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A B S T R A C T

Enlarged perivascular spaces (PVS) are structural brain changes visible in MRI, are common in aging, and are
considered a reflection of cerebral small vessel disease. As such, assessing the burden of PVS has promise as a
brain imaging marker. Visual and manual scoring of PVS is a tedious and observer-dependent task. Automated
methods would advance research into the etiology of PVS, could aid to assess what a “normal” burden is in aging,
and could evaluate the potential of PVS as a biomarker of cerebral small vessel disease. In this work, we propose
and evaluate an automated method to quantify PVS in the midbrain, hippocampi, basal ganglia and centrum
semiovale. We also compare associations between (earlier established) determinants of PVS and visual PVS scores
versus the automated PVS scores, to verify whether automated PVS scores could replace visual scoring of PVS in
epidemiological and clinical studies. Our approach is a deep learning algorithm based on convolutional neural
network regression, and is contingent on successful brain structure segmentation. In our work we used FreeSurfer
segmentations. We trained and validated our method on T2-contrast MR images acquired from 2115 subjects
participating in a population-based study. These scans were visually scored by an expert rater, who counted the
number of PVS in each brain region. Agreement between visual and automated scores was found to be excellent
for all four regions, with intraclass correlation coefficients (ICCs) between 0.75 and 0.88. These values were
higher than the inter-observer agreement of visual scoring (ICCs between 0.62 and 0.80). Scan-rescan repro-
ducibility was high (ICCs between 0.82 and 0.93). The association between 20 determinants of PVS, including
aging, and the automated scores were similar to those between the same 20 determinants of PVS and visual
scores. We conclude that this method may replace visual scoring and facilitate large epidemiological and clinical
studies of PVS.
1. Introduction

This paper proposes and evaluates an algorithm for the automated
quantification of enlarged perivascular spaces (PVS) in four brain re-
gions. Perivascular spaces are fluid-filled areas surrounding cerebral ar-
teries or veins. These spaces tend to enlarge locally in aging subjects
(Wardlaw et al., 2013). Enlarged perivascular spaces can be identified as
hyperintensities in T2-contrast MRI, as illustrated in Fig. 1. Though
initially considered a strictly normal phenomenon, the presence of PVS is
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increasingly thought to reflect the presence of cerebral small vessel dis-
ease and to function as a potential biomarker for various brain diseases
such as dementia (Mills et al., 2007), stroke (Selvarajah et al., 2009),
multiple sclerosis (Achiron and Faibel, 2002), and Parkinson (Zijlmans
et al., 2004).

The progressive enlargement of PVS, their widespread occurrence in
the brain, and presence of mimics with similar appearance on MRI make
the manual annotation of individual PVS challenging and time
consuming (see Fig. 2). Instead, current studies largely rely on visual
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Fig. 1. Examples of enlarged perivascular spaces in different brain regions. T2-contrast MRI images in the axial view. PVS are circled in green. From left to right:
midbrain, hippocampus, basal ganglia and centrum semiovale. On these images the PVS are relatively easy to detect for an expert rater, contrary to Fig. 2.

Fig. 2. Examples of enlarged perivascular spaces and their mimics in different brain regions. All images are in the axial view. PVS are circled in green, white
matter hyperintensities (WMH) in yellow, lacunar infarcts in red and motion artifacts in blue. In the first column, motion artifact could be mistaken for an
elongated PVS in the centrum semiovale. In the second column, the WMH could be mistaken for PVS. However on the FLAIR-weighted scan WMH are hyper-
intense, while PVS are hypointense and less visible (bottom image). In the third column, the lacunar infarct in the basal ganglia could be mistaken for a group of
several PVS, which individual borders could not be seen because of partial volume effect (this lesion would unlikely be mistaken for a single EPVS because of its
irregular shape). The FLAIR-weighted scan shows a hyperintense rim (red arrow) around the lesion, indicating the presence of a lacunar infarct. In the last column,
the scans present several PVS, some of which are at the limit of being considered as enlarged. According to the visual scoring guidelines presented in Adams et al.
(2013), to be considering enlarged, perivascular spaces should have a diameter larger than 1mm. For many small perivascular spaces in these images, this is
difficult to evaluate.
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scoring systems. Two types of scoring systems have been proposed in the
literature: expert raters either count the number of PVS within a region of
interest (Adams et al., 2013, 2015) or categorize the PVS burden using a
scale (e.g. Potter scores (Potter et al., 2015a) and Patankar scores
(Patankar et al., 2005)). Adams PVS scores can be considered as a more
finely graded version of Patankar and Potter scores