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Summary 
Simulation models are increasingly used for exploring the consequences of deep 

uncertainty in complex societal issues. The complexity of societal grand challenges, 

often characterised by the interrelatedness of different elements in the systems 

underlying these challenges, often renders mental simulation impossible, 

necessitating the use of simulation models to assist human reasoning. In addition, 

these grand challenges are typically also subject to deep uncertainty, making it, for 

example, impossible to come to a shared understanding of parts of the system and 

exogenous inputs to it, or even a shared problem definition. Deep uncertainty is 

defined by Lempert, Popper, and Bankes (2003) as conditions “where analysts do 

not know, or the parties to a decision cannot agree on, (1) the appropriate conceptual 

models that describe the relationships among the key driving forces that will shape 

the long-term future, (2) the probability distributions used to represent uncertainty 

about key variables and parameters in the mathematical representations of these 

conceptual models, and/or (3) how to value the desirability of alternative outcomes”. 

Under deep uncertainty, simulation models can be used to explore the consequences 

of different combinations of assumptions about uncertain factors or attributes of the 

problem situation and the underlying system. This type of simulation model use was 

introduced in 1993 as Exploratory Modelling and Analysis (EMA). In more recent 

years, this approach has become a major underpinning of the Decision Making under 

Deep Uncertainty (DMDU) field. 

The treatment of deep uncertainty in much DMDU research can be improved, 

however. In most DMDU research to date, pre-existing models are used. These 

models were generally developed for ‘consolidative’ use: the modellers tried to unify 

existing knowledge to come a single, ‘best’ model. While most modellers will agree 

that these models are not perfect representations of reality, and often agree that they 

as such cannot be validated in the strict sense of the word, these modellers and their 

models do not acknowledge deep uncertainty. The use of consolidative models is 

arguably problematic if one agrees that the issue at hand is characterized by deep 

uncertainty. Therefore, models are needed that are explicitly developed for 

‘exploratory’ use: models that explicitly incorporate deep uncertainty potentially 

relevant for the research question or questions at hand. However, little experience 

and guidance exists regarding development and use of specifically exploratory 

models. 

In this dissertation, a first attempt is made to identify, and provide guidance for, the 

critical choices made during the development and use of exploratory models. I do this 

on the basis of four case studies published as five separate papers. The first and 

second paper concern the future availability of copper. The first paper, “Dealing with 
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Multiple Models in System Dynamics”, investigates under which conditions three 

different models with different perspectives on the same problem generate either 

similar or different behaviour. The second paper, “Dynamic scenario discovery under 

deep uncertainty: The future of copper”, investigates how to apply Scenario 

Discovery to time series data. Scenario Discovery is a method to identify scenarios 

from a large number of computer runs by the use of computerised learning 

algorithms, and – before this paper – exclusively focussed on end values of runs. The 

third paper, “The geopolitical impact of the shale revolution”, investigates how to 

apply exploratory modelling in case of two models with different scopes. This was 

demonstrated by exploring the potential consequences of the US’ shale boom on 

state stability of states heavily dependent on oil and gas exports. The fourth paper, 

“Societal Ageing in the Netherlands”, investigates how differences in problem 

perception can be taken into account through exploratory modelling. This paper 

applies this to the impact of societal ageing in the Netherlands on the affordability of 

ageing-related collective spending and the desirability of ageing policies in the eyes 

of Dutch citizens. Finally, the fifth paper, “Simulating endogenous dynamics of 

intervention-capacity development”, investigates a way of accounting for policy 

implementation uncertainty. This paper uses the intervention capacity development 

during the 2014 outbreak of the Ebola virus in Liberia as a case study. As most 

research underlying these papers was performed for clients, there is no strong 

connection between the different papers apart from the use of the same modelling 

paradigm (System Dynamics) and the same uncertainty methodology (EMA). 

Methods 

By reflecting critically on the case studies, I have derived a comprehensive overview 

of issues a modeller encounters when developing and using exploratory models. 

These issues can be structured into four broad categories. The first category 

concerns the different ways in which uncertainty can be acknowledged during the 

development of exploratory models. The second category focuses on the difficulties 

that arise during the use of specific tools and methods for exploratory analysis, and 

analysis of exploratory simulation results. The third category is about the costs of 

exploratory modelling compared to consolidative approaches. The fourth, and final, 

category, relates to the communication of EMA results to clients and stakeholders. 

Exploratory model development 

I found that deep uncertainty has an impact on every phase of the model 

development cycle. In this dissertation, I define a model as an internally connected 

set of equations, which is not necessarily parametrised. The model development 

cycle can be conceived to consist of 5 phases: problem articulation, model 

conceptualisation, model formulation, model evaluation, and policy testing. 

The problem articulation phase aims at articulating the central problem which needs 

to be researched, using that problem formulation for selecting which elements need 
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to be modelled endogenously (i.e., scoping or boundary selection), and what the time 

horizon of the model is. Here, uncertainty about the problem formulation (e.g., in the 

case of wicked problems or societal messes) may lead to multiple scopes: multiple 

models may need to be developed to accommodate the different ideas about 

problem and system. Next to this, the scope may be made wider than in traditional 

approaches if this allows multiple explanations of the same problem. The scope may 

be made narrower, if it is necessary to test the model’s response to different well-

established input scenarios (e.g., climate scenarios) or other input scenarios that may 

be used for testing system resilience. 

In the conceptualisation phase, the modeller tries to identify main relations between 

key variables, which often builds on mental models of stakeholders and experts. 

Uncertainty in this phase may be reflected by identifying the most important structural 

uncertainties that need to be included in models. If in the problem articulation phase 

multiple scopes have been selected, one or more conceptual models need to be 

developed for each scope. The modeller will, of course, have to communicate the 

locations of deep uncertainties in conceptual diagrams. 

During the model formulation phase the actual simulation model is formulated and 

implemented. The modeller has to make choices regarding the way in which 

uncertainties identified in the conceptualisation phase are expressed in the model or 

models. For example, the modeller may formulate alternative structures to 

accommodate the different plausible structures that have been put forward. These 

structures may resemble different theories, or pragmatic origins if no clear best option 

for potential formulations exists. In some cases it might be possible to encapsulate 

these alternative structures within a single model where a parameter determines 

which structure is active, essentially turning structural uncertainty into parameter 

uncertainty. If capturing these different formulations in a single model becomes 

impractical, multiple models will have to be formulated. When parameter values are 

uncertain, the plausible bandwidths for these parameters need to be defined. 

The evaluation phase aims at building confidence in the quality of the model by 

performing tests and evaluating model results. Standard procedures for exploratory 

modelling imply performing a large number of runs to explore the consequences of 

the identified deep uncertainties. This provides the basis for testing whether the 

model or models are fit for purpose. A set of runs may function as a base ensemble, 

compared to a base run in consolidative modelling. Runs of interest may be selected 

to identify which combinations of uncertainties cause them, for example with the 

Scenario Discovery approach. This further increases the understanding of how and 

why model inputs map to model outcomes. 

The policy testing phase aims at testing and analysing the effects of different policies, 

alone and in combination, on all plausible model behaviour. In the policy testing 

phase, acknowledging deep uncertainty changes how policies are tested and what 

evaluative criteria are used. Policy implementation itself may be uncertain. The 
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effects of a policy may thus be uncertain, as well as the moment of implementation. 

This may be exacerbated if the power of the problem owner in the system is only 

limited. This can be approached by making important policy variables uncertain. 

Policy uncertainty is in that case treated just like other types of structural and 

parametric uncertainty. 

The analysis of exploratory model development makes clear that if deep uncertainty 

is recognised and acknowledged in early phases, it becomes impossible to disregard 

that uncertainty in later phases. Further, especially the use of multiple models and 

structural uncertainties may increase the variety of types of model outcomes found in 

DMDU analyses. 

Effects on EMA approaches 

The complexity of exploratory models may render the use of some exploratory 

modelling approaches, including Scenario Discovery, more difficult. There are three 

reasons for this. First, classifying the types of time series generated by non-linear 

models is often problematic. Selection of the most relevant runs to see whether these 

have common origins is thus often not possible. Since publishing the paper on 

dynamic scenario discovery (i.e., paper 1), significant advances have been made in 

the field of time series clustering. Future research should investigate the potential of 

the resulting new time series clustering approaches for classifying behavioural 

modes.  

Second, Scenario Discovery makes use of tools (e.g., the Patient Rule Induction 

Method) that do not work appropriately for non-linear models. Two directions of future 

research are (i) the development of algorithms that allow for the use of non-linear 

models, and (ii) the use of model variables instead of uncertain parameters as the 

independent variables in existing algorithms for scenario discovery. 

Third, exploratory simulation models generally have relatively high numbers of 

uncertainties. Reducing these numbers is not always possible, which makes new 

techniques that allow smarter sampling necessary to avoid having to perform 

unrealistically high numbers of runs. Future research should investigate the potential 

of adaptive sampling, or alternatively the potential of sensitivity-analysis based 

screening methods that do account for interaction effects amongst the uncertainties. 

Costs of exploratory modelling 

The costs of exploratory modelling are significant. Model development and analysis 

takes significantly more time if multiple models have to be developed. Performing 

high numbers of runs increases the computational costs. Finally, analysing all 

outcomes generated may cause an information overload for the analyst, which 

obscures sharp observations. Benefits of the approach, however, include the 

increased richness of insights resulting from this analysis and increased opportunities 

for new insights. For example, in the case of the geopolitical impact of the shale 
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revolution, most stakeholders did not consider the possibility of falling oil prices as 

plausible before our analysis was presented to them.  

Communication and Reception 

The research underpinning this thesis received both negative and positive reactions 

when communicated to stakeholders in policy discussions, in academic policy 

domains, and in methodological fields. In policy discussions, EMA based policy 

research is more difficult to quickly comprehend and is often considered relatively 

expensive. However, the results were often appreciated, especially if new insights 

were provided. Further, words like uncertainty, complexity, robustness, and resilience 

resonated with policy makers given their salience in the policy issues they were 

coping with. In domain specific fields, my research was sometimes seen as unfit by 

other researchers using different methods. Positive reactions, however, also came 

forward when domain specific researchers recognised some useful innovations in 

exploratory modelling. In methodological fields, especially the SD field, the reaction 

was mixed as well. In part, negative reactions arose from an overly ambitious and 

perhaps offensive argumentation line in our papers. Next to this, some consolidative 

modellers just view the inability to unify model structures into a single, best definition 

as insufficiently rigorous modelling. On the other hand, framing the work as 

complementary to existing work has led to some good discussions and well received 

work. 

Conclusions 

The reflection on model development and use in my dissertation makes clear that 

while the DMDU field is rapidly expanding, many challenges remain. The first may be 

to find interest in exploratory model development. This may increase the depth of 

understanding that arises from exploring the consequences of all – modelled – 

uncertainties in complex societal challenges. Next to this, the toolset currently used in 

EMA approaches has limited capabilities with dynamic non-linear simulation models 

of complex problems. 

Exploratory modelling remains expensive. The many positive reactions, however, 

from policy makers, policy researchers, and methodologists following on sometimes 

initial negative reactions, do show that the methods discussed in this dissertation 

have great promise. Continuous reflection on how to build strong narratives based on 

exploratory models is thus needed to further increase the acceptance and use of 

these approaches. 
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Samenvatting 
Simulatiemodellen worden steeds vaker gebruikt om de gevolgen van diepe 

onzekerheid op complexe maatschappelijke uitdagingen te onderzoeken. Het in 

eigen gedachten doordenken, ook wel ‘Mentale simulatie’ genoemd, van grote 

maatschappelijke uitdagingen is vaak onmogelijk door de complexiteit, die meestal 

gekarakteriseerd wordt door de onderlinge samenhang tussen de verschillende 

systeemelementen van de problemen. Het is daarom noodzakelijk om 

simulatiemodellen te gebruiken om de menselijke gedachtenvorming te 

ondersteunen. Deze maatschappelijke uitdagingen zijn vaak ook onderhevig aan 

diepe onzekerheid, waardoor het bijvoorbeeld onmogelijk is om tot een gezamenlijk 

begrip te komen van verschillende onderdelen van het systeem, exogene invloeden 

op het systeem, of zelfs een gezamenlijke probleemdefinitie. Diepe onzekerheid is 

door Lempert, Popper en Bankes in 2003 gedefinieerd als omstandigheden “waar 

analisten niet weten, of beslissers het niet eens kunnen worden over, (1) de 

geschikte conceptuele modellen die de relaties beschrijven tussen de belangrijkste 

krachten die de toekomst bepalen, (2) waarschijnlijkheidsverdelingen gebruikt om 

onzekerheid over belangrijke variabelen en parameters in mathematische 

formuleringen van deze conceptuele modellen uit te drukken, en/of (3) hoe de 

waarschijnlijkheid van verschillende uitkomsten te waarderen. 

Simulatiemodellen kunnen dan gebruikt worden om systematisch de consequenties 

van verschillende combinaties van aannames over onzekere factoren of 

eigenschappen van het probleem en het onderliggende systeem te exploreren. Dit 

type gebruik van simulatiemodellen werd in 1993 geïntroduceerd als ‘Exploratory 

Modelling and Analysis’ (EMA, ‘verkennende modellering en analyse’). Tegenwoordig 

is deze benadering de belangrijkste pijler on het wetenschappelijke veld met de 

naam ‘Decision Making under Deep Uncertainty’ (DMDU, ‘besliskunde onder diepe 

onzekerheid’). 

Er is echter nog verbetering mogelijk in de manier waarop in het meeste DMDU-

onderzoek met diepe onzekerheid om wordt gegaan. Momenteel wordt namelijk in 

het meeste DMDU-onderzoek gebruik gemaakt van bestaande modellen. Deze 

modellen zijn over het algemeen ontwikkeld voor zogenaamd ‘consolidatieve’ (hier: 

‘verenigend’) gebruik: de modelleurs hebben gepoogd bestaande kennis te 

verenigen om tot een enkele, ‘beste’ modelformulering te komen. De meeste van 

deze modelleurs zijn het er overigens over eens dat geen enkel model een perfecte 

weergave van de werkelijkheid is en dat ze dus ook niet gevalideerd kunnen worden 

in de strikte betekenis van het woord, maar desondanks erkennen zij het bestaan 

van diepe onzekerheid niet in hun modellen. Als men het echter eens is over de 

invloed van diepe onzekerheid op het beschouwde probleem, dan is het 

problematisch om verenigende modellen te gebruiken. In die situaties hebben we 
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daarom modellen nodig die expliciet voor verkennend gebruik zijn ontwikkeld: 

modellen die alle diepe onzekerheid die potentieel relevant is voor de 

onderzoeksvraag of -vragen nadrukkelijk meenemen. Tot op heden bestaat er echter 

relatief weinig aandacht en sturing voor ontwikkeling en gebruik van specifiek 

verkennende modellen. 

Ik doe in deze dissertatie een eerste poging om beslissende keuzes gedurende de 

ontwikkeling en het gebruik van verkennende modellen te identificeren, of het maken 

van deze keuzes te ondersteunen. Dit gebeurd op basis van vier casestudy’s die als 

vijf afzonderlijke wetenschappelijke artikelen zijn gepubliceerd. Het eerste en tweede 

van deze artikelen gaan over de toekomstige beschikbaarheid van koper. Het eerste 

(“Dealing with Multiple Models in System Dynamics”) onderzoekt onder welke 

omstandigheden drie verschillende modellen met drie verschillende perspectieven op 

hetzelfde probleem vergelijkbaar of juist verschillend gedrag genereren. Het tweede 

(“Dynamic scenario discovery under deep uncertainty: The future of copper”) 

onderzoekt hoe Scenario Discovery toegepast kan worden op data met tijdseries. 

Scenario Discovery is een methode om scenario’s te identificeren uit een grote 

hoeveelheid runs van een computermodel met behulp van algoritmes die 

automatisch leren ondersteunen. Het derde artikel (“The geopolitical impact of the 

shale revolution”) onderzoekt daarna hoe twee exploratieve modellen met 

verschillende, maar aan elkaar rakende, toepassingsgebieden tegelijkertijd kunnen 

worden gebruikt. Ik heb dat gedemonstreerd door te kijken naar de mogelijke 

gevolgen van de grote toename in productie van schaliegas en -olie in de Verenigde 

Staten op landen die sterk afhankelijk zijn van olie- en gasexport. Het vierde artikel 

(“Societal ageing in the Netherlands”) onderzoekt hoe verschillen in 

probleemperceptie tussen verschillende belanghebbenden meegenomen kunnen 

worden in tijdens het verkennend modelleren. We hebben dit toegepast op de impact 

van vergrijzing in Nederland op enerzijds de houdbaarheid van 

vergrijzingsgerelateerde collectieve uitgaven en anderzijds de wenselijkheid van 

vergrijzingsbeleid in de ogen van inwoners van Nederland. Het vijfde artikel, ten 

slotte, (“Simulating endogenous dynamics of intervention-capacity development”) 

onderzoekt hoe omgegaan kan worden met beleidsonzekerheid. We kijken in dit 

artikel naar de ontwikkeling van interventiecapaciteiten tijdens de West-Afrikaanse 

Ebola-uitbraak in 2014. Er bestaat geen sterk overkoepelend thema tussen al deze 

artikelen, aangezien het meeste achterliggende onderzoek in opdracht van 

verschillende klanten uitgevoerd is, buiten het feit dat in al het onderzoek gebruik 

gemaakt is van het zelfde modelleerparadigma en de zelfde 

onzekerheidsmethodologie. 

Methode 

Ik heb een diepgaand overzicht samengesteld van de keuzes waar een modelleur 

tegen aan loopt bij ontwikkeling en gebruik van verkennende modellen door kritisch 

te reflecteren op de casestudies. Dit overzicht bevat vier hoofdcategorieën. De eerste 
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categorie beschouwt verschillende manieren waarop recht gedaan kan worden aan 

onzekerheid tijdens de ontwikkeling van verkennende modellen. De tweede categorie 

beschouwt de problemen die nog bestaan tijdens het gebruik van specifieke 

methoden en technieken voor verkennende analyse, in het bijzonder de analyse van 

de resultaten van verkennende simulaties. De derde categorie beschouwt de kosten 

van verkennend modelmatig onderzoek in vergelijking met verenigend onderzoek. In 

de vierde, laatste categorie beschouw ik ten slotte de communicatie van EMA-

onderzoek aan klanten en belanghebbenden. 

Ontwikkeling van verkennende modellen 

Ik ben tot de conclusie gekomen dat diepe onzekerheid op iedere fase in de 

modelontwikkeling invloed heeft. Een model beschouw ik in deze dissertatie als een 

intern consistente set van vergelijkingen, die niet noodzakelijkerwijs is voorzien van 

waarden voor de parameters. Modelontwikkeling kan worden opgedeeld in vijf 

verschillende fases: probleemarticulering, modelconceptualisatie, modelformulering, 

modelevaluatie en beleidsevaluatie. 

De probleemarticuleringsfase richt zich op het verwoorden van het centrale te 

onderzoeken probleem. Hierbij wordt de gevonden probleemformulering gebruikt om 

te selecteren welke systeemelementen endogeen (binnen de grenzen van het model) 

of exogeen (buiten de grenzen van het model) gemodelleerd gaan worden en wat de 

tijdshorizon van het model is. Onzekerheid over de probleemformulering, 

bijvoorbeeld in het geval van zogenaamde wicked problems of societal messes, kan 

leiden tot meervoudige modelbegrenzing: in die gevallen kan het nodig zijn om 

verschillende modellen te ontwikkelen om recht te doen aan de verscheidenheid aan 

ideeën over probleem en systeem. Verder kan het nodig zijn om de modelbegrenzing 

breder te nemen dan gebruikelijk in traditionele benaderingen, als dit verscheidene 

verklaringen van hetzelfde probleem toestaat. De begrenzing kan ook nauwer 

genomen worden, als het noodzakelijk is om de responsie van het model op 

verschillende, goed gevestigde inputscenario’s (bijvoorbeeld klimaatscenario’s) te 

testen, of op andere inputscenario’s die gebruikt kunnen worden om de 

weerbaarheid van het systeem te testen. 

In de modelconceptualisatiefase probeert de modelleur om de belangrijkste relaties 

tussen kernvariabelen te identificeren, wat veelal voortbouwt op mentale modellen 

van belanghebbenden en experts. Onzekerheid speelt in deze fase een rol door het 

identificeren van de belangrijkste structurele onzekerheden die in het model 

opgenomen moeten worden. Als in de probleemarticuleringsfase verscheidene 

modelbegrenzingen zijn geselecteerd, dan dienen vaak ook verscheidene 

conceptuele modellen te worden ontwikkeld om recht te doen aan iedere 

modelbegrenzing. De modelleur heeft hierbij, vanzelfsprekend, de taak om de 

aanwezigheid en locaties van diepe onzekerheden in conceptuele diagrammen te 

communiceren. 
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Gedurende de modelformuleringsfase wordt het daadwerkelijke simulatiemodel 

geformuleerd en geïmplementeerd. De modelleur moet hierbij keuzes maken over 

hoe de in de conceptualisatie gevonden onzekerheden uit te drukken in model(len). 

Een modelleur kan, bijvoorbeeld, alternatieve structuren formuleren recht te doen 

aan de verschillende plausibele structuren die naar voren zijn gekomen. Deze 

structuren vertegenwoordigen dan alternatieve theorieën, of hebben een meer 

pragmatische oorsprong als er geen duidelijke beste formulering bestaat. Soms is het 

mogelijk om deze alternatieve structuren in een enkel model te vatten, waarbij een 

parameterwaarde bepaald welke structuur actief is, wat feitelijk van een structurele 

onzekerheid een parametrische onzekerheid maakt. Als het echter onpraktisch of 

onmogelijk is om deze verschillende formuleringen in een model op te nemen, dan is 

het wederom nodig om verscheidene modellen te formuleren. Ten slotte dienen ook 

de bandbreedtes voor parametrische onzekerheden te worden gedefinieerd in deze 

fase. 

De evaluatiefase richt zich op het opbouwen van vertrouwen in de kwaliteit van het 

model door een aantal tests uit te voeren en modelresultaten te evalueren. De 

standaardprocedure van verkennend modelleren schrijft voor dat hierbij een groot 

aantal modelruns wordt uitgevoerd om de gevolgen van de geïdentificeerde diepe 

onzekerheden te exploreren. Deze runs vormen de basis van tests om te bepalen of 

het model (of de modellen) al of niet geschikt zijn voor het beoogde doel. Deze set 

runs kan ook functioneren als ‘base ensemble’, in tegenstelling tot de ‘base case’, die 

gevormd wordt door een enkele run en die vaak wordt gebruikt in het verenigend 

modelleren. Verder kunnen interessante runs worden geselecteerd om te 

identificeren welke combinaties van onzekerheden tot dat specifieke modelgedrag 

leiden, bijvoorbeeld met de ‘Scenario Discovery’ benadering. Deze benadering leidt 

zo weer tot toegenomen begrip van de manier waarop het model input naar output 

vertaald. 

De beleidstestfase richt zich op het testen en analyseren van de effecten van 

verschillende beleidsopties, op zichzelf en in combinatie, op het geheel van plausibel 

modelgedrag. In deze fase verandert, indien diepe onzekerheid wordt erkent, de 

manier waarop beleidsopties worden getest en welke criteria gebruikt worden om ze 

te evalueren. Beleidsimplementatie zelf kan ook onzeker zijn: zowel de effecten van 

het beleid als het moment van implementatie. Dit idee kan versterkt worden als de 

macht van de probleemeigenaar in het betreffende systeem beperkt is. De modelleur 

en analist kan hiermee omgaan door belangrijke beleidsvariabelen ook onzeker te 

maken. Beleidsonzekerheid wordt in dat geval precies zoals andere typen van 

structurele of parametrische onzekerheid behandeld. 

De analyse van de ontwikkeling van verkennende modellen maakt duidelijk dat als 

diepe onzekerheid in de eerste fases wordt herkend en erkend, het onmogelijk wordt 

om diezelfde onzekerheden niet te beschouwen in latere fases. Daarbij geldt dat in 

het bijzonder het gebruik van verscheidene modellen en structurele onzekerheden de 
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variëteit aan mogelijke modeluitkomsten gevonden in DMDU-analyses aanzienlijk 

kan doen toenemen. 

Effecten op EMA-benaderingen 

De complexiteit van verkennende modellen kan het gebruik van sommige 

benaderingen voor EMA-methodes, zoals Scenario Discovery, bemoeilijken. Daar 

zijn drie redenen voor. Ten eerste, het identificeren en classificeren van verschillende 

types van tijdseries die door niet-lineaire modellen gegenereerd worden, kan erg 

moeilijk zijn. Selectie van de meest relevante runs om te bekijken of deze een 

gezamenlijke oorsprong hebben, wordt dan dus vaak onmogelijk. Sinds de publicatie 

van het tweede paper in deze dissertatie over dynamische Scenario Discovery zijn er 

significante verbeteringen gemaakt op het gebied van het clusteren van tijdsseries. 

Toekomstig onderzoek zou moeten beschouwen wat het potentieel is van deze 

verbeteringen voor het classificeren en beoordelen van verschillende types 

modelgedrag. 

Ten tweede maakt Scenario Discovery gebruik van een aantal tools, zoals de Patient 

Rule Induction Method, die de slecht werken met niet lineaire modellen. Twee 

richtingen van toekomstig onderzoek op dit vlak zijn dan ook (i) de ontwikkeling van 

algoritmes die ook met niet lineaire modellen goed werken en (ii) het gebruik van 

modelvariabelen in plaats van onzekere parameters als onafhankelijke variabelen in 

bestaande algoritmes voor Scenario Discovery. 

Ten derde hebben verkennende simulatiemodellen vaak een relatief hoog aantal 

onzekerheden. Het is niet altijd mogelijk om dit aantal terug te brengen, wat nieuwe 

technieken die slimmer bemonsteren van de onzekerheidsruimte nodig maken om te 

voorkomen dat onrealistisch hoge aantallen runs gedaan moeten worden. 

Toekomstig onderzoek zou zich moeten richten op het potentieel van adaptief 

bemonsteren, of, anders, kijken naar het potentieel van methoden die gebaseerd zijn 

op basis van gevoeligheidsanalyses die ook interactie-effecten tussen onzekerheden 

in beschouwing nemen. 

Kosten van exploratief modelleren 

Verkennend modelleren brengt aanzienlijke kosten met zich mee. Modelontwikkeling 

en -analyse nemen aanzienlijk meer tijd in beslag als verscheidene modellen moeten 

worden ontwikkeld. Het grote aan runs laat de kosten op het gebied van rekentijd ook 

toenemen. Ten slotte kan het grote aantal gegevens wat is gegenereerd tot een 

overaanbod aan informatie leiden voor de analist, wat scherpe observaties 

vertroebeld. De voordelen van de benadering bevatten echter de toegenomen 

rijkdom aan inzichten die voortkomen uit deze analyse en toegenomen 

mogelijkheden voor nieuwe inzichten. Een voorbeeld hiervan was het onderzoek 

naar de geopolitieke impact van de schalierevolutie, waarbij de meeste betrokkenen 

geen rekening hielden met de mogelijkheid van sterk dalende olieprijzen voordat 

onze analyse aan ze was gepresenteerd. 
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Communicatie en ontvangst 

Het onderzoek dat aan deze dissertatie ten grondslag ligt heeft zowel positieve als 

negatieve reacties ontvangen tijdens de communicatie aan belanghebbenden in 

beleidsdiscussies, in academische beleidsdomeinen en in methodologische 

vakgebieden. In de beleidsdiscussies viel het op dat EMA-gebaseerd onderzoek 

vaak moeilijker is om snel te bevatten en daarbij te vaak als relatief duur wordt 

beschouwd. Deze resultaten werden echter vaak gewaardeerd, zeker als nieuwe 

inzichten werden gepresenteerd. Daarbij resoneren woorden als onzekerheid, 

complexiteit, robuustheid en weerbaarheid bij beleidsmakers door de urgentie van 

deze begrippen in de beleidsproblemen waar de beleidsmakers mee te maken 

hebben. In domeinspecifieke vakgebieden werd mijn onderzoek door onderzoekers 

die zelf andere methodes gebruikten soms ongeschikt bevonden. Er waren echter 

ook positieve reacties vanuit onderzoekers die de meerwaarde en bruikbare 

innovaties in verkennend modelleren herkenden. In methodologische velden, in het 

bijzonder in het SD-veld, was de reactie ook gemengd. Voor een deel kwamen 

negatieve reacties voort uit het gebruik van te onduidelijke, en soms zelfs 

beledigende, betooglijnen in onze papers. Daarbij komt dat een deel van de 

verenigende modelleurs het niet kunnen verenigen van modelstructuren in een beste 

modeldefinitie als niet voldoende grondig modelleren ziet. Aan de andere kant bleek 

dat door juist te wijzen op het feit dat onze benaderingen aanvullend zijn bij bestaand 

werk, goede discussies tot stand kwamen en het werk goed ontvangen werd. 

Conclusies 

De reflectie op modelontwikkeling en -gebruik in mijn dissertatie maakt duidelijk dat 

veel uitdagingen blijven bestaan in het zich snel uitbreidende DMDU-veld. De eerste 

kan gevonden worden in meer aandacht in de ontwikkeling van verkennende 

modellen. Betere, echt verkennende modellen kunnen namelijk leiden tot een 

verdiept begrip voorkomend uit het verkennen van de gevolgen van alle 

(gemodelleerde) onzekerheden in complexe maatschappelijke uitdagingen. Hier 

staat wel tegenover dat de methoden en technieken die momenteel gebruikt worden 

in EMA-benaderingen beperkte mogelijkheden bieden in combinatie met 

dynamische, niet-lineaire simulatiemodellen van complexe problemen. 

Verkennend modelleren blijft duur. De vele positieve reacties van beleidsmakers, 

beleidsonderzoekers en methodologen die echter volgen op de soms initieel 

negatievere reactie, tonen echter aan dat de methoden die in deze dissertatie 

besproken zijn, een grote belofte in zich houden. Continue reflectie op hoe krachtige 

verhaallijnen opgebouwd kunnen worden die gebaseerd zijn op verkennende 

modellen is daarom nodig om acceptatie en gebruik van deze methoden verder te 

laten toenemen.  
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1 Introduction 
Dealing with societal or grand challenges is enduringly difficult for decision makers. 

Therefore, supranational institutions, national governments, large funding 

organisations, and others have identified these challenges as important topics for 

future-oriented research. Examples include the European Union’s Horizon 2020 

research funding program of which one section focusses explicitly on societal 

challenges (European Commission, 2015), the Global Grand Challenges program of 

the Bill & Melinda Gates foundation on global health and developmental programs 

(Bill & Melinda Gates Foundation, 2017), and the Grand Challenges programs of 

both the Canadian and the US governments (Government of Canada, 2017; USAID, 

2017). Many of these programs focus on the development of technological solutions 

for these challenges, but some, especially the Societal Challenges in the Horizon 

2020 program, also focus on policy analysis research. 

Two linking characteristics of societal challenges are: (1) strong interconnectedness 

of different parts, which is generally referred to as complexity1, and (2) high 

uncertainty about either the structure of the system or future values of key variables 

due to long time horizons. Next to these characteristics, there may be disagreement 

between stakeholders on how to evaluate outcomes. Complexity and uncertainty 

have led to the use of various frameworks and methodologies, including Integrated 

Water Resource Management (Medema, McIntosh, & Jeffrey, 2008), various 

qualitative and quantitative scenario approaches (Söderholm, Hildingsson, 

Johansson, Khan, & Wilhelmsson, 2011), and expert consultations (Hoorens et al., 

2013). Next to these approaches, different simulation modelling approaches are 

being used to address the complexity of societal challenges (e.g., Fiddaman, 2002; 

Forrester, 2007; Heppenstall, Crooks, Batty, & See, 2012; Kwakkel & Pruyt, 2015). 

Recently, there has been a renewed interest in computer simulation driven scenario 

development to deal with the combination of complexity and uncertainty (Lempert, 

Popper, & Bankes, 2003). 

Early attempts to deal with the interconnectedness of elements of societal challenges 

include the use of physical simulation models for dealing with large scale hydraulics 

and water management, followed by the development of computer simulation 

models. In the Netherlands, researchers started constructing scale models of Dutch 

waterworks in the 1920s based on earlier examples in Germany, Austria, and 

Sweden (Steenhuis, Voerman, Noyens, & Emmerik, 2015). A bit later, around the 

time that the first computer was developed, the first – analogue – computer 

simulation model was developed during the Manhattan Project ("Computing and the 

Manhattan Project," 2014). The use of computer simulation models continuously 

                                            
1
 For definitions of important concepts and terms used in this dissertation, please consult the glossary 

in the appendix. 
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increased after World War II, in particular for numerically solving large sets of 

differential equations, for which the early computers were particularly well suited. The 

development of the General System Theory (Bertalanffy, 1950, 1968) exemplified the 

application of differential equations – and consequentially also computer simulation – 

to complex social phenomena. 

Concurrently and in connection with the development of computer simulation models, 

scenario techniques were developed to deal with uncertainty in planning for the long-

term future, the other key characteristic of societal challenges. This development 

started in the fifties, but gained speed in the late sixties of the twentieth century. 

Multiple scenario ‘schools’ exist, the most notable of which are Intuitive Logics, La 

Prospective, and Probabilistic Modified Trends (Bradfield, Wright, Burt, Cairns, & Van 

der Heijden, 2005). These schools all offer approaches for developing multiple 

scenarios based on potential values of key variables or indicators of the system at 

hand. In intuitive logics, these scenarios are communicated qualitatively in the form 

of narratives, and no probability of occurrence is specified. Other schools develop 

quantitative scenarios, and do try to indicate their probability of occurrence (Bradfield 

et al., 2005). Scenario development using Exploratory Modelling and Analysis (EMA) 

was more recently developed. EMA combines the non-probabilistic nature of intuitive 

logics scenarios with computational, systematic sampling over the bandwidths of 

uncertainties influencing the system (Bankes, 1993; Lempert et al., 2003). Selections 

of individual computer simulation runs, or of similar runs are in this approach used to 

develop plausible future scenarios. 

Broadly speaking, there are three ways to deal with uncertainty in developing 

strategies for the future, and consequentially in simulation models: ignore, reduce, or 

embrace. For modelling, ignore implies that the scope of the model is chosen so 

narrowly that most uncertainties lie outside the boundary, or parameter values and 

model formulations are implicitly assumed to be known. Needless to say, this way of 

modelling is not related to any scenario school. 

In the second approach, reduce implies ‘consolidative modelling’ (Bankes, 1993): the 

modeller will try to find a best solution for potential structural uncertainty by bringing 

together existing knowledge. A scenario exploration can be done with the model by 

manually changing input parameters, or sampling over the input parameters and their 

related probability distributions. Generally, a base case or business as usual scenario 

is used to depict the most likely future without changes in policy. An early use of the 

base case concept can be found in La Prospective and Probabilistic Modified Trends 

schools. Scenario development using consolidative models can thus be related to 

these schools, although I am not familiar with any formal connection between these 

scenario schools and consolidative modelling.  

In the third approach, embrace, the modeller assumes that it is not possible to reduce 

at least part of the uncertainty during model development: it is impossible to measure 

or reason yourself out of this uncertainty. Lempert et al. (2003) refer to this type of 
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uncertainty as ‘deep uncertainty’, and define it as ‘where analysts do not know, or the 

parties to a decision cannot agree on, (1) the appropriate conceptual models that 

describe the relationships among the key driving forces that will shape the long-term 

future, (2) the probability distributions used to represent uncertainty about key 

variables and parameters in the mathematical representations of these conceptual 

models, and/or (3) how to value the desirability of alternative outcomes’. Deep 

uncertainty is incorporated in models by specifying bandwidths or different options for 

uncertain model elements. This last method for dealing with uncertainty makes use of 

large numbers of computer simulation runs to explore the consequences of 

combinations of plausible realisations of uncertainties. Selections of these runs can 

then be used as scenarios, combined with a text which explains what happens in 

these runs, why it happens (i.e., the combination of values for the various 

uncertainties causing this type of run behaviour), and why it is plausible that this 

might happen. It was, therefore, again the advance of computing power that made 

this development possible. This way of dealing with uncertainty can be seen as a 

quantitative development of the intuitive logics scenario school. 

Exploratory modelling literature has been rapidly expanding since the turn of the 

century. Most of this literature uses consolidative models to explore the 

consequences of parametric deep uncertainty. Deep uncertainty, however, can be 

manifest in other model attributes than just parameters (Kwakkel, Walker, & 

Marchau, 2010). Therefore, only exploring the consequences of parametric 

uncertainties reduces the potential bandwidth of scenarios and futures developed 

with the models. Using these scenarios and futures to test policies for their 

robustness (i.e., whether a policy functions desirably in all plausible futures) can lead 

to wrong judgements. These issues make development of ‘true’ exploratory models 

relevant, as uncertainty should have a more profound impact on exploratory model 

development and use. 

1.1 Research approach 

The goal of this dissertation is to illustrate and analyse how deep uncertainty can 

affect model development and use. I will start with illustrating how deep uncertainty 

can be handled by presenting a number of cases in which exploratory models have 

been developed and used. I will then reflect on what lessons can be learned from 

these cases with respect to model development and use. 

As illustration of how deep uncertainty affects model development and use, this 

dissertation first presents a number of cases in which deep uncertainty is 

acknowledged in model-based approaches to grand societal challenges. The cases 

consider the future availability of copper (later referred to as the ‘copper’ case), 

societal ageing in the Netherlands (‘ageing’), the geopolitical impact of the US’ shale 

revolution (‘shale’), and the 2014 Ebola outbreak in West-Africa (‘Ebola’). Most of this 

research was performed during my employment at The Hague Centre for Strategic 

Studies (HCSS), a Dutch think tank that generally operates on the interplay of 
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international relations and security. As a consequence, the modelling work on the 

cases has an applied rather than academic character. Further, there is no strong 

connection between most cases apart from the methods they apply, but as the cases 

were performed consecutively, each case builds on the experience from earlier 

cases. 

Most research underlying these cases was partly or completely funded by clients, 

which has as a consequence that no systematic build-up can be found in the cases. 

Although they are in part related (i.e., three of the four cases presented deal with 

resource pricing issues), and the way in which the cases have been approached 

should show at least some increasing experience, the choice for the cases was 

purely pragmatic and depended on the issues potential clients brought to the table. 

The cases are presented in five papers, which are presented as chapters in this 

dissertation. By themselves, these papers – especially the papers about ageing, 

shale, and Ebola – contribute to the deep uncertainty field by presenting applications 

of EMA approaches on real world problems for real world clients. 

In addition to the cases, I will provide a reflection on the applied methodological 

improvements, possible further methodological refinements, the costs and added 

value of the methodology used, and the lessons learned from analysing and 

communicating the results based on the five cases. The applied and possible further 

methodological improvements are on two levels. First, I reflect systematically on the 

consequences of deep uncertainty for model development, as all research presented 

in this dissertation made use of models specifically developed for exploratory use. I 

will do this by comparing choices that can be made during exploratory modelling with 

choices made during consolidative modelling as described in consolidative literature 

(Sterman, 2000). Second, I look at the consequences of the use of non-linear models 

in combination with Scenario Discovery. Next, I will address the issue of the impact 

this research had on policy discussions, also on two different levels. First, I will 

consider costs (e.g., computational, time resources of analysts, potential of 

information overload) and benefits (e.g., conclusions that could not have been drawn 

without the exploratory approach). Second, I will discuss how the research was 

communicated to and received by stakeholders, and researchers from the domain 

fields of the applications and methodological fields. I will do this as a reflective 

practitioner. 

1.2 System Dynamics combined with Exploratory Modelling 

All research presented in this dissertation makes use of System Dynamics (SD) 

modelling, which was originally conceived in the 1950s by Jay W. Forrester 

(Forrester, 1961). The choice for SD was formally motivated by the characteristics of 

the systems underlying the research: feedback effects, delays, and accumulations. 

However, besides the formal motivation, the choice for SD was also pragmatic: SD is 

the modelling discipline I have exclusively used in my own work since my master 

thesis, which makes me most skilful in this kind of modelling. 
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I will start with explaining some of the characteristics of SD models, and continue 

with explaining the suitability of SD for deep uncertainty research. 

1.1.1.Technicalities of System Dynamics 

SD models are in essence large sets of integral equations which are numerically 

solved, and can be depicted via SD-specific diagrammatic conventions. Crucial 

elements in SD models are stocks or levels, which are connected to flows. The 

behaviour of a stock over time is mathematically defined as an integral equation: 

 𝑠(𝑡) = 𝑠(𝑡0) + ∫ 𝑓(𝑡) − 𝑔(𝑡)d𝑡,
𝑡

𝑡0

 Eq. 1.1 

 

where 𝑠(𝑡) is a stock at time 𝑡, 𝑠(𝑡0) the initial value of this stock, 𝑓(𝑡) an inflow and 

𝑔(𝑡) an outflow. Besides stocks and flows, SD also knows auxiliary variables and 

constants. As the interconnected set of integral equations can become too large to 

analytically solve, SD languages like Vensim (Ventana Systems, 2010) use 

numerical integration methods like Euler (Euler, 1768) and Runge-Kutta 4 (Kutta, 

1901; Runge, 1895). Fig. 1.1 shows a simple SD model, where constant 𝑠0 = 𝑠(𝑡0), 

flow 𝑓(𝑡) is a function of constant 𝑐1 and 𝑠(𝑡), auxiliary 𝑎(𝑡) is a function of constant 

𝑐2 and 𝑠(𝑡), and flow 𝑔(𝑡) is a function of constant 𝑐3 and auxiliary 𝑎(𝑡). 

