly as accu-
rate as manual segmentation.

2.4.3 Osteoarthritis (OA)

About 85% of individuals aged 75 years or more have radiographic or clinical ev-
idence of OA [27]. While radiological OA is often assessed using (semi-) quan-
titative systems such as Kellgren-Lawrence score that measure the changes in
cartilage and in bone [27, 23, 29], clinical OA is evaluated based on self-reported
measures such as patient pain experience [26].
It has been conventionally believed that degeneration of cartilage is the initiat-
ing factor of OA and the changes in bones occur afterwards, due to the altered
biomechanics of the joint. However, it is now understood that the changes in
bone may also play important roles in the onset and progression of OA [77]. Cer-
tain patterns of bone geometry (e.g. femoral head-neck-shaft angle) or shape are
potential risk factors for the development of OA [27, 29]. The geometry of bones
is generally quantified using predefined measures (e.g. angles) on radiological
images. As these measures represent the properties of the same object, there can
be significant correlations between different geometric properties. Highly cor-
related measures might not measure what would be relevant [26]. On the other
hand, complex shapes cannot be fully described using a few geometric measures.
Statistical models could help in quantifying the shape of bones in radiological
images. To overcome the above-mentioned limitations, Gregory et al. [27] used
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a SSM of the femoral head and neck to examine the ability of statistical models
in representing the shape differences between healthy controls and subjects with
hip OA. Moreover, the ability of statistical models to quantify the deformation
of the femoral head caused by OA progression was assessed. They showed that
their SSM could capture the shape differences between the healthy subjects and
subjects developing radiological OA of the hip. Therefore, it was concluded that
SSM facilitates early identification of individuals who are at increased risk of
developing radiographic OA. Furthermore, they found that SSM could quantify
femoral head deformations more accurately as compared to conventional scor-
ings such as Kellgren-Lawrence [27].
Lynch et al. [29] used a similar methodology to study OA in a homogenous pop-
ulation (i.e. Caucasian women), as there might be significant differences between
the bone features of men and women. They modeled the complete proximal fe-
mur rather than only modeling the femoral head and neck. According to their
observations, three specific shape factors characterized by variations in femoral
head, neck, and trochanteric regions represent the potential risks for developing
radiographic OA in elderly Caucasian women [29]. Later, Barr et al. examined
the potential of two SSM for predicting the need for total hip replacement (THR)
apart from the traditional scoring (i.e. Kellgren-Lawrence) and other risk factors
such as clinical factors including pain duration [23]. The first statistical model
they used was similar to the one used by Gregory et al. and modeled the shape
of femoral head and neck [27]. The second statistical model included the whole
proximal femur together with the osteophytes and acetabulum. They found that
both statistical models were powerful tools for estimating the risk of the progres-
sion of radiographic hip OA and the need for THR. Moreover, they observed that
the second statistical model is more powerful in predicting the need for THR.
They concluded that SSM enhances the predictive ability for identifying the in-
dividuals at increased risk of THR [23].
The previously explained studies mainly show that specific shape patterns cor-
relate with radiographic OA. However, it remains unknown whether there is a
relationship between shape variants and clinical OA. Agricola et al. studied the
relationship between hip shape at baseline and clinical OA [3]. They used a SSM
of the proximal femur and pelvis and showed that it could predict the need for
THR. However, none of the shape modes were associated with clinical OA as
defined by the American College of Rheumatology (ACR) criteria. Furthermore,
they observed that SSM could predict two clinical criteria independently, i.e. hip
pain and decreased internal rotation, although none of the shape modes were
related to the clinical OA as determined by combination of the ACR criteria [3].
The study also supports the idea that SSM may be used as a radiographic marker
to predict the need for THR.
Another relevant study that takes clinical OA into consideration is conducted
by Waarsing et al. (Fig. 2.5) [26]. There are inconsistencies between the ra-
diological measures of OA and the symptoms that are experienced by patients
[26]. Therefore, the study investigates the potential of statistical shape and ap-
pearance models in capturing symptom-related information from DXA images
of OA hip that cannot be obtained by conventional radiological measures. The

26



Chapter 2: Statistical Shape and Appearance Models of Bones

study finds several appearance modes that are related to radiological and clinical
OA (Fig. 2.5). It is also observed that statistical shape and appearance models of
the proximal femur could capture information relevant to clinical OA that is not
provided by traditional radiological measures [26].

Figure 2.5: Demonstration of the appearance modes that showed sig-
nificant association with OA [26]. Positive: +2 times the standard de-
viation of the population, Negative: -2 times the standard deviation
of the population.

An another study, Waarsing et al. investigated the influence of osteoarthritis
susceptibility genes on the relationship between the hip shape and osteoarthri-
tis [78]. They developed a SSM of the femur together with the acetabulum and
pelvis. The relationship between the shape modes that were found to be related
to the radiographic characteristics of hip OA, as defined by Kellgren-Lawrence
criterion, and the osteoarthritis susceptibility genes was examined [78]. It was
observed that certain susceptibility genes may affect the association between hip
morphology and OA, possibly by increasing the vulnerability of cartilage to un-
favorable bone shapes [78].
Another application of SSM is described by Chan et al. [79]. Two common pe-
diatric disorders, namely Legg-Calvé-Perthes disease (LCPD) and slipped capi-
tal femoral epiphysis (SCFE) that cause disrupted proximal femur morphology
were considered. As the morphology of the hip joint is one of the risk factors for
developing OA, it is important to understand possible shape variations in LCPD
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and SCFE. Such morphological deformities are generally quantified on 2D radio-
graphs [79]. However, evaluation of proximal femur deformations is limited in
accuracy, when 2D radiographs are used. To gain more insight into the shape de-
formations of the proximal femur, Chan et al. propose to use 3D SSM to quantify
shapes during normal growth and in LCPD and SCFE. They built a 3D SSM of
the proximal femur using a training dataset that consisted of 24 proximal femurs
(three training samples for each of the four considered asymptomatic age groups
and four LCPD/SCFE groups). Shape modes were found to be distinct with re-
spect to age and disease. It was shown that shape variants could describe the
shape differences between asymptomatic and diseased femurs and could pro-
vide information regarding the morphological development of the deformities.
Moreover, it was found out that the shape modes could capture shape details
that cannot be easily described by conventional variables (e.g. head-neck transi-
tion) [79].
Recently, a fully automatic shape model matching system was developed by
Lindner et al. [80] to derive statistical shape models from radiographs. They
used the developed system for global representation of the proximal femur shape.
In another study, Neogi et al. [30] examined whether 3D bone shape based on
MRI images together with AAM could be used to predict the later onset of OA.
They found that “bone shape at baseline, often several years before incidence,
predicted later OA” [30].
Previously explained studies mainly focus on the effect of hip joint geometry on
the development of OA. However, the studies that use SSM and/or SAM to an-
alyze the relationship between the knee joint and OA are relatively limited in
number. In one study by Haverkamp et al., a SSM that covered the contours of
the femur, tibia, patella and the back of the medial condyle was built to inves-
tigate the association of specific shape patterns with radiographic OA [31]. The
study showed that some shape modes, that were found to be related to radio-
graphic OA, have a potential role to play as predictors of OA progression [31].
A different application of statistical models is described by Väänänen et al. [81].
Diagnosis of degenerative hip diseases using 2D femoral radiograph may not
be reliable, since the geometry and density measurements derived from radio-
graphs may be influenced by the 3D rotation of the femur. Therefore, identi-
fication of 3D rotation of the femur in 2D radiographs is helpful to increase the
accuracy of diagnostic measurements. Väänänen et al. combined statistical mod-
els of shape and appearance with artificial neural networks to determine the 3D
rotations of the femur in 2D radiographs [81].

2.4.4 Patient-Specific Finite Element Models of Bones

Patient-specific finite element (FE) models are currently used in many different
orthopedic applications. They could be used to calculate the stress and strain
distribution within different tissues including bone [82] and cartilage [83] both in
physiological and pathological conditions. Moreover, one could use FE models
to study bone tissue adaptation [84] in response to changes in musculoskeletal
loading either due to different patterns of physical activity or because of the use
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of prostheses and implants [85]. The applications of FE models in orthopedics
include, for example, design of orthopedic implants [86, 87, 88, 89], bone fracture
risk prediction [90, 91, 92], simulating bone tissue adaptation [93, 94, 95], ortho-
pedic surgery planning [96], and relating musculoskeletal loads to bone density
distribution [97, 98].
In some earlier studies, patient-specific finite element models were created using
a relatively slow and time-consuming procedure based on manual or automated
segmentation of either 3D or 2D image data obtained for individual patients [99].
The alternative approach that is based on statistical shape and appearance mod-
els can be used to automate the entire process of patient-specific model genera-
tion. A search algorithm such as ASM or AAM could be used for fitting a SSM or
SAM to the image data obtained for the individual patient, thereby eliminating
the need for manual segmentation. Once the model is fitted to the image data,
the obtained model parameters could be used for generating patient-specific FE
models. Since there are methods to fit 3D SSM or SAM to 2D images, one has the
opportunity to obtain 3D FE models from 2D patient images. Moreover, the com-
plete process of generating FE models could be automated. The obtained patient-
specific geometry could be also used for adapting/scaling musculoskeletal mod-
els [100, 101] or simpler mass-spring-damper models of the musculoskeletal sys-
tem [102, 103, 104]. Those musculoskeletal models could then be used for esti-
mating the musculoskeletal loads applied on bones and automatically applying
the estimated loads on the geometry of the FE models.
The use of such procedures based on SSM or SAM could greatly facilitate gener-
ation of patient-specific FE models and will facilitate clinical applications of such
models. First, the time, required level of technical expertise, and cost associated
with generation of patient-specific FE models will greatly reduce. Second, one
could use 2D imaging modalities such as x-ray, DXA, or bi-planar x-rays instead
of 3D imaging modalities such as CT for obtaining the images that are required
for patient-specific FE modeling, thereby decreasing the level of ionizing radi-
ation received by the patient. The above-mentioned approach for generating
patient-specific FE models is relatively new and not many studies have so far
used it. In the next section, some of the studies that use similar approaches for
implant design have been reviewed. In addition to implant design, statistical FE
models are useful for estimating the bone fracture risk [105, 106].

2.4.5 Implant Design

The design process of orthopedic implants includes considerable tests to verify
their reliability before releasing them into the market. Nevertheless, the perfor-
mance of the designed implants may not be at the expected level due to signifi-
cant variations in bone geometry and bone quality among different individuals.
SSM and SAM could be helpful for design and analysis of orthopedic implants.
First, SSM and SAM could be used for identifying bone shape variations [107]
and designing appropriately shaped and sized implants. Second, as explained
in the previous section, the conventional process for generating individualized
FE models of implanted joints is based on 3D images obtained using clinical CT
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scanners. Nevertheless, only a limited number of such finite element models can
be generated, because the process of creating individualized FE models involves
several laborious and complex steps that cannot be easily automated.
Statistical models of shape and appearance could be used to generate finite ele-
ment (FE) bone models by alleviating the drawbacks of the conventional model
generation process. A limited number of studies have used statistical shape and
appearance methods for generation of FE models [105, 106, 108, 109]. These sta-
tistical FE models can be used during the design process of new orthopedic im-
plants to find the optimal shape and mechanical properties of implants that are
favorable for the majority of the target population [108, 109] or to design patient-
specific implants that best serve a specific individual or a portion of the statistical
population that have certain anatomical characteristics.

2.4.6 Surgery Planning

Computer aided orthopedic surgery (CAOS) systems including the computer
and robotic technology have become increasingly popular for assisting pre-ope-
rative surgical planning and intra-operative instrument navigation [45, 110].
CAOS systems, while benefitting from the recent advances in imaging technol-
ogy, increase the accuracy of intra-operative navigation. One of the approaches
used in CAOS systems is to register the 3D model of bony anatomy to intra-
operatively obtained patient-specific data [45]. While the intra-operative data
may have been obtained by x-ray imaging, surface digitization using ultrasound
imaging, or digitization of bone surface and/or anatomical landmarks using a
tracked pointer [45], the pre-operative 3D models are generally derived from CT
or MRI scans [48, 54]. The high cost and complexity of these imaging modalities
and the high level of ionizing radiation to which the patients are exposed dur-
ing CT scanning has sparked increasing interest in generic 3D bone models built
using statistical means [48, 54]. The use of 3D statistical models derived from
pre-operative CT or MRI scans results also in a simpler workflow and reduces
the time required for surgery [60]. Nonetheless, care should be taken when us-
ing statistical models for construction of 3D patient-specific bone models from
interventional data. Statistical models may yield inaccurate results if the shape
of the patient bone includes local abnormalities that have not been present in the
training dataset or if there is too much difference between the patient bone and
the bones used for training the statistical model [54].
Studies that use 3D/3D or 3D/2D registration techniques for reconstructing 3D
patient-specific models can be classified based on the modeled anatomical struc-
ture. Benamur et al. modeled the vertebrae of the scoliotic spine by statistical
means to reconstruct 3D patient-specific model from two conventional radio-
graphic images. With the proposed method, it is possible to evaluate 3D defor-
mations of the spine and to plan surgical corrections, if surgery is necessary [111].
Some other researchers have modeled the femur [45, 46, 47, 48, 58, 59, 60, 61, 112]
and pelvis [45]. Models of both pelvis and femur or only the femur can be
used for computer-assisted total hip replacement (THR) surgeries [45, 46] and
for image-guided hip surfacing surgeries [113]. Moreover, distal femur mod-
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els are shown to be beneficial for computer-aided total knee replacement (TKR)
surgeries or for anterior cruciate ligament (ACL) reconstruction surgeries [47].
An important issue that should be considered for surgical guidance is the need
for sufficiently accurate reconstructed models. In most studies, several experi-
ments are conducted to evaluate the efficacy of the proposed methods. Many
authors have assessed the capabilities of their methods in terms of surface recon-
struction accuracy [45, 46, 48, 59, 60, 112, 113]. As various studies use different
training and intra-operative datasets, it is not possible to directly compare the
results of different studies with each other in terms of reconstructed model ac-
curacy. Moreover, the applied evaluation methodologies in these studies are not
always clear, rendering the comparison even more difficult [55]. In addition, the
accuracy of surface reconstruction only represents the averaged error over the
whole reconstructed surface. Accuracy results that are evaluated based on clini-
cally significant morphometric parameters may be more relevant and consistent
for orthopedic applications. Therefore, Schumann et al. proposed a method to
evaluate the reconstruction accuracy in terms of clinically relevant morphomet-
ric parameters [114].

2.5 Discussion and Conclusions

The main concepts and applications of SSM and SAM in orthopedics and ortho-
pedic biomechanics were reviewed in this paper. It is clear that there are many
potential applications in orthopedics that could benefit from the availability of
SSM and SAM. Only a relatively limited number of studies have so far used this
great potential, partly because many active researchers within the biomechanics
community are not familiar with statistical models of shape and appearance and
how they could help them in their research. There are, however, three impor-
tant issues that need to be addressed before a more widespread use of statistical
models can be realized.
First, the shapes and density distributions generated by using a-priori knowl-
edge available in statistical models need to be carefully validated against gold
standards, i.e. manually obtained shape and density distribution data. The per-
formance of search algorithms such as ASM and AAM in finding the best fits
to the image data needs to be evaluated as well. Finally, the accuracy of meth-
ods in constructing 3D bone geometries from 2D and 3D image need to be care-
fully studied, particularly because such accuracies may differ depending on the
anatomical location, type of imaging protocol (e.g. the project plane in 2D imag-
ing, number of 2D images), and the specifications of the registration algorithm.
Second, not many statistical models of shape and appearance are currently avail-
able. Statistical models are only available for a limited number of bones such as
femur, acetabulum, tibia, and scapula. Even when the models are created for
a specific bone, they are often not publicly or commercially available, meaning
that the access of the bone research community to statistical models is currently
limited.
Third, the use of statistical models often requires describing pathological bone
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shapes and density distributions for which very few statistical models are avail-
able. For example, osteoporotic bone fracture risk estimation requires avail-
ability of statistical models that are developed based on osteoporotic training
datasets. It is not clear how accurately can the statistical models based on healthy
bones describe the variations of shape and density distribution in pathological
bones. Studying cam deformity is another example for which a statistical model
that takes the pathological bone shapes into account is needed.

2.5.1 Steps Involved in Building and Using SSM and SAM

The different steps involved in creating and using SSM and SAM were described
before. More extensive descriptions of the steps can be found in Appendix A. In
this sub-section, we analyze some aspects of those steps.
Among the various techniques available for shape representation, landmarks are
used most frequently. As landmarks are easy to understand and to implement,
it is expected that the use of landmarks will continue to be popular in the fu-
ture. As far as the correspondence is concerned, it is currently not clear which
technique performs the best in establishing the correspondence. That is partly
because standard measures of performance do not exist for assessment of the
quality of the resulting statistical models. Davies et al. indicate that group-wise
approaches are more suitable compared to pair-wise approaches for establish-
ing the correspondence [115]. The main reason is that group-wise approaches
consider all the training samples at the same time and optimization of the cost
function is performed in a way that the resulting statistical model shows certain
desirable properties such as compactness. It is, however, important to develop
standard quality measures that enable comparison between different approaches
and to clearly evaluate the advantages and disadvantages of the different corre-
spondence techniques when they are used for building SSM and SAM using the
same training database.
There are certain algorithms for automated alignment that are described in Ap-
pendix A among which Generalized Procrustes Analysis (GPA) [49, 50, 51, 52, 53]
is the most widely used algorithm. This method is efficient and simple to imple-
ment and is therefore expected to remain popular for alignment of the training
shapes.
PCA is at the heart of SSM and SAM. An important point when using PCA is the
linearity assumption. There is no guarantee that this assumption is valid for all
training databases. It is therefore important to check linearity before applying
PCA. If there is nonlinearity in the data, the linear approximation model will be
suboptimal. An alternative decomposition method is Kernel PCA. As indicated
by Heimann et al., there has been little interest in Kernel PCA for landmark-
based shape modeling [43]. That is partly because non-linear methods are not
robust for 3D statistical shape modeling [43].
When trying to fit statistical models to image data, ASM has generally been the
preferred method as compared to AAM. That is partly due to the excessive mem-
ory usage when using AAM and partly because implementation of ASM is rel-
atively easier. ASM is, however, less powerful in detecting the global minima
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when fitting statistical models to image data and may converge to a local mini-
mum due to multiple nearby edges in the image. The ASM contour may there-
fore be locally detached from the correct boundary locations [116]. With the aim
of increasing the robustness of the method against such outliers, several variants
of ASM have been developed [43]. The proposed variations need to be system-
atically compared against the original ASM to clarify which one yields the most
accurate results.
Considering 3D model reconstruction from 3D or 2D image data, there is cur-
rently not enough data to decide which methods is the most accurate [55]. The
success of the applied algorithms seems to be largely dependent on the specifica-
tions of the considered problem. Generally speaking, feature-based methods are
used for cases where edge and surface detection of the examined object can be
performed quite reliably, while intensity-based methods are more common for
cases where there is a possible edge detection problem [55].

2.5.2 Accuracy and Reproducibility of the Techniques

Two important topics regarding the techniques presented in this review are 1. the
accuracy of previously discussed techniques in reconstruction of 3D bony struc-
tures and segmentation of bones in images and 2. the role of human input on
reproducibility of the obtained results. In this sub-section, we review both top-
ics and present the accuracy and reproducibility values reported in the literature.
When using the previously discussed techniques for reconstruction of bone shape
and/or appearance, it is important to evaluate the accuracy of the reconstruction
techniques. Towards that end, the output of the image registration method is
normally compared to the ground truth. In the case of predicting 3D shape from
2D images, the predicted 3D shape can be compared with the shapes constructed
based on CT or MRI images. Many authors have assessed the accuracy of their
methods in terms of point-to-surface distances of every vertex in the predicted
model to the surface of the ground truth. In non-pathological bones, the reported
mean errors vary between 0.16 mm [112] to 1.68 mm [44]. There are several fac-
tors that could affect the accuracy of 2D/3D registration including image noise,
image distortion, the number of 2D views and the angle between 2D views. It has
been shown that increasing the number of 2D views improves the registration
accuracy [52, 117]. It is interesting to note that while adding a second view sig-
nificantly improves the registration accuracy, inclusion of more views has only
slight impact. Furthermore, it has been found that the best registration accuracy
using two views can be achieved when the views are approximately orthogonal
to each other [117].
As previously mentioned, different studies use different training and test datasets.
It is therefore not always possible to directly compare the results of different
studies with each other in terms of the reconstructed model accuracy. Moreover,
the applied evaluation methodologies in these studies are not always clear, ren-
dering the comparison even more difficult.
The registration and segmentation accuracies of different anatomical structures
may be different due to the fact that some bones have more complex shapes
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than the others. Humbert et al. reported a mean registration error of 1.3 mm
for the femoral shape reconstructed from a single DXA image [52]. The accu-
racy improved to 0.9 mm when two views (sagittal-frontal) were used [52]. Be-
nameur et al. reported mean registration errors of 0.71 mm and 1.48 mm re-
spectively for scoliotic lumbar vertebrae and thoracic vertebrae [111]. The au-
thors attributed the less accurate results for thoracic vertebrae to the additional
complexity caused by the presence of ribs [111]. In general, the reported mean
segmentation errors of normal vertebrae vary between 0.47 mm [73] and 0.82
mm [70] for semi-automatic segmentation and between 0.73 mm [74] and 0.93
mm [118] for automatic segmentation. The mean segmentation errors of frac-
tured vertebrae are higher and vary between 0.54 mm [73] and 2.32 mm [74] for
semi-automatic segmentation and between 2.17 mm [74] and 2.27 mm [118] for
automatic segmentation. As indicated by Mysling et al. [74], possible reasons
for less accurate segmentation of fractured vertebrae are the difficulties to model
huge variations in the shape of fractured vertebrae and undertraining of the sta-
tistical models due to availability of only a few fractured vertebrae in the training
databases. It is proposed that increasing the number of fractured vertebrae in the
training database could improve the segmentation accuracy of fractured verte-
bra. Furthermore, multiple statistical models can be built up for various types of
vertebral fractures.
It is also important to study the role of human input on the reproducibility of
the results obtained using statistical models of shape and appearance. For ex-
ample, establishing correspondence based on manually placed landmarks is a
subjective task. There may be both inter-grader and intra-grader variability in
the positioning of landmarks. According to Styner et al., the variations are gen-
erally in the range of a few millimeters [119]. That is why it is important to
report inter-grader and intra-grader variability when evaluating the accuracy of
methods that require user input. In some texts, intra- and inter-grader variability
are called repeatability and reproducibility [120]. In a study by Agricola et al.,
intra- and inter-grader reliabilities in assessing hip shape on radiographs using
SSM were evaluated using intraclass correlation coefficient (ICC) [3]. Intra- and
inter-grader reliabilities of the shape modes that were associated with total hip
replacement respectively varied between 0.01 and 0.98 and between 0.43 and 0.97
[3]. In another study, Gooβen et al. assessed the quality of manually segmented
models that were used as the ground truth in evaluation of segmentation accu-
racy of their proposed segmentation technique [121]. In their study, inter-grader
variability was evaluated based on manual annotation of 20 legs by five experts.
Gooβen et al. point out that this variability represents the lower bound for the
measurable accuracy of any automatic segmentation method. The reproducibil-
ity is reported to be 0.49 mm for the hip, 0.43 mm for the knee, and 0.35 mm
for the ankle joint. The mean segmentation error of their proposed technique
is found to be 0.59, 0.47, and 0.37 mm for the hip, knee and ankle joints, respec-
tively. User interaction may also be necessary in initialization of a search process,
thereby affecting the reproducibility of the segmentation techniques. In a study
by Guglielmi et al. [122] that deals with semi-automated annotation of osteo-
porotic vertebrae, multiple initialization on the same image were performed to
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evaluate the reproducibility of the segmentation technique. They chose a total
of 20 randomly selected test images and simulated multiple user initializations
by perturbing the initialization points with a radial offset computed from a ran-
dom Gaussian distribution. The mean reproducibility error is reported to be
2.6 ± 1.3% of vertebral width [122]. In another study, Roberts et al. assessed
the operator precision in initialization of AAM search algorithms [70]. Multiple
perturbed initializations were performed for each test image and the mean pre-
cision of the AAM solutions was calculated based on the mean point-to-curve
error from the mean shape. The mean precision is reported to be 0.25 mm for
lumbar radiographs [70]. In another study of Roberts et al., the mean precision
of AAM solutions in semi-automatic determination of vertebral shape from DXA
images is reported to be 0.14 mm [123].

2.5.3 Limitations and Challenges

One of the challenges in application of SSM and SAM is that individuals with
different ethnic backgrounds may have different bone morphologies. SSM and
SAM are not necessarily capable of describing shape and appearance variations
that do not exist in their training databases. It is therefore unclear whether
SSM and SAM created using training datasets of one single ethnic group could
describe the shape and appearance variations of individuals from other ethnic
backgrounds. In an exploratory study, Mahfouz et al. [124] used SSM to study
shape differences between the knees of different ethnic groups. They found dif-
ferent mean shapes in African-American and East Asian populations as com-
pared to the Caucasian population. Furthermore, differences were observed be-
tween the female and male populations of different ethnic groups. One strategy
to overcome such ethnic differences in statistical modeling of shape and appear-
ance is to create separate SSM and SAM for different ethnic groups. Creating
separate SSM and SAM is probably one of the most accurate approaches for cap-
turing the shape and appearance variations between ethnic groups but is more
costly. Another approach is to create SSM and SAM based on a mixed training
dataset that includes bones from different ethnic groups. It is not clear what the
optimal way of creating the training database in the second approach is nor is it
clear how accurately could the SSM and SAM created using the second approach
describe the shape and appearance variations of individuals with different eth-
nic backgrounds.
Another point is that SSM and SAM may need to be modified over time to cap-
ture secular trends in bone morphology. There is currently no data in the lit-
erature as to how the secular trends can be captured using SSM and SAM. The
problem of segmenting bones with different ages is, however, somewhat similar
to the problem of capturing secular trends in bone morphology. In a recent study
[121], it was demonstrated that ASM could capture growth-related changes in
bone morphology and segment the bones of adult and child patients from digi-
tal radiographs with accuracies of 0.48 mm and 0.64 mm, respectively.
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2.5.4 Potential Applications and Future Research

One can think of many possible applications for SSM and SAM. One important
application is FE modeling of bones and joints. Since every patient has a cer-
tain anatomy within the population described by SSM and SAM, one could pre-
calculate the results of FE models for different values of mode parameters and
use a look-up table approach for obtaining the results of FE analysis, thereby
eliminating the need for presence of high-end computational facility in every
hospital and reducing computation time. It should be, however, noted that the
results of FE models generated based on SSM and SAM need to be corroborated
against the simulations results of the FE models generated using standard seg-
mentation techniques. The material properties of bones can be mapped based
on the empirical relationships between the appearance and bone density on the
one hand and the relationships between bone density and elastic properties of
bones on the other hand. Whether or not the SAM provides accurate appearance
and, thus, density distribution is dependent, among other factors, on the train-
ing population and whether it can well represent the individual for whom the
patient-specific FE model is being built.
The other possible area of application is grafting of large bony defects. Mod-
ern additive manufacturing (3D printing) techniques have enabled production of
highly porous patient-specific bone substitutes that are considered very promis-
ing biomaterials for bone substitution [125, 126, 127]. However, one needs an
accurate representation of bone shape so that the missing part of bone can be
manufactured using additive manufacturing techniques. In such applications,
ASM could be used for estimating the original shape of bone, for example, by
fitting the SSM to the intact parts of the bone.
Many possible applications can be envisioned for SSM and SAM in diagnosis
and treatment of pathologies that involve bone deformities. Examples of such
pathologies are cam deformities, genu valgum, varus deformities, etc. In such
application, SSM and SAM can be used for two main purposes. Firstly, one could
use SSM or SAM to estimate how the undeformed anatomy of the patient might
have looked like. Secondly, new SSM and/or SAM can be trained using the data
from pathological population to study, among others, the main modes of defor-
mity, the shape changes caused by the deformity, and the modifications caused
by deformities in musculoskeletal loading.
The potential applications of SSM and SAM may increase as imaging modalities
improve. For example, it may be possible to enrich SSM and SAM using imaging
data acquired at the micro-scale such as data acquired using micro-CT regarding
the shape, orientation, and distribution of individual trabeculae. That kind of
information could, for instance, be used for representing anisotropy in SSM and
SAM.
In summary, statistical model of shape and appearance have been already used
in different areas of in bone-related research. However, more efforts in genera-
tion of statistical models of shape and appearance and testing their accuracy is
needed to allow for better exploitation of their potential in orthopedics research,
diagnosis, and treatment. That requires intense collaboration between engineers,
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radiologists, and orthopedic surgeons.
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3.1 Introduction

Every year, more than 8.9 million osteoporotic fractures occur around the world
with one third taking place in Europe and accounting for 2 million disability-
adjusted years [67]. Osteoporotic fractures whose prevalence increases with age,
mostly occur at hip, spine and distal forearm [72]. Hip fractures are among
the most serious and necessitate hospitalization and surgical intervention. Early
identification of individuals who are at increased risk of fracture is essential, be-
cause fracture prevention measures such as medicinal treatment could then be
taken [128]. In clinical settings, dual-energy x-ray absorptiometry (DXA) is the
most widely used densitometry technique to measure areal bone mineral density
(aBMD). Measured aBMD is used for diagnosis of osteoporosis and for fracture
risk prediction [67, 63]. However, aBMD alone cannot explain all low energy
fractures [68]. That is because bone mass is not the only parameter that deter-
mines bone strength. Other factors such as bone shape, the distribution of bone
mass, and loading conditions that should be also considered [128, 129].
Several attempts have been made to take other risk factors such as bone shape
and density distribution into consideration [130] including development
of patient-specific finite element (FE) models [131]. These models are powerful
tools to predict bone strength in vivo, because they include information about
bone shape, bone tissue material properties and external loading conditions. Ei-
ther 2D or 3D images could be used for generating patient-specific FE models
[99]. While 3D computed tomography (CT) images are more accurate and infor-
mative, they are more costly to obtain and expose the patient to higher doses of
ionizing radiation.
The currently used process for estimating fracture risk using manually generated
patient-specific FE model includes segmentation of the proximal femur from 2D
or 3D images, assignment of material properties, generation of mesh, application
of loads and boundary conditions, running the simulations, and post-processing
the simulation results. Such a manual process is costly, time-consuming, and
laborious as compared to diagnosis based on aBMD values. This has so far de-
layed the clinical application of manually generated patient-specific FE models.
The aim of the current study was to develop automated procedures for gener-
ation of patient-specific FE models, thus enabling fast and inexpensive fracture
risk estimation. First, a statistical shape and appearance model (SSAM) of the
proximal femur is built using DXA images. Then, an active appearance model
(AAM) [132] is used for automated segmentation of bone from new DXA images.
The extracted information is then used for automated generation of FE mesh and
density-based assignment of mechanical properties. Automated procedures also
assign loads and boundary conditions, run FE simulations, and post-process the
simulations results to estimate fracture load. The results of the automated pro-
cess are benchmarked against those of a similar manual process.
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3.2 Materials and Methods

3.2.1 Training and Evaluation Data
A set of 87 anonymous DXA scans (Lunar Prodigy, GE Healthcare, USA) of the
proximal femur (left or right) of patients screened for osteoporosis following a
low fracture energy was randomly divided into two groups: 70 DXA scans (56
female and 14 male, 61.5± 12.6 years) for generating statistical models and an-
other 17 DXA scans (12 female and 5 male, 61.8± 10.7 years) for independent
evaluation of the process. The DXA scans were taken from patients who already
had a fracture that made clinicians suspicious of osteoporosis. This population
was chosen, because it best represents the population for which the methods
developed in this study will be ultimately applied. The Min-Max filter method
described in [133] was used for enhancing the contrast of all images.

3.2.2 Generation of Statistical Shape and Appearance Model
A statistical shape model (SSM), a statistical appearance model (SAM), and a
combined SSAM were created using the training data. For every proximal fe-
mur of the training dataset, 70 landmarks were manually positioned along the
contour of the femur. As the lesser trochanter was not visible on several images,
the lesser trochanter region was not considered. All shapes were then aligned in
a common coordinate system using the generalized Procrustes analysis. Trans-
lational effects were removed by positioning all the shapes in a way that their
centroids were at the origin [134]. Scaling and rotational effects (see Appendix
B) were removed using the methods described in [135, 136]. The mean shape, x̄
, was then calculated by averaging the position vectors of all landmarks. Prin-
cipal component analysis (PCA) [137] was performed to calculate the principal
modes of variation, and their respective variances, by applying singular value
decomposition (SVD) on the aligned data [43]. Subsequently, a shape instance, x
, can be described by adding contributions of most important modes of variation
to the average shape, x̄ :

x = x̄ + φsbs (3.1)

where bs is a set of shape parameters and φs represents the matrix of ordered
eigenvectors (i.e. principal modes of variation). The number of modes was
increased until the ratio of the accumulated variance to the total variance, r,
reached 0.98 [43].
The SAM was created by applying the following three steps: capture of pixel
information, normalization of the data to discard the global illumination effects,
and modeling the normalized texture variation [138]. A piece-wise affine warp
based on the Delaunay triangulation was used to capture texture information
[138]. Each training example was warped to the mean shape and the spurious
texture variations that might rise due to shape differences were removed [139].
The intensity information from the shape normalized image was sampled using
bilinear interpolation to form a texture vector, g. The texture vector was then
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normalized [140]. Subsequently, the texture variation was extracted by applying
PCA. Any texture instance, g , can be created by deforming the mean texture, ḡ ,
by a linear combination of eigenvectors [138]:

g = ḡ + φgbg (3.2)

where bg is a set of texture parameters and φg represents the matrix of ordered
eigenvectors. The number of appearance modes increased until the model could
explain 98% of appearance variation. Since bone shape and density distribution
are related through bone tissue adaptation process [97, 98], the principal modes
of shape and texture variation are not independent and need to be combined
[139] (see Appendix B).

3.2.3 The Search Algorithm
AAM was used to fit the generated SSAM to new unseen DXA images. The
method described by Cootes et al. [140] was used to decrease the complexity
of problem. The presented approach assumes that there is a linear relationship
between the parameter updates (combined model and pose parameters), δp, and
the texture residuals, r(p), over the entire search [43, 141]:

δp = −Rr(p) (3.3)

where R is the derivative matrix. Leave-one-out tests were conducted on all
images in the training datasets, meaning that the generation of the SSAM was
repeated 70 times every time leaving one image out of the training dataset to see
how the AAM can fit the SSAM to that image. The point-to-curve error [138] was
used for evaluating the accuracy of the fit. The new unseen images were also seg-
mented manually to evaluate the performance of the automated segmentations.
The intra-observer segmentation variability was determined by asking three ob-
servers to segment 10 images.

3.2.4 Generation of Patient-Specific FE Models
For every DXA scan in the second group (17 scans), patient-specific 2D FE mod-
els were generated both using the automated and manual procedures. The user
initiated the automated procedure by moving the mean shape over the pre-
viously unseen DXA image and fixing the position of the mean shape with a
mouse click. The automated process then found the best fit of the SSAM to
the DXA image, generated the mesh, assigned material properties, loads, and
boundary conditions, and performed post-processing (see Appendix B). The
meshing tool available in Abaqus CAE was employed to discretize the geom-
etry using 6 node modified second-order plane-stress triangle elements (element
CPS6M). The thickness of the element (see Appendix B) was defined as described
in [128]. A mesh convergence study was performed to determine the minimum
number of elements needed for accurate FE analysis according to which the von
Mises stress values and displacements of 6 selected elements (Fig. 3.1) converged
within ≈ 1% when c.a. 28000 elements were used.
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Figure 3.1: The loads and boundary conditions used in the current
study together with the 5 elements chosen for convergence study.

The number of elements was therefore fixed around that number for the remain-
der of the study. Material properties of each element were defined by first aver-
aging the gray values of pixels lying within the element. The mean gray values
were used to calculate aBMD values that were then converted to vBMD values
[128], and, subsequently, to ash density. Apparent density was defined using
the ratio of ash density to apparent density [131]. The relationship proposed by
Morgan et al. [142] was used to relate apparent density and Young’s modulus
as it has been found to be the most accurate relationship [143]. The loads and
boundary conditions were defined to simulate a fall on the greater trochanter
[128]. The impact force defined by body weight and height of individual was
applied to the greater trochanter. The femoral head and the distal shaft were,
respectively constrained in x direction and x and y directions (Fig. 3.1). The FE
models were solved using a nonlinear implicit solver (Abaqus Standard 6.10). A
failure criterion based on von Mises stress [130] was used. The failure load was
defined as the load which causes failure of contiguous elements with an area of
25 mm2[128].