 

Fig. 1.1. Simple stock-flow structure in SD diagrammatic conventions 

The SD modelling elements of stocks, flows, and auxiliary variables made SD a 

suitable choice for the cases presented in this dissertation. Stocks are used to model 

accumulation and memory in systems, like stocks of resources in use in the copper 

case, different population cohorts in the ageing and state stability cases, and the 

accumulation of stocks of oil in the energy cases. Flows like resource extraction or 

migration are used to change stock levels. Combined, stocks and flows allow 

increasing understanding about, for example, how resource prices depend on delays 

in the development of extraction capacity in reaction to changing demand, or the 

speed with which the Ebola virus spreads depending on the development of 

intervention capacities.  
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Finally, stocks, flows, and auxiliary variables allow feedbacks – crucial and central in 

SD thinking – to be modelled. Two different types of feedback loops are generally 

distinguished: balancing and reinforcing. In balancing loops, increase of a variable in 

a loop will, ceteris paribus, lead in time to a decrease of the same variable. Growth 

will, therefore, be balanced. For example, if demand for a resource increases, the 

market price of that resource will increase. As a consequence of the price increase, 

the demand will decrease in time. In reinforcing loops, increase of a variable in a loop 

will, ceteris paribus, lead in time to a further increase of the same variable. For 

example, if a population grows due to a relatively high fertility rate, this will lead to 

more people in fertile age, who will get more children, which will lead to exponential 

growth of the population. Together, accumulations, flows, and feedbacks represent 

the complexity and non-linearity of these systems. 

1.1.2.Exploratory SD: ESDMA 

Exploratory use of SD models has several major advantages. First, SD models are – 

on presently available computers – relatively fast to simulate. This makes performing 

a large number of runs to explore the consequences of uncertainty feasible without 

significantly reducing the possibilities for much needed iterations. Further, it is 

relatively easy to incorporate structural uncertainties. Next to this, SD allows to focus 

on dynamics over time instead of just end-states, which creates a rich picture of 

plausible system evolutions. Finally, due to the causal structure of SD models, they 

allow the analyst to look at the structure of the system to explain the different types of 

behaviour found. As a consequence of these advantages, SD models have been 

used extensively for exploring the consequences of uncertainty. The specific 

combination of the EMA approach and SD is also referred to as ‘exploratory system 

dynamics modelling and analysis’ (ESMDA) (Kwakkel & Pruyt, 2015). This fits the SD 

philosophy of focussing on behavioural patterns and using the model structure with 

its underlying assumptions to understand the system’s behaviour, rather than using 

the model predictively. 

Besides my own work, examples of combined EMA and SD use include the use of 

the Wonderland model (Lempert et al., 2003) on global sustainable development, 

work on the 2009 Influenza A(H1N1)v pandemic (Pruyt & Hamarat, 2010), terrorism 

(Pruyt & Kwakkel, 2014), residential energy use (Yücel, 2013), and uncertainties in 

the Dutch natural gas sector (e.g., Eker & van Daalen, 2015). 

1.3 Dissertation setup 

In this dissertation, I will first present the set of papers (Table 1) which all 

demonstrate the use of SD models for researching the consequences of deep 

uncertainty in societal challenges. The build-up of this dissertation is as follows. The 

‘copper’ research (Chapter 2, and 4) was partly performed as part of a master thesis 

project at the TU Delft, and partly funded by the Platform Material Scarcity. The 

research on the geopolitical impact of the shale revolution (‘shale’, Chapter 4) and 



 

7 

societal ageing (‘ageing’, Chapter 5) was performed for the joint research program 

‘Strategy & Change’, which was funded by the Dutch Organisation for Applied 

Research (TNO) and executed together with HCSS. The ‘Ebola’ research (Chapter 6) 

was partly funded under the 2015 Strategic Monitor program for the Dutch Ministry of 

Defence. Each paper is concisely introduced to illustrate its relevance and key 

contributions to this dissertation. 

Table 1. Overview of case chapters with their case names, respective journal publications, 
original policy reports, and type of uncertainty research. 

Ch. Title Case Journal publication Policy report 

2 Dealing with Multiple 

Models in System 

Dynamics 

Copper Auping, Pruyt, and 

Kwakkel (2014) 

Auping, Pruyt, 

Kwakkel, and 

Rademaker (2012) 

3 Dynamic scenario 

discovery under deep 

uncertainty 

Copper Kwakkel, Auping, 

and Pruyt (2013) 

Auping, Pruyt, 

Kwakkel, and 

Rademaker (2012) 

4 The geopolitical impact of 

the shale revolution 

Shale Auping, Pruyt, De 

Jong, and Kwakkel 

(2016) 

De Jong, Auping, and 

Govers (2014) 

5 Societal Ageing in the 

Netherlands 

Ageing Auping, Pruyt, and 

Kwakkel (2015) 

Willem L. Auping, Erik 

Pruyt, Jan H. Kwakkel, 

Govert Gijsbers, and 

Michel Rademaker 

(2012) 

6 Simulating Endogenous 

Dynamics of Intervention-

Capacity Deployment 

Ebola Auping, Pruyt, and 

Kwakkel (2017) 

Auping, Frinking, 

Coelho, and Ginn 

(2015) 

Finally, in Chapter 7 I will synthesise and reflect on this work. I do this with regard to 

both the methodology used and the policy contributions produced in my research. I 

will start with systematically assessing the impact of deep uncertainty on the 

methodology from the experiences I gained during research of the case studies for 

both model development and Scenario Discovery. First, I will assess model 

development in situations of deep uncertainty, and the impact of these models on 
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Scenario Discovery. Examples from the papers will be used to illustrate how deep 

uncertainty changes the problem articulation, model conceptualisation, specification, 

and evaluation (including ensuring model quality), and policy testing. Second, I will 

assess the impacts the non-linearity of models has on Scenario Discovery. Examples 

from the papers will be used to explain how I dealt with these issues, and which 

approaches are promising or not. I will finish by discussing the policy contributions 

the research underlying these papers produced. I will do this by first looking into the 

costs and benefits of such approaches for policy analysis. This entails issues like the 

time needed by the research team for model development and interpretation of the 

results, and the issue of information overload during the analysis of the generated 

results. I will then discuss how I communicated my conclusions to, and the reception 

of my conclusions by, communities of policy makers and stakeholders, and domain 

or methodology oriented scientists. 
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2 Dealing with Multiple Models 
When dealing with complex and uncertain problem situations, multiple perspectives 

often exist on how to conceptualise the system. If these perspectives are distinctive 

enough, it is impossible to unite them into a single model. While it is possible to 

choose only one of these potential perspectives, it was recognised decades ago that 

the choice itself may have consequences for the simulated model behaviour (Cole in 

Meadows, Richardson, & Bruckmann, 1982, p. 205). Therefore, the existence of 

different perspectives can be seen as a form of deep uncertainty (Lempert et al., 

2003), making it potentially useful to represent the different perspectives on a system 

in a set of models, in support of developing robust policies (Lempert, Groves, 

Popper, & Bankes, 2006). As choices regarding the different perspectives to be 

included in modelling are made in the beginning of the research, they will affect many 

of the choices made in later phases of model development. 

In this paper, I explore to what extent models with different perspectives generate 

both similar and different behaviour. This paper presents a comparison of the 

behaviour of models that are structurally different due to the perspectives on the 

copper system (global top-down, global bottom-up, and regional top-down) they 

represent. We do this by a model-by-model comparison of the most similar and the 

most different behaviour, while the input space that is shared across the three 

models is kept the same. 

The existence of multiple perspectives on problem and/or system will be discussed in 

the first section of the synthesis chapter, where I discuss the problem articulation and 

its consequences for the selection of the models’ scope. 

This paper was originally published as: 

Auping, W. L., Pruyt, E., & Kwakkel, J. H. (2014). Dealing with Multiple Models in 

System Dynamics: Perspectives on the Future of Copper. International Journal of 

System Dynamics Applications, 3(4), 17-35. doi:10.4018/ijsda.2014100102 
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Abstract 

This paper introduces an approach to compare simulation runs from multiple SD 

simulation models. Three dynamic hypotheses regarding the uncertain long-term 

copper availability are introduced and used to illustrate the new approach. They 

correspond to three different perspectives on the copper system (global top-down, 

global bottom-up, and regional top-down). Although each of these models allows to 

generate a wealth of behavioural patterns, we focus in this paper on the differences 

in trajectories caused by different models for identical values and settings of shared 

parameters and assumptions, not on differences in behavioural patterns caused by 

each of the models. Hence, differences in trajectories between the three models are 

identified, quantified, and classified based on a quantified measure of difference. For 

these models, small differences between the trajectories are only found in stable 

runs, while the alternative perspectives are largely responsible for medium to large 

differences. Hence, it is concluded that multiple dynamic hypotheses may have to be 

modelled when dealing with uncertain issues. 

1. Introduction 

More than 30 years after the first explicit calls for multi-model work in System 

Dynamics (SD), there are only a few examples of multi-model SD work (Kwakkel et 

al., 2013; Moorlag, Auping, & Pruyt, 2014; Moxnes, 2005; Pruyt & Kwakkel, 2014), 

and there are hardly any techniques and tools available for performing multi-model 

SD analyses. To contribute to filling this gap, this paper proposes a first method to 

compare runs from multiple simulation models regarding the same issue or system. 

Using this method to compare runs generated with three different SD models of the 

global copper system, we test here whether differences in trajectories generated with 

different models were primarily due to model uncertainty or to parametric uncertainty, 

and hence, whether a multi-model approach is needed in the first place. The three 
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alternative copper models presented here correspond to different perspectives 

regarding the copper system. That is, they were developed from a global Bottom-up 

perspective, a Regional top-down perspective, and – what is mostly used in SD – a 

global Top-down perspective. Although the pair-wise comparison method proposed 

and illustrated in this paper does not offer a rationale for judging which perspective or 

model is more valid, it could offer a rationale for using multiple perspectives, and 

hence, multiple models, for policy analytical purposes. This method might help 

practitioners decide whether alternative competing hypotheses might have to be 

considered during policy analysis. Hence, this paper adopts an exploratory research 

agenda to test the efficacy of multi-model SD analysis in the copper industry, and 

does not purport to provide specific actionable solutions with regard to copper 

scarcity. 

There is a long tradition of modelling resource depletion and scarcity in SD. 

The limits to growth study (Meadows, Meadows, Randers, & Behrens, 1972) is 

probably the most well-known example. Many SD studies combine geological, 

technological, and economic aspects of mineral depletion (Davidsen, Sterman, & 

Richardson, 1987; Kwakkel & Pruyt, 2015; Pruyt, 2010; Sterman & Richardson, 

1985; Sterman, Richardson, & Davidsen, 1988; Van Vuuren, Strengers, & De Vries, 

1999). Other SD studies focus on specific metals, like the platinum group metals 

(Alonso, Field, & Kirchain, 2008) or magnesium (Urbance, Field, Kirchain, Roth, & 

Clark, 2002), and are mostly linked to specific metal uses, such as electronics 

(Alonso et al., 2008) or the automotive industry (Urbance et al., 2002). Copper 

markets and their interaction with aluminium markets have also been studied by 

several system dynamicists (Auping, 2011; Ballmer, 1960; Schlager, 1961). 

Copper is the most common of the geochemically scarce elements (Gordon, 

Koopmans, Nordhaus, & Skinner, 1987, p. 2). Hence, the case of potential copper 

scarcity is often used as an example in studies examining metal scarcity, for example 

in Ayres, Ayres, and Råde (2002); Gerst and Graedel (2008); Gómez, Guzmán, and 

Tilton (2007); Gordon, Bertram, and Graedel (2006); Kapur (2006); Nassar et al. 

(2012); Ruhrberg (2006) Although most recent criticality reports mainly focus on 

minor metals, like lithium (Angerer, Marscheider-Weidemann, Wendl, & Wietschel, 

2009) and the rare earth metals (European Commission, 2011), copper is included in 

most criticality assessments too.  

In spite of all these studies, copper scarcity is still an important and actual 

research area: Annual copper demand is continuously growing (ICSG, 2010b), while 

copper prices are historically high (LME, 2011). There seem to be two causes for 

recent high prices: the growing demand for minerals and metals in rapidly developing 

economies like China and India (European Commission, 2011) and the growing 

demand for minerals and metals as a result of energy transitions (Kleijn & van der 

Voet, 2010). Given the substantial economic impact of high prices, which could be 

seen as (temporary) economic scarcity, more research related to the potential 
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influences of changes in regional demand and changes in demand related to 

particular uses seems to be needed.  

2. Modelling the uncertain copper system 

In spite of the fact that the structure of the copper system is well-documented, 

it is also deeply uncertain. That is, different perspectives on copper demand –from 

top-down to bottom-up and from global to regional– are described in the literature 

(Gordon, Bertram, & Graedel, 2007; Meadows et al., 1982, pp. 205, 274-275; Tilton & 

Lagos, 2007). The ‘top-down perspective’ assumes copper demand is determined by 

the size of the population and the wealth per capita. In the ‘bottom-up perspective, 

copper demand is determined by different uses and their autonomous development. 

The ‘global perspective’ assumes there is a free global copper market where demand 

of those who are prepared to pay more is satisfied first. The ‘regional perspective’ 

assumes that copper markets are not free and global, and that copper demand is 

fulfilled first and foremost in regions with sufficient supply.  

Over thirty years ago, Cole already argued in Meadows et al. (1982, p. 205) 

that “[w]hether a 'top-down' or 'bottom-up' approach is chosen […] may affect the 

results[, for s]imple recursive calculation of global or regional aggregates broken 

down by sector often gives surprisingly different results from systematically building 

up the global or regional aggregates from the sector or subsector levels”. If modelling 

different perspectives indeed leads to different behavioural patterns, which possibly 

expand the set of plausible long term scenarios of the copper system, then different 

perspectives may have to be modelled, explored and used (Pruyt, 2014). The 

hypothesis that different models of the copper system generate different behavioural 

pattern for the same settings and sets of parameter values –and hence, that a multi-

model approach is needed if multiple equally valuable perspectives exist– will be 

tested in this paper by comparing runs generated with three different models of the 

copper system over the intersection of their input spaces (i.e., with identical settings 

and values for shared variables and parameters).  

Table 1. Matrix of the copper models given the uses and regions perspectives. 

Dimension 

Regions 

1 3 

U
s
e
s
 

1 
Top-

down 
Regional 

6 
Bottom-

up 
Complete 
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The three models used to test this hypothesis are a global top-down model, a 

global bottom-up model, and a regional top-down model. The matrix in Table 1 

shows they  can be seen as the result of crossing two sets of perspectives, on the 

one hand perspectives with regard to copper uses (Angerer, Mohring, Marscheider-

Weidemann, & Wietschel, 2010) and on the other hand perspectives with regard to 

how global/regional mining, refining and consumption of copper is (ICSG, 2010b), as 

well as the number of regions and uses dealt with in these models. However, the 

fourth possible model, combining regional and bottom-up disaggregations, is not 

considered in this study, as the combination led to a unmanageable amount of 

uncertain input parameters (300+), making a thorough uncertainty analysis 

impossible.  

Table 2. Major uncertainties in the copper system 

Uncertainty Type of 

uncertainty 

Description 

Capacity 

development 

Model 

uncertainty 

The capacity for (deep sea) mines, 

smelters and refineries 

Demand 

development 

Model 

uncertainty 

The intrinsic demand for copper, 

i.e. the demand without effects due 

to price and substitution 

Economic growth (Dynamic) 

parametric 

uncertainty 

The growth of the GDP globally or 

regionally 

Ore grade 

development 

Model 

uncertainty 

The ore grade declines with mining 

of copper 

Price of energy 

development 

(Dynamic) 

parametric 

uncertainty 

The price of the energy needed for 

copper production 

Prices of 

substitutes 

development 

(Dynamic) 

parametric 

uncertainty 

The development of the price for 

substitutes for copper use 

Resources/resource 

base 

Model 

uncertainty 

What amount of copper is 

ultimately recoverable from the 

earth’s crust   
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Other important uncertainties related to the copper system that are included in 

these models are the development of ore grades, energy prices, prices of substitutes, 

economic growth, infrastructure and capacities, and the resource base. Table 2 

specifies how these uncertainties are dealt with. Some of these uncertainties are in 

turn composed of other uncertain elements, for example demand development from 

a top-down perspective is calculated from global population scenarios (UNPD, 2011), 

economic development, and the relation between copper demand and GDP per 

capita (Wouters & Bol, 2009, p. 18). 

3. The Models 

We will now introduce the model structures of the Top-down, Bottom-up and 

Regional models, starting with the smallest model, which is the Top-down model. The 

main differences with the Bottom-up and Regional models, which can be seen as 

expanded and sub-scripted versions of the Top-Down model, are then briefly 

explained in relation to the Top-down model. As the sub-scripted variables, combined 

with alternative structures for demand (in case of the Bottom-up model), and inter-

regional transport (in the case of the Regional model), lead to an extension of 

available feedbacks, the models each link to a different perspective, and therefore 

constitute different dynamic hypotheses. Full models and the associated model 

documentations will be provided upon request.  

3.1. The Top-down Model 

In the Top-down copper model, the intrinsic demand is calculated by looking at 

the development of the world population, the GDP per capita and the effect of GDP 

on copper demand. Figure 1 shows three of the most important balancing feedback 

loops of this model (i.e., a supply loop, a demand loop, and a substitution loop). 

 

 

Figure 1. High level CLD of the Top-down copper model. Major uncertainties in italics. 
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3.1.1. Copper stocks 

 

Figure 2. Supply chain of copper in use in the copper stocks sub-model 

Real world copper stocks and flows are modelled here by means of a stock 

flow structure (see Figure 2) linking resource base, resources, reserve base, mining 

and refining, global consumption and copper use (ICSG, 2010b; Lossin, 2005). When 

global copper in use reaches the end of its lifetime, it is partially collected via a global 

secondary copper to scrap flow and recycled as copper recovered from scrap. 

Measured Indicated Hypothetical Speculative

Economic
Inferred

Marginally 

economic

Sub-

Economic

Other 

occurrences
Resource base

Inferred
Demonstrated

Resources

Undiscovered resources

Probability range

Reserve

Base
Reserve

Base

Identified resources

 

Figure 3. Relation between reserves and resources. Based on the McKelvey Box (McKelvey, 
1973) 

In literature about copper scarcity, there is a polemic around the total 

recoverable amount of copper. The relevance of the resource base for the availability 

of copper in relation to the development of the ore grade of copper (Gordon et al., 

2007; Tilton & Lagos, 2007). In this research, we assume –following Tilton and 

Lagos– that both the price of copper in terms of the amount of energy needed to 

mine copper as well as the price of energy ultimately define how much copper could 
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be mined. This approach can also be referred to as Tiltons opportunity costs 

paradigm (Tilton, 1996). 

The structure of resources and reserves largely follows the McKelvey 

classification (McKelvey, 1973), displayed in Figure 3, although some simplifications 

have been made with respect to JORC classification rules (JORC, 2004). That is, we 

do not distinguish between reserve base and reserves. The difference between 

reserve base and reserves relates to the cut-off ore grade, which is the lowest ore 

grade that can be mined at a particular price. Not differentiating between them allows 

modelling the system without an explicit cut-off grade for copper ore. The relation 

between resource base and resources is furthermore reduced to the economic 

relationship. We also assume that deep sea mining could develop if the marginal 

costs of copper are higher than the marginal costs of deep sea copper. 

The amount of copper mined or refined depends on the capacities from the 

mine, smelting and refinery capacity sub-model and possibly by a forecast of the 

copper demand. The global consumption of refined copper is mainly determined by 

the total demand for copper and the availability of copper, which largely depends on 

the global inventories of refined copper which in turn corresponds to real inventories 

of copper traders (Giyose, Manjra, Magoro, & Warren, 2011). The inflow into this 

stock consists of primary copper (global production of refined copper) and secondary 

copper (copper recovered from scrap) flows. The Recycling Input Rate (RIR) is 

calculated by dividing the latter variable by the sum of both. The amount of copper 

recovered from scrap contains both primary scrap and secondary scrap, where 

primary scrap originates from the production process of copper products, and 

secondary scrap from End of Life (EOL) products. We assume that primary scrap is 

fully recovered, albeit delayed. The secondary scrap on the other hand depends on 

the collection rate of copper products and the recycling efficiency score. We assume 

the latter variable depends on the average ore grade of land based copper, the 

copper grade in EOL goods and its variance. 
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3.1.2. Mine, smelting, and refinery capacity 

 

Figure 4. The basic stock-flow structure of mining, smelting, and refinery capacity as used in 
the copper models 

The ‘Mine, smelting, and refinery capacity’ sub-model contains the structures 

that determine growth and decline of copper mining capacity (Figure 4), of smelting 

and refining capacity, and of deep sea mining capacity. A similar three-stock 

structure was used for all three capacities allowing for temporary and permanent 

closure (Abdel Sabour & Poulin, 2010). Furthermore, learning effects in the mature 

copper market are assumed to be negligible compared to cost increases due to 

declining ore grades. 

Recycling capacity is not modelled separately, since the data (ICSG, 2010a, 

2011) shows that smelter capacity and refinery capacity are actually used for 

recycling purposes too. The smelting and refinery capacity is therefore larger than 

the world copper mining capacity. The potential recycling input rate is used in the 

‘copper stocks’ sub-model to divide the refinery capacity between flows of primary 

(mined) and secondary (recycled) copper. 

3.1.3. Copper demand 

The total demand for copper is influenced by the intrinsic global demand for 

copper, the total availability of copper, and the relation between copper and 

aluminium prices which we assume is representative for all copper substitutes. It is 

assumed that this effect can change the demand in the short term as well as in the 

long term through accumulation of the effect over a longer period of time. The sum of 

the short term and long term effects define the maximum decrease or increase in 

demand. Total demand integrates intrinsic demand, price and substitution effects. 

The intrinsic demand depends on the average global GDP per capita and the copper 
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use related to GDP. The GDP itself is modelled by five different growth scenarios. 

Four different United Nations scenarios are used for the world population (UNPD, 

2011). Four distinct lookup functions are used for the copper use related to GDP 

(Wouters & Bol, 2009, p. 18). 

Substitution of copper demand takes place when the ‘real copper price’ (i.e., 

the copper price corrected for inflation, see Svedberg & Tilton, 2006) –which equals 

the marginal costs of copper when intrinsic global copper demand and total 

availability of copper balance– is such that it is cheaper to use the substitute than the 

substituted metal. For this reason, we used a substitution threshold, which takes into 

account the weight of aluminium required for replacing copper. The substitution 

effect, which is uncertain, could be amplified or attenuated. Different uses are 

modelled by using different threshold values (Gordon et al., 1987, pp. 66, 67), 

although similar price developments for the different substitutes are assumed. A two-

stock substitution structure keeps track of the amount of demand that is substituted.  

3.1.4. Economics of copper 

Finally, in the ‘economics of copper’ sub-model, the marginal costs of copper 

and marginal costs deep of sea copper are calculated by taking the decline in ore 

grades for both copper origins into account, which lead to higher energy demand for 

copper beneficiation, as well as developments in the energy price. Potential profits, 

both short-term and long-term, are calculated using the marginal costs and either the 

forecasted copper price or the actual copper price in the model. These potential profit 

calculations cause changes to mine capacities, and smelter and refinery capacities. 

Both marginal costs are calculated by looking at the cumulative mined copper and an 

ore grade which corresponds to that amount. For any particular ore grade, a certain 

amount of energy is needed, which, together with some other cost factors, 

determines the marginal costs. The marginal costs are compared to the copper price 

by either a forecasted value, calculated with the first and second order derivatives, or 

current costs and prices. Potential profits have both short term and long term effects, 

similarly to the effects on demand explained above, on the development of new 

capacities.  

3.2. The Bottom-Up Model 

In the Bottom-up model, intrinsic demand is calculated by looking at the (quasi) 

autonomous increase in demand for separate uses of copper (Figure 5).  
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Figure 5. High level CLD of the Bottom-up copper model. Major uncertainties in italics, 
subscripted sub-models bold. 

3.2.1. Differences with the Top-down model 

In the bottom-up demand additional structures are used to include six copper 

uses (Figure 5). All variables related to the use of copper are therefore subscripted, 

just as the total demand for copper and the flows to and from it, and the substitution 

threshold values. Here, substitution depends on substitution possibilities for different 

uses and the price of substitutes, and different uses have different substitution 

thresholds. The different uses in the bottom-up demand sub-model thus develop 

autonomously, and, combined, form the intrinsic copper demand. 

3.2.2. Bottom-up demand 

Following Angerer et al. (2010), the model includes copper use in the 

automotive sector, in electricity infrastructure, in water treatment, in stationary electro 

motors, in architecture, and in other uses. Especially the automotive sector and 

infrastructure are strongly linked to the transition towards sustainable energy. We 

used the “dominance” and “pluralism” scenarios of electric vehicles for the 

automotive industry, developed by the Fraunhofer ISI, for the automotive sector 

(Angerer et al., 2010, pp. 18, 19). The amount of copper per vehicle depends heavily 

on the degree to which the vehicle has electric propulsion. For the development of 

the electricity infrastructure a scenario related to the development of decentralised 

sustainable energy sources presented by Kleijn and van der Voet (2010) was used.  

3.3. The Regional Model 

The Regional model, with a top-down approach for the intrinsic demand pays 

particular attention to the geopolitical side of the copper system. The regions used 

here have primarily resource dependant boundaries. Region 1 is money rich (Europe, 

N-America, Oceania and Japan), while region 2 is population rich (Asia without the 

CIS and Asean-10), and region 3 is resource rich (Africa, S-America, and Asean-10).  
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Figure 6. High level CLD of the Regional copper model. Major uncertainties are in italics, 
regional sub-models are bold. 

3.3.1. Differences with the Top-down model 

Following variables, including supply variables, are subscripted (see Figure 6): 

all capacities, demand variables (including the economic situation and the population 

scenarios), marginal costs, and variables related to the economics of copper. This 

model also includes import and export flows for different copper fabricates. 

Deep sea mining is more difficult to regionalise, especially when deep sea 

mining takes place in international waters (McKelvey, 1980; United, 1982). In the 

Regional model this issue is solved by means of regionalised mining concessions. 

The reserve base is then part of the regionalised mining concession. And the 

regional ‘preference’ to develop deep sea mining depends on the regional GDP per 

capita. 

3.3.2. Copper transport 

Import and export of copper products are modelled in the copper transport 

sub-model. The regional surplus and deficit for raw copper, the regional surplus and 

deficit for copper scrap, and the regional surplus and deficit for refined copper are 

calculated there. Regional surpluses are exported to regions with deficits. Both the 

exports and imports are allocated proportionate to the regional GDP per capita: 

export is allocated from regions with a lower GDP per capita and import to regions 

with a higher GDP per capita. 

4. Differences in Scenarios/Runs between Pairs of 

Models 

Differences in behaviour between SD models or model runs for a given 

outcome may be explained by differences in parameter values and/or structures. The 

differences in behavioural patterns between two structurally different models could 

thus be minimized by using the same parameter values for runs that are to be 
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compared. Using TU Delft’s open source EMA Workbench software2 to perform multi-

model SD simulation under deep uncertainty, this can be achieved by defining 

uncertain run settings for all models via the intersections of the model parameter 

sets. 

In the approach presented here, the absolute difference for each time step 

between two runs from different models is then summed over all time steps and 

divided by the number of time steps to calculate the average difference. We define 

the model intersection as the intersection of the input spaces of two models. In set 

theory, the intersection 𝐼 of two sets 𝑋 and 𝑌 is defined as the part of the sets that is 

an element of both sets, hence 𝐼 = 𝑋 ∩ 𝑌. The relative complement 𝐶𝑋 of set 𝑋 in set 

𝑌 is the part of 𝑋 that is not part of 𝑌, hence 𝐶𝑋 = 𝑋\𝑌. The difference 𝐷 in behaviour 

between two models with parameter sets 𝐴 and 𝐵 can thus be explained both from 

the complement of the inputs 𝐶𝐴 and 𝐶𝐵 and the structural differences between the 

models. The differences for each time step 𝑡 are defined here, for a given outcome, 

as: 

𝑑𝑋𝑌,𝑖(𝑡) =
𝑓𝑋(𝑡, 𝐼𝑋𝑌,𝑖, 𝐶𝑋,𝑖) − 𝑓𝑌(𝑡, 𝐼𝑋𝑌,𝑖, 𝐶𝑌,𝑖)

𝑓𝑋(𝑡, 𝐼𝑋𝑌,𝑖, 𝐶𝑋,𝑖)
. 

 

Hence, the average absolute difference 𝐷 can defined, with n as the number of time 

steps, as: 

𝐷 = |𝑑𝑋𝑌,𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | = ∑
|𝑑𝑋𝑌,𝑖(𝑡)|

𝑛

𝑡=𝑛

𝑡=0

. 

 

Since there are three models in this study, there are also three comparisons to 

be made: Bottom-up – Regional (Figure 7), Bottom-up – Top-down (Figure 8), and 

Regional – Top-down (Figure 9). The differences between the runs of these pairs of 

models are calculated for the outcome real copper price. The real copper price is an 

important and volatile performance indicator of periodic imbalance between supply 

and demand due to delays in the system, and thus of economic scarcity. Although 

physical scarcity may not be an imminent threat, economic scarcity may well be; 

copper prices have continued to be high during the last years of economic slow-

down, while copper price were high during the decade before which was 

characterised by globally strong economic growth. The real copper price is also one 

of the most visible and influential factors in the real world copper system. Hence, we 

chose the real copper price as key performance indicator in this analysis. 

                                            
2
 http://simulation.tbm.tudelft.nl/ema-workbench/download.html 

http://simulation.tbm.tudelft.nl/ema-workbench/download.html
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Figure 7. The differences between runs for the Bottom-up - Regional intersection. The 
differences are ordered from small (left) to large (right). 

 

Figure 8. The differences between runs for the Bottom-up – Top-down intersection. The 
differences are ordered from small (left) to large (right). 

The differences for all runs of all intersections in Figure 7, Figure 8 and Figure 

9 show that not a single pair of runs shows exactly the same behaviour (i.e., less 

than 1% difference), while the majority of pairs of runs show average differences of 

more than 10%. Comparing the Regional and Top-down models, more than 90% of 

the runs have average differences larger than 100%. Since higher differences can be 
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explained by very low values for the copper price in one of the models, frequently 

occurring low prices in the Regional model explain part of the high values. This can 

be explained by the specific structure of the Regional model. In a regionalised copper 

system, the market is assumed to be hindered by the fact that regional demand is 

first satisfied by the supply. As a consequence, the response between changes in 

demand and supply is lagged, which results in lower or higher copper prices than 

seen in the other models. The difference with the copper price seen in the Top-down 

model is normalised to the Regional copper price, explaining the higher average 

differences. This is also visible in Figure 12, and may also explain the difference in 

form of the average differences on the intersection of the Bottom-up and Regional 

models, compared to the intersection between the Bottom-up and the Top-down 

models. 

 

Figure 9. The differences between runs for the Regional – Top-down intersection. The 
differences are ordered from small (left) to large (right). 

Figure 10, Figure 11, and Figure 12 display the trajectories for each pair of 

models for three pairs of runs, more precisely for the smallest, median and largest 

differences, in view of visually exploring the differences in trajectories between the 

pairs of models. 

The results for the smallest differences suggest that small differences only 

occur in situations of stable equilibrium. Only in quasi equilibrium are the trajectories 

of all pairs of models similar. To confirm this idea, we looked at the Vensim model 

parameterisations that generated these specific runs. By doing so, we were able to 

assess to what extent certain behaviour was caused primarily by the specific model 

parameters, or by the structural difference between the models.  
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Figure 10. Three runs for the intersection of the Bottom-up and Regional models. 

The Bottom-up and Regional runs for the median difference of this intersection 

show different behavioural patterns (Figure 10). In the Bottom-up model, the price 

develops slowly after some initial disturbance, while in the Regional model the price 

stays at a low level for a longer period of time, until at approximately two thirds of the 

model run time, the price suddenly rises. This difference in behaviour is caused by 

different developments of the global copper consumption. In this case, the 

consumption in the Bottom-up model gradually decreases for most of the simulation, 

whereas in the Regional model, the copper consumption rises exponentially, as may 

be expected for low copper prices, until sudden scarcity causes a large bust in 

copper consumption at the first signs of strong price rises. This typical behaviour of 

the Regional copper model is caused by the slower reaction of the primary 

production sector due to regionalisation. 

The behaviour mode corresponding to the largest difference between the 

Bottom-up and Regional models are actually quite similar: periods with low copper 

prices are followed by periods with higher copper prices. The prices in the Bottom-up 

model are so low that the relative differences are largest. These differences are 

caused by the differences in copper demand: The Bottom-up model has global 

copper consumption which is almost three times as small as the global copper 

consumption in the Regional model for comparable copper supplies. The Bottom-up 

demand, which is the sum of new copper needed for different uses, is calculated in a 
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very different way than the – regionalised – top-down approach in the Regional 

model. These differences are thus consequences of the different demand structures 

in both models and the difference measure used here. 

 

Figure 11. Three runs for the intersection of the Bottom-up and Top-down models. 

The behavioural patterns corresponding to the median differences between 

the Bottom-up and Top-down models are not very different. However, further 

investigation of these model runs shows that the differences are caused by very 

different structures. In the Top-down model, the global copper consumption 

decreases to a very low level over the model run time. The decline in demand is 

caused by a very strong substitution of copper in that same period. Substitution is 

also seen in the Bottom-up model, but at a lower rate, since it is spread out over time 

for different uses, resulting in a slower substitution rate over time. 

The largest difference is again explained mainly by the low copper demand 

compared to the supply in the Bottom-up model. The Top-down model has a higher 

demand compared to the Bottom-up model, but the imbalance between demand and 

supply is also present. The smaller difference causes more frequent price 

oscillations, while the price does not reach a level as low as in the Bottom-up case. 

Thus, the differences can be explained by the different ways of calculating the copper 

demand, while for these cases, both models function roughly the same way. 
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Figure 12. Three runs for the intersection of the Regional and Top-down models. 

The median difference of the Regional – Top-down intersection can again be 

explained by the difference in supply system reaction time. The Regional model has 

a long period of relatively large supply compared, which is followed by a collapse of 

the consumption when the supply stocks are outrun by demand. In the Top-down 

model the same situation exists in the first decade of the model run time. However, 

due to the different situation this results in a quicker adaptation of demand, followed 

by an early bust. A period of relative smooth price behaviour follows after the bust. 

The same happens with the cases with the largest difference. However, in the 

Regional case the moment of bust does not come during the run time, while in the 

Top-down model, the run starts with the bust. In the Top-down the bust is followed by 

a long period of scarcity, followed by a period with high scarcity at the end of the run 

time. In short, the supply dominance in the Regional case does not end before the 

end of the run time, while the Top-down model switches from to another states 

before the end of the run. 

5. Discussion and Conclusions 

In this paper, we introduced three different copper models developed from a 

global top-down perspective, a global bottom-up perspective, and a regional top-

down perspective. Performing pair-wise comparisons, we assessed whether 

differences in trajectories generated with different models were primarily due to 
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model uncertainty or to disjoint parameter uncertainty (i.e., uncertainty pertaining to 

parameters not shared by both models). The goal was not to replicate the current 

state of the system or provide forecasts based upon it, but rather to explore the full 

uncertainty space, that is to generate a plethora of plausible behavioural patterns that 

could be generated under all sorts of different circumstances. Doing so, we found 

that the differences in model behaviour are largely explained for these copper models 

by alternative model structures (i.e., by the difference in model structures). This is not 

necessarily the case: Moxnes (2005) found for example that, in the case of two 

fisheries models, different model structures are less important than alternative 

nonlinear functions. Note, however, that models that differ in terms of one or more 

important functions are in fact different models (Lane, 1998, 2000).  

Although Meadows et al. (1982) argue that examining issues from multiple 

perspectives is a central principle of the systems view of the world, Sterman (1994, p. 

310) notices that “[u]nfortunately, [scientists, professionals and laypeople] do not 

generate sufficient alternative explanations or consider enough rival hypotheses.” But 

even if people would be able to generate alternative plausible models, would there be 

problems related to model choice and model use. Sterman (1994, p. 310) argues 

with respect to econometric methods that: “In practice the data are too scarce and 

the plausible alternative specifications too numerous for [models] to discriminate 

among competing theories [for t]he same data often support wildly divergent models 

equally well, and conclusions based on such models are not robust.” SD modelling 

faces similar problems. Choosing between different plausible SD models may be 

problematic (Moxnes, 2005), or even impossible. And if choosing one perspective 

over another affects the outcomes of modelling studies and multiple perspectives are 

plausible, then policy analysis requires alternative perspectives to be included. 

Hence, testing for differences may be necessary, since it is unknown before 

simulation and comparison whether different perspectives substantially affect 

behavioural patterns and policy conclusions. However, the lack of differences 

between runs drawn from multiple models is not necessarily a valid argument in 

favour of selecting only one plausible model. Different models may provide 

alternative explanations (i.e., alternative dynamic hypotheses), for the same patterns 

of behaviour, which may need to be addressed for designing adaptive robust policies 

(Hamarat, Kwakkel, & Pruyt, 2013; Hamarat, Kwakkel, Pruyt, & Loonen, 2014). For 

robust policy design, instead of addressing one causal explanation of undesirable 

behaviours, all causal explanations of the same undesirable behaviours may need to 

be addressed. 

Alternatively, one may circumvent this ontological-epistemological problem by 

using existing tools, like TU Delft’s open source EMA workbench, to simultaneously 

run and analyse alternative models, either over the intersection or over the union of 

their uncertainty spaces. An ex-ante multi-model approach assumes that alternative 

plausible models add value by adding additional insights. For example, the Regional 
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model adds the insight that regionalisation of the copper market may lead to slower 

reaction times of the system, resulting in more extreme behaviour of prices. 

It would be good, according to Bremer in Meadows et al. (1982, p. 231), to 

“know whether the overall behaviour of the model is strongly affected by our choice 

of one rather than another”, both for choosing a model and for using multiple models. 

This paper shows that it is possible, despite some remaining technical problems and 

difficulties, to perform multi-model simulation and investigate whether model 

behaviour is strongly affected by our choice of levels of aggregation or perspectives.  

The scripts3 developed for this paper can be used to that purpose. Moreover, 

they may also be useful for informing model choice and for facilitating multi-model 

simulation and analysis by supporting the identification of differences in model 

outputs and the search for their causes. Other uses can easily be envisioned. One 

example would be to assess the added value of alternative models in terms of the 

new behavioural patterns or old behavioural patterns with new mechanisms that 

could be added to the already existing set.  

A remaining difficulty in multi-model behaviour comparison relates to the fact 

that different models developed from different perspectives do not necessarily share 

exactly the same parameters and other inputs, which complicates the identification of 

the origins of differences in behavioural patterns. Since not all parameters and other 

inputs for the copper cases were the same, differences in behaviour could not be 

attributed exclusively to structural differences between the models. However, the 

example runs in our analysis showed that the differences in behaviour were at least 

partly caused by the different models. Note that there is room for improvement in 

terms of the metric used to identify differences between trajectories from pairs of 

models. Using absolute differences between trajectories, oscillatory behaviours in 

counter phase may show large differences for similar modes of behaviour. This 

problem could be addressed with behavioural metrics as explored in Kwakkel, 

Auping, and Pruyt (2014). Another problem related to the metric used in this paper is 

that the relative differences are sensitive to the size of the denominator: small 

denominators cause large relative differences. Comparison based on behavioural 

patterns, for example using time series classification as in Kwakkel and Pruyt (2015) 

or Kwakkel et al. (2013) may solve some problems, but not all. New methods, 

techniques and tools need to be developed to compare models and behaviours and 

provide deeper analytical insight under deep uncertainty.  
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3 Dynamic Scenario Discovery 

under Deep Uncertainty 
In the commonly used definition of scenario within Scenario Discovery and Robust 

Decision Making, scenarios are defined as future states of the world in which 

particular policies perform poorly. There are two problems with this understanding of 

scenarios. First, it is often not the static state of a system that is of interest, but the 

different plausible behaviour patterns leading to this state. In these situations, it is 

thus necessary to be able to distinguish different types of behaviour over time. The 

dynamics of complex real-world problems can be simulated using highly non-linear 

simulation models. The non-linearity of such models however complicates the use of 

existing algorithms for Scenario Discovery, as these algorithms work best if there is a 

more or less orthogonal mapping of inputs to outputs. Second, the design and testing 

of policies can take advantage of knowing which uncertain factors and policy levers 

are most influential in determining the type of behaviour.  

In this paper, we present an extension of Scenario Discovery. First, we understand 

scenarios not as future states of the world in which policies perform poorly, but as 

behaviour over time which is of interest to various stakeholders. We operationalize 

this by using behavioural pattern feature clustering. Next, we pre-process the model 

input space using Principal Components Analysis prior to using the PRIM algorithm 

(i.e., PCA-PRIM) to relate parts of the input space to the interesting part of the output 

space.  

This combined approach allowed us to identify regions in the model input space 

responsible for generating behaviours of interest for about 50% of all such 

behaviours. The combined approach was not entirely successful because first, 

distinguishing between different types of oscillatory behaviour remained difficult, and 

second, the non-linearities in the models stretch the capability of the PRIM algorithm.  

In the synthesis chapter, I will discuss these and similar lessons in the second 

section on the impact of complexity of models on Scenario Discovery. 
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Abstract 

Scenarios are commonly used to communicate and characterize uncertainty in many 

policy fields. One of the main challenges of scenario approaches is that analysts 

have to try and capture the full breadth of uncertainty about the future in a small set 

of scenarios. In the presence of deep uncertainty, this is even more challenging. 

Scenario discovery is a model-based technique inspired by the scenario logic school 

that addresses this challenge. In scenario discovery, an ensemble of model runs is 

created that encompass the various uncertainties perceived by the actors involved in 

particular decision making situations. The ensemble is subsequently screened to 

identify runs of interest, and their conditions for occurring are identified through 

machine learning. Here, we extend scenario discovery to cope with dynamics over 

time. To this end, a time series clustering approach is applied to the ensemble  of 

model runs in order to identify different types of dynamics. The types of dynamics are 

subsequently analyzed to identify dynamics that are of interest, and their causes for 

occurrence are revealed. This dynamic scenario discovery approach is illustrated 

with a case about copper scarcity. 