3.3 Results

The first three modes of variation could explain ≈ 70% of shape variations and
≈ 35% of appearance and combined shape and appearance (Figs. 3.2 - 3.4). To
explain 98% of variations in shape, appearance, and combined shape and ap-
pearance, respectively 16, 50, and 44 principal modes were needed (Figs. 3.2 -
3.4). Based on the leave-one-out tests of the training dataset, the mean point-to-
curve error was 1.25± 0.65 mm (95% confidence interval) (Fig. 3.5). Segmen-

43



Chapter 3: Fast and Automated Estimation of Proximal Femur Fracture Load

tation errors were larger close to the femoral head and greater trochanter area
(Fig. 3.5). The point to curve error was 1.42± 0.75 mm (95% confidence inter-
val) for segmentation of 17 DXA scans not used in the training (Fig. 3.5). The
largest segmentation errors were observed in the femoral head area (Fig. 3.6). In
comparison, the intra-observer variability in manual segmentation of DXA scans
measured in terms of point to curve error was 1.03± 0.48 mm (95% confidence
interval).
For the 17 DXA scans, the predicted fracture loads determined using manu-
ally and automatically generated models were respectively 3871 ± 933 N and
3804± 850 N. In addition, the fracture loads estimated using manually generated
FE models by three operators were 4061± 1252 N, 4257± 1036 N and 3846± 972
N.

Figure 3.2: The percentage of shape variation described by different
shape modes (a) as well as the first three modes of shape variation
(b-d).

The fracture loads calculated using both types of models were very strongly cor-
related with a coefficient of determination, R, around 0.82 (Fig. 3.7) and a relative
percentage difference of 8.8%± 6.5% (considering manual segmentation as the
ground truth). Repeated measures ANOVA showed no significant differences
between the fracture loads calculated using FE models manually generated by
three independent observers and those calculated using the automatically gen-
erated FE models (p > 0.05).
The femur for which the difference between both fracture loads was closest to
the mean value of the fracture load difference, i.e. 8.8%, was chosen to further
examine the correspondence between manually and automatically generated FE
models (Figs. 3.8 and 3.9). In general, distributions of density and von Mises
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Figure 3.3: The percentage of appearance variation described by dif-
ferent appearance modes (a) as well as the first three modes of ap-
pearance variation (b-d).

stress were similar between manually and automatically generated FE models
(Figs. 3.8 and 3.9). Considering all test scans, the relative percent differences be-
tween manually and automatically generated models (averaged over the entire
femur geometry) were 1.7%± 0.5% for density distribution and 5.7%± 1.0% for
von Mises stress.

3.4 Discussion

Currently, aBMD values that are known to lack sufficient sensitivity and speci-
ficity [144] are used for fracture risk estimation in clinical setting. The alterna-
tive approach presented here uses automatically generated patient-specific FE
models based on DXA images. This type of models are shown to be promising
tools for accurate fracture risk estimation of the proximal femur [128], and do
not subject the patients to additional ionizing radiation or substantially increase
the required cost or time. The time for the automated procedure to complete is
approximately 7 min. The automated segmentation process is completed within
a few seconds on a standard PC, and requires only a few seconds of user inter-
action for initialization. Another advantage of the proposed framework is that
non-expert users could use it. Moreover, the proposed framework could be fur-
ther improved, for example, by incorporating previously proposed initialization
techniques [43] that could make it fully automated.
The mean point-to-curve error of the automated segmentation procedure was
1.25± 0.65 mm for the leave-one-out test and 1.42± 0.75 mm for the 17 valida-
tion DXA scans. This level of error is only slightly larger than that of the intra-
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Figure 3.4: The percentage of shape and appearance variation de-
scribed by different shape and appearance modes.

observer variability in manual segmentation of DXA scans, i.e. 1.03± 0.48 mm.
The maximum point-to-curve error observed in our automated segmentations,
i.e. both leave-one-out test of the training material and 17 validation test DXA
scans, was 2.2 mm.
A similar study was performed very recently [80] where a similar technique was
applied in osteoarthritis research. In that study, AAM was used for segmen-
tation of the femoral shape from x-ray images. When the results of 1% worst
performing images were excluded, they could achieve a mean error of 0.9 mm
[80]. However, their maximum error increased to 3.3 mm when worst perform-
ing images were not excluded from the analysis [80]. In their study, [80] did not
need the manual initiation of the process and that could be considered an ad-
vantage particularly when the technique is applied in analysis of large clinical
databases. Moreover, they had access to a much larger database of osteoarthritic
patients to generate and examine their SSAM.
It should be noted that automated segmentation of femoral shapes is more diffi-
cult when osteoporotic patients are involved. That is because the density distri-
butions of osteoporotic patients may significantly deviate from that of the gen-
eral population in the ways that are not necessarily well captured using SSAM.
One novelty and advantage of the current study is that the SSAM used here
is based on training images originating from osteoporotic patients. The SSAM
created using those images should therefore include more information regard-
ing the pathological density distributions observed in osteoporotic patients and
may therefore be more capable in segmenting the femoral shapes of osteoporotic
patients as compared to the SSAM built using x-ray images originating from
general population or osteoarthritic patients. To speed up the model generation
phase and to improve the segmentation accuracy, canonical correlation analy-
sis as described by Donner et al. can be used for construction of the derivative
matrix R [43, 145]. This approach was found to be more accurate in prediction
of parameter updates as compared to the numeric differentiation applied in this
study.
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Figure 3.5: The histogram of point-to-curve error in segmentation of
femoral shapes measured using the leave-one-out test of the training
dataset (N=70) (a) and the corresponding spatial distribution of error
(b). The size of the marker shows the mean error value while the
length of the crossing line shows the standard deviation of the point-
to-curve error values.

The fracture loads estimated using manually generated and automatically gen-
erated FE models (i.e. 17 FE models) were, respectively 3871± 933 N and 3804±
850 N with an absolute difference of 8.8± 6.5% (Fig. 3.7). According to the re-
peated measures ANOVA, the fracture loads predicted using the manually gen-
erated FE models by three observers were not significantly different from those
predicted using automatically generated FE models. The differences between
manually and automatically generated patient-specific FE models originate from
the segmentation process. Since the segmentation error in the automated process
is not much different than the intra-observer variability, it is expected that the
estimated fracture loads using automatically generated FE models do not differ
much from the fracture loads predicted using manually generated FE models.
Amin et al. found in their 3D FE study that the femoral fracture load is around
2500 N (2577.7± 1172.2 N) for women and 3200 N (3217.4± 1270.9 N) for men
with prevalent osteoporotic fractures [146]. The corresponding values for the
men and women with no-fracture were respectively around 4000 N (3866.9 ±
1186.6 N) for women and 4600 N (4602.0± 1287.4 N) for men [146]. The prox-
imal femur fracture loads estimated in the current study are within the range
of failure loads [146]. On the other hand, estimated fracture loads for both seg-
mentation cases were higher compared to those reported by Naylor et al. [128].
The difference may originate from the differences between datasets used in both
studies. In [128], only women with a mean age of 82 years (ranging between 75
and 95 years) were considered. The dataset used here includes men and women
with an average age of 61.82 ± 10.7 years. As indicated by Lochmüller et al.,
although no significant changes in bone strength were observed in men, the fail-
ure loads decreased in females with an increasing age [147]. Furthermore, failure
loads in men were higher than those of women [146, 147].
When the whole proximal femur or four specific regions of the femur, i.e. neck,
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Figure 3.6: The histogram of point-to-curve error in segmentation of
the 17 femoral shapes not used in the creation of the SSAM (a) and
the corresponding spatial distribution of error (b). The size of the
marker shows the mean error value while the length of the crossing
line shows the standard deviation of the point-to-curve error values.

trochanter, shaft and head, were considered, no associations could be observed
between the segmentation errors and relative difference between the failure loads.
We noticed that even small errors, e.g. 1.06 mm, in segmentation process might
in certain cases result in relatively large errors, e.g. 24.1%, in prediction of frac-
ture loads. This is consistent with the findings of another study [148] that found
small errors in shape reconstruction result in larger errors in von Mises stress
values.
One of the limitations of this study is the use of DXA scans of patients screened
for osteoporosis. As the dataset does not include DXA scans of healthy indi-
viduals, evaluation of the specificity and sensitivity of the proposed method in
fracture risk estimation will be impossible. Moreover, the dataset does not in-
corporate non-fracture controls nor is there any comparison with experimentally
determined in vitro fracture loads. The next step would be to apply the proposed
technique to a large dataset including DXA scans of healthy individuals and os-
teoporotic patients for whom long-term follow-up data is available. Only then
it would be possible to assess the utility of the proposed techniques in clinical
assessment of fracture risk. It should be, however, noted that since the results
of the proposed method are not much different from those of manually gener-
ated patient-specific FE models, the utility of the proposed techniques should be
similar to those of already available manually generated FE models. Moreover,
it would be important to validate the calculated strain distributions against full-
filed strains measured using optical methods such as digital image correlation
(DIC) [149, 150] during in vitro mechanical testing experiments [151, 152, 153].
2D FE models have limitations in representing the distribution of material prop-
erties and force components in the third direction. To avoid such limitations,
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Figure 3.7: Fracture loads estimated using the manually segmented
FE models vs. the fracture load predicted using automatically seg-
mented FE models.

3D FE models could be built based on 3D images and patient-specific loads es-
timated using musculoskeletal [154, 155, 100] or mass-spring-damper models
[103, 104, 102]. 3D FE models [93, 14] require 3D imaging modalities or use of
search algorithms that match 3D SSAM with 2D images [64]. In contrast, 2D FE
models do not need additional imaging as compared to current clinical practice.
Various structures, density patterns and risk factors are observed for cervical and
trochanteric fractures [156]. In future studies, it would be useful to investigate
methods that could be used to distinguish between the different types of hip
fracture. This might be helpful in development of strategies for prevention of
hip fractures and for patient-specific treatment.
Due to the overlap of the femoral head with the pelvis in DXA scans, BMD
is overestimated at the femoral head. As there is an increase in the predicted
strength of the 2D proximal femur model, overestimation of BMD at the femoral
head would influence the estimated fracture load. In future studies, it is impor-
tant to take the overestimation of BMD at the femoral head into account.
In summary, an automated procedure based on SSAM and AAM was proposed
in this study for generation of patient-specific FE models and estimation of prox-
imal femur fracture load. It was shown that the mean error of the proposed one-
click segmentation technique is between 1.2-1.4 mm and is only slightly larger
than the mean intra-observer variability, i.e. 1.0 mm. The fracture loads pre-
dicted using the manual and automated models were strongly correlated, i.e.
R2 = 0.82, and showed a mean difference of 8.8%. There were no significant
differences between the fracture loads estimated using manually and automati-
cally generated models. The required time, cost, and radiation associated with
the proposed technique are comparable with those of the currently used clinical
methods.
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Figure 3.8: Normalized DXA image (a), BMD mapping according to
manual (b) and automated segmentation (d), and mapping of the elas-
tic modulus according to manual (c) and automated segmentation (e).

Figure 3.9: The distribution of von Mises stress at the failure load
according to manual (a) and automated segmentation (c) and distri-
bution of stress strength ratio at the failure load according to manual
(b) and automated segmentation (d).
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4.1 Introduction

The ankle (talocrural) joint is the second most common site for osteochondral de-
fects (OCDs), exceeded in frequency only by the knee [41]. The true incidence of
OCDs in general population is currently unknown [157]. In a study following US
military personnel during a 10 years period (1999 to 2008), the average incidence
of OCDs of the talus has been stated to be 27 per 100000 people [157]. In another
study, it has been reported that 15-25% of ankle injuries, from which approxi-
mately 1 in 10000 persons per day suffer, result in OCDs [37]. In the ankle, tibia
OCDs have been stated to be rare as compared to the incidence of talus OCDs.
In a study consisting of 428 ankles with OCDs, the medial talar dome lesions
(i.e. 269 OCDs, 62%) have been found to be more common in comparison to lat-
eral (i.e. 143 OCDs, 34%) and central (i.e. 16 OCDs, 4%) talar dome lesions [38].
OCDs can lead to chronic ankle joint pain, decreased level of patient activity, and
osteoarthritis (OA) [157]. To take preventive measures, it is essential to know risk
factors that induce OCDs in the talocrural joint. Although OCDs of the ankle
joint are extensively studied, its etiology is not yet fully understood [33]. Sev-
eral factors including ”local avascular necrosis, systemic vasculopathies, acute
trauma, chronic microtrauma, endocrine or metabolic factors” [37], articular in-
congruency [38], malalignment of the lower limb [38] and genetic predisposition
[38] have been proposed to contribute to the risk of developing an OCD. Trauma
has been extensively stated to be the main cause of ankle OCDs [158]. 93% -
98% of lateral and 61% - 70% of medial dome lesions were found to be related to
trauma [158]. The lateral lesions are thought to be caused by a shear mechanism,
while medial lesions are results of torsional impaction and axial loading of the
talocrural joint [33]. Up to now, no study has investigated possible relation be-
tween bone shape and OCD risk in the ankle.
There is a growing evidence [1, 2, 3] suggesting that a slight difference in joint
mechanics driven by variability in joint morphology may be a risk factor for de-
velopment and progression of joint diseases. Variations in the acetabular cup of
the hip joint (i.e. acetabular dysplasia) [2], the femoral head-neck junction (i.e.
cam type impingement), and the acetabular depth (i.e. pincer type impingement)
have been found to be associated with OA [2]. Moreover, significantly different
shapes of the distal femur and the proximal tibia have been observed between
subjects with and without anterior cruciate ligament injuries [1].
Taking all findings into account, it seems plausible that relatively subtle differ-
ences in ankle morphology may be associated with the risk of sustaining an
OCD. In this study, we hypothesize that the morphologies of the talus and the
distal tibia are different between subjects without an OCD and patients with an
OCD. Therefore, we aimed to describe the complex geometries of the ankle bones
together with shape variances within a population using statistical shape mod-
elling (SSM) technique [159, 43] and to quantitatively compare the morphology
of the talus and the distal tibia between an OCD group and a control group.
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4.2 Materials and Methods

Two three-dimensional (3D) SSMs were built by segmenting bones from com-
puted tomography (CT) images of the mixed data of subjects without an OCD
and patients with an OCD, each corresponding to either talus or distal tibia. Us-
ing those SSMs, bone shapes of control and OCD groups were quantitatively
compared (Fig. 4.1).

Figure 4.1: A general scheme to compare the morphology of the talus
and the distal tibia between the OCD group and control group. 35 CT
scans for the control group and 37 CT scans for the OCD group were
collected from medical centers. Based on the segmentations of the
talus and tibia from all CT scans (i.e. 72 CT scans), two SSMs (i.e. SSM
of talus and SSM of tibia) have been constructed, being independent
from each other. Using shape parameters for the first five modes of
bone shape variation, bone shapes of the OCD and control groups
were quantitatively compared.
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4.2.1 Image Acquisition

Seventy two anonymized CT scans (i.e. 35 CT scans for the control group: 17
female and 18 male, age = 28± 5.8 years; and 37 CT scans for the OCD group: 14
female and 23 male, age = 37± 12.1 years; there exists a significant difference be-
tween the mean ages of two groups based on unpaired t-test, p = 0.0006), of both
left and right ankles, were collected from the Academic Medical Center (AMC,
Amsterdam, The Netherlands) and Utrecht Medical Center (UMC, Utrecht, The
Netherlands). Control and OCD groups CT scans were checked by experienced
radiologists to confirm absence or presence of OCDs in the talocrural joint, re-
spectively. In 5 of 37 OCD group CT scans, bilateral lesions were present in the
talocrural joint. Lateral, medial, and central talar dome OCDs were observed in
11, 29, and 2 CT scans of OCD group, respectively.
CT images collected from the AMC were acquired using Philips MX-8000 mul-
tidetector CT scanner (Philips Medical Systems, Best, The Netherlands). The
acquisition parameters were: effective dose 150 mAs/slice, rotation time 0.75 s
per 360◦, pitch 0.875, slice thickness 0.6 mm, and ultra-high-resolution mode.
Tomographic reconstructions were made with a field of view of 154 mm, a slice
increment of 0.3 mm, and a matrix of 512× 512 pixels. The voxel sizes were 0.3
mm × 0.3 mm × 0.3 mm. CT images collected from the UMC were acquired us-
ing a 40 detector row CT scanner (LSO PET 40-slice CT scanner, Siemens Health-
care, Erlangen, Germany). The acquisition parameters were: collimation 40× 0.6
mm, tube voltage 120 kVp, effective dose 40 mAs, rotation time 0.5 s, pitch 0.8,
slice thickness 1.5 mm, care DOSE4D, and Care kV dose modulation. Tomo-
graphic reconstructions were made with a field of view of 500 mm, and a matrix
of 512 × 512 pixels. The B60f sharp reconstruction filter was used. The voxel
sizes were 1.0 mm × 1.0 mm × 0.75 mm.

4.2.2 Segmentation

To build the SSMs, the unilateral talocrural joint was segmented from each CT
scan. A second user re-segmented three of the joints to evaluate inter-observer
variability and its effect on reproducibility of the method used in generation of
SSMs. For the OCD group, the contralateral unaffected talocrural joint was seg-
mented assuming bilateral symmetry of the ankle bones [160, 161]. In the cases
with bilateral lesions (i.e. in 5 subjects), the talocrural joint that had been less
affected by the lesions was selected. The main reason behind these selections
was to minimize any inaccuracies that might arise in estimation of the complete
shape of the bones, if some part of the bone surface was missing due to lesions.
The bones were segmented using Mimics (version 14.01, Materialise, Leuven,
Belgium). During the reconstruction of the 3D bone models, a smoothing fac-
tor (i.e. 0.5 with a smoothing iteration of 1) was applied. Smoothing effects for
each bone were visually checked to ensure proper definition of the contour of
the bones. Using the same software, triangulated bone surfaces were extracted
from the segmentation results. As the dataset used in this study was a mixture
of left and right-side ankles, left side ankles were mirrored in the sagittal plane.
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4.2.3 Transection of Tibia
The entire volume of the tibia was not visible on all CT scans, necessitating tran-
section of this bone in the axial plane. For each tibia, its subchondral bone surface
was automatically determined using a custom-made code developed in Matlab
(Matlab R2013b, The Mathworks, Inc., Natick, MA) (see Appendix C) (Fig. 4.2).
The vertices of the triangles located on the subchondral bone surfaces were ex-
tracted (Fig. 4.2). As variations due to differently oriented coordinate systems of
CT scans might be seen during transection of the bones and might contribute to
bone shape variations, each tibia was scaled and aligned with respect to its sub-
chondral bone surface before transection (Fig. 4.2). For alignment and scaling, an
unbiased registration algorithm was used [162]. Aligned and scaled bones were
transected at a level that was defined by the bone for which the smallest volume
was visible on the CT-scans (Fig. 4.2). Transected tibia surfaces were closed by
automatic addition of points (Fig. 4.2) (see Appendix C). Subsequently, they
were triangulated using a custom-made Matlab code developed based on the
Crust algorithm [163] (Fig. 4.2).

4.2.4 Registration
Position, orientation, and size differences among all bones of the same type were
minimized by aligning and scaling them using an unbiased registration [162] (see
Appendix C). This ensures that the remaining differences could be attributed
to shape variations only. During the registration process, each bone was rep-
resented with 2000 points, which were randomly chosen from the entire set of
surface points in a way that sub-selected points were uniformly distributed over
the bone surface. The total number of points used to describe each bone shape
during the registration process (i.e. 2000 points) and few other important param-
eters in the registration algorithm required to be set by the user were determined
in a similar way as described by van de Giessen [162] (see Appendix C).

4.2.5 Statistical Shape Model(s)
The SSMs were constructed based on the vertices of the triangulated surfaces
of the bones [164, 165]. Corresponding points (i.e. 26842 and 16246 points for
talus and tibia models, respectively) on all registered bone surfaces were auto-
matically determined [166]. Principal component analysis (PCA) was applied
to the covariance matrix of the data vectors (i.e. sizes of data vectors were
26842 × 3 × 72 and 16246 × 3 × 72 respectively for talus and tibia), which in-
clude the 3D coordinates of the corresponding points for each bone sample. This
gave the eigenvectors (i.e. modes of variation) and eigenvalues (i.e. variance) for
each bone type. This implies that new or existing bone shapes can be generated
with a weighted summation of the eigenvectors and the mean bone shape:

x = x̄ + φb (4.1)

in which x and x̄ are vectors respectively describing the shape of any (new) bone
and the mean bone shape. φ is a matrix describing the modes of shape variation

55



Chapter 4: Shape Difference Between Control and OCD Groups of the Ankle Joint

Figure 4.2: Transection procedure of tibia. Subchondral surface of the
tibia in contact with the talus was automatically determined. Sub-
chondral surface points on the tibia were automatically extracted.
Each tibia was scaled and aligned using solely its subchondral sur-
face. Aligned and scaled bones were transected axially. The open
surfaces of transected bones were closed with automatic addition of
points and were subsequently triangulated.

(i.e. eigenvectors) and b is a vector specifying the shape parameters. It is this b
vector that is different between the distinct bones of a given population. Since
the mean bone shape, x̄ , and the main modes of shape variation, φ , are the same
for all bone samples within the same population, the entries of vector b are the
only parameters that are different from one bone sample to another (e.g. from
one tibia to another tibia).

4.2.6 Evaluation of Statistical Shape Model(s)

To check whether the number of bone shapes (i.e. 72 samples) included in the
study was sufficient for an accurate description of all possible shape variations
with a similar accuracy as the voxel size in the CT scans, a numerical experiment
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described by van de Giessen [164] was performed independently for the talus
and distal tibia SSMs.
Throughout this numerical experiment, a SSM was generated using N randomly
selected training shapes. Subsequently, the SSM was fit to a test bone, which was
not included in the training set. The total number of modes used during the fit
was N− 1. To quantitatively evaluate the quality of the fit, the mean distance be-
tween the surface points estimated by the model and those of the test bone was
calculated. This experiment was repeated 10 times with different and randomly
selected training shapes for N = 5, 10, . . . , 35 shapes.
The reliability of inter-user segmentation was assessed by calculating the mean
surface distances between the surfaces of three samples obtained following the
segmentation and re-segmentation steps. To evaluate reproducibility of the
method, SSM of talus and SSM of tibia were rebuilt based on the dataset (i.e. 72
bones for both SSMs) consisting of three samples segmented twice by a different
user. The surfaces of three samples modelled from re-built SSMs in each first five
modes of shape variation (i.e. x = x̄± ∑i

s=i bsΦs, i = 1, 2, . . . , 5) were compared
to those obtained from original SSMs in terms of the mean surface distances.
To assess the robustness of SSMs, a bootstrap analysis was performed as de-
scribed by Pedoia [1] (see Appendix C).

4.2.7 Comparison of Shapes Between Control and OCD Groups
In this study, the SSMs were built based on all 72 training shapes, which are mix-
ture of the control and OCD groups (Fig. 4.1). Therefore, the mean shape and
the modes of variation were identical for each training shape regardless of its
group (OCD vs. control). Only the entries of the vector b (Eq. 4.1), representing
the location of the shape in the multi-dimensional distribution, were different
for each training shape. The differences in bone shape between the control and
OCD groups can therefore be assessed by comparing the entries of the vector b
(i.e. shape parameters).
Presence of a normal distribution of shape parameters was assessed with a
Kolmogorov-Smirnoff test. The shape parameters for the first five modes of bone
shape variation were analyzed using SPSS (Version 22, Chicago, IL) with an
ANOVA test to determine the presence of significant differences between the
bone shapes of the OCD and control groups. Modes of variation higher than
five were not considered in the analysis, as they were each representing less than
5% of the total variance observed [164]. The results of the reliability and robust-
ness experiments were also supporting the choice made. The significance level
(p = 0.05) was adjusted for multiple comparisons using the Bonferroni correc-
tion, resulting in a significance threshold of p = 0.005 (i.e. 0.05 / (2 groups × 5
modes)). To test whether age and gender were predictors of shape parameters, a
linear regression analysis was performed.
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4.3 Results

As the number of training shapes increased, the SSMs of the talus and tibia could
more accurately describe the shape of bones that were not included in the train-
ing sets (Fig. 4.3). For both the talus and tibia, the mean estimation errors were
below 1 mm (i.e. maximum voxel size of the CT scans) when more than 5 train-
ing shapes were used (Fig. 4.3). The first five modes of variation of the talus and
tibia respectively described 49% and 40% of the total variance seen in the studied
population (Fig. 4.4). No mode higher than mode five described more than 5%
of the total variance observed in the shape of each type of bone.

Figure 4.3: Mean distance between surfaces estimated by the SSMs of
talus (a) and distal tibia (b) and those of test bones as a function of
number of shapes in the models. The error bars describe 95% confi-
dence intervals of 10 times repeated experiments. The dotted lines at
1 mm and at 0.3 mm represent maximum and minimum voxel size of
the CT scans, respectively.

Distribution of shape parameters for the first five modes of variation, i.e. the
first five components of vector b (mean ± 95% CI, in Appendix C), did not sig-
nificantly differ from a Gaussian distribution (p values > 0.05).
The average surface distances (i.e. the segmentation reproducibility) were 0.13
mm, 0.06 mm, and 0.08 mm for the talus and 0.13 mm, 0.04 mm, and 0.07 mm for
the tibia. As for the reproducibility of the method, the mean surface distances
were less than 0.5 mm for all three samples in each first five modes of shape vari-
ation.
Neither age nor gender predicted variations in bone shape parameters (see Ap-
pendix C for the details of the analysis). No adjustment with respect to age or
gender was therefore deemed necessary.
Mode 5 of the talus (Fig. 4.4) (p = 0.004) and Mode 1 of the tibia (Fig. 4.4)
(p < 0.0001) showed statistically significant difference between control and OCD
groups (Table 4.1).
Mode 5 of the talus primarily describes a change in the vertical neck angle (VNA)
[167] (Fig. 4.4). VNA is the angle (i.e. in the sagittal plane of the talus) between
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Figure 4.4: First five modes of talus (a) and distal tibia (b). These
five modes describe 49% and 40% of the total variance of talus and
tibia, respectively. Red lines and arrows point to the main changes in
bone shapes for each mode of variation. Modes of variation within
the green boxes are the ones showing significant differences between
control and OCD groups.

two lines extending from the summit of trochlear surface to the mid-point of the
convexity of the articular surface of the talar head and to the posterior tubercle of
the talus. Besides a change in the VNA, alteration in talar trochlea was observed
for this mode. Most of the OCD group talus shapes showed an increase in the
VNA and a narrowing of the talar trochlea (Fig. 4.5). The shapes in the control
group mostly lied within a positive standard deviation (Fig. 4.5) away from the
mean shape, which describes a decrease in the VNA and an enlargement of the
talar trochlea. As for the tibia, the means of the OCD and control groups shapes
parameters for the first mode of variation were respectively -0.6 and 0.9 (Fig.
4.5). Deviations from the mean shape in the negative mode direction mainly
represent enlargement and narrowing of the medial malleolus respectively in
the superior–inferior and in the anterior–posterior directions.
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Table 4.1: p values resulting from ANOVA test. Bonferroni p-value
corresponds to p = 0.005, values under this threshold are marked
with ∗.

Bone Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Talus 0.039 0.062 0.535 0.066 0.004∗

Tibia 0.000∗ 0.115 0.768 0.060 0.347

Figure 4.5: Box plots of shape parameter distributions for OCD and
control groups. These distributions are presented for the Mode 5 of
talus (a) and Mode 1 of tibia (b).

4.4 Discussion

The goal of this study was to investigate whether the morphology of the an-
kle (talocrural joint) bones of an OCD group is different from those of a control
group. To this end, 3D SSMs of distal tibia and talus were built based on a pop-
ulation comprising subjects with and without an OCD. The 3D SSMs made it
possible to quantitatively describe the complex 3D geometry of the bones and to
identify specific shape modes that may be related to an increased risk of sustain-
ing an OCD.
Mode 5 of the talus and Mode 1 of the tibia were significantly different between
control and OCD groups. The shape of the talus in the OCD group primarily
shows an increase in the VNA (Fig. 4.5), which implies flattening of the talus
and in turn possible increase in the surface area on the talar trochlea for the tibia.
However, change in VNA alone does not explain all the variations seen in Mode
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5. In addition to an increase in the VNA, narrowing of the superior articular sur-
face of the talus was observed. Before drawing any conclusions as to whether
these observed variations in talus shape may have something to do with the
development of the lesions, it is important to take the widely accepted injury
mechanisms into account. Based on the earlier described mechanisms, a lateral
OCD can be reproduced by strongly inverting a dorsiflexed ankle, while a me-
dial OCD can be caused by exposing a plantarflexed ankle to a combination of
inversion and rotation of the talus on the tibia [33, 168]. These injury mechanisms
basically imply that the relative position and orientation of the bones as well as
the biomechanical loads play specific roles in development of the lesions. It is
also known that contact areas and their distributions at the tibiotalar articulating
surfaces vary with respect to joint position and joint loading [169, 170, 171]. In
case a decrease in the contact area at a specific joint position (e.g. dorsiflexion
combined with inversion) occurs, contact stress may exceed the limits that can
be tolerated by the joint structures and a lesion may result. As for the variations
observed in the shape of the talus in the OCD group, it is reasonable to expect
that the narrowing of the talar dome decreases the contact area, which might
lead to an increased risk of sustaining an OCD during high impact events such
as ankle sprains.
Regarding Mode 1 of the tibia shape, alterations seen at the medial side may es-
pecially contribute to development of the medial lesions, which are reported to
be quite frequent ones [38, 172, 173]. This seems plausible given the fact that high
prevalence of medial lesions was observed in the training dataset used for cre-
ating the SSM of the tibia. The shape of bones sustaining OCD usually deviated
from the mean shape in the negative direction (Fig. 4.5). When comparing the
changes seen at the medial malleolus at two extremes (i.e. ±3SD) qualitatively,
it becomes clear that the tibiotalar contact area is relatively smaller at -3SD com-
pared to those at the +3SD. Considering the facts that 10% to 20% of the joint
loads (equal to 3 to 4 times the body weight) are transferred through the medial
and lateral talar facets of the talocrural joint [174], and the fact that the medial
malleolus is an important region in maintaining normal tibiotalar contact area
and pressure, relatively small changes in the contact area could lead to increased
peak loading in the contact area. This in turn can be associated with an increased
risk of sustaining an OCD.
One of the limitations of the study is that information on malalignment in the
lower limbs of subjects was not available. Due to lack of information, it was
not possible to evaluate the contributions of leg malalignment to development
of OCDs.
An important issue related to the dataset used in this study is that the subjects
without an OCD (i.e. control group) are not guaranteed to never sustain a lesion.
There is always a chance that the control group subject(s) may develop an OCD
in the future. This basically means that there can be an overlap of bone shapes
of subjects with and without an OCD.
Another issue associated with the dataset is that the subjects with and without
an OCD were CT-scanned with slightly different techniques. As position and
orientation differences among all bones of the same type were minimized dur-
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ing generation of SSMs, the observed shape variations are not expected to be
contaminated with shape variations caused by differently oriented coordinate
systems of the CT scans. As for the differences in the voxel sizes of the CT scans,
some relatively small details in shape of the bones may have been lost in CT
scans with higher voxel sizes (i.e. 1.0 mm× 1.0 mm× 0.75 mm). However, these
missing details are not expected to substantially influence the shape variations
described by the first five modes of shape variation.
It is also worthy indicating that the shape differences observed in this study
are consistent with the most commonly known trauma mechanism (i.e. inver-
sion trauma), which causes intra-articular pressure impact [158]. There might
be other shape differences, which could not be captured in this study due to
relatively small sample size and can be explained with other mechanisms. The
assessment of injury mechanisms due to changes in the bone morphology was
beyond the scope of this study. To evaluate the effects of the talus and tibia
morphologies on the mechanical characteristics of the talocrural joint and on for-
mation of OCDs, computational models of the ankle [175] may be helpful.
The current study has revealed shape differences in the ankle bones between
an OCD group and a control group. To the best of the authors’ knowledge, no
study has previously proposed the morphology of ankle bones as a possible risk
factor for OCD. Therefore, it is difficult to directly compare the findings of the
present study with those available in the literature. However, it may be feasible
to compare the observed shape variations, which showed significant difference
between the control and OCD groups, with the results of studies on the mor-
phology of the ankle bones and their biomechanical significance.
In conclusion, the current study used 3D SSMs to assess the plausibility of our
hypothesis that the shape of bones in the ankle joint is different between the
OCD group and a control group. Two shape modes of the talus and tibia were
found to be significantly different between the OCD group and a control group.
The specific shapes of the tibia and talus associated with the OCD group seem to
be factors increasing contact stresses by decreasing contact area. Therefore, the
observed shape differences could be explained by biomechanical factors and in-
dicate that specific distal tibia and talus shapes may contribute to increased risk
of OCD.
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5.1 Introduction

The injury surveillance data collected by National Collegiate Athletic Associa-
tion (NCAA) in the USA, from 15 sport activities over a 16-year time period
show that ankle sprains are the most common type of injury in all sports (e.g.
basketball, soccer and volleyball with high injury rates) and account for 15%
of all reported injuries [176]. An inversion injury or lateral ankle sprain (LAS),
which comprises approximately 80% of all ankle sprains [177, 178], is not only
a problem of young and physically active population, but is also seen in the el-
derly [177, 179]. An average of 2 million acute ankle sprains in the United States
[180] and an estimated 5% of emergency room visits in the United Kingdom [181]
were reported. The true incidence of LAS is even higher as it is estimated that
approximately half of people sustaining a LAS do not seek professional help for
evaluation and treatment [181, 182, 183].
Most patients experiencing LAS can be successfully treated and regain functional
ankle stability by means of conservative treatment [184, 185]. However, despite
adequate conservative treatment, up to 40% of patients still suffer from residual
complaints [186, 187, 188, 179, 189] and may progress to chronic ankle instability
(CAI) [190]. CAI is defined as instability of the ankle with the feeling of giving-
way, episodes of recurrent ankle sprains, with or without the presence of joint
laxity [177, 191].
Limited evidence is available indicating that surgical treatment is relatively bet-
ter in decreasing recurrent ankle sprains [192]. Despite its potential success, sur-
gical treatment is generally preserved for athletes to enable quick return to play,
and it is not considered to be the preferred option to treat LAS due to the in-
creased costs and risk of complications [193] without knowing whether the LAS
will progress to CAI. Considering the clinical evidence that CAI can lead to an
early onset of post-traumatic osteoarthritis [179, 194], it is important to identify
patients at risk of developing CAI who might benefit more from surgical treat-
ment than from conservative treatment.
A great deal of effort has been put into identifying the factors playing a role in
the etiology of CAI. Ligament laxity, proprioceptive deficits, muscle weakness,
postural control deficits [177, 195, 196], joint congruency [185], fibular position
[183, 197, 198], cavus foot deformity [184, 197, 199] and varus ankle or hindfoot
[200] are some of the factors associated with CAI. However, potential factors
with bone origin and their correlations with CAI have been mostly overlooked.
A few studies that have considered factors with bone origin [185] are limited to
simple measurements on two-dimensional (2D) images (e.g. the radius of the
talar surface measured on lateral X-rays) that cannot fully reflect bone’s three-
dimensional (3D) nature.
As the morphology of the articulating bones contributes to the stability of the
joints and determines their kinematics [201, 175, 202], morphological variations
are expected to change the mechanical environment of the joints and modify the
risk of CAI. Therefore, we aimed to determine whether statistically significant
shape differences exist between tali and calcanei of patients with CAI and their
contralateral controls as well as healthy controls.
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One of the reasons for focusing on variations in the bones forming the subtalar
joint (STJ) is that instability does not solely appear in the talocrural joint, but
in up to 58% of the cases is also present in the STJ of patients with CAI [177].
Moreover, despite the important role of the STJ in the hindfoot complex and its
possible contributions to CAI [184], not much attention has been paid to the fac-
tors that may alter the mechanical environment of the STJ.
In this study, 3D shape variations of the calcaneus and talus were systematically
described and quantitatively compared in threefold (CAI vs. CAI contralateral
controls, CAI vs. healthy controls, and CAI contralateral controls vs. healthy
controls) using the statistical shape modelling (SSM) technique [162, 203].

5.2 Materials and Methods

Two 3D SSMs, one for the talus and one for the calcaneus, were generated in a
way similar to what described previously [203]. In the first step, computed to-
mography (CT) scans of subjects with unilateral CAI and without CAI were col-
lected. In the second step, calcanei and tali were segmented from all CT scans.
In the third step, all calcanei (or all tali) surfaces obtained as a result of seg-
mentation process were aligned together (i.e. registration process), so that the
differences between bones due to position, orientation and scaling were mini-
mized. In the final step (Fig. 5.1), shape variations were extracted by performing
multivariate analysis (i.e. principal component analysis) on the aligned bone
data. The SSM of the talus and that of the calcaneus enabled us to quantitatively
compare the shape of tali and calcanei between the three groups, respectively.
Detailed descriptions of each step are provided in the following sub-sections.

5.2.1 Data Collection

CT scans of patients with a confirmed CAI and healthy controls without reported
ankle joint pathology were collected from Academic Medical Center (AMC, Am-
sterdam). CT scans were discarded from the study if, patients were 16 years of
age or younger at the time of scanning, other joint pathology or concomitant an-
kle injury existed or the entire volume of the calcanei were not visible. The final
dataset included 52 CT scans from 52 subjects (26 patients with unilateral CAI
and 26 healthy controls) (Fig. 5.1). Six CT scans were unilateral (i.e. 6 healthy
controls with left ankles), the rest were bilateral (i.e. 26 patients with unilateral
CAI and 20 healthy controls with both left and right ankles). As all scans were
retrospectively acquired, a waiver was provided by the medical ethical commit-
tee.

5.2.2 Segmentation of Bones from CT Scans

98 calcanei and 98 tali were semi-automatically segmented using the scripting
module of Mimics (Materialise, Leuven, Belgium). All segmentations were vi-
sually checked to ensure the proper definition of the contour of the bones and
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Figure 5.1: A scheme representing the main steps in generation of the
SSM of talus (or calcaneus).

manual corrections were made if necessary. Triangulated bone surfaces were ex-
tracted from the segmentation results and all right side tali (or calcanei) were
mirrored in the sagittal plane.

5.2.3 Registration of Bones

Position, orientation, and scaling of a triangulated bone (talus or calcaneus) sur-
face could be different from the others. As the main goal is to describe variations
in bone shape only, differences due to position, orientation, and scaling among
bone surfaces should be minimized. Therefore, all tali (or calcanei) were aligned
with each other using an unbiased registration algorithm [162, 203].

5.2.4 Extraction of Bone Shape Variations

Following the registration process, corresponding points on all aligned tali (or
calcanei) were automatically determined [203, 166]. The covariance matrix of the
data vectors [159] containing the ordered coordinates (x, y, z) of corresponding
points across all tali (or calcanei) was computed. Then, principal component
analysis (PCA) was performed on the covariance matrix. As a result of the PCA
[159], modes of shape variation (i.e. eigenvectors) with a descending order of
variance (i.e. eigenvalues) were obtained. Modes of shape variation mainly de-
scribe the directions of shape changes, while the variance describes how much
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variation is present in the corresponding direction. A new or existing talus (or
calcaneus) shape (x) can be represented, using the mean shape of the talus (or
the calcaneus) (x̄) and a weighted summation of the modes of shape variation
for the talus (or for the calcaneus) (φ), as [159]:

x = x̄ +
c

∑
s=1

bsφs (5.1)

in which, bs values (i.e. weights or shape parameters) describe the contributions
of the first c modes of shape variation to the mean bone shape.

5.2.5 Comparison of Bone Shapes Between the Groups

The SSM of the talus and that of the calcaneus were built on 98 tali and 98 cal-
canei, respectively, divided in three groups: CAI (26 tali and 26 calcanei from
ankles that have a confirmed CAI), CAI contralateral controls (26 tali and 26 cal-
canei from the contralateral healthy ankles of patients with a confirmed CAI)
and healthy controls (46 tali and 46 calcanei of healthy subjects without reported
ankle joint pathology) (Fig. 5.1).
As the SSM of each bone was developed based on a mixture of all three groups,
the mean talus (or calcaneus) shape (x̄) and the modes of shape variation for the
talus (or for the calcaneus) (φ) were the same for each of 98 tali (or 98 calcanei)
regardless of their group [203]. Only the shape parameters (i.e. bs values in Eq.
5.1) were different for each of 98 tali (or 98 calcanei). Therefore, the shape pa-
rameters could be used to quantitatively compare bone shape variations within
the subjects that had sustained a CAI (i.e. CAI vs. CAI contralateral controls)
and between the patients with CAI and healthy controls (i.e. CAI vs. healthy
controls and CAI contralateral controls vs. healthy controls).
The distributions of shape parameters across all tali and calcanei were evaluated
by using histograms. To assess whether the shape parameters conform to a nor-
mal distribution, a Kolmogorov-Smirnoff test was performed.
For each bone type, the shape parameters for the first c modes of shape varia-
tion were compared between three groups with an ANOVA test. For pairwise
comparisons of the groups (i.e. CAI vs. CAI contralateral controls and CAI vs.
healthy controls and CAI contralateral controls vs. healthy controls), Bonferroni
was used as a post-hoc test. The number of modes of shape variation c was de-
termined such that all modes of shape variation who represented more than 5%
of the total shape variation were included [203].
To evaluate whether observed bone shape variations were affected by age and
gender of subjects, an ANCOVA test was performed by considering age and
gender as covariate factors. All the statistical comparisons were performed us-
ing SPSS (version 22, Chicago, IL).
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5.3 Results

5.3.1 Cohort Characteristics
Patients with CAI were almost equally distributed in terms of gender (14 males
and 12 females). The mean age of these patients was 29 years (SD = 11). There
were 12 males and 14 females in the healthy control group, with the mean age of
35 years (SD = 11). In 62% of the patients, the right ankle was affected by CAI
(n = 16).

5.3.2 General Bone Dominant Shape Variations
Shape modes higher than six for the talus (Fig. 5.2a) and five for the calcaneus
(Fig. 5.2b) described less than 5% of the total variance observed. The first six
modes of variation for the talus and the first five modes of variation for the cal-
caneus described 49% (Fig. 5.2a) and 45% (Fig. 5.2b) of the total variance in the
shapes of the talus and calcaneus, respectively. Higher modes of variations were
not considered in the subsequent analyses. The distributions of the shape param-
eters for the first six modes of the talus and the first five modes of the calcaneus
did not significantly differ from a Gaussian distribution (p values > 0.05).

Figure 5.2: Contribution (%) of each shape mode to the total shape
variation in (a) talus and (b) calcaneus.

5.3.3 Description of Bone Shape Variations
Descriptions of bone shape variations are only provided for the first three shape
modes of the talus (Fig. 5.3) and calcaneus (Fig. 5.4). The reasoning behind this
presentation is that the modes of shape variation higher than the mode three
of the talus and calcaneus explain relatively small shape variations distributed
over the bone surfaces and none of them were found to be significantly different
between the three groups (see the next subsection for the details of statistical
analyses).
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The first three modes of shape variation of the talus (Fig. 5.3) and calcaneus (Fig.
5.4) described the following changes in:

• Talus Mode 1: the lateral rotation and the size of the talar head,

• Talus Mode 2: the curvature of the talar lateral process and the inclination
angle of the talar neck relative to the body [204],

• Talus Mode 3: the lateral projection of the talar process and the length of
the talus,

• Calcaneus Mode 1: the length of the calcaneus,

• Calcaneus Mode 2: the inclination of the sustentaculum tali,

• Calcaneus Mode 3: the medial and lateral tuberosity and the contour of the
anterior articular surface.

5.3.4 Comparison of Bone Shape Variations Between Three
Groups

The shapes of the talus and calcaneus did not significantly (p > 0.05) vary within
both sides of the subjects that had had an unilateral CAI (i.e. CAI vs. CAI con-
tralateral controls).
The shape variations of the talus described by Mode 2 (Fig. 5.3) were signifi-
cantly different between the groups CAI vs. healthy controls (p = 0.015) as well
as CAI contralateral controls vs. healthy controls (p = 0.035).
The shapes of the tali of the CAI and CAI contralateral groups deviated from
the mean talus shape in the positive direction of Mode 2 of the talus (i.e. me-
dian = 0.03 SD, 25th percentile = -0.40 SD, 75th percentile = 1.06 SD for the CAI
group; median = 0.44 SD, 25th percentile = -0.65 SD, 75th percentile = 1.08 SD
for the CAI contralateral group), whereas those of the healthy controls did in
the negative direction (i.e. median = -0.24 SD, 25th percentile = -0.94 SD, 75th
percentile = 0.20 SD) (Fig. 5.5a). Positive deviations from the mean talus shape
describe a decrease in the inclination angle of the talar neck relative to the talar
body and a change in the curvature of the talar lateral process adversely affecting
the congruency of the articular facets at the posterior side (Fig. 5.3). Observed
changes are vice versa in the tali with negative deviations away from the mean
talus shape (Fig. 5.3). Fig. 5.6a shows the tali and their calcanei counterparts
extracted from three subjects. The talus of first subject is close to the mean talus
shape (Fig. 5.6a, middle column). The tali of second (i.e. patient with CAI) and
third (i.e. healthy individual) subjects deviate from the mean talus shape in the
positive (i.e. +2.3 SD away from the mean talus shape) and negative (i.e. -2.5 SD
away from the mean talus shape) direction of Mode 2 of the talus, respectively.
Shape variations represented by Mode 3 of the calcaneus (Fig. 5.4) were signif-
icantly different between the following groups: CAI vs. healthy controls (p =
0.003), and CAI contralateral controls vs. healthy controls (p = 0.001). The cal-
canei of the patients with CAI and healthy controls deviated from the mean cal-
caneus shape in the negative and positive direction of Mode 3 of the calcaneus
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(i.e. median = -0.46 SD, 25th percentile = -1.06 SD, 75th percentile = 0.32 SD for
the CAI group; median = -0.49 SD, 25th percentile = -1.08 SD, 75th percentile =
0.30 SD for the CAI contralateral group; median = 0.55 SD, 25th percentile = -0.42
SD, 75th percentile = 1.12 SD for the healthy controls) (Fig. 5.5b), respectively. In
the calcanei with positive deviation away from the mean calcaneus shape, the
medial tuberosity extended more distally as compared to the lateral tuberosity
(Fig. 5.4).
Contrarily, the lateral tuberosity stood at the same horizontal line with the me-
dial tuberosity or relatively more distally in the calcanei with negative deviations
away from the mean calcaneus shape (Fig. 5.4). Additionally, the contour of the
anterior articular surface was relatively flat in the calcanei with negative devia-
tions as compared to those with positive deviations (Fig. 5.4). Fig. 5.6b shows the
calcanei and their tali counterparts derived from three subjects whose calcaneus
shape is close to the mean calcaneus shape (Subject 4), is at the positive side of
the standard deviation (i.e. healthy subject, Mode 3 of calcaneus, +2.3 SD away
from the mean, Subject 5) and is at the negative side of the standard deviation
(i.e. patient with CAI, Mode 3 of calcaneus, -2.1 SD away from the mean, Subject
6).
Consideration of the age and gender of individuals in the statistical analysis as
covariates (i.e. ANCOVA) caused no changes in the statistical significance of the
results reported above.

5.4 Discussion

In this study, a 3D SSM technique was used to quantitatively compare the talus
and the calcaneus shape differences within the two sides of individuals with a
unilateral CAI as well as between the CAI patients and healthy controls. The re-
sults of the statistical analyses indicated that there are some specific shape differ-
ences in the talus and calcaneus, which make individuals with CAI distinguish-
able from healthy individuals with no known history of ankle joint pathology.
Considering the combination of statistically different shape variations in the talus
and the calcaneus overall, CAI patients seem to be showing less subtalar joint
congruency and flattened calcaneal ground-contact surface (Fig. 5.6b). Varia-
tions in the medial and lateral calcaneal tuberosity (Figs. 5.4 and 5.6b) can alter
the loading moment, which is formed by a pair of ground reaction force (GRF)
and joint reaction force (JRF), and acts on the STJ (Figs. 5.7a-b). In healthy sub-
jects, the two axes along which GRF and JRF act do not coincide with each other
(Fig. 5.7a) and a pronation exorotation moment occurs [205]. If the GRF slides
to the lateral side (Fig. 5.7b), which is highly possible if both medial and lateral
tuberosities extend to the ground, the distance (D) between the GRF and JRF axes
will increase. In turn, the pronatory external moment will be higher and cause
extra strain on the medial muscles and ligaments. A patient may minimize the
effects of the GRF axis shift to the lateral side and avoid losing balance by means
of an inversion movement (Fig. 5.7c) which may lead to a recurrent LAS if not
countered on time.
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Additionally, shape variations in the talus (i.e. changes in the inclination angle
of the talar neck relative to the body, Mode 2 of talus) (Figs. 5.3 and 5.6a) and
in the calcaneus (i.e. variations in the medial and lateral tuberosity, Mode 3 of
calcaneus) (Figs. 5.4 and 5.6b) may affect the orientation of the STJ axis (Fig.
5.7d). A decrease in the inclination angle of the talar neck relative to the body
(Fig. 5.7e) or/and a more distally extension of the lateral tuberosity (Fig. 5.7f),
which is more likely to be seen in individuals with CAI compared to healthy
controls, can cause the STJ to be more vertical (Fig. 5.7d, β > α). In the case of
vertically aligned STJ axis (Fig. 5.7d, β > α), less rotation around the horizon-
tal axis of the talus in relation with the calcaneus is observed for a given rotation
around the vertical axis (an analogy can be made to a gear mechanism, Fig. 5.7g).
Limitation in rotation around the horizontal axis may increase the risk of losing
balance quicker in an inversion motion, as the control of the ankle joint muscles
(i.e. mainly the peroneal muscles) ends as soon as the maximal range of motion
is exceeded. The tendency of STJ axis to be more vertical due to the talus and
calcaneus shape variations in individuals with CAI may explain why cavus foot,
related to a smaller ground contact surface and a more vertical STJ axis [205], is
associated with CAI [184, 197].
Whatever the mechanism behind the development of CAI may be, the most im-
portant finding of this study is that some specific talus and calcaneus shape vari-
ations appear to be significantly different between individuals with CAI and
healthy controls. Whether these findings represent post-traumatic changes or
whether recurrent LAS originate from these bone shape variations would re-
quire further research in a prospective setting. However, the fact that the talus
and calcaneus shapes did not vary within individuals with one unstable ankle
suggests these shape variations play a role on the development of CAI after a
first-time ankle inversion injury and are not the consequence of CAI as only one
ankle is affected.
The main limitation of this study is the retrospective nature of the data collec-
tion. Although there is certainty on the presence of instability, more concomitant
problems (e.g. osteoarthritis, a fracture in history) may be the cause of the ob-
served shape differences in the talus and calcaneus. Additionally, information
on the activity level of the patients was not available, which may also be a con-
tributing factor. Contrarily, the age and gender of subjects included in this study
were known. Therefore, effects of age and gender could be controlled in the sta-
tistical analyses.
The bone shapes of subjects with and without CAI overlap. Some of the healthy
subjects have the same geometric features as those identified as being typical for
subjects in the CAI group. These individuals may not have developed CAI yet
or sustained an injury that leads to the onset of CAI, but may nevertheless be at
risk of developing CAI. Contrarily, some of the subjects with CAI do not answer
to the features defined in this study as specific for CAI, but did sustain an event
that lead to the genesis of CAI, potentially due to other risk factors. In order to
evaluate the prognostic value of these geometric variations, and to define which
patients require follow-up to monitor development of CAI, future studies may
provide insight. Despite the complexity of the findings, it is highly important to
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recognize bone shape differences found in CAI patients, as these may contribute
to the increased risk at sustaining new sprains. Although CAI is a multifactorial
condition, this study is a next step in identifying risk factors with bone shape
origin.
Regeneration of the SSMs of the talus and calcaneus based on a prospective
dataset could help to assess the prognostic values of the bone shape variations
on the development of CAI. Additionally, significantly different shape variations
in the talus and calcaneus could be translated to measurements for conventional
radiology. If these measurements can reliably be assessed and have prognostic
value, they can be included in prediction models. With an implementation of
well-designed prediction models in clinical settings, patients at higher risk of
developing CAI can be identified at an earlier stage. More accurate predictions
of the risk of developing CAI can assist clinicians by providing more insight into
which treatment options may work best with a patient who has sustained a LAS.

5.5 Conclusion

The 3D statistical shape models of the talus and calcaneus built based on the
mixed data of patients with unilateral chronic ankle instability (CAI) and healthy
controls enabled us to quantitatively compare shape variations between the af-
fected side and contralateral control in CAI patients, between the affected side of
CAI patients and healthy controls, and between contralateral controls of CAI pa-
tients and healthy controls. We found two specific statistically significant shape
differences between CAI patients and healthy controls. In the talus, it was the
curvature of talar lateral process combined with the inclination angle of talar
neck relative to the body. In the calcaneus, it was the medial and lateral tuberos-
ity combined with contour of anterior articular surface.
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Figure 5.3: Talus shape variations described by the first three shape
modes of talus. Red lines and arrows point to the shape changes.
The shape mode, which represented significantly different talus shape
variations between patients with CAI and healthy controls (i.e. CAI
contralateral controls vs. healthy controls and CAI vs. healthy con-
trols), is marked with ∗.
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Figure 5.4: Calcaneus shape variations described by the first three
shape modes of calcaneus. Red lines and arrows point to the shape
changes. The shape mode, which represented significantly different
calcaneus shape variations between patients with CAI and healthy
controls (i.e. CAI contralateral controls vs. healthy controls and CAI
vs. healthy controls), is marked with ∗.

74



Chapter 5: Differences in Talus and Calcaneus Between Subjects with CAI and Controls

Figure 5.5: Box plots of shape parameters distributions for the
three groups: CAI (CAI A), CAI contralateral controls (CAI UA) and
healthy controls (H). These distributions are presented for the Mode
2 of talus (a) and Mode 3 of calcaneus (b). p-values resulting from the
analysis of variance (ANOVA) test are indicated for the given shape
mode.
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Figure 5.6: (a) The tali and their calcanei counterparts of the subjects
whose talus shape is close to the mean talus shape (middle column;
Subject 1), at the positive (right column; patient with CAI, Mode 2 of
talus, +2.3 SD away from the mean talus shape, Subject 2) and nega-
tive extremities (left column; healthy subject, Mode 2 of talus, -2.5 SD
away from the mean talus shape, Subject 3) (b) The calcanei and their
tali counterparts of the subjects whose calcaneus shape is close to the
mean calcaneus shape (middle column; Subject 4), at the positive (left
column; healthy subject, Mode 3 of calcaneus, +2.3 SD away from the
mean calcaneus shape, Subject 5) and negative bounds (right column;
patient with CAI, Mode 3 of calcaneus, -2.1 SD away from the mean
calcaneus shape, Subject 6).
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Figure 5.7: Mechanisms that can be affected by the observed shape
variations in talus and calcaneus and may partly explain why some
individuals are more prone to develop CAI. (a) JRF and GRF repre-
sent joint reaction force and ground reaction force, respectively. The
arrows in light and dark blue display the forces acting on the sub-
talar joint due to: (1) Medial malleolar, (2) Deltoid ligament, (3) An-
terotalofibular ligament, (4) Peroneal muscles, (5) Fibula. Dark blue
represents relatively higher forces as compared to those indicated in
light blue. In normal foot, there is a distance (D) between the axes
along which GRF and JRF act. A pair of GRF and JRF mainly gen-
erates moment that have an effect on subtalar joint (STJ). (b) A slide
of the GRF axis to the lateral side, which can be seen in case lateral
tuberosity of calcaneus extend more distally, results in increase of dis-
tance (D) between a pair of GRF and JRF. In turn, effect of moment
acting on STJ is higher. (c) With an inversion movement, the effects
of the GRF axis shift to the lateral side may be minimized. (d) Posi-
tioning of the STJ axis. α and β are the angles from the coronal and
transverse plane to the STJ axis, respectively. (e) Assuming that there
is no change in the lateral tuberosity of calcaneus, alterations in the
talar head/neck (e.g. Points 1 and 2) can lead different positioning of
the STJ axis. β1 and β2 are the angles from transverse plane to the STJ
axis passing through point 1 and point 2, respectively. (f) Similar con-
figuration. This time, it is assumed that there is no change in the talar
head/neck; but, the lateral tuberosity of calcaneus varies. β1 and β2
are the angles from transverse plane to the STJ axis passing through
point 1 and point 2, respectively. (g) An analogy can be made to a
gear mechanism. HM and VM stand for horizontal and vertical mo-
tion. If the STJ axis passes at 45◦ (α = β), rotation around the vertical
axis and the horizontal axis is equal to each other. If the STJ axis is
vertically aligned (β > α), rotation around the horizontal axis is less
than the given one around the vertical axis. In case β < α (horizontal
alignment of the STJ axis), it is vice versa.
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6.1 Introduction

There has been long-standing interest in the geometric [206, 207, 208, 160, 209]
and non-geometric (e.g. bone mineral density, structural stiffness, moment of ar-
eas) [210, 211] bilateral symmetry of the lower extremities. This interest is partly
due to the symmetry assumption that is frequently made in clinical assessments
and research studies. Some examples are summed. First, a common clinical prac-
tice is to use the contralateral unaffected side as a template for planning correc-
tive osteotomy [212, 213]. Second, the contralateral unaffected side is often used
as a reference in arthroplasty surgeries to determine the size of an implant and its
position, when the limb of interest is deformed by a fracture or a degenerative
disease (e.g. osteoarthritis) [210, 208, 214]. Third, the unaffected contralateral
side usually serves as an intra-subject control or as a shape template in research
studies that assess whether a bone shape can be a risk factor for the onset of an
injury (e.g. acute knee injury) [215, 216] or a lesion (e.g. osteochondral defect)
caused by an injury (e.g. lateral ankle sprain) [203].
For the symmetry assumption to be valid, it is necessary to establish that the
differences in the geometric and non-geometric features of the left and right ex-
tremities are sufficiently small. Nevertheless, limited information is available
regarding the (a)symmetry of the lower extremities within and across popula-
tions. In particular, little is known about the shape variations and (a)symmetry
of the bones forming the talocrural (TC) and subtalar (ST) joints (i.e. the fibula,
tibia, calcaneus and talus). The few studies that are available [206, 217, 160, 209]
are limited due to small sample sizes, two-dimensional (2D) data, or limited
number of points representing the three-dimensional (3D) shape. Therefore, the
(in)validity of the symmetry assumption for the fibula, tibia, calcaneus, and talus
is not yet established.
To gain insight in shape variations and (a)symmetry of the TCJ and STJ bones,
we first analyzed whether similar shape patterns exist in left and right bones
of the same type, and whether side-bias (i.e. directional asymmetry) [218, 219]
appears. We then evaluated intra- and inter-subject bone shape variations in
principal directions, which expressed the most variance in the shapes of bone
samples. Moreover, the effects of gender on age-adjusted bone shape variations
were assessed, as gender can lead to anatomical differences in lower extremi-
ties [206, 220, 221, 217, 80, 208, 222]. Unlike previous studies that have reduced
the bone shape to a few anatomical landmarks [206, 217], we used 3D spatially
dense descriptions of the TCJ and STJ bones together with advanced statistical
techniques: a previously applied 3D statistical shape modeling method [162, 203]
and distance based permutational statistics [219, 223].

6.2 Materials and Methods

The flow-chart presented in Fig. 6.1a outlines the main steps followed in this
study. Briefly, in the first step, bilateral computed tomography (CT) images of
individuals were collected. In the second step, both left and right TCJ and STJ
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bones were segmented from all CT images, and triangulated bones surfaces were
extracted from the segmentation results. In the third step, all bone surfaces of the
same type were aligned into a common coordinate frame in such a way that the
differences due to position, orientation, and scaling among bone instances were
minimized. In the final step, the shape variations and (a)symmetry of the TCJ
and STJ bones were analyzed. For each bone type, left and right bone samples
were first considered as two separate groups and compared with each other on
multiple aspects (i.e. group location, variance-covariance scale and orientation)
using permutational statistics. The group location test (Fig. 6.1b) was performed
to assess side-difference in the mean fibula (or tibia or calcaneus or talus) shape,
in other words, the difference in central tendency. The variance-covariance scale
(Fig. 6.1c) and orientation (Fig. 6.1d) tests were employed to analyze side-
differences in the dispersion (i.e. the magnitude of shape variance only) and
the shape variance directions around the mean fibula (or tibia or calcaneus or
talus) shape, respectively. Following these analyses, all left and right bones of
the same type were pooled into one group. Shape variations were extracted
and statistically (i.e. an analysis of covariance, ANCOVA) compared between
females and males after adjusting them for the effects of age. Moreover, intra-
and inter-subject shape variations were assessed using the intraclass correlation
coefficient (ICC). Each step is explained in detail in the following sub-sections.

6.2.1 Data Collection

Bilateral CT images of patients who had undergone CT scanning due to unre-
lated medical reasons (i.e. vascular indications) were collected from the Utrecht
Medical Center (UMC, Utrecht, The Netherlands). Each CT image was evalu-
ated by a trained medical doctor for signs of radiological osteoarthritis (OA) in
the TCJs. Any CT scan exhibiting signs of moderate or severe ankle OA (unilat-
eral or bilateral) [224] was excluded from the study. The final dataset consisted of
66 CT scans collected from 66 out of 99 individuals. The scans were anonymized.
Only the gender and age (55 male, mean age: 61 and SD = 10 years; 11 female,
mean age: 53 and SD = 15 years) of the patients were available to us. For the
use of CT scans in this study, an approval from the Medical Ethical Committee
of UMC was not necessary.
All CT scans were acquired either using Philips Brilliance 64 or Philips iCT scan-
ner (Philips Medical Systems, Best, The Netherlands). The acquisition parame-
ters were: tube voltage 120 kVp, effective dose 150 mAs, and slice thickness 1
mm. Tomographic reconstructions were made with a field of view covering both
legs, a slice increment of 0.7 mm, and a matrix size of 512 × 512 pixels. The
iDOSE4 reconstruction algorithm was used. Voxel sizes varied between 0.63 mm
× 0.63 mm × 0.70 mm and 0.98 mm × 0.98 mm × 0.70 mm.

6.2.2 Segmentation of Bones from CT Scans

All left and right bones of the same type (i.e. 132 fibulae, 132 tibiae, 132 cal-
canei, and 132 tali) were segmented from the CT scans (Fig. 6.1a) using the freely
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Figure 6.1: (a) A flow diagram of the study. Bilateral CT images were
collected from 66 subjects. Left and right fibulae, tibiae, calcanei and
tali were segmented from each CT scan. All bone samples of the same
type were aligned into a common coordinate frame using an unbi-
ased registration algorithm. For each bone type, shape variations and
(a)symmetry were evaluated. (b-d) Multiple aspect analysis: group
location, variance-covariance scale and orientation. Two groups that
show difference in (b) their locations (c) variance-covariance scale
and (d) variance-covariance orientation only. In the group location,
variance-covariance scale and orientation tests, the features to con-
centrate on are (b) the sample mean, (c) the sample dispersion from
the centroid and (d) the sample subspace described using eigenvec-
tors and the principal angles between them, respectively.

available interactive graph-cut segmentation software MITK-GEM [225]. The tri-
angulated bone surfaces were extracted from the segmentations. All right bones
were mirrored in the sagittal plane.

6.2.3 Registration of Bones

All bone surfaces of the same type were brought into a common coordinate frame
(Fig. 6.1a) using an unbiased registration algorithm [162, 203], which enabled us
to minimize differences due to position, orientation, and scaling of bones. The
registration parameters including the scale parameter for the mixture of Gaus-
sians, σ , the number of points in the mean cloud, nm, and the trade-off pa-
rameter, λ [162] were retrieved from [203] for all tali (σ = 3mm, nm = 2000,
λ = 10−6). The registration parameters needed for alignment of the fibulae
(σ = 3mm, nm = 2000, λ = 10−4), tibiae (σ = 3mm, nm = 2000, λ = 10−5)
and calcanei (σ = 3mm, nm = 2000, λ = 5× 10−4) were defined based on the
outcomes of numerical experiments performed in a way described previously
[162, 203].
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6.2.4 Statistical Analyses Ipsi- and Contralateral Sides as Sepa-
rate Groups

Following the registration process, dense correspondence between aligned bone
surfaces of the same type was automatically established [166, 203]. The num-
ber of corresponding points settled on all aligned fibulae (n = 12465), tibiae
(n = 31496), calcanei (n = 7717), and tali (n = 5541) was approximately 0.7
times of the bone surface area averaged over all bone samples of the same type.
For the first set of comparisons, the left and right fibulae (or tibiae or calcanei or
tali) were considered as two separate groups and compared with each other on
multiple aspects including group location, variance-covariance scale, and orien-
tation using distance-based permutational approaches in a similar manner as de-
scribed in [219, 223]. The Euclidean distance between the means of two groups
was employed as D(istance)-statistic in the group location test [219, 223] (see
Appendix D). The left and right fibulae (or tibiae or calcanei or tali) were per-
mutated 10000 times (Nperm) across groups and D-statistic was calculated at each
permutation (D-statisticperm). A p-value assessed under permutation (pperm) was
determined by:

pperm =
Ni

Nperm
(6.1)

where, Ni represents the number of cases in which permutated values are higher
or equal to D-statistic (i.e. D− statisticperm ≥ D− statistic).
D-statistic used in the variance-covariance scale test was the absolute difference
in the average residual of the two groups [219, 223] (see Appendix D). The per-
mutations were realized and permutated values (i.e. D-statisticperm) were ob-
tained in exactly the same way as described for the group location test. A pperm-
value was calculated using Eq. 6.1.
In the variance-covariance orientation test, two shape subspaces represented
with eigenvectors (i.e. principal components (PC) or modes of shape variation)
and the principal angles between them were compared. To obtain the shape sub-
space of the left bones of the same type, a principal component analysis (PCA)
was performed on the covariance matrix of the data vectors that consisted of the
3D coordinates of the corresponding points established on all left bones. The
shape subspace of the right bones of the same type was obtained in the same
manner. The D-statistic used in the orientation test was the projection metric
[219, 223, 226]:

Dk =

√√√√k−
k

∑
i=1

cos2θi (6.2)

in which θi i = 1, . . . , k are the principal angles [227, 228] and k is the number of
PCs to be kept. To determine the number of PCs (k) to retain, a parallel analy-
sis (PA) [229] (see Appendix D) was carried out (Fig. 6.2). A set of k distances
(Dk, D-statistic) was calculated based on Eq. 6.2 by incrementally increasing
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the number of principal angles from 1 to k. Then, the left and right bones of the
same type were permutated 10000 times across groups. At each permutation, the
shape subspaces of the left and right bones of the same type were re-determined
using the permutated data, and a set of k distances (Dk, D-statisticperm) was com-
puted. All pperm values were determined based on Eq. 6.1. The group location,
variance-covariance scale and orientation tests were carried out using the statis-
tical routines developed [219] in Matlab (Matlab R20013b, The Mathworks, Inc.,
Natick, MA).

6.2.5 Statistical Analyses Ipsi- and Contralateral Sides Pooled
into One Group

To describe the shape variations in the bones of the same type and analyze the
side-shape differences in given shape variance directions, ipsi- and contralat-
eral bones of the same type were pooled into one group and PCA was applied
on the covariance matrix of the combined data vectors [203]. As a result, the
shape parameters were obtained for each bone type, which expressed how much
each bone sample deviated from the mean bone shape in given shape variance
directions (i.e. PCs, eigenvectors, or modes of shape variation) [203, 159]. A
Kolmogorov-Smirnoff test was carried out to evaluate whether the shape param-
eters given for each of the k PCs conformed to a normal distribution. The shape
variations in each bone type adjusted for the effects of age were compared be-
tween males and females using an ANCOVA. Moreover, the intra-subject shape
variation was compared to that of inter-subject for each of the k PCs using the
ICC. A single measurement, absolute-agreement, and two-way random effects
model [230] was employed for the latter analyses. All ICC estimates and their
95% confidence intervals (CIs) were reported. An ICC estimate of 1 indicated
perfect symmetry within an individual. In other words, the total bone shape
variation was described by the inter-subject shape difference only. In contrast,
an ICC estimate of 0 implied that the intra- and inter-subject shape variations
were equal to each other. When the 95% CI of the ICC for a PC included zero, we
deemed the PC not significantly symmetrical. All the statistical analyses were
conducted using SPSS (Version 22, Chicago, IL).

6.3 Results

6.3.1 Shape Patterns in Ipsi- and Contralateral Sides as Separate
Groups

The pperm values were higher than the statistical significance level of 0.05 for
the group location, variance-covariance scale and orientation tests (Table 6.1).
Therefore, the side-differences in the mean shape of the fibula, tibia, calcaneus
and talus were not statistically significant (Table 6.1, group location test). More-
over, variations (Table 6.1, variance-covariance scale) and differences in shape
variance directions (Table 6.1, variance-covariance orientation) around the mean
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shape of each bone type were not significantly different between left and right.

Table 6.1: Dstat and pperm values resulting from the group location
(1st row), variance-covariance scale (2nd row) and orientation (3rd –
17th rows) tests performed for the fibula, tibia, calcaneus and talus.
Dstat represents the Euclidean distance between the means of left and
right groups (the group location test), the absolute difference in the
average residual of the left and right groups (the variance-covariance
scale test), and the projection metric (the variance-covariance orien-
tation test). pperm describes a p-value obtained under Nperm = 10000
permutations.

Fibula Tibia Calcaneus Talus
Dstat pperm Dstat pperm Dstat pperm Dstat pperm

Location 0.53 0.84 0.68 0.74 0.62 1.00 0.87 0.98
Scale 0.08 0.60 0.00 0.99 0.04 0.77 0.16 0.42

Orientation 0.13 0.98 0.11 1.00 0.20 1.00 0.22 0.92
1:1:15 0.20 0.99 0.16 1.00 0.35 1.00 0.35 0.97

principal 0.28 0.99 0.24 1.00 0.47 1.00 0.44 1.00
angles 0.37 0.95 0.30 1.00 0.58 1.00 0.57 0.99

0.46 0.98 0.37 1.00 0.68 1.00 0.69 0.98
0.57 0.99 0.46 1.00 0.79 1.00 0.80 1.00
0.77 0.99 0.56 1.00 0.91 1.00 0.92 1.00
1.25 0.94 0.73 1.00 1.02 1.00 1.04 1.00

- - - - 1.15 1.00 1.17 1.00
- - - - 1.29 1.00 1.34 1.00
- - - - 1.44 1.00 1.51 1.00
- - - - 1.60 1.00 1.70 1.00
- - - - 1.77 1.00 1.95 1.00
- - - - 2.01 1.00 2.19 1.00
- - - - 2.23 1.00 - -

6.3.2 Shape Patterns in Ipsi- and Contralateral Sides Pooled into
One Group

The number of PCs kept for each bone type (Fig. 6.2) (i.e. k = 8 for the fibula and
tibia, k = 15 for the calcaneus, and k = 14 for the talus) were used to describe
shape variations. These PCs explained 79%, 84%, 67%, and 72% of the total shape
variation in the fibula, tibia, calcaneus, and talus, respectively. None of the p-
values resulting from a Kolmogorov-Smirnoff test were lower than the statistical
significance level of 0.05, meaning that the shape parameters of all 132 fibulae (or
tibiae or calcanei or tali) given for a specific PC came from a normal distribution.
For each bone type, changes observed along the first three PCs were in:

• (PC 1 of the fibula, Fig. 6.3) the length of the fibula,

• (PC 2 of the fibula, Fig. 6.3) the curvature of the fibula shaft (bending
around the anterior-posterior axis),

• (PC 3 of the fibula, Fig. 6.3) the curvature of the fibula shaft (bending
around the medial-lateral axis),
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• (PC 1 of the tibia, Fig. 6.3) the anterior border along the tibia shaft, and in
the lateral and medial condyles,

• (PC 2 of the tibia, Fig. 6.3) the length of the tibia,

• (PC 3 of the tibia, Fig. 6.3) the distal and proximal epiphyses,

• (PC 1 of the talus,Fig. 6.4) the lateral rotation of the talar head,

• (PC 2 of the talus, Fig. 6.4) the medial tubercle and the body of the talus,

• (PC 3 of the talus, Fig. 6.4) the length of the talus, and in the lateral projec-
tion of the talar lateral process,

• (PC 1 of the calcaneus, Fig. 6.4) the length (i.e. anterior-posterior direction)
and height (i.e. superior-inferior direction) of the calcaneus,

• (PC 2 of the calcaneus, Fig. 6.4) the inclination of the sustentaculum tali,

• (PC 3 of the calcaneus, Fig. 6.4) the medial and lateral tuberosity, and in
the talar articulating surfaces.