KEYWORDS: scenario discovery, exploratory modeling and analysis, system 

dynamics, deep uncertainty, metal scarcity 

1. Introduction 

Scenarios provide a commonly used means to communicate and characterize 

uncertainty in many decision support applications. There exists a plethora of scenario 

definitions, typologies, and methodologies (Börjeson, Höjer, Dreborg, Ekvall, & 

Finnveden, 2006; Bradfield et al., 2005). A distinction can be made between the La 

Prospective school developed in France, the Probabilistic Modified Trends school 

originated at RAND, and the intuitive logic school typically associated with the work 

of Shell (Bradfield et al., 2005). In the evaluative literature, one of the reported 

problems of traditional scenario approaches is that they often struggle in case of 

problems that involve a variety of actors with quite diverse world views (European 
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Environmental Agency, 2009) or when there is a lacking consensus (van 't Klooster & 

van Asselt, 2006). Scenario approaches also struggle with anticipating rare events 

(Goodwin & Wright, 2010) and grapple with the multiplicity of plausible futures 

(Popper, Griffin, Berrebi, Light, & Daehner, 2009). The challenge of traditional 

scenario approaches is that analysts have to try and capture the full breadth of the 

uncertainty about the future in a small set of scenarios that need to be intelligible and 

useful to both the actors involved in the scenario development process and analysts 

supporting this process (Bryant & Lempert, 2010; Schwartz, 1991; van der Heijden, 

1996). Developing or identifying a handful of scenarios, that fully represent all 

plausible futures is difficult. Communicating, and using more than a handful of 

representative scenarios is equally difficult and may even be counterproductive (van 

der Heijden, 1996). The intuitive logic school addresses these problems through the 

identification of the factors that are both highly uncertain and can have a profound 

impact on the decision problem at hand (Schwartz, 1991). However, this works 

mainly if the group of involved actors is relatively small, their interests and concerns 

are known, and overlap to a certain extent (Bradfield et al., 2005). Moreover, how to 

best represent the diversity contained in all the uncertain factors in a small set of 

scenarios, is a continuing challenge (Groves & Lempert, 2007). 

Recently, an approach called scenario discovery (Bryant & Lempert, 2010; 

Groves & Lempert, 2007; Lempert et al., 2006) has been put forward as a technique 

that can be used for developing scenarios for problems that involve a large number 

of actors with quite diverging world views and values and where there are many 

uncertain factors. Scenario discovery is a model driven approach that builds on the 

intuitive logic school (Bryant & Lempert, 2010). Scenario discovery builds on earlier 

work on using models for decision making under deep uncertainty (Bankes, 1993; 

Lempert, Bryant, & Bankes, 2008; Lempert et al., 2003). It starts from an ensemble of 

model runs that is analyzed in order to identify runs that are of particular interest. 

Next, these runs of interest are analyzed to reveal the combinations of factors 

responsible for generating them. The documented cases of scenario discovery have 

used a single model with a small set of uncertain parameters as the basis for 

generating the ensemble of runs. For example, (Bryant & Lempert, 2010) uses a 

model with 8 uncertain parameters, and (Groves & Lempert, 2007) uses a model with 

20 uncertain parameters, and the identification of interesting runs in both cases is 

based on the terminal values of each individual run of outcome indicators related to 

policy performance (Bryant & Lempert, 2010; Groves & Lempert, 2007).  

In this paper, we extend the scenario discovery approach conceptually, 

technically, and practically. Conceptually, we understand scenarios not as states of 

the world but as developments over time. Technically, this implies that the machine 

learning techniques usually applied in scenario discovery cannot be applied 

straightforwardly. To overcome this problem, we use time series clustering for the 

identification of sets of behaviors over time, thus transforming time series results to 
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scalar values that can be used as input to the various machine learning techniques 

that can be used for scenario discovery. Practically, we extend scenario discovery by 

working with two structurally distinct models that share only a subset of the uncertain 

factors, and jointly cover significantly more uncertain parameters than earlier 

applications of scenario discovery. These practical extensions pose additional 

challenges in the design of the computational experiments and the analysis of the 

results. 

To illustrate our extended scenario discovery approach, we apply it to the 

problem of copper scarcity. There has been a growing attention to mineral and metal 

scarcity, but this attention has been focused mainly on lithium, rare earth metals and 

other metals characterized by supply risks due the limited number of countries where 

it is mined. However, base metals  can also suffer from scarcity, as evidenced by the 

copper price which has been on a high level since 2005 (Index Mundi, 2011), 

resulting in phenomena like the theft of copper wiring. Crisis behavior in the copper 

market may have profound impacts on society beyond increased copper theft, and 

may be particularly worrisome with regard to a transition towards more sustainable 

energy systems (Kleijn & van der Voet, 2010). The main aim of the case was 

therefore to identify the various ways in which the copper system – comprised of 

supply, demand, recycling, and substitution – could evolve, the kinds of dynamics 

that could occur, the undesirable price dynamics, and the causes for their 

occurrence.  

The physical side of the copper system is well documented (e.g. ICSG, 2010b; 

Lossin, 2005) and does not contain much uncertainty. However, with respect to the 

way in which demand should be represented, there are profoundly diverging views: 

there are those who argue that copper demand should be modeled at a high level of 

aggregation as a function of world population, while others argue that one should use 

a bottom up approach from the various types of usages to the overall demand 

(Gordon et al., 2006, 2007; Tilton & Lagos, 2007). As argued by Cole, “whether a 

'top-down' or 'bottom-up' approach is chosen, however, may affect the results. 

Simple recursive calculation of global or regional aggregates broken down by sector 

often gives surprisingly different results from systematically building up the global or 

regional aggregates from the sector or subsector levels” (Meadows et al., 1982, p. 

205). Other sources of uncertainty are the development of the ore grade (ICSG, 

2010b; Skinner, 1976), the impacts of substitution behavior (Gordon et al., 1987), 

and various geopolitical developments, such as the growing copper demand in 

developing economies (ICSG, 2010b; Rademaker & Kooroshy, 2010). The various 

uncertainties are captured in two distinct simulation models. One represents a bottom 

up modeling of demand, while the other represents a top down modeling of demand. 

The supply system is essentially the same in both models. The behavior of these 

models is explored across a wide range of parametric uncertainties using Latin 

Hypercube Sampling. The results are clustered using a time series clustering 
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approach, and subsequently analyzed using the Patient Rule Induction Method 

(Friedman & Fisher, 1999), a particular machine learning technique. Exemplars of 

undesirable dynamics are identified, and their conditions for occurring derived. 

In the next section, we review the current scenario discovery approach and 

outline where and how we have extended it to cope with dynamics over time. In 

Section 3, we illustrate this modified scenario discovery approach through the case of 

copper scarcity. Section 4 discusses these results from a methodological point of 

view. Section 5 presents the main conclusions. 

2. Dynamic Scenario Discovery 

Scenario discovery addresses problems encountered when trying to develop model-

based scenarios for problems that involve a large number of actors with diverging 

world views and values, or that are characterized by a very large number of uncertain 

factors. Typical for such problems is that the analysts do not know, or the parties to a 

decision cannot agree on (1) the appropriate conceptual models that describe the 

relationships among the key driving forces that shape the long-term future, (2) the 

probability distributions used to represent uncertainty about key variables and 

parameters in the mathematical representations of these conceptual models, and/or 

(3) how to value the desirability of alternative outcomes (Lempert et al., 2003). This is 

also called decision making under deep uncertainty, or severe uncertainty (Ben-

Haim, 2006; Lempert et al., 2003). In the presence of a lack of knowledge or 

disagreement related to the model representation of a system and the evaluation of 

outcomes, enumeration of multiple alternatives for how (aspects of) the system work 

or are to be parameterized and how to value outcomes may still be possible, without 

being able to rank order these alternatives in terms of how likely or plausible they are 

judged to be (Kwakkel et al., 2010)  

2.1. Exploratory Modeling and Analysis 

Scenario discovery builds on earlier work on using models for decision making under 

deep uncertainty (Bankes, 1993; Lempert et al., 2008; Lempert et al., 2003). Under 

deep uncertainty, it is not possible to develop a single model that accurately 

represents the system of interest. Exploratory Modeling and Analysis (EMA) (Bankes, 

1993) provides an alternative way of using the available information, data, and 

knowledge. An ensemble of models, consistent with the available knowledge, data, 

and information is developed. A single model run drawn from this potentially infinite 

ensemble of models provides a computational experiment that reveals how the world 

would behave if the various guesses that particular model makes about the various 

uncertainties were correct. The behavioral landscape of this ensemble is explored 

using a series of computational experiments, and the behavioral landscape is 

analyzed using a variety of machine learning techniques. Scenario discovery can be 

understood as a particular application of EMA, where one tries to identify the 
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combinations of uncertainties that produce regions of interest in the behavioral 

landscape of model outcomes. Typically, in scenario discovery, one looks for areas 

that represent vulnerabilities to proposed policies by looking at the terminal values of 

various outcomes of interest for the individual runs (Bryant & Lempert, 2010). There 

is, however, no theoretical or conceptual reason why other criteria cannot be used for 

defining the regions of interest, nor is it necessary to restrict the identification of 

regions of interest to terminal values of outcomes of interest for the individual runs. 

Important steps in EMA are to (i) conceptualize the decision problem and the 

associated uncertainties; (ii) develop an ensemble of fast and simple models of the 

system of interest; (iii) specify the uncertainties that are to be explored. Next, 

depending on the purpose for which EMA is applied, various subsequent steps are 

possible. In the case of scenario discovery, the typical subsequent steps are to (iv) 

analyze the behavioral landscape resulting from (iii); (v) identify the combinations of 

uncertainties from which regions of interest in the behavioral landscape originate; (vi) 

assess these combinations of uncertainties using various model quality metrics and 

related machine learning techniques for assessing model quality (Bryant & Lempert, 

2010); (vii) qualitatively or quantitatively communicate the typical futures in these 

regions of interest, i.e. exemplary scenarios, and the combinations of uncertainties 

from which the regions of interest in the behavioral landscape originate to the actors 

involved in the decision making problem. Based on these scenarios and regions, In 

interaction with these actors, a process of policy formulation and reformulation can 

start. Candidate policies can be tested by iterating through the previous steps. 

2.2. Algorithms for Dynamic Scenario Discovery 

Both the analysis of the behavioral landscape and the identification of uncertainties 

from which particular regions of interest in the behavioral landscape originate can 

utilize various machine learning techniques. In this paper, we are interested in 

dynamics over time. Thus, we analyze the behavioral landscape using time series 

clustering. From this analysis emerges a set of dynamics, some of which are judged 

to be of interest. In order to identify the combinations of uncertainties responsible for 

generating the behavior of each cluster of interest, we utilize a modified version of 

the Patient Rule Induction Method (PRIM) (Friedman & Fisher, 1999), which is 

typically used in scenario discovery (Bryant & Lempert, 2010; Lempert et al., 2008). 

2.2.1. Coping with dynamics: time series clustering 

The goal of clustering is to organize an unlabeled data set into homogenous groups, 

in which the similarity within the group is minimized and the dissimilarity between 

groups is maximized (Theodoridis, 2003; Warren Liao, 2005). Typically, clustering 

approaches are applied to static data (Warren Liao, 2005). Static clustering 

approaches can be divided into five families: partitioning methods, hierarchical 

methods, density based methods, grid-based methods, and model-based methods 

(Han & Kamber, 2001). In general, time series clustering approaches try to modify 
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existing clustering approaches for static data so that they can cope with time series 

data. Either the algorithm is modified to deal with the raw time series data, or the time 

series are processed in such a way that static clustering methods can be used 

directly. A substantial portion of the research on time series clustering focuses on 

modifying the similarity measure used in a clustering method to handle time series 

data (Keogh & Kasetty, 2003). To assess the efficacy of hierarchical clustering 

methods in capturing similarity, the use of dendrograms is recommended (Keogh & 

Kasetty, 2003). A review of the state of the art in time series clustering can be found 

in (Warren Liao, 2005). 

In this paper, we adopt an agglomerative hierarchical clustering approach. 

That is, we start by positioning each time series in its own cluster, and then 

hierarchically merge each cluster into larger and larger clusters (Warren Liao, 2005). 

The advantage of this approach is that it produces an ordering of similarity. The user 

can experiment with different similarity thresholds, producing a different number of 

final clusters, which aids the discovery of the types of dynamics.  

2.2.2. Identifying undesirable regions: the Patient Rule Induction Method (PRIM) 

After identifying regions of interest in the behavioral landscape of model outcomes, 

one wants to identify where in the model input space these regions of interest 

originate. That is, one wants to close the loop from uncertainties to behavior of 

interest and from behavior of interest back to the uncertainties. For this final step, 

PRIM is typically used in scenario discovery (Bryant & Lempert, 2010; Groves & 

Lempert, 2007; Lempert et al., 2008). 

PRIM can be used for data analytic questions, where the analyst tries to find 

combinations of values for input variables that result in similar characteristic values 

for the outcome variables. Specifically, one seeks a set of subspaces of the model 

input space within which the values of the output variables are considerably different 

from their average values over the entire domain. PRIM describes these subspaces 

in the form of ‘boxes’ of the model input space. This results in a very concise 

representation, for typically only a limited set of dimensions of the model input space 

is restricted. That is, a subspace is characterized by upper and/or lower limits on only 

a few input dimensions. Still, interpretation of such a PRIM box can be challenging 

for the analyst because of the multi-dimensional character of the subspace. That is, 

in interpreting the results one has to account for all the restricted dimensions 

simultaneously. Another issue with PRIM is that the subspaces found by PRIM can 

overlap, further hampering interpretability. Although the original version of PRIM 

requires that the input data are continuous or categorical (Friedman & Fisher, 1999), 

it can be modified to deal with ordinal data (Chong & Jun, 2008).  

The default objective function used by PRIM aims at maximizing the mean of 

the cases inside a box. The algorithm generates a set of candidate boxes and then 

selects that candidate box that maximizes this mean. In the case of categorical or 
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ordinal data, there is a problem with this approach, for the various candidate boxes 

do not contain the same amount of data. Thus, the comparison is biased. Moreover, 

this defeats one of the principal strengths of PRIM, namely its patient (or lenient) 

character, expressed in removing or adding only a few cases at a time. To address 

this problem, we modified the objective function used by PRIM. Instead of selecting 

the candidate box that maximizes the mean, we modified the algorithm to select the 

box where the increase in the mean divided by the change of the cardinality of the 

cases inside the box is largest. Thus, the gain in the mean is offset against the 

change in the number of cases inside a box. 

In recent work on using PRIM for scenario discovery, it was shown that the 

results of PRIM could be improved by applying a preprocessing step based on 

Principal Components Analysis (PCA) (Dalal, Han, Lempert, Jaycocks, & Hackbarth, 

2013). This preprocessing step involves identifying the experiments of interest. Next, 

the covariance matrix of these experiments is derived (Weisstein, 2012). Then, the 

eigenvectors and eigenvalues of this covariance matrix are identified through 

Singular Value Decomposition. The eigenvectors are sorted based on the 

eigenvalues. The resulting eigenspace is subsequently used for rotating all the 

experiments. That is, the experiments are rotated to the eigenspace of the 

covariance matrix of the experiments of interest. To ease interpretation of the results, 

instead of rotating the uncertain parameters jointly, one can cluster the uncertain 

parameters, and derive a rotation for each cluster separately. This extension of 

PRIM, known as PCA-PRIM, is applied here. We exclude categorical dimensions 

from this rotation. 

Some computational support for scenario discovery exists. The 

Comprehensive R Archive Network (CRAN) contains a scenario discovery toolkit 

package. However, this implementation of PRIM does not handle ordinal data and 

categorical data correctly, and the pasting phase of the algorithm is not consistent 

with the algorithm as described by (Friedman & Fisher, 1999). It is not uncommon to 

encounter categorical or ordinal data in scenario discovery. In scenario discovery, the 

model input space is defined by the uncertainties explored using EMA. Not all these 

uncertainties will be real valued. For example, if there is uncertainty about (an aspect 

of) model formulation, this can result in multiple distinct model formulations, which 

are distinct categories. We therefore re-implemented the PRIM algorithm to handle 

the three data types correctly. In this revised implementation we modified the pasting 

part of the algorithm to be consistent with (Friedman & Fisher, 1999). This re-

implementation also allowed us to modify the objective function used in PRIM.  

3. Illustrating Dynamic Scenario Discovery: the case of 

copper scarcity 

The aim of this case study is to explore how the copper price can develop in the 

future and, through dynamic scenario discovery, identify plausible undesirable future 
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dynamics of the copper price. To this end, we first conceptualize the copper system 

and the main uncertainties affecting the future evolution of the copper price. Second, 

we present an ensemble of system dynamics models that can be used to explore 

over these uncertainties. Third, we discuss the design of experiments to explore the 

behavior of this ensemble. Fourth, we apply the outlined dynamic scenario discovery 

approach to the results of the computational experiments.  

3.1. Conceptualizing the problem and the associated uncertainties 

We have chosen to focus in this case study on discovering plausible undesirable 

dynamics of the copper price. What is deemed undesirable differs from one actor to 

another. Broadly speaking, periods of high prices are undesirable for consumers, 

periods of low prices are undesirable to producers, and very rapid changes in price 

are undesirable to both. Later, in analyzing the clusters of dynamics, we will return to 

these forms of undesirability in order to characterize the dynamics of the identified 

clusters.  

The dynamics of the copper price arise out of an interaction between supply 

and demand. The supply side of the copper industry, and in particular the supply 

chain, is extensively documented (ICSG, 2010b; Lossin, 2005). The chain starts with 

either the amount of the resource available or the resource base, although there is 

some discussion about which of these two to use in estimating the maximum amount 

of available copper (Gordon et al., 2006, 2007; Tilton & Lagos, 2007). The available 

resources are translated into reserves and a reserve base. The reserves are the 

fraction of the available resources that can be mined economically; the remainder is 

the reserve base (JORC, 2004; McKelvey, 1973). Part of the reserve base can 

become part of the reserves due to copper price and technological changes. Copper 

reserves are transformed into copper via mining, smelting, and refining. Different 

mining techniques have associated cost structures. The process of smelting and 

refining depends on the type of copper ore, creating two final products: cathode 

copper and ingots. Detailed descriptions for the mining, smelting, and refining of 

copper, and their available capacity are readily available in the literature (ICSG, 

2010b; Lossin, 2005). With respect to the copper ore that is being mined, the ore 

grade is declining (ICSG, 2010b), and, as a consequence, the marginal costs of 

copper mining in terms of energy demand for refining (lower grade) copper are 

increasing (Sun, Nie, Liu, Wang, & Gong, 2010). How this decline of the ore grade 

will evolve in the future is uncertain.  

With respect to the demand side of the copper system, the uncertainties are 

much more profound. There is an ongoing debate about why the copper price has 

been so high. Two main explanations that are offered are economic growth in 

emerging economies and energy transitions (ICSG, 2010b; Kleijn & van der Voet, 

2010). These explanations reflect a different idea about how copper demand arises. 

It can be seen as a function of world population and GDP, or as a function of different 
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usages of copper. Apart from uncertainties related to demand, there are also deep 

uncertainties related to the future development of energy prices and the dynamics of 

substituting copper with other materials. The future energy price affects both the 

copper price as well as the price of substitutes. In particular, the price of aluminum, a 

major substitute for copper in electronic applications, is highly dependent on energy 

price developments. In addition, the dynamics of substitution depend on the available 

substitutes, the amount of materials needed in case of substitution, and the price of 

the substitutes in comparison to the copper price (Gordon et al., 1987), each of which 

can change over time.  

3.2. The ensemble of models 

The models used for generating future scenarios were constructed using System 

Dynamics (SD) modeling (Sterman, 2000) and were implemented in Vensim 

(Ventana Systems Inc., 2011). These models have been designed in such a way that 

they allow for the exploration of the specified uncertainties, while offering an 

endogenous explanation for the overall behavior of the copper system in terms of 

how supply, demand, price, and substitution change over time. To cope with 

uncertainty about whether demand is a function of population and GDP (i.e. the top 

down perspective) or whether demand is a function of usages of copper (i.e. the 

bottom up perspective), we developed two distinct SD models. These two models 

have a common core with respect to the supply of copper but differ with respect to 

how demand is modeled. Below we offer a concise description of both models and 

their common core. For a more detailed description, see (Auping, 2011).  

3.2.1. Common core: supply 

The copper supply is modeled as a stock-flow structure, from resource base, 

resources, and reserve base via mining and refining, to the global consumption of 

refined copper and copper use. When global copper in use has reached the end of its 

lifetime, it is partially collected via the global secondary copper market as scrap and 

is recycled as copper recovered from scrap. These stocks and flows constitute the 

physical and technical backbone of the system (ICSG, 2010b; Lossin, 2005). With 

respect to the discussion about resource versus resource base (Gordon et al., 2007; 

Tilton & Lagos, 2007), we assume that the marginal cost of copper is a function of 

the amount of energy needed to mine it and the price of energy. The price is a 

function of demand and supply. The difference between the marginal cost and the 

price ultimately defines how much copper can be mined. The structure of resources 

and reserves further largely follows the McKelvey classification (McKelvey, 1973). 

The discovery of new resources is modeled through the semi-autonomous findings of 

independent exploration or junior companies.  

The mining, smelting, and refining capacities are modeled as stocks. Capacity 

can exist in one of three states: under construction, in use, and mothballed (Abdel 

Sabour & Poulin, 2010). During poor economic times, capacity is first mothballed 
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and, only after continued losses, decommissioned. Further, due to the maturity of the 

copper market, learning effects are assumed to be negligible in relation to the 

increasing costs related to the declining ore grade. No separate capacity for recycling 

is modeled, since the recycling of copper uses the same smelter and refinery 

capacity as newly mined copper. 

3.2.2. Top down demand 

The Causal Loop Diagram (CLD) (Lane, 2008; Sterman, 2000) in Figure 1 shows the 

main feedback loops of the top down demand sub model at a high aggregation level. 

In this model, the intrinsic demand is caused by the development of the world 

population, the development of GDP per capita, and the effect of GDP on the 

demand for copper. This model allows for exploring the effects of both the growing 

world population on copper demand and, potentially even more important, the effects 

of the increase in wealth of the large populations of emerging economies.  

 

 

Figure 1. High level CLD of top down model. Arrows indicate a causal influence and the sign 
indicates the direction of the influence. The circular arrows with a sign in the middle 
represent feedback loops. The sign indicates whether the loop is positive or negative. 

3.2.3. Bottom up demand 

A high level CLD of the bottom up demand sub model is shown in Figure 2. In this 

model, intrinsic demand is a function of the various uses of copper. Following 

(Angerer et al., 2010), we define six main uses for copper, all of which can have a 

quasi-independent development over time. Moreover, substitution is based on each 

of the uses of copper and can behave differently over time for each use. This model 

allows for exploring, for example, the effects of energy transitions, which among 

others affect the use of copper in cars (Angerer et al., 2010) and the need for new 

energy infrastructure to connect renewable energy sources like wind parks and solar 
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plants (Kleijn & van der Voet, 2010). This model has a significantly larger number of 

uncertain parameters than the top down demand model.  

 

 

Figure 2. High level CLD of bottom up model. Arrows indicate a causal influence and the sign 
indicates the direction of the influence. The circular arrows with a sign in the middle 
represent feedback loops. The sign indicates whether the loop is positive or negative. 

3.2.4. Matching supply and demand 

Copper supply (available global inventories of refined copper) and demand (intrinsic 

demand minus substitution) determine the copper price relative to the marginal costs. 

The copper price influences the total copper demand in two ways: directly, by price 

elasticity effects on demand, and indirectly by substitution of copper demand (Figure 

3). Price and substitution effects both have a short-term and long-term effect on the 

price. On average, the long-term effect is larger than the short-term effect. When the 

total demand cannot be fulfilled, the unfulfilled demand is accumulated. This 

accumulated unfulfilled demand will decline over time, as long as copper scarcity 

persists. The actual demand for refined copper is thus the demand formed by 

intrinsic demand, price effects, substitution, and accumulated unfulfilled demand. 
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Figure 3. CLD of the matching of demand to the price. Arrows indicate a causal influence and 
the sign indicates the direction of the influence. Arrows with a strike through indicate delayed 
causal influences. The circular arrows with a sign in the middle represent feedback loops. 
The sign indicates whether the loop is positive or negative. 

3.3. The design of experiments 

In order to explore the behavior of the two models over the uncertainties, a shell 

written in Python was utilized (Van Rossum, 1995). This ‘EMA workbench’ can 

control Vensim through its Dynamic Link Library (Ventana Systems Inc., 2010). The 

workbench is responsible for generating input values for the various uncertainties, 

setting these values in the Vensim models, executing the Vensim models, and 

storing the results. The workbench supports parallel processing, reducing the 

required computational time.  

The top down model contains 31 uncertain factors, and the bottom up model 

contains 57 uncertain factors. In order to compare the extent to which the way of 

modeling demand has an impact on the results, we first identified the uncertainties 

that are shared by the two models. We generated a Latin Hypercube sample 

containing 2500 experiments for these 12 shared uncertainties. Next, for each model, 

the uncertainties unique to that model were identified, and a Latin Hypercube was 

generated for these uncertainties. By combining these two sets of Latin Hypercube 

samples for each model, a complete set of experiments for each model is derived. 

This results in a dataset containing 5000 computational experiments. 
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3.4. Analysis of Results 

3.4.1. Time Series Clustering 

In order to identify the types of dynamics present in the ensemble of model results, 

we use an agglomerative hierarchical clustering approach with a specifically tailored 

metric for identifying similar dynamics. The dynamic behavior over time can be 

understood as being a concatenation of atomic behavior patterns (D. N. Ford, 1999). 

The atomic behavior mode is based on the sign (positive, negative, and zero) of the 

slope and curvature. Thus nine atomic behavior modes exist. Each time series is 

transformed into a concatenation of atomic behavior modes. Next, similarity between 

two time series is based on comparing these concatenations. The distance between 

two dynamics is then the average deviation across the entire concatenation. This 

approach is essentially an extension of the behavior pattern features discussed in 

(Yücel & Barlas, 2011). See (Yücel, 2012) for more a detailed elaboration on this 

similarity metric. 

 

Figure 4: Dendrogram of the clustering of the dynamics of the copper price. The y-axis 
specifies the inter cluster distance, and the x-axis indicates the number of computational 
experiments allocated to the lowest level in the dendrograms. 
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Figure 4 shows the dendrograms (Sibson, 1973) resulting from the agglomerative 

clustering with the behavioral distance metric. We have shown only the top four 

levels. For explorative purposes, we chose to extract 30 clusters and review their 

dynamics. This offers a balance between choosing too few clusters and potentially 

missing insight into the variety of possible dynamics generated by the 5000 

experiments, and choosing too many clusters resulting in information overload. In 

order to review the dynamics of each cluster, we identified the computational 

experiment that had the lowest average distance to the other experiments in the 

same cluster and used it as the exemplar for the dynamics in that cluster. In this way, 

we are able to move from 5000 computational experiments to 30 exemplar dynamics.  

Figure 5 shows these 30 exemplars. To ease the interpretation of the plots, we 

plotted only 10 exemplars jointly, and scaled the values so that they all have the 

same starting point. The y-axis is shared across the plots. In the top and bottom plot 

we see exemplars that show a slow growth of the copper price over time. We also 

observe several exemplars that show sharp price changes.  

 

Figure 5: Thirty exemplars of the dynamics of the copper price 

3.4.2. Scenario Discovery 

Having identified the behavioral landscape through time series clustering, the next 

step is to specify which of the identified dynamics are undesirable. We assume that 

high prices are undesirable for consumers, low prices are undesirable to producers, 

and (rapid) price changes are undesirable to both. The time series clustering reveals 

several clusters with sharp price fluctuations. For illustrative purposes, we see 

regions in the behavioral landscape that show sharp changes in price as the regions 

of interest. Other criteria could also be used (see e.g., McInerney, Lempert, & Keller, 
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2012; van der Pas, Walker, Marchau, Van Wee, & Agusdinata, 2010). To identify 

these regions, we use a simple rule. If the absolute value of the first order derivative 

of the price is higher than 2 anywhere over the run, the run is classified as a run of 

interest. Next, we use PCA-PRIM (Dalal et al., 2013) to identify where in the 

uncertainty space these undesirable dynamics originate. This choice for PCA-PRIM 

was due to the fact that without the PCA preprocessing step, PRIM failed to identify 

subspaces in the uncertainty space from which the regions of interest in the 

behavioral landscape originate. Given that the experiments for both models are 

different, we applied PCA-PRIM to both sets of experiments separately.  

3.4.2.1 Top Down Model 

For the top down model, PRIM identified two boxes which jointly contain 55% of the 

experiments of interest. These two boxes are primarily characterized by six restricted 

principal components. Table  shows the loadings of these six principal components 

on the uncertain parameters. These loadings indicate the strength and direction of 

the relation between the principal component and the uncertainty. For example, 

‘minimum usage smelting and refining capacity’ is strongly positively related to the 

‘Supply_3’ principal component, while ‘initial value GDP per capita’ is negatively 

related to the ‘Demand_6’ principal component.  As can be seen, we clustered the 

uncertain parameters into parameters related to the capacity subsystem, the demand 

subsystem the supply subsystem, and the price subsystem.  

With respect to capacity, the results indicate that the main driver for 

undesirable price fluctuations coming from the capacity subsystem are the permit 

time for additional smelting and refining capacity, the initial value for the smelting and 

refining capacity, and the lifetime of the mines. The underlying dynamic here is that, if 

there is a misbalance between the mining capacity and the refining and smelting 

capacity, there can be a buildup of raw copper. But, due to a lack of smelting and 

refining capacity and the fact that it can take a long time to expand this capacity, it 

takes a very long time before there is sufficient refining capacity. The long permit 

time results in an overshoot of new smelting and refining capacity, thus resulting in a 

sudden increase of refined copper becoming available on the market. This in turn, 

triggers a rapid drop of the price. Because of the overshoot in capacity, the stock of 

raw copper is depleted, reducing utilization of the capacity, in turn causing the 

mothballing of this capacity, and potentially even its dismantling. This effect of the 

capacity system is aggravated by the supply subsystem, which contributes to price 

fluctuations if all or a large fraction of the mining and smelting capacity is 

continuously used. 

The demand subsystem contributes to undesirable price fluctuations if the 

economy is shrinking and the initial value for GDP per capita is low. Intrinsic demand 

for copper is highly sensitive to small changes in GDP (this is essentially the meaning 

of ‘normalization value GDP’) (Wouters & Bol, 2009). That is, copper demand rapidly 

decreases. However, historically the expectation is that demand will continue to 
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increase (represented by the ‘initial value long term effect intrinsic demand’), and it 

takes a while before this expectation is changed (‘long-term increased demand due 

to intrinsic demand’). Hence, in case of a falling intrinsic demand and the expectation 

of continuing growth of demand, the demand subsystem contributes to price 

fluctuations. 

Table 1: Rotation matrix for the top down model. The columns are the principal components. 
The values indicate the loadings of the uncertainties on these components. Loadings indicate 
the weight by which the normalized value for an uncertainty needs to be multiplied in order to 
get the principal component score. Thus, the higher the loading, the stronger the relation, 
and the sign indicates the direction of the relation. Only the principal components that are 
most important according to the PRIM results are shown. Irrelevant principal components 
and their related uncertainties have been removed. 
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Average smelting and refining capacity permit term 0.59 
     

Initial mining capacity -0.22 
     

Initial mining capacity in preparation -0.19 

     
Initial smelting and refining capacity 0.50 

     
Average mine lifetime 0.55 

     
Initial value GDP per capita 

 

-0.16 -0.81 -0.41 

  
Initial value long term effect intrinsic demand 

 

0.43 -0.20 0.05 

  
Long term increase demand due to intrinsic demand 

 

-0.44 0.08 0.07 

  
Base economic growth 

 

-0.72 0.13 0.05 

  
Amplification factor of intrinsic demand 

 

-0.05 -0.23 0.11 

  
Amplification factor of relative price effect 

 

-0.10 0.13 0.03 

  
Normalisation value GDP 

 

-0.02 -0.36 0.90 

  
Long term copper price elasticity 

 
0.25 0.29 0.03 

  
Minimum usage smelting and refining capacity 

    
0.58 

 
Initial inventories of refined copper 

    

-0.06 

 Switch between using all capacity, or capacity based on 

forecast  
    

-0.80 
 

Forecasting time horizon 

    

-0.11 

 
Price amplification factor 

     

-0.86 

Production time 

     

0.51 

The price subsystem contributes to price fluctuations if the relative price of copper is 

highly sensitive and the production time is low. The production time affects the time it 

takes for the inventories of copper to progress through the market. The lower this 
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value, the more the amount of copper fluctuates, which in turn is aggravated by the 

‘price amplification factor’. 

3.4.2.2 Bottom Up Model 

For the bottom up model, PRIM identified two boxes that jointly contain almost 50% 

of the experiments of interest. These two boxes are primarily characterized by four 

principal components, which are related to supply, demand, recycling, and price. The 

contribution of the price subsystem to the price fluctuations is identical to its 

contribution in the top down model. In contrast to the top down model, there are no 

principal components related to the capacity subsystem. The supply subsystem 

contributes to price volatility if the time horizon used in forecasting future demand 

levels is quite short in combination with a high value for the minimum usage of 

smelting and refining capacity. The demand subsystem contributes to price volatility if 

the price elasticity is low, the long term effects of demand and price are quite strong, 

and the initial value for GDP per capita is low. This corresponds to an inert demand 

sector that only slowly adjusts to price changes. The recycling subsystem contributes 

to price volatility if the initial amount of copper in use is quite high. This means that, 

over the simulation, a large amount of copper suddenly becomes available via 

recycling. This lowers the price, but demand responds only slowly, resulting in a 

prolonged period of low prices. During this period, mining capacity is mothballed and 

potentially removed. By the time demand starts to respond to the low price, mining 

capacity and smelting and refining capacity has been reduced, thus resulting in a 

situation with more demand than supply, driving up the price. 

Table 2: Rotation matrix for the bottom up model. The columns are the principal components. 
The values indicate the loadings of the uncertainties on these components. Loadings indicate 
the weight by which the normalized value for an uncertainty needs to be multiplied in order to 
get the principal component score. Thus, the higher the loading, the stronger the relation, 
and the sign indicates the direction of the relation. Only the principal components that are 
most important according to the PRIM results are shown. Irrelevant principal components 
and their related uncertainties have been removed. 
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Forecasting time horizon -0.56 

   
Minimum usage smelting and refining capacity 0.72 

   
Part of resource base sea based 0.39 

   
Threshold for junior companies to start deep sea reserve base development 0.13 

   
Goal for copper in infrastructure 2050 

 

0.13 

  
Initial value GDP per capita 

 
-0.39 

  
Number of cars in 2000 

 
0.09 

  
Cu in vehicles BEV 

 

0.14 

  
Long term effect on demand period 

 

0.37 
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Long term increase demand due to intrinsic demand 

 

-0.28 

  
Base economic growth 

 

0.17 

  
Initial value long term effect price 

 
0.45 

  
Amplification factor of intrinsic demand 

 

-0.19 

  
Switch new cars 

 

0.21 

  
Cu in vehicles cityBEV 

 

0.02 

  
Long term effect intrinsic demand period 

 

-0.21 

  
Switch World population 

 

-0.12 

  
Amplification factor of relative price effect 

 

-0.04 

  
Long term copper price elasticity 

 

-0.43 

  
Growth of copper in architecture 

 
-0.17 

  
Collection rate copper products Water Treatment 

  
0.02 

 
Average lifetime of copper in use Architecture 

  
-0.02 

 
Collection rate copper products Automotive 

  

-0.04 

 
Percentage copper recovered from scrap 

  

-0.24 

 
Initial value global copper in scrap Stationary Electro motors 

  

-0.06 

 
Initial use grade for Water Treatment 

  
-0.02 

 
Initial total copper in use 

  

0.95 

 
Average lifetime of copper in use Other Use 

  

-0.14 

 
Copper score during treatment Water Treatment 

  

-0.03 

 
Copper score during treatment Energy Infrastructure 

  
-0.05 

 
Initial value global copper in scrap Other Use 

  

-0.07 

 
Price amplification factor 

   

-0.92 

Production time 

   

0.39 

 

4. Discussion 

The aim of this paper was to illustrate how scenario discovery can be used to 

develop dynamic scenarios. To this end, we utilized a behavioral time series 

clustering algorithm to identify the behaviors of interest. Next, PCA-PRIM was used 

to identify the causes for the behaviors of interest. Looking at the final results, it 

appears that such a technique is able to identify a subset of uncertainties that 

produce a particular dynamic. In the case of the top down model, we started with 31 

uncertain factors, and we were able to identify a substantially smaller subset of 

uncertainties that is responsible for a particular type of undesirable behavior. 

Similarly, in case of the bottom up model, we started with 57 uncertainties and were 

able to reduce it also to a substantially lower number of uncertainties responsible for 

generating the undesirable dynamics. Still, in both cases, only around 50% of the 
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cases of interest have been accounted for. It thus appears that the dynamics of the 

model are due to a very particular dependency among the uncertainties. So, the idea 

of tracing back the behavior of interest to a region of the model input space does not 

hold for all of the regions of interest.  

The identified scenarios suggest that given the current functioning of the 

copper system, sharp price fluctuations are indeed a plausible future. That is, it is 

conceivable that the prices will come down quickly and stay there for a period of time, 

before rising sharply again. Thus, the assumption that the current high price level is 

necessarily here to stay is not justified in light of these results. With respect to the 

identified undesirable dynamics and their underlying causes, there are several policy 

implications. There is a mismatch between the production of raw copper from mining 

and the production of copper in scrap through recycling and the smelting and refining 

capacity in the top down model, and to a lesser extent in the bottom up model. This 

mismatch results in oscillations in the supply of refined copper. To counteract these 

oscillations, there is a need for supply chain management. Another policy implication 

is that given the uncertainty related to future demand, and the impact of a declining 

demand on the price in case of the bottom up model, there is a need to create 

flexibility in the development of new mining capacity and new smelting and refining 

capacity. The use of real options or outside the box thinking with respect to the 

identification of new reserves are ways of addressing this need for flexibility (Abdel 

Sabour & Poulin, 2010; Tapscott & Williams, 2006). A last important policy 

implication is that price oscillations can be counteracted through the establishment of 

strategic reserves that are used in a counter cyclical way. Thus, copper is bought 

when prices fall below a particular level and sold when the prices rise above a 

particular level.  

To improve the interpretability of the results, we experimented with various 

techniques. First, we decided to use the time series clustering only as a means of 

interpreting the model outcomes and derive from it a rule for identifying the cases of 

interest, rather than using the clusters themselves as cases of interest. This 

improved the results substantially. Second, we used a preprocessing step based on 

Principal Components Analysis prior to applying PRIM. Where PRIM without this 

preprocessing step was unable to identify a region in the model input space, PCA-

PRIM was able to identify regions. These regions identified by PCA-PRIM are in the 

eigenspace rather than in the model input space, thus necessitating an additional 

interpretation step based on the loadings of the model input parameters on the 

principal components – that is, the dimensions that span the eigenspace.  

One way for further improving the coverage, the fraction of all the cases of 

interest in a single prim box, would be to modify the objective function used in PRIM. 

In the current version, the objective function aims at maximizing the mean of the 

cases inside a box divided by the change of the cardinality of the cases inside the 

box. Assuming that a binary classification is used to identify cases of interest, this is 
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the same as maximizing the density  ̶ the fraction of cases of interest in the box 

divided by the total number of cases in the box (Groves & Lempert, 2007) ̶  of the 

box. However, it is possible to modify the algorithm to also take into account the 

change in coverage ̶ the fraction of cases of interest in the box divided by the total 

number of cases of interest (Groves & Lempert, 2007) . That is, one could select the 

box that increases the density the most relative to the decrease in coverage. This 

way, the algorithm would search for boxes that have both a relatively high coverage 

and relatively high density. Conceptually, this is closely related to a modification of 

PRIM known as ‘flexible PRIM’, where one can make a tradeoff between mass and 

mean (Chong & Jun, 2008). A related way in which the results could be improved is 

by adding some form of penalty to the objective function based on the number of 

restricted dimensions. Ideally, one would like to identify a small manageable subset 

of the uncertain factors that is responsible for a large number of the undesirable 

dynamics. In the approach outlined by Bryant and Lempert (2010); Lempert et al. 

(2008), this is handled by making the PRIM process interactive. A user can then 

make his or her own tradeoff between increasing density and the number of 

restricted dimensions. This increases the interpretability of the results, but it makes 

reproducibility more difficult. Moreover, it introduces some form of expert judgment 

into the procedure. However, it would be convenient if PRIM were able to be used in 

an automatic mode, where the tradeoffs between density, coverage, and the number 

of restricted dimensions are pre-specified and reproducible.  

Another direction for improving the results is in the time series clustering. We 

used a behavioral metric introduced in (Yücel, 2012). This metric helped in identifying 

plausible dynamics. However, as indicated in (Yücel, 2012), the metric is less suited 

to oscillatory dynamics. Moreover, a more fine grained analysis of the types of 

dynamics could further improve the results. So far, we have lumped all cases of 

sharp changes in price together. A more fine grained approach could be to separate 

sharp price fluctuations that become worse over time from those cases where the 

price fluctuations die out.  

A final direction for improving the results could be through model simplification. 

The two models used in this case are quite large and describe the copper system in 

detail. A simplified model at a higher level of aggregation, which still contains the 

most elemental feedback loops and the supply chain stock flow structures, could 

conceivably produce results very similar to the results reported here. However, by 

producing these results with a simpler model, the number of uncertainties over which 

the exploration is done, and the interpretation of their results, would be reduced 

substantially. Moreover, model simplification could help in explaining and 

communicating better the results to decision-makers and other stakeholders in the 

copper system.  
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5. Conclusions 

Scenarios are a powerful and frequently employed means for communicating and 

characterizing uncertainty in decision making. The literature on scenarios and 

approaches for the development of scenarios is wide and diverse. Various 

challenges and issues are acknowledged in this literature, including how to cope with 

actors with quite diverse worldviews, how to develop scenarios when there is a lack 

of consensus or agreement between stakeholders, and how to best represent the 

richness and multiplicity of plausible futures in a finite and small set of scenarios. 