Shape changes described by other remaining PCs are not presented here. The
reasoning behind the choice made is that PCs higher than PC 3 explained rel-
atively small shape variations distributed over the bone surfaces and most of
them, except a few mentioned in the coming two subsections (see sections 6.3.3
and 6.3.4), did not express significantly different bone shape variations between
males and females, nor did they describe higher intra-subject shape variations
than inter-subject.

6.3.3 Effects of Gender on Age-Adjusted Shape Variations
After adjusting the statistical significance level of 0.05 with Bonferroni, one PC
for the tibia (i.e. PC 1 of the tibia, p = 0.003), one PC for the talus (i.e. PC 8 of
the talus, p = 0.001) and two PCs for the calcaneus (i.e. PC 1, p < 0.001 and PC
7 of the calcaneus, p = 0.001) expressed significant shape differences between
the tibiae, tali and calcanei of male and female subjects, respectively (Table 6.2).
Shape changes observed along PC 1 of the tibia (Fig. 6.3) and PC 1 of the cal-
caneus (Fig. 6.4) are presented in the previous section. Regarding PC 7 of the
calcaneus (Fig. 6.4), shape changes were mainly in the posterior height, and in
the posterior and anterior talar articular surfaces. PC 8 of the talus (Fig. 6.4) ex-
pressed changes in the posterior aspect of the talus. The shape variations in the
fibula, tibia, calcaneus and talus described by the other remaining PCs did not
significantly differ based on gender (Table 6.2).
The box plots showing the distribution of shape parameters observed within the
studied population along PC 1 of the tibia, PC 1 and PC 7 of the calcaneus, and
PC 8 of the talus are provided in Fig. 6.5a. The means of the shape parameters
(i.e. along PC 1 of the tibia) for the tibiae of females and males were -0.568 and
0.114, respectively. Accordingly, females had relatively smaller lateral and me-
dial condyles (deviation from the mean tibia shape in the negative direction of
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the PC 1 of the tibia, Fig. 6.3) in average as compared to those of males (devia-
tion from the mean tibia shape in the positive direction of the PC 1 of the tibia,
Fig. 6.3). The means of the shape parameters for the calcanei of females along
PC 1 and PC 7 of the calcaneus were 0.678 and -0.627, respectively (Fig. 6.5a).
With reference to the calcanei of males, the means of the shape parameters were
-0.1355 and 0.1253 along PC 1 and PC 7 of the calcaneus, respectively (Fig. 6.5a).
Deviation from the mean calcaneus shape in the negative direction of the PC 1 of
the calcaneus (Fig. 6.4) expressed the shortening and enlargement of the calca-
neus in length (i.e. anterior-posterior direction) and height (i.e. superior-inferior
direction), respectively. Observed changes in the calcanei having positive shape
parameters along PC 1 of the calcaneus (Fig. 6.4) were vice-versa. Therefore, cal-
canei of females were on average longer in length (i.e. anterior-posterior direc-
tion) and shorter in height (i.e. superior-inferior direction) as compared to those
of males. Deviation from the mean calcaneus shape in the negative direction of
the PC 7 of the calcaneus, like observed in the calcanei of females (i.e. the mean
of the shape parameters = -0.627), expressed the enlargement of an angle located
between the posterior and anterior talar articular surfaces, and the lateral process
of calcaneal tuberosity. The means of the shape parameters observed along PC 8
of the talus were 0.492 and -0.098 for females and males, respectively (Fig. 6.5a).
Changes observed along PC 8 of the talus (Fig. 6.4) were in the posterior aspect
of the talus. Deviation from the mean talus shape in the negative direction of
this PC displayed enlargement of the posterior talar articular contour (Fig. 6.4)
suggesting that tali of males had larger posterior aspect on average.

Table 6.2: p-values resulting from ANCOVA tests. The p-values under
Bonferroni adjusted significance level of 0.006 (= 0.05/8) for the fibula
and tibia, 0.003 (= 0.05/15) for the calcaneus and 0.004 (= 0.05/14) for
the talus are marked with ∗.

Shape Mode Fibula Tibia Calcaneus Talus
1 0.341 0.003∗ 0.000∗ 0.219
2 0.406 0.777 0.589 0.426
3 0.735 0.971 0.159 0.476
4 0.032 0.045 0.013 0.521
5 0.056 0.278 0.005 0.043
6 0.901 0.844 0.022 0.248
7 0.047 0.583 0.001∗ 0.657
8 0.086 0.061 0.068 0.001∗

9 - - 0.236 0.703
10 - - 0.273 0.036
11 - - 0.661 0.922
12 - - 0.336 0.135
13 - - 0.911 0.024
14 - - 0.143 0.957
15 - - 0.334 -
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Point-to-surface distance is presented in Fig. 6.5b, which was calculated between
the female and male tibiae deviating from each other the most along PC 1 of the
tibia. Similarly, three other point-to-surface distances calculated for the cases:
(1) PC 1 and (2) PC 7 of the calcaneus, and (3) PC 8 of the talus, are given in Fig.
6.5b. Referring to Fig. 6.5b, point-to-surface distances exceeding 9 mm, 4 mm
and 2 mm were observed between the tibiae (i.e. varied along PC 1 of the tibia),
calcanei (i.e. varied along PC 1 or PC 7 of the calcaneus) and tali (i.e. varied
along PC 8 of the talus) of females and males, respectively.

6.3.4 Intra- and Inter-Subject Shape Variations

For all of the forty-five PCs, except two for the fibula (i.e. PC 3 and PC 6 of the
fibula) and one for the tibia (i.e. PC 8 of the tibia), intra-subject shape variations
were smaller than inter-subject variations (Table 6.3). The ICC estimates and
their 95% CI (Table 6.3) were 0.03 (-0.21-0.27), -0.04 (-0.28-0.20), and 0.06 (-0.19-
0.29) for the PC 3 and PC 6 of the fibula, and PC 8 of the tibia, respectively. These
PCs described changes in the curvature of the fibula shaft and the diameter of the
fibula (Fig. 6.3, PC 3 and PC 6 of the fibula), and in the tibial tuberosity together
with the diameter of the tibia (Fig. 6.3, PC 8 of the tibia).
The distributions of shape parameters observed along PC 8 of the tibia, and PC
3 and PC 6 of the fibula for both left and right sides are presented in Fig. 6.5c.
The means of the shape parameters for left and right tibiae (i.e. varied along
PC 8 of the tibia, Fig. 6.5c) were -0.028 and 0.028, respectively. Regarding to the
left fibulae, the means of the shape parameters observed along PC 3 of the fibula
and PC 6 of the fibula (Fig. 6.5c) were -0.082 and 0.098, respectively. Similarly,
the means of the shape parameters were 0.082 (i.e. along PC 3 of the fibula, Fig.
6.5c) and -0.098 (i.e. along PC 6 of the fibula, Fig. 6.5c) for the right fibulae.
Point-to-surface distance calculated between a pair of tibia is presented in Fig.
6.5d, which deviated from each other the most along PC 8 of the tibia. In the
same way, point-to surface distances are provided in Fig. 6.5d for two pairs of
fibulae varying the most along PC 3 and PC 6 of the fibula. Referring to Fig. 6.5d,
distances exceeding 2 mm were observed along the surfaces of each pair.

6.4 Discussion

The bilateral symmetry of the TCJ and STJ bones is often assumed in clinical
practice and research studies. Nevertheless, the validity of the symmetry as-
sumption is not yet established due to limited information on the shape vari-
ations and (a)symmetry of the fibula, tibia, calcaneus and talus. In this study,
using detailed 3D bone shape data and advanced statistical techniques, we ad-
dressed whether: (1) both sides of each bone type exhibit similar shape patterns,
and a side bias (i.e. directional asymmetry) [218, 219] exists, (2) gender has an
influence on bone shape differences, and (3) intra-subject shape variations are
smaller than those of inter-subject for given shape variance directions.
The ipsi- and contralateral sides of the TCJ and STJ bones (Table 6.1) had similar
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Table 6.3: Intra-class correlation (ICC) estimates and their 95% confi-
dence intervals (CIs) for the fibula, tibia, calcaneus and talus. Shape
variance directions in which intra-subject shape variations were com-
parable to those of inter-subject are marked with ∗.

Shape Mode Fibula Tibia Calcaneus Talus
ICC 95% CI ICC 95% CI ICC 95% CI ICC 95% CI

1 0.72 0.58-0.82 0.85 0.77-0.91 0.95 0.92-0.97 0.56 0.37-0.71
2 0.74 0.60-0.83 0.50 0.29-0.66 0.84 0.75-0.90 0.35 0.12-0.54
3 0.03∗ -0.21-0.27 0.48 0.27-0.64 0.85 0.77-0.91 0.55 0.35-0.69
4 0.47 0.25-0.64 0.43 0.22-0.61 0.82 0.72-0.88 0.43 0.22-0.61
5 0.67 0.51-0.78 0.72 0.58-0.82 0.85 0.76-0.90 0.40 0.18-0.58
6 −0.04∗ -0.28-0.20 0.87 0.80-0.92 0.72 0.58-0.82 0.27 0.03-0.48
7 0.66 0.49-0.77 0.59 0.41-0.73 0.90 0.85-0.94 0.67 0.51-0.78
8 0.40 0.18-0.58 0.06∗ -0.19-0.29 0.74 0.61-0.83 0.67 0.51-0.78
9 - - - - 0.80 0.70-0.88 0.45 0.23-0.62

10 - - - - 0.82 0.72-0.88 0.59 0.41-0.73
11 - - - - 0.83 0.74-0.90 0.49 0.28-0.65
12 - - - - 0.82 0.73-0.89 0.29 0.06-0.50
13 - - - - 0.81 0.70-0.88 0.37 0.14-0.56
14 - - - - 0.80 0.69-0.87 0.46 0.25-0.63
15 - - - - 0.67 0.51-0.79 - -

shape patterns. There was no indication for left or right bias in any bone type
(Table 6.1). Behavioral studies on the lower limb laterality [231, 232], have found
right-footedness to be more prevalent. Nevertheless, it has been also stated that
contralateral non-preferred foot supports the activities (e.g. kicking, stamping)
of the dominant foot by contributing to postural stability [231, 232, 206]. Based
on these studies, it seems plausible that contralateral non-preferred extremity
is subjected to more or less the same mechanical loads as the dominant limb.
Therefore, left-side or right-side bias may not be present for the fibula, tibia, cal-
caneus, and talus.
Gender led to tibial, calcaneal and talar shape differences in four shape variance
directions (PC 1 of the tibia, Fig. 6.3; PC 1 and PC 7 of the calcaneus, Fig. 6.4;
PC 8 of the talus, Fig. 6.4). Considering PC 1 of the tibia (Figs. 6.3 and 6.5a),
females had relatively smaller lateral and medial condyles. Our findings are in
agreement with the outcomes of previous studies [220, 222]. In [220], large varia-
tions in mediolateral dimensions were observed. Moreover, smallest tibiae were
predominantly found in females [220]. In [222], smaller tibial head widths were
reported for females as compared to those of males. Regarding PC 8 of the talus
(Figs. 6.4 and 6.5a), tali of males had a relatively larger posterior aspect. This out-
come is in line with previous studies [233, 234], which analysed the morphology
of the talus and its sexual dimorphism. Furthermore, relatively larger values for
the talar breadth and surface area have been reported for male tali [233, 234]. On
average, female calcanei in our study seem to be longer in length (i.e. anterior-
posterior direction) and shorter in height (i.e. superior-inferior direction). This
observation is not in full agreement with other studies [235, 236, 233], since the
average length and height of the calcaneus have been reported to be larger in
males.
In this study, the sample size and the number of females involved in the dataset
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is limited. The disproportion of males and females could affect the generalizabil-
ity of all the analyses, except the one performed to assess the effects of gender on
age adjusted shape variations. In the latter analysis, the small dataset could have
an effect on the statistical power. To analyze the effects of gender on age adjusted
shape variations, multiple comparisons were performed. Therefore, the statisti-
cal significance level of 0.05 was adjusted according to Bonferroni with the aim
of reducing type I errors. The cost of this correction is an increased probability
of type II errors (i.e. reduced power). Another limitation of this study is that
bone shape differences between females and males, and bilateral (a)symmetry
could not be studied based on different age groups. The inclusion of younger
and older individuals might impact the generalizability of the findings reported
in this study. Future studies should aim for a larger and more representable
population sample (e.g. more females), to increase statistical power and gener-
alizability of the results.
Intra-subject shape variations in the talus and calcaneus along each of k PCs
(fourteen and fifteen shape variance directions for the talus and calcaneus, re-
spectively) were smaller than those of inter-subject (Table 6.3). These results sug-
gest that the shapes of the calcaneus and talus were more symmetric within an
individual than between subjects. Due to a scarcity of information on bilateral
shape (a)symmetry of the talus and calcaneus, it is not easy to compare the find-
ings of this study with those of others. The study presented by Islam et al. [161]
is one of the references that can be referred to. Although the methods followed in
[161] are different than those presented here, their observations made using CT
data of 11 intact tali (eight male and three female subjects) imply that the shape
of talus is bilaterally symmetric. Regarding to the calcaneus, intra-subject varia-
tions within the anatomy were reported to be smaller than those of inter-subject
in [237] for the area and 3D orientation of the joint surfaces of the calcaneus. The
outcomes of this study on the bilateral (a)symmetry of the talus and calcaneus,
and those of the studies [161, 237] imply that the shapes of the talus and calca-
neus are bilaterally symmetric, and the shape of contralateral side can be used
as a control during a surgery (e.g. anatomical reconstruction of the calcaneus of
a patient with a calcaneus fracture) or as a shape template for implant design.
Intra-subject shape variations were in general smaller than those of inter-subject
for the tibia and fibula (Table 6.3), 95% CIs did not include zero for thirteen out of
sixteen shape variance directions). Nevertheless, the curvature of the fibula shaft
(bending around the medial-lateral axis, PC 3 of the fibula, Fig. 6.3), the diameter
of the fibula (PC 6 of the fibula, Fig. 6.3), and the tibial tuberosity together with
the diameter of the tibia (PC 8 of the tibia, Fig. 6.3) varied within a subject as
much as between individuals (Table 6.3). One of the explanations for observing
different (a)symmetry level in the cross-sectional dimensions of the fibula and
tibia as compared to those seen in other bone features, such as the length (i.e.
PC 1 of the fibula and PC 2 of the tibia, Fig. 6.3) may be that different structural
features within the same bone exhibit independent development. For example,
the subperiostal growth of bone cortices could endure throughout life, although
a long bone stops growing in length after the closure of the epiphyseal growth
plate [206]. The cross-sectional dimensions of skeletally mature weight bear-
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ing bones could be more sensitive to mechanical loadings. As bone cortices can
grow, changes in the cross-sectional dimensions could be observed while bone
adapts to its mechanical environment. Referring to [238], the threshold at which
bone deposition/reposition is stimulated is not constant, but varies with respect
to several intrinsic (e.g. genetic factors, and the age and hormonal status of in-
dividuals) and extrinsic (e.g. loading history, the frequency of loading) factors.
Considering these aspects, it seems plausible that bilateral differences could ex-
ist in bone stimulation threshold, bone deposition/reposition within individuals
depending on their foot preference and physical activities that can affect the con-
tribution of none-preferred limb to their postural stability. The cross-sectional
dimensions of the fibula and tibia may influence the determination of implant
size and its placement in arthroplasty surgery, while the curvature of the fibula
can be relevant for planning corrective osteotomy. Therefore, side-shape differ-
ences in the fibula (PC 3 and PC 6 of the fibula, Fig. 6.3) and tibia (PC 8 of the
tibia, Fig. 6.3) may adversely affect the success of an arthroplasty surgery and
corrective osteotomy performed under shape symmetry assumption.
A strength of this study is that all bone samples were spatially dense sampled
in 3D. This enabled us to cover bony regions that cannot be described with a
set of conventional 2D or 3D measurements. Using 3D spatially dense data, we
analyzed for the first-time shape variations and (a)symmetry of all the bones
forming the TCJ and STJ. Considering the nature of the PCA to describe shape
variations, it is wise to mention that isolated locations of asymmetry may not be
sufficiently captured [239]. An independent component analysis (ICA) could be
used as an alternative to PCA to describe shape variations in a more localized
way. We refer interested readers to [240, 241] for the details on ICA. Although
ICA has potential extracting substantially distinct features, it has been less often
used in the area of statistical shape analysis [242]. Therefore, PCA was preferred
in this study, which is the most commonly used technique to describe shape vari-
ations [242, 243].

6.5 Conclusions

We observed that both sides of the bones forming the talocrural (TC) and subtalar
(ST) joints exhibited similar shape patterns, and directional asymmetry did not
exist in any bone type (i.e. fibula, tibia, calcaneus, and talus). Gender did not ex-
plain, in general, significantly different shape variations in all above-mentioned
bones. Nevertheless, four shape variance directions described statistically sig-
nificant shape differences between the tibiae (i.e. changes in the anterior bor-
der along the tibia shaft, and in the lateral and medial condyles), calcanei (i.e.
changes in the length and height of the calcaneus, and in the posterior height,
and in the posterior and anterior talar articular surfaces) and tali (i.e. changes
in the posterior aspect of the talus) of females and males, after Bonferroni ad-
justment. The shape symmetry assumption was in general valid. However,
intra-subject shape variations were as high as those of inter-subject in the shape
variance directions describing changes in the curvature of the fibula shaft, the
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diameter of the fibula, and the tibial tuberosity together with the diameter of
the tibia. These observations indicate that the symmetry assumption may be
violated. Deviation from symmetry in the fibula and tibia may adversely af-
fect the outcomes of studies using the contralateral side as a shape template or
intra-subject control, and the success of an arthroplasty surgery or corrective os-
teotomy performed with shape symmetry assumption.
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Figure 6.2: The scree plots with parallel analyses are given for (a) left
fibulae, (b) right fibulae, (c) left tibiae, (d) right tibiae, (e) left calcanei,
(f) right calcanei, (g) left tali and (h) right tali. Blue and dark gold
markers stand for observed and simulated data, respectively. All the
principal components up to the one found at the intersection of two
lines (lines represented with blue and dark gold colors) were retained
and used in the variance-covariance orientation test and description
of bone shape variations within a studied population. Accordingly,
the number of principal components kept is (a-b) 8 for left and right
fibulae (c-d) 8 for left and right tibiae (e-f) 15 for left and right calcanei
and (g-h) 14 for left and right tali.
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Figure 6.3: The first three rows display deviations (mm) of the fibula
and tibia from the mean fibula shape (left column) and the mean tibia
shape (right column) in the positive (+3SD) and negative (-3SD) direc-
tions of the first three PCs (i.e. principal components) of the fibula and
tibia, respectively. Shape variations of the fibula and tibia explained
by PC 6 of the fibula and PC 8 of the tibia, respectively, are shown
in the fourth row. The shape variance directions that expressed sig-
nificantly different shape variations between females and males are
marked with ‘∗’. The marker ‘§’ is used to indicate shape variance di-
rections for which intra- and inter-subject shape variations were com-
parable to each other.
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Figure 6.4: The first three rows display deviations (mm) of the talus
and calcaneus from the mean talus shape (left column) and the mean
calcaneus shape (right column) in the positive (+3SD) and negative
(-3SD) directions of the first three PCs (i.e. principal components) of
the talus and calcaneus, respectively. Shape variations in the talus
and calcaneus explained by PC 8 of the talus and PC 7 of the calca-
neus are shown in the fourth row. Shape variance directions that ex-
pressed significantly different shape variations between females and
males are marked with ‘∗’.

95



Chapter 6: Shape Variations and Symmetry of the Fibula, Tibia, Calcaneus and Talus

Figure 6.5: (a) Box plots showing the distributions of shape parame-
ters observed along PC 1 of the tibia, PC 1 and PC 7 of the calcaneus,
and PC 8 of the talus. These PCs described statistically significant
shape variations between males (blue color) and females (dark gold
color). (b) Point-to-surface distances (mm) calculated between female
and male (1) tibiae deviating from each other the most along PC 1
of the tibia, (2) calcanei deviating from each other the most along PC
1 of the calcaneus and (3) PC 7 of the calcaneus, and (4) tali deviat-
ing from each other the most along PC 8 of the talus. (c) The dis-
tributions of shape parameters observed for the left (blue color) and
right (dark gold color) sides along PC 8 of the tibia, PC 3 and PC 6
of the fibula. Intra-subject shape variations in the tibia and fibula de-
scribed by these PCs were similar to those of inter-subject. (d) Point-
to-surface distances (mm) calculated between left and right (1) tibiae
deviating from each other the most along PC 8 of the tibia, (2) fibulae
deviating from each other the most along PC 3 of the fibula and (3)
PC 6 of the fibula.
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7.1 Introduction

(Osteo)chondral defects (OCDs) of the talocrural joint predispose patients to pre-
mature osteoarthritis (OA), if left untreated [38, 244, 157]. Adequate treatment of
OCDs is highly essential, since both OCD and OA adversely affect the patients’
quality of life with joint pain and dysfunction [244].
There are various surgical treatment options for talar OCDs including “the ex-
cision of the lesion, excision and curettage, excision combined with curettage
and drilling/microfracturing, placement of an autogenous bone graft, antegrade
drilling, retrograde drilling, osteochondral transplantation and autologous chon-
drocyte implantation” [36]. The failure rates (i.e. number of unsuccessfully
treated patients × 100 / number of treated patients) of these treatment strate-
gies can go up to 70% (range 0-70%) [36, 173]. The exact reasons for the failure
of the treatment are often not completely clear, preventing formulation of effec-
tive individual treatment strategies. This could, at least partially, be due to a
lack of knowledge on cartilage tissue regeneration in-vivo [245]. To understand
the nature of cartilage healing in-vivo and in turn to devise treatment scenarios,
longitudinal monitoring of OCDs of patients in short intervals could be helpful
[41, 246].
Ultrasound (US) imaging facilitates frequent evaluation of patients [247] in time,
because it is non-invasive, cost-effective, and easily accessible [248]. Recent stud-
ies have shown that US could be used to image cartilage and bony abnormalities
(e.g. cortex irregularities) [41, 249]. Reproducible evaluation of OCDs with US
would be, however, challenging. This is because, US images cannot so easily be
interpreted and compared over time without having access to the talocrural joint
anatomy provided by other modalities, such as computed tomography (CT). To
monitor the post-operative tissue regeneration and evaluate any changes in the
OCDs as a result of the treatment, US images of the patient could therefore be
registered to and used in conjunction with pre-operative CT scans of the same
patient.
In the literature, numerous US to CT bone registration schemes have been previ-
ously presented, which include feature- and/or intensity-based techniques [250,
251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262]. Referring to feature-
based techniques, the registration of bone surfaces extracted from both CT and
US volumes using a variant of the iterative closest point (ICP) [263] is a common
approach. In the study carried out by Muratore et al. [256], ICP technique was
used to register vertebral bone surfaces derived from both CT and US volumes.
Barratt et al. [250] presented a surface-based registration algorithm that can si-
multaneously update the freehand tracked US system calibration parameters.
Another point based US to CT registration scheme was described by Moghari
et al. [254]. In [254], Unscented Kalman Filter was used to estimate rigid trans-
formation parameters needed for registering two point sets extracted from CT
and US images. In the study presented by Brounstein et al. [251], point clouds
derived from CT and US volumes were represented as Gaussian Mixture Mod-
els (GMM). The registration of two point clouds was realized by minimizing the
dissimilarity measure (i.e. L2 distance metric) [251]. In the study [252], the previ-
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ously proposed GMM surface registration algorithm was improved. Regarding
to intensity-based registration techniques, Penney et al. generated probability
images from both the CT and US volumes. A normalized cross correlation metric
was used as a similarity measure to register the probability images [255]. Winter
et al. [257, 264] described a surface-volume registration scheme to register US
volume with enhanced bone contours to bone surface points culled from CT vol-
ume. Nagpal et al. [260] presented a multi-body registration technique, which
maximizes the similarity between CT and US data using features derived from
the two modalities and voxel intensity information.
All these previously presented registration schemes have been applied to long
bones [255, 259], vertebrae [257, 260, 261], and pelvis [254, 255, 262]. Although,
there is no limitation in theory for applying previously described registration
techniques to the talocrural joint, none of the studies have focused on this anatom-
ical location. It is therefore not clear how these registration techniques perform
individually and relative to each other when dealing with US images of the
talocrural joint. Accordingly, a rigid surface-volume registration scheme is pre-
sented in this study to match CT and freehand-tracked US images of the talocru-
ral joint. The robustness of the registration algorithm to different initialization
positions and to the sampling of US data was evaluated on a dataset collected
from 12 cadaveric ankles. The presented scheme was also used in clinical prac-
tice to evaluate the potential of US imaging as an alternative to a CT scan in
pre-operative planning of arthroscopic access to anterior talar OCDs [265]. The
contributions of this study are twofold: (1) the talocrural joint is the main fo-
cus as an anatomical location, and (2) the question about the potential use of
US imaging in clinics has been addressed for the first time, while assessing the
performance of the registration scheme.

7.2 Materials and Methods

An overview of the registration scheme is presented in Fig. 7.1. Initially, freehand-
tracked 2D US images and a CT scan of the talocrural joint of the same patient
are acquired. In the pre-processing step of the CT scan, a point set is extracted
from the distal tibial and talar bone surfaces. Simultaneously, bone contours in
2D US data are enhanced based on the monogenic signal representation of 2D US
images [266]. Subsequently, 3D US image with enhanced bone contours is recon-
structed from the preprocessed 2D US data and using the position of the conven-
tional US probe that was recorded with an optical tracking system. During the
registration of the surface extracted from the CT scan to the monogenic signal
feature volume, six transformation parameters (three for rotation and three for
translation) are estimated so as to optimize the sum of monogenic signal features
over the transformed surface extracted from the CT data. The CT and US data
are considered as “fixed” and “moving” images, respectively, during the regis-
tration.
In the following paragraphs, the methods used for acquisition of freehand-tracked
2D US images and CT scan of the talocrural joint are provided first. Subse-
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quently, the steps in the proposed registration scheme are extensively described.
Then, the details of the tests performed on the acquired data to evaluate the pre-
cision of the registrations are provided. Finally, the methodology applied in a
clinical study is presented.

Figure 7.1: Overview of the rigid surface-volume registration scheme
to match CT and US images of the talocrural joints. CT and US images
are pre-processed before the registration. During the pre-processing
step, surfaces of bones (i.e. tibia and talus) that can be visualized
with US in maximal-plantar flexed ankle are extracted from the CT
image and bone contours in freehand tracked 2D US images are
enhanced using intensity invariant local-phase based approach and
bone shadow information. 3D bone response data is reconstructed
from 2D enhanced US images using the position of the US probe that
had been recorded with an optical tracking system. Registration is
initialized at a location defined using the position of the six fiducials
in the US and CT spaces.

7.2.1 Test Data Acquisition
A test dataset consisting of CT scans and freehand-tracked 2D US images of 12
cadaveric ankles was collected at Academic Medical Center (AMC, Amsterdam,
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The Netherlands). For the use of the cadaveric ankles, permission from the Med-
ical Ethical Committee of AMC was not needed.
Each cadaveric ankle was tightly fixed on a foot-plate in maximal plantar flex-
ion with straps to avoid any movement between acquisition of CT scan and US
sweeps (Fig. 7.2a). Six fiducial markers were attached to the foot-plate (i.e. four
markers on top of the foot-plate and two markers underneath), which are visible
in the CT scan. These markers were pointed out with an external pointer and
recorded during the US data acquisition (Fig. 7.2a).

Figure 7.2: Experimental settings in the echo room. (a) Prior to CT
imaging and US sweeping, each cadaveric ankle was placed on a foot
plate in maximal plantar flexion and was tightened using straps. The
US probe on which the position sensor mounted was slowly swept
over the cadaveric ankles and the position of the probe was recorded
using (b) the optical tracking camera.

7.2.1.1 CT Scans

CT scans were acquired using a Philips Brilliance 64 CT scanner (Philips Health-
care, Best, The Netherlands). The acquisition parameters were: effective dose
150: mAs/slice, rotation time: 0.75 s per 360◦, pitch: 0.875, slice thickness: 0.6
mm, and ultra-high resolution mode. Tomographic reconstructions were made
with a field of view of 154 mm, a slice increment of 0.3 mm, and a matrix of 512
× 512 pixels. The voxel sizes were 0.3 mm × 0.3 mm × 0.3 mm.

7.2.1.2 Freehand Tracked 2D US Images

For the US data acquisition, a iU22 xMatrix scanner (Philips Healthcare, Best,
The Netherlands) (Fig. 7.2b) was used together with a 17- to 5-MHz broadband
linear array probe (Philips Healthcare, Best, The Netherlands) (Fig. 7.2a). The
position of the US probe was recorded by the means of a Polaris optical tracking
system (Northern Digital Inc., Waterloo, Ontario, Canada) (Fig. 7.2b), by mount-
ing a passive reflective marker to the US probe that was followed by the tracking
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camera (Fig. 7.2a) (3D root mean square volumetric accuracy of the position sen-
sor ≤ 0.25 mm).
The navigation system CustusX (SINTEF, Trondheim, Norway) [267], which al-
lows for connections between the US scanner and the optical tracking system,
was employed for data acquisition and reconstruction of the 3D US data from
2D US images. Prior to US data acquisition, the US probe was calibrated (cali-
bration error = 0.23 mm) using a point target phantom [268].
The US imaging parameters (e.g. depth, gain) were set by an experienced radi-
ologist specialized in musculoskeletal ultrasound imaging. For each cadaveric
ankle, two different sweep types, namely “Sweep Type I” and “Sweep Type II”,
were performed. In the “Sweep Type I”, the US acquisition started at the medial
side of the talocrural joint with the probe placed perpendicular to the foot, on the
deltoid ligament. The US probe was moved from the medial side to the lateral
rim of the talus in such a way that the tibial rim and the dorsal surface of the talus
were constantly visualized. The “Sweep Type II” involved positioning the probe
slightly more proximal, supplemented with a return sweep back to the starting
position on the medial side with the probe positioned more distally at the lat-
eral rim of the talus. During each acquisition, the US probe was moved slowly
(i.e. minimum of twenty seconds spent) over a cadaveric ankle while aiming to
keep complete contact between the US probe and the cadaveric skin. After both
sweeps, the position of the six fiducials was recorded using a calibrated pointer
and the CustusX software.

7.2.2 Data Preprocessing

7.2.2.1 Surface Point Extraction from CT Data

Both talus and distal tibia were segmented from each CT scan using Mimics (ver-
sion 14.01, Materialise, Leuven, Belgium) to yield triangulated surfaces. During
the segmentation of the bones, a similar procedure as described by Tümer [203]
was followed.
Regions on the triangulated bone surfaces that can be visualized with US (Fig.
7.1) were defined and isolated from the rest using custom-made code developed
in Matlab (Matlab 2013b, The Mathworks Inc., Natick, MA) (see Appendix E).
The vertices of the triangles located on the isolated surfaces were extracted.

7.2.2.2 Bone Surface Enhancement in Ultrasound

Bone contours in 2D US images were enhanced using an intensity-invariant local-
phase technique [269, 270, 271, 272]. Following [271], a local phase-based feature
detector “Phase Symmetry (PS(x, y))”, which is sensitive to the ridgelike edges
observable at the bone boundaries in the US images was used. The PS was de-
fined based on the monogenic signal representation [273] of 2D US images (Fig.
7.3a) (see Appendix E). As PS has high response at symmetry locations [274],
other features such as soft tissue-muscle interface were also enhanced together
with bone contours (Fig. 7.3b). To highlight the bony contours further, bone
shadow information [274] was taken into account. Briefly, the weighted sum of
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intensity values of pixels extending from a pixel of interest was used to quantify
the shadow:

SH(x, y) =
∑H

j=x G(j, y)U(j, y)

∑H
j=x G(j, y)

(7.1)

where SH(x, y) is the shadow value for a pixel at row x and column y of the
US image. H and G(.) represent the total number of rows of the image U(x, y)
and the Gaussian weighting function, respectively. Combining PS and shadow
information, the bone responses BR(x, y) [274] (Fig. 7.3c) that represent 2D US
image with enhanced bone contours were obtained:

BR(x, y) = PS(x, y) · SH(x, y) (7.2)

Figure 7.3: Bone contour enhancement in a 2D US image. (a) An orig-
inal 2D US image (b) Phase Symmetry PS map calculated based on
monogenic signal representation of the 2D US image. (c) Bone re-
sponse map obtained based on the product of PS and the shadow
values (SH).

7.2.3 3D Bone Response Data and US to CT Registration

3D bone response data was reconstructed from 2D enhanced US images (i.e. BR)
using the position information of the US probe.
For each of 24 US sweeps (i.e. 12 cadaveric ankles × 2 sweep types), the regis-
tration was initialized at a location defined using the position of the six fiducials
in the US and CT spaces.
The objective function, which was optimized during the registration, was the
sum of the bone response values over the transformed surface extracted from
the CT data:

f (α, β, γ, ∆x, ∆y, ∆z) = f (x) =
N

∑
i=1

BR(Rαβγ · pi + (∆x, ∆y, ∆z)
T) (7.3)

where N is the total number of sampling points p lying on the surface extracted
from the CT data, Rαβγ is the rotation matrix that depends on the angles α, β, and
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γ (i.e. rotation parameters expressed in rad), and ∆x, ∆y and ∆z are the transla-
tional parameters in mm.
Six transformation parameters (i.e. three for rotation and three for translation)
were estimated using the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [275], as the technique can be used for medical image registration tasks [264]
and evolutionary algorithms have been reported to be robust [264, 276]. During
the optimization, a box constraint was applied in a way that the transformation
parameters stayed in the range of ±0.2 rad (±11.5◦) and ±5 mm surrounding
the initialization location (i.e. α, β, γ, ∆x, ∆y and ∆z were all equal to zero at the
start of the registration).
A similar stopping criterion was applied as described by Winter et al. [264]. Reg-
istrations were stopped, when the relative progress of the best individuals over
the last 10 generations dropped below the threshold, fthr = 10−6. With the aim
of decreasing the possibility of registration algorithm to get stuck in local max-
ima, multistart optimization was performed. The optimization algorithm was
restarted once the stopping criterion was met from the same initial position to-
gether with all the strategy parameters of the CMA-ES reset to their initial values
[264].

7.2.4 Evaluation of the Registrations

A reference registration for each cadaveric ankle was identified in a similar way
as described by Winter et al. [264]. For each of the 24 US sweeps, the registra-
tion algorithm was run 20 times, following an initialization at a location defined
using the position of the six fiducials in the US and CT spaces. Among the 20
registrations per sweep, the one having the highest fitness value was picked as
the reference registration. The validity of the reference registrations was visually
checked.
The registration algorithm was run 100 times for each US sweep with initial mis-
alignments (i.e. Test I). Taking each of the 24 US sweeps into account, a set of
100 initialization positions was determined by transforming the reference reg-
istration to a position away from its assumed optimum. The transformations
were randomly created using a uniform distribution with rotation and transla-
tion parameters ranging between ±0.2 rad (±11.5◦) and ±5 mm, respectively.
The initial position and the position of a volume after registration were com-
pared to the position in the defined optimum (i.e. diRMS, d fRMS) by calculating
the root-mean-square (RMS) target registration error (TRE) [255]:

d fRMS =

√
1
N ∑

x
‖TREGx− TREF x‖2 (7.4)

where x is a point set extracted from 3D US data and N is the number of points
in the set. TREG and TREF represent transformation matrices obtain as a result of
a registration and as a result of the reference registration.
To assess the effects of the 3D US volume “density” on the performance of the
registration algorithm (i.e. Test II), the amount of collected 2D US slices in each
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US sweep was decreased 25% by randomly leaving out slices. The registration
algorithm was run 100 times for each US sweep starting from the same initial
position using 75% of the full data. The position of a volume after registration
were compared to the position in the defined optimum (d fRMS) according to Eq.
7.4.
During evaluation of the Test I and II results, registrations having d fRMS values
higher than 2 mm were considered as failures.

7.2.5 Clinical Study

To understand whether US imaging could be an alternative to a CT scan in pre-
operative planning of arthroscopic access to anterior talar OCDs, the percentage
of the talar cartilage surface that could be visualized with US imaging was de-
termined following a similar approach as described by van Bergen [277]. Two
observers analyzed the US data of 12 cadaveric ankles that were registered to the
CT scans of the same cadaveric ankles using the proposed registration scheme.
Each observer, using a custom-made code [277] developed in Matlab (Matlab
2016b, The Mathworks Inc., Natick, MA), defined the percentage of the visible
talar dome contour (i.e. the arc length of the anterior talar dome, α divided by
the arc length of the complete talar dome, α + β) (Fig. 7.4) on 2D slices extracted
from the lateral, central, and medial aspects of the talus. To evaluate the intraob-
server reliability, the data was assessed one more time by one of the observers.
Average percentages of the visible talar dome contour were calculated for each
location and for each observer.

Figure 7.4: Sagittal view of one of the US volumes registered to the
CT scan. The visible cartilage and cartilage covered by the tibia are
represented, respectively, with α and β. The percentage of the visible
cartilage was defined as the ratio of α to α + β (i.e. the total cartilage
surface).

105



Chapter 7: 3D Registration of Freehand-Tracked US to CT Images of the Talocrural Joint

7.3 Results

An example from Test I, which depicts the initial misalignment and the final
registration is given in Fig. 7.5. The visualization shows that it is possible to
register US to CT images of the talocrural joint quite well using the proposed
registration scheme.

Figure 7.5: A visualization of one of the successful registrations
achieved in Test I. (a) 3D view (b) Axial view (c) Coronal view and
(d) Sagittal view. US volume in purple color represents the data at
initialization position prior to registration. US volume in green de-
picts the result of the registration. Dashed lines in yellow highlight
the contours of the tibia and talus observed in both axial and sagittal
views. Arrows in red shows that US volume goes from its initial po-
sition (i.e. US volume in purple) to its final position (i.e. US volume
in green).

Table 7.1 shows the number of successful registrations achieved in Test I and
the mean of the diRMS values together with d fRMS averaged over all successful
registrations. The success rate across all the US sweeps in “Sweep Type I” and
“Sweep Type II” were, respectively, 46% and 59%. The mean of the d fRMS values
averaged over all successful registrations in “Sweep Type I” and “Sweep Type
II” were, respectively, 0.9 mm ± 0.5 mm and 0.8 mm ± 0.3 mm.

Results of the Test I are displayed as plots of d fRMS vs. diRMS for the US sweeps
showing the best (i.e. 99% for both the “Sweep Type I” and “Sweep Type II”) and
worst success rate (i.e. 1% for the “Sweep Type I” and 0% for the “Sweep Type
II”) at a total of 100 registrations each (Figs. 7.6a-b). No clear relationship could
be detected between the registration failure and the distance of the initial point
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Table 7.1: Number of successful registrations and the mean RMS TRE
(i.e. diRMS and d fRMS values for each US sweep averaged over all
successful registrations in Test I. A measure diRMS describes how far a
volume is away initially from its assumed optimum. Besides, d fRMS is
based on the comparison of the position of a volume after registration
to that in the defined optimum.

US Sweep Type Number of Successful Registrations Mean(and STD)(mm)
diRMS d fRMS

99 6.96 (3.27) 0.46 (0.17)
80 7.50 (2.87) 1.24 (0.62)
71 6.99 (2.49) 1.80 (0.18)
65 8.72 (3.78) 0.62 (0.28)
46 9.66 (4.66) 0.51 (0.17)

I 39 7.43 (2.46) 0.57 (0.35)
37 10.60 (3.79) 0.70 (0.54)
35 6.97 (2.12) 0.76 (0.68)
29 6.95 (2.73) 0.57 (0.36)
24 10.04 (3.64) 0.65 (0.67)
20 8.09 (2.66) 0.81 (0.62)
1 7.04 (0.00) 1.69 (0.00)
99 7.28 (3.06) 0.66 (0.32)
97 8.04 (3.45) 0.93 (0.30)
91 8.55 (3.30) 0.26 (0.41)
89 8.33 (3.42) 1.21 (0.57)
78 8.55 (3.88) 0.95 (0.36)

II 77 8.67 (3.66) 0.43 (0.44)
76 7.35 (3.01) 1.33 (0.14)
35 9.50 (2.95) 0.82 (0.43)
28 7.97 (2.84) 0.62 (0.45)
24 9.73 (3.96) 0.64 (0.43)
16 9.41 (4.03) 0.68 (0.35)
0 - -

from the defined reference. Registered bone surfaces and 3D bone response vol-
umes given for the US sweeps with the best and worst success rate in Test I (Figs.
7.6c-f) show that similar regions in each sweep type were scanned during the US
data acquisition. Regarding the raw 2D US slices extracted from the “Sweep
Type I” and “Sweep Type II” sweeps with the worst success rate (Figs. 7.6h and
j), soft tissues seem to stand relatively closer to the bony contours as compared to
those seen in the ones obtained from the US sweeps with the best success rates
(Figs. 7.6g and i). The scanline profiles presented in Figures 7.6h and j show
the intensity values of the pixels crossed by the two vertical lines (red and blue).
Based on these profiles, it could be noted that soft tissues surrounding the bone
may have higher intensity values as compared to those of the bony contours.
Table 7.2 shows the number of successful registrations achieved in Test II and
the mean of the d fRMS values averaged over all successful registrations for each
of 24 US sweeps. The average success rate was 47% and 58%, respectively, in
“Sweep Type I” and “Sweep Type II”. The mean of the d fRMS values averaged
over all successful registrations in “Sweep Type I” and “Sweep Type II” were, re-
spectively, 0.7 mm± 0.4 mm and 1.0 mm± 0.6 mm. For 1 out 12 US sweeps with
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reduced “density” in “Sweep Type II” registrations consistently failed, while it
was the case for 5 US sweeps in “Sweep Type I” (Table 7.2).

Table 7.2: Number of successful registrations and the mean RMS TRE
(i.e. d fRMS) values for each US sweep averaged over all successful
registrations in Test II. d fRMS is based on the comparison of the posi-
tion of a volume after registration to that in the defined optimum.

US Sweep Type Number of Successful Registrations Mean(and STD)(mm)
d fRMS

100 0.31 (0.19)
100 1.38 (0.28)
99 0.62 (0.33)
98 0.63 (0.26)
90 0.94 (0.47)

I 77 0.75 (0.29)
2 0.40 (0.33)
0 -
0 -
0 -
0 -
0 -

100 0.35 (0.27)
100 0.47 (0.29)
100 0.56 (0.20)
100 0.60 (0.25)
99 0.61 (0.32)

II 62 0.47 (0.36)
52 1.63 (0.18)
31 1.42 (0.41)
26 1.05 (0.32)
22 1.91 (0.08)
3 1.88 (0.06)
0 -

The results of the clinical case in terms of the mean percentage of visible talar
surface at the lateral, central, and medial part of the talus, are presented in Table
7.3. On average, 51% ± 3% of the talar surface of each maximum plantar flexed
cadaveric ankle could be imaged using US (Table 7.3).

7.4 Discussion

The goal of this study was to register freehand-tracked 2D US images of the
talocrural joint to CT images. To this end, a rigid-surface volume registration
scheme was presented and the performance of the registration algorithm was
tested on a dataset collected from 12 cadaveric ankles. The registration algo-
rithm was also used for a practical problem to evaluate whether US imaging
can be a substitute of CT in assessment of accessibility to an OCD by anterior
arthroscopy.
Visual inspection of the reference registrations and the example use of the regis-
tration algorithm confirm that multi-modality image registration is possible for
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Table 7.3: The average percentage of the talar surface that could be
visualized with US from two observers for the lateral, central and
medial part of the talus. Observer 1 served as an internal control by
performing the analysis twice: Observer 1 (1) and Observer 1 (2).

Visible Talar Surface (% of the Total Talar Surface)
Lateral Central Medial

Observer 1(1) 55.3 (47.2-69.1) 47.9 (42.3-58.2) 51.7 (42.0-62.7)
Observer 1(2) 55.4 (46.3-68.1) 47.3 (38.2-59.0) 52.4 (42.2-61.6)

Observer 2 53.6 (42.8-66.1) 47.3 (36.8-60.0) 51.4 (42.5-59.0)

a talocrural joint and satisfactory registration results (Fig. 7.5) could be achieved
with the proposed scheme.
Concerning the Test I, the registration algorithm had varying levels of success
(Table 7.1). The large variance observed in the registration rate cannot directly
be attributed to various initialization positions with a certain distance away from
the defined reference. Differences in the performance of the registration algo-
rithm to compensate similar mean diRMS values (e.g. the success rate of 99% and
1% achieved in “Sweep Type I” of two different cadaveric ankles with the mean
diRMS values of 7 mm) (Table 7.1) suggest that the success rate of the algorithm
is dependent on the acquired US data. Comparing raw 2D US images of the US
sweeps showing the best (i.e. 99% for both the “Sweep Type I” and “Sweep Type
II”) and worst success rate (i.e. 1% for the “Sweep Type I” and 0% for the “Sweep
Type II”) in the Test I (Figs. 7.6g-j), it was observed that soft tissues are positioned
relatively closer to the bone contours and show more bony-like features in the
most failed US sweeps (Figs. 7.6h and j). With a close look at the scanline pro-
files of both vertical lines (red and blue) shown in Figures 7.6h and j, it becomes
clearer that dominant ridge edge responses do not always correspond to the ex-
pected bony location, but may represent the high intensity soft tissue interfaces.
In the current study, commonly-used local phase based descriptor optimized for
ridge detection (i.e. PS) [251, 271] has been used to extract bony contours present
in US images. As the PS detector does not provide or correct the responses at lo-
cations where the assumed feature model, i.e. ridgelike edge for bone, is violated
and the registration algorithm is not capable of distinguishing between soft and
bony tissues, it is possible that the registrations could not always end in cor-
rect positions due to the existence of bony-like information in some of the 3D
volumes (Figs. 7.6d and f). In the future, more sophisticated descriptors, such
as the local phase tensor [266], are suggested to be used to determine whether
an improvement in bone detection and in the performance of the registration al-
gorithm could be achieved in the US sweeps consisting of different feature types.

The results of the Test II indicate that the quality of the acquired US data plays an
important role in the success of the registration process. Decreasing the number
of slices in US sweeps seems to adversely affect the performance of the registra-
tion algorithm (Table 7.2). Reduction in the amount of information on bones in
3D bone response volumes could well explain the relatively lower performance
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of the registration algorithm. Moreover, in both tests, the mean success rate was
higher in “Sweep Type II” as compared to those in “Sweep Type I”. This finding
can be explained by relatively larger scanned area of the talar bone in “Sweep
Type II”. Increase in the amount of data on bony contours could help the regis-
tration algorithm to more easily find the optimum position.
Both “Sweep Type I” and “Sweep Type II” seem to be adequate to image ap-
proximately 50% of the anterior talar dome (Table 7.3). This is comparable to
the area defined previously as the part of the talar dome accessible with anterior
arthroscopy [277]. The results of the clinical test therefore suggest that US could
be used to assess whether an OCD can be accessed by anterior arthroscopy.
Although, the freehand-tracked 2D US images of 12 cadaveric ankles were ac-
quired by the experienced operator and using a protocol that had been included
in previous studies [41, 246], the results of the tests and the observations made on
US sweeps suggest that there is a room for improvements in the US data acqui-
sition phase. One of the changes that could be made is the use of an alternative
good quality US probe specially designed/fine-tuned for musculoskeletal appli-
cations. A US probe with a relatively smaller head size (e.g. L15-7io, Philips
Healthcare, Best, The Netherlands) may allow the operator to more easily orient
the probe to maintain it at a perpendicular position with respect to the bones.
With an enhancement in the positioning of the US probe on the ankle joint, the
chance of getting sharp bone boundary interfaces and decreasing the amount of
unwanted information on soft tissues around the bones may be increased. A
closer study of the 3D bone response volumes of the US sweeps that displayed
the best and worst success rate in the Test I (Figs. 7.6c-f) showed that the vari-
ances observed in the success rates of the registration algorithm do not originate
from any specific region on talus or distal tibia. Moreover, the success rate is
expected to increase, if the US sweeps contain more information regarding the
edges of the target bones. The scanned area is recommended to be increased in
the future studies and includes the regions beyond the visible cartilage surfaces,
e.g. by starting and finishing the data acquisition until the malleoli are visual-
ized.
In addition to enhancing the US data acquisition protocol, the presented regis-
tration scheme could be further improved by providing real-time feedback to the
operator, thereby guaranteeing successful registration in the clinical settings. In
the current study, the computation time for the pre-processing of a single 2D US
slice and the registration of a 3D US bone response volume to a surface extracted
from a CT scan is≈4 seconds and≈3 minutes, respectively. To provide real-time
guidance, the computational time has to be decreased, for example, through opti-
mizing the code and/or implementing the methods on a multi-processor graphic
processing unit (GPU).
To determine “gold standard” registrations and quantitatively evaluate the accu-
racy of the registrations, data could be collected from bones into which fiducials
have been implemented. Fiducials were not attached to the bones to keep the
conditions as close to the clinical reality as possible. To delineate a “gold stan-
dard”, another solution could be the use of anatomical landmarks. Although we
made an attempt to define points on the talus that could be consistently found

110



Chapter 7: 3D Registration of Freehand-Tracked US to CT Images of the Talocrural Joint

in all individuals and be used as anatomical landmarks, no such points could be
ultimately found. Neither could we find any studies in the literature that could
be referred to for the use of anatomical landmarks on the talus. It is therefore
not clear to what extent the idea of using anatomical landmarks is practically
feasible.

7.5 Conclusions

To the best of our knowledge, this is the first study proposing a scheme to reg-
ister freehand-tracked 2D US images of a talocrural joint to the CT scan of the
same joint. Results of the study showed that multi-modality image registration
is possible for the talocrural joint and satisfactory registration results could be
achieved with the proposed method. This could enable anatomical correlation
of US images based on CT scan, thereby improving the possibilities for retrospec-
tive analysis and prospective follow-up of patients with diseases at the talocrural
joint. With the performance of retrospective and prospective clinical studies, it
is highly probable to make a progress in understanding the nature of cartilage
healing in-vivo and in turn in the formulation of effective patient-specific treat-
ment strategies. Further research, however, needs to be performed before clinical
implementation of the proposed method is possible. The presented registration
scheme could be enhanced in particular by using a more sophisticated approach
to the pre-processing of US images, modifying the protocol established for the
US data acquisition and implementing the methods in such a way that real-time
feedback could be provided to guide the operator.
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Figure 7.6: Plots of the d fRMS values vs. the diRMS values calculated
over 100 registrations are given for (a) the ’Sweep Type I’ US sweeps
(b) the ’Sweep Type II’ US sweeps showing the best and worst suc-
cess rate in Test I. Black (n = 100) and red (n = 100) dots in (a)
are samples retrieved from a set of registrations performed for the
’Sweep Type I’ US sweeps with the best and worst success rate, re-
spectively. In a similar manner, those (nblack = 100 and nred = 100) in
(b) are related to a set of registrations run for the ’Sweep Type II’ US
sweeps with the best and worst success rate.Visualizations of 3D bone
response volumes of the ’Sweep Type I’ US sweeps (c) with the best
and (d) the worst success rate, and of the ’Sweep Type II’ US sweeps
(e) with the best and (f) the worst success rate in the Test I are shown.
Original 2D slices taken from the US sweeps (c-f) are presented in a
corresponding manner (g-j). The intensity profiles of the two verti-
cal lines (i.e. intensity vs. distance along profile graphs shown in red
and blue correspond to the lines drawn in red and blue, respectively)
displayed in (h) and (j) indicate that the ridge-like edge feature cor-
responding to the expected bone boundary can be weaker than those
related to the soft tissue interface. Thin and thick arrows shown in
green and purple point to the ridge edge features linked, respectively,
to soft tissue interface and bone boundary.
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8.1 Introduction

The ankle joint is one of the common locations for (osteo)chondral defects (OCDs)
representing disruption of articular cartilage together with or without disinte-
gration of the subchondral bone [278, 37, 33]. These defects can occur due to
acute trauma, repetitive micro-trauma, and torsional joint loading during sport
[33, 279, 38] and domestic activities (e.g. a fall from stairs) [180]. If OCDs are
left untreated, there is a potential risk of developing early osteoarthritis (OA)
[278, 34]. As OA is a disease decreasing individuals’ quality of life and imposes
a huge socioeconomic burden on society [280], early detection and treatment of
OCD is highly important.
The techniques currently used for detection of OCDs are computed tomography
(CT), magnetic resonance imaging (MRI), and arthroscopy [33, 39, 40, 41]. Al-
though these techniques are sensitive in detection of defects [41], they are not
favorable to be used in longitudinal follow-up of individuals due to ionizing ra-
diation (e.g. in CT), long acquisition time (e.g. in MRI), and invasiveness (e.g.
arthroscopy) [40] as well as the involved costs. Ultrasound (US) imaging, which
is known to be non-invasive, fast, and cost-effective [281], is not extensively used
in diagnosis of OCDs. That is primarily because US imaging is not capable of
successfully imaging all cartilage defects [282] because of the limited ability of
US waves to penetrate through bone [247].
Keeping cost-effectiveness and non-invasiveness of US in mind, an acoustic wave
method which does not require penetration of sound waves through bone might
be a good alternative to the currently-used diagnostic techniques. We propose
a new diagnostic technique, which is based on the propagation of US waves
through the entire joint space of the ankle and on definition of changes in acous-
tic wave response properties ensued as a result of defect. Specification of acous-
tic parameters that can describe the entire joint space morphology and be robust
to individual variations will be necessary for successful identification of OCDs.
However, determination of optimal parameters is a major challenge, as little is
currently known about the US propagation in the joint space of the ankle and
effects of many parameters on the acoustic wave characteristics.
The aim of this work was to study US propagation in the joint space of the ankle
and to determine the feasibility of the new concept for detection of defects. To re-
duce the complexity of the problem, simplified 2D finite-difference time-domain
(FDTD) models of ankle joint were developed and effects of dominant variables
relevant to the ankle joint (i.e. joint space width), US transducer (i.e. translation
and rotation of US transducer acting as transmitter) and defect (i.e. width, depth
and location) on acoustic wave response were evaluated. An experiment was
performed to validate a FDTD model, which represents the healthy state of the
joint. To the authors’ knowledge, this is the first study to evaluate propagation
of US in the joint space of the ankle and to determine the feasibility of such a
concept for detection of OCDs.
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8.2 Materials and Methods

Throughout this study, two series of simulations and one series of experiments
were performed. The first set of simulations incorporates a reference model (Fig.
8.1a), which mimics the healthy state of the joint and was validated with experi-
mental measurements. The second series includes models generated to evaluate
the effects of main variables (Fig. 8.2) related to the ankle joint (i.e. joint space
width), US transducers (i.e. translation and rotation of US transducer acting as
transmitter), and defect (i.e. width, depth and location) on the output signal of
the reference model.

Figure 8.1: (a) Representation of the reference simulation model. Joint
space width of the ankle is 5 mm. The radii of the tibial and talar
arcs respectively are 30 mm and 29.5 mm. US probes are positioned
in a nearly identical manner to the experiment. (b) Radiograph of a
healthy ankle joint - Lateral view [283].

8.2.1 Simulations

All the simulations were performed using the US simulation software Wave2000
(Cyberlogic Inc., New York, NY, USA). To find an approximate solution to the 2D
acoustic wave equation, the software uses the algorithm presented by Schechter
et al. [284]. In brief, this algorithm assumes that a heterogeneous medium is com-
posed of homogenous linear isotropic regions and imposes continuity of stresses
and displacements across boundaries of four homogenous regions. Within each
homogeneous grid element, an acoustic differential equation is solved and the
displacement vector is computed at the intersection of four grid elements at each
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time step of the simulation:

p
∂2

∂t2 = |µ + η
∂

∂t
|∇2w + |λ + µ + φ

∂

∂t
+

η

3
∂

∂t
|∇(∇ ·w) (8.1)

where w is a 2D vector whose components are the x and y components of dis-
placement of the medium at location (x, y), ρ = material density [ kg

m3 ], λ = first

Lamé constant [ N
m2 ], µ = second Lamé constant [ N

m2 ], η = shear viscosity [ (N·s)
m2 ], φ

= bulk viscosity [ (N·s)
m2 ], t = time [s], ∂ = the partial difference operator, ∇2 = the

Laplace operator, and ∇· = the divergence operator.

8.2.1.1 Reference Model

The first step in generation of the model was definition of the geometry. As
the reference model would be used in assessment of US propagation in the joint
space of a healthy ankle joint, a simplified geometry (Fig. 8.1a) which is simi-
lar in size and shape (Fig. 8.1b) to the ankle joint was considered. The study of
Stagni et al. was consulted for determination of a realistic size for the tibia and
the talus [285]. Additionally, a joint space width of 5 mm (Fig. 8.1a) was used,
considering the fact that the ankle joint space can be increased up to 5 mm upon
distraction loading [286, 287]. A geometry file representing the simplified ankle
joint was prepared using Matlab R2013b (The MathWorks, Inc.) and imported
into Wave2000.
The second main step in preparation of the model was the definition of the ma-
terial properties. Following White et al. [288], Perspex was chosen to prepare the
experimental samples (i.e. tibia and talus) due to its ease of milling. Plexiglas
material properties (Table 8.1), which were derived from the material library em-
bedded in the Wave2000, were assigned to the parts representing the tibia and
the talus (Fig. 8.1a). In addition, the simplified ankle joint was considered to
be submerged in water, representing the synovial fluid. Material properties of
water (Table 8.1) were defined using the material library of the Wave2000 and
incorporated in the simulation model (Fig. 8.1a). All four sides of the simulation
model boundaries were taken as expanding to infinity.

Table 8.1: Material properties used in simulations.

Water Plexiglas/Lucite
ρ[ kg

m3 ] 1000 1150
λ[MPa] 2241 5601
µ[MPa] 0 1392
φ[Pa · s] 9.998 · 10−8 0.01
η[Pa · s] 0.001 0.5
CL[

m
s ] 1497 2700

CS[
m
s ] 3.54491 1100.2

Longitudinal attenuation coefficient [dB/cm] 6.81479 · 10−4 5.12405 · 10−2

Shear attenuation coefficient [dB/cm] 153953 0.559761

Two non-focused 1 MHz US transducers (diameter: 12.7 mm) were positioned
(Fig. 8.1a) and oriented similarly to the transducers in the experimental setup
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that was used to validate the simulation result. A uniform apodization fac-
tor was used for both the transmitter and the receiver. Default settings of the
Wave2000 for gain (i.e. 0 dB), blanking (i.e. 0 µs), and duration (i.e. 0 µs) were
used for the receiver. As the simulations were intended to represent the exper-
imental setup as closely as possible, the source signal (i.e. time function of US
transducer acting as transmitter) was defined using the procedures presented
in the section describing the experimental setup and was used for all numerical
simulations.
To determine the grid size, the prepared model was run a total of 11 times while
gradually decreasing the grid size of the model from 100 µm to 16.7 µm. Subse-
quently, simulations results were compared to each other and the similarity be-
tween two subsequent simulations was computed using normalized root mean
square errors (NRMSE):

NRMSE =

√
∑n

i=1(xobs,i−xre f ,i)2

n
xobs,max − xobs,min

× 100% (8.2)

where xobs,i is the observed value at time i, xre f ,i = reference value at time i,
xobs,max = maximum of the observed data, xobs,min = minimum of the observed
data, and n = number of data points.
Simulation results were assumed to have converged if the NRMSE was less than
1%. Based on the simulation results, a grid size of 20 µm was found to result
in convergence and was used throughout the study. The time step of 6.5 ns was
automatically calculated by the software. The total simulation time was 100 µs.

8.2.1.2 Parametric Models

Before going through the preparation of all the models that would be necessary
to evaluate the effects of the parameters (e.g. variables related to the ankle joint)
on the acoustic wave response, experiments were performed. The experimen-
tal results were used to investigate whether the reference simulation can repre-
sent reality sufficiently accurate. Reassured by a good agreement between the
reference simulation results and experimental findings, all the parametric mod-
els were generated using the same procedures. Parameters expected to be most
dominantly influencing the wave response were studied. These parameters were
classified into three main categories: factors related to (i) the ankle joint geom-
etry, (ii) US transducers, and (iii) defect (Fig. 8.2). These categories consisted of
one (i.e. joint space width), two (i.e. translation and rotation of US transducer
acting as transmitter) and two (i.e. size and location of the defect) categories, re-
spectively. In addition, categories relevant to size and location of the defect and
to translation of US transducer were all split into two subcategories (Fig. 8.2).
Only one parameter of the model was varied at each simulation to gain insight
into the influence of each parameter on the output signals. With respect to the
factors related to the ankle joint (Fig. 8.2), the joint space width values were
varied from 2 mm to 5 mm (i.e. reference model) [286, 289] in intervals of 1
mm. Moreover, OCDs (Fig. 8.3a) were represented with a rectangular shape
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(Fig. 8.3b) in the parametric models simulating parameters related to defect. The
values used to describe depth and width of defects were respectively varied from
2 mm to 4 mm and 2 mm to 6 mm, thereby remaining within the range of values
reported for OCDs [290]. In addition to the defects with negative depth values,
positive defects (Fig. 8.2), which may occur in the stage IV lesions (i.e. detached
and displaced osteochondral fragment) [291] were considered.
Throughout the simulations, the size of temporal and spatial domain, the grid
size, the boundary conditions, and the material properties were kept identical to
the reference model.

8.2.2 Experiments

The experimental setup used is depicted in Fig. 8.4. It consists of two unfo-
cused 1 MHz US transducers with one being used as transmitter and one as
receiver (Olympus V303, transducer diameter: 12.7 mm, Panametrics Inc.), an
arbitrary waveform generator (Agilent Technologies, 33250A), an oscilloscope
(Agilent Technologies, DSO7054A) and the simplified ankle model made of Per-
spex (Fig. 8.4b). The ankle model was immersed in a water tank at room temper-
ature. To hold the model tibia and model talus in their proper positions, as well
as the US transducers, a custom-made Perspex frame was used (Fig. 8.4b).
The transmitter was excited by a short normally distributed pulse with a peak-
to-peak voltage of 9 V, a center frequency of 1 MHz, and a width of 4 µs. Before
going through the measurements to validate the reference simulation results,
the transmitter and the receiver were positioned facing each other in a straight
line at a known distance. Having only water (i.e. no joint model placed) in
between the transmitter and the receiver, the signal was recorded and used as a
time function for the source (Fig. 8.5a) in the simulation models. Measurements
performed for the validation were repeated 20 times, each time repositioning
both US transducers.

8.2.3 Validation of the Reference Model

To evaluate the similarity between the results of the reference simulation and
those of the experiment, the mean of the 20 measured output signals was calcu-
lated in the time domain and compared to the output signal of the simulation.
The normalized maximum cross-correlation (NMCC) was used as a similarity
measure:

NMCC =
max|( f ∗ g)[i]|√

∑n
i=1 f [i]2 ·

√
∑n

i=1 g[i]2
(8.3)

where f and g are functions with a length of n, and f ∗ g is the cross correlation
of functions f and g. The reference simulation was assumed to represent reality
sufficiently, if the calculated NMCC was within a margin of 5% (i.e. NMCC ≥
0.95).
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8.2.4 Assessment of Parameters Effects

To assess effects of individual parameters on the output signals, results of each
parametric simulation were compared to those of the reference simulation. For
each case, NRMSE (Eq. 8.2) values were calculated and used for quantitative
evaluation of changes in the reference output signal ensued as a result of varia-
tions in parameters. To discover whether variations in parameters mainly alter
the shape of the reference output signal, the NMCC was determined as well, as
it is invariant to time shift.

8.3 Results

The output signal of the reference simulation was compared to the mean of 20
measured output signals in the time (Fig. 8.5a) and in the frequency domain
(Fig. 8.5b). The shapes of both output signals were highly similar, apart from
a comparatively high flattening of the output signal of the reference simulation
after 60 µs (Fig. 8.5a). The similarity measure (i.e. NMCC) between the output
signals was found to be 0.97.
The amplitude of the output signal progressively increased when increasing the
joint space (Fig. 8.6a). NRMSE and NMCC ranged from 6.29% (for joint space
width: 4 mm) to 65.25% (for joint space width: 2 mm), and from 0.976 (for joint
space width: 4 mm) to 0.391 (for joint space width: 2 mm), respectively (Table
8.2).

Table 8.2: Normalized root mean square error (NRMSE) and normal-
ized maximum cross correlation (NMCC) for parametric models sim-
ulating the parameters related to the ankle joint (i.e. joint space width)
and to the US transducers (i.e. translation and rotation of US trans-
ducer acting as transmitter). In each parametric simulation, only one
parameter of the model was changed, and the other parameters were
kept identical to those of the reference model.

Variable NRMSE (%) NMCC
Joint space width (2 mm) 65.25 0.391
Joint space width (3 mm) 29.75 0.643
Joint space width (4 mm) 6.29 0.976
Transducer x-translation (2 mm) 9.65 0.998
Transducer x-translation (4 mm) 9.57 0.996
Transducer y-translation (2 mm) 3.96 0.992
Transducer y-translation (4 mm) 11.72 0.929
Transducer rotation(37◦) 8064.2 0.629
Transducer rotation(25◦) 78.02 0.632
Transducer rotation(12◦) 19.59 0.924

No noticeable change in the amplitude of the output signal was present when
translating the transducer in x-direction (Fig. 8.7a), but, there was a clear phase
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shift.
The amplitude of the output signal does considerably decrease when translat-
ing the transducer in y-direction (Fig. 8.7b). The NRMSE measures support the
finding that translation of the transducer in x-direction does not generate notice-
able changes on the output signal in terms of amplitude, whereas translation
in y-direction does (Table 8.2). The amplitude of the output signal is almost
zero when the transducer is rotated 37◦ clockwise, which implies perpendicu-
lar alignment to the talar surface (Fig. 8.7c). Analogous to the joint space width,
variations in the transducer’s rotational position cause high NRMSE (e.g. 78.02%
for the transducer rotated 25◦ clockwise) and low NMCC (e.g. 0.632 for the trans-
ducer rotated 25◦ clockwise), supporting that apparent changes in the amplitude
of the output signal occur.
The defects having depths of -4 mm and -2 mm (i.e. representing an actual hole
in the bone) cause only small changes in the output signal (Figs. 8.8 and 8.9) for
any location on the tibia or the talus. The so-called positive defects with depths
of 2 mm and 4 mm cause large differences in the output signal compared to the
reference output as is clear from their higher NRMSE values (Fig.8.8). The defect
in the tibia with a depth of 2 mm and width of 6 mm shows the maximum de-
viation (i.e. 36.16% NRMSE) from the reference signal (Fig. 8.8). The maximum
NRMSE for a talus defect (i.e. 25.71%) is found for a depth of 4 mm and width
of 6 mm (Fig. 8.8).

8.4 Discussion

FDTD models of a joint space of the ankle were generated to determine the ef-
fects of variations of the joint space width, US transducer orientation and defect
size and location on the propagation of a 1 MHz US pulse. The reference simula-
tion results were validated against experimental measurements (Fig. 8.5). From
60 µs, shape of output signal of the reference simulation differed slightly from
that of the mean of 20 measured output signals (Fig. 8.5a). Such a variation
in shape may be results of reflections due to objects present in the actual setup,
which were not included in simulations. However, considering the NMCC value
of 0.97, which remains within a margin of 5%, it is admitted that the reference
simulation agrees well with the experimental data.
A decline in the amplitude of the output signal was seen as a result of decreasing
the joint space width (Fig. 8.6). These findings indicate that to support the prop-
agation of 1MHz US pulse within the joint space of the ankle, it is recommended
to distract the ankle joint. This is feasible for the majority of the population for
up to 5 mm of joint space, as distraction is a standard procedure when perform-
ing ankle arthroscopy for treatment of OCD [286, 287]. However, an increase
in the joint space width does not mean that defects would relatively more eas-
ily be detected. Having a narrower joint space width might be more beneficial
to detect defects, because the part of the signal ending up in any defect would
be relatively larger in comparison to the part of the signal traveling through the
joint space.
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The NRMSE (i.e. 3.96% - 8064.2%) and NMCC (i.e. 0.998 - 0.629) values of the
models simulating the translation and rotation of the transducer showed no no-
ticeable effect in x-direction, but a strong decrease of the output signal with trans-
lation in y-direction and rotation (Fig. 8.7). Taking the high NMCC (i.e. 0.998 and
0.996) and NRMSE (i.e. 9.65% and 9.57%) for the models with transducer’ trans-
lations in x-direction into account, one could conclude that the changes in the
output signal mainly increased due to the shift of US pulse in time. By increas-
ing the y-translation or rotation, a major part of US pulse will be sent through
the bone into which the US beam has a limited ability to penetrate. This is not
desired in the application of the proposed concept. From these simulations, it
is concluded that the positioning of the transducers should be done with great
care, and a device should be developed that can position the transducers with
high reliability around the ankle joint of patients at multiple occasions, giving an
optimal field of view for the transducers into the joint space.
Analysing the results of variations in the defect size, it seems that positive de-
fects, which may occur in the stage IV lesions (i.e. detached and displaced os-
teochondral fragment) [291], made noticeable alterations to the output signal,
whereas, negative defects (Fig. 8.2) created relatively small changes (Figs. 8.8
and 8.9).
Increasing the width for negative talus defects did not seem to vary the output
signal. However, the NRMSE values for increasing widths of the negative tibial
defects did show what seems to be a linear trend (Fig. 8.8) that might be helpful
to determine tibial defect sizes with the proposed concept of wave propagation.
No changes in the output signal due to variations in width of talus defects can be
explained from Fig. 8.10. The US pulse is guided along the tibia rim whereas it
is less or not guided along the talus rim. Therefore, changes in the talus rim will
not alter the wave propagation, but variations in the width of the tibia defects
can be seen as a change in the amplitude of the signal (i.e. the NRMSE values).
This observation indicates that using the current configuration (e.g. frequency of
the US transducers) detection of tibial defects would be easier than those of talus
defects.
No distinguishable effect of the defect location (i.e. defects located at 60◦, 90◦ and
120◦, Fig. 8.2) was found on the output signal. Considering the fact that an ac-
curate description of size and location of defect could help orthopedic surgeons
in operative planning and in monitoring response to therapy [38], it would be
more valuable if the location of defect besides its size could be determined using
the proposed concept. In this respect, there is a need for further research on pa-
rameters (e.g. other frequencies), which might allow one to estimate the location
of the defect.

One of the limitations of this study is the considerable simplification of the ankle
joint. In the present model, cartilage and other soft tissues were not considered.
As water may not be able to sufficiently replicate the absorption of US by soft
tissues, the current results may somewhat differ from simulations including soft
tissues in terms of US pulse amplitude. However, the general trends due to vari-
ations of the joint space width, and the translation and rotation of the US trans-
ducer are not expected to change. Furthermore, the alterations in the reference
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output signal due to defects are expected to be less noisy if the cartilage is also
incorporated into the model, because the losses due to reflection and refraction
at the water-cartilage interface would be smaller compared to the current water-
Perspex interface, as water and cartilage have very similar densities.
Another limitation of this study is the omission of several parameters (e.g. the
wave frequency, radius of the tibia and talus). To have a complete picture of US
propagation within the joint space of the ankle, it is necessary to take also the
omitted parameters into account and to evaluate their effects.
In this study, numerical modelling was limited to 2D to avoid relatively excessive
computational cost of 3D models. Considering the other computational studies
conducted to assess US interactions with cartilage [292], bone [293, 294, 295] and
to evaluate US propagation within the joint space of a human knee [296], it is
believed that 2D models are good enough for obtaining preliminary insight in
the new concept.
In the present models, bony parts were represented by Perspex shapes so that
simulations could be easily validated with experiments. A concern might be
raised about use of a homogeneous joint mock-up to describe highly heteroge-
neous bony tissues. In the proposed concept, the focus is on the US wave sent
through the ankle joint space and not through the bone itself, that is why both
cortical bone and cancellous bone can be assumed homogeneous as suggested
by White et al. [296]. Taking studies of White et al. [296, 297, 288] into account,
the use of Perspex models therefore seems to be a reasonable starting point prior
to the development of more complex models. In the future, simulations consid-
ering more realistic composition and structure of bony tissues will be developed
and used to further investigate US wave travelling through the ankle joint and
its use in detection of defects.
The current study has shed some lights on effects of variables (e.g. joint space
width) on acoustic wave response and gives an idea on the feasibility of the new
concept. Further research is required to determine acoustic parameters that can
describe the entire joint space morphology and be robust enough to cope with
individual variations. A next step will be the evaluation of the proposed concept
using human ankle cadaver models as suggested by Tuijthof et al. [246]. For each
human ankle cadaver model, size and location of defect will be estimated using
US simulations and results will be compared with the real case (i.e. the human
ankle cadaver model).
The performance of the proposed diagnostic technique in identification of de-
fects is expected to be better than that of the traditional US imaging modality.
That is because the proposed technique has the potential to increase the per-
centage of the scanned articular surface to 100%, allowing US wave to propagate
through the ankle joint. In comparison, only an estimated 50% of the talar surface
could be visualized using traditional US imaging when the foot is in maximum
plantar flexion [246]. Since only 80% of defects [38] are located in the area vi-
sualized by traditional US imaging, it cannot be used for diagnostic assessment.
Moreover, the proposed diagnostic technique is more suitable for long-term fol-
low of individuals having OCDs as compared to CT and MRI due to its non-
invasiveness, compact set up and cost-effectiveness.
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In summary, the current study provided a good start to investigate the feasibility
of the concept to use acoustic waves traveling through the entire joint space for
characterisation of changes in the joint shape due to the presence of OCDs. To
the authors’ best knowledge, this is an entirely new concept and the results in-
dicate that it could be feasible provided that the effects of transducer orientation
and joint space width are reduced. This requirement obliges development of a
device that could fixate transducer orientation and joint space width in a reliable
and repeatable manner.
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Figure 8.2: Representation of parameters related to the ankle joint (i.e.
joint space width), US transducers (i.e. translation and rotation of US
transducer acting as transmitter) and defect (i.e. width, depth and lo-
cation). Joint space width values are varied from 2 mm to 5 mm (i.e.
reference simulation model) in intervals of 1 mm. Translations of US
transducer were ranged from 2 mm to 4 mm. The US transducer ro-
tated 37◦ around its center implies that it is perpendicularly aligned
to the talar surface, whereas the other two angles were arbitrarily cho-
sen: 12◦, and 25◦.