Scenario discovery is a technique that can be employed to cope with some of these 

challenges. In particular, scenario discovery can be used to identify a small set of 

scenarios of interest given a very large and diverse set of uncertainties. Scenario 

discovery also has the potential to be of use if there is a lack of consensus or a 

disagreement among the actors, thus helping in the development of scenarios in the 

presence of deep uncertainty. Scenario discovery could also be used to identify a 

small set of scenarios that is fully representative, both in terms of behavior and in 

terms of origins in the multi-dimensional uncertainty space, for a large ensemble of 

scenarios or specific subsets of the large ensemble.  

In the literature on scenario discovery, scenarios have been treated as future 

states of the world in which a candidate policy was performing poorly (Bryant & 

Lempert, 2010; Groves & Lempert, 2007; Lempert et al., 2006). The future states of 

the world were generated by a single model with a few uncertain parameters over 

which a parameter sweep was executed. We extended this approach in multiple 

ways. First, we broadened the notion of scenarios in the context of scenario 

discovery to cover any region of the model outcome space that is of interest for some 

reason. Moreover, we were interested in the dynamics over time instead of a future 

state of the world. The introduction of dynamics over time necessitated the need for 

the clustering of time series based on their dynamic behavior pattern, thus allowing 

the use of the same machine learning techniques that had already been used 

successfully in the context of scenario discovery. Second, we applied scenario 

discovery to the case of copper scarcity, where there was deep uncertainty about 

how to model an aspect of the system, resulting in the development of two distinct 

models. Moreover, these two models jointly cover a significantly larger number of 

uncertainties than previously reported applications of scenario discovery (Bryant & 

Lempert, 2010; Groves & Lempert, 2007). 

In the copper case, we used a time series clustering approach to identify 

behaviorally distinct clusters. In light of the identified behaviors, we specified a rule 

for classifying results as being of interest or not. For both models, we identified where 

in the model input space these behaviors of interest originated. We showed that 

undesirable price fluctuations can result from a mismatch of capacity in the copper 

production chain. In case of the bottom up model, this creates problems if there is a 
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shock to the system due to a rapid increase of copper scrap due to recycling. 

Another important contributing factor to undesirable fluctuations of the price is the 

situation where copper demand starts to drop, while the expectation remains that 

copper demand will grow. The case showed how scenario discovery can be used to 

identify a small subset of uncertain factors that is responsible for a particular dynamic 

over the time period of interest. However, there is room for improvement of the 

results. In particular, the approach for identifying the combinations of uncertainties 

responsible for a particular dynamic can be improved, for example by fine tuning it in 

such a way that it searches for a small set of uncertainties that have both a high 

coverage and high density. 
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4 The geopolitical impact of 

the shale revolution 
Many societal challenges simultaneously take place at different geographical levels. 

For example, problems linked to the availability of natural resources take place on 

global markets, in user countries, and in producer countries. This makes it hard to 

develop a single model capturing all relevant aspects of the problem at hand. If 

different models are made to accommodate these different scopes, it becomes 

necessary to transfer run information – based on the shared problem – between 

models.  

This paper addresses two methodological issues, which originate in the fact that the 

problem addressed in this paper plays on two different geographic levels: the global 

energy market and national economies. The first issue is how to change the model 

scope when dealing with the different geographic levels. We addressed this by 

making use of two models that were used in series, rather than the parallel multi-

model use introduced in the copper cases. Serial multi-model use combined with 

exploratory modelling is still very little used, and as such this case is a good example 

of its use. The second issue is the selection of scenarios from the global model to 

feed into the national models. Scenario Discovery was impractical, as we were 

looking for representative examples of behaviour patterns over time and not primarily 

spaces of the input space which explained those behaviours. In this case, we 

approached the scenario selection by exploring the edges of the output space 

generated by the global model. In practice, this meant that we looked at the oil prices 

in situations with the highest shares of particular primary energy types in the energy 

mix, combined with a number of runs which showed highest oil price volatility. 

When communicating the findings to the stakeholder group supervising the research 

process, they struggled with evaluating the model results. While the model results 

showed an almost unavoidable dip in oil prices due to the shale revolution, many 

experts and stakeholders believed during presentations of this research in 2013 and 

2014, that declining oil prices were not a plausible future. As reality corroborated our 

findings after July 2014 with a strong decline in oil price levels, this case is a good 

illustration of the added value of EMA in finding plausible behaviours not or hardly 

considered by domain experts. 

In the synthesis, the choices made here are discussed with regard to the impact of 

EMA on model development, the impact of complexity of models on Scenario 

Discovery, and the costs and benefits of exploratory modelling. 
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 We quantitatively explore geopolitical consequences of the shale gas 

revolution 

 We use a multi-model approach to generate and use energy price scenarios 

 Simulations show that current low oil prices could be part of a hog cycle 

 The shale gas boom was an early warning for the drop in oil prices 

 Low prices due to shale gas can reduce internal stability in rentier states 

Abstract 

While the shale gas revolution was largely a US’ affair, it affects the global energy 

system. In this paper, we look at the effects of this spectacular increase in natural 

gas, and oil, extraction capacity can have on the mix of primary energy sources, on 

energy prices, and through that on internal political stability of rentier states. We use 

two exploratory simulation models investigating the consequences of the combination 

of both complexity and uncertainty in relation to the global energy system and state 

stability. Our simulations show that shale gas developments could be seen as part of 

a long term hog-cycle, with a short term drop in oil prices if unconventional supply 

substitutes demand for oil. These lower oil prices may lead to instability in rentier 

states neighbouring the EU, especially when dependence on oil and gas income is 

high, youth bulges are present, or buffers like sovereign wealth funds are too limited 

to bridge the negative economic effects of temporary low oil prices. 
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1. Introduction 

In recent years, a spectacular rise in natural gas extraction capacity from 

unconventional resources has dramatically changed the US’ energy landscape, 

turning the country into a natural gas exporter. This development is often referred to 

as the ‘shale gas revolution’ and was made possible by the process of hydraulic 

fracturing, or ‘fracking’. As a consequence of the shale gas revolution, US’ gas prices 

have dropped significantly, giving a competitive advantage to the US’ industry. The 

spectacular rise in extraction of shale oil resources only adds to that advantage. 

The shale gas revolution was thus far largely an US’ affair, as outside of 

Northern America hardly any commercial exploitation of shale gas resources took 

place. This can be primarily explained by institutional differences between the US 

and other countries (Kuuskraa, Stevens, & Moodhe, 2013; Tian, Wang, Krupnick, & 

Liu, 2014, p. 11), as significant technically recoverable shale resources can be found 

outside of North America (Kuuskraa et al., 2013). Notwithstanding the fact that the 

shale revolution has not spread across the world (Melikoglu, 2014), the large-scale 

extraction of shale deposits has affected the global energy system through LNG 

trading, which is still a minor part of global natural gas trade (BP, 2015), and through 

substitution of other, easier transportable primary energy sources. The impact of the 

shale revolution on global energy markets is the starting point of this research. 

Research regarding the impact of the shale revolution mainly focussed on 

direct extraction effects like the effects of shale gas drilling on the environment (e.g., 

Baranzelli, Vandecasteele, Ribeiro Barranco, & Mari i Rivero, 2015; Jenner & 

Lamadrid, 2013; Kargbo, Wilhelm, & Campbell, 2010; Meng & Ashby, 2014; 

Olmstead, Muehlenbachs, Shih, Chu, & Krupnick, 2013), the public support for shale 

gas and fracking (e.g., Boudet et al., 2014; Jaspal, Nerlich, & Lemańcyzk, 2014; 

Perry, 2012), and the impact on the local economy (e.g., Asche, Oglend, & 

Osmundsen, 2012; Kinnaman, 2011; J. Lee, 2015). In some research, the economic 

impact was related to energy security (e.g., Jaspal et al., 2014; Richter & Holz, 2015; 

Victor, Nichols, & Balash, 2014). Others studied the impact of shale gas exploration 

on energy prices, mainly for oil and gas (e.g., Asche et al., 2012; De Silva, Simons, & 

Stevens, 2016). Asche et al. (2012) acknowledged that it would be interesting to look 

at the interplay with coal, another primary energy source, which we do in this paper. 

However, to the best of our knowledge, more indirect consequences of the shale 

revolution have not been investigated. 

One of these potential indirect effects is the impact of the shale revolution on 

intra-state stability of major oil and gas exporting countries, also referred to as ‘rentier 

states’ (Mahdavy, 1970), through changing oil and gas prices. Price fluctuations may 

have consequences for the financial-economic stability of rentier states due to the 

dependence on resource rents (World Bank, 2011) for supporting the economy and 

government spending. That is, fluctuations in resource prices may influence the 
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development of the local economies in oil and gas exporting countries. In turn, 

worsening economic conditions are known to have an impact on population 

discontent, potentially leading to intra-state instability (Collier & Hoeffler, 2004; Ross, 

2004). Similar indirect effects may occur due to structural changes in the global 

energy system induced by climate mitigation policies. However, these effects are 

complex and uncertain.  

Both the global energy system and the relation between resource income and 

instability are highly complex and deeply uncertain. Feedback effects add to dynamic 

complexity (Sterman, 2000). An example of a feedback effect in the global energy 

system is the interaction between supply and demand which results in resource price 

dynamics. On a country scale, decreasing resource prices may lead to increasing 

unemployment and a reduction of purchasing power, which may cause frustration 

among the population and reduce internal stability. This feedback loop is closed if 

state instability in turn affects resource extraction. Both the global system and 

national systems are also characterized by deep uncertainty (Lempert et al., 2003). 

Situations are deeply uncertain if they are characterized by important presently 

irreducible uncertainties related to how issues could or should be modelled, 

likelihoods of inputs and outcomes, and the desirability of outcomes. To give 

examples: on a global scale, the strength of the feedback effect between prices and 

demand is deeply uncertain, while on a national scale, the influence of population 

discontent on a country’s polity is also deeply uncertain. 

Complexity and uncertainty impede mental simulation of both the global 

energy system and state stability (Sterman, 1994). Quantitative simulation may 

enable one to deal with these issues though. Since the 1950s, modelling and 

simulation approaches have been developed and used to support policy-makers and 

decision-makers addressing complex issues. Since the early 1990s (Bankes, 1993), 

model-based methodologies and techniques have been developed to simulate sets 

of models under deep uncertainty. 

In this paper, we use simulation models to explore the indirect consequences 

of the shale revolution on the global energy system and rentier state stability. For this 

purpose, we apply a Systems-of-Systems (DeLaurentis & Callaway, 2004) multi-

model approach for dealing with complexity and uncertainty. We use a global energy-

mix model for supply, demand, and trade of, and substitution between six primary 

energy sources to generate oil and gas price scenarios. In these scenarios, the focus 

lies on price scenarios that fall outside the scope of more traditional forecasts of 

energy prices using a base-case (e.g., IEA, 2012). These scenarios are subsequently 

used as input for a country-stability model, focussing on economic discontent (i.e., 

'greed' in Collier & Hoeffler, 2004). As such, the price scenarios are used for ‘stress 

testing’ rentier state country stability, more specific those in the vicinity of the 

European Union (EU). These countries are Algeria, Azerbaijan, Kazakhstan, Qatar, 

Russia, and Saudi Arabia. 
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The setup of this paper is as follows. In section 2, we explain the use of 

Exploratory Modelling and System Dynamics in this study, the model structures of 

the energy-mix model and the country-stability model, and the metrics for choosing 

14 price scenarios. Based on these scenarios, we present the results on country 

stability by taking Algeria and Russia as examples in section 3. Finally, we discuss 

the results of this approach in section 4, and draw conclusions regarding the 

geopolitical consequences of the shale gas revolution in section 5. 

2. Methods 

In this research, we use an exploratory modelling scenario approach. First, we 

simulate and investigate the consequences of the shale gas revolution to generate 

global oil and regional gas price scenarios. Second, a subset of these price scenarios 

is used to stress-test intra-stability of rentier states in the vicinity of Europe. In this 

section, we introduce this model-based scenario approach (section 2.1), as well as 

the modelling and simulation method (section 2.2), and the two models used in this 

research (section 2.3). At the end of this section we explain the research setup in 

more detail (section 2.4). 

2.1. Exploratory Modelling 

Exploratory Modelling is a research methodology that uses computational 

experiments to analyse deeply uncertain issues (Bankes, 1993; Bankes, Walker, & 

Kwakkel, 2013; Kwakkel & Pruyt, 2013; Lempert et al., 2003). It consists of a set of 

the development of plausible quantitative simulation models and associated 

uncertainties, the process of exploiting the information contained in such a set 

through a large number of computational experiments, the analysis of the results of 

these experiments, and the testing of promising policies for policy robustness 

(Bankes, 1993). 

In exploratory modelling, models are used to generate a wide variety of what-if 

scenarios, which is an important use case of simulation models (Oreskes, Shrader-

Frechette, & Belitz, 1994). These what-if scenarios are usually generated such that 

they comprehensively cover presently irreducible uncertainties. Exploratory 

modelling, therefore, does not focus on generating a base case, but instead on 

generating a bandwidth of plausible futures, including the circumstances (i.e., ranges 

of specific uncertainties) for which these occur. 

2.2. System Dynamics 

The simulation models used in this research are System Dynamics simulation 

models. System Dynamics (SD) is a modelling and simulation method to describe, 

model, simulate, and analyse dynamically complex issues or systems (Forrester, 

1961; Pruyt, 2013; Sterman, 2000). The SD approach was first proposed and 

developed by Jay W. Forrester in the late 1950s. SD aims to provide a holistic and 
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systemic view of an issue under study and its interconnections to its environment, 

and simulate and analyse the resulting system dynamics over time. More specifically, 

SD is a method for modelling and simulating dynamically complex systems or issues 

characterized by feedback and accumulation effects (Sterman, 2000). 

Together, feedback and accumulation effects generate dynamically complex 

behaviour both inside SD models, and, so it is assumed by System Dynamicists, in 

real systems (Pruyt, 2015). Using SD models can, therefore, be useful for dealing 

with complex systems characterized by important feedback and accumulation effects. 

SD modelling is mostly used to model core system structures or core structures 

underlying issues, to simulate their resulting behaviour, and to study the link between 

the underlying causal structure of issues and models and the resulting behaviour. SD 

models, which are mostly relatively small and manageable, can be used for 

experimental or exploratory purposes too.  

There are many SD models regarding energy systems. Well-known examples 

are the Limits to Growth studies (Meadows et al., 1972), studies regarding national 

energy transitions (Naill, 1977, 1992; Sterman, 1981), power plant construction and 

electricity generation (A. Ford, 1999), and externalities of energy economics 

(Fiddaman, 1997), but there are also more recent examples (e.g., Chyong Chi, 

Nuttall, & Reiner, 2009; Osorio & van Ackere, 2016). In two cases this included the 

use of SD for exploratory modelling and the design of robust policies (Eker & van 

Daalen, 2015; Hamarat et al., 2013; Hamarat et al., 2014). While Hosseini and 

Shakouri G (2016) used oil price scenarios as input to an SD model, to our 

knowledge there are no SD study beyond our line of research in which energy 

models are used to generate scenarios related to energy price developments. 

There are also SD models regarding social unrest. For example, Wils, Kamiya, 

and Choucri (1998) presented a model to simulate and assess the development of 

internal and external pressure related to resource use. Further, Anderson (2011) 

used an SD model for looking at the effects of counterinsurgency policy in relation to 

public support and other factors. Finally, Pruyt and Kwakkel (2014) simultaneously 

used three SD models to simulate the rise of activism, extremism, and terrorism. In 

none of these models, however, external price scenarios were used for ‘stress 

testing’ state stability. 

2.3. Model descriptions 

In this research, we use two SD models. Scenarios developed with the first model 

provide input for the second model (Fig. 1). We now discuss these models on a high 

level of aggregation (model descriptions are provided in the supplementary material). 

Both models were extensively verified and validated by means of partial model tests, 

unit checks, sessions with stakeholders, and extreme value tests. In order to assess 

the effects of long delays in the system, such as developments in extraction capacity 
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in the energy-mix model or demographic effects in the country-stability model, we 

simulated both models for the time period between 2010 and 2050. 

 

Fig. 1. Research design for this study, containing two SD models. The country-stability model 
is parametrised for six different countries. Model parametrisations also includes other 
uncertainties besides the inputs shown in this figure. 

2.3.1. The energy-mix model 

The energy-mix model is subdivided in 5 sub-models, which are interlinked 

(Fig. 2). We look at the demand development, supply development, prices of the 

different primary energy sources, costs development of the supply, and trade 

between the different regions. We included six primary energy sources (i.e., oil, 

natural gas, coal, nuclear, biofuels, and other renewables), in line with the definitions 

provided by the EIA (2015). The development of demand, supply, and the prices of 

the six energy sources are important given the feedback effects connecting supply 

and demand through prices. The extraction costs sub-model is important for 

simulating the effects of depletion on extraction costs and the development of the 

costs of renewables. Finally, as a greater availability of natural gas may lead to a 

larger share of LNG entering global markets, it is important to consider trade between 

the different regions of the tradable resources, in this case gas (LNG), oil, coal, and 

biofuels. Trade of the two remaining primary energy sources (i.e., nuclear and other 

renewables) is thus not considered here. 

In the model, 4 different regions are defined: Northern America (i.e., US and 

Canada), Europe and adjacent regions (i.e., Europe, non-European CIS, Middle 

East, and North Africa), the Far East (i.e., China, India, Japan, and South Korea), 

and the rest of the world. The first two regions are grouped bearing the availability of 

overland gas pipelines in mind. The Far East, which is presently a major user of LNG 

(BP, 2015), is included as a separate region given the fact that pipeline infrastructure 

to other regions is very limited. The effects of political instability on energy supply is 

not considered in the energy-mix model. Furthermore, policy measures aimed at 

changing the composition of the energy mix are considered only as a driver for the 

development of renewable energy capacity. 
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Fig. 2. Sub-system diagram (Morecroft, 1982; Sterman, 2000, pp. 99-102) of the energy-mix 
model. Sub-models are displayed in a rounded box. Important initial conditions are shown in 
italics. 

2.3.2. Country-stability model 

The country-stability model also consists of 5 interlinked sub-models (Fig. 3). These 

sub-models group variables related to the development of resources, the economy, 

the population, national institutions, and instability. In the resources sub-model of this 

model, the development of the extraction of oil and gas is a function of endogenous 

cost developments and exogenous energy price scenarios generated with the 

energy-mix model. The economy is influenced by resource income (i.e., resource 

prices times resource extraction capacities), an exogenous economic growth factor 

constant over the run time, and endogenous negative economic effects of political 

instability. The economic sub-model also contains modules for the available 

workforce and work, and for purchasing power. When the amount of work available is 

lower than the workforce, the rest of the workforce is unemployed. In this way, male 

youth unemployment can be calculated, which is a well-known factor causing 

frustration and internal instability (Cincotta, Engelman, & Anastasion, 2003; Urdal, 

2006).  
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Fig. 3. Sub-system diagram of the country-stability model. Sub-models are displayed in a 
rounded box. External trends and important initial conditions are shown in italics. 

The population sub-model contains an endogenous population development model 

within which fertility and mortality are a function of GDP per capita, and the 

population aging chain is sub-divided in 5-year cohorts. Next to the population 

composition, we calculate the education level of the population both for the average 

population and the young population. We assume that rising education levels 

increase the democratic expectations of the population, although we treat the exact 

relation between education and polity expectations as deeply uncertain.  

In the institutions sub-model, we take the government type into account following the 

Polity IV scoring system (Marshall, Gurr, & Jaggers, 2014). In the Polity IV score, 

countries’ polities are measured between -10 (i.e., fully autocratic) and +10 (i.e., fully 

democratic). Statistical analysis shows that autocracies are five times as stable as 

countries with a polity score of 0, and that democracies are 10 times as stable as 

countries with a polity score of 0 (i.e., partial democracies or anocracies) (Marshall et 

al., 2014). In our model, the government type follows the expectations of the 

population relative to the average educational level when internal tension is low, and 

becomes more autocratic when tension is high. The institutions sub-model further 

captures government legitimacy as function of absence of violence, and government 
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financial reserves and expenditure. If financial expenditure is too high, and 

government debt becomes untenable, existing food and fuel subsidies are cut. On 

the other hand, if there is abundant income, sovereign wealth funds (Sovereign 

Wealth Fund Institute, 2013) may be developed, which increase the resilience of the 

nation by acting as a buffer for temporarily lower resource income. 

Finally, the instability sub-model contains an ageing chain to capture the level of 

frustration of citizens (i.e., those who support the government , non-activist 

opposition, activist opposition, and extremist opposition) in line with other SD models 

on instability and terrorism (Anderson, 2011; Pruyt & Kwakkel, 2014; Sterman, 2000). 

Origins of frustration are, in this model, economic in nature (e.g., unemployment, 

especially male youth unemployment, and purchasing power). This corresponds with 

the ‘greed’ aspect of state instability (Collier & Hoeffler, 2004). The size of the 

security forces works as balancing factor for civil frustration and instability. The ratio 

between the strength of the security forces and the extremist cohort of the population 

is used as proxy for the level of political unrest. 

2.4. Research setup 

First, we generated 1000 runs with the energy-mix model. The model was integrated 

with the Runge-Kutta 4 numerical integration method with automatically adjusted step 

size. Sampling of the 118 uncertainties happened with Latin Hypercube (LH) 

sampling, assuring that each run covers a different part of the total uncertainty space. 

While 1000 runs may seem rather limited given the large number of uncertainties, it 

proved sufficient for the goal of this research, which was to generate a limited 

number of sufficiently different energy price scenarios, and not to exhaustively 

explore the complete behavioural space of the energy-mix model. 

Table 1 

Metrics for selecting oil and gas price scenarios from the energy-mix model runs. 

Scenario number Scenario metric 

1 Highest coal share 
2 Highest gas share 
3 Highest other renewables share 
4 Highest oil share 
5 Highest biofuels share 
6 Volatile scenario 
7 Volatile scenario 
8 Volatile scenario 

We selected eight scenarios representing plausible, yet extreme, situations in terms 

of the energy mix from the 1000 runs. Each scenario represents an internally 

consistent, plausible future for how energy mix, absolute and relative regional 

demand shares, and energy prices may evolve between 2010 and 2050. The 

selection criteria for these scenarios (Table ) were chosen to maximise the bandwidth 

of potential significant demand fluctuations, leading to a relatively broad selection of 
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price scenarios. To extend this bandwidth further, we also included the 3 scenarios 

with the most volatile oil price dynamics. 

Second, 100 separate cases created with the country-stability model with the same 

integration method as used for the energy-mix model. These cases were 

parametrised using LH sampling for 60 general and 13 country specific uncertainties. 

A selection of important country specific uncertainties can be found in Table 2. Again, 

the number of runs may seem limited given the number of uncertainties. It proved 

sufficient, however, for the goal of this part of the research, which was to look at the 

impact of different energy price scenarios across potential development paths of 

rentier states. Finally, for each of the 100 cases, we tested the effects of the oil and 

gas prices represented by the eight scenarios, together with two dynamic price 

scenarios representing a moderately decreasing and increasing oil and gas price, 

and a reference scenario representing a constant oil and gas price. Therefore, in total 

1100 runs were performed per country. 

Table 2 

Data for the year 2010 for resource turn-over, government type, youth unemployment, and 
the size of the sovereign wealth funds for the seven rentier states studied. These data 
functioned as initial conditions in the country-stability model. 

Country Oil and gas 
income  
(% of GDP)

a
 

Polity IV score
b 

Unemployment, youth 
male (% of male labor 
force ages 15-24)

c 

Sovereign wealth 
fund (% of GDP)

d 

Algeria 45 2 19.1 47 
Azerbaijan 63 -7 17.0 67 
Kazakhstan 37 -6 4.8 48 
Qatar 40 -10 11.0 90 
Russia 29 4 16.9 11 
Saudi Arabia 67 -10 23.6 160 
a
 Author’s own calculations: defined here as (resource prices [$/bbtu] x resource extraction capacity 

[bbtu/year])/GDP [$/year] 
b
 Marshall, Gurr, and Jaggers (2016) 

c
 World Bank (2016) 

d
 Sovereign Wealth Fund Institute (2013) 

The impact of oil and gas prices on country stability is largely a one way process. 

However, as instability impacts the development of GDP and resource extraction 

capacity, this effect is reinforcing. Some other, minor feedback effects exist between 

stability and economy. Examples are the effects of population size on the fertility and 

mortality levels, which may cause a deadlock situation with high population growth 

and too little economic development. Another example is the effect of immigration on 

the workforce, and the effect of the available workforce on immigration. A last 

example occurs when the regime is susceptible to the discrepancy between on the 

one hand the democratic expectations of the population, and on the other hand the 

present polity. However, instability may again counteract this development if the 

government reacts in a more autocratic way to a crisis in the country. 

Resource prices may influence countries’ economies in many, potentially 

counteracting, ways. For example, price increases have a positive effect on 
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government finances, and create more employment, but they have an adverse effect 

on purchasing power of the population. It depends on the specific conditions in a 

country whether the positive or the negative effects will be dominant. 

3. Results 

In this section, we discuss the results generated with both the models. In section 3.1, 

we analyse the oil price dynamics generated with the energy-mix models, followed by 

the selection of the eight oil and gas price scenarios. In section 3.2, we analyse the 

effects of these scenarios on rentier state stability as simulated with the country-

stability model. 

3.1. Effects on global energy markets 

The oil price dynamics (Fig. 4) generated with the energy-mix model show an initial 

dip for all runs generated with energy-mix model. Analysis of this dip reveals a clear 

connection to the overcapacity due to the US’ shale gas revolution. While the depth 

of the dip differs greatly between runs, it shows that, based on the assumptions 

underpinning the model, it is impossible to not have a temporary decrease in oil 

prices. The more direct causes of the dip lie in substitution effects. The abundant 

supply of natural gas finds its way into the global energy market by substituting other 

primary energy sources. For the energy sources that allow for accumulation of over-

production, such as in the case of oil, there can be a more significant long-term price 

effect than with natural gas alone. 

Besides the initial dip, however, the dynamics show a wide variety of behaviours. 

Roughly half the runs primarily show oscillatory volatile behaviour. Oscillatory volatile 

behaviour is measured here by the number of times each time series crosses its own 

mean value combined with the length of the line. Using this measure, runs that are 

primarily characterized by oscillatory volatile behaviour and runs with long-term 

increasing oil prices are classified differently, even if the runs with long-term 

increasing oil prices are characterized by oscillatory behaviours too. Runs that are 

primarily characterized by this behaviour represent those situations in which the oil 

price periodically oscillates between relatively low oil prices, roughly half or even less 

of the 2010 price level and high levels like the 2010 level. 
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Fig. 4. 1000 runs for the energy-mix model (a), the 500 runs with most oscillatory volatile 
behaviour (b), and the 500 runs with least oscillatory volatile behaviour (c). 

The volatile runs resemble to hog cycles (Hanau, 1928). The periods between the 

ups and downs are thus related to the delay time for new extraction capacity 

development, which is found to be generally between eight and fifteen years 

(MinesQC, 2016). This is consistent with the observed periodicity in the volatile runs. 

Similar dynamics are not found for the gas price, as massive accumulation of 

overproduction of gas is assumed to be too expensive. Consequentially, gas prices 

show far less long-term volatility. Similar dynamics are found for many openly traded 

resources, but it could be argued that due to OPEC’s market power in last decades, 

hog cycles were less of a problem in the oil market. 

The runs with the least oscillatory volatile behaviour mostly show oil prices staying at 

a price level similar to the 2010 level or rising prices. The rising prices are caused 
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mainly by a combination of continuously rising demand and rising resource extraction 

costs. Finally, for a last set of runs, the shale gas revolution leads to permanently 

lower price levels. This behaviour occurs when decoupling – of energy demand and 

the size of the economy – outgrows economic growth. 

We selected eight runs as price scenarios for the second step of the analysis by 

using the metrics listed in Table . The result of this step for both the oil and the gas 

price is visible in Fig. 5. By choosing both extreme energy mix scenarios and volatile 

scenarios, we covered the dynamic behaviour space of all runs relatively well. 

Finally, the figure shows that the oil price is more volatile than the gas price in all 

scenarios. 

  

Fig. 5. Selected oil (a) and gas (b) price scenarios. 

3.2. Effects on rentier states 

Fig. 6 shows for how many of the 100 cases per country the state stability improved 

for all time steps (i.e., desirable) or on average (i.e., mostly desirable), or deteriorated 

for all time steps (i.e., undesirable) or on average (i.e., mostly undesirable) compared 

to a constant oil and gas price. 

All six countries in the analysis become more stable when oil prices increase over 

time. The importance of the oil price can be explained by the fact that only Qatar 

receives an equal amount of income from gas extraction, while having the 

opportunity to expand that share of resource income. All other countries earn 

considerably more resource income from oil. All countries experience more internal 

instability when oil prices decrease over time. 
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Fig. 6. Effects of the price scenarios on state stability of Algeria (a) and Russia (b). 

Especially Algeria and Russia are vulnerable to the effects of the shale gas 

revolution, which causes in any case at least a periodic downturn in oil prices. In both 

countries, the partial democracy is less stable than the more autocratic regimes of 

Azerbaijan, Kazakhstan, Qatar, and Saudi Arabia. Further, the causes for 

vulnerability of Russia and Algeria are quite different. In the case of Algeria, it is 

especially male youth unemployment, combined with a very young population, which 

makes the country vulnerable. Russia, on the other hand, has a more aged 

population, but has – compared to the size of the economy – a relatively modest 

sovereign wealth fund. Russia thus lacks the options to survive one or more 

prolonged periods of low oil prices. 
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Although, the other countries analysed in this study are less vulnerable due to either 

limited youth unemployment (e.g., Kazakhstan and Qatar), or the more significant 

size of their sovereign wealth fund (e.g., Azerbaijan, Qatar, and Saudi Arabia), they 

are certainly not immune to the effects of a prolonged downturn in oil prices. The 

austerity measures in Saudi Arabia (Kerr, 2015), the downgrade of Azerbaijan’s 

credit rating (Agayev, 2016), and the massive currency devaluation in Kazakhstan 

(Farchy, 2015) are illustrative of the difficulties these countries already experience. 

However, their overall resilience may prove to be higher than that of Algeria and 

Russia. 

4. Discussion 

This research was originally performed in 2013. Earlier versions of the work reported 

here were presented at the Dutch Ministry of Foreign affairs in the fall of 2013, and at 

the NATO headquarters in the spring of 2014. The attendees of these presentations 

found the idea of potentially decreasing oil prices hard to accept, and rather believed 

that they would continue to rise. Recent price developments, however, corroborate 

the results we presented in this paper. The belief that oil prices would continue to rise 

are consistent with the fixed-stock paradigm regarding resource availability, which is 

in contrast to the opportunity costs paradigm underlying our energy-mix model 

(Tilton, 1996). As opposing paradigms can be seen as a form of deep uncertainty, it 

fits our line of research to not oppose ideas like these, but rather to include 

alternative perspectives and look at our findings as plausible futures, which may 

inform the development of more robust policies. 

The scenarios we generated only provide a limited view on the future of energy 

prices, as the simulation models used in this research are necessarily simplifications 

of reality. One example of such a limitation is the fact that we disregarded the 

existence of strategic reserves in our model. When these are taken into account, the 

price dynamics, especially the initial shale induced dip, may be delayed over time. 

This could explain why the real decrease in oil prices only happened from the second 

half of 2014 on, instead of immediately as in our simulation results. 

A further limitation of our research can be found in the fact that we did only very 

rudimentarily take climate and energy policies into account. Exploring our results, we 

found that decoupling of economic growth and energy demand has, ceteris paribus, a 

profound negative effect on energy price levels. Again, especially oil prices are 

vulnerable to these developments. As decoupling due to increased energy efficiency 

is arguably at the core of climate mitigation policies, it is to be expected that these 

policies will, similar to the shale-gas revolution, have a profound effect on long-term 

state stability. As emission targets may also provide a structural change in the global 

energy system, this may be a far longer-lasting effect than the surge in previously 

unconventional energy sources. Therefore, countries less vulnerable to periodically 

lower oil prices due to well-developed sovereign wealth funds, but highly dependent 
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on income from oil and gas, may be especially vulnerable to climate mitigation policy 

developments. Saudi Arabia is a good example of such a rentier state. These 

countries should urgently start up a transition process of economic reconversion. 

Further research with a similar research methodology could increase knowledge 

about secondary effects similar to those of climate and energy policies. 

The country-stability model is, just like the global energy-mix model, a simplification 

of reality. While much research exists that argues that economic factors as discussed 

in this paper are relevant and important for understanding the onset of internal 

instability, there are other factors, not considered here, which may either mitigate or 

reinforce this effect. An example of a mitigation factor may be nationalism, potentially 

induced by interstate war. An example of  reinforcing factors may be grievance 

related issues like ethnic diversity, combined with a government that only represents 

a part of the ethnic groups in a country. 

5. Conclusions and policy implications 

In this paper we investigated potential indirect effect of the US’ shale revolution on 

state stability of rentier states. To this purpose, we built and used two SD simulation 

models, one for the global energy mix consisting of six primary energy sources, and 

one to assess the impact of oil and gas prices on internal stability. The SD models 

were used to explore the consequences of uncertainties combined with the 

complexity and non-linear behaviour characterising both energy markets and state 

stability. 

We found that the shale revolution has a periodic negative effect on oil prices in any 

simulated case. These lower prices can be part of a hog cycle in the energy market, 

where periods with relatively low oil prices alternate with periods with relatively high 

oil prices. An example of such a high price period is the pre-2014 period, while 

current price levels are an example of a period with low prices. 

As the surge in shale extraction capacity depended on the period with high prices, 

and the high price levels were incompatible with the amount of new capacity that 

became available, the shale gas revolution can be explained as an early warning 

indicator and partial cause of the 2014-2015 drop in energy prices. This is in itself an 

indirect effect, as the volatility of oil prices can be explained by a systematic 

difference between oil trade and gas trade: the surplus of oil is accumulated, while a 

surplus of natural gas supply is mostly flared. The urge for natural gas suppliers to 

partly substitute oil demand for their surplus is thus very high. 

Low oil prices caused by the shale revolution can have a profound impact on state 

stability. This effect is caused by the negative economic effects of reduced price 

levels, which in turn affect male youth unemployment levels and purchasing power. 

These are underlying causes for population discontent and political instability. Buffers 
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like sovereign wealth funds and immigration workers increase the resilience of 

countries to these developments. 

We found that between the six countries investigated in our research, especially 

Russia and Algeria are vulnerable to lower oil price levels due to the shale gas boom. 

The partial democratic (‘anocratic’) polity of these countries increases their 

vulnerability. Not all causes are shared by these countries, however, as for Algeria 

the high male youth unemployment and the youth bulge are detrimental, while for 

Russia the limited size of the sovereign wealth funds as part of the GDP is 

problematic to politically survive periodic low oil prices. The other countries were 

found to be less vulnerable to the lower price effects, mostly as their buffer capacity 

is larger and their polity more stable (Azerbaijan, Kazakhstan, Qatar, and Saudi 

Arabia). 

The policy implications of these conclusions pertain mostly to the security and 

international relations domains. We believe, however, that indirect consequences of 

energy policies should be taken into account in the design of these energy policies. 

The increased turmoil around Europe’s borders is already a difficult policy problem. 

While this has no direct link to energy policies in itself, the plausibility of energy price 

related unrest does mean that investment in measures for dealing with these 

circumstances, both militarily and non-militarily, should be taken sooner rather than 

later. 
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5 Societal Ageing in the 

Netherlands 
The paper on societal ageing in the Netherlands approaches two different 

methodological issues. The first issue regards how to deal with divergence in ideas 

about the desirability of policies. The second issue regards how to choose a model’s 

scope, where uncertainty may lead to a broader scope than usual, or can lead to the 

use of external driving scenarios to test the system’s response (this is considered to 

be a bad modelling practice by some researchers in the System Dynamics field). 

Different actors can have different views on the desirability of policies. For example, 

in the case of societal ageing in the Netherlands, part of the population finds 

increasing the formal retirement age highly undesirable, while other parts of the 

population believe that this exact same policy is an absolute necessity. This 

uncertainty on the desirability of policies, or even on the nature of the actual problem, 

is characteristic of wicked problems or societal messes. In these situations, different 

stakeholders disagree on whether policies themselves, and/or policy effects are 

desirable or not. It may result in situations where no joint view on the problem and 

solution can be developed. This is relevant, as in traditional (consolidative) modelling 

it is generally stated that one should model the problem and not the system, which 

entails that only those system elements that are relevant for the problem should be 

modelled. If the problem is uncertain itself, this becomes problematic, and a broader 

approach could be desired accommodating a variety of problem perceptions.  

In this paper, we used a model that has a broader scope than most models on 

societal ageing, yet is exogenously driven by scenarios, which is uncommon in SD. 

The model provides a good example of how uncertainty may require a broader 

boundary selection in the problem articulation phase in order to test the effects of 

relevant external evolutions like changing labour productivity and female fertility. In 

most other (SD) research on societal ageing, the scope is limited to the population 

model. In this case however, we assessed the impact of societal ageing on the 

economy, curative and long-term care, public spending, and public agreement with 

policies. Further, it is a good example of the use of exogenous input scenarios for 

generating well-interpretable Scenario Discovery results. In conventional SD 

modelling, the focus lies on endogenously explaining problematic behaviour, but in 

this case it turned out to be very useful to see how different plausible trends in 

combination result in unsustainable public spending. Finally, this paper provides a 

nice example of the application of RDM to a grand challenge. 
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In the synthesis of this dissertation, I will reflect on the methodological issues brought 

forward by this paper with regard to problem articulation, evaluation of model runs, 

the classification of behaviours, and the reception of the methodology. 

This paper was originally published as: 

Auping, W. L., Pruyt, E., & Kwakkel, J. H. (2015). Societal Ageing in the Netherlands: 

A Robust System Dynamics Approach. Systems Research and Behavioral Science, 

32(4), 485-501. doi:10.1002/sres.2340 
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Abstract 

Societal ageing is a messy problem with diverging stakeholder views regarding the 

desirability of policy measures. In this paper, we use a System Dynamics model 

representing the Dutch demographic and social security system to investigate if and 

when Dutch governmental retirement and health care contributions become 

unaffordable. Following the Robust Decision Making approach, we then design and 

test policies for reducing the societal costs of ageing, taking into account societal 

support for these policies. We find that unaffordable societal ageing costs are mainly 

caused by declining productivity levels and increasing life expectancy: permanent 

increases in productivity are required to sustain the current social security level. We 

also find that the recent Dutch retirement age policy is insufficiently robust and lacks 

public support. Focusing on increasing the actual instead of the formal retirement age 

may generate more public support. 

 

Keywords: Societal ageing, Fiscal sustainability, Messy problems, System 

Dynamics, Robust Decision Making  

1. Introduction 

In most developed societies, for example Japan and Western European countries 

like the Netherlands, the percentage of older people in society and the life 

expectancy of older people are increasing simultaneously. This ‘double societal 

ageing’ process is expected to put significant pressure on healthcare budgets, 

resulting in rising pension costs, and decreasing fiscal sustainability (European 

Commission, 2012). 

Societal ageing related problems are hard to solve for they are wicked (Rittel & 

Webber, 1973) or messy (Ackoff, 1974). A common characteristic of messy problems 

is their complexity. In case of societal ageing, this complexity is caused by diverging 

stakeholders views, uncertain future developments such as the autonomous 



 

92 

development of life expectancy, and systemic complexity arising from the interplay of 

feedback mechanisms, accumulations, and delays within the system. Stakeholder 

perspectives on how to address the fiscal sustainability of double societal ageing 

diverge: many governments around the world seem to prefer countering some of 

these effects by raising the retirement age, while many employees perceive this 

solution as highly undesirable. As a result, attempts at addressing societal ageing 

related problems have stalled in many democratic societies. An example of a 

feedback mechanism is the positive effect of effective health care on average life 

expectancy, which results in higher health care costs. The existence of feedback 

effects and delays make System Dynamics (SD) (Forrester, 1961) a suitable tool for 

aiding decision making related to societal ageing. However, more than just SD may 

be needed. 

In the case of messy problems, aspects of the understanding of the system 

may be contested. Such issues are characterised by ‘deep uncertainty’. Deep 

uncertainty is defined as ‘the condition in which analysts do not know or the parties to 

a decision cannot agree upon (1) the appropriate models to describe interactions 

among a system’s variables, (2) the probability distributions to represent uncertainty 

about key parameters in the models, or (3) how to value the desirability of alternative 

outcomes’ (Lempert et al., 2003, pp. 3, 4). There is, therefore, a need for approaches 

that can help in handling deep uncertainty.  

When confronted with deep uncertainty, exploring the consequences of 

different assumptions about the system and the desirability of outcomes could be an 

option. Robust Decision Making (RDM) (Lempert et al., 2006), is a model-based 

policy analysis approach that builds on Exploratory Modelling (Bankes, 1993), and 

adapts it to support the design of policies that perform satisfactorily across the space 

of possible assumptions. RDM has been applied to contested strategic planning 

problems in a variety of fields, such as climate change (e.g., Groves, 2006; Lempert, 

Schlesinger, & Bankes, 1996; Popper et al., 2009). RDM has not yet been applied to 

fiscal sustainability issues related to demographic ageing outside our line of 

research. 

The fiscal sustainability of societal ageing has been studied extensively. Many 

of these studies acknowledge the inherent uncertainty of demographic forecasts 

(Keilman, 2008) and incorporate extensive sensitivity analyses (e.g., Alho, 2014; 

CBO, 2005; Keilman, 2005; Lassila, Valkonen, & Alho, 2014; R. Lee & Tuljapurkar, 

1998; Meyerson & Sabelhaus, 2000). Besides demographic uncertainty, both fiscal 

conditions and fiscal impacts are acknowledged to be fundamentally uncertain (e.g., 

see European Commission, 2012, pp. 20, 27-34, 53-60). Although these studies 

have not overlooked the importance of nonlinear relations, SD modelling offers 

additional advantages. First, it allows for incorporating feedback effects. Second, in 

combination with an RDM approach, it provides a straightforward way of testing 

policy robustness across a multitude of plausible futures. Finally, RDM allows for 
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considering public support for potential policies aimed at increasing fiscal 

sustainability. 