Figure 8.3: (a) Sagittal reconstructed image of CT scans of an ankle
with OCD (b) Representation of a defect in simulations.
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Figure 8.4: (a) Schematic presentation of the experiment setup; (b)
Perspex frame designed to hold the tibia and talus parts. Holders for
transducers are included to fixate them at the desired positions.
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Figure 8.5: (a) Time function of the US transducer acting as trans-
mitter, mean of 20 measurements and output of the reference simu-
lation. (b) Amplitude spectra of the simulated signal and the mean
signal recorded in experiment. In small window, attenuations [dB] in
the simulated model and in the experiment are shown. Attenuations
were calculated based on the provided formula, where α( f ) is the at-
tenuation [dB], log10 is the logarithm to the base 10, R( f ) and S( f )
respectively are the amplitude spectrum of the reference waveform
(i.e. input signal) and the amplitude spectrum of a receiver waveform
(i.e received signal in experiment or in the reference simulation).

Figure 8.6: Outputs of the parametric models simulating the joint
space width.
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Figure 8.7: (a) Outputs of the parametric models simulating transla-
tion of US transducer (i.e. transmitter) in x-direction. Orientations
of the transmitter and the receiver were kept identical to those in the
reference model (i.e. 37◦ from vertical) (b) Outputs of the paramet-
ric models simulating translation of US transducer (i.e. transmitter)
in y-direction. Orientations of the transmitter and the receiver were
kept identical to those in the reference model (i.e. 37◦ from vertical)
(c) Outputs of the parametric models simulating rotation of US trans-
ducer (i.e. transmitter). Position and orientation of the receiver were
not changed and kept identical to those in the reference model.
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Figure 8.8: Normalized root mean square errors (NRMSE) for models
simulating defects located on the talus (i.e. first graph) and on the
tibia (i.e. second graph). The first three columns of the first and sec-
ond graphs are provided to clearly represent the effects of varying de-
fects depths when the defect width was fixed at 2 mm, 4 mm or 6 mm.
The last four columns are presented to easily capture the changes re-
lated to the varying defects widths when the defect depth was fixed
at -4 mm, -2 mm, 2 mm or 4 mm. Negative values for defect depth
are used to represent actual holes in the bone, while positive values
are used to describe positive defects, which may occur in the stage IV
lesions (i.e. detached and displaced osteochondral fragment). In the
first and second graphs, depth and width of defect are represented by
a ’D’ and a ’W’, respectively. The minus sign ’-’ is used to describe
negative defect, an actual hole in the bone (e.g. D-2W6 represents
negative defect, i.e. a hole, with a depth of 2 mm and a width of 6
mm).
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Figure 8.9: Normalized maximum cross correlation (NMCC) for mod-
els simulating defects located on the talus (i.e. first graph) and on the
tibia (i.e. second graph). The first three columns of the first and sec-
ond graphs are provided to clearly represent the effects of varying de-
fects depths when the defect width was fixed at 2 mm, 4 mm or 6 mm.
The last four columns are presented to easily capture the changes re-
lated to the varying defects widths when the defect depth was fixed
at -4 mm, -2 mm, 2 mm or 4 mm. Negative values for defect depth
are used to represent actual holes in the bone, while positive values
are used to describe positive defects, which may occur in the stage IV
lesions (i.e. detached and displaced osteochondral fragment). In the
first and second graphs, depth and width of defect are represented by
a ’D’ and a ’W’, respectively. The minus sign ’-’ is used to describe
negative defect, an actual hole in the bone (e.g. D-2W6 represents
negative defect, i.e. a hole, with a depth of 2 mm and a width of 6
mm).
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Figure 8.10: Simulated ultrasound pulse at t=10.42 µs, 20.19 µs, 29.96
µs and 40.38 µs. The white bar is the transducer acting as transmitter.
Red circle is used to emphasize US pulse guided along the tibia rim.
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9.1 General Discussion

The main focus of this thesis was bone shape and its relationship with skeletal
diseases. A wide range of research questions were addressed within this context,
which are either explicitly (Chapters 3-6) or implicitly (Chapters 7-8) related to
bone shape. The applications are in detection of the risk factors of skeletal dis-
eases (Chapters 3-5), the longitudinal monitoring of patients (Chapter 7), and
early diagnosis (Chapter 8). In general, the results of the thesis show that bone
shape has a role to play in various aspects of skeletal diseases including deter-
mining the risk factors, diagnosis of the diseases, and monitoring of the onset
and progression of the diseases. However, advanced approaches such as SSMs,
SAMs, and FEM models are needed to unravel such relationships.
The review on SSMs and SAMs in Chapter 2 demonstrates that these models can
be used to describe variations in bone shapes (i.e. SSM) or densities (i.e. SAM)
or in a combination of both (i.e. SSAM) within a studied population. Numerous
successful applications [23, 13, 1, 3] have established the role of statistical mod-
els in investigating bones and their relations with skeletal diseases. As statistical
models are well-suited for the use in conjunction with engineering tools such
as FEM technique, it is expected that their use in bone research will continue to
grow in the coming decades.
One example of a combined remedy to predict osteoporosis-related hip fracture
is presented in Chapter 3, which has been developed based on SSAM and FEM
techniques. The generation of patient-specific 2D FE model based on DEXA im-
ages [298, 299, 300, 128] for estimation of fracture risk is not a new idea. Never-
theless, this study contributes to the field by presenting an automated platform
that requires user-interaction only at the beginning (i.e. extraction of bone ge-
ometry and density from a DEXA image) with a mouse click to generate such
a model. The results of the study suggest that the models generated using the
presented scheme could be a good alternative to those built manually, as strong
correlation was found between the fracture loads estimated using manually and
automatically generated models, R2 = 0.82. Although the proposed scheme is
a viable option to be used in clinics due to its associated time and costs that
are comparable to those of clinical methods employed at present, its ability to
predict fracture risk is currently unknown. The specificity and sensitivity of the
presented scheme in fracture risk estimation could not be determined because
of the nature of dataset available to us at the time. To estimate the utility of the
proposed technique in clinical settings, it would be necessary to perform another
study with a large dataset including a mixture of DEXA scans of healthy individ-
uals and osteoporotic patients for whom long-term follow-up data is available.
Another issue worth mentioning is that the 2D FE models are limited in describ-
ing the distribution of material properties and force components in the third di-
mension. To overcome these limitations, the presented scheme could be modi-
fied in a way that 3D FE models are developed. As 3D imaging modalities such
as CT and QCT are rarely used at present in clinics [10] and are not expected to
be a common option either in the coming decade for osteoporosis management,
it is believed that generation of 3D FE models based on these imaging modalities
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would not be the best approach. Alternatively, 3D-2D registration algorithms
[301, 302, 64] could be employed to model 3D bony structures from 2D DEXA
image(s). Nevertheless, due to the high computational time (i.e. up to 40 hours
[302]), the description of 3D-DEXA bony structures was not clinically feasible
until recently. Lately, a method has been proposed for estimating 3D bony struc-
tures from an anteroposterior DEXA projection in approximately 2 minutes [10].
In Chapters 4 and 5, SSMs were used to study 3D shape variations in the bones
forming the talocrural (i.e. talus and distal tibia) and subtalar (i.e. talus and
calcaneus) joints and their interactions with the OCD and CAI. These studies
contribute to the clinical field mainly with their findings suggesting that shape
differences exist between patients with an injury and healthy controls. Based on
the results of Chapter 4, an increase in the vertical neck angle (VNA) of the talus
and the sharpness of the medial malleolus may make individuals more prone to
sustain an OCD. Moreover, changes in the curvature of the talar lateral process
combined with the inclination angle of the talar neck relative to the body (Chap-
ter 5), and the medial and lateral tuberosity of the calcaneus combined with the
contour of the anterior articular surface may contribute to the development of
CAI in individuals who have sustained a lateral ankle sprain. It should be noted
that the dataset used in both studies were retrospectively acquired. Therefore,
it is unclear whether the findings represent post-traumatic changes or whether
these indicated shape variations have contributed to the onset of the disease.
To clarify this issue, the SSMs should be rebuilt based on a prospective dataset,
and bone shape variations and their prognostic values for these specific diseases
should be analyzed. Based on the experience gained in two studies, it is notewor-
thy to indicate that the utility of 3D statistical models in clinical settings is open
to discussion. SSMs enable one to identify shape variations that cannot be cap-
tured with a simple set of 3D measurements. However, clinicians are more used
to interpreting radiographs, as they are widely available and analyzed to gain
insight in patient’s conditions. It may therefore be worth to translate the shape
variations explained by 3D statistical model to (digitally constructed) 2D radio-
graphic measurements to strengthen the adoptability of these models. We are
currently working on the translation of 3D statistical-model based shape varia-
tions in the talus and distal tibia to 2D parameters that can potentially contribute
to the development of CAI and be measured using standard plain radiographs.
If the translated parameters can be reliably measured and have prognostic value,
they could be used as a part of a risk prediction model for CAI.
When building 3D SSMs of the talus and distal tibia in Chapter 4, the contralat-
eral unaffected talocrural joints of OCD group were included assuming that bi-
lateral symmetry exists in the bones forming the ankle joint. This assumption
was made referring to a few studies [160, 161]. During the literature search, the
scarcity of documentation on (a)symmetry of lower extremity bones caught our
attention, although ipsi- and contralateral bone shape of an individual is often as-
sumed to be symmetric in clinical assessments and research studies. The added
value of Chapter 6 to bone research field have become evident at this point. Con-
trarily to previous studies that have investigated symmetry by reducing bone
shape to a few anatomical landmarks [206, 217], the bones forming the talocrural
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and subtalar joints (i.e. the tibia, fibula, talus and calcaneus) were described in
a spatially dense manner in our study. It was found that the bone shapes were
in general bilaterally symmetric. Nevertheless, symmetry assumption may not
be valid in cases for which, (1) the curvature of the fibula shaft; (2) the diam-
eter of the fibula; or (3) the tibial tuberosity together with the diameter of the
tibia are particularly important. For instance, the diameter of the fibula and tibia
could be pertinent to identifying the correct implant size and proper placement
in an arthroplasty surgery. At the same time, the curvature of the fibula shaft
could be relevant for planning corrective osteotomy. Accordingly, the outcomes
of the surgical procedures (i.e. arthroplasty, corrective osteotomy) performed
with shape symmetry assumption may be influenced by side-shape variations in
the fibula and tibia. In this study, the isolated locations of asymmetry may have
been overlooked, as principal component analysis (PCA) was used to describe
the shape variations. This issue needs to be clarified in future studies.
The problems handled in the following two chapters were more linked to the
longitudinal monitoring of a patient with a disease (i.e. OCD, Chapter 7) and
early diagnosis of a disease (i.e. OCD, Chapter 8). In Chapter 7, a rigid surface-
volume registration scheme was presented to match CT and freehand-tracked
US images of the talocrural joint. Although the registration of CT and US im-
ages of the same individual is not a new concept and there exist several regis-
tration algorithms that have been proposed, none of the previous studies have
worked on the talocrural joint. Previously presented registration schemes have
been applied to various anatomical sites including long bones [255, 259], ver-
tebrae [257, 261, 260] and pelvis [255, 254, 262]. The main contribution of this
chapter is that the registration scheme is presented for the talocrural joint and
its competence was tested on the joint itself. Another added value of the study
is that the potential of US imaging as an alternative to CT in pre-operative plan-
ning of arthroscopic access to anterior talar OCDs was shown based on a set of
US and CT data merged using the presented scheme. The results of the study im-
plied that freehand-tracked 2D US images of a talocrural joint could successfully
be registered to the CT scans of the same joint with a mean registration error of
0.9 ± 0.5 mm. Yet, the robustness of the registration algorithm against different
initialization positions and the sampling of US data needs to be improved before
its use in clinical settings. Based on the visual inspection of the pre-processed
US data with the worst registration success rate, it was found that soft tissues in
the nearby region of bones could not be totally filtered out due to their bony-like
appearances. It is possible that the presence of such unwanted features worsens
the outcomes. Therefore, it is suggested that more-sophisticated descriptors such
as local phase tensor [266] be tested in the future to assess their potential in dis-
carding the responses of undesired soft tissues, while enhancing bone contours
in US images. The results of the robustness tests and our observations made
during the US data acquisition implied that there is also room for improvements
in the US data acquisition protocol. It is advised that the effects of an alterna-
tive high-quality probe (i.e. US probe with a relatively smaller head size and
specially designed for musculoskeletal applications) and different ankle sweep-
ing techniques be studied in the future. Another important issue worth stating
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is that the presented scheme requires the use of a combination of different soft-
ware (e.g. Mimics) and custom-made code developed in Matlab. To increase the
user-friendliness of the registration scheme and its utility in clinical setting, all
the steps should run in a single platform and in a way that real-time feedback
could be provided to guide the operator. We are currently working to improve
the presented methods and to generate an embeddable code to be used in a sin-
gle environment.
To diagnose an OCD, we presented a new technique based on US wave propaga-
tion through the ankle joint and studied its feasibility in Chapter 8. Experimentally-
validated 2D finite-difference time-domain models of the ankle joint gave an idea
of the feasibility of the new concept and helped us gain insights into the effects of
some variables related to the ankle joint (i.e. joint space width), defect (i.e. width,
depth, and location) and transducer (i.e. translation and rotation of a transducer
acting as transmitter) on the acoustic wave response. The results suggested that
the technique could be feasible provided that the effects of the width of the joint
space and the transducer orientation on wave response could be reduced. Yet,
the study has several limitations. Not all of the parameters that influence wave
propagation within the joint space of the ankle were included in the study. One
such parameter is wave frequency. In the study, one single wave frequency of
1 MHz was employed. Following the feasibility study, a set of computational
simulations with frequencies varying from 40 kHz to 2 MHz were performed to
assess the effects of frequency in identification of a defect. Preliminary results
indicated that a frequency of around 100 kHz may make the technique more
sensitive for identifying a defect. As the results are not concrete yet and our
investigations on this issue will continue in the future, they were not covered
within the scope of this work.
Like in the given example of homemade cookies in Chapter 1, bones of the same
type are not absolutely identical to each other and their shapes vary within and
between individuals. The studies presented in this thesis clearly show that the
shape of bones interacts with skeletal diseases (i.e. osteoporosis, OCD and CAI)
in multiple aspects. Although it cannot be stated whether bone shape is the
most dominant factor in the determination of the relationship between bone
and diseases, the outcomes of the studies and our experiences gained through
the work suggest that it is an integral part of the process. It is believed that a
large economic burden of diseases on society can be decreased by improving
patient-specific treatment and prevention strategies. Accordingly, inclusion of
risk factors with bone shape origin in prediction models and use of diagnostic
and monitoring techniques, such as the ones presented in Chapters 3, 7 and 8,
are expected to positively contribute to the development of patient-specific treat-
ment and prevention strategies. Therefore, we highly encourage researchers to
continue performing the studies on the shape of bones and its association with
skeletal diseases.
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9.2 Summary

Despite their high structural and functional likeness, bones of the same type are
not exactly the same. This is mainly because of intra- and inter-individual vari-
ations in the shapes and constituents of bones. Deviations in the variables of a
bone from their optima could adversely affect bone functions and may have se-
vere implications for individuals. There is increasing evidence suggesting that
the shape of bones could be both a cause and consequence of skeletal diseases.
Considering the serious economic and social burden caused by skeletal diseases
and the potential of bone shapes in interacting with them, the focus of this thesis
is mainly on the analysis of relationship between bone shape and various skele-
tal diseases.
Within the scope of this thesis, clinically important problems that are directly
(Chapters 3-6) or indirectly (Chapters 7-8) associated with the morphology of
bones, and either have been overlooked (Chapters 4-6) or entail technical im-
provements (Chapters 3, 7 and 8) have been handled. The studies, except two
of them (Chapters 2 and 6), can also be classified into one of three following
categories: (1) risk factors (Chapters 3-5), (2) long-term monitoring of patients
(Chapter 7) and (3) early diagnosis of a disease (Chapter 8).
While seeking solutions to problems stated in Chapters 3-6, either a combina-
tion of statistical shape models (SSM) and statistical appearance models (SAM)
or SSM alone have been used. To gain insight into these statistical models prior
to their use in the studies presented, an overview on them and their applications
in bone research is presented in Chapter 2. Accordingly, the first part of Chapter
2 is dedicated to the main concepts and algorithms relevant to SSM and SAM.
In the second part of Chapter 2, the applications of SSM and SAM in the study,
diagnosis, and treatment of skeletal diseases have been discussed. An appendix
of this chapter reviews the most important technical aspects of SSM and SAM.
A scheme based on a combination of SSAM and finite element modeling (FEM)
techniques has been presented in Chapter 3 for fast and automated prediction of
the risk of osteoporosis-related hip fractures. While SSAM has been used for ex-
tracting the geometry of a bone and its density distribution from an unseen DXA
image of a patient in an accurate and automated manner, FEM enables consider-
ing the factors (i.e. the shape and density-based mechanical properties of a bone
and loading conditions) that play important roles in causing the onset of a frac-
ture. The fracture loads estimated using automatically generated models did not
significantly differ from those obtained manually.
In Chapters 4 and 5, 3D SSMs have been built for all of the bones forming the
talocrural (i.e. the talus and distal tibia, TCJ, Chapter 4) and subtalar (i.e. the
talus and calcaneus, STJ, Chapter 5) joints using the CT scans of a mixed popula-
tion consisting of individuals with no known ankle joint pathology and patients
with a disease, namely an osteochondral defect (OCD) (Chapter 4) or chronic an-
kle instability (CAI) (Chapter 5). Using the SSMs and statistical tools, 3D shape
variations in the above-mentioned bones have been analyzed and compared be-
tween the disease and control groups. The results of two studies showed that
there are some specific shape variations that may help us distinguish the bones
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of individuals who suffer from an OCD (Chapter 4) or CAI (Chapter 5) from
those of healthy controls. Statistically significantly different shape modes were
observed between the groups were mainly in: (1) the vertical neck angle of the
talus and (2) the medial malleolus in the case of the OCD patients (Chapter 4).
In Chapter 5, changes in: (1) the curvature of the talar lateral process and the
inclination angle of the talar neck relative to the body and (2) medial and lateral
tuberosity, and in the contour of anterior articular surface of the calcaneus were
found to be statistically significantly different between the groups.
While performing the study described in Chapter 4, we assumed that the talus
and distal tibia are bilaterally symmetric. This assumption was made based on a
few available studies. In Chapter 6, we assessed 3D shape variations, and bilat-
eral (a)symmetry in the bones forming the TCJ and STJ (i.e. the fibula, tibia, talus
and calcaneus). The effects of gender on shape variations were also evaluated.
The methodology followed in the study mainly consisted of 3D SSM technique
that had been previously applied in Chapters 4 and 5, and distance-based per-
mutational statistics. The results of the study suggested that the shapes of bones
were in general symmetric. However, the symmetry assumption did not hold
for changes in the tibial tuberosity together with the diameter of the tibia, and
the curvature of the fibula shaft and the diameter of the fibula.
Ultrasound (US) imaging is a preferred alternative to computed tomography
(CT), magnetic resonance imaging (MRI), and arthroscopy techniques in post-
operative long-term follow-up of patients with a disease (e.g. OCD), as it is a
cost-effective and non-invasive method and does not expose patients to ionizing
radiation. Nevertheless, US images cannot not be easily interpreted and com-
pared with each other over time without having access to anatomical data pro-
vided by other modalities such as CT. In Chapter 7, we presented a rigid surface-
volume registration scheme based on evolutionary approaches to use freehand-
tracked 2D US images of the talocrural joint in conjunction with CT scans of the
same joint. The performance of the registration scheme and its robustness with
respect to different initialization positions and to the sampling of US data was
evaluated on a dataset collected from 12 cadaveric ankles. A practical use of the
presented scheme was demonstrated in a case study, in which the potential of
US imaging as an alternative to CT for pre-operative planning of arthroscopic
access to the anterior talar OCDs was studied. 2D freehand-tracked US images
and CT scans of the talocrural joint could be registered with a mean registration
error of 0.9 ± 0.5 mm using the presented scheme. The results of the practical
case study demonstrated that US imaging might be a promising candidate for
evaluating the accessibility of OCD by anterior arthroscopy.
Due to its inherent properties (e.g. non-invasiveness), US imaging is the pre-
ferred method in diagnosing skeletal diseases such as OCD. Nevertheless, not
all OCDs could be discriminated using US imaging. That is because the artic-
ulating surfaces of the talus and distal tibia cannot be completely swept due to
the limited ability of US wave to penetrate through bones. In Chapter 8, we
propose a new diagnostic technique based on US wave propagation through
the talocrural joint. The feasibility of the proposed technique was studied using
experimentally-validated 2D finite-difference time-domain models of the talocru-
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ral joint. The effects of variables relevant to the talocrural joint (i.e. joint space
width), US transducers (i.e. translation and rotation of US transducer acting
as transmitter) and OCDs (i.e. width, depth and location of a defect) on wave
propagation were studied. The results suggested that an OCD could be detected
using the proposed technique, if the effects of some parameters including joint
space width, and the orientation of US transducer particularly could be reduced.

9.3 Samenvatting

Ondanks de hoge structurele en functionele gelijkenis zijn botten van hetzelfde
type nooit precies hetzelfde. Dit komt voornamelijk door de variatie van zowel
de vorm als de bestanddelen van botten binnen en tussen personen. Deviaties
van deze variabelen in een bot ten opzichte van hun optima kan de function-
aliteit van botten nadelig beı̈nvloeden en kan ernstige gevolgen hebben voor
individuen. Er is een toenemende mate van bewijs die impliceert dat de vorm
van botten zowel de oorzaak als het gevolg kan zijn van skeletale afwijkingen.
Gezien de hoge socio-economische belasting die gepaard gaat met skeletale afwi-
jkingen en de mogelijke interactie met variatie in bot vorm, is deze thesis hoofdza-
kelijk gericht op de analyse van de relatie tussen variatie in botvorm en verschil-
lende skeletale afwijkingen.
In deze thesis zullen klinisch belangrijke problemen die direct (Hoofdstukken 3-
6) of indirect (Hoofdstukken 7-8) geassocieerd zijn met de morfologie van botten,
en die in het verleden zijn overzien (Hoofdstukken 4-6) of betrekking hebben op
technische verbeteringen (Hoofdstukken 3, 7 en 8) worden behandeld. De stud-
ies, afgezien van twee (Hoofdstukken 2 en 6), kunnen ook in de volgende drie
categorieën worden geclassificeerd: (1) risico factoren (Hoofdstukken 3-5), (2)
lange termijn monitoring van patiënten (Hoofdstuk 7) en (3) vroege diagnose
van een ziekte (Hoofdstuk 8).
Tijdens het zoeken naar oplossingen voor problemen zoals beschreven in Hoof-
stukken 3-6, zijn ’statistical shape models (SSM)’ of een combinatie van SSM en
’statistical appearance models (SAM)’ gebruikt. Om inzicht te krijgen in deze
statistische modellen, voordat de studies worden toegelicht, is er een overzicht
van de modellen en de toepasbaarheid in bottenonderzoek gepresenteerd in
Hoofdstuk 2. Het eerste deel van Hoofdstuk 2 is gewijd aan de hoofdconcepten
en algoritmen die relevant zijn ten aanzien van SSM en SAM. In het tweede deel
van Hoofdstuk 2 worden de applicaties van SSM en SAM in de studie, diag-
nose en behandeling van skeletale afwijkingen besproken. In de appendix van
dit hoofdstuk worden de meest belangrijk technische aspecten van SSM en SAM
besproken.
In het kader van snelle en geautomatiseerde voorspelling van risico van osteo-
porose gerelateerde heupfracturen is er een schema gepresenteerd in Hoofdstuk
3 gebaseerd op een combinatie van SSAM en ’Finite Element Modeling’ (FEM)
technieken. Hoewel SSAM is gebruikt voor het extraheren van de botgeometrie
en densiteitsverdeling van een DEXA-beeld van een patiënt op een nauwkeurige
en geautomatiseerde manier, maakt FEM het mogelijk om de factoren (d.w.z. de
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vorm en op dichtheid gebaseerde mechanische eigenschappen van een bot en
belastingcondities) die een belangrijke rol spelen bij ontstaan van een fractuur.
Met behulp van de automatisch gegeneerde modellen werd er geen significant
verschil gevonden ten aanzien van de geschatte fractuurbelasting in vergelijking
met de handmatig verkregen metingen.
In Hoofdstuk 4 en 5 zijn 3D SSM’s ontworpen voor alle botten betrokken bij
het talocrurale (d.w.z. de talus en distale tibia, TCJ, Hoofdstuk 4) en subtalaire
(d.w.z. de talus en calcaneus, STJ, Hoofdstuk 5) gewricht met behulp van CT-
scans van een gemengde populatie bestaande uit individuen zonder bekende
enkelgewrichtspathologie en patiënten met een skeletale afwijking, namelijk os-
teochondraal defecten (OCDs) (Hoofdstuk 4) of chronische enkelinstabiliteit
(CEI) (Hoofdstuk 5). Met behulp van de SSM’s en statistische hulpmiddelen
zijn 3D-vormvariaties in de bovengenoemde botten geanalyseerd en vergeleken
tussen de aangedane patiënten en controlegroepen. De resultaten van twee on-
derzoeken tonen aan dat er enkele specifieke vormvariaties zijn die kunnen helpen
de botten van individuen die lijden aan een OCD (Hoofdstuk 4) of CEI (Hoofd-
stuk 5) te onderscheiden van die van gezonde enkels. Statistisch significante
vorm verschillen werden waargenomen tussen de groepen in: (1) de hoek van de
nek van de talus en (2) de mediale malleolus in het geval van de OCD-patiënten
(hoofdstuk 4). In hoofdstuk 5 werden verschillen gezien in: (1) de kromming
van processus lateralis tali en de inclinatiehoek van de talaire nek ten opzichte
van corpus tali en (2) de mediale en laterale tuberositas, en in de contouren van
het anterieur gewrichtsoppervlak van de calcaneus waren statistisch significant
verschillend tussen beide groepen.
Tijdens het uitvoeren van het in Hoofdstuk 4 beschreven onderzoek hebben we
aangenomen dat de talus en distale tibia bilateraal symmetrisch zijn. Deze aan-
name is gedaan op basis van een aantal beschikbare onderzoeken. In Hoofd-
stuk 6 hebben we 3D vormvariaties en bilaterale (a) symmetrie van de botten
die het talocrurale en subtalaire gewricht vormen (d.w.z. de fibula, tibia, talus
en calcaneus) beoordeelt. De effecten van geslacht op vormvariaties zijn ook
geëvalueerd. De methodologie bestond voornamelijk uit de 3D SSM-techniek
die eerder in de Hoofdstukken 4 en 5 was toegepast, en op afstand gebaseerde
permutatiestatistieken. De resultaten van de studie suggereerden dat de vor-
men van botten over het algemeen symmetrisch waren. De veronderstelling van
symmetrie gold echter niet voor veranderingen in de tuberositas tibiae, voor de
diameter van de tibia, de kromming van de fibula-schacht of voor de diameter
van de fibula.
Echografie is een alternatief die de voorkeur heeft ten opzichte van computerto-
mografie (CT), magnetische resonantiebeeldvorming (MRI) en artroscopietech-
nieken bij postoperatieve lange termijn follow-up van patiënten met een skele-
tale afwijking (zoals OCD), omdat het een kosteneffectieve en niet-invasieve
methode is en patiënten niet blootstelt aan ioniserende straling. Desondanks
kunnen echobeelden moeilijk over de tijd worden geı̈nterpreteerd en met elkaar
worden vergeleken zonder anatomische gegevens die worden verstrekt door an-
dere modaliteiten zoals CT. In Hoofdstuk 7 presenteerden we een rigide
oppervlaktevolume-registratieschema gebaseerd op evolutionaire benaderingen
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om handgemaakte 2D-echobeeldenvan het talocrurale gewricht in combinatie
met CT-scans van hetzelfde gewricht. De prestaties van het registratieschema en
de robuustheid ervan met betrekking tot verschillende initialisatieposities en de
samenstelling van echo-gegevens werden geëvalueerd op basis van een dataset
van 12 kadaver enkels. Het praktisch gebruik van het gepresenteerde schema
werd aangetoond in een case study, waarin de potentie van echografische beeld-
vorming als een alternatief voor CT voor preoperatieve planning van arthro-
scopische benadering van anterieure talaire OCDs werd bestudeerd. De 2D met
de hand verkregen echobeelden en CT-scans van het talocrurale gewricht kun-
nen worden geregistreerd met een gemiddelde registratiefout van 0,9 ± 0,5 mm
met behulp van het gepresenteerde schema. De resultaten van de praktische
case study toonden aan dat echografische beeldvorming een veelbelovend zou
kunnen zijn om de benaderbaarheid van OCDs d.m.v. anterieure artroscopie te
evalueren.
Vanwege zijn inherente eigenschappen (niet invasief), heeft echografische beeld-
vorming de voorkeur bij het diagnosticeren van skeletale afwijkingen zoals OCDs.
Niettemin kunnen niet alle OCDs worden onderscheiden met behulp van
echografische beeldvorming. Dat komt omdat de articulerende oppervlakken
van de talus en distale tibia niet volledig kunnen worden afgebeeld vanwege het
beperkte vermogen van ultrasonografie (US)-golf om door botten te dringen. In
Hoofdstuk 8 stellen we een nieuwe diagnostische techniek voor die gebaseerd
is op de golfexpansie van de US door het talocrurale gewricht. De haalbaarheid
van de voorgestelde techniek werd bestudeerd met behulp van experimenteel
gevalideerde ’2D finite-difference time-domain’ modellen van het talocrurale
gewricht. De effecten van variabelen die relevant zijn voor het talocrurale gewricht
(d.w.z. breedte van de gewrichtsspleet), echo-transducers (d.w.z. translatie en
rotatie van de echo-transducer die als zender werken) en OCDs (d.w.z. breedte,
diepte en locatie van een defect) werden op golfvoortplanting bestudeerd. De
resultaten suggereerden dat een OCD kon worden gedetecteerd met behulp van
de voorgestelde techniek, als de effecten van sommige parameters, waaronder
de breedte van de gewrichtsspleet, en de oriëntatie van de echo-transducer in
het bijzonder, konden worden gereduceerd.
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The material presented in this supplementary document is generally a summary
of the methods and techniques presented in the excellent texts written by sev-
eral prominent scholars in the area of statistical shape and appearance modeling
particularly the report written by the co-inventor of statistical shape models Tim
Cootes [42], and a few excellent review papers [43, 55, 56].

A.1 Statistical Models of Shape and Appearance

The main aim of statistical models is to capture possible variations within a class
of objects [105]. For this purpose, statistical analysis of a training dataset that
includes shape examples of an identical object is necessary. The procedure for
generation of statistical shape models mainly includes shape representation and
statistical analysis of the shape data. To build proper statistical models, cor-
respondence should be established between all shapes of the training dataset.
Moreover, all shapes need to be in a common coordinate system [303]. As for
statistical appearance models, generation of models includes shape representa-
tion, texture representation around and/or within the part of image covered by
the shape, and statistical analysis of the available data. In this section, we re-
view the most important techniques that are used for generation of statistical
models of shape and appearance with a focus on the techniques that are particu-
larly useful for orthopedic applications. Other techniques can be found in more
specialized review papers, e.g. [43].

A.1.1 Statistical Shape Models

The first step in generation of statistical shape model is shape representation. The
available techniques for shape representation can be classified according to the
shape descriptors that are used for representing the shape. They include land-
marks, dense surface meshes such as techniques that use Fourier surfaces and
spherical harmonics, skeleton-based representations (medial models), deforma-
tion fields, and distance maps [43, 304]. As indicated by Golland et al. [304],
there are two essential characteristics of shape descriptors that can notably affect
the quality of the statistical models. One factor is related to the model’s sensitiv-
ity to the noise of the images and the other one pertains to its ability to align all
the shapes in a common coordinate system.
The most generic method used in orthopedics is based on landmarks [49, 73, 74,
305, 53, 26]. In the literature, statistical shape models represented by landmarks
are called Point Distribution Models (PDMs) [43, 62]. Landmarks are occasion-
ally named nodes, vertices, or model points [138]. As it is indicated by Cootes
et al., the best landmarks are the points that can be consistently located on each
image of the training dataset [42]. The methods for defining anatomically consis-
tent points and establishing the correspondence are discussed in the following
subsection, but the simplest manual method is to define the landmarks based
on certain anatomical bony landmarks that could be relatively easily identified
by experienced anatomists on different images. Once a number of anatomically
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well-defined landmarks are identified, the rest of landmarks could be defined
with reference to those anatomically well-defined landmarks.
If the shape of a bone is defined with n points in d dimensions, a vector x with
nd elements can be composed as:

x = (x1, · · · , xn, y1, · · · , yn, z1, · · · , zn)
T (A.1)

where (xn, yn, zn) represents the coordinates of the nth point. If the training
dataset contains N images, there will be N number of vectors x.

A.1.1.1 Correspondence

To build proper statistical models, landmarks should be defined as the points
that can be consistently found on each image. In other words, all the points of a
shape should correspond with those of the other remaining images of the train-
ing dataset. There are numerous methods to establish correspondence between
all the shapes of a training dataset [43].
Manual definition of landmarks over the surface of the examined object is a gen-
eral concept for 2D models [49, 73, 74, 27, 70]. However, this method is subjective
and decreases the reproducibility of the results. Furthermore, manual annotation
is time consuming and error-prone. Due to these drawbacks, manual landmark-
ing is becoming impractical and unpopular for 3D and even for 2D models with
large number of training images. To overcome the difficulties encountered in
manual “landmarking”, algorithms that automatically define correspondences
are being developed.
The problem of establishing correspondence between the landmarks defined on
different images effectively reduces to the problem of finding proper relation-
ships between the elements of the training dataset. The input data may be the
structures that are derived from the images including sets of points, contours,
surfaces and volumes and may also be the intensity of the raw pixels as well as
the intensity gradient [56]. Correspondence may directly be obtained by opti-
mizing a similarity measure between the above-mentioned elements of images.
Another alternative is to first align the shapes by using the geometric transfor-
mations and then establish correspondence between the aligned elements. Fi-
nally, correspondence can be also established by iterating between both previ-
ously mentioned approaches [56, 306].
The similarity measure that is also referred to as the objective function, cost func-
tion, or error measure is an assessment measure for the quality of the correspon-
dence. It is formulated based on the type of the input data (e.g. surface) and
the problem (e.g. alignment of the shapes with rigid transformation). Similarity
measures that try to establish correspondence without applying rigid or non-
rigid transformation generally include two terms. The first term tries to max-
imize the similarity between the corresponding elements, whereas the second
one attempts to minimize the distortions that might occur in the shapes.
The cost functions of the correspondence methods that are based on rigid body
alignments try to represents the alignment error. When the input data is com-
posed of point sets, this error can be expressed in terms of the sum of squared dis-
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tances between the corresponding point pairs. When non-rigid transformation
is carried out for alignment of shapes, the cost function is generally composed
of at least two terms. One of the terms normally represents the alignment error
whereas the other term (also known as regularization or penalty term) constrains
the deformation to satisfy the similarity of the transformations at the neighbor-
ing vertices [56, 306, 307].
Different optimization algorithms including the Downhill simplex method, the
gradient ascent or descent, and the Levenberg-Marquart are used for optimizing
the similarity measures [56]. Given all possible variations in the data type (e.g.
points), problem type (e.g. rigid alignment of the shapes), similarity measures,
and optimization algorithms, it is not surprising that there is a wide range of
correspondence algorithms. These are classified into different groups by some
authors [43, 115].
One of the most important methods is the Iterative Closest Point (ICP) algorithm.
Josephson et al. use the ICP algorithm proposed by Besl et al. [263, 308]. The pro-
posed method uses two surfaces as input data. While one triangulated surface
(source) is kept as reference, a corresponding triangulation on the other surface
(target) is found in an iterative way. The iterative process mainly designates
the nearest points at the target surface for each vertex of the source triangles. It
refines the rigid transformations (three translational and three rotational param-
eters) in such a way that the mean square error between both point sets is min-
imized. Afterwards, the transformation found in the previous step is applied.
These processes are applied repeatedly until a convergence is reached [308].
The main drawback of the standard ICP algorithm is its limitations to rigid trans-
formations. These transformations are not sufficient to perfectly align the objects
that do not satisfy the rigidity criteria and the objects of the same class with dif-
ferent geometries. Non-rigid transformations can be used in order to overcome
the above-mentioned limitations [43, 306]. Similarity (translation, rotation and
uniform scaling), affine (translation, rotation, scaling and shear), or the curved
transformations that are sub-classes of non-rigid transformations can be consid-
ered for the non-rigid case [56]. By using free-form deformation, i.e. a type of
curved transformation, it is possible to allow for all types of deformation. Many
free-form deformation models require a definition of a grid of points. Follow-
ing the creation of the grid, control points are moved separately to optimize the
similarity measure thereby allowing for description of local deformations. The
found transformations are conveyed to the neighborhoods of the control points
by interpolation [56].
Fleute et al. used a multi-resolution approach based on octree splines as pro-
posed by Szeliski et al. [47, 309]. The method basically aims to find minimum
non-rigid deformation between two 3D surfaces. For this purpose, the method
enforces the least squares minimization of the distances between both sets of
points. Moreover, transformations between 3D surfaces are defined based on the
notions from free-form deformations, octree-splines, and hierarchical basis func-
tions [47].
A different alternative to establish correspondence between the shapes of the
training data is based on pattern recognition techniques. Baka et al. used a corre-
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spondence algorithm that is originally proposed by Ferrarini and his colleagues
in 2007 [44, 310]. In this method, a topology-learning unsupervised clustering is
used to define the interesting parts of the surface and the correspondence prob-
lem among the shapes of the training data is considered as a classification is-
sue. By using a classifier and a topology learning unsupervised clustering, cor-
responding parts between the shapes are detected [43, 310].
Another method to provide correspondence between the shapes has been sug-
gested by Frangi et al. [311] and used by several authors [79, 52]. The intro-
duced method uses a free-form registration technique based on maximization of
a similarity measure, i.e. the normalized mutual information (NMI). The method
requires construction of an atlas from the examined objects. Following the previ-
ously mentioned step, the landmarks are automatically extracted from the atlas.
The extracted landmarks are matched to every shape of the training dataset by
using a quasi-affine transformation and elastic transformation [311, 43].
A different approach that allows one to register an atlas, not to the other seg-
mented features (e.g. surfaces) but to the original gray-value images is suggested
by Rueckert et al. [312]. The proposed method and its variations are used by
several authors [45]. Within the method, a deformation field is described in-
stead of modeling the shape. Statistical analysis is directly performed on the
deformation field, which is obtained based on a non-rigid registration. For the
non-rigid transformation, free-form deformation model with B-splines interpo-
lation is chosen. Moreover, the used similarity measure is NMI [46].
With the aim of establishing correspondence between two topologically equiv-
alent 3D shapes, described as triangular meshes, Lamecker and his colleagues
have used a method that allows mapping between the shapes and an appropri-
ate base domain (a disc) [303]. This method was first proposed by Zöckler et
al. [313]. In this method, surfaces are divided into patches by using a number
of manually selected points on the surfaces. Each corresponding pair of patches
that represent similar anatomical regions is mapped to a base domain, a unit disc.
As there are many patches, a special care is taken to achieve continuity across
the patch borders. The patches are then parameterized independently from each
other, by using a complex parameterization method, shape preserving mapping.
Following the parameterization, one to one correspondence between the input
patches is described by overlaying the two previously found parameterizations
[303, 313].
Many of the previously described approaches solve the correspondence prob-
lem by defining relation between each shape pairs (pair-wise approaches) of the
training set. Moreover, a particular form of correspondence algorithms takes
into account a group of shapes (group-wise approaches) at the same time. Un-
like the pair-wise approaches, group-wise correspondences aim to optimize a
cost function over the training set in a way that the resulting statistical model
shows desirable properties (e. g. compact model) [43, 310].
One of the known group-wise methods, Minimum Description Length (MDL),
is described by Davies et al. [314] and used by several authors [315, 316, 48, 114].
MDL principally aims to find the parameterization for each shape of the train-
ing dataset in such a way that the selected set of parameters lead to a compact

147



model, eligible to efficiently describe the training data. The main procedures
of the method include the following: generation of parameterization for each
shape in a recursive manner, generation of a model from the sampled shapes in
agreement with the correspondence defined by the parameterization, evaluation
of the model functioning through an objective function and generation of a new
model using new parameters. The new parameters are found in a way that the
defined objective function is optimized. The main steps are iteratively applied
until a converged solution is obtained. In the original MDL approach, a piece-
wise linear, recursive parameterization scheme was used to locate landmarks.
Moreover, due to high non-linearity of the cost function, a genetic algorithm was
involved in the optimization of the objective-function [43, 310, 314].
Davies et al., later on, used the Nelder-Mead algorithm for the optimization and
a re-parameterization with Cauchy Kernels [317]. Furthermore, an improved
version of the MDL of the model is described by Heimann et al. [318]. The
enhanced method uses a gradient descent optimization instead of the Nelder-
Mead algorithm. Besides, for re-parameterization, locally constrained Gaussian
Kernel is preferred rather than the Cauchy Kernels [318]. An application of the
enhanced method that leads to a faster convergence compared to the method in-
volving the Nelder-Mead algorithm can be found in the study of Bredbenner et
al. [25].

A.1.1.2 Shape Model Alignment

Once the correspondence is established between the shapes of the training data,
it is possible to find a mean shape and a number of modes of variation from
the training set. Before the performance of statistical analysis, it is essential not
to take the shape changes resulting from the transformations into consideration,
since the shape does not change under similarity transformations. Keeping the
statistical model as specific as possible, all the shapes of the training set need to
be aligned in a common coordinate system. There are numerous methods for
this purpose. The most popular method for the alignment process is probably
Generalized Procrustes Analysis (GPA) [49, 53, 52, 319, 51]. The main idea be-
hind the GPA is to align each shape of the training set in a way that the sum of
distances of each shape to the mean, D, is minimized [42] where D is defined as:

D =
N

∑
i=1
|xi − x̄|2 (A.2)

Since a group of shapes is aligned to their unknown mean, GPA is simply an
iterative method. In the iterative approach, it is necessary to choose a shape
and assume it as the mean shape. Subsequently, all the remaining shapes of the
training set are aligned to the mean shape. The new mean shape is calculated
from the aligned shapes. If the calculated mean is different from the previously
estimated mean shape, the procedure is repeated again. The iterations continue
until the mean shape does not significantly change [138].
Furthermore, the methods used during the alignment have an effect on the resul-
tant model. The general approach used for alignment is to position each shape
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such that their centroids are on the origin, and to modify each shape in order to
have equal sizes and to define the rotation that minimizes D in Eq. A.2 [42, 138].
The limitation of this approach is that nonlinearities caused by large shape dif-
ferences within the training dataset may exist [42]. The nonlinearities may lead
to inaccurate results in the determination of linear modes of variation [43].
Two other approaches for the alignment are also described by Cootes et al. [42].
First, it is possible to vary both scaling and rotation parameters when minimiz-
ing D (Eq. A.2). This approach may also introduce nonlinearities. In the second
approach, each shape is transformed into the tangent space of the mean with
the aim of preserving the linearity between the shapes. The proposed approach
aligns the shapes with the mean, allows the variations of both scaling and rota-
tion parameters, and projects each shape into the tangent space of the mean by
scaling x with 1/(x · x̄) [42].

A.1.1.3 Shape Variation

After alignment of all the shapes of the training dataset in a common coordinate
system, the intra-class shape variation is extracted. A common approach is to
use a statistical method called Principal Component Analysis (PCA) [74, 138, 27,
70, 59]. In the reminder of this subsection, application of PCA to the training
dataset is briefly explained based on the treatment presented in [42, 43].
If there are N shapes in the training set, there are N sets of vectors x describing
the coordinates of landmarks that are placed on each of the aligned shapes.
The mean shape can be calculated as:

x̄ =
1
N

N

∑
i=1

xi (A.3)

The covariance matrix is then given as:

S =
1

N − 1

N

∑
i
(xi − x̄)(xi − x̄)T (A.4)

Once the covariance matrix is obtained, it is possible to calculate eigenvectors
(principal modes of variation) φs and their corresponding eigenvalues (vari-
ances) λs by eigen-decomposition of the covariance matrix, S. The resulting
eigenvectors are sorted accoording to their corresponding eigenvalues, in a de-
scending order (λs > λs+1) [42]. Subsequently, a shape instance can be described
by adding the contributions of c most important modes of variation to the aver-
age shape:

x = x̄ +
c

∑
s=1

bsφs (A.5)

where bs is the shape model parameter and describes the contribution of the sth

mode of variation. There are numerous ways to determine the number of modes
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of variation that should be retained. The decision as to how many modes are
retained may affect the accuracy and the compactness of the resulting model
[138]. The common approach in defining the number of modes c is to increase
the number of modes until the ratio of the accumulated variance to the total
variance, r , reaches a certain threshold value:

r = ∑c
s=1 λs

∑N−1
s=1 λs

(A.6)

The generally accepted range for r is 0.9-0.98 [43]. An alternative approach,
Horn’s parallel analysis, can be used to determine the number of modes [65].
In this method, Monte-Carlo based simulations are used to compare the eigen-
values extracted from the correlation matrix with those retrieved from a random
dataset. A component is generally accepted to be significant only if its corre-
sponding eigenvalue is larger than the 95th of the eigenvalues that are extracted
from the uncorrelated data [229].
Another important issue when generating a shape using Eq. A.5 is limiting
the variation to obtain plausible shapes. Therefore, vector bs that contains the
shape model parameters has to be confined within a certain range. A common
approach for generating shapes similar to those found in the original training
dataset is to limit the model parameters bi [42, 43, 49, 308, 47, 51, 116] to follow-
ing limits:

−3
√

λi ≤ bi ≤ 3
√

λi (A.7)

Another approach for defining valid regions for plausible shape generation is to
restrict the Mahalanobis distance of bs:

D2
m =

c

∑
s=1

(
b2

s
λs

) ≤ D2
max (A.8)

Assuming that all modes represent one multivariate distribution, the limit Dmax
can be determined from the χ2 distribution [73].

A.1.2 Statistical Models of Appearance
Statistical shape models can be used for image segmentation. However, only
the shape of objects may not be sufficient to locate them on an image. While
the sharpest image edges had been employed to adapt the first version of shape
models (see section A.2.2), more specific models (i.e. statistical appearance mod-
els) were developed later on [43]. Similar to the case of statistical shape models,
the statistical appearance models are built using a training set of images. The lat-
ter models capture the shape and the image texture variations across the training
set. The image texture that might mean pixel intensities or other descriptors (e.g.
image gradients) can be modeled around and/or within the part of the image
covered by the shape of the object [72]. In the review written by Heimann et al.,
statistical appearance models are divided into two categories: the models based
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on boundary features and those based on region-based features [43]. In order to
make ASM (see section A.2.2) and AAM (see section A.2.3) easier to understand,
here we only cover the statistical models of appearance that are often used in
orthopedic applications and are usually based on region-based features with a
focus on the statistical appearance model originally described by Cootes et al.
[140]. The presented method and its variants were used by several authors in
their studies [70, 50, 13, 320].

A.1.2.1 Statistical Models of Texture

With the aim of building the statistical models of texture as described by Cootes
et al., there are three main steps to be followed. These steps include the capture
of pixel information, the normalization of the data to discard the global illumi-
nation effects and the modeling of the normalized texture variation [138]. As
Stegmann indicates it, the texture data acquisition is not a straightforward pro-
cess. To capture the texture information, there is a need for a consistent method.
Image warping that transforms one spatial configuration of an image into an-
other can be used in the process of collecting the texture information. As the
shape of the objects is generally represented in orthopedics with landmarks, im-
age warping can simply be considered as the process of transforming one-point
set’s configuration (xi) into another (x′i) one [138]:

x′i = f (xi) (A.9)

where f is a continuous mapping function. Two different forms of f , namely
piece-wise affine and thin plate spline, are explained by Cootes [42].
To derive the texture information from the training set, each training example is
warped to a standard shape that is generally the mean shape of the SSM [42, 43].
Following the warping process, the intensity information is sampled from the
shape-normalized image and is concatenated into a texture vector, gim. Further-
more, the normalized version of intensities is necessary to reduce the effects of
global lighting variations. The normalization of intensities can be done by scal-
ing the texture vectors with α while applying an additional offset β:

g =
(gim− β1)

α
(A.10)

where 1 is a unit vector and the parameters α and β can be chosen in such a way
that all grey values are transformed to zero-mean and unit-variance [42, 43]:

α = gim · ḡ (A.11)

β =
(gim · 1)

n
(A.12)

where ḡ is the mean of the normalized texture and n is the number of elements
in the vectors. As α is described with respect to the mean, the estimation of
the mean of the normalized data is a recursive process [42, 138]. Following the
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normalization of the texture data, as in the case of SSM, the texture variation can
be modeled by applying the PCA to the normalized data. The covariance matrix
of the textures can be written as:

Sg =
1

N − 1

N

∑
i=1

(gi − ḡ)(gi − ḡ)T (A.13)

where ḡ is the mean normalized texture vector:

ḡ =
1
N

N

∑
i

gi (A.14)

In a similar manner as in shape instance generation, a texture instance can be
created by deforming the mean texture by a linear combination of eigenvectors
[138]:

g = ḡ + φgbg (A.15)

where vector bg is a set of texture parameters and bmφg is a set of eigenvectors.

A common approach to describing the texture model is to use intensity values
sampled from the image. However, texture models that are built based on the im-
age intensities alone are sensitive to changes in imaging parameters. Therefore,
these texture models may not perform adequately during the matching phase
of the model with new unseen images [320]. In order to decrease the sensitivity
of the model to imaging conditions, Scott et al. enhanced the texture model by
using gradient orientation, corner, and edge strength [320]. In another attempt,
Roberts et al. enhanced the texture models by utilizing the measures of corner
and edge strength as described in Scott et al. [70, 320].

A.1.2.2 Combined Appearance Models

With the aim of obtaining one complete compact model, the shape and texture
models that were briefly presented, can be unified. As it is indicated before, a
shape instance can be generated by using a set of shape model parameters, bs ,
while texture instance can be constructed using a set of texture model parame-
ters, bg . The set of shape and texture parameters, bs and bg , can be concatenated
into a vector b:

b =

(
Wsbs

bg

)
=

(
WsφT

s (x− x̄)
φT

g (g− ḡ)

)
(A.16)

where φs and φg are the eigenvector matrices of shape and texture, respectively.
Moreover, Ws is a diagonal matrix of weights for the shape parameters. As the
shape parameters bs and the texture parameters bg have different units (distance
and intensity, respectively), the use of Ws matrix is important to commensurate
these parameters [42, 138]. A simple approach to calculate the Ws matrix is:

Ws = rI (A.17)
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where I is a unit matrix and r is the ratio of the total intensity variation to the
total shape variation as seen in the training set [42, 138]:

r =
∑ λgi

∑ λsi

(A.18)

where λgi and λsi are respectively the variances of the ith texture parameter bgi

and that of the ith shape parameter bsi .
With the aim of obtaining a more compact model, a 3rd PCA can be applied on
b:

b = φcc (A.19)

where c is a set of combined model parameters and φc is the eigenvector matrix
of the combined shape and texture parameters. Furthermore, a complete model
instance that covers the shape, x , and the texture, g , can be created by using the
combined model parameters, c:

x = x̄ + φsW−1
s φc,s (A.20)

g = ḡ + φgφc,gc (A.21)

where

φc =

(
φc,s
φc,g

)
(A.22)

A.2 Search Algorithms

As previously mentioned, SSM and SAM can be used to search images in or-
der to detect objects of interest. The process of applying a SSM or SAM to an
image can simply be considered as an optimization problem. In order to match
the model to the image, the set of parameters that refer to position, shape and
conceivably the texture should be found in such a way that the cost function,
representing the quality of the fit, is optimized [42]. There are several methods
that can be used for solving the optimization problem for deformable models.
The global search methods, such as the Genetic algorithms, Simulated Anneal-
ing and the Marquardt-Levenberg, are suitable for finding the parameters that
optimize the fit, in case there is no information about the position of the object of
interest in the image [42, 138]. On the other hand, local optimization techniques
such as Powell’s method and Nelder-Mead Simplex can be used in the presence
of an initial guess for the correct solution. As Heimann et al. indicate it, methods
that use local search algorithms are the preferred ones [43]. Since the use of lo-
cal search methods is common, two popular local search algorithms, i.e. Active
Shape Models (ASM) and Active Appearance Models (AAM) are presented here
[43]. As indicated above, local search algorithms require initial estimation of the
model parameters. Therefore, we first review several approaches that aim to ac-
quire a rough estimation of the correct solution and initialize the search process
before going through the ASM and AAM local search methods.
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A.2.1 Initialization

The easiest way to initialize the search process is with user input. A common
approach in user interaction is to roughly position the mean shape of the SSM
close to the target object. The study of Lamecker et al. is one of the examples
that involve user interaction to initialize the search process. As an alternative,
some authors propose manual definition of a few specific points on the object of
interest in the image [49, 73, 72, 75]. Furthermore, in order to (semi) automate the
initialization, several image-processing techniques are deployed in the literature.
Benjelloun et al. used Harris corner detector that is not sensitive to illumina-
tion variation and image noise for semi-automatic initialization. In the proposed
method, a series of filters are used to reduce the high number of corners that
result from Harris corner detector [49]. On the other hand, some authors had
preferred to use the variants of Hough Transform, which detect parametric (e.g.
circle) objects in an image. Pilgram et al. use Canny edge detection and Hough
lines together with local constraints, related to anatomical object of interest [316].
As it is not always possible to find a parametric description for objects in an im-
age, Generalized Hough Transform (GHT) is proposed by Ballard et al. in order
to overcome that limitation [321]. The GHT technique has been used, for exam-
ple, in [76, 322]. Furthermore, Fripp et al. automatically initialized the search
procedure by using an affine registration to an atlas that was chosen from the
training datasets [51].

A.2.2 Active Shape Models (ASM)

Active shape model is a local search algorithm based on a point distribution
model. It was first proposed by Cootes et al. [323]. The introduced method and
its variants are used by many authors [73, 305, 53, 308, 316, 13, 15, 134]. The
main principle of ASM is to find the proper pose and shape parameters to best
fit a model to an image. For this purpose, following the initialization of the ASM
by using one of the initialization techniques, a recursive process starts. The main
steps of the iterative process are as follows [42]:

• Generation of model instance and its expression in the image frame,

• Examination of the image around each model point to define a displace-
ment that moves the model point to a better location,

• Updating the shape and pose parameters of the model with respect to the
displacement found in the previous step.

These steps are performed iteratively, until a certain specified convergence cri-
terion is satisfied [42]. In the following lines, the procedure will be briefly de-
scribed.
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A.2.2.1 Generation of Model Instance and Its Expression in the Image Frame

As previously described, a shape instance can be generated by deforming the
mean shape by a linear combination of eigenvectors:

x = x̄ + φsbs (A.23)

where φs is the matrix of the eigenvectors and bs is a vector of shape parameters.
Furthermore, the generated shape instance can be expressed in the image frame
by:

X(p, bs) = T(p)[x] (A.24)

where T is the similarity transformation matrix that imposes the rotation, scal-
ing and translation. The transformation matrix is used for converting the shape
space coordinates x into image coordinates X [116].

A.2.2.2 Calculation of a Proper Movement for Each Model Point

The examination of the image around each model point, in practice, is realized
by looking along the profiles normal to the boundary. Several methods are used
in literature, in order to find the proper movement for each model point. One ap-
proach is to locate the strongest edge along the profile, assuming that the model
boundary corresponds to an edge. Using the position of the edge along the pro-
file, the new suggested location of the landmark can be defined. Unfortunately,
it is not always possible to locate model points on the strongest edge in the local-
ity, since the strongest edge close to the model points might be related to another
image structure or might represent a weaker secondary edge [42]. To lessen the
possible wrong determination of landmark positions, an alternative approach is
described by Cootes et al. [323]. The proposed method is mainly composed of
two phases. In the first step (i.e. training phase), the statistical models of the
image structure at the neighborhood of contour points are built by using the
training set:
For a given landmark j in the ith training image, sampling is done along a profile
normal to the boundary with a length of 2np + 1 pixels centered at the landmark
j. The 2np + 1 samples are put in a vector gi. This procedure is repeated for each
training image with the aim of obtaining a set of samples for the given land-
mark, j. In order to obtain the statistical model of the image structure for the
given landmark j, the mean profile ḡi and the covariance matrix Sgi are calcu-
lated assuming that the data has a Gaussian distribution. To obtain one statis-
tical model for each landmark, these procedures are repeated [42, 43, 116]. The
extracted profiles might contain absolute grey-level (pixel intensity) values, the
derivatives of the pixel intensities, or the normalized versions of those [43, 116]:

g′i =
gi

∑
2np+1
k=1 |gik|

(A.25)

g
′′
i =

gi−min(gi)

max(gi)−min(gi)
(A.26)
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where gik is the kth element of the profile vector gi. Sampling the derivative
along the profile, instead of sampling the absolute grey-level values, decreases
the influence of global intensity changes [42]. On the other hand, in the second
step (i.e. during search), the image structure around the contour point of the
generated model instance is examined to find the new landmark position. For
a contour point of the generated model instance, j, the image is investigated
at distances ∆ = −ns · · · + ns pixels along the profile normal to the boundary.
This can be considered as there are 2ns + 1 candidate target point positions (i.e.
candidate new landmark position) [116]. For each candidate point, c, the profile
that is centered at c and that is identical to gi, resulting in gci is obtained. A
cost function that represents the quality of fit of the jth landmark of the model
instance to its cth candidate point is constructed [116]. One of the cost functions
that can be used for the assessment of the quality of the fit is the Mahalanobis
distance of the sample gci from the model mean ḡi that is separately estimated
for each landmark, in the first step of the method:

f (gcj) = (gcj − ḡl)
TS−1

gi (gcj − ḡl) (A.27)

The optimal target point (i.e. the best new location of the landmark of the gener-
ated model) is defined as the candidate point at which the Mahalanobis distance
gets its lowest value [43]. To find the new locations of all of the model points, the
explained procedure is repeated for each contour point.

A.2.2.3 Updating the Shape and the Pose Parameters of the Model

Following the determination of new optimal positions of all of the model points,
the pose and shape parameters of the model are updated to best fit the model to
the target points. In the original method by Cootes et al., the pose parameters
of the model are first modified by keeping the shape parameters fixed. After the
adjustment of the pose parameters, the shape parameters are updated [116].
As it is stated before, the generated instance of the model is expressed in the
image frame by Eq. A.24, where X represents the image coordinates of the gen-
erated model instance with a set of pose parameters p and a set of shape param-
eters bs. On the other hand, the coordinates of the defined target points in the
image frame can be given by:

X + dX (A.28)

The pose parameters are updated in a way that the new shape minimizes the
expression of:

‖(X + dX)− X ′‖2 (A.29)

where X ′ is the new shape expressed by:

X ′(p′, bs) = T(p′)[x] (A.30)
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Following the adjustment of pose parameters, there remain residuals:

[dx] = (T(p′))−1 · [X + dX− X ′] (A.31)

where dx is the residual expressed in the model coordinate frame. This residual
can only be minimized by an update of shape parameters. With the aim of up-
dating the shape parameters, bs, and the residuals are projected onto the model
eigenmodes by:

dbs = φ−1
s dx (A.32)

Afterwards, the shape parameters are updated:

b′s = bs + dbs (A.33)

such that the new shape, X
′′
(p′, b′s) , minimizes the expression:

‖(X + dX)− X
′′
(p′, b′s)‖2 (A.34)

As the shape of the model instance should remain similar to those of the training
set, limits can be enforced on shape parameters. Following the adjustments of
parameters and application of limits on shape parameters, the updated positions
of the model points are calculated [116].
Later on, to increase the robustness of the ASM algorithm, and to simultane-
ously reduce the required time for the search, a multi-resolution framework is
presented [324]. Based on the proposed method, the image data (the training
images and the image in which the search will be performed) is organized as a
multi-resolution pyramid. For each different level of the pyramid, distinct sta-
tistical models of the image structure along normal profiles through each land-
mark are built in the way previously described. On the other hand, ASM search
starts at the coarsest resolution level. If the model converges to a good solu-
tion, search at the next (finer) resolution starts. When the defined convergence
criterion is satisfied at the finest resolution, the search is stopped [42]. As the
multi-resolution framework enhances the speed and the quality of the model
fitting to an image, several authors are reported to use the approach in their
studies [308]. Furthermore, during the standard ASM search, the best new po-
sitions of the landmarks are estimated independently for each contour point of
the model. It is, however, possible to encounter outliers that lead to erroneous
positioning of the landmarks. Due to outliers such as multiple nearby edges in
the image, the ASM contour may locally be detached from the correct boundary
locations [316, 116]. To make ASM method more robust against such outliers,
several modifications are suggested for the standard ASM. One of the modifica-
tions is proposed by Behiels et al. [116]. In this approach, Behiels et al. define a
cost function that covers the whole set of target points which is minimized with a
minimal cost path search. In the method, the outliers are penalized by imposing
smoothness constraint on the displacement of adjoining model points towards
their target points, in a way that the optimal solution is obtained regarding to
the defined cost function [43, 116]. In a different approach, geometry-driven
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scale space method that benefits from the geometry of a deformable model is
used by Pilgram et al. [316]. Unlike the traditional linear scale space technique
which blurs the boundary and accordingly makes the segmentation difficult, the
geometric driven scale space blurs the image profiles along the shape boundary,
but not across the object boundary. The scale space is constructed on the image
profiles that are sampled from the image in a way that it is described in ASM.
Afterwards, the statistical model of the image structure is built by using the fea-
tures from the scale space. As Pilgram et al. indicate, features from the scale
space are sampled in a coarse to fine fashion which allows the regularization of
potential outliers [316, 325].

A.2.3 Active Appearance Models (AAM)

The previously described local search algorithm, ASM, locates the model points
on a new image by using the constraints of the shape models together with ad-
ditional information about the image structure around the model points. One
limitation of this search algorithm is that it does not benefit from all the possible
information that can be derived from the object of interest [42]. Therefore, an al-
ternative local search algorithm, AAM, is described by Cootes et al. to also take
advantage of more information [140]. AAM can be considered as an extension
of ASM, since AAM uses texture information (i.e. the pixel intensities across the
object) besides the shape information to search images for new instances of the
object of interest [138].
An instance of an AAM can be generated by using the combined shape and tex-
ture parameters, c. Furthermore, the generated model instance can be expressed
in the image frame by the use of the transformation matrix. In order to assess
the quality of fit, the image texture is warped to the mean shape of the model.
Following the warping, the texture is normalized and can be written as a vector
gim. The residuals between the normalized texture of image and the model can
be expressed as:

δg = gimage − gmodel (A.35)

Moreover, the error can be defined:

E = δg2 (A.36)

Like in the case of ASM, the search can be considered as an optimization prob-
lem. In order to match the model to the image in the best possible way, the
error that is defined with E is aimed to be minimized by adjusting the pose pa-
rameters p and combined model parameters c. As there are quite a number of
parameters (model and pose parameters) that should be adjusted during fitting,
the optimization problem is high-dimensional. It is a known fact that solving
high-dimensional problems are computationally expensive. In order to lessen
the complexity of the problem, Cootes et al. propose the use of a-priori knowl-
edge on properly adjusting the parameters during search [140]. This “a-priori
knowledge” can simply be obtained during the model building time. Thus, the
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computational time during the search can be reduced. In order to get the “a-
priori knowledge”, the simplest linear model is considered by proposing that
the spatial pattern in δg can foresee the adjustments of parameters in a way that
the error, E is minimized. The simple linear model can be expressed as [138]:

δc = Rδg (A.37)

where, δg is the texture residuals and δc is the parameter updates. As it is
pointed out by Heimann et al., the success of the optimization scheme is mainly
the subject of the derivative matrix R [43]. On the other hand, a suitable matrix
R can be computed using a multivariate linear regression on a series of experi-
ments. These experiments can be conducted by systematically displacing pose
and model parameters with a known amount. Afterwards, the difference be-
tween the model and the part of the image that remain under the model can
be measured [138]. Later on, numeric differentiation, a more reliable and faster
method compared to regression, is proposed by Cootes et al. to compute the
derivative matrix R [140].
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B.1 Removing the Scaling and Rotational Effects

During the alignment of all shape examples of the training set in a common co-
ordinate system, the scaling and rotational effects were removed by using the
technique described by Du et al. and Arun et al. [135, 136], respectively. To find
the rotational matrix, the described method basically covers the use of singular
value decomposition (SVD) algorithm. The main steps involved in obtaining the
rotational matrix can be given as the following [135]:

1. Calculate the matrix, M , by using two set of points, x1 and x2:

M = x1xT
2 (B.1)

where, the superscript T represents the transpose of the vector.

2. Find the SVD of the matrix, M:

M = UΛUT (B.2)

3. Calculate the rotation matrix that would be necessary for superimposing
the point set x1 upon x2:

R = VUT (B.3)

On the other hand, to filter out the scaling effects, the scaling can be calculated
as [136]:

S =
trace(x2xT

1 RT)

trace(x1xT
1 )

(B.4)

In the alignment process, the point set, x2, can be considered as the vector repre-
senting the reference shape (i.e. mean shape).

B.2 Combined Appearance Model

With the aim of obtaining one compact model, the shape and texture models
were unified as described by Cootes et al. [42]. Based on the described method,
the set of shape and texture parameters, bs and bg , can be concatenated into a
vector b:

b =

(
Wsbs

bg

)
=

(
WsφT

s (x− x̄)
φT

g (g− ḡ)

)
(B.5)

where φs and φg are the eigenvector matrices of shape and texture, respectively.
Moreover, Ws is a diagonal matrix of weights for each shape parameter. The
main steps to construct weight matrix Ws can be given as:
For each training example,
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1. Sample the part of the image that remains under the untransformed shape
and put the sampled values in a vector, g.

2. Displace each shape model parameters, bs from its optimum value and ob-
tain displaced shape.

3. Sample the part of the image that remains under the displaced shape and
put the sampled values in a vector, g′.

4. Find the change in texture:

gch = g′ − g (B.6)

5. Calculate the root mean square (RMS) change in texture. This gives the
weight, ws that will be applied to the related shape parameter.

With the intent of obtaining a more compact model and of discarding the corre-
lation between the shape and texture parameters, a 3rd PCA can be applied on
b:

b = φcc (B.7)

where, c is a set of combined model parameters and φc is the eigenvector matrix
of the combined shape and texture parameters. Furthermore, a complete model
instance that covers the shape, x and the texture, g can be created by using the
combined model parameters, c:

x = x̄ + φsW−1
s φc, sc (B.8)

g = ḡ + φgφc, gc (B.9)

where,

φc =

(
φc,s
φc,g

)
(B.10)

B.3 Derivation of Derivative Matrix

Derivative matrix R is obtained based on the method described by Cootes et al.
[140]. For one training image, I, the main steps of the method can be given as the
following:

1. Warp the image I with the model parameters, p (combined model and pose
parameters) to the mean shape.

2. Sample the intensities in the image and use these intensities to get com-
bined model parameters.
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3. Use the relation between the combined model parameters and the shape
and texture parameters to obtain the model texture, gm.

4. Displace a parameter pi with a small amount:

p′i = pi + δσi (B.11)

where, δ is a small value and σi is the standard deviation of the parameter.

5. Warp image I with the permuted parameters p′ to the mean shape. Like in
the step 1-3, get the model texture, go.

6. Find the weighted sum of residual between the model texture, gm and go.

δr
δpi

= (gm− go)wi (B.12)

where wi is a weight,

wi =
exp(−δ2/2σ2

i )

δ
(B.13)

7. Repeat the above steps for a number of offset values δ (up to 0.5 standard
deviations, σi for each parameter of pi) and find the mean of all δr

δpi
approx-

imations.

The described steps are repeated for each image of the training set. Afterwards,
the mean of δr

δpi
approximations can be found. Using this mean approximation,

the derivative matrix R can be computed:

R = (
δrT

δp
δr
δp

)−1 δrT

δp
(B.14)

B.4 Definition of Proximal Femur Thickness

Similar to the study of Naylor et al., the thickness of the proximal femur was
defined by assuming that the proximal femur is a plate with a constant thickness
and by considering that the cross section at femoral neck region is circular [128].
By using the equality of a plate’s moment of inertia to those of the circle, the
thickness can be defined:

ΠD4

64
=

tD3

12
→ t =

3ΠD
16

(B.15)

where, D is the width (cross section at the middle femoral neck).
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B.5 Definition of Material Properties

Following the mesh generation on the segmented bone, material properties were
defined. The main steps involved in material properties definition and assign-
ment to one element can be given as:

1. Find the centroid of triangular element by using the element vertices, x1,
x2 and x3.

2. Calculate the distances, d1, d2 and d3 between the centroid of element and
the vertices.

3. Find the maximum of the distances, dmax and create a grid by using it.

4. Search part of the original DXA image within the grid generated in the
previous step and find the pixels that lie within the triangle.

5. Get the gray values of the pixels found in the previous step and find the
average of all these values.

6. Calculate aBMD by using the average gray value and the calibration factor
and the data packing factor given for the used DXA machine.

7. Divide the aBMD to the thickness of the proximal femur, t (see section, Def-
inition of Proximal Femur Thickness) to get the volumetric BMD (vBMD):

vBMD =
aBMD

t
(B.16)

8. Convert the vBMD to ash density (ρash) and to apparent density (ρapp)
according to Naylor et al. and Schileo et al. [128, 131]:

ρash =
ρv

1.14
(B.17)

and

ρapp =
ρash
0.6

(B.18)

9. Define the material properties by using the emprical equations presented
by Morgan et al. [142]:

E = 15010ρ2.18
app

E = 6850ρ1.49
app

ρapp ≤ 0.280 g
cm3

ρapp > 0.280 g
cm3

(B.19)
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B.6 Definition of Peak Impact Force

The peak impact force (N) was defined according to Naylor et al. [128]. To cal-
culate the peak impact force, the weight, W (kg), and height, H (m), of the indi-
viduals are used:

Fpeak = 9.806me(nsin(w)− cos(w) + 1) (B.20)

where, me is the effective mass, n is the impact number and v is the impact ve-
locity:

me = 0.35W (B.21)

n =
v( 71000

me
)0.5

9.806
(B.22)

v = 2.72H0.5 (B.23)

w = Π− tan−1(n) (B.24)
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C.1 Determination of Subchondral Bone Surface

For each pair of adjacent bones (i.e. tibia and talus), subchondral bone surfaces
were obtained as follows:

1. Triangulated bone surfaces (Fig. C.1) were reconstructed from segmenta-
tion results.

Figure C.1: Triangulated bone surfaces of talus (left) and tibia (right).

2. The normal vectors of the surface vertices (Fig. C.2) were calculated for
both bones.

Figure C.2: Normal vectors of talus (left) and tibia (right) surface ver-
tices.

3. The center of gravity of the triangles was calculated for both adjacent bone
pairs.

4. A Point P located on the primary surface (e.g. tibia) was selected.

5. For Point P, the following steps were repeated for each triangle of the sec-
ondary surface (e.g. talus):

5.1. A triangle Tn located on the secondary surface (e.g. talus) was se-
lected.

5.2. The distance between Point P and the center of gravity of the Triangle
Tn was calculated.
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5.3. The perpendicular distance between Point P and the secondary sur-
face was found, if the calculated distance in Step 5.2 was less than the
user-specified value of 4 mm. Otherwise, the Triangle Tn was skipped
and Step 5.1 was restarted.

5.4. The distance value calculated in Step 5.3 was kept as a part of dis-
tance map, if the intersection of the perpendicular line was inside the
triangle.