According to Forrester (2007), big issues like the future of social security and 

health care systems are domains where system dynamicists can have a profound 

impact on government. However, Forrester expressed his disappointment about the 

limited number of SD studies regarding such ‘big issues’. Although extensive 

demographic research (e.g., see Sterman, 2000, pp. 474-485) and aging research 

has been done in the SD field, these studies either focused on the effects of 

demographic change on care (Brailsford et al., 2012; J. P. Thompson, Riley, 

Eberlein, & Matchar, 2012), or on how to best model aging populations (Eberlein & 

Thompson, 2013; Sutrisno & Handel, 2012). To the best of our knowledge, no SD 

applications beyond our line of research have looked explicitly at the interplay 

between demographic developments and fiscal sustainability of health care and 

pension systems. In this line of research, we take a broad perspective on 

demographic change and societal ageing to assess how government contributions to 

retirement funding and health care would develop without policy change. 

In this paper, we look for robust policy options that simultaneously address the 

impact of societal ageing on collective spending, and are broadly acceptable to 

different strata of the population. In the second section, we provide more information 

on RDM. In the third section, we introduce the problem of societal ageing in the 

Netherlands, and discuss the model. In the fourth section, we present simulation 

results and their analysis. In the fifth section, we present a set of policy options aimed 

at reducing the costs related to societal ageing, and assess their robustness. The 

final section presents our conclusions. 

2. Robust decision making 

RDM has been developed over the last 15 years. The RDM approach uses multiple 

views on the future to support a thorough investigation of modelling results that helps 

to identify a plan (1) that is robust, (2) that avoids most situations in which the plan 

would fail to meet its goals, and (3) that clarifies the conditions under which the plan 

would fail to meet its goals (Groves & Lempert, 2007; Lempert et al., 2003). RDM 

consists of the following steps (Hall et al., 2012; Keefe, 2012; Walker, Haasnoot, & 

Kwakkel, 2013): 

1. Scoping: determine the scope of the analysis by identifying exogenous 

uncertainties, policies, key relationships, and performance metrics; construct 

simulation model(s) that relate(s) actions to consequences. 

2. Simulation and Scenario Discovery: identify a candidate policy to evaluate, 

run it across an ensemble of scenarios, and identify vulnerabilities of the 

candidate policy (i.e., which combinations of uncertainties cause the policy to 

fail to meet the goals); 



 

94 

3. Policy design: identify hedging actions (modifying existing policies or defining 

new ones) to address these vulnerabilities. Repeat steps 2 and 3 for additional 

candidate policies. 

Sampling techniques are commonly used in the second step, just like in automated 

Sensitivity Analysis. A difference with standard Sensitivity Analysis is that, in RDM, 

the focus is on ensembles of simulation runs: Under deep uncertainty, there is no 

base case to start from – possibly a base ensemble. The number of uncertainties and 

the size of uncertainty ranges explored in RDM are also very large. To deal with the 

resulting uncertainty space, it is necessary, in RDM, to combine sampling and 

simulation with other methods and techniques.  

Central to RDM is Scenario Discovery (Bryant & Lempert, 2010), a novel 

approach aimed at addressing the challenges of characterizing and communicating 

deep uncertainty associated with simulation models. The basic idea is that the 

consequences of the various deep uncertainties associated with a simulation model 

are systematically explored through conducting series of computational experiments 

(Bankes et al., 2013), and that the resulting model-generated data is analysed to 

identify regions in the uncertainty space that are of interest (Bryant & Lempert, 2010; 

Kwakkel et al., 2013). These identified regions can subsequently be communicated 

by means of scenarios. 

In Scenario Discovery, a binary classification of the model results is typically 

used, based on whether policy objectives are reached or not. Subsequently, a 

statistical rule induction algorithm is used to find the combination of uncertainties that 

jointly produce a large number of simulation runs where the objectives are not being 

met. For that purpose, we used the Patient Rule Induction Method (Friedman & 

Fisher, 1999).  

3. Scope of Dutch societal ageing 

3.1. Ageing model 

The development of Dutch demography and its consequences on government 

spending on retirement funds, curative care, and long-term care are captured in a SD 

model. The sub-system diagram in Figure  (Morecroft, 1982; Sterman, 2000, pp. 99-

102) displays the main sub-systems the model is composed of (i.e., demography, 

economy, social security, health care, and policy perception). The model was 

developed based on interviews of, and sessions with, experts from the Netherlands 

Organisation for Applied Scientific Research (TNO) and the Netherlands National 

Institute for Public Health and the Environment (RIVM) with different areas of 

expertise, including health care, health care economics, health care organization, 

labour market economics, labour productivity, and the built environment. The model 

is a further elaboration of the model by Pruyt and Logtens (2015). The model 
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contains 1137 variables and 80 stocks, some of which are subscripted, and is 

implemented in Vensim (Ventana Systems, 2010). 

 

Figure 1. Sub-system diagram of the model used in this study. Exogenous time series in 
italics, policy options in bold. The stock-flow structure of the ageing chain is visible in the 
demographics sub-system. After Pruyt and Logtens (2015) 

The demographic sub-system is composed of separate ageing chains for men 

and women with one year age cohorts (see stock-flow in ). The demographic 

composition influences the economic situation via the composition of the working 

population, which is defined as all age cohorts between 18 and the formal retirement 

age. The sum of all age cohorts above the formal retirement age determines the 

demand for social security benefits, like the basic state pension ‘AOW’ (i.e., 

translated: general retirement act). 

Unhealthy behaviour determines the average unhealthy life expectancy. 

Demand for long-term care in full time equivalents (fte) is calculated by taking the 

size of the unhealthy age cohorts, multiplying this with the average costs of long-term 

care and the fraction spent on wages, and dividing this by the average productivity in 

long-term care. The demand for curative care in fte is assumed to follow a historic 
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pattern per age and sex (Slobbe, Smit, Groen, Poos, & Kommer, 2007, p. 36). 

Demand for cure personnel is calculated by dividing the curative care personnel 

costs by the productivity in curative care. Combined, these two types of care 

determine total health care costs. 

The economic sub-system contains all economic variables. The potential size 

of the workforce is determined by dividing GDP by the labour productivity. GDP 

growth is affected if labour supply is smaller than labour demand. The GDP is used 

to determine the size of the necessary collective expenditure on health care as well 

as retirement funds. However, automatic feedback to limit this expenditure as part of 

the GDP is not included endogenously as this would necessitate a policy change. 

 

Figure 2. High aggregation level stocks, flows, and causal loops of the ageing model 

The most important feedback loops in the model are reinforcing, and act by 

the influence a high level of health care has on life expectancy (R1 and R2p in Figure 

2). The cost-plus social security expansion loop (R1) captures the effect by which 

more retirees demand more social security funds, which results in more health care 

expenses, and, ceteris paribus, higher life expectancy, lower death rate, and more 

retirees. The adaptive retirement age cost mitigation loop (B1p) is a policy loop that 
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mitigates R1 by keeping the number of retirees within sustainable limits. Note, 

however, that the policy link from life expectancy to retirement age also activates a 

reinforcing policy loop (R2p): higher life expectancy results in higher retirement age, 

higher GDP, and higher amounts of social security funds being available, which, in 

turn, result in more and better health care, and thus, higher life expectancy.  

As a result, AOW and health care expenditure both show exponential growth 

in many scenarios. However, the extent of the growth is unknown due to many 

uncertain future developments (italics in Figure 1). They are used for evolutions like 

the productivity of the working population, long-term care, and curative care, and the 

productivity of both men and women per age. For each of these uncertain future 

developments, we specified sets of plausible time series, since keeping them 

constant over a long time horizon would be highly unrealistic. The growth of 

expenditure on health care and retirement benefits is not endogenously capped by 

implicit policy options: closing loops by means of new policies is treated as an explicit 

choice to be made by policy maker. The sets of exogenous time series are used for 

simulating the model across combinations of different plausible evolutions. After 

multiple simulations, runs with undesirable behaviour can then be selected, and their 

input parameters found using the Scenario Discovery approach. 

3.2. Public support for policies 

To incorporate public support for retirement age policy changes, we modelled 

the retirement age in multiple ways, namely the formal retirement age, the actual 

retirement age or leaving age, a delayed formal retirement age, and a forecasted 

future retirement age for each cohort. They correspond to alternative perceptions 

with regard to retirement age policies. The first perception is defined as the age at 

which retirement benefits commence. The second is the average age at which either 

men or women stop working, and leave the working population. It may, therefore, 

take time before society accepts the fact that the retirement age has been raised.  

Third, the different age cohorts may change their expectation regarding their own 

retirement age due to changes of the retirement age in recent years, providing an 

expectation for the retirement age for each age cohort (i.e., a cohort forecast). 

By combining the formal retirement age with each of the three other 

perceptions, three metrics for public support related to retirement age changes are 

modelled (see Table 1), where the maximum public support is defined as 1 (full 

support) and the minimum as 0 (no support). In the first metric, we calculate for each 

age cohort above 18 the amount of years they still have to work with both the formal 

retirement age and the delayed retirement age. The weighted average across 

relevant age cohorts of the relative differences between these two figures is assumed 

to correspond to the relative decrease in public support. 
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Table 1. Metrics used in determining public support 

Name Metric 

Formal and delayed retirement 

age comparison 

Formal retirement age compared to the 

delayed perception of the retirement age in the 

last period, divided by the number of years left 

to the formal retirement age 

Formal and actual retirement age 

comparison 

Formal retirement age compared to actual 

retirement age, divided by the number of years 

left to the formal retirement age  

Formal and forecasted retirement 

age comparison 

Formal retirement age compared to the age 

cohort specific expectation of the formal 

retirement age, which is based on the average 

change in retirement age in the recent past 

 

In the second metric, the formal retirement age is compared to the actual 

retirement age. The rest of this metric is similar to the first metric, although, as the 

actual retirement ages for men and women are not necessarily the same, the 

perception is calculated for both the male and the female working population. The 

total perception is then the weighted average of perceptions for each male and 

female age cohort. 

Finally, in the third metric, each age cohort makes a forecast for the expected 

retirement age dependent on the average change in the retirement age in recent 

years. This is calculated as the difference between the formal and the delayed 

retirement age, relative to the delayed retirement age. The relative increase in years 

to work is calculated by taking the relative difference between the extrapolated 

average number of years individuals need to work and the formal retirement age. 

This relative increase is, for each age cohort equal to the average relative change in 

the retirement age. 

4. Simulating Dutch societal ageing and Scenario 

Discovery 

Using Latin Hypercube Sampling, the model was simulated 1000 times between 

2010 and 2060 to generate an ensemble of cases. Each case is a selection of values 

for uncertainties and assumptions about the future state of the system. In the 

simulation setup, we considered 40 uncertainties, including parametric uncertainties 

(30), delay orders (3), trend uncertainties (15), and structural uncertainties (2). An 

example of a parametric uncertainty is the average wage level rise in a given period. 
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A delay order uncertainty represents a 1st, 3rd, 10th, or 1000th (pipeline) order delay. A 

trend uncertainty is a plausible set of exogenous time series, for example regarding 

the future development of the male life expectancy. Finally, structural uncertainties 

are, here, different plausible formulas within the SD model, selected using switch 

variables, for example, the public support metrics.  

In order to classify the cases in terms of their desirability, we distinguish 

between desirable, undesirable, and unaffordable societal ageing. The current limit of 

public expenditure is approximately 50% of GDP. This corresponds to the present 

size of Dutch collective spending, which is a historically grown political choice (Bos, 

2006). The theoretical upper limit lies at 100% of GDP, as it is impossible for a 

society to spend more on health care and pensions. The actual limit is probably much 

lower, given that, for example, food, housing, education, and culture also account for 

a large proportion of Dutch public expenditure. Since most of the costs of ageing are 

collectively funded, this is also a clear limit. Expenditure on health care and 

government funding of the state pension above 50% of GDP is thus practically 

impossible in the Dutch political context. 

The question then remains which limits apply to expenditure on ageing-related 

costs, as a fraction of GDP, and its desirability. In recent years, relative public 

spending on health care increased. If this trend continues in the future, it will lead to 

undesirable public finances, as costs of care will supplant other government 

expenditures. For this reason, it is important to establish sustainable limits, within 

which health care costs and other ageing-related costs as a fraction of GDP should 

remain. 

For classifying the individual model runs, we distinguish four scenario classes. 

The first class corresponds to the situation in which care costs decrease relative to 

the 2010 level of around 10% of GDP, which is viewed as highly desirable. The 

second class corresponds to the situation where the costs increase to a level 

between 10% and 25%, which is viewed as acceptable. The third class corresponds 

to cost increases to a level between 25% and 50% of GDP, which requires additional 

measures to be implemented. Finally, in the fourth class ageing costs rise above 

50% of GDP, which is the current size of public expenditure. The simulation runs 

within this class represent cases with unaffordable costs of societal ageing. Each of 

the scenario classes represents a narrative that can be used by policy makers for 

assessing the necessity and use of the proposed policies, without failing to 

acknowledge the existing uncertainty. 
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Figure 3. Bandwidth of developments of government contribution to AOW as part of GDP. 
This is the sum of the necessary government contribution  

Figure 3 shows the bandwidth between which the necessary government costs of the 

retirement and health care may develop relative to GDP. The boundaries between 

the desired, sustainable, and undesirable categories are indicated by dashed lines. 

This figure shows that a subset of cases results in unaffordable costs of societal 

ageing. 

We performed Scenario Discovery in order to reveal which combinations of 

uncertainties result in a situation where the sum of health care costs and retirement 

funding will become unaffordable. We found that all runs with the sum of health care 

costs and retirement funding in the unaffordable range resembled a situation in which 

labour productivity of the Dutch population decreases over time. This has a negative 

effect on the evolution of GDP, resulting in situations where the costs relative to GDP 

increase most.  

Other important drivers of ageing costs are increased life expectancy, 

especially of men, increased unhealthy behaviour, and continuously low labour 

participation of older employees. Increasing male life expectancy is important, as 

male life expectancy is presently lower than female life expectancy, although it may 

catch up. The development of life expectancy strongly affects the development of 

retirement costs, while unhealthy behaviour affects the development of health costs. 

Finally, scenarios in which labour participation of the older population further 

decreases have a negative effect on income. This amplifies the effect of a decrease 
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in labour productivity, since more people will be needed to generate the same output, 

while with low labour participation, the labour availability will be lower. 

4.1. Model validation  

We performed various tests to assess whether the model was fit for purpose 

(Forrester & Senge, 1980; Sterman, 2000). During the conceptualisation and 

specification phase, standard verification checks, like unit checks and extreme value 

tests, were performed. In addition, we organized workshops with domain and 

methodological experts from Delft University of Technology, The Hague Centre for 

Strategic Studies, TNO, PricewaterhouseCoopers, and the Dutch Ministry of Social 

Affairs in order to validate the model structure (Logtens, 2011). Finally, we compared 

the bandwidth of population scenarios generated by the model with forecasts 

provided by Statistics Netherlands (CBS, 2010). The bandwidth of the population size 

in this study is slightly broader than those produced by Statistics Netherlands (Figure 

4). 

However, the distribution of the population across different work-related age 

cohorts has more influence on the affordability of societal ageing, is (Figure 4). An 

important indicator in that respect is the demographic pressure, which is the sum of 

the population under 20 years old and the population above 65 years old relative to 

the population between 20 and 65 years old. In other words, it is a proxy for the 

proportion of the non-working population compared to the working population (CBS, 

2015). The behavioural mode of the demographic pressure generated with our model 

is similar to the forecasts of Statistics Netherlands (CBS, 2010). However, the spread 

of our outcomes is, especially in the period between 2040 and 2060, much wider. 

This can be explained by the broader bandwidth of life expectancies in our research, 

and by the different approach for dealing with immigration.  

  

Figure 4. Bandwidth of scenarios for the Dutch population size (left) and the demographic 
pressure (right) generated in this study compared to the scenarios by Statistics Netherlands 
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The model can produce health care cost figures that are higher than the GDP. 

Although this is both practically and theoretically infeasible, given the intended 

exploratory purpose of this study, not protecting the model allowed for uncovering 

hidden assumptions, identifying extremely undesirable evolutions, and determining 

valid uncertainty spaces. As implicit policies are not taken into account, the 

bandwidth of public expenditure on retirement and health care costs is not restricted. 

As such, the model can produce values for theoretical health care costs that are 

theoretically or politically impossible. Given the purpose of exploring the potential of 

infeasible ageing related costs if no action would be taken, theoretical or practically 

impossible evolutions of health care expenditure values do not undermine the 

usefulness of the model. The stakeholders and clients, therefore, considered these 

scenarios important indicators for the unsustainability of the current health care and 

pension system, while the broad bandwidths of outcomes did not undermine their 

confidence in the model. In similar settings with the Netherlands Court of Audit, the 

stakeholders also acknowledged the validity of the model outcomes given the then 

existing set of policies. 

5. Policies for societal ageing 

5.1. Policy design 

The policy designed and tested in this study are based both on policies that were 

suggested in the public debate, and on the results from our Scenario Discovery 

approach. Important drivers for unaffordable ageing related costs these policies have 

to address include life expectancy, labour productivity, unhealthy behaviour, and 

labour participation of older people. In total, 10 different policy options are simulated 

(Table 2). All policy options are implemented in the model from 2015 on, except for 

policies that adapt the retirement age over time. These policy options were all tested, 

separately and in various combinations, for their effectiveness in reducing the 

government expenditure on ageing, and the public support for these measures. 

The policies can be divided in four categories: policies with regard to the 

retirement age, the prevention of unhealthy behaviour, policy options for employers, 

and policies with regard to labour productivity. For the retirement age, we incorporate 

three different policy options, adaptively following the life expectancy. These policies 

thus provide a balancing feedback of the effects of increases in longevity on fiscal 

sustainability. The prevention of unhealthy behaviour leads to the reduction of the 

part of the population with unhealthy behaviour (i.e., smoking, obesity, inactivity, and 

heavy drinking). By doing so, they reduce the unhealthy life years, and consequently 

the costs of long-term care. However, they also increase life expectancy, which leads 

to increased spending on retirement benefits.  
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Table 2. Policy options to counteract the undesired effects of demographic ageing. 

Category Name Description 
L

if
e
 e

x
p

e
c

ta
n

c
y

 

Retirement age 

according to pension 

agreement  

In 2020 to 66 years, in 2025 to 67 years. 

Thereafter coupling with life expectancy 

according to the formula V = (L – 18.26) – (P 

– 65) ("Wet verhoging pensioenleeftijd, extra 

verhoging AOW en flexibilisering 

ingangsdatum AOW," 2011). 

Retirement age 

according to Dutch 

stability program 2012 

Between 2013 and 2019 the retirement age 

will gradually be raised to 66, and thereafter 

gradually to 67 by 2023. From 2024 onwards 

we assume that the increase will proceed as 

planned in the pension agreement, but with a 

delay of 10 years instead of 11 years. 

Robust retirement age Periodically adjusted, adaptive retirement age 

at 85% of life expectancy 

P
re

v
e

n
ti

o
n

 

Prevention of unhealthy 

behaviour 

0.5%/year reduction in the part of the 

population with unhealthy habits 

O
p

ti
o

n
s

  

e
m

p
lo

y
e

rs
 

Equalize age 

preference employers 

10%/year improvement in the relative age-

preference of employers 

Increase relative 

number of hours per 

older employee 

2%/year reduction of portion not worked full 

time for workers over 45 years 

Increase labour 

participation 

2%/year reduction in portion not in full 

employment for workers over 45 years 

L
a
b

o
u

r 
p

ro
d

u
c

ti
v
it

y
 

Increase productivity 

Dutch workforce 

2%/year increase in average labour 

productivity relative to reference 

Increase productivity in 

curative care 

2%/year increase of productivity in curative 

care compared to reference 

Increase productivity in 

long-term care 

2%/year increase in productivity in long-term 

care compared to reference 

Three different policy options are potential strategies for employers. They can 

equalize the age preference for older workers, making them as attractive as younger 
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employees, which, in turn, results in later labour market exits. Further, these 

measures lead to an increase in the hours worked per older employee, and an 

increase in labour participation (i.e., more people working at higher ages). Finally, 

labour productivity can be increased for the total working population, long-term care, 

and curative care. While especially the latter two are difficult to operationalize, it is 

important to test their effectiveness before expenses are made towards reaching 

these goals. In testing the robustness of the policies, we combine each of the three 

retirement age policies with all other policy options. A more elaborate discussion of 

these policy options can be found in Willem L. Auping, Erik Pruyt, Jan H.  Kwakkel, 

Govert Gijsbers, and Michel Rademaker (2012). 

5.2. Policy robustness 

Policies are considered to be robust here if they generally improve the desirability of 

plausible futures without decreasing the desirability of any specific future (Lempert et 

al., 2006). One way of making policies robust is to make them adapt to how the 

future is actually unfolding. The retirement age policies presented here adapt to the 

average life expectancy of the Dutch population. It is interesting to see within which 

bounds the retirement age can develop, given the different plausible developments of 

the life expectancy. The bandwidth of life expectancy trends for both women and 

men (Figure 5) is mainly driven by a set of plausible exogenous trends, but is also 

affected endogenously by unhealthy behaviour, for prevention of unhealthy behaviour 

results in a slight increase in life expectancy.  

 

Figure 5. Scenario space for the development of the life expectancy of women (above) and 
men (under), for the base ensemble and the ensemble with the reduced unhealthy behaviour 
policy implemented. 

These retirement policies adapt the retirement age as a function of the weighted 

average life expectancies of the male and female populations. Since the retirement 
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age policies from both the pension agreement ("Wet verhoging pensioenleeftijd, extra 

verhoging AOW en flexibilisering ingangsdatum AOW," 2011) and the stability 

agreement (Jager, 2012) are limited to a 1 year increase per 5 years, the extent of 

the increase is limited to a retirement age of 74 in 2060. This implies that these 

policies cannot adapt to a life expectancy higher than 92 years (or 18.26 plus the 

retirement age of 74). The ‘robust retirement age’ policy tested here does not have 

this limitation, and is, therefore, able to adapt to higher life expectancies, but will also 

decrease in case of declining life expectancy. The range of the robust retirement age 

is consequentially much broader (Figure 6), which increases policy robustness. 

 

Figure 6. Bandwidth of the retirement age for the three retirement age policies combined with 
all other policies 

5.2.1. Policy effectiveness 

The effectiveness of the different retirement age policies largely depends on their 

ability to cope with changing life expectancies. In unaffordable scenarios, increasing 

life expectancy plays an important role. The retirement age plans from the pension 

agreement and the stability program, partially alleviate the cost pressures in these 

scenarios (Figure 7). However, the robust retirement age policy, which allows 

complete adaptation to the life expectancy, decreases the costs of the retirement 

fund significantly better. Due to the fact that decreasing labour productivity and low 

labour participation also play an important role in unaffordable scenarios, the 

government contribution might nevertheless still grow considerably compared to the 

present situation. 
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Figure 7. Effects of retirement policies on the necessary government contribution to AOW 
costs relative to GDP 

 

Figure 8. Effects of all policies combined with the retirement policies on the necessary 
government contribution to AOW costs relative to GDP 
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As shown in Figure 8, combining the different policies clearly is most effective, 

bringing the government contribution to AOW back within desirable limits in all cases. 

This is a logical consequence of strong reinforcing effects between labour 

participation and retirement age, and the age preference for older workers. That is, 

when most older people stop working before their formal retirement age, as was 

widespread in the Netherlands until a few years ago, raising the retirement age will 

only have a limited effect. There would not be more people working even though 

pension payments would be reduced. 

As indicated by our Scenario Discovery results, a declining trend for the labour 

productivity of the Dutch workforce will have the strongest mitigating effect on total 

societal ageing costs. As the largest share of potentially unaffordable cases is 

caused by high health care costs, it is important to know how effective the different 

labour productivity policies are in reducing these costs. Figure 9 shows that 

increasing overall Dutch labour productivity is the most effective policy. This is 

understandable, as this policy has a positive effect on the development of the GDP, 

hence reducing the total net costs. 

 

Figure 9. Effects of productivity increases on the costs of health care relative to GDP 

The differences between the combinations of all policies with the different 

retirement age policies (Figure 10) is caused by the fact that changing the retirement 

age policy in case of decreasing labour productivity has a positive effect on the 

economy, as potential labour shortages will be smaller when more older people are 

working. That is, due to reduced labour productivity, more employees are needed to 

uphold economic welfare.  
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Figure 10. Effects of all policies combined with the retirement policies on health costs relative 
to GDP 

5.2.2. Public support for retirement policies 

 

Figure 11. Influence of the three different metrics on the public support with the robust 
retirement age policy 
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Public support for the retirement age policies depends largely on the different ways in 

which parts of the population perceive the retirement age change, and thus, the 

different metrics used to calculate public support. The effect of these different metrics 

is shown in Figure 11. It displays public support for the robust retirement age policy 

option calculated by the three different metrics used. If the population assesses the 

retirement age by the actual retirement age, public support values are lowest. Hence, 

increasing labour participation of older people increases the public support for the 

retirement age in this case (Figure 12).  

The lowest public support is explained by the combination of leaving age 

without a policy to increase the labour participation of older people. The difference 

between public support for the retirement age policies may increase to a higher level 

if labour participation of older people increases. If this is combined with an average 

leaving age above the formal retirement age, there would not be a problem in terms 

of public support.  

This idea is supported by studies advocating ‘productive ageing’ (e.g., Burr, 

Caro, & Moorhead, 2002): productive ageing allows for better utilising the productivity 

potential of older people. Taking the above into consideration, policies aimed at fiscal 

sustainability with regard to potential costs of demographic ageing should first 

change behaviours, for example by significantly increasing the leaving age, before 

changing the formal retirement age. By doing so, there will be far less policy 

resistance in democratic societies, as vested interests will be less affected. 

 

Figure 12. The influence of increased labour participation on the public support for retirement 
ages 
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6. Discussion and Conclusions 

In this paper we used RDM in combination with SD to address challenges 

posed by societal ageing. We approached the different perspectives on the 

desirability of different retirement age policies by classifying cost ranges for 

government contributions to retirement funding and health care costs, and by 

modelling different plausible reactions to changes in the retirement age. These 

reactions may influence the public support for policy reforms believed necessary by 

many governments, and may result in policy resistance. We believe that this 

approach has added value, as it provides possibilities to deal with divergent 

stakeholder perspectives, evaluations, and reactions to policies. 

The RDM analysis of the necessary government contributions to ageing costs 

shows that the set of policies is insufficient for avoiding unaffordable societal costs in 

all cases. Especially cases with declining labour productivity costs become 

untenable. Correcting this decline with a policy aimed at stabilising this evolution 

does not seem to be sufficient: upholding the Dutch social security system in its 

current form necessitates sustainable economic growth grounded in continued labour 

productivity increases. 

Our model-based approach shows that productivity should be more central in 

discussions related to societal ageing: raising labour productivity, especially labour 

productivity in health care, is shown to be even more important than raising the 

pension age. At the time of this study, this was an important counter-intuitive insight: 

the then Dutch government was determined to raise the retirement age in order to 

‘solve’ societal ageing and cut costs to fight the then economic crisis. However, many 

of the measures taken to fight the economic crisis actually negatively impacted 

labour productivity in general and labour productivity in health care, especially in the 

medium and long term.  

Further, lack of public support by the older age cohorts in society prevented 

taking even more drastic measures regarding the retirement age. Accounting for 

policy resistance, this issue could be overcome by first changing older people’s 

behaviour by incentivising significantly higher labour participation and more hours 

worked. This increases the average age at which people leave the labour market, 

which, in turn, decreases the perceived undesirability of forcing people to work 

longer, and thus increases the public support for retirement age policies, compared 

to increasing the retirement age, which only has limited effects. This is in line with 

ideas regarding productive ageing, which means that the productivity potential of 

older people in society should be better utilised. 

Regarding the policies aimed at making the retirement age more adaptive to 

changing life expectancy, which causes ‘double’ societal ageing, it appears that 

current policies are not robust. However, allowing the retirement age policy to 

increase the retirement age in a considerably faster rate to make it fiscally robust, 
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may have negative consequences for the cases in which public support is influenced 

by comparing the formal retirement age with the actual, traditionally lower, retirement 

age. Given the need for public support in democratic societies, it seems that 

choosing a more robust retirement age policy may not be feasible given the 

preferences of the different stakeholders. Focussing on increasing the actual 

retirement age or leaving age over the formal retirement age instead, may prove a 

solution in these cases, as it will greatly reduce the potential for public discontent 

about retirement age policies. 
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6 Ebola 
The implementation and effects of policies can be uncertain, as at least the moment 

of implementation, the way of implementation, and the exact policies’ effects are 

often unknown. However, in many modelling studies the direct policy effects are 

assumed to be known. For example, when it comes to bringing epidemics or 

outbreaks under control, the policies or interventions are generally known. It is 

unknown though how big their effect will be, how much time it takes to make them 

operational, and based on what rules the expansion of intervention capacities is 

based. 

Another issue is that models can create futures that are plausible in and of 

themselves, given the bandwidths of existing uncertainties, but are not corroborated 

by the way the reality unfolds. For example, a model about virus transmission may 

have a useful structure, and be able to produce runs how the virus might have 

propagated, but in reality did not. In consolidative modelling, this may result in 

adapting the estimate for each parameter. In exploratory modelling, similarly an 

analyst may reduce the bandwidths of the uncertain parameters in order to force all 

runs to display behaviour within the actual historic data bounds. Due to the non-linear 

mapping of inputs to outputs, this may, however, lead to less runs within the historic 

bounds as well. In that case, the number of plausible explanations of behaviour of 

interest is also reduced, which is at odds with the goal of exploratory modelling.  

In this paper, we introduce an exploratory SEIR (i.e., Susceptible, Exposed, Infected, 

Recovered) model extended with endogenous intervention capacity development of 

the 2014 Ebola outbreak in Liberia. This research illustrates – similarly to the ageing 

research – that exploratory modelling in this case requires a broader scope than 

conventional transmission models, as alternative explanations besides virus 

transmission could be important. We did this by modelling the intervention capacities 

(i.e., the policies) endogenously. Further, it illustrates the importance of policy 

uncertainty, as the effects of the intervention capacities, and the speed of their 

implementation, was deeply uncertain. Finally, we eliminated those runs from the set 

that were out of historic bounds by using available data on how the epidemic was 

evolving, specifically the reported number of cases combined with the uncertainty 

around that data. In this way, we did not reduce the number of plausible explanations 

of runs of interest.  

In the synthesis chapter, I will use this paper to discuss policy uncertainty, combined 

with endogenous policy development, and how to deal with runs that are plausible 

given the uncertainty bandwidth of input parameters, but are falsified by the way 

reality unfolds. 
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Abstract 

During the first months, the 2014 outbreak of the Ebola Virus in West Africa was 

characterized by inadequate intervention capacities. In this paper, we investigate (i) 

the influence of limited but dynamic intervention capacities and their effect on the 

effective reproduction number, and (ii) the effects of proactive versus reactive 

intervention approaches. We use a transmission model extended with dynamical 

intervention capacities.  Taking into account a bandwidth for potential over- and 

underreporting in reported Ebola Virus Disease cases, the model is used to generate 

ensembles of plausible scenarios. Next, it is used for testing the effectiveness of 

more proactive approaches in extending intervention capacities across these 

scenarios. We show that reactive approaches in extending intervention capacities 

can lead to continued under-capacity, and, consequently, to an increase of the 

effective reproduction number and to accelerated EBOV transmission. Proactive 

approaches, which take deployment delays, doubling times of diseases, and potential 

underreporting of the number of cases into account, help in limiting the total number 

of cases and deaths if the effective reproduction number in isolation is lower than the 

effective reproduction number outside of isolation. If the effective reproduction 

number in isolation is higher, proactive intervention policies still outperform reactive 

intervention policies. 

Keywords: Ebola Virus Disease, Intervention capacity, Reproduction number, 

System Dynamics, Scenario Discovery 

1. Introduction 

The 2014 outbreak of Ebola Virus (EBOV) and, consequently, Ebola Virus Disease 

(EVD) in Liberia, Sierra Leone, Guinea, Senegal, Mali, Nigeria, Spain, and the United 

States of America (CDC, 2014; Gire et al., 2014) was by far the largest observed to 

date (WHO Ebola Response Team, 2014). The number of cases and deaths 
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outnumbered the sum of all previous outbreaks. Where earlier outbreaks took place 

in rural or otherwise sparsely populated areas (Amblard et al., 1997; Borchert et al., 

2011; Bwaka et al., 1999; "Ebola haemorraghic fever in Sudan," 1978; "Ebola 

haemorrhagic fever in Zaire, 1976," 1978; Okware et al., 2002; Pattyn, 1977; Roddy 

et al., 2012; Shoemaker et al., 2012), the 2014 outbreak distinguished itself by 

occurring in densely populated urban areas (WHO Ebola Response Team, 2014). 

Dynamic transmission models can be used for intervention capacity planning 

for epidemics like the 2014 EVD outbreak. During the 2014 outbreak, dynamic 

transmission models have been used for estimating the basic reproduction number of 

Ebola, and for projecting the future development of the epidemic (Chowell, 

Hengartner, Castillo-Chavez, Fenimore, & Hyman, 2004; Lekone & Finkenstädt, 

2006; WHO Ebola Response Team, 2014). However, projecting the dynamics of 

EBOV was, especially during the first few months, complicated by uncertainty about 

many input factors (Butler, 2014). Examples of uncertain factors include the case 

fatality ratio (Kucharski & Edmunds, 2014), and the basic reproduction number R0 

(Althaus, 2014; Fisman, Khoo, & Tuite, 2014; WHO Ebola Response Team, 2014). 

Further, the actual number of cases during the outbreak in West Africa was believed 

to be considerably higher than the reported number of cases (Meltzer et al., 2014), 

since the infrastructure to diagnose new cases and identify contamination epicenters 

was insufficient.  The insufficiency of the infrastructure to identify new cases and 

epicenters of contamination, and the resulting underestimation of the problem, 

contributed to the continued spreading of the disease (WHO Ebola Response Team, 

2014). 

With the continued EBOV spreading, capacities like medical staff, hospitals, 

isolation facilities, and tracing officers were being scaled up dynamically to curb the 

outbreak. Simultaneously, efforts were initiated to speed up the development and 

provision of Ebola medication and vaccines. That is, the extent of these capabilities 

in the region changed significantly over time. These intervention capacities, and their 

dynamics, therefore need to be incorporated inside transmission models aimed at 

projecting the future development of the epidemic. This is not new. For example, 

Bachinsky and Nizolenko (2013) combined a SEIR  model (i.e., a model with 

separate compartments for Susceptible (S), Exposed (E), Infectious (I), and 

Recovered (R) populations) with constant isolation bed capacities. Studies on 

influenza also often include the influence of anti-viral medication and vaccination 

programs (Kenah, Chao, Matrajt, Halloran, & Longini, 2011; Klepac, Bjørnstad, 

Metcalf, & Grenfell, 2012; Luz, Vanni, Medlock, & Galvani, 2011; McCaw & 

McVernon, 2007; Moss, McCaw, & McVernon, 2011). However, none of the early 

Ebola studies made use of detailed dynamic sub-models of endogenous intervention 

capacity development for a broad range of intervention capacities. 

In this paper, we present an extended SEIR model for EBOV propagation that 

includes intervention capacities endogenously. The model was developed and used 
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early September 2014 to assess capability deployment needs in West Africa. The 

model presented here is parameterized for Liberia only. The uncertainty by which the 

EVD outbreak in West Africa was characterized is incorporated by means of large 

uncertainty ranges. This enables us to evaluate the influence of dynamic limits on 

EVD interventions on the effective reproduction number. That is, the effective 

reproduction number is modeled as the result of a SEIR model extended with 

endogenous intervention capacities. The effective reproduction number, as it is used 

here, therefore relates to the average number of infections per single infection given 

the dynamics of the population immunity level and the dynamics of the intervention 

level. 

We explore the dynamics of the model under uncertainty in order to explain 

how epidemic risk and intervention capacities interact, what the consequences may 

be of their interaction, and how the use of dynamic transmission models with 

integrated dynamic intervention capacities can inform planning of intervention 

capacities during future outbreaks. 

The setup of this paper is as follows. First, we present the SEIR model 

extended with model structures with limiting intervention capacities (i.e., isolation, 

health workers, tracing officers, and eventually vaccines), and the experimental 

setup. Second, we discuss the results of our analysis for the cumulative number of 

cases, the effective reproduction number, and doubling time. Third, we discuss our 

findings and provide concluding remarks. 

2. Methods 

We developed a model combining a SEIR core with possible interventions 

aimed at curbing the Ebola epidemic in West Africa. The model was developed using 

the System Dynamics (SD) method (Forrester, 1961; Pruyt, 2013; Sterman, 2000) 

and was used for exploratory purposes (Bryant & Lempert, 2010). SD is a method for 

modeling and simulating dynamically complex systems or issues characterized by 

causal relations, feedback loops, accumulations, and delays. SD models are 

essentially systems of differential equations or integral equations (Lane, 2000). 

Simulating the dynamic behavior of the modeled system through numeric integration 

of these equations results in a simulation run displaying the behavior of the modeled 

system over time. Simulation runs can be used to analyze problems related to the 

system, and to evaluate the effects of policy interventions in these systems. SD is 

regularly used to study disease dynamics and health policy (Sterman, 2000; K. M. 

Thompson & Duintjer Tebbens, 2009). In this particular case, we used it to explore 

the consequences of the different combinations of uncertainties on the dynamics of 

the epidemic, and test the effects of different intervention strategies. 
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2.1. Model description 

We started with the traditional SEIR model. The central structure of the model 

contains state variables, aka stock variables, for the susceptible, exposed, infectious, 

and recovered sub-populations (Fig. ). Mathematically speaking, these stock 

variables are integral equations. We made several changes to this basic SEIR 

structure. We divided the infectious population in a critical phase (infectious 

population) and a recovery phase for survivors of the critical phase, where patients 

may either recover or die. The recovering patients are still infectious. Therefore, they 

were modeled using a second stock variable, the infectious survived population, who 

are recovering and will survive. We applied this subdivision to both the infectious 

population in isolation (isolated infectious population and isolated survived population 

in Fig. ) and the infectious population outside of isolation and treatment centers 

(infectious population and infectious survived population). 

 

Fig. 1. Stock-flow structure of the extended (other factors and causal relations are not 

shown) SEIR model containing isolated population stocks, and the immune population due to 

vaccination. SEIR elements are indicated with their respective letters as well. Subscripted 

stocks have a bold border, infectious stocks are red, and the exposed population is blue. 

Further, we subdivided (i.e., vectorised or subscripted) these population stocks 

in order to take potential self-quarantining behavior of the population into account. 

The S, E, and I stocks outside isolation (i.e., Susceptible population, Exposed 
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population, Infectious population, and Infectious survived population), and the flows 

between these stocks, contain this subdivision. In Fig. 1, these stock variables have 

a bold border. Introducing this structure is important, as a succesful societal 

response to an outbreak leads to a significant decrease in the necessary intervention 

capacities like treatment and isolation capacity (Pruyt, Auping, & Kwakkel, 2015). 

Treatment and isolation capacity refers here to Ebola Treatment Centres (ETCs) and 

to Community Care Centres (CCCs). ETCs provide care to suspected and confirmed 

cases while attempting to prevent infection of healthcare workers and members of 

the community. Small CCCs ensure that patients are isolated in areas with 

insufficient ETC bed capacity or in remote areas without access to ETCs. 

The basic SEIR model was further extended with treatment and isolation 

capacity, not distinguishing between ETCs and CCCs. In our model, this extension 

consists of two stock variables: one for the critical Infectious population and one for 

the Infectious survived population. We further included a stock variable for the 

Unburied deceased population. Finally, we included a stock variable for the Immune 

population, which contains the population that would be vaccinated after vaccines 

would have become available. This Immune population, and the Recovered 

population, are assumed to be no longer susceptible to EBOV. 

In our model, intervention capacities are restricted and, unless specified 

differently, reactive. That is, we included the endogenous dynamic development of 

the availability of beds in treatment and isolation capacity, health workers, tracing 

officers, and vaccines. They are adapted to the needs, albeit delayed. This way, the 

numbers of health workers, tracing officers, and available vaccines increase in 

response to the dynamics of the epidemic. Scaling up of intervention capacities is 

delayed. That is why we added stocks for the preparation of intervention capacity and 

the available intervention capacity, and time delays between these stocks that slow 

the response to the epidemic (Fraser, Riley, Anderson, & Ferguson, 2004).  

For health workers, the possibility of getting infected by EBOV and 

consequentially dying of EVD (Hewlett & Hewlett, 2005) is taken into consideration, 

thus reducing their availability. We assume that fully recovered healthcare workers 

will try to continue their efforts after an extensive recovery time. Further, healthcare 

workers may be recruited domestically or from outside the region. All additional 

physicians needed are nevertheless assumed to be foreign for it was assumed that 

the very small group of domestic physicians were already working full time.4 Only a 

small portion of the susceptible population in West Africa is considered suitable for 

                                            
4
 According to Liberia’s ambassador to the United States, Liberia has about 50 doctors — about one 

for every 90,000 citizens, not counting foreign physicians (see http://www.bbc.com/news/world-africa-
29516663 and https://www.washingtonpost.com/world/africa/liberia-already-had-only-a-few-dozen-of-
its-own-doctors-then-came-ebola/2014/10/11/dcf87c5c-50ac-11e4-aa5e-7153e466a02d_story.html). 
The CIA’s World Fact Book reports that in 2008 there were 0.01 physicians per 1000 inhabitants (see 
https://www.cia.gov/library/publications/the-world-factbook/fields/2226.html - last consulted on 
10/09/2015). 

http://www.bbc.com/news/world-africa-29516663
http://www.bbc.com/news/world-africa-29516663
https://www.washingtonpost.com/world/africa/liberia-already-had-only-a-few-dozen-of-its-own-doctors-then-came-ebola/2014/10/11/dcf87c5c-50ac-11e4-aa5e-7153e466a02d_story.html
https://www.washingtonpost.com/world/africa/liberia-already-had-only-a-few-dozen-of-its-own-doctors-then-came-ebola/2014/10/11/dcf87c5c-50ac-11e4-aa5e-7153e466a02d_story.html
https://www.cia.gov/library/publications/the-world-factbook/fields/2226.html
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nursing since they are not trained to protect themselves properly, but a larger part of 

the recovered population is suitable for nursing, since they are immune. If the 

medical staff capacity is not sufficient to provide for the necessary isolation capacity, 

the isolation capacity is limited by the available staff. This corresponds to closing 

down EVD treatment centers due to lack of staff. 