6. The Steps 4 - 5 were repeated for each point located on the primary surface.

C.2 Addition of Extra Points to Obtain Closed Form
of Transected Tibia

Following the transection procedure of the tibiae, the upper parts of transected
bones were open. Those open parts were closed by adding points to properly
obtain triangulated surfaces of the transected bones in the next step (Fig. C.3).

Figure C.3: An example of closing the transected bone’s open parts
with additional points.

The addition of extra points was performed as follows:

1. Edge points of the transected bone were determined that were located close
to the cutting plane (Fig. C.4).

Figure C.4: Transected tibia. Distal edge points were represented with
red circles.

2. Minimum and maximum coordinate values of the edge points were found.

3. Using the minimum and maximum coordinate values, a rectangle was gen-
erated and 19×19 equidistant points were created within the boundary of
the rectangle (Fig. C.5).
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Figure C.5: Additional points were created within the boundary of a
rectangle and points remaining inside the intersection line were kept.

4. Intersection of the rectangle and the edge points of the transected bone
was found and the additional points were kept, if they were inside the
intersection line (Fig. C.5).

C.3 Unbiased Point Registration Algorithm

The unbiased registration algorithm presented by van de Giessen [162] can be
used to register a large number of shapes (e. g. talus bone, ulna bone) de-
scribed by point clouds. The proposed method mainly fits an evolving mean
shape to each of the point cloud. Simultaneously, each of the point clouds is
rigidly aligned to the mean cloud, providing the stability of the method [162].
In this document, some of important points related to the registration algorithm
will be provided. If more details are needed, readers are referred to the paper
written by van de Giessen [162].
The registration algorithm establishes correspondence between N number of
point clouds Ci(i, 1, · · · , N)(Fig. C.6) and evolving mean cloud M with nm points
(Fig. C.6).
The algorithm basically consists of five steps:

1. Estimate an initial mean cloud M with nm points using information of the
surfaces from which the point clouds Ci(i, 1, · · · , N) were obtained (Fig.
C.6).

2. Register the estimated mean cloud M to each cloud Ci by using the L2
divergence as a similarity measure between Ci and deformed form of M,
which results in Mi (Fig. C.6).

3. Update the current estimate of the mean shape M by computing the mean
of all Mi(i = 1, · · · , N) (Fig. C.6).

4. Check the convergence. If the convergence is not reached, go to Step 2, else
follow Step 5.
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Figure C.6: Mean shape M is initially estimated using information of
N number of point clouds (C1, C2, · · · , CN). N number of copies of M
are registered to each point cloud (C1, C2, · · · , CN). Mi(i = 1, · · · , N)
represents deformed forms of M and corresponding points between
clouds M and Mi(i = 1, · · · , N) have the same colors. The new esti-
mate of the mean shape M is computed based on the mean of Mi.

5. Use the correspondence relation between Mi and M to transform Ci to the
mean cloud.

As it can be guessed from the main steps, an initial mean cloud estimation has
an influence on the registration accuracy. Robustness of the technique to initial
estimate of a mean cloud was evaluated by van de Giessen [162] and found that
initialization of mean shape by drawing points from the 0-level set of the average
signed distance transform gives the most accurate registration results. Therefore,
the initial mean cloud was estimated as follows:

1. Each of the surfaces containing the points Ci was represented by a signed
transform, with the surface as the 0-level.

2. The average of the signed transforms was obtained.

3. The surface of the mean shape was found by applying a marching cubes
method on the 0-level of the average of the signed transforms.

4. The initial mean cloud was obtained by sampling the surface found in Step
3 with nm points.

C.4 Optimization of Registration Parameters (Numer-
ical Experiments)

An important issue to be mentioned is that a dense correspondence estimate be-
tween the point clouds Ci is realized using the registered surfaces [166]. There-
fore, registration process and its accuracy play an important role in generation
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of SSMs. The proposed registration algorithm requires a few parameters (i.e. the
scale parameter σ for the mixture of Gaussians, the number of points in the mean
cloud nm, and the regularization term λ) to be set by the user. The parameter nm
together with the parameter λ defines the accuracy of the estimated correspon-
dences during the registration process.
The optimal parameter settings (i.e. nm = 2000, σ = 1.5 mm, λ = 10−6) were
determined by carrying out numerical experiments. The steps to perform the
experiments are elaborately described by van de Giessen [326].
For optimization of parameters σ and nm, the basic steps in this study were:

1. Take a triangulated surface of a single 3D shape.

2. Randomly sample the triangulated surface with nm points.

3. Repeat the Step 2 two more times to obtain three different point clouds C1,
C2 and C3.

4. Do the registration of the clouds using the unbiased registration algorithm.

5. Transform the point clouds Ci (i=1, 2 and 3) to the mean cloud using the
correspondence relation between Mi and M.

6. Compute the registration accuracy (Eacc) (i.e. the mean signed point-to-
plane distance between all pairs of clouds Vi and Vj) using:

Eacc =
1

N(N − 1)

N

∑
i=1

N

∑
j=1\i
| 1
ni

ni

∑
k=1

uk · (xk − xc
k)| (C.1)

where ni is the number of points in the cloud Vi, uk is the normal vector at
point xk in point cloud Vi and xc

k is the point in cloud Vj closest to xk.

7. Compute the registration precision (i.e. the average point-to-plane distance
between all pairs of clouds Vi and Vj) using:

Eprec =
1

N(N − 1)

N

∑
i=1

N

∑
j=1\i

1
ni

ni

∑
k=1
|uk · (xk − xc

k)| (C.2)

This experiment was repeated for all combinations of σ ∈ {0.3, 0.6, 1.5, 3, 6, 15},
nm ∈ {100, 200, 500, 1000, 2000} and for 15 bone (i.e. talus and tibia) surfaces.
Throughout the experiment, the regularization term λ, which is used to balance
the data misfit and the deformation was kept as 10−9.
For the determination of a suitable range of the regularization term λ, similar
steps were followed:

1. Randomly select 3 different bone surfaces (i.e. bones from three different
individuals).
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2. Sample the surfaces with a fixed number of points (nm = 2000) to obtain
three point clouds C1, C2 and C3.

3. Do the registration of the clouds using the unbiased registration algorithm.

4. Transform the point clouds Ci (i = 1, 2 and 3) to the mean cloud using the
correspondence relation between Mi and M.

5. Compute the registration accuracy and the registration precision using the
Eq. C.1 and Eq. C.2, respectively.

This experiment was repeated for all combinations of σ ∈ {0.3, 0.6, 1.5, 3, 6, 15},
λ ∈ {10−8, 10−7, · · · , 10−3} and for 15 random selections of bone (i.e. talus and
tibia) surfaces.

C.5 Robustness of Statistical Model(s)

To evaluate the robustness of the SSMs (i.e. SSM of tibia and SSM of talus), a
bootstrap analysis was performed in a similar way described by Pedoia et al. [1].
In this study, five bootstrap replications were considered. At each replication, the
SSM of talus and SSM of tibia were rebuilt, being independent from each other.
These regenerated models were based on resampled versions of the surfaces (i.e.
a resampling with replacement for 70% of the original surfaces) included in the
training set of original SSMs. Using the rebuilt SSMs at each bootstrap, surfaces
(i.e. mean ± 3SD) were modeled in each of first five modes of variation. These
surfaces were compared to those obtained from the original SSMs by calculating
the mean distance between the surface points. The mean distances were less than
1.4 mm for each case (Tables C.1 and C.2).

Table C.1: The average distances between the talus surfaces obtained
from each bootstrap replication in each mode and the talus surfaces
modelled from the original SSM of talus. BS stands for Boot Strap.

Mean distance (mm)
Mode 1st BS 2nd BS 3rd BS 4th BS 5th BS

Mode 1 (+3 SD) 1.36 1.31 0.45 0.49 0.24
Mode 1 (- 3 SD) 1.38 1.23 0.46 0.53 0.21
Mode 2 (+3 SD) 0.55 1.29 1.22 1.26 1.15
Mode 2 (- 3 SD) 0.53 1.21 1.12 1.14 1.24
Mode 3 (+3 SD) 0.49 0.95 0.92 0.22 1.00
Mode 3 (- 3 SD) 0.46 0.78 0.82 0.20 0.85
Mode 4 (+3 SD) 0.74 0.37 0.72 0.71 0.23
Mode 4 (- 3 SD) 0.87 0.35 0.81 0.69 0.24
Mode 5 (+3 SD) 0.35 0.92 0.37 0.86 0.38
Mode 5 (- 3 SD) 0.24 0.83 0.36 0.83 0.27
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Table C.2: The average distances between the tibia surfaces obtained
from each bootstrap replication in each mode and the tibia surfaces
modelled from the original SSM of tibia. BS stands for Boot Strap.

Mean distance (mm)
Mode 1st BS 2nd BS 3rd BS 4th BS 5th BS

Mode 1 (+3 SD) 1.03 1.03 1.04 0.19 1.06
Mode 1 (- 3 SD) 0.96 0.96 1.05 0.20 1.01
Mode 2 (+3 SD) 0.23 0.24 0.77 0.96 0.20
Mode 2 (- 3 SD) 0.21 0.21 0.75 0.90 0.16
Mode 3 (+3 SD) 0.75 0.27 0.61 0.72 0.26
Mode 3 (- 3 SD) 0.77 0.25 0.66 0.74 0.21
Mode 4 (+3 SD) 0.22 0.65 0.56 0.24 0.61
Mode 4 (- 3 SD) 0.23 0.65 0.58 0.24 0.68
Mode 5 (+3 SD) 0.46 0.47 0.24 0.47 0.17
Mode 5 (- 3 SD) 0.50 0.51 0.20 0.48 0.16

C.6 Shape Parameters (Mean and 95% Confidence In-
terval)

The mean values of shape parameters together with 95% confidence interval for
both control and OCD groups are presented in Table C.3.

Table C.3: The average and 95% confidence interval for shape param-
eters of both groups: OCD and control.

Bone Type Mode OCD Control
Talus Mode 1 0.24 (-0.08,0.55) -0.25 (-0.60,0.10)

Mode 2 -0.21 (-0.55,0.12) 0.23 (-0.10,0.56)
Mode 3 -0.07 (-0.40,0.26) 0.08 (-0.28,0.43)
Mode 4 0.21 (-0.17,0.60) -0.22 (-0.49,0.04)
Mode 5 -0.33 (-0.67,0.01) 0.35 (0.04,0.66)

Tibia Mode 1 -0.47 (-0.67,-0.26) 0.49 (0.11,0.88)
Mode 2 0.18 (-0.18,0.55) -0.19 (-0.50,0.11)
Mode 3 -0.03 (-0.30,0.24) 0.03 (-0.38,0.44)
Mode 4 0.27 (-0.07,0.61) -0.28 (-0.60,0.03)
Mode 5 -0.01 (-0.42,0.40) 0.01(-0.24,0.26)

C.7 Effects of Age and Gender on Bone Shape Pa-
rameters

To test whether age and gender were predictors of shape parameters, a linear
regression analysis was performed (Table C.4). The significance level (p = 0.05)
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was adjusted for multiple comparisons using the Bonferroni correction, result-
ing in a significance threshold of p = 0.005 (i.e. 0.05

2bones×5modes ). Neither age nor
gender predicted variations in bone shape parameters (p values > 0.005).

Table C.4: Linear regression analysis to test whether age and gender
were predictors of shape parameters. β stands for the regression co-
efficient, while 95% CI represent 95% confidence interval for β.

β t p -value 95% CI
Lower Upper

Talus Mode 1
Age 0.005 0.437 0.664 -0.019 0.029

Gender -0.222 -0.886 0.379 -0.724 0.279
Mode 2

Age -0.014 -1.257 0.213 -0.036 0.008
Gender 0.451 1.929 0.058 -0.016 0.918
Mode 3

Age 0.002 0.213 0.832 -0.020 0.025
Gender -0.419 -1.778 0.080 -0.890 0.052
Mode 4

Age 0.032 2.675 0.010 0.008 0.056
Gender -0.470 -2.016 0.048 -0.936 -0.004
Mode 5

Age -0.019 -1.644 0.105 -0.043 0.004
Gender -0.222 -0.894 0.375 -0.716 0.273

Tibia Mode 1
Age -0.028 -2.455 0.017 -0.051 -0.005

Gender -0.069 -0.288 0.774 -0.550 0.411
Mode 2

Age 0.017 1.432 0.157 -0.007 0.040
Gender -0.355 -1.448 0.153 -0.844 0.135
Mode 3

Age -0.013 -1.101 0.275 -0.036 0.010
Gender -0.088 -0.359 0.720 -0.579 0.402
Mode 4

Age 0.018 1.619 0.110 -0.004 0.040
Gender -0.354 -1.519 0.134 -0.820 0.111
Mode 5

Age -0.001 -0.114 0.910 -0.025 0.023
Gender 0.141 0.555 0.581 -0.366 0.648
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D.1 Statistical Analyses of Ipsi- and Contralateral Sides
as Separate Groups

This section covers some important details about the methods mentioned in the
section “Statistical analyses ipsi- and contralateral sides as separate groups” of
Chapter 6.

D.1.1 D-Statistic Used in Group Location Test

D(istance)-statistic used in the group location test was the Euclidean distance
between the means of two groups [219, 223]. The main steps followed to calculate
the D-statistic were:

1. Two N × K matrices A and B consisting of the coordinates of m (i.e. K =
m× 3) landmarks established on all left (i.e. N = 66) and right (i.e. N = 66)
side bones of the same type, respectively, were formed:

A =

 Ax11 Ay11 Az11 · · · Ax1m Ay1m Az1m
...

...
... · · ·

...
...

...
AxN1 AyN1 AzN1 · · · AxNm AyNm AzNm

 (D.1)

B =

 Bx11 By11 Bz11 · · · Bx1m By1m Bz1m
...

...
... · · ·

...
...

...
BxN1 ByN1 BzN1 · · · BxNm ByNm BzNm

 (D.2)

2. The mean of each column in the matrices A and B, resulting in Ā and B̄ is
calculated:

Ā =
1
N
×

N

∑
i=1

( Axi1 Ayi1 Azi1 · · · Axim Ayim Azim ) (D.3)

B̄ =
1
N
×

N

∑
i=1

( Bxi1 Byi1 Bzi1 · · · Bxim Byim Bzim ) (D.4)

3. The matrix B̄ is subtracted from the matrix Ā in element-wise manner and
the square of each difference is calculated.

Ā− B̄
= ( (Āx1 − ¯Bx1)

2 (Āy1 − ¯By1)
2 · · · ( ¯Aym − ¯Bym)2 ( ¯Azm − ¯Bzm)2 )

(D.5)

4. All elements of the matrix obtained in Step 3 was summed and the square
root of it was calculated.
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D.1.2 D-Statistic Used in Variance-Covariance Scale Test
D-statistic used in the variance-covariance scale test was the absolute difference
in the average residual of the two groups [219, 223]. The main steps followed to
calculate the D-statistic were:

1. Steps 1-2 described in the previous section were followed.

2. The matrices Ā and B̄ were subtracted from the matrices A and B, respec-
tively. The square of each difference is calculated, summed and the square
root of the sum was calculated.

A− Ā = C

=


√
(Ax11 − ¯Ax1)2 + (Ay11 − ¯Ay1)2 + · · ·+ (Ay1m − ¯Aym)2 + (Az1m − ¯Axm)2

...√
(AxN1 − ¯Ax1)2 + (AyN1 − ¯Ay1)2 + · · ·+ (AyNm − ¯Aym)2 + (AzNm − ¯Azm)2

 (D.6)

B− B̄ = D

=


√
(Bx11 − ¯Bx1)2 + (By11 − ¯By1)2 + · · ·+ (By1m − ¯Bym)2 + (Bz1m − ¯Bxm)2

...√
(BxN1 − ¯Bx1)2 + (ByN1 − ¯By1)2 + · · ·+ (ByNm − ¯Bym)2 + (BzNm − ¯Bzm)2

 (D.7)

3. The mean of the matrices C and D was calculated, C̄ and D̄.

4. The square root of the squared difference between C̄ and D̄ was calculated.

D.2 Parallel Analysis

Parallel analysis (PA) [327, 229] was performed by generating a random dataset
that has an equal dimension with that of the original data (i.e. same sample size
and number of variables). Eigenvalues were derived from the random dataset.
Generation of the random dataset and extraction of eigenvalues were repeated
50 times. The 95th of the distribution of the replicated eigenvalues (i.e. 95th

percentile) for each component was determined. A principal component was
kept if the associated eigenvalue (i.e. the one derived from the original data)
was bigger than the calculated 95th percentile.
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Appendix E
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E.1 Monogenic Signal, Local Phase and Phase Sym-
metry Measure

To perform local analysis, a complex analytic signal fA(x) can be used and be
formed by taken the original signal f (x) (i.e. the real part) and its Hilbert trans-
form H[ f (x)] (i.e. the imaginary part) into consideration:

fA(x) = f (z) + iH[ f (x)] (E.1)

The local phase ϕ(x) can be computed from the analytic signal:

ϕ(x) = tan−1(
H[ f (x)]

f (x)
) (E.2)

Hilbert transform is mathematically restricted to a 1-D function. Felsberg and
Sommer presented the monogenic signal [273], which is an extension of the ana-
lytic signal from 1-D to N-D by means of the Riesz transform.
The monogenic signal fM(x, y) in 2-D can be written in the same format as the
1-D analytic signal:

fM(x, y) = fe(x, y) + i fR(x, y) (E.3)

where, fe is the even component of the original 2-D image calculated by convolv-
ing the original image with an isotropic band-pass filter (e.g. log-Gabor filter),
fR represents the odd components of the band-pass filtered image:

fe(x, y) = f (x, y) ∗ g(x, y) (E.4)

fR(x, y)
=
√
( f (x, y) ∗ g(x, y) ∗ h1(x, y))2 + ( f (x, y) ∗ g(x, y) ∗ h2(x, y))2 (E.5)

where, g(x, y) is the spatial domain representation of an isotropic band-pass filter
G(u, v); h1(x, y) and h2(x, y) are the spatial domain representation of the Riesz
filter’ fourier domain representation H1(u, v) and H2(u, v):

(H1(u, v), H2(u, v)) = (i
u√

u2 + v2
, i

v√
u2 + v2

) (E.6)

Referring to the study of Hacihaliloglu et al. [271], a ridge-like edge appears
at bone boundaries in US images. Therefore, in this study, a monogenic signal
based multiscale ridge detector PS(x, y) (i.e. Phase Symmetry) that is sensitive
to bone surface localization in US images is calculated in a similar way described
by Hacihaliloglu et al. [271, 266]:

PS(x, y) = ∑
sc

b[|evensc(x, y)| − |oddsc(x, y)|]− Tscc√
even2

sc(x, y) + odd2
sc(x, y) + ε

(E.7)

where, sc stands for the scale variable and ε is a small constant to avoid division
by zero. The b·c operator indicates that any negative values are replaced by zero.
Tsc is a scale-specific noise threshold value [328].
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E.2 Surface Point Extraction From CT Data

A point set from each pair of adjacent bones (i.e. distal tibia and talus) surfaces,
which can partly be visualized using US, were obtained as follows:

1. Dicom images of a cadaveric ankle were imported in Matlab (Matlab 2013b,
The Mathworks Inc., Natick, MA) and users were let scrolling down through
slices (i.e. slices in sagittal view) to pick a slice in which the talar head –
neck transition region (Fig. E.1) can clearly be seen.

Figure E.1: Sagittal view of the ankle joint. Three points ’P1-P3’ on
talus and one point ’P4’ on distal tibia are determined by users. Black
dash line represents a fictive line passing through the utmost sub-
chondral part of the tibia and it is used in determination of points ’P2’
and ’P4’.

2. Users were let to pick four different points (i.e. three points on talus and
one point on distal tibia) (Fig. E.1). The first point on talus is located close
to the talar head-neck transition region. The second point on talus is posi-
tioned at the intersection point of a fictive line passing through the utmost
subchondral part of the tibia with the talar dome (Fig. E.1). The third point
on talar dome is defined in a way that it lies in between two previously
created points (Fig. E.1). The fourth point is marked on the utmost sub-
chondral part of the distal tibia (Fig. E.1).

3. Users were second time let to pick a slice by scrolling down through slices
(i.e. slices in axial view). A slice is determined in a way that the talar dome
width approximately gets its maximum (Fig. E.2).

4. Users were enabled to pick two different points at the outermost points of
the talar dome (Fig. E.2).

5. Normals of the planes that pass through the points ’P1’, ’P3’, ’P5’ and ’P6’
are determined as follows:

5.1. Plane 1 (i.e. it passes through the point ’P1’) (Fig. E.3): A circle is cre-
ated using the points ’P1’, ’P2’ and ’P3’. Generated circle is discretized
with 1000 points. One of the points, which is the nearest by the point
’P1’ is chosen and named ’P7’. The normal of the ’Plane 1’ points from
the point ’P1’ to the point ’P7’.
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Figure E.2: Axial view of the ankle joint. Two points ’P5’ and ’P6’
are determined by at the outermost locations of the talar dome in the
slice, in which the talar dome width roughly gets its maximum.

5.2. Plane 2 (i.e. it passes through the point ’P3’) (Fig. E.3): A line is drawn
using the points ’P3’ and ’P4’ and it is rotated by 90◦.

5.3. Plane 3 (i.e. it passes through the point ’P5’) (Fig. E.3) and Plane 4
(i.e. it passes through the point ’P6’) (Fig. E.3): Normals are defined
in a way that they point outward from the respective face of talus.

6. Planes are drawn using the points ’P1’, ’P3’, ’P5’ and ’P6’ and the nor-
mals defined in the previous step (Fig. E.3). Triangulated bone (i.e. distal
tibia and talus) surfaces, which have been extracted from the segmenta-
tion results, are cut using the four planes ’Plane 1 - Plane 4’ and surfaces
remaining between four planes are isolated (Fig. E.3).

Figure E.3: (a) Four planes passing through the points ’P1’, ’P3’, ’P5’
and ’P6’ are generated. (b) Bone surfaces remaining between four
planes are determined. (c) Surfaces remaining between four planes
are isolated and vertices of the triangles located on isolated surfaces
are used as sampling points in registration.

7. Vertices of triangles located on the isolated surfaces (Fig. E.3) are extracted

184



and used as sampling points during registration.
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Taylor, and R. H. Davies, “Evaluation of 3D correspondence methods for
model building.,” Information Processing in Medical Imaging, 2003.

[120] M. B. Stegmann and D. D. Gomez, “A brief introduction to statistical shape
analysis,” Informatics and Mathematical Modelling, 2002.

[121] A. Gooßen, E. Hermann, G. M. Weber, T. Gernoth, T. Pralow, and R. R. Gri-
gat, “Model-based segmentation of pediatric and adult joints for orthope-
dic measurements in digital radiographs of the lower limbs,” in Computer
Science - Research and Development, 2011.

[122] G. Guglielmi, F. Palmieri, M. G. Placentino, F. D’Errico, and L. P. Stop-
pino, “Assessment of osteoporotic vertebral fractures using specialized
workflow software for 6-point morphometry,” European Journal of Radiol-
ogy, 2009.

[123] M. Roberts, T. F. Cootes, and J. E. Adams, “Vertebral morphometry: Semi-
automatic determination of detailed shape from dual-energy x-ray absorp-

196



tiometry images using active appearance models,” Investigative Radiology,
2006.

[124] M. Mahfouz, E. E. H. A. Fatah, L. S. Bowers, and G. Scuderi, “Three-
dimensional morphology of the knee reveals ethnic differences,” Clinical
Orthopaedics and Related Research, vol. 470, no. 1, pp. 172–185, 2012.

[125] S. Amin Yavari, R. Wauthle, J. van der Stok, A. C. Riemslag, M. Janssen,
M. Mulier, J. P. Kruth, J. Schrooten, H. Weinans, and A. A. Zadpoor, “Fa-
tigue behavior of porous biomaterials manufactured using selective laser
melting,” Materials Science and Engineering C, 2013.

[126] J. van der Stok, O. P. van der Jagt, S. Amin Yavari, M. F. de Haas, J. H.
Waarsing, H. Jahr, E. M. van Lieshout, P. Patka, J. A. Verhaar, A. A. Zad-
poor, and H. Weinans, “Selective laser melting-produced porous titanium
scaffolds regenerate bone in critical size cortical bone defects,” Journal of
Orthopaedic Research, 2013.

[127] J. van der Stok, H. Wang, S. Amin Yavari, M. Siebelt, M. Sandker, J. H.
Waarsing, J. A. Verhaar, H. Jahr, A. A. Zadpoor, S. C. Leeuwenburgh, and
H. Weinans, “Enhanced bone regeneration of cortical segmental bone de-
fects using porous titanium scaffolds incorporated with colloidal gelatin
gels for time- and dose-controlled delivery of dual growth factors,” Tissue
Engineering Part A, 2013.

[128] K. E. Naylor, E. V. McCloskey, R. Eastell, and L. Yang, “Use of DXA-based
finite element analysis of the proximal femur in a longitudinal study of hip
fracture,” Journal of Bone and Mineral Research, 2013.

[129] D. Testi, M. Viceconti, A. Cappello, and S. Gnudi, “Prediction of hip frac-
ture can be significantly improved by a single biomedical indicator,” An-
nals of Biomedical Engineering, 2002.

[130] J. H. Keyak, S. A. Rossi, K. A. Jones, and H. B. Skinner, “Prediction of
femoral fracture load using automated finite element modeling,” Journal of
Biomechanics, 1997.

[131] E. Schileo, F. Taddei, L. Cristofolini, and M. Viceconti, “Subject-specific
finite element models implementing a maximum principal strain criterion
are able to estimate failure risk and fracture location on human femurs
tested in vitro,” Journal of Biomechanics, 2008.

[132] G. J. Edwards, T. F. Cootes, and C. J. Taylor, “Advances in active appear-
ance models,” in Proceedings of the Seventh IEEE International Conference on
Computer Vision, vol. 1, pp. 137–142, IEEE, 1999.

[133] J. Westerweel, “Digital particle image velocimetry,” 1997.

[134] E. C. Pegg, S. J. Mellon, G. Salmon, A. Alvand, H. Pandit, D. W. Murray,
and H. S. Gill, “Improved radiograph measurement inter-observer reliabil-
ity by use of statistical shape models,” European Journal of Radiology, 2012.

[135] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two
3-d point sets,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
no. 5, pp. 698–700, 1987.

197



[136] D. Shaoyi, Z. Nanning, Y. Shihui, Y. Qubo, and W. Yang, “An extension
of the ICP algorithm considering scale factor,” in Proceedings - International
Conference on Image Processing, ICIP, 2007.

[137] I. T. Jolliffe, Principal Component Analysis, Second Edition. 2002.

[138] M. B. Stegmann, “Active appearance models: Theory, extensions and
cases,” Month, 2000.

[139] T. F. Cootes and C. J. Taylor, “Anatomical statistical models and their role
in feature extraction,” British Journal of Radiology, 2004.

[140] T. Cootes, “Active appearance models,” Pattern Analysis and . . . , 2001.

[141] D. J. Kroon, Segmentation of the Mandibular Canal in Cone-Beam CT Data.
PhD thesis, 2011.

[142] E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, “Trabecular bone
modulus-density relationships depend on anatomic site,” Journal of Biome-
chanics, 2003.

[143] R. Scholz, F. Hoffmann, S. von Sachsen, W. G. Drossel, C. Klöhn, and
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tween hip fracture types: A worthy strategy for improved risk assessment
and fracture prevention,” 2011.

[157] J. D. Orr, L. K. Dawson, E. J. Garcia, and K. L. Kirk, “Incidence of osteo-
chondral lesions of the talus in the United States Military,” Foot & Ankle
International, 2011.

[158] M. Reilingh, C. van Bergen, and C. van Dijk, “Diagnosis and treatment of
osteochondral defects of the ankle,” South African Orthopaedic Journal, 2009.

[159] N. Sarkalkan, H. Weinans, and A. A. Zadpoor, “Statistical shape and ap-
pearance models of bones,” 2014.

[160] S. Radzi, M. Uesugi, A. Baird, S. Mishra, M. Schuetz, and B. Schmutz,
“Assessing the bilateral geometrical differences of the tibia - are they the
same?,” Medical Engineering and Physics, 2014.

[161] K. Islam, A. Dobbe, A. Komeili, K. Duke, M. El-Rich, S. Dhillon, S. Adeeb,
and N. M. Jomha, “Symmetry analysis of talus bone: A geometric morpho-
metric approach.,” Bone & Joint Research, 2014.

[162] M. van de Giessen, F. M. Vos, C. A. Grimbergen, L. J. van Vliet, and G. J.
Streekstra, “An efficient and robust algorithm for parallel groupwise reg-
istration of bone surfaces.,” Medical Image Computing and Computer-Assisted
Intervention : MICCAI ... International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, 2012.

[163] N. Amenta, M. Bern, and M. Kamvysselis, “A new Voronoi-based surface
reconstruction algorithm,” in Proceedings of the 25th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’98, 1998.

[164] M. van de Giessen, M. Foumani, G. J. Streekstra, S. D. Strackee, M. Maas,
L. J. van Vliet, K. A. Grimbergen, and F. M. Vos, “Statistical descriptions of
scaphoid and lunate bone shapes,” Journal of Biomechanics, 2010.

199



[165] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape models-their
training and application,” Computer Vision and Image Understanding, 1995.

[166] M. van de Giessen, N. Smitsman, S. D. Strackee, L. J. van Vliet, K. A. Grim-
bergen, G. J. Streekstra, and F. M. Vos, “A statistical description of the ar-
ticulating ulna surface for prosthesis design,” in Proceedings - 2009 IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
2009, 2009.

[167] N. K. Mahato, “Morphology of sustentaculum tali: Biomechanical impor-
tance and correlation with angular dimensions of the talus,” Foot, 2011.

[168] J. W. Stone, “Osteochondral lesions of the talar dome,” JAAOS-Journal of
the American Academy of Orthopaedic Surgeons, vol. 4, no. 2, pp. 63–73, 1996.

[169] J. Bruns and B. Rosenbach, “Pressure distribution at the ankle joint.,” Clin-
ical Biomechanics, 1990.

[170] L. Wan, R. J. de Asla, H. E. Rubash, and G. Li, “Determination of in-vivo
articular cartilage contact areas of human talocrural joint under weight-
bearing conditions,” Osteoarthritis and Cartilage, 2006.

[171] F. Corazza, R. Stagni, V. P. Castelli, and A. Leardini, “Articular contact at
the tibiotalar joint in passive flexion,” Journal of Biomechanics, 2005.

[172] R. D. Ferkel, R. M. Zanotti, G. A. Komenda, N. A. Sgaglione, M. S. Cheng,
G. R. Applegate, and R. M. Dopirak, “Arthroscopic treatment of chronic
osteochondral lesions of the talus: long-term results.,” The American Journal
of Sports Medicine, 2008.

[173] R. A. W. Verhagen, P. A. A. Struijs, P. M. M. Bossuyt, and C. N. van Dijk,
“Systematic review of treatment strategies for osteochondral defects of the
talar dome,” 2003.

[174] C. R. Lareau, J. T. Bariteau, D. J. Paller, S. C. Koruprolu, and C. W. Di-
Giovanni, “Contribution of the medial malleolus to tibiotalar joint contact
characteristics,” Foot and Ankle Specialist, 2015.

[175] C. W. Imhauser, S. Siegler, J. K. Udupa, and J. R. Toy, “Subject-specific mod-
els of the hindfoot reveal a relationship between morphology and passive
mechanical properties,” Journal of Biomechanics, 2008.

[176] J. M. Hootman, R. Dick, and J. Agel, “Epidemiology of collegiate injuries
for 15 sports: Prevention initiatives,” Journal of Athletic Training, 2007.

[177] T. Kobayashi and K. Gamada, “Lateral ankle sprain and chronic ankle in-
stability - a critical review,” Foot & Ankle Specialist, 2014.

[178] M. N. Houston, B. L. Van Lunen, and M. C. Hoch, “Health-related qual-
ity of life in individuals with chronic ankle instability,” Journal of Athletic
Training, 2014.

[179] P. A. Gribble, C. M. Bleakley, B. M. Caulfield, C. L. Docherty, F. Fourchet,
D. T. P. Fong, J. Hertel, C. E. Hiller, T. W. Kaminski, P. O. McKeon, K. M.
Refshauge, E. A. Verhagen, B. T. Vicenzino, E. A. Wikstrom, and E. De-
lahunt, “2016 consensus statement of the International Ankle Consortium:
Prevalence, impact and long-term consequences of lateral ankle sprains,”
British Journal of Sports Medicine, 2016.

200



[180] B. R. Waterman, P. J. Belmont, K. L. Cameron, T. M. DeBerardino, and
B. D. Owens, “Epidemiology of ankle sprain at the United States Military
Academy,” The American Journal of Sports Medicine, 2010.

[181] P. Gribble, E. Delahunt, C. Bleakley, B. Caulfield, C. Docherty, D.-P. Fong,
F. Fourchet, J. Hertel, C. Hiller, T. Kaminski, P. McKeon, K. Refshauge,
P. van der Wees, W. Vicenzino, and E. Wikstrom, “Selection criteria for
patients with chronic ankle instability in controlled research: A position
statement of the international ankle consortium,” Journal of Athletic Train-
ing, 2014.

[182] E. A. Wikstrom, T. Hubbard-Turner, and P. O. McKeon, “Understanding
and treating lateral ankle sprains and their consequences: A constraints-
based approach,” Sports Medicine, 2013.

[183] T. J. Hubbard, J. Hertel, and P. Sherbondy, “Fibular position in individuals
with self-reported chronic ankle instability,” Journal of Orthopaedic & Sports
Physical Therapy, 2006.

[184] K. E. Morrison and T. W. Kaminski, “Foot characteristics in association
with inversion ankle injury,” 2007.

[185] A. Frigg, O. Magerkurth, V. Valderrabano, H. P. Ledermann, and B. Hin-
termann, “The effect of osseous ankle configuration on chronic ankle in-
stability,” British Journal of Sports Medicine, 2007.

[186] O. Hershkovich, S. Tenenbaum, B. Gordon, N. Bruck, R. Thein, E. Derazne,
D. Tzur, A. Shamiss, and A. Afek, “A large-scale study on epidemiology
and risk factors for chronic ankle instability in young adults,” The Journal
of Foot and Ankle Surgery, vol. 54, no. 2, pp. 183–187, 2015.

[187] A. Anandacoomarasamy and L. Barnsley, “Long term outcomes of inver-
sion ankle injuries,” British journal of sports medicine, vol. 39, no. 3, pp. e14–
e14, 2005.

[188] E. Delahunt, G. F. Coughlan, B. Caulfield, E. J. Nightingale, C.-W. C. Lin,
and C. E. Hiller, “Inclusion criteria when investigating insufficiencies in
chronic ankle instability,” Medicine & Science in Sports & Exercise, vol. 42,
no. 11, pp. 2106–2121, 2010.

[189] J. W. Peters, S. G. Trevino, and P. A. Renstrom, “Chronic lateral ankle in-
stability,” Foot & ankle, vol. 12, no. 3, pp. 182–191, 1991.
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[313] M. Zöckler, D. Stalling, and H. C. Hege, “Fast and intuitive generation of
geometric shape transitions,” Visual Computer, 2000.

[314] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor,
“A minimum description length approach to statistical shape modeling,”
IEEE Transactions on Medical Imaging, 2002.

[315] J. Fripp, S. Crozier, S. Ourselin, and S. Warfield, “Automatic initialisation
of 3D deformable models for cartilage segmentation,” in Proceedings of the
Digital Imaging Computing: Techniques and Applications, DICTA 2005, 2005.

[316] R. Pilgram and C. Walch, “Knowledge-based femur detection in conven-
tional radiographs of the pelvis,” Computers in Biology and Medicine, 2008.

210



[317] R. H. Davies, C. J. Twining, P. D. Allen, T. F. Cootes, and C. J. Taylor, “Shape
discrimination in the hippocampus using an MDL model.,” Information
processing in medical imaging : proceedings of the ... conference, 2003.

[318] T. Heimann, I. Oguz, and I. Wolf, “Implementing the automatic generation
of 3D statistical shape models with ITK,” Open Science Workshop . . . , 2006.

[319] N. Boukala, E. Favier, B. Laget, and P. Radeva, “Active shape model based
segmentation of bone structures in hip radiographs,” in Industrial Tech-
nology, 2004. IEEE ICIT’04. 2004 IEEE International Conference on, vol. 3,
pp. 1682–1687, IEEE, 2004.

[320] I. M. Scott, T. F. Cootes, and C. J. Taylor, “Improving appearance model
matching using local image structure.,” Information processing in medical
imaging : proceedings of the ... conference, 2003.

[321] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111–122, 1981.
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