Finally, the effective reproduction number is also included endogenously in the 

model (i.e., the effective reproduction number is dynamic). The effective reproduction 

number is calculated here as the daily rate of infections caused by the total infectious 

population in and outside isolation, multiplied by the average period during which 

infectious individuals are infectious. The effective reproduction number is thus the 

weighted average of the basic reproduction numbers in and outside isolation, 

calculated at each moment in time. It can go down if measures are sufficient, but it 

can also go up if, over time, intervention measures prove to be insufficient. The 

effective reproduction number is approximated the model by the ‘reproduction ratio’ 

which is calculated as the product of the sum of all infections and the sum of the 

average recovery time of survivors and the average period critical condition, divided 

by the sum of all infectious patients. The doubling time of the number of cases is 

approximated by ln2 divided by the fractional growth rate of the number of cumulative 

cases. The latter variable is calculated as the increase in the number of cases 

divided by the total cumulative exposed cases. The increase in the number of cases 

is calculated as the exposed population divided by the incubation period. 

2.2. Experimental setup 

The model was implemented in the Vensim modeling software (Ventana 

Systems, 2010) and was parameterized for the Liberian situation. The model 

contains 161 variables, of which 20 were subdivided for hygienic and normal 

behaving population, and 35 parameters were considered uncertain. We simulated 

the model for 400 days, with a time step of 0.25 days using the Runge-Kutta 4 auto 

numerical integration method. For the 35 uncertain parameters, we used a Latin 

Hypercube sampling approach, based on uniform distributions with the ranges 

displayed in Table 1. The parameter ranges are specified in function of the model 

structure and in relation to other parameter ranges. In this model, the variable 

‘vaccinations’ depends, for example, on six variables, one of which is the 

‘Vaccination speed’. A vaccination speed of 240 vaccines per person per day then 

means that, if vaccines are available, 240 people can be vaccinated per medical 

worker per day.  

Some ‘soft’ variables and parameters are included to account for uncertain but 

plausible effects. For example, the ‘effect of self-quarantining behavior’ represents 

the effect through which more hygienic behavior causes the infectivity to decrease. 

We generated 10,000 samples simulating this model using the open source 

EMA workbench (EMA Group, 2011) from 
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https://github.com/quaquel/EMAworkbench. The model documentation and model 

are available as online supplementary materials on https://github.com/ep77/Ebola-

Model-with-Endogenous-Response. The model equations are also available as 

online supplementary material. Visualizations and analyses are provided in an 

IPython notebook on http://nbviewer.ipython.org/gist/ep77/796491369b0e6fe84b4d. 

Table 1. Model inputs considered to be uncertain. Factors for which no references exist, are 
indicated as assumptions. 

Variable name Unit Min Max References 

Average contact rate infectious 

population 
1/Day 0.3 0.9 

(Althaus, 2014; WHO, 2014b; WHO 

Ebola Response Team, 2014) 

Average development time isolation 

facilities 
Day 4.2 18.8 

Derived from reports like Camacho et al. 

(2014) 

Average extra recovery time 

survivors 
Day 0.5 4.66 

(WHO Ebola Response Team, 2014); 

Derived from analysis 

Average time staff active Day 185 341 Derived from analysis 

Average time until burial Day 0.5 2 (WHO, 2014b) 

Average time until return diseased 

health workers 
Day 21 60 Assumption 

Average period critical condition Day 4 9 (WHO Ebola Response Team, 2014) 

Case fatality rate in isolation relative 

to outside isolation 
Dimensionless 0.43 0.73 

Broad bandwidth around data from 3; 

Derived from analysis 

Case fatality rate outside isolation Dimensionless 0.45 0.86 (WHO Ebola Response Team, 2014) 

Contact rate before funeral 1/Day 0.32 0.97 
Derived from (Camacho et al., 2014; 

WHO Ebola Response Team, 2014) 

Contacts to be traced per 

quarantined patient 
Contact/Person 5.47 40 (Bachinsky & Nizolenko, 2013) 

Contacts traceable per tracer per 

day 

Contact/ 

(Person*Day) 
10 40 (Bachinsky & Nizolenko, 2013) 

Delay time development new 

vaccines 
Day 250 350 

Assuming that vaccines will be available 

in first or second quarter of 2015 

Doctors per nurse Dimensionless 0.12 0.46 Assumption; Derived from analysis 

Effect of self-quarantining behavior Dimensionless 2.28 20 Assumption 

Fraction recovered population useful 

as medical staff 
Dimensionless 0.000458 0.043 Assumption; Derived from analysis 

Fraction susceptible population 

useful as medical staff 
Dimensionless 1.86E-06 0.000189 Assumption; Derived from analysis 

Incubation period Day 7 15 WHO Ebola Response Team (2014)  

Initial exposed population Person 50 100 WHO (2014b) 

Initial isolation capacity Person 120 600 WHO (2014b) 

Initial relative susceptible hygienic 

population 
Dimensionless 0.01 0.2 Assumption 

Initial tracing personnel Person 5 30 Assumption 

Initial vaccines in preparation Vaccine 4 20 Assumption 

Lifetime isolation capacity Day 180 360 Assumption / derived from analysis 

Medical staff creating awareness 1/Day 5 100 Assumption 

Medical staff per new case 1/Day 0.2 0.5 WHO (2014b) 

Preparing time foreign staff Day 14 60 Assumption; Derived from analysis 

Recognition rate diseased Dimensionless 0.2 0.95 Broad bandwidth around WHO (2014b) 

Relative reduction in infectivity due 

to isolation 
Dimensionless 0.7 5 Assumption 

Training time new staff Day 3 10 Assumption 

Vaccination speed 
Vaccine/ 

(Person*Day) 
50 240 Assumption (estimate) 

https://github.com/quaquel/EMAworkbench
https://github.com/ep77/Ebola-Model-with-Endogenous-Response
https://github.com/ep77/Ebola-Model-with-Endogenous-Response
http://nbviewer.ipython.org/gist/ep77/796491369b0e6fe84b4d
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3. Results 

3.1. Scenario selection 

The initial ensemble of 10,000 simulations contained a wide range of plausible 

evolutions of the epidemic. Only a subset of these evolutions was consistent with the 

outbreak observed in Liberia, as SEIR models can produce simulations of both very 

lethal and very non-lethal outbreaks. Due to the non-linear nature of these models, 

outputs of simulations could even fall outside of plausible ranges for combinations of 

input uncertainties within ranges that are known to be plausible. Therefore, we post-

processed the ensemble by selecting only those simulations where the cumulative 

number of Ebola cases fell within a range of 80% to 250% of the WHO data on the 

total cumulative number of Ebola cases on 3 September 2014 (WHO, 2014b). 

Although we have used this model at later moments in time, we present our 

simulation results calibrated to the WHO data of 3 September 2014, because this 

ensemble of simulations provides a good illustration of the uncertainty we were 

facing at the time, as well as the potentially devastating impact of an outbreak without 

additional policies and changes in behavior. The broad uncertainty range (of 80% to 

250%) was used at the time, because it was argued that the WHO data significantly 

underreported the actual number of EVD cases (Meltzer et al., 2014), although some 

over-reporting could not be ruled out either. Following this method, we selected 3041 

scenarios out of the total of 10,000 simulation runs. This process is depicted in Fig. 2. 

More visualizations of the initial ensemble, the screening, and subsequent analyses 

are provided in the online IPython notebook. 

 

Fig. 2. Flowchart of the experimental setup and post-processing of the ensembles of 

scenarios  

The ensemble (in shaded blue) and a randomly selected set of 30 out of the 

ensemble of 3041 scenarios are displayed in Fig. 3a and Fig. 3b (these figures differ 

only in terms of the scales of the y-axes). The ensemble consists of different 

plausible projections of the simulated number of ‘Actual cases’ (i.e., the total 

‘Cumulative exposed cases’ in the model) that were consistent with the WHO data on 

3 September 2014. The runs start on 22 June 2014 (t=0), after the WHO reported the 

first 51 cases in Liberia. In the best-case scenarios, the underreporting of cases is 

limited due to sufficient tracing capacity. In these scenarios, the effective 

reproduction number gradually declines as the intervention becomes more effective. 

http://nbviewer.ipython.org/gist/ep77/796491369b0e6fe84b4d
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In other scenarios, the tracing capacity is inadequate, which leads to inadequate 

developments of isolation capacity and medical staff. In these cases, the 

development of the intervention capacity is overly delayed. The non-isolated 

population consequently peaks considerably earlier than the isolated population. This 

results in an order of magnitude difference between the maximum non-isolated 

infectious and the maximum isolated infectious. The required isolation and treatment 

capacities are not available in these worst-case scenarios, even if changes in 

population behavior would be effective (e.g., when part of the diseased actively seek 

help at treatment centers, even if they were not traced).  

 

Fig. 3. Dynamics of 30 randomly selected runs and the ensembles for: (a) the cumulative 

number of cases (i.e., the total ‘Cumulative exposed cases’) on a logarithmic y-axis (with 

bounds around the historic WHO data displayed with dashed lines), (b) the same cumulative 

number of cases on a non-logarithmic y-axis , (c) the effective reproduction number, and (d) 

the doubling time of cases  

Limits in the EBOV intervention capability influence the speed with which the 

virus is transmitted. That is, starting from a situation in which there is a lack of 

intervention capacity, an increasing lack of intervention capacity may even result in 

an increase in the speed of virus propagation. However, so do ineffective measures, 

or a rise in ineffectiveness of measures. That is, the speed of virus transmission may 

also increase if individuals with EVD who end up in isolation and treatment centers 
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infect more individuals than individuals with EVD who do not end up in isolation and 

treatment centers. This may for example happen if EVD cases are not recognized as 

such, if many individuals with similar symptoms – some of whom have EVD and most 

of whom do not have EVD at first – spend a relatively long time at the same center, if 

insufficient or ineffective protective measures are taken by non-infected individuals in 

isolation and treatment centers (e.g., health workers and patients with other diseases 

with similar symptoms), or if the trip to these centers results in many new infections.  

Many problematic scenarios are characterized by at least one of two virus 

accelerating effects: (i) failure to isolate the large majority of EVD cases which leads 

to an increase in the reproduction rate of the disease, causing an increase in the 

effective reproduction number, and (ii) successful isolation but with higher infectivity 

rates in isolation than outside of isolation which may lead to an increase in the 

effective reproduction rate of the disease, causing an increase in the effective 

reproduction number. The results of both accelerating effects are visible in Fig. 3c, 

which shows how the endogenously modeled effective reproduction number 

develops in 30 randomly selected scenarios out of the ensemble of 3041 scenarios 

as well as the ensemble itself. As a consequence, the doubling time of the number of 

cases declines (Fig. 3d). Finally, when EBOV transmission has peaked, the doubling 

time of cases rises quickly as the effective reproduction number falls below 1. 

It is important to realize that there may be two reasons why scenarios show 

increased effective reproduction numbers. First, the effective reproduction number is 

the result of infectious people having contact with their surroundings (e.g., with family 

members, or with deceased during unsafe burials). If the relative share of the 

infectious population that cannot be isolated increases, due to limitations in either 

available beds or available trained and well-equipped staff, then the effective 

reproduction number could be expected to increase too. Second, many studies 

estimating the base reproduction number of EBOV or similar diseases assume that 

intervention capability is not available at the beginning of the epidemic, while its 

adequacy increases over time (e.g., Chowell et al., 2004; Chowell & Nishiura, 2014). 

However, that assumption may be wrong. In the case of the 2014 EBOV epidemic in 

West Africa, for example, it looks as though the adequacy of the intervention 

capability was first deteriorating over time (compare data in WHO, 2014b)), resulting 

in dynamics similar to those simulated here. 

3.2. Effect of a more proactive approach 

Responses to unforeseen outbreaks involving increases of intervention 

capabilities are mostly delayed. As a result, when new capacities become available 

they often fall short of the capacity that is actually required, especially when 

insufficient capacity further increases the speed with which the virus propagates. This 

is, for example, the case if a lack of tracing officers results in underestimation and 

underreporting of the speed with which the virus is propagating. Therefore, 

increasing intervention capacities requires a more proactive approach, for example 
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by trying to anticipate future increases in cases, while taking irreducible delays in the 

development of new capacities, into account. We therefore introduce the following 

formula (Eq. 1), which is one way to capture proactive planning:  

𝐶𝑡+1 = 𝑐𝑢 ∗ 𝐶𝑡,𝑑𝑒𝑠 ∗ (1 + (
𝜏𝐶

𝜏2
)) − 𝐶𝑡 

Eq. 1 

Where: 

𝐶𝑡+1 is the capacity to develop; 

𝑐𝑢 is the expected underestimation factor of the number of EVD cases; 

𝐶𝑡,𝑑𝑒𝑠 is the presently desired capacity; 

𝜏𝐶 is the delay on capacity development; 

𝜏2 is the doubling time for the number of EVD cases; 

𝐶𝑡 is current available capacity. 

This formula expresses that while preparing new intervention capacities, one 

should be prepared for those EVD cases that will arise during the preparation time, 

as well as the exposed population that will become infectious after the deployment of 

capacity additions. If the preparation time is relatively short compared to the doubling 

time, the necessary extra capacity is, therefore, smaller. Existing capacity may be 

subtracted from the capacity to develop. It should be noted, however, that in the case 

of underestimation of the number of cases, the desired capacity at that time should 

also be multiplied with the expected underestimation factor. The potential 

underestimation factor may be assessed by experts in the field, organizations like 

MSF or the WHO, or from the literature (WHO Ebola Response Team, 2014). 

Fig. 4 shows the effects of a Reactive response policy (i.e., the light red 

envelope), a Proactive policy from on day 110 on (i.e., the light blue envelope), and a 

Proactive policy from day 72 on (i.e., the light green envelope) on the selected 3041 

scenarios, as well as 30 randomly selected scenarios (reactive responses in red, 

proactive responses from day 110 on in blue, and proactive responses from day 72 

on in green). Note that the envelopes are overlapping: overlap of light red and light 

blue shows as pink-purple, overlap of light green, light blue and light red shows as 

brown-grey, and overlap of light green and light red shows as yellow-green.   

Fig. 4a shows that early post-processing under severe uncertainty (i.e., on 3 

September 2014) results in rather similar ensembles in terms of the log-scaled 

cumulative number of Ebola cases. The underlying reason for this surprising result is 

that, in our worst case simulations, infectivity in isolation is not necessarily lower than 

infectivity outside of isolation. More and earlier isolation capacity may be problematic 

if it is ineffective. Again, the worst cases are either scenarios in which an initial 

underestimation of the size of the epidemic leads to an early increase in the 
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reproduction number of the virus, or scenarios in which policies that are being 

implemented are counter-productive. In these worst cases, the EBOV outbreak is 

hard to curb. Fig. 4b and Fig. 4c nevertheless show that the earlier a more proactive 

approach is adopted, the earlier the effective reproduction number drops and the 

doubling time rises. Therefore, adopting a more proactive approach is beneficial 

across the ensemble, even if measures are not as effective as they could or should 

be. Adopting an effective proactive approach is what is really needed. 

The dominance of proactive approaches becomes clearer when post-

processing later in time. Fig. 4d shows the ensembles of the same policies post-

processed between 80% and 150% of the number of reported cases on 10 

December 2014. That is, all simulation runs that are not in line with the real-world 

estimates of 10 December 2014, plus/minus a slightly smaller uncertainty interval, 

are excluded from these ensembles. The upper bound applied in December 2014 is 

lower than the upper bound applied early September 2014 to account for more 

reliable data and a reduction in perceived uncertainty. Two observations could be 

derived from post-processing at this later point in time. First, 65.5% of all runs that 

are in line with the real-world data are generated with the adaptive policy from day 72 

on, compared to 21.5% with the adaptive policy from day 110 on, and 13% with the 

reactive policy. That is, the adaptive policy from day 72 on corresponds better to 

what happened in the real-world than the adaptive policy from day 110 on, which, in 

turn, corresponds better to the real-world data than the reactive policy. This was to 

be expected given the massive international deployment of intervention capacities 

that took place in West Africa between September and December 2014. The real-

world massive deployment could indeed be argued to have been proactive, because 

more was planned for than was needed at the moment of planning. Second, the long-

term ensemble projections of the proactive approaches are much lower than the 

long-term ensemble projections of the reactive approach (see the Kernel Density 

Estimates of the terminal values at the right hand side of Fig. 4d).  

The effectiveness of the intervention capacity development approach also 

largely depends on the phase of the epidemic. Proactive approaches are more 

effective when applied early in the growth phase of the epidemic. The potential gains 

are much smaller when the spread of the virus is already decreasing and the 

doubling time is increasing.  
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Fig. 4. Dynamics of 30 randomly selected runs and the ensembles of a Reactive response 

(red), a Proactive response from day 110 on (blue), and a Proactive response from day 72 

on (green) for: (a) the cumulative number of actual cases, (b) the effective reproduction 

number, (c) the doubling time of the number of cases, and (d) the cumulative number of 

actual cases post-processed based on WHO data of 10 December 2014. Overlap of light red 

and light blue shows as pink-purple, overlap of light green, light blue and light red shows as 

brown-grey, and overlap of light green and light red shows as yellow-green. 

4. Discussion 

In this paper, we presented a simulation model with a detailed endogenous 

dynamic response to outbreaks. When developing simulation models to plan the 

response to an outbreak, it is important to explicitly account for the dynamic 

development of capabilities and the associated delays in the system. Models that do 

not include capabilities are likely to overestimate epidemics and may lead to 

unrealistic planning or calls not to use models for planning epidemic responses 

(Butler, 2014). However, models with static capabilities or capabilities development 

without delays are likely to underestimate epidemics and the epidemic responses 

needed.  

We used the simulation model presented in this paper to generate ensembles 

of scenarios for the spread of the EBOV in Liberia and to project how the epidemic 

might evolve under deep uncertainty with reactive and proactive policies. Early real-

world information was used to inform the model-building, and early real-world data 
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(August and early September 2014) and late real-world data (10 December 2014) 

was used to post-process the policy ensembles (i.e., to remove simulation runs that 

were not compatible with real-world data from the policy ensembles) in order to test 

how well each of these policy ensembles corresponded to the real data. 

Many of the individual scenarios generated by this model were worse than 

what happened in reality. There are several reasons why the actual disease spread 

could have been expected to be less dramatic than the worst-case scenarios 

presented in this theoretical study. First, geographic spread of the population leads to 

slower virus transmission. Due to geographic spread and spreading of the virus, the 

real susceptible population at any one time (i.e., the real population-at-risk) was 

smaller than assumed in our simulation model, and the susceptible and infectious 

populations outside isolation were assumed to be perfectly mixed. Second, a high 

upper uncertainty bound was used to select the scenarios for this study. Third, large 

uniform uncertainty ranges were used for each of the uncertain parameters. Fourth, 

worst case planning assumptions about the effectiveness of ETCs were included in 

this study. Finally, this research was not exhaustive in terms of intervention 

measures considered. For example, essential medical supplies besides the medical 

staff and bed capacity in isolation were considered here.  

A possible limitation of sampling from large uniform uncertainty ranges may be 

that simulation runs are generated with unrealistic combinations of inputs. Although 

post-processing introduces some correlation, the ensembles may still contain many 

implausible scenarios. Since these scenarios are not used as predictions, merely as 

sets of what-if analyses and as inputs for policy robustness testing, this is, according 

to us, not a major problem. After all, our focus is on testing the effectiveness of 

policies across large ensembles of scenarios (i.e., no matter what could happen), 

especially in case of worse case scenarios. If policies happen to be effective across 

all cases, even for implausible scenarios, then implausible scenarios do not 

necessarily need to be identified and eliminated. For example, given the uniform 

distribution of the ‘relative reduction in infectivity due to isolation’ variable between 

0.7 and 5 (see Table 1), many scenarios are simulated in which infectivity rises due 

to increased isolation of EVD cases. Proactive isolation-oriented policies could be 

expected to perform poorly for these counter-intuitive scenarios. However, proactive 

policies seem to perform reasonably well across all scenarios, even across these 

least surprising or implausible scenarios. 

In our model, we have assumed that the intervention capacities developed 

would not be hindered by lack of resources like skilled medical personnel from 

foreign countries. Resources are nevertheless limited, both in the model and in 

reality, due to erroneous planning and due to normal planning and implementation 

delays. 

The same principle nevertheless applies to all capability and resource under-

capacities, whatever their cause: Any under-capacity harms the effectiveness of the 
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total intervention capability. That is, the entire intervention capability is as strong as 

the weakest non-redundant capacity in the chain. 

Another limitation of our study relates to the consequences of the real-world 

geographic spread of virus transmission on real-world capacity planning. In this 

theoretical paper, we used a homogeneous mixing model, where any expected 

incidence and any capacity extension affects the whole population equally. In reality, 

heterogeneity and geographic spread mean that some parts of the population and 

territory are more heavily affected by the outbreak, which, given inherent uncertainty 

about the future geographic spreading of the virus, makes it more difficult to foresee 

where capacity expansions are needed. Although this limitation does not 

fundamentally alter the general insights of our study, it needs to be taken into 

account for real-world planning purposes. That is, either these suggested capacity 

additions are considered to be the absolute minimum capacity additions and 

estimates are revised upward based on local characteristics and spreading, or 

geospatial models should be used for real planning purposes. This is especially 

important in case of heterogeneous spreading in large heterogeneous regions. 

5. Conclusions 

In this article, we have presented a simulation model with endogenous 

response related to the 2014 Ebola outbreak in Liberia. Our simulations show that 

both delayed responses and timely but ineffective measures can cause the effective 

reproduction number to increase. The consequence of such situations may be that 

the growth of the actual number of cases accelerates significantly. These findings 

were derived from an extended SEIR model with endogenously modeled intervention 

capacities parameterized for the EBOV outbreak in Liberia.  

In early September 2014, our research suggested that the effective 

reproduction number of the 2014 Ebola epidemic could increase compared to the 

measured effective reproduction number (WHO Ebola Response Team, 2014) if the 

capacities of the different interventions were not brought to the minimally required 

level over time. During the first months of the 2014 outbreak in Liberia, which was 

characterized by a significant shortfall in bed capacity due to a lack of health care 

staff and a lack of operational bed capacity in Ebola treatment units (WHO, 2014a), 

intervention capacities were insufficient and ineffective.  

This under-capacity may be the result of the reactive response to the initial 

exponential growth of the number of EVD cases. Early proactive approaches in 

building up the total spectrum of intervention capacities decrease, on an ensemble 

level, the final scale of the epidemic, especially if intervention capacities turn out to 

be effective. More proactive approaches in expanding the intervention capacities 

may, therefore, help in controlling epidemics like the 2014 West Africa EBOV. Such 

proactive approaches would at least have to take into account how the development 
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time of these capacities relates to the doubling time of the disease, and the factor by 

which the measured cases may be underreported (Farrar & Piot, 2014). 
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7 Synthesis 
This dissertation presented five papers that build on four case studies. All contribute 

to relevant policy issues, and aim at the model-based exploration of the 

consequences of deep uncertainty in complex problems (Kwakkel et al., 2010; 

Lempert et al., 2003). For that purpose, I made use of newly developed System 

Dynamics (SD) (Forrester, 1969; Sterman, 2000) simulation models. These models 

were used in several different approaches rooted in Exploratory Modelling and 

Analysis (EMA) (Bankes, 1993; Bankes et al., 2013), for example, Scenario 

Discovery (Bryant & Lempert, 2010) and Robust Decision Making (Lempert et al., 

2006). The policy insights conceived in this fashion were communicated to policy-

makers and scientists. 

Dealing with deep uncertainty has a profound impact on the development and use of 

simulation models for policy analysis. Therefore, I will look in this chapter at the 

impact of dealing with deep uncertainty on methodology and policy discussions. 

Methodologically, taking deep uncertainty into consideration ripples through the 

entire model development cycle (section 7.1). Moreover, I will reflect on the 

limitations of some of the existing exploratory modelling techniques when used with 

non-linear models (section 7.2). Dealing with deep uncertainty also has 

repercussions for policy discussions with stakeholders. First, the various exploratory 

modelling techniques come with a variety of additional costs for analysts and 

stakeholders. Costs include longer lead times for model development and analysis, 

additional computational costs, and the risk of information overload (section 7.3). 

Second, I will reflect on my experience in communicating with stakeholders and 

domain experts regarding the policy relevant insights resulting from applying 

exploratory modelling (section 7.4). 

7.1 Impact of EMA on the model development cycle 

An essential part in EMA research is to choose or develop one or more models to be 

used in the analysis. Most EMA literature until now uses existing models. There may 

be reasons, however, to develop new models. The most important reason in this 

context is that many existing models were developed for consolidative model use, 

which may limit the extent to which the various deep uncertainty relevant to the 

problem can be explored, in particular if other than just parametric uncertainty exists. 

Model development is often perceived to take place in model development cycles. 

These cycles emphasise the cyclical and iterative nature of model development, and 

all distinguish multiple phases. As all my work used SD models, I will now specifically 

focus on SD model development, which one could argue to be partly representative 

of other simulation-model development cycles. However, I believe that many of my 
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observations and conclusions can be relevant for model development in other 

modelling paradigms as well. 

Model development cycles might be better called model-based problem solving 

cycles. However, the term ‘model development cycle’ is most often used in literature. 

Hence, I will consistently use this term in this chapter.  

7.1.1 The SD Model Development Cycle Revisited 

Several authors (Forrester, 1994; Keating, 1998; Randers, 1980b; Richardson & 

Pugh, 1981; Sterman, 2000) have defined a model development cycle in SD (Table 

7.1). While the different authors have different names for the different phases, all SD 

model development cycles boil down to more or less the same iterative cycles. In 

these, limited emphasis is placed on experimentation, simulation under uncertainty, 

and exploration of simulation results. In practice, there is little use of additional (i.e., 

non-SD) techniques and tooling to support experimentation and semi-automated 

exploration. This may be due to the fact that computing was expensive at the time 

the core SD method was developed and there were no techniques and tools to make 

sense of many simulation runs. Since this has changed, there may be good reasons 

to revisit the SD modelling cycle specifically for exploratory modelling.  

First, we consider the different versions of the cycle as proposed by different authors 

in order to compose a version of the cycle suitable as a starting point for discussing 

the implications of Exploratory modelling. 

Table 7.1. SD Model development cycles with their phases by different authors. 

Randers Richardson & 
Pugh 

Forrester Keating Sterman Auping 

Conceptuali-
sation 

Problem identifi-
cation and defi-
nition 

Describe Analysis Problem 
articulation 

Problem  
articulation 

Model  
formulation 

System concep-
tualisation 

Convert Design Formulation of 
a  
dynamic  
hypothesis 

Conceptualisati
on 

Model testing Model  
formulation 

Simulate Formulation Formulation of 
a simulation 
model 

Formulation 

Implementation/ 
representation 

Analysis of model 
behaviour 

Design Testing Testing Evaluation 

 Model evaluation Educate Intervention & 
implementation 

Policy  
design and 
evaluation 

Policy testing 

 Policy analysis Implement    
 Model use or 

implementation 
    

 

While Sterman’s book (Sterman, 2000) represents the common practice in SD, his 

naming of the phases is very specific for SD. For example, the ‘formulation of the 

dynamic hypothesis’ in particular is a concept that almost uniquely applies to the SD 

paradigm, and other SD authors do not use it as a name for a model development 
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phase. Using ‘conceptualisation’ instead for the second phase is applicable for 

simulation modelling in general and also used by Randers (1980b) and Richardson 

and Pugh (1981). Further, the way in which Sterman conceptualises ‘testing’ – his 

fourth phase – may be considered too limited in the context of exploratory modelling. 

Testing, according to Sterman, refers to the use of different verification and validation 

tests to check whether a model is able to produce the ‘reference mode’. The 

reference mode is the relevant problematic behaviour over time selected in 

Sterman’s problem articulation phase. Since, in Exploratory Modelling, the reference 

mode itself is uncertain, ‘testing’ whether or not a single reference mode can be 

reproduced is impossible. Instead, evaluating the set of potential behaviours a model 

can produce is the relevant concern in EMA. Using ‘evaluation’ instead, similar to 

Richardson and Pugh (1981), may overcome this issue. To keep the wording in the 

cycle as consistent as possible, the formulation of a simulation model may also be 

called ‘formulation’ following on the second, ‘conceptualisation’ phase. Finally, if the 

fourth phase is already called ‘evaluation’, the last phase may be called ‘policy 

testing’. 

I will, therefore, use the following five phases in the model development cycle in this 

chapter: problem articulation, conceptualisation, formulation, evaluation, and policy 

testing. Problem articulation includes the problem, boundary, and time horizon 

selection, potentially followed by an ex ante investigation of possible interesting 

modes of behaviour as reference modes. Conceptualisation includes the 

identification and mapping of the main relations in a system, potentially followed by 

the formulation of a dynamic hypothesis for the link between modes of behaviour and 

system structure. Formulation includes the specification of model structure and the 

quantification of parameters. Evaluation includes performing different tests on 

structure and behaviour of models to ensure the fitness for purpose. Finally, policy 

testing includes using the model(s) to test which policies may be promising or robust. 

With this cycle, I do limit myself to model related development and use, while policy 

implementation as used in Forrester’s and Keating’s cycles is not considered by me. 

7.1.2 Problem articulation 

The problem articulation phase is generally considered to be the first phase of the 

model development cycle. The overall goal of this phase is to come to a research 

design. This design can be obtained by taking the following steps: problem 

formulation, boundary or scope selection, time horizon selection, and in particular in 

SD research, the identification of reference modes. Deep uncertainty influences 

important choices made in especially steps one, two, and four.  

Problem formulation 

The problem selected at the start of the model development cycle defines the 

model’s purpose and consequentially has a profound impact on model development. 

If the problem can be clearly defined, it will leave little uncertainty about the 
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boundary, time horizon, and reference mode. However, problem definition 

uncertainty occurs in wicked problems (Rittel & Webber, 1973), or in societal messes 

(Ackoff, 1974, 1979). Wicked problems exist when different perspectives about 

problem formulation exist which originate from different world views by stakeholders 

in a system. In other words, in these situations the problem is ambiguous. The 

conventional, consolidative approach in modelling, which most SD modelling could 

be characterised by, is to try to unify existing knowledge in these cases (e.g., 

Forrester, 1987), and, by doing so, reduce the ambiguity of the problem formulation. 

This process can be facilitated by bringing groups of stakeholders together during the 

model development cycle, as is done in Group Model Building (Vennix, 1999). 

However, if consolidative approaches are either impossible or very hard, exploratory 

model development provides an alternative approach that acknowledges (deep) 

uncertainty. This could be the case if the ambiguity about the problem formulation 

cannot be reduced without favouring one of the world views, perspectives, or 

interests of the different stakeholders (Kwakkel, Walker, & Haasnoot, 2016). The 

ambiguity about what exactly the problem is in those situations is a form of deep 

uncertainty. 

Boundary selection  

Uncertainty in the problem formulation has direct effects for system boundary 

selection. In this next step of the problem articulation phase in model development, it 

is generally recommended that a modeller should not model ‘the system’, but ‘the 

problem’ (e.g., Sterman, 2000, p. 89). This idea is to stay away from trying to model 

the whole system and all its attributes, but to limit oneself to those parts and aspects 

that are relevant to the problem at hand. However, if the problem is ambiguous, and 

the modeller does not want to choose between the different stakeholders’ world 

views, the modeller needs to adjust the scope such that it accommodates these 

different views. 

Ambiguity about problem formulations, multiple problem perceptions, or even 

completely different world views necessarily affect boundary selection choices. There 

seem to be two broad ways for dealing with such ambiguity: choosing a broader 

scope, or developing multiple models. In the first solution, the world views share a 

mental model about how the system functions while they disagree on the exact 

problem in the system. The modeller could then develop a single model which has a 

larger scope than usual to accommodate the different world views. For example, in 

our work on societal ageing (Chapter 5), which was based on earlier work by 

Logtens, Pruyt, and Gijsbers (2012), the boundary was set considerably wider than in 

other SD work on the same topic (cf., Eberlein & Thompson, 2013; Sutrisno & 

Handel, 2012; J. P. Thompson et al., 2012). Similarly, our exploratory work on the 

2014 Ebola epidemic (Chapter 6) had a considerably wider scope than other work on 

this topic (cf., Chowell et al., 2004; K. M. Thompson & Duintjer Tebbens, 2009; WHO 

Ebola Response Team, 2014). In both cases, the reason for doing so was to 
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incorporate the effects of uncertainties linked to, but not part of, the core structure of 

the model. In the case of societal ageing, that core structure comprised an ageing 

chain, while in the case of Ebola, it comprised a complicated SEIR transmission 

structure (i.e., an ageing chain of Susceptible, Exposed, Infected, and Recovered 

population). 

However, if it is impossible to accommodate the different perceptions and world 

views in one model, there may be a need to develop two or more separate models. It 

is relevant to note here, that I consider a model to be a simplified representation of a 

system. A computer simulation model specifically refers in this dissertation to an 

internally connected set of equations, which is not necessarily parametrised. 

Practically, my use of the word model thus refers to a file made in a specific 

modelling language that can be simulated.  

Creating two or more separate models is the second solution for irreducible problem 

uncertainty. The best example for such situations in this dissertation would be the 

copper case; although the two models overlapped for a large deal in scope, the 

different perspectives resulted in considering different elements of the system for 

simulating changing copper demand (Chapter 2). The approach chosen earlier by 

Hoekstra (1998) and others could also be viewed in this light. In his and in similar 

work, Hoekstra and others used four distinct perspectives inspired by ‘cultural theory’ 

to create four different model formulations. 

Further, it is conceivable that different world views regarding one problem do not fit in 

one modelling paradigm. In these situations, it may be useful to develop models 

about the same issue using different paradigms. This approach was chosen during 

the shale gas project by trying to model the global primary energy system both in 

Agent Based Modelling (ABM) (Epstein & Axtell, 1996) and in SD (Moorlag, Pruyt, 

Auping, & Kwakkel, 2015). While due to the time constraints of this project this 

approach was not entirely successful for the client, it was very promising. 

There are also more practical considerations for choosing an extended or multi-

model scope, not necessarily related to wicked problems: for example, if a problem 

plays on different aggregation levels, like the problems central in the research on the 

impact of the shale revolution on state stability of traditional oil and gas exporting 

countries, then multiple models with different scopes may be necessary. In those and 

similar cases, networks of models can be used, where inputs from one model can be 

used in other models. This can be seen as a kind of hierarchical or multi-resolution 

modelling (Davis, 2000; Davis & Bigelow, 1998). Complete multi-resolution modelling 

is also possible, as is hybrid modelling, where multiple modelling paradigms are used 

at the same time. Examples of these approaches do exist already for hybrid 

modelling (Bobashev, Goedecke, Yu, & Epstein, 2007; Rahmandad & Sterman, 

2008; Schwarz, 2016; Schwarz & Pruyt, 2016), but it is still far from being common 

practice. 
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Exploratory models can have a narrower scope than consolidative models as well, if 

it is considered useful to test a system’s behavioural response to different exogenous 

input scenarios (e.g., to stress test a water system over a set of climate scenarios). 

One reason for doing so may be the use of well-established input scenarios, like 

climate scenarios (e.g., for precipitation) or population scenarios. The difference 

between models that are purely endogenous or use exogenous input scenarios can 

be referred to as the difference between ‘closed’ or ‘driven’ models (Coyle, 1983). In 

closed models, behaviour over time originates solely from the structure of the model, 

while in driven models, input scenarios are used to ‘drive’ the model to test whether 

the model will come to different end states or is sufficiently resilient.  

Exogenously driven models are at odds with the traditional SD focus on endogenous 

explanations of problematic behaviour (Forrester & Senge, 1980). Sterman (2000, p. 

95) even states that exogenous explanations “simply beg the question”. Using 

exogenous drivers to explore a model’s dynamic response under different 

circumstances can, however, be very relevant. Exploring behaviour over a range of 

exogenous drivers allows evaluating how a system might react given different 

plausible future contexts. As SD models represent highly complex systems, a model 

may react differently on an input if, for example, in two different parameterisations the 

system before the input was in a similar state. Different states of the system generate 

even more often different responses to inputs. Therefore, investigating the 

endogenous response to a range of exogenous inputs is not always “begging the 

question”. 

We used exogenous inputs in the research on societal ageing in the Netherlands, 

where it became clear that the combination of an increased male life expectancy 

combined with a stable or decreasing labour productivity would lead to unsustainable 

government finances. In the shale research, it was found that volatile energy prices 

could lead to situations of increased instability if the period with relatively low prices 

was long enough to create tipping-point behaviour where a country would have 

difficulty to recover into a more stable situation due to the strong reinforcing feedback 

of country stability and economic development (Chapter 4). 

Time horizon selection 

Part of the difference between consolidative and exploratory modelling in problem 

and scope selection can be explained by the difference between trying to explain and 

solve existing problems, and trying to identify potential future problems. Most SD 

studies are focussed on explaining existing problems (Lyneis, 2000), although many 

exceptions to that apparent rule exist (e.g., Meadows et al., 1972). This focus on 

existing problems seems to be related to a certain reluctance in the field of SD to use 

SD models for foresight. 

To the best of my knowledge, there is very little exploratory modelling research with a 

pure historic or even archaeological focus. It is conceivable, however, that 
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exploratory modelling can also be used for historic problems, as some historic issues 

are just as ill-defined as future problems due to a practically irreducible lack of 

knowledge. Still, all EMA studies until now are forward looking and are aimed at 

trying to identify potential future problems. As uncertainty can be expected to 

increase when researching to future, the forward looking nature of this research 

makes an exploratory approach even more fitting. 

Reference mode 

The last step, the selection of the reference mode, changes considerably if – instead 

of a consolidative approach – an exploratory approach is chosen. The reference 

mode is defined by Sterman (2000, p. 90) as “a set of graphs and other descriptive 

data showing the development of the problem over time”. The focus of the selected 

mode fits with the focus on existing problems. In some cases, however, even for 

consolidative use, hypothesised future behaviour can be used (Randers, 1980b). The 

goal of the reference mode is to be able to check whether the model is able to 

simulate the ‘correct’ behaviour. 

As exploratory modelling research typically focusses on the future, it may be 

nonsensical to find a reference mode based on historic behaviour. Further, when 

exploring what may happen, instead of what happened, focussing on only one mode 

is too limited. Instead, it is possible to compare expectations and forecasts by other 

researchers and analysts to the behaviour generated by the to-be-built exploratory 

simulation model, but also by imagining what might possibly happen. In this situation, 

other forecasts and imagined futures may be used as reference modes. However, 

there is one major difference: in exploratory modelling the focus is on generating at 

least all plausible reference modes, instead of the most likely mode or modes. In 

cases where it is impossible to generate one or more of the possible reference 

behaviours identified before, modellers should be able to explain, using the model, 

why this is impossible and why the simulated behaviour is still plausible. This in itself 

is also considered to be a relevant use of models in exploratory modelling. 

Communication about the impact of deep uncertainty on problem articulation 

It is always important to communicate the problem articulation used as a starting 

point for model development with clients and stakeholders, but in situations with 

innovative, multi-model approaches it is especially important to motivate why and 

how the use of multiple models contributes to analysing the research problem, and 

how exactly these models are used together. Therefore, in the copper research, it 

was important to explain which parts of the models overlapped and which were 

different due to the different perspectives that were to be modelled (Chapter 2), while 

the shale research (Chapter 4) included a research design picture. 
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Consequences of uncertainty on problem articulation 

In the problem articulation phase, the possibility of choosing multiple scopes is the 

most salient difference between exploratory and consolidative modelling. The 

operationalisation of the model development cycle thus changes already in the first 

phase (Fig. 7.1). The main reason for choosing multiple scopes is that in wicked 

problem situations, multiple views on how the system functions may exist. In those 

situations where it is impossible to unify these different views, using multiple model 

scopes may be a solution. However, if uncertainty at this phase is limited, there is no 

real difference with the operationalisation of a consolidative modelling project. 

 

Fig. 7.1. Model development cycle operationalisation expanded for exploratory problem 
articulation. 

7.1.3 Conceptualisation 

In the conceptualisation phase, an outline is sketched of the model or models which 

is (or are) going to be constructed. This makes this phase more modelling paradigm 
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specific than the problem articulation phase. In the SD modelling paradigm, 

conceptualisation entails that a hypothesis is generated and an attempt is made to 

make all important relations endogenous to the model. Diagrams are frequently used 

to facilitate these steps, while updated versions of these same diagrams can be used 

to communicate basic model structure after the research has been performed. In all 

these steps, deep uncertainty can play a role and choices made in the problem 

articulation phase will have knock-on effects. 

Consequences of problem articulation choices 

Together with the choice of a modelling paradigm, the choice of a multi-model 

approach has profound effects on the conceptualisation phase. Such choices will 

often lead to largely separate conceptualisations for each of the models. This is not 

the case if parallel multi-model use is considered. Parallel multi-models share part of 

their scope, making parallel conceptualisation of the models, focussing on both 

similarities and differences of these models, necessary. For example, in the copper 

case, the interaction between supply and demand is in principle similar for each 

model, creating a common core in terms of scope. The different perspectives caused 

the models to be different when it comes to the calculation of the intrinsic demand 

(bottom-up vs. top-down) and the regional trade (regional vs. top-down). 

Identification of main relations 

In consolidative modelling, model conceptualisation focusses on identifying the main 

relations between key variables within the chosen scope. In the case of SD, this 

comprises the main causal relations and the feedbacks they together cause. In SD 

thinking, the feedback effects, accumulations, and delays in them cause the system 

behaviour at hand. 

A crucial element in the SD conceptualisation phase is to translate existing mental 

models (Craik, 1943; Doyle & Ford, 1998, 1999; Johnson-Laird, 1983; Lane, 1999) 

into causal structures underlying the model under development. As one might expect 

in the context of this dissertation, I argue that deep uncertainty may occur when 

different mental models exist about a system. Consolidative SD, in particular group 

model building (Vennix, 1999), emphasises the role of models in trying to unify 

different views into a single shared model. However, there may be good reasons not 

to aim at unifying views. There are numerous examples of paradigmatic differences, 

which correspond to different mental models, that have not been unified thus far, and 

may never be unified. For example, in the resource scarcity literature a strict division 

exists between the ‘fixed stock’ and ‘opportunity costs’ paradigms (Tilton, 1996). 

While some have tried to unify these paradigms (e.g., Chapman & Roberts, 1983), 

the debate continues (cf., Gordon et al., 2006, 2007; Tilton & Lagos, 2007). Different 

perspectives on a system may also generate different explanations about the 

functioning of a system (Cole in Meadows et al., 1982, p. 205). In exploratory 

modelling, one can accept the disagreement of the mental models and try to unify the 
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different stakeholders at a later phase of the research. This can be done, for 

example, by finding a set of policies that is robust regardless of the differences in 

existing mental models. 

Mapping of main relations 

Most modellers use diagrammatic tools concurrent with the identification of the main 

relations. These tools provide a visual overview of the model under development, 

and can be used to communicate the aggregate structure or functioning of the model 

as well as the chosen scope. In SD, three different types of diagrams are commonly 

used for this purpose. These are the Causal Loop Diagram (CLD), the Stock Flow 

Diagram (SFD), and the Sub-System Diagram (SSD) (Morecroft, 1982; Sterman, 

2000). 

A CLD depicts the aggregate causal structure of a model with the polarity of the 

causal links between key variables, and the most important feedback loops within the 

model. An SFD is used to depict the basic stock-flow structure modelled, if this 

generates better insight in the functioning of the model than a CLD. This is the case 

for models with a prominent resource supply sub-model (e.g., Chapter 2). An SSD 

(Morecroft, 1982; Sterman, 2000) shows the main sub-models of which a model is 

composed and the relations between these sub-models. Its advantage, especially 

compared to CLDs, is that it gives a better overview of the components of the model. 

This characteristic makes it better suited to explain the structure of relatively large 

models. Therefore, if the wickedness of problems has been approached by 

expanding the scope, SSDs are often better choices than CLDs to explain model 

structures (e.g., Chapter 4). An additional advantage of SSDs is that they are less 

technical, making them potentially more acceptable for non-SD audiences. 

Uncertainties can be communicated in this phase by supplementing the existing 

diagrammatic conventions. I suggest to depict uncertain relations in CLDs with 

different font styles (e.g., italics) and dotted arrows. Depending on the public, 

different styles of dotted arrows may be used to make more refined distinctions 

amongst different origins of uncertainties. This will also work in SFDs. Fig. 7.2 shows 

a CLD example. Please note, that the loop signs are omitted in this diagram for 

clarity. In sub-system diagrams (SSDs) (Morecroft, 1982), such conventions are less 

needed as the wording on the arrows connecting the sub-systems already allows for 

indicating uncertainty. 
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Fig. 7.2. Example of a CLD with explicit uncertainties. Exogenous parametric uncertainties 
(e.g., exogenous economic growth) and uncertain scenario inputs (e.g., oil and gas prices) 
are in italics, endogenous uncertain relations (e.g., the link between education level and 
labour productivity) are indicated by dashed arrows, and uncertain government decisions are 
indicated by dash-dotted arrows. 

Dynamic hypothesis 

It is considered good practice in scientific research to present a falsifiable hypothesis 

ex-ante about the outcomes of the research. Modelling research is in that sense no 

exception, which is why in the SD community a dynamic hypothesis is formulated in 

the conceptualisation phase. The dynamic hypothesis is a working theory of how the 

policy issue arises from the structure of the system (Lane, 1993; Randers, 1980a; 

Sterman, 2000). In consolidative SD practice, this means an explanation of how the 

conceptualised system structure generates the reference mode from the problem 

articulation phase. 

If deep uncertainty exists about the modelled system, this may have consequences 

for formulating the dynamic hypothesis. This hypothesis may be influenced by the 

level of uncertainty (Kwakkel et al., 2010) of both the input data (i.e., all parameters, 

initial values, and input scenario data to be used for model setup), and the available 

information about the structure. That is, under deep uncertainty there may be multiple 
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dynamic hypotheses for one reference mode, one hypothesis explaining multiple 

reference modes, or multiple hypotheses explaining multiple reference modes (Table 

7.2). 

Table 7.2. Impacts of uncertainty on dynamic hypothesis formulation. 
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Having more than one hypothesis about the relation between structure and behaviour 

fits the exploratory modelling paradigm quite well, in particular in cases of open 

exploration of plausible system behaviour. I would recommend, therefore, to list a set 

of these hypotheses in EMA work. To some extent this is in line with the consistent 

use of the plural form ‘dynamic hypotheses’ by Keating (1998). When one or more 

hypotheses are falsified throughout the wide range of modelled behaviours, this may 

prove an especially valuable contribution to a policy discussion. In the shale research 

policy report (De Jong et al., 2014), we did pose a hypothesis about the expected 

behaviour, which was subsequently falsified. We believed that shale gas would 

provide gas for gas substitution, lowering natural gas prices in Europe. The simulated 

behaviour suggested otherwise regardless of the existing uncertainties, however, as 

it provided a strong argument about a higher volatility of oil prices as a result of the 

fact that it is easier to accumulate a production surplus of oil than a surplus of natural 

gas. Consequentially, the oil price, which depends on existing stocks of oil rather 

than just the current production, becomes more volatile and shows ‘hog cycle’ 

(Hanau, 1928) behaviour (Chapter 4). In this case, we could have provided a broader 

set of hypotheses given the known uncertainties and complexity of the global energy 

system. 

Consequences of uncertainty on conceptualisation 

Uncertainty may expand the operationalisation of the model development cycle in 

two different ways in the conceptualisation phase (Fig. 7.3). If in the problem 

articulation phase multiple scopes were defined, multiple conceptual models will have 

to be developed. If uncertainty did not play a role in the problem articulation phase, 
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structural uncertainties in one conceptual model can be the first manifestations of a 

need for exploratory modelling. Such structural uncertainties can, of course, also be 

part of multiple conceptual models (not visible in figure). However, it is still possible to 

have no serious manifestations of uncertainty so far. In that situation, only a single 

conceptual model without structural uncertainties can be developed. 

 

Fig. 7.3. Model development cycle operationalisation expanded for exploratory 
conceptualisation. 

7.1.4 Formulation 

In the formulation phase, the model is specified: equations or decision rules are 

specified, and parameter values are given. The formulation phase is even more 

modelling paradigm specific. To some extent, it is even modelling language 

dependent, as a modelling language may make specific types of formulation more 

suitable compared to alternative modelling languages within one paradigm. For 

example, Vensim (Ventana Systems, 2010) has a somewhat different implementation 
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of table or lookup functions than Powersim (Powersim Software, 2017). Kwakkel et 

al. (2010) refer to this issue as model implementation uncertainty. 

Consequences of choices in earlier phases 

The choices made in the problem articulation and conceptualisation phases have 

consequences for choices during model formulation. All problem articulation choices 

that affect conceptualisation do so during formulation as well. This specifically counts 

for the modelling paradigm choice, and multi-model approaches. In the case of 

parallel multi-models, the shared common core of the set of models can best be 

developed first before other unique parts are developed. This way, it is possible to 

maintain the similarity between these shared model components. This approach was 

used in my copper research (Chapter 2 and 3). In addition to these effects, structural 

uncertainties identified in the conceptualisation phase also need to be modelled. 

Structure formulation 

In consolidative modelling, the modeller defines one equation per variable. 

Combinations of variables together form unique structures or decision rules in which 

every element of the system structure is thus modelled exactly once. However, if the 

conceptualisation reveals major structural uncertainties, this is impossible to 

maintain. In these situations, the exploratory modeller will have to define different 

options in parallel (i.e., alternative structures) within the model. In SD this means that 

for each variable affected by the structural uncertainty, multiple values are 

simultaneously calculated. A switch variable, constant during the entire run time, 

determines which of the calculated values is used to influence the rest of the model. 

In other types of equation-based modelling, similar approaches can be used for 

dealing with structural uncertainties. 

Structural uncertainties may be included in model formulation for more pragmatic 

reasons (Peterson & Eberlein, 1994), other than theoretical reasons originating in the 

literature. There are multiple ways of representing some relations or larger structures 

in models even when, or especially when, there are no explicit discussions in the 

literature on how these structures should be modelled. For example, what order of 

delay to use? How many stocks to use to disaggregate an ageing chain? One 

approach would be to just test the structure at hand with each equation and choose 

the one that functions best. Another approach would be to try to aggregate the model 

such that the uncertainty disappears in the aggregation. It is conceivable, however, 

that there are some remaining situations in which there are only pragmatic reasons 

for choosing one representation. This can be the case if both produce different, yet 

plausible results. In these situations, I recommend modelling all plausible 

representations and use switch variables to explore the consequences of these 

uncertainties, instead of using a hit-or-miss tactic and choosing among the options. 
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Parameter formulation 

Major differences between consolidative and exploratory modelling occur in 

parameter formulation. In consolidative modelling, the modeller will try to use a most 

appropriate value of any parameter specified. Sometimes the parameter values are 

chosen such that the simulation fits the reference mode best. In exploratory 

modelling, however, many parameters are considered to be deeply uncertain. In 

these cases, there is no best value for these parameters, only a parameter range. 

The modeller may choose to make this explicit during model formulation by referring 

to the plausible range and it’s background in the equation comments. 

At the end of the formulation phase, all uncertainties will need to be traceable in later 

analyses of simulation results. For example, in the evaluation or the policy analysis 

phases. Therefore, all non-parametric uncertainties, whether they result in multiple 

models or multiple structures in models, need to be parametrised to make analysis of 

these results possible, manually or by using computer algorithms. Non-parametric 

uncertainties in particular should be treated as categorical uncertainties. In this way, 

different model behaviour due to multiple models or structural uncertainties in models 

can be traced back to the input assumptions. 

Consequences of uncertainty on formulation 

Uncertainty may expand the operationalisation of the model development cycle also 

in terms of differences in model simulation files (Fig. 7.4). Multiple conceptual models 

will generally lead to an equal number of different simulation model files. If structural 

uncertainties make the development of a single simulation model file too impractical 

(e.g., Chapter 2), this may also motivate specifying multiple models. Otherwise, 

structural uncertainties may be made part of a single model. Sometimes, the problem 

may make a ‘driven’ model suitable for the question at hand. In such cases, 

exogenous scenarios will be part of the model file. Further, it may be possible to have 

multiple possible formulations for one or more relations in the model or models. 

However, also after the formulation phase, it may be possible that the uncertainties 

were not significant enough to make such choices necessary. The exploratory model 

development operationalisation is then similar to consolidative modelling. 
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Fig. 7.4. Model development cycle operationalisation expanded for exploratory formulation. 

7.1.5 Evaluation 

In the evaluation phase, the model is subjected to various tests to assess its quality. 

These tests respectively focus on whether the model has been correctly constructed 

(i.e., verification), and whether it is fit for purpose (i.e., validation) (Barlas, 1996; 

Hodges & Dewar, 1992; Oreskes et al., 1994). The concepts of verification and 

validation in SD correspond to a large extent to how these terms are used in, for 

example, operations research and management science (Balci, 1994, 2013; Lane, 

1995). The results of the tests can also be communicated to convince stakeholders, 

policy-makers, or readers of model quality given the purpose.  

Once the model or models pass the verification and validation tests adequately, one 

or more base runs are selected for analysis and communication. This step entails the 

most striking difference between consolidative and exploratory modelling: generating 

a base ensemble of runs in contrast to a single base case. 
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Some of the early literature on exploratory modelling questions whether exploratory 

models can be validated (Hodges & Dewar, 1992). Part of the discussion lies in the 

interpretation of the word ‘validation’ itself, which implies that a model can be correct 

or true. The discussion is thus semantic in nature and does not reflect the 

operationalisation of the validation steps. There are examples of EMA research in 

which the validation process seems to reflect consolidative modelling practices (e.g., 

Fischbach, 2010). Hodges & Dewar’s objection to validation suggests that all such 

efforts are wasted time, but this can be considered unsatisfactory by clients and 

stakeholders interested in a quality assessment of the research’s methodology. 

Moreover, when one understands validation as the process of establishing the fitness 

of a model for a purpose, the claim that validation is strictly impossible no longer 

makes sense. Therefore, it is important to assess how traditional verification and 

validation approaches are altered by deep uncertainty. 

As the outcome of the tests performed in the evaluation phase depends on the 

exploratory modelling purpose, it is important to revisit the question at hand as 

defined in the problem articulation phase, and how it is different compared to 

consolidative modelling purposes. 

Structural validation 

In SD, structural validation tests include structure-verification, parameter-verification, 

extreme-condition, boundary-adequacy (structure), and dimensional-consistency 

tests, while behavioural validation tests include behaviour-reproduction, behaviour-

prediction, behaviour-anomaly, family-member, surprise-behaviour, extreme-policy, 

boundary-adequacy (behaviour), and behaviour-sensitivity tests (Forrester & Senge, 

1980). Both types of tests are often performed simultaneously and iteratively 

throughout the modelling cycle. Some of these tests are also considered to be part of 

model verification. The EMA approach does entail some quite significant changes in 

the assessment of some of the structural validation test outcomes (e.g., structure-

verification, boundary-adequacy, parameter-verification, and extreme-condition 

tests), while the test descriptions do not need to change. For other tests, for example 

dimension-consistency tests (i.e., unit checks), there is no difference with 

consolidative modelling at all. This also holds for the more technical verification tests. 

The structure-verification test compares the modelled structure to the observed 

system. For this test, the outcomes of the conceptualisation phase are most 

important, especially the underlying mental models. In traditional, consolidative 

modelling practice, this means that the model tries to unify existing knowledge. In the 

exploratory approach, this means that all plausible, yet contrasting mental models 

should be taken into account. Further, literature sometimes agrees on the fact that 

some structure is unknown, as is the case with the grade-tonnage distribution of 

metals in the lithosphere (Gerst, 2008). Therefore, in an exploratory modelling 

approach, one needs to check whether all relevant structural uncertainties have been 

taken into account.  
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Similarly, boundary-adequacy tests look both at whether the model contains the 

structures it needs given the purpose and the aggregation level. These tests are 

extremely relevant for exploratory modelling, as deep uncertainty has a strong impact 

on the choices regarding the system’s boundary. For exploratory models, these tests 

entail whether all, or the most important, existing perspectives on the system have 

been modelled. Further changes come from the intended use of the model. It is 

always important to be able to map the outputs back to the input space. The existing 

algorithms for Scenario Discovery, Patient Rule Induction Method (PRIM) (Friedman 

& Fisher, 1999) and Classification and Regression Trees (CART) (Breiman, 

Friedman, Stone, & Olshen, 1984), fail in case of the use of highly non-linear models. 

To work around this issue, the modeller may opt for an exogenously driven model, 

which may lead to less non-linearity in the model. For example, an exogenously 

driven model was used in the research on societal ageing (Chapter 5). Alternatively, 

uncertainty may also lead to expansion of the traditional boundary, as was the case 

in the research on the Ebola epidemic (Chapter 6; Pruyt et al., 2015). Therefore, an 

important test should be whether the boundaries chosen actually fit the intended 

purpose of model use. 

The parameter-verification test changes as sometimes uncertainty may exist about 

the conceptualisation of a parameter. In this test, whether model parameters 

conceptually and numerically correspond to the system is checked by comparing 

them to existing knowledge about the system (Forrester & Senge, 1980). In 

consolidative modelling, each parameter is considered to have a best value. In 

exploratory modelling, parameters are considered to have at most a bandwidth of 

values, while determining a best value is impossible. These bandwidths may 

sometimes be based on different values found in available data or literature, but 

otherwise it may be possible to derive theoretical bounds of the parameter values. An 

example may be the value of a country’s GDP. Many different ways of calculating a 

GDP exist, and even given the purpose of a model, it may be hard to determine 

whether the value given by, for example, the World Bank, the IMF, the UN, or the CIA 

World Factbook is best. In such a situation, it is possible to include different ways of 

calculating a variable in the model, determine the lowest and the highest value and 

consider all values in between as plausible.  

In extreme-conditions tests, the modeller tests either whether the model keeps 

behaving within physical bounds and according to plausible mechanisms when 

values of one or more variables are outside normal bounds, or under which 

conditions the model ‘breaks’ (i.e., a run cannot be completed due to floating point 

errors) and stops functioning.  

The first interpretation of extreme-conditions tests is advocated within SD as an 

important and valuable test (Forrester & Senge, 1980; Sterman, 2000), and is 

sometimes referred to as ‘reality check’ (Barlas, 1996; Peterson & Eberlein, 1994). 

For example, if a modelled economy is cut off from energy supplies, the economic 
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output should be reduced to practically zero. This test becomes problematic, 

however, when the model tester misinterprets the meaning of a model variable if the 

definition of that variable is ambiguous. Ambiguity is a form of deep uncertainty 

(Kwakkel et al., 2010). Following on economic thought, one might argue that the 

demand for a good should be zero when prices for that good are extremely high. If 

the tester artificially sets the price to a very high value, and the demand is not 

reduced to zero, the tester considers the model to show implausible behaviour. 

However, in an alternative interpretation demand may also be defined as a need. For 

example for food, then the demand should not be reduced to zero. Most would agree 

that children in developing nations that cannot afford food, still have demand for it. 

Therefore, the use of reality checks without paying attention to the scope and 

purpose of the model is naive. 

The second interpretation of extreme conditions tests tries to find conditions under 

which the model breaks. This can be done be testing the model for a wide variety of 

input parameters. The EMA approach provides tools to perform this test in a very 

systematic way. Especially if the uncertainty space is taken relatively wide (i.e., 

parameter bandwidths within theoretical, broad bounds and not practical, empirical 

bounds), the sampling for run generation functions as multivariate extreme-conditions 

tests. As a consequence, the first sets of runs performed with a new model often 

result in uncompleted runs.  

Behavioural validation 

Many of the behavioural tests traditionally used for validation are an integral part of 

the analysis of the ensemble of model runs generated. The uncertainty analysis in 

exploratory modelling can be seen as a more extensive form of sensitivity analysis 

(Herman, Reed, Zeff, & Characklis, 2015; Kleijnen, 1997). With many other 

behaviour-oriented validation tests, validation is more extensive in exploratory 

modelling than in consolidative modelling, and aimed at generating insight into all 

possible behavioural modes, not merely to support the validity of the model for a 

reference run. As such, the statement of Forrester and Senge (1980) that SD models 

are relatively inert when it comes to their behavioural modes, is not necessarily true 

in the context of exploratory modelling using SD. 

For ‘behaviour-reproduction’ and ‘behaviour-prediction’ tests (Forrester & Senge, 

1980), deep uncertainty means that the runs generated should at least show 

behaviour that is or can be considered to be characteristic of the system. In 

consolidative use, the ideas behind these tests do entail the danger of prejudice or 

stove-piping: the system can be modelled such that the preconceived ideas are 

made to come out. An example would be to model metal or energy reserves such 

that they will be finished within the run time, while some researchers believe that this 

is not plausible. In EMA, however, the models should be able to reproduce all 

plausible theories, or be explicit about focussing on a subset of the available 
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theories. Trying to model these different world views or perspectives potentially has a 

large effect on the wealth of behavioural modes generated with the set of models. 

Behavioural tests are executed in a more systematic manner in exploratory modelling 

compared to consolidative modelling. This is especially the case for the behaviour-

anomaly and the surprise-behaviour tests (Forrester & Senge, 1980). In both tests 

one looks for unexpected behaviour, but in the first this regards behaviour considered 

in conflict with the real system, whereas in the second this regards behaviour that 

was not expected with current knowledge of the real system, but which proves 

plausible. As exploratory modelling includes generation of a large set of runs, it 

provides a systematic way of trying to find as many possible behaviours as possible. 

These generated model behaviours form input for the behavioural tests. However, 

model behaviour that can be considered impossible in any future, can still be 

rejected. The analyst should, in such cases, assess whether such anomalous 

behaviour warrants a change to the model structure or to the associated uncertainty 

space. 

The EMA methodology also makes use of a single general model in very different 

parameterisations easier and more systematic. This relates to the family-member test 

(Forrester & Senge, 1980), which tests whether a model can be applied to a similar 

situation with partly or completely different parameter values. For example, whether a 

model about country A can be applied for other countries as well. After all, if a model 

can already be used within a broad band of uncertainties, it is only a small step to 

use this same model for a similar class of problem, but in a different context. The 

parameterisation of one model for multiple countries is an extreme application of the 

family-member test. Examples of such a practice can be found in in the shale case 

(Chapter 4). In newer research (Chivot, Auping, De Jong, Rõõs, & Rademaker, 2016; 

De Jong et al., 2017), we parameterised one general model for 167 different 

countries. 

Sometimes, real-life developments render part of the outcome ensemble obsolete. 

While it may seem that this renders the model invalid or should lead to a serious 

reduction of the input space, it is possible that in complex models the same input 

space can generate runs that produce historic and present day behaviour, as well as 

plausible behaviour currently not seen in the system. However, different parts of the 

input space may also generate similar behaviour, which is exactly the opposite and 

called equifinality (Bertalanffy, 1968). Both equifinality and the opposite were seen in 

the Ebola case (Chapter 6), where different parts of the input space were able to 

generate outcomes with behaviour seen in the system. A solution – if real-life 

developments render part of the outcome ensemble obsolete – is to post-process the 

runs in order to select only runs satisfying observed conditions for further analysis, 

like testing policy changes for their robustness. The modeller should thus not try to 

force the model into the observed behaviour by reducing the uncertainty space, if this 

reduction leads to fewer runs in the observed outcome space. 
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Simulation 

 

Fig. 7.5. Example of a base ensemble of runs generated by exploratory modelling. On the 
right, a kernel-density estimate of the distribution of end states is visible. From Chapter 4. 

The differences between consolidative and exploratory modelling approaches are 

most visible during simulation. The differences originate from the fact that in 

exploratory modelling approaches, no base case is generated, but rather a ‘base 

ensemble’ of runs (e.g., Fig. 7.5). The ensemble is generated by sampling over all 

relevant structural and parametric uncertainties. In practice, this means that structural 

and model uncertainties are reduced to parametric, categorical uncertainties. 

Ensembles are used in exploratory modelling to explore plausible system behaviour 

and find underlying causes for runs of interest. This process is referred to as 

Scenario Discovery (Bryant & Lempert, 2010). The underlying causes for the runs of 

interest generally correspond to specific smaller bounds of a selection of 

uncertainties within the entire uncertainty space. The identified sub-space of the 

entire uncertainty space can support the design of new policies. Sometimes, a 

selection of the whole ensemble is made to function as representatives or 

‘exemplars’ (Islam & Pruyt, 2016; Pruyt & Islam, 2016) to make further analysis more 

insightful.  

Second, ensembles are used to tests policies for their robustness. This is referred to 

as Robust Decision Making (RDM) (Lempert et al., 2006). Consolidative modelling 

can also use sensitivity analysis and a selection of runs – often also called 

‘scenarios’ – to test policy robustness. However, it relies on both the manual 

generation of scenarios for this purpose, and manually testing policy robustness. The 

exploratory modelling toolkit provides a systematic, automated, and more rigorous 

approach.  
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Consequences of uncertainty for evaluation 

The evaluation phase is arguably the clearest ‘exploratory’ modelling phase. In the 

vast majority of examples of exploratory modelling work thus far, this is the first 

phase in which uncertainty explicitly enters the analysis. In these cases, the 

ensemble of runs is generated by a single model, which has been developed in a 

more traditional, consolidative setting (Fig. 7.6). 

 

Fig. 7.6. Model development cycle operationalisation expanded for exploratory evaluation. 

There may be several reasons for using an existing consolidative model in 

exploratory modelling. For example, there may be no budget to develop new models, 

but it is known that the exploration of parametric uncertainties is already meaningful. 

It is often considered desirable for acceptance of results to use established yet 

consolidative models. Finally, it may be established that all uncertainties are indeed 

parametric, making the development of explicitly exploratory models not necessary. 
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This dissertation demonstrates how structural uncertainties can be included in a 

single simulation model, as well as how multiple models can be used to generate the 

base ensemble. Further, I discussed that the exploratory modelling approach does 

change practices to assure model quality. In fact, many of these tests are an integral 

part of exploratory modelling practice. As a consequence, I argue that properly 

designed exploratory models are necessarily thoroughly tested for purpose.  

7.1.6 Policy testing 

The policy testing phase is the final phase of the modelling cycle and the last phase 

in which uncertainty is often ignored, while it can be argued that both the effects of 

policies and their timing are in fact deeply uncertain. In consolidative practices of SD 

as well as many other simulation modelling paradigms, with or without the EMA 

approach, it is common to model policy implementation as a discrete shock to the 

system (i.e., the policy is turned on or off), either at the beginning of the run time, or 

at one or more discrete moments during the run time. Examples of this practice 

include policy testing common in SD (e.g., Bleijenbergh, Vennix, Jacobs, & van 

Engen, 2016; Sterman et al., 2012; Wunderlich, Größler, Zimmermann, & Vennix, 

2014), the impacts of interventions in transmission models (e.g., Camacho et al., 

2014; Fasina et al., 2014; Fisman et al., 2014), and standard robustness tests in 

EMA work focussed on time dynamics (Hamarat et al., 2014; Molina-Perez, 2016). 

Further, policy choices desirable for one actor may be undesirable for another actor. 

This is also a specific kind of policy uncertainty. 

Policy implementation itself is, however, deeply uncertain (Haasnoot, Kwakkel, 

Walker, & ter Maat, 2013). Policy implementation uncertainty may originate from 

either the unknown implementation, or an unexpected or unknown system response. 

This unknown system response may have all kinds of reasons, including political 

uncertainties, policy resistance, and overall uncertainty regarding the effect of a 

policy on an indicator. In any case, most policies are not implemented in an on-off 

fashion, but will start their impact in a gradual and delayed manner. The model 

implementation of a policy is, however, often modelled in this on-off fashion. 

The policy implementation issue is exacerbated if the power of decision makers in 

the system is relatively limited. In the Ebola case, both policy implementation and 

system response were uncertain, while the GICMP case illustrates additional 

implementation issues when the power of decision makers is limited. In the Ebola 

case (Chapter 6), both the exact implementation (e.g., speed of deployment) of 

intervention capacities and the impact of the different types of interventions (e.g., the 

effective reduction of the reproduction rate in isolation facilities) was uncertain. This 

last effect in particular could have had a tremendous impact on the fact that the 2014 

Ebola epidemic went out of control. 

Regardless of the source of policy implementation and impact uncertainty, there are 

multiple ways of dealing with this type of uncertainty in EMA studies. For example, 
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making the policy effects uncertain, or the speed of the policy implementation 

uncertain. 

The first method is to include the uncertain elements of policies in the sampling 

phase of exploratory modelling. In this way, the policy analysis phase becomes 

technically indistinguishable from the formulation and evaluation phases.  

The second method is to model policy responses in interaction with the system, 

which is consistent with the view on policies as part of feedback loops in the SD field. 

Policy implementation uncertainty exists mostly about the timing of policy 

implementation, where policies delayed may become policies denied. It is closely 

related to both the ‘Integrated Risk-Capabilities Assessment’ (Pruyt, 2012) and the 

‘dynamic adaptive policy pathways’ (Haasnoot et al., 2013) approaches. Policy 

implementation uncertainty was also illustrated in recent work by Zeff, Herman, 

Reed, and Characklis (2016). All these authors treat the exact effects of an 

intervention as uncertain. In my work, policy uncertainty was included in the Ebola 

case (Chapter 6). 

Next to policy implementation uncertainty, uncertainty or different opinions about the 

policy desirability exist. This issue was demonstrated in Chapter 5 with the societal 

ageing case. In this problem, the solution for untenable expenditure on retirement 

benefits may be considered to couple the retirement age to the life expectancy. 

However, this policy is considered undesirable by part of the population, as it 

increases the uncertainty about their financial situation between the previously 

perceived retirement age and the final effective retirement age, and the fact that 

some people look forward to being retired. In situations like these, trying to find 

robust policies is more complex, as seemingly contradictory interests need to be 

united. The solution can sometimes be found in additional policies that decrease the 

negative sentiment regarding the initial policy. In this case, I suggested that first 

trying to raise the informal “leaving age” (i.e., the age at which people by average 

stop working), hence making raising of the retirement age more something which 

only reflects the already existing reality. 

Consequences of uncertainty on policy testing 

The consolidative way of policy testing – one by one, and as shock to the system 

rather than modelling the gradual and uncertain response – often relies on univariate 

policy testing. The best combinations of policies are thus found by manual trial-and-

error. By making use of the possibilities offered by exploratory modelling tools, this 

process can be made more systematic and automated. 

Exploratory policy analysis can be made multivariate, where in fact a policy is treated 

more or less as if it is an ordinary structural uncertainty. The what-if analysis for 

which the simulation model is used can thus also be extended, as the circumstances 

under which policies and their combinations are successful, including policy 

implementation uncertainties, can be made explicit.  
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Fig. 7.7. Model development cycle operationalisation expanded for exploratory policy testing. 

7.1.7 Conclusions on the complete exploratory model development cycle 

Most exploratory modelling research to date acknowledges uncertainty only in 

evaluation and policy testing. That is, virtually always a single consolidative model is 

used in an exploratory way. However, the extended, exploratory modelling cycle (Fig. 

7.7) makes clear that considering uncertainty is possible – or very important – in 

earlier phases of model development as well. If choices are made to acknowledge 

deep uncertainty in one of these earlier phases, this will render reducing the 

uncertainty by returning to the inner, consolidative modelling cycle in next phase 

impossible. However, if after performing one whole cycle of model development 

demonstrates that deep uncertainty had no consequence for the analysis of a 

specific problem situation, one could choose to ignore it in the communication about 

the model analysis by focussing on a single run (i.e., a base case). 
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7.2 Impact of complexity of models on Scenario Discovery 

Development of exploratory models is often aimed at model use in EMA approaches 

like Scenario Discovery and Robust Decision Making. The use of non-linear models 

in this dissertation for exploratory use was promising, but using them for Scenario 

Discovery, a common practice in exploratory modelling, was often problematic.  

Scenario Discovery aims at trying to link interpretable combinations of input values to 

those simulation outcomes that represent particularly undesirable futures by making 

use of computer-learning algorithms (Bryant & Lempert, 2010). Evidently, the same 

analysis can be used to find regions in the model input space that produce highly 

desirable futures. In my experience, this approach becomes problematic when used 

with highly non-linear SD models. There are three origins for these problems: the 

classification of outcomes, the non-linearity of mapping inputs to outputs in these 

models, and high dimensionality of the uncertainty space. 

7.2.1 Classification of behavioural modes 

Simulation models, specifically SD and Agent-Based models (ABM) (Epstein & Axtell, 

1996), generate dynamic behaviour patterns over their run time. Classification of 

such outcomes by their behavioural mode is often very difficult. While some modes of 

behaviour are easy to classify (e.g., linear or exponential growth or decay, and 

oscillations with constant amplitude and period), other types of behaviour exhibited 

by SD models include super-positions of these modes, and even more complicated 

modes of behaviour. 

The most frequently used method of classification in an EMA context is by generating 

a binary classification of model outcomes using the end (i.e., scalar) values of the 

runs. This type of classification was used in our ageing research (e.g., Chapter 5). 

However, the way an end value is reached is often at least as important. Binary end-

value classification does not acknowledge this. 

In the research on copper price scenarios, we tried to classify the models’ 

behavioural modes (Chapter 2) using behaviour pattern features (Yücel & Barlas, 

2011). This approach was unsuitable, however, to distinguish between different 

oscillatory dynamics, as oscillatory dynamics may have very different causes. First 

classifying them with behavioural pattern features and then using PRIM on the 

selection did not generate results that were easily interpretable. 

In more recent work (Chapter 4), we classified behaviour by combining different 

behaviour characteristics (Pruyt & Islam, 2016), like the length of the line or 

‘roughness’ combined with either the maximum value (Islam & Pruyt, 2016), the 

average value (Pruyt & Islam, 2016), or the roughness combined with the number of 

times the mean of the line is crossed (Chapter 4). Besides using this approach for 

selecting runs of interest, it can also be used to increase the sample size of regions 
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in the output space that are apparently under-sampled: a process of ‘adaptive 

sampling’ (Bucher, 1988).  

The idea of combining adaptive sampling with time-series feature selection is 

interesting and promising. Yet in the implementation used in this thesis (Chapter 4), it 

was not sufficient. The samples were not sufficiently large to allow proper mapping of 

selected outputs back to the input space, while the behaviours were too often quite 

different, yet classified as similar, or the opposite: very similar, but classified as 

different. 

7.2.2 Linking inputs to non-linear behaviour 

Scenario Discovery (Bryant & Lempert, 2010) and RDM (Lempert et al., 2006) make 

use of computer learning algorithms to link behaviour to parts of the uncertainty input 

space. PRIM and CART are examples of these algorithms. Both make orthogonal 

cuts in the input space by limiting the bandwidth of specific input parameters. This 

results in orthogonal boxes in the input space (Lempert et al., 2008). However, in 

case of non-linear interactions amongst the uncertain factors acting as input to  

models, it may become impossible to find orthogonal boxes of input parameters that 

link to the binary classification of outcomes. 

Linking orthogonal boxes of inputs to the behaviour modes exhibited by SD models 

may be problematic for two reasons: non-linearity and equifinality. Due to the non-

linearity, feedbacks, delays, and accumulations in the models, input parameter 

ranges leading to specific behavioural modes may be dispersed through the entirety 

of an input parameter’s bandwidth. We tried to rotate parts of the input space with a 

principle component analysis before performing PRIM (Dalal et al., 2013) to 

overcome these issues (Chapter 3). Rotation does, however, not change the need for 

orthogonality of the input space if PRIM and CART are to be used. 

The potential for equifinality (Bertalanffy, 1968) is also not reduced by the orthogonal 

cuts of PRIM and CART. The same part of the input space may still generate very 

different behaviours, while very different parts of the input space may generate the 

same behaviour in non-linear models. This further complicates performing Scenario 

Discovery with results generated by non-linear models. 

One potential way of solving this issue is to focus more on relations among 

endogenously modelled variables. This requires more model analysis after runs have 

been performed, for example by focussing more on the state phase, or phase plots of 

different combinations of important system performance indicators. This idea has 

been suggested and demonstrated in the SD field before (e.g., Andersen & Sturis, 

1988; Bruckner, Ebeling, & Scharnhorst, 1989; Rasmussen, Mosekilde, & Sterman, 

1985; Reiner, Munz, & Weidlich, 1988; Thissen, 1978), but it has not found wide 

application. We applied this principle in the shale case (Chapter 4), although phase 

plots were not used as illustrations. We selected energy price dynamics on the basis 

of the performance of other endogenous performance indicators. This approach 
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makes clear that specific combinations of outcome ranges are impossible. For 

example, in later work, it appeared to be impossible to have effective climate 

mitigation policies in combination with a high oil price (De Jong et al., 2017). 

7.2.3 Interpretation of high numbers of uncertainties 

In cases with a high number of uncertainties (i.e., in practice over 30 uncertainties), 

the number of dimensions found in PRIM boxes is generally also higher, which 

makes it harder to interpret the results. These large numbers of uncertainties are 

often caused by a relatively low model aggregation level that corresponds to 

aggregation levels found in relevant literature. This issue can be resolved by 

reducing the number of uncertainties, or by performing enough runs to generate all 

possible behavioural modes with a sufficiently large sample size for each mode of 

behaviour. 

We have tried to reduce the number of uncertainties by making use of Random 

Forest-based feature scoring (Breiman, 2001). The result of this approach was that 

removing uncertain parameters that appeared to have no effect on model behaviour 

resulted in a reduction in the variety of behavioural modes generated by the model. 

The assumption based on the random forest scores was thus incorrect. Input factors 

that did not have an influence by themselves, proved to have a significant influence 

when combined. Further, besides simply performing more runs in the case of a large 

number of uncertainties, smarter sampling to generate all possible system behaviour 

(Pruyt & Islam, 2016) may also be an option. In this method, additional sampling 

takes place in spaces of interest, trying to find additional behavioural modes not 

found by standard Latin Hypercube sampling with a reasonable sample size. 

7.3 Reflections on costs of exploratory modelling 

The costs of exploratory modelling compared to consolidative modelling include 

longer time needed for model development and analysis, higher computational costs, 

and an increased risk of information overload.  

As evidenced by the extended modelling cycle, explicitly accounting for deep 

uncertainty during model development means exploring multiple alternative 

conceptualisations of systems or parts thereof, assessing whether or not these 

alternative conceptualisations make a difference, and analysing larger amounts of 

model results. All these different choices lead to extended model development and 

analysis time.  

In addition to that, running one or more models for thousands of different 

computational experiments, rather than a handful of manually selected scenarios, 

leads to a proportionate increase in computational costs. It was the relative short run 

time for a single experiment with an SD model that kept these additional costs within 

tenable limits. For more computationally intensive model paradigms, however, this is 

a potentially problematic issue. Another source of increased computational costs 
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arises from the size of the output data sets being generated through exploratory 

modelling. These data sets are always high-dimensional, often temporal, and 

sometimes spatially explicit. Analysing these data sets stretches the demands 

imposed on computing hardware, such as system memory and processing speed. A 

promising direction for future research is to draw on technological development in the 

field of stream or real-time data analytics. 

Besides the computational requirements for the analysis, the large amounts of data 

generated may also rapidly cause an information overload for the analyst. Fig. 7.5 is 

still a conservative picture in exploratory modelling, as the 2000 runs depicted still 

show a relatively neat set of behavioural modes. However, especially for more highly 

dimensional pictures, and phase plots, the ease of interpretation quickly deteriorates. 

Therefore, the analyst needs to rely on subsequent analyses to make sense of 

outcomes that previously could be directly comprehended. For example, compare a 

graph with a few lines with the visual spaghetti of Fig. 7.5. Next to this information 

overload, exploratory modelling easily results in a combinatoric explosion of 

possibilities, which often create amounts of data that cannot be analysed within one 

research project. For example, in the shale gas study (Chapter 4), I analysed the 

impacts of eight different price scenarios and 73 additional uncertainties on the state 

stability of six oil and gas producing countries. To make this possible, I explicitly 

limited myself to consider only a single metric of state stability, rather than 

considering a range of relevant indicators, such as demographics, youth 

unemployment, purchasing power, the development of the national economy and 

resource rents, and the situation of government finances and polity. In later research 

not part of this dissertation (Chivot et al., 2016), this problem was exacerbated as 

167 countries were analysed. 

7.4 Reflections on communicating policy relevant insights 

After model development and use, a policy analyst needs to communicate about the 

results and underlying research. This communication takes place with stakeholders 

in policy discussions, and in domain specific and methodological scientific journals. 

The goal of the research presented in this dissertation was in all cases to increase 

awareness of plausible, problematic, and potentially overlooked futures. To find 

these, we chose to perform open explorations of potential system behaviour, from 

which problematic behaviours could be selected. Open exploratory modelling has a 

policy agenda-setting goal (Rogers & Dearing, 1988). This corresponds to the first of 

four roles of models in the policy life cycle (van Daalen, Dresen, & Janssen, 2002). 

The agenda-setting goal is emphasized by the fact that even while all research in my 

dissertation was performed for a client, the client’s intention was never to directly 

inform new policy development. Agenda setting was further illustrated by several 

newspaper articles following the research (e.g., De Jong & Auping, 2014a, 2014b). 



 

164 

Regardless of the research objectives of the papers in this dissertation, the 

underlying work induced both negative and positive reactions. In the following sub 

sections, I will provide some anecdotal illustrations of these responses and try to 

assess their causes. It thus seems that for novel methodologies scientists and policy 

analysts should be careful in picking their battles, and should be trying to focus on a 

pragmatic argument of complementarity of exploratory approaches compared to 

existing approaches. 

7.4.1 Reception in policy discussions 

Policy-makers reacted both negatively and positively when they encountered our 

EMA based policy research. They reacted negatively for many reasons. First, the 

EMA methodology often proved to be difficult to understand. To emphasise that, 

policy-makers often replied that the research was considered to be very innovative, 

and that due to that fact they needed more time to fully grasp it’s added value. In that 

sense, “very innovative” appeared to be used as a polite, but negative value 

judgement. Second, it could be noted that quantitative simulation modelling 

approaches were often considered to be relatively expensive when compared to 

qualitative research. This cost issue was found to limit accepting research proposals. 

Third, in some cases, policy-makers and stakeholders found it difficult to accept 

findings from our research, as they found them counterintuitive. For example, in 

presentations of the shale gas research in late 2013 and early 2014, attendees 

commented that they would expect oil prices only to go up, and not to go down. 

However, the fact that oil prices fell after July 2014 did corroborate our research, and 

considerably increased acceptance of our findings. 

Policy-makers, and other stakeholders, also had some positive reactions to this 

research. Overall, the policy-makers appreciated the fact that uncertainty was taken 

seriously. They did not ask for probabilistic statements about the chances of 

particular scenarios happening. They also recognised that new insights were 

provided, which they considered to be in part due to the novelty of the approach 

used. This was the case for the climate mitigation and the Ebola research, where 

policy-makers were positively surprised by the findings. 

In addition to the positive reactions, the exploratory approach fits the lingo and buzz 

words that policy-makers like to use, making them more inclined to accept the study’s 

results. Examples of these words are both ‘uncertainty’ and ‘complexity’, sometimes 

combined with ‘robustness’ and ‘resilience’. While the policy-makers’ definitions of 

these terms may not be completely consistent with the definitions used by the 

analysts or researchers, the researcher’s definitions do generally resonate. Similarly, 

it appears as if potential clients in these cases are more apt to grant a project where 

EMA is the underlying methodology. 

In communicating the end result, it proved most successful to focus mostly on the 

central narrative of the conclusions, instead of the methodological approach 
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underlying the research. In this sense, I often use the analogy of building a house in 

comparison to exploratory modelling research. The model and model analysis act as 

the ‘scaffolding’ to build a ‘house’ of one or more narratives which can be 

communicated. The modelling exercise helps to build consistency in these narratives, 

as the model underlying the stories needs to be consistent as well. Scenario 

Discovery, phase plots of different endogenously modelled performance indicators, 

combined with the system knowledge that arose during model development further 

strengthens this construction. If the analyst removes the ‘scaffolding’ by not 

communicating the methodological parts of the research, the narratives should still 

be plausible by themselves. If the methodological approach is communicated later, it 

will only strengthen the story, instead of raising the normal questions (e.g., “is this or 

that in the model?”, “how do you avoid garbage in, garbage out?”, “how did you 

validate your model?”) which, in my opinion, generally arose when stakeholders did 

not fully grasp the intricacies of the research’s methodology, and led to less 

acceptance of the conclusions. The risk you run when choosing this communication 

strategy is that stakeholders will say that your conclusions are trivial, or that they 

have come up with them earlier on. In such situations, it is generally sufficient to refer 

to the fact that no evidence exists in literature or other communications of those 

judgements. 

7.4.2 Reception in domain specific fields 

In domain specific fields, reactions were also mixed. Sometimes, policy analysts’ 

perceptions appeared to depend mostly on the potential of the research to be 

threatening to their own methods. For example, when I was researching the long-

term potential return on innovation investments, a researcher with a background in 

econometrics was very critical of the approach I used. This was in part due to 

incompatibility of the terminology used by each of us, and (e.g., the difference 

between “calibrating” a simulation model with data, and “estimating” an econometric 

model), perhaps, in part due to the fact that he was working on the same topic with a 

different methodology. In the end, the project was discontinued due to a lack of 

progress combined with this criticism. In a preliminary presentation of the shale gas 

research, other researchers were invited to comment on our findings. In these 

meetings, some of the attendees used the opportunity to try to discredit the research 

as much as possible before it was published. This could also be due to the fact that 

the conclusions of our research (i.e., energy prices could fall as a consequence of 

the shale revolution) contradicted their findings (i.e., energy prices will rise). 

In contrast to the negative reactions, other contributions in our papers were received 

positively. For example, the reviews of the Ebola paper were very positive and 

emphasized the innovative side of this research, which modelled disease 

transmission in feedback with the intervention capacities. Earlier, this innovative side 

of the research was also recognised by researchers using transmission models with 

different underlying methodological approaches. These researchers were familiar 
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with SD as a modelling paradigm, acknowledged the omnipresence of uncertainty in 

modelling of outbreaks, and were aware of potential future collaborations. Similarly, 

the reviews for the shale gas paper were very positive and regretted that the work 

was not published earlier. The corroboration of our findings by the oil price decline 

may have helped here.  

7.4.3 Reception in methodological fields 

The reception of my papers in methodological fields was mixed as well. In part, SD 

modellers objected to the use of the uncertainty tools in combination with SD. Part of 

the objection was based on the perceived idea that exploratory SD models were not 

sufficiently based on literature, or used too many inputs and had, therefore, too little 

endogenous feedbacks to justify SD as a modelling paradigm. In addition, the 

consolidative modelling paradigm dominating the SD field made it difficult for some to 

grasp the idea of irreducible uncertainty. In a world view found among many 

consolidative SD modellers, not being able to reduce especially model structure 

uncertainty is a sign of insufficiently rigorous SD modelling. 

Finally, certain arguments used in early exploratory SD papers were considered 

offensive, and reduced the acceptance of the approach. For example, an early 

version of the conference paper about copper scarcity included the following 

paragraph, which was similarly used in other papers from our research group: 

“Rather than specifying a single model and falsely treating it as a reliable image of 

the system of interest, the available information is consistent with a set of models, 

whose implications for potential decisions may be quite diverse. A single model run 

drawn from this potentially infinite set of plausible models is not a “prediction”; rather, 

it provides a computational experiment that reveals how the world would behave if 

the various guesses any particular model makes about the various irresolvable 

uncertainties were correct.” (Auping, Pruyt, & Kwakkel, 2012). The first sentence in 

this paragraph was considered a false straw man argument, as, according to the 

reviewer, SD does not prescribe the use of a single model as a reliable image of the 

system. Further, SD is not considered to be a predictive method. 

In later papers (e.g., Chapter 5), which were at least in part written for an SD 

readership, we tried to focus more on the complementarity of the approach followed 

in our research. The reviews of this work focussed more on traditional SD issues, like 

the endogenous structural explanation of the model’s and system’s behaviours. For 

example, one of the issues was the lack of endogenous policy feedback on 

potentially untenable or even theoretically impossible spending on societal ageing 

related health care costs. While we were able to argue why this choice was justified 

in this case, it was valid criticism. The formal reaction to the paper in a discussant’s 

reaction was very positive about our approach and the added value of using this 

methodology “for strategic planning, policy design, and performance management in 

the public sector” (Bianchi, 2015).  
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Besides these two examples, also in discussions with other colleagues that did not 

use EMA – or SD – framing our work as complementary to their work always worked 

better in improving the acceptance of our work in contrast to a more conflictual 

approach. Finally, focussing on those elements where the approaches do not differ at 

all increased this mutual understanding. 

7.5 Conclusions and discussion 

The goal of this dissertation was to illustrate and analyse how deep uncertainty can 

affect model development and use. I found that including deep uncertainty in model-

based policy or system analysis significantly influences model development, use, and 

communication. Model development becomes in this way part of an uncertainty 

modelling cycle. When highly non-linear models are used to explore potential future 

developments, this also complicates Scenario Discovery, a common practice of 

exploratory modelling. I expect that these findings also apply in other modelling 

paradigms, especially for other simulation or equation-based modelling paradigms. 

Finally, the difficulties with the application of Scenario Discovery to results generated 

with highly non-linear simulation models have not yet been resolved. 

Irreducible uncertainty in an early phase of model development leads to irreducible 

uncertainty in all subsequent phases. This is a key finding of the systematic 

assessment of the operationalisation of the model development cycle. 

Currently, most EMA work only recognises uncertainty in the evaluation and policy 

analysis phases of the model development cycle. In that practice, a large number of 

runs is generated in the evaluation phase. These runs are subsequently used in the 

policy testing phase to assess whether the proposed policies are robust. However, 

recognising deep uncertainty in earlier phases may lead to very different policy 

choices. Uncertainty in the problem articulation phase may lead to broader scopes, 

or even choosing multiple scopes for models, rather than the consolidative approach 

of a single scope. Uncertainty in the conceptualisation phase will lead to 

distinguishing large, structural uncertainties, and may lead to developing multiple 

conceptual models for the research problem at hand. Uncertainty in the formulation 

phase will lead to the use of switches to alternate over different model structures.  

However, even in the two phases of the model development cycle where uncertainty 

is already being acknowledged in other EMA work, uncertainty results in differences 

from the consolidative modelling approach. As generating some understanding about 

model quality and whether models are fit for purpose is crucial in work for clients and 

stakeholders, verification and validation steps need to be taken, but may 

considerably change compared to their consolidative application. Generally, it can be 

concluded that if a model is to be fit for purpose for exploratory modelling uses, it 

needs to meet more extensive tests than models designed for consolidative use. 

Finally, policy uncertainty does exist as well and is caused by uncertainty about 

implementation and system response. The traditional approach of modelling policies 
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as shocks in the model does not recognise this fact, nor does the univariate and non-

systematic testing of policy effects. Solutions for dealing with these last causes of 

uncertainty include considering policy reactions more as an integral part of system 

functioning, and making policy formulation technically similar to other parts of the 

model formulation, and policy analysis similar to model analysis. While this may not 

be new, exploratory modelling brings to the fore its importance. 

These changes increase the costs of the analysis. Relevant costs include longer time 

needed for model development and analysis, increased computational requirements 

for performing and analysing large ensembles of computational experiments, and the 

risk of information overload. An implicit trade-off exists between these additional 

costs and the additional policy relevant insights that can be achieved solely due to 

exploratory modelling.  

In all the different phases of exploratory model development, it is crucial to 

communicate to clients and stakeholders about the choices made, but also to 

scientific peers. Therefore, communication about uncertainties remains important 

during all phases of model development and use (e.g., Van der Sluijs et al., 2003). 

First, stakeholders need explanations when different world views regarding their 

problem or problems may not be reduced to a single model. Second, further 

structural uncertainties regarding their problems need to be communicated. I have 

proposed an addition to the diagrammatic conventions of CLDs used in the field of 

SD to accommodate this, but this proposal is mostly relevant for methodologists. 

Third, it needs to be clear what ranges exist for parametric uncertainties, and 

whether all relevant structural uncertainties could and have been modelled.  

All cases presented in this dissertation used SD models. This was convenient due to 

the relatively short simulation time of SD models, the ease of incorporating structural 

uncertainties, and the well-developed link with exploratory modelling software. The 

results of this dissertation can be generalised to some extent to other modelling 

paradigms. Boundary selection is something that needs to happen for any type of 

modelling, just like conceptualising what is going to be modelled. Formulation of 

equations is something that needs to happen in any equation-based modelling 

paradigm. Uncertainty in modelling paradigms like Agent-Based modelling can be 

acknowledged as well in similar ways. Conclusions about verification and validation 

are very specific for SD, but models that stand the test of exploratory modelling need 

to be thoroughly developed, as they will otherwise easily break when uncertainty 

sampling generates situations outside the envisioned bandwidth of model operation. 

Finally, for all modelling paradigms that allow explicit feedbacks, policy development 

may be modelled endogenously and as uncertain as it is in reality. 

Finally, using non-linear dynamic models including feedback, accumulation, and 

delay, does complicate conventional Scenario Discovery practices. These problems 

occur due to difficulties in making good classifications of model-generated 

behavioural modes, non-linear transformation of inputs to outputs, and, if the 
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boundary selection and aggregation level demanded, large numbers of input 

parameters. Solutions for these issues may be found in smarter and more interactive 

sampling techniques, focussing on the links between endogenous model variables, 

and especially focussing on the impossibility of specific behaviour given parts of the 

input space in combination with other endogenous variables. 

This research made clear that multiple areas need further attention in future 

research. With regard to model development, it would be interesting to see whether 

the suggestions I have made regarding model development can be corroborated and 

expanded by assessing the impacts of uncertainty in other modelling paradigms than 

SD. However, the most important advances are to be made in the analysis of results 

generated with non-linear dynamics in Scenario Discovery. Multiple problems are still 

unresolved in this aspect. Behavioural classification of dynamics through time can be 

improved, potentially leading to clearer results of algorithms like PRIM and CART on 

these clustered results. Related to this, adaptive sampling methods can be improved 

to allow efficient and effective sampling over the input space to generate a richer 

view on plausible future behaviour. Further, Scenario Discovery with simulation 

models can be complemented by more in-depth analyses of the interdependencies 

amongst different outcomes of interest. 

Regardless the still existing difficulties with DMDU, my experience over the few last 

years demonstrated to me the enormous potential this methodology has for bringing 

policy modelling forward. The ideas of being able to develop policies that are robust 

for all stakeholders, and the possibilities to develop strong and transparent narratives 

by thoroughly understanding the effects of deep uncertainty in non-linear models of 

complex systems, are incredibly powerful. For that reason, I hope that the findings in 

this dissertation will help future researchers in strengthening their exploratory 

research by developing and using thoroughly exploratory models, analysing the 

output of these models with fitting tools, and effectively communicating their findings 

to clients and stakeholders alike. 
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Appendix A Glossary 
A 

Ageing chain  Methodological. A one directional set of stocks connected by flows 

through which a quantity may flow. Population models and transmission models 

generally use ageing chains, but there are many other examples. See also Stock. 

Agenda-setting  Methodological. First phase in a policy life cycle which is aimed at 

getting an issue on the policy agenda.  

Agent-Based Modelling (ABM)  Methodological. Type of simulation modelling 

where one or more types of agents and rules how these agents interact with 

other agents and their environment are defined. Epstein and Axtell (1996). 

Aggregation level  Methodological. The aggregation level of a model determines the 

amount of detail in model variables and structures. A higher aggregation level 

means that variables are used which are compounds of lower aggregate 

variables that are not included in the model. The aggregation level is in part 

determined by existing world views, perspectives, or mental models regarding a 

problem and system. See also Mental model, Perspective. 

Auxiliary variable  Methodological. Model variable without direct mathematical 

necessity in SD. Auxiliaries help in making the modelled structure more insightful 

and linked to the real-world system than when the modeller would only use the 

mathematically significant stocks and flows. See also Flow, Stock. 

B 

Balancing feedback  Methodological. Feedback relation involving two or more 

variables where a higher (lower) value for any given variable will, everything else 

remaining the same, result in a lower (higher) value of the same variable in the 

future. See also Reinforcing feedback. 

Base case  Methodological. The base case is defined and used in probabilistic 

scenario approaches like ‘La Prospective’ and ‘Probabilistic Modified Trends’ 

(including ‘Trend-Impact Analysis’ and ‘Cross-Impact Analysis’) as the most 

probable scenario, or as a business as usual scenario (Bradfield et al., 2005). In 

the case of simulation models, it is often used as the single model run used as 

example of most plausible system behaviour without explicit policy changes. See 

also Behavioural mode, Policy testing, Run, System behaviour. 

Behavioural mode  Methodological. Typical pattern of run time dynamics 

demonstrated by a model's KPIs. See also Exemplar. 

Breaking of a model  Methodological. In a EMA context, a model ‘breaks’ if after 

sampling over the input space one or more runs cannot be completed (e.g., due 
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to a floating point error), or show behavioural modes which are impossible in the 

real system. See also Floating point error. 

Boundary  Methodological. See System boundary. 

Boundary selection  Methodological. Step in the problem articulation phase where 

the system boundary is selected. See also System boundary, Problem 

articulation, Scope. 

C 

Categorical uncertainty Methodological. Parametric uncertainty for which a finite 

set of values can be set. Examples include switches and sets of input 

uncertainties. See also Input scenario, Parametric uncertainty, Switch. 

Causal Loop Diagram (CLD)  Methodological. Diagram showing the causal relations 

between key variables in a modelled system, the direction of change of these 

relations, and the main feedbacks between variables. CLDs are often used as 

conceptual model and to communicate feedback loops responsible for particular 

types of behaviour. Morecroft (1982); Sterman (2000). See also 

Conceptualisation. 

Classification and regression tree (CART)  Methodological. CART is a data 

analysis method and classification algorithm that creates a tree like structure by 

making orthogonal cuts in the input space. Next to PRIM, CART is often used in 

Scenario Discovery to link bandwidths of uncertainties to particular behaviour or 

system states (e.g., undesirable futures) in the run ensemble. Breiman et al. 

(1984); Lempert et al. (2008). See also PRIM, Scenario Discovery. 

Complexity  Methodological. Complexity is a system characteristic where due to 

many interrelations between system elements, no higher rule can be defined that 

describes the behaviour of the whole system. According to the SD discipline, 

complexity caused by feedback and delay between system elements, and 

accumulation in system elements. Complexity often results in non-linearity of 

system behaviour. See also Delay, Feedback. 

Conceptual model  Methodological. Qualitative model or diagram of main relations 

and elements in a problem and system modelled. It is used to communicate 

about the link between real world and a quantitative model. In the earlier 

conceptualisation phase, conceptual models are used to determine which system 

elements need to be modelled and what their main relations are. See also 

Conceptualisation. 

Conceptualisation  Methodological. Model development phase where the qualitative 

structure of the problem and system to be researched. Conceptual models or 

diagrams like CLDs and SSDs can be used in this phase. Further, 

conceptualisation may also include the formulation of one or dynamic 

hypotheses. See also Conceptual model, Model development cycle. 
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Consolidative modelling  Methodological. Development of a simulation model 

aimed at reducing uncertainties by combining knowledge from literature or 

stakeholders groups into a single representation of the system of interest. This is 

a common practice in most conventional modelling as well as group model-

building. See also Conventional modelling, Group model-building. 

D 

Deep uncertainty  Methodological. Lempert et al. (2003) define deep uncertainty as 

conditions “where analysts do not know, or the parties to a decision cannot agree 

on, (1) the appropriate conceptual models that describe the relationships among 

the key driving forces that will shape the long-term future, (2) the probability 

distributions used to represent uncertainty about key variables and parameters in 

the mathematical representations of these conceptual models, and/or (3) how to 

value the desirability of alternative outcomes”. Kwakkel et al. (2010) see deep 

uncertainty as one of four levels of uncertainty (i.e., shallow, medium, and deep 

uncertainty, and recognised ignorance). Lempert et al. (2003), Kwakkel et al. 

(2010). See also EMA. 

Delay  Methodological. Situation where a variable value depends on a value of 

another variable at a specific amount of time earlier.  

Diagrammatic conventions  Methodological. Set of rules and conventions to 

construct a specific type of diagram in order to increase readability and 

comprehensibility.  

Dynamic hypothesis  Methodological. Theory or hypothesis of how the system 

structure may explain specific system behaviour. Some authors in the field of SD 

use dynamic hypothesis as synonym for the model conceptualisation, others use 

the dynamic hypothesis as an element of model conceptualisation. See also 

Conceptualisation. 

E 

Econometrics  Methodological. Scientific discipline in economics which focusses on 

quantifying the relations between economic quantities by means of statistical 

techniques.  

EMA  Methodological. See Exploratory Modelling and Analysis. 

EMA methods  Methodological. Different methods which make use of EMA. 

Examples include Scenario Discovery, and Robust Decision Making, Scenario 

Discovery, RDM. See also EMA, RDM, Scenario Discovery. 

EMA workbench  Methodological. Software package specifically designed for EMA. 

The EMA workbench is agnostic about the modelling paradigm and contains 

libraries which, for example, enable sampling the input space, performing 

simulation runs for multiple modelling languages including Excel, Vensim, and 
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Netlogo, and analysing the results by Scenario Discovery tools . "EMA 

Workbench documentation" 2016); Kwakkel and Jaxa-Rozen (2016), See also 

CART, EMA, PRIM, RDM, Scenario Discovery. 

Ensemble  Methodological. An ensemble of model runs contains data for each 

predefined KPI for multiple runs. These runs may function as reference to test 

the robustness of policies in an RDM approach. The ensemble could thus be 

seen as the exploratory equivalent of the conventional base case. Bankes (1993) 

refers in this case to an ‘ensemble of models’. Bankes (1993), See also Base 

case, EMA, RDM. 

Equation-based modelling  Methodological. Any form of model development where 

the model is specified using mathematical equations.  

Equifinality  Methodological. The principle that the system structure allows multiple 

means of obtaining the same system state. Bertalanffy (1968). 

ESDMA  Methodological. See Exploratory System Dynamics Modelling and Analysis. 

Evaluation  Methodological. Model evaluation is a model development phase which 

includes performing one or more runs with a model, and analysing these runs. 

This phase generally includes verification and validation tests. See also Model 

development cycle, Validation, Verification. 

Exemplar  Methodological. Run which is selected to function as example of a larger 

set of runs with a similar behavioural mode. Islam and Pruyt (2016); Pruyt and 

Islam (2016). See also Behavioural mode. 

Exploratory model  Methodological. Model developed specifically for use in one or 

more EMA methods. See also EMA, EMA methods. 

Exploratory Modelling and Analysis (EMA)  Methodological. “Exploratory Modeling 

and Analysis (EMA) is a research methodology that uses computational 

experiments to analyse complex and uncertain systems” (Bankes et al., 2013, p. 

532). Practically, this means that in each experiment a high number of samples is 

made over the input space to parameterise one model or multiple models in 

order to generate an ensemble of runs. Bankes (1993); Bankes et al. (2013). See 

also Ensemble, Input space, Latin Hypercube sampling, Monte Carlo sampling. 

Exploratory System Dynamics Modelling and Analysis (ESDMA)  

Methodological. EMA making use of one or more SD models. Kwakkel and Pruyt 

(2015). 

F 

Feedback  Methodological. Situation where a variable is at least partly dependent on 

its own value, either presently or in an earlier time step. See also Balancing 

feedback, Reinforcing feedback. 
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Fixed-stock paradigm  Domain specific. Paradigm in the resource scarcity research 

which assumes that the use of exhaustible, non-renewable resources is 

ultimately limited mostly by the quantity available. It can be contrasted with the 

opportunity-costs paradigm. Tilton (1996). See also Opportunity-costs paradigm. 

Floating point error  Methodological. Error in SD models where the run is not 

completed due to too high or too low a value for one or more variables. This may 

be caused by a division by zero or unlimited exponential growth. 

Flow  Methodological. Variable type in an SD model. A flow is the only type of 

variable that according to SD principles may influence a stock during the run 

time. See also Auxiliary, Stock. 

Forecast  Methodological. Expectation about a future system state or development. 

As Lyneis (2000) puts it: “A forecast is a prediction, assumption, or viewpoint on 

some future event or condition, usually as basis for taking action.”  

Formulation  Methodological. Model development phase where equations and 

values are assigned to model variables. See also Model development phase. 

Future  Methodological. Future system state or development. See also System state, 

Undesirable future. 

G 

Geopolitics  Domain specific. Domain specific research field,  focussed on the 

effects of geography on international relations and international politics, or how 

geographical space influences political power. 

Grade-tonnage distribution  Domain specific. See Ore grade distribution,  

Grand challenge  Methodological. High impact, societal problem for which no easy 

solution exists. Generally, these problems are complex, uncertain, and wicked or 

messy. See also Complexity, Messy problems. 

Group model-building  Methodological. Approach in SD in which models are 

developed by groups of around 10 people under the lead of a facilitator. The aim 

of group model-building is often to unite existing knowledge in a group and build 

consensus about the system structure. Vennix (1999). See also Consolidative 

modelling, System Dynamics. 

I 

Input scenario  Methodological. Dynamic input (i.e., time series) to a model. 

K 

Key Performance Indicator (KPI)  Methodological. Pre-specified model variable, 

representing an observable quantity in the real system, of which time series data 

are saved for each run. All time series of all KPIs in one run, or in set of similar 
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runs, can be considered or classified to form an internally consistent scenario. 

See also Auxiliary, Scenario. 

L 

Latin Hypercube sampling (LHS)  Methodological. Latin Hypercube sampling is a 

sampling method which creates a predefined number of orthogonal, semi-

random samples from a multidimensional input space. McKay, Beckman, and 

Conover (1979). 

Level  Methodological. See Stock. 

M 

Mental model  Methodological. “A mental model of a dynamic system is a relatively 

enduring and accessible, but limited, internal conceptual representation of an 

external system (historical, existing or projected) whose structure is analogous to 

the perceived structure of that system.” (Doyle & Ford, 1999, p. 414). Craik 

(1943); Doyle and Ford (1998, 1999); Johnson-Laird (1983); Lane (1999). See 

also Conceptualisation, Dynamic hypothesis. 

Model  Methodological. Simplified representation of a system, specifically those parts 

of a system which are part of the scope. ‘A model’ specifically, or variations 

thereof, is used in this dissertation to refer to a internally connected set of 

equations, which is not necessarily parametrised. Practically, my use of the word 

model thus refers to a file made in a specific modelling language that can be 

simulated. See also Scope, System. 

Model development cycle  Methodological. Cycle which consists of all steps or 

phases necessary to develop and apply a model, or in an exploratory modelling 

context, a set of models. Generally, a model development cycle is considered to 

be iterative in nature, where iterations between different phases may occur, or 

iterations of the whole cycle.  

Model development phase  Methodological. Distinct stage in a model development 

cycle. Examples of model development phases include boundary selection, 

conceptualisation, formulation, verification and validation, evaluation, and policy 

testing. See also Model development cycle. 

Model development step  Methodological. Part of one model development phase. 

See also Model development phase. 

Modelling cycle  Methodological. See Model development cycle. 

Modelling language  Methodological. A software implementation of a modelling 

paradigm designed to allow model development and executing model runs.  

Modelling paradigm  Methodological. Combination of conventions and rules used to 

represent a system or problem in computer code. Examples mentioned in this 
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dissertation include System Dynamics and Agent-Based Modelling. See also 

System Dynamics, Agent-Based Modelling. 

Monte Carlo sampling  Methodological. Repeated random sampling of the input 

space to parameterise one model, or the union of multiple parallel models. See 

also Latin Hypercube sampling. 

Multivariate analysis  Methodological. Analysis in which the effects of changing 

multiple variables at the same time are assessed. 

N 

Non-linear  Methodological. Mathematical property that does not satisfy additivity 

and homogeneity requirements, or taken together as superposition principle 

which states that 𝑓(𝑎𝑥 +  𝑏𝑦)  =  𝑎𝑓(𝑥)  +  𝑏𝑓(𝑦), where 𝑎 and 𝑏 are real, 

constant, scalar values.  

Non-linear behaviour  Methodological. Behaviour generated by a non-linear 

function or model, which implies that the behaviour does not satisfy the additivity 

and homogeneity properties. In contrast, linear behaviour can be represented 

with a function of the form 𝑓(𝑥)  =  𝑎 +  𝑏𝑥, where 𝑎 and 𝑏 are real, constant, 

scalar values. See also Non-linear. 

Non-linear model  Methodological. Model containing equations that are non-linear 

and representing non-linear systems. Often, these models consist of a set of 

connected differential or integral equations, making the whole function as a 

higher order differential or integral equation. As such equations cannot be solved 

analytically, they require numerical integration. See also Non-linear, Non-linear 

system, Numerical integration. 

Numerical integration  Methodological. Mathematical integration using numerical 

integration methods, like Euler or Runge-Kutta. Numerical integration is 

necessary for higher order differential or integral equations.  

O 

Open exploratory modelling  Methodological. Exploratory modelling with the goal of 

finding an as broad as possible set of behavioural modes or plausible futures in 

the ensemble of runs. See also Behavioural mode, EMA, Ensemble, Exploratory 

modelling, Plausible future. 

Opportunity-costs paradigm  Domain specific. Paradigm in resource scarcity 

research which assumes that the use of exhaustible, non-renewable resources is 

ultimately limited by assessment of the available resource quality and related 

costs compared alternatives. It can be contrasted with the fixed-stock paradigm. 

Tilton (1996). See also Fixed-stock paradigm. 

Ore grade distribution  Domain specific. Relation between quality and quantity of 

resources in the lithosphere.  
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P 

Paradigm  Methodological. “A world view underlying the theories and methodology 

of a particular scientific subject” ("Oxford Dictionaries," 2017). See also Mental 

model. 

Parallel multi-model use  Methodological. Models used in a research design where 

each model has a partly overlapping scope with all other models. All models are 

used to generate scenarios for the same KPIs. 

Parametric uncertainty  Methodological. Uncertainty regarding an input parameter 

value. 

Parametrisation  Methodological. Specific set of model parameter values, or the 

process of creating and setting these values.  

Patient Rule Induction Method (PRIM)  Methodological. Computer algorithm (which 

is used in Scenario Discovery) to link a binary selection of values in the output 

space to a selection of the input space. Friedman and Fisher 1999, See also 

CART, Scenario Discovery. 

Perspective  Methodological. View on a system, generally dependent on the mental 

model. Different perspectives may affect the aggregation level.  

Policy analysis  Methodological. Research field focussing on identifying potential 

policy issues and proposing policies which could increase system performance or 

reduce the undesirability of specific system states.  

Policy implementation  Methodological. The process of operationalising a policy in 

either reality or a model.  

Policy life cycle  Methodological. Representation of the policy process in a number 

of stages. van Daalen et al. (2002). 

Policy-makers  Other. “A person responsible for or involved in formulating policies, 

especially in politics.” ("Oxford Dictionaries," 2017). In reality, these persons are 

often civil servants responsible for a particular policy domain. 

Policy testing  Methodological. Model development phase where the effects of 

policies are assessed on either the base case or the base ensemble. See also 

Model development phase. 

Population cohort  Domain specific. Part of a population between certain age limits.  

Problem articulation  Methodological. Model development phase where the 

research goal or goals are formulated, the boundary or boundaries of the 

research are selected, potentially a reference mode is selected, and the time 

horizon is defined. See also Boundary selection, Model development phase, 

Reference mode. 
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Q 

Qualitative model  Methodological. Purely diagrammatic representation of a system. 

See also Quantitative modelling. 

Quantitative model  Methodological. Mathematically fully specified and 

parameterised representation of a system. See also Equation-based modelling, 

Simulation modelling. 

R 

Random forests  Methodological. Algorithm used to determine a variable's, or 

variables' importance in a system. Breiman (2001).  

RDM  Methodological. See Robust Decision Making. 

Reference mode  Methodological. Potential part of the problem articulation phase. 

Defined by Sterman (2000, p. 90) as “a set of graphs and other descriptive data 

showing the development of the problem over time”. Randers (1980b); Sterman 

(2000). See also Problem articulation. 

Reinforcing feedback  Methodological. Feedback relation involving two or more 

variables where a higher (lower) value for any given variable will, everything else 

remaining the same, result in a higher (lower) value of the same variable in the 

future. See also Balancing feedback. 

Robust Decision Making (RDM)  Methodological. EMA method where the central 

point consists of testing the robustness of policies on the ensemble of runs. 

Lempert et al. (2006). See also EMA, Ensemble of runs. 

Robustness  Methodological. Policy characteristic which means that a policy 

functions desirably in all plausible futures. See also RDM. 

Run  Methodological. One simulation of a model. This means that for all specified, 

non-constant variables new values are calculated for each time step between 

start and end time of the model simulation. See also Model. 

Run time  Methodological. Time between the simulated start time and end time of a 

simulation run. See also Run. 

S 

Scenario  Methodological. A scenario can be defined in two different ways in the 

context of this dissertation. In the narrow definition, it is an internally consistent 

set of dynamics or time series data for system variables. In the broad definition, it 

consists of future system states or dynamics towards future system states 

including the context (e.g., the bandwidth of other uncertainties) of these states 

or dynamics. Scenarios may be used as input to models, or may be derived from 

model evaluation. See also Input scenario, Output scenario, Serial multi-model 

use. 



 

186 

Scenario Discovery  Methodological. Research method and part of the EMA 

methodology which uses computer learning algorithms like PRIM and CART to 

identify which part of the input space is responsible for one part of a binary 

classification of runs. Bryant and Lempert (2010). See also CART, EMA, PRIM. 

Scope  Methodological. All system elements which are inside the system boundary.  

SD  Methodological. See System Dynamics. 

SEIR model  Domain specific. Equation-based model containing a sequence of 

stocks (i.e., ageing chain) representing Susceptible, Exposed, Infected, and 

Recovered parts of a population. See also Ageing chain. 

Serial multi-model use  Methodological. Models used in a research design where 

outputs or scenarios generated with one model are inputs for another model.  

Societal ageing  Domain specific. Situation where the average age of people in a 

society is increasing. This may be caused by an increasing life expectancy, or by 

a higher share of older people.  

Societal messes  Methodological. “[…] [D]ynamic situations that consist of complex 

systems of changing problems that interact with each other” (Ackoff, 1979, p. 99). 

Ackoff (1974). See also Wicked problems. 

Stock  Methodological. System variable which accounts for accumulation. See also 

Auxiliary, Flow. 

Structural uncertainty  Methodological. Uncertainty regarding the relation between 

multiple system elements. In exploratory modelling, this can result in having to 

define one or more relations between multiple variables with a switch to select 

one of these structures.  

Sub-System Diagram (SSD)  Methodological. Diagram focussing on the sub-

systems an SD model is composed of and the relations between these sub-

systems. Morecroft (1982).  

Switch  Methodological. Model parameter or categorical uncertainty designed with 

the single purpose of switching between plausible system structures or input 

scenarios. Generally, switches are intended to only have integer values. See also 

Parameter. 

System  Methodological. Internally connected set of elements forming a whole.  

System behaviour  Methodological. Behavioural mode or modes displayed by a 

system. See also Behavioural mode. 

System boundary  Methodological. Border between those elements which are 

considered inside (i.e., endogenous) and outside the system (i.e., exogenous). 

The system boundary is generally selected in the problem articulation phase and 

determines the scope. See also Problem articulation, Scope. 



 

187 

System Dynamics (SD)  Methodological. Modelling paradigm and research field 

aimed at understanding how particular system behaviour can be explained by 

feedback effects, and stocks and flows in the systems. Forrester (1961); Sterman 

(2000).  

T 

Transmission model  Domain specific. Quantitative model used in epidemiological 

research to either simulate infection transmission through a population, or to 

calculate important epidemiological characteristics like reproduction rate and 

mortality rate given existing data about an disease outbreak or epidemic.  

U 

Uncertainty location  Methodological. Location in the policy analysis framework 

(e.g., system boundary, conceptual model, computer model, input data, or model 

implementation) where an uncertainty occurs. Kwakkel et al. (2010); Petersen 

(2006). 

Undesirable future  Methodological. Future state of a system which is considered 

undesirable from a policy perspective. See also Future, System state. 

Univariate analysis  Methodological. Analysis in which the effects of changing a 

single variable at the same time are assessed. 

V 

Validation  Methodological. Narrow definition outside policy analysis: testing whether 

a model is a correct or true representation of reality. Use in policy analysis: 

testing whether a model is fit for purpose, or building confidence that the model 

has sufficient quality. See also Evaluation, Verification. 

Vectorised model variables  Methodological. Instead of having only one possible 

value for a model variable, vectorised model variables contain a pre-specified 

number of values which can be seen as a vector. In the SD modelling paradigm, 

these vectors are defined as subscripts.  

Verification  Methodological. Process of testing whether a system or model is 

modelled correctly. This can be contrasted with, or considered complementary 

with validation. See also Evaluation, Validation. 

W 

Wicked problems  Methodological. According to Rittel, as quoted by Churchman 

(1967, p. 141), “the term ‘wicked problem’ refer[s] to that class of social system 

problems which are ill-formulated, where the information is confusing, where 

there are many clients and decision makers with conflicting values, and where 

the ramifications in the whole system are thoroughly confusing.” According to 

Rittel and Webber (1973), wicked problems have at least ten distinguishing 

properties (Rittel & Webber, 1973). See also Messy problems. 



 

188 

References 

Ackoff, R. L. (1974). Redesigning the Future: A Systems Approach to Societal 
Problems. New York: John Wiley & Sons. 

Ackoff, R. L. (1979). The Future of Operational Research is Past. The Journal of the 
Operational Research Society, 30(2), 93-104. doi:10.2307/3009290 

Bankes, S. C. (1993). Exploratory Modeling for Policy Analysis. Operations 
Research, 41(3), 435-449. doi:10.1287/opre.41.3.435 

Bankes, S. C., Walker, W. E., & Kwakkel, J. H. (2013). Exploratory Modeling and 
Analysis. In G. S. & M. C. Fu (Eds.), Encyclopedia of Operations Research 
and Management Science (3rd ed.). Berlin, Germany: Springer. 

Bertalanffy, L. v. (1968). General Systems Theory. New York: George Braziller. 

Bradfield, R., Wright, G., Burt, G., Cairns, G., & Van der Heijden, K. (2005). The 
origins and evolution of scenario techniques in long range business planning. 
Futures, 37(8), 795-812. doi:10.1016/j.futures.2005.01.003 

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.  

Breiman, L., Friedman, J. H., Stone, C., & Olshen, R. A. (1984). Classification and 
Regression Trees. Monterey, CA: CRC Press. 

Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: A participatory, 
computer-assisted approach to scenario discovery. Technological Forecasting 
& Social Change, 77, 34-49. doi:10.1016/j.techfore.2009.08.002 

Churchman, C. W. (1967). Wicked problems. Management Science, 14(4), 141-142. 
doi:10.1287/mnsc.14.4.B141 

Craik, K. J. W. (1943). The Nature of Explanation. Cambridge, UK: Cambridge 
University Press. 

Doyle, J. K., & Ford, D. N. (1998). Mental models concepts for system dynamics 
research. System Dynamics Review, 14(1), 3-29. doi:10.1002/(SICI)1099-
1727(199821)14:1<3::AID-SDR140>3.0.CO;2-K 

Doyle, J. K., & Ford, D. N. (1999). Mental models concepts revisited: some 
clarifications and a reply to Lane. System Dynamics Review, 15(4), 411-415. 
doi:10.1002/(SICI)1099-1727(199924)15:4<411::AID-SDR181>3.0.CO;2-R 

EMA Workbench documentation. (2016, September 17, 2016).  0.7. Retrieved from 
http://emaworkbench.readthedocs.io/en/latest/ 

Epstein, J. M., & Axtell, R. L. (1996). Growing Artificial Societies: Social Science 
From the Bottom Up. Washington, D.C.: Brookings Institution Press. 

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, MA: MIT Press. 

Islam, T., & Pruyt, E. (2016). Scenario generation using adaptive sampling: The case 
of resource scarcity. Environmental Modelling & Software, 79, 285-299. 
doi:10.1016/j.envsoft.2015.09.014 

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of 
Language, Inference, and Consciousness. Cambridge. Cambridge, MA: 
Harvard University Press. 

http://emaworkbench.readthedocs.io/en/latest/


 

189 

Kwakkel, J. H., & Jaxa-Rozen, M. (2016). Improving scenario discovery for handling 
heterogeneous uncertainties and multinomial classified outcomes. 
Environmental Modelling & Software, 79, 311-321. 
doi:10.1016/j.envsoft.2015.11.020 

Kwakkel, J. H., & Pruyt, E. (2015). Using System Dynamics for Grand Challenges: 
The ESDMA Approach. Systems Research and Behavioral Science, 32(3), 
358-375. doi:10.1002/sres.2225 

Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2010). Classifying and 
communicating uncertainties in model-based policy analysis. International 
Journal of Technology, Policy and Management, 10(4), 299-315. 
doi:10.1504/IJTPM.2010.036918 

Lane, D. C. (1999). Friendly amendment: a commentary on Doyle and Ford's 
proposed re-definition of ‘mental model’. System Dynamics Review, 15(2), 
185-194. doi:10.1002/(SICI)1099-1727(199922)15:2<185::AID-
SDR166>3.0.CO;2-C 

Lempert, R. J., Bryant, B. P., & Bankes, S. C. (2008). Comparing Algorithms for 
Scenario Discovery. Retrieved from Santa Monica, CA.: 
http://www.rand.org/pubs/working_papers/WR557.html 

Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C. (2006). A General, 
Analytic Method for Generating Robust Strategies and Narrative Scenarios. 
Management Science, 52(4), 514-528. doi:10.1287/mnsc.1050.0472 

Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003). Shaping the Next One 
Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis 
(MR-1626). Retrieved from Santa Monica, CA, USA: 
http://www.rand.org/pubs/monograph_reports/2007/MR1626.pdf 

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three 
Methods for Selecting Values of Input Variables in the Analysis of Output from 
a Computer Code. Technometrics, 21(2), 239-245.  Retrieved from 
http://www.jstor.org/stable/1268522 

Morecroft, J. D. W. (1982). A Critical Review of Diagramming Tools for 
Conceptualizing Feedback System Models. Dynamica, 8(1), 20-29.  

Oxford Dictionaries. (2017). Oxford: Oxford University Press. 

Petersen, A. C. (2006). Simulating Nature. A Philosophical Study of Computer-
Simulation Uncertainties and Their Role in Climate Science and Policy Advice. 
(PhD), Vrije Universiteit, Amsterdam. Retrieved from 
http://www.agci.vu.nl/en/Images/Dissertation_VU_Petersen_Simulating_Natur
e_tcm143-215398.pdf   

Pruyt, E., & Islam, T. (2016). On generating and exploring the behavior space of 
complex models. System Dynamics Review, Published online. 
doi:10.1002/sdr.1544 

Randers, J. (Ed.) (1980b). Elements of the System Dynamics Method. Cambridge, 
MA: Productivity Press. 

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a General Theory of Planning. 
Policy Sciences, 4(1973), 155-169. doi:10.1007/BF01405730 

http://www.rand.org/pubs/working_papers/WR557.html
http://www.rand.org/pubs/monograph_reports/2007/MR1626.pdf
http://www.jstor.org/stable/1268522
http://www.agci.vu.nl/en/Images/Dissertation_VU_Petersen_Simulating_Nature_tcm143-215398.pdf
http://www.agci.vu.nl/en/Images/Dissertation_VU_Petersen_Simulating_Nature_tcm143-215398.pdf


 

190 

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a 
Complex World. New York: McGraw. 

Tilton, J. E. (1996). Exhaustible resources and sustainable development: two 
different paradigms. Resources Policy, 22(1-2), 91-97. doi:10.1016/S0301-
4207(96)00024-4 

van Daalen, C. E., Dresen, L., & Janssen, M. A. (2002). The roles of computer 
models in the environmental policy life cycle. Environmental Science & Policy, 
5(3), 221-231. doi:10.1016/S1462-9011(02)00040-0 

Vennix, J. A. M. (1999). Group model-building: tackling messy problems. System 
Dynamics Review, 15(4), 379-401.  



 
  

Simulation models are increasingly used for exploring the consequences of 
deep uncertainty in complex societal issues. The complexity of societal grand 
challenges, often characterised by the interrelatedness of different elements in 
the systems underlying these challenges, often renders mental simulation 
impossible, necessitating the use of simulation models to assist human 
reasoning. In addition, these grand challenges are typically also subject to 
deep uncertainty, making it, for example, impossible to come to a shared 
understanding of parts of the system and exogenous inputs to it, or even a 
shared problem definition. 
 
Under deep uncertainty, simulation models can be used to explore the 
consequences of different combinations of assumptions about uncertain 
factors or attributes of the problem situation and the underlying system. This 
type of simulation model use was introduced in 1993 as Exploratory Modelling 
and Analysis (EMA). In more recent years, this approach has become a major 
underpinning of the Decision Making under Deep Uncertainty (DMDU) field. 
 
The treatment of deep uncertainty in much DMDU research can be improved, 
however. In most DMDU research to date, pre-existing models are used. 
These models were generally developed for ‘consolidative’ use: the modellers 
tried to unify existing knowledge to come a single, ‘best’ model. While most 
modellers will agree that these models are not perfect representations of 
reality, and often agree that they as such cannot be validated in the strict 
sense of the word, these modellers and their models do not acknowledge deep 
uncertainty. The use of consolidative models is arguably problematic if one 
agrees that the issue at hand is characterized by deep uncertainty. Therefore, 
models are needed that are explicitly developed for ‘exploratory’ use: models 
that explicitly incorporate deep uncertainty potentially relevant for the research 
question or questions at hand. However, little experience and guidance exists 
regarding development and use of specifically exploratory models. 
 
In this dissertation, a first attempt is made to identify, and provide guidance for, 
the critical choices made during the development and use of exploratory 
models. 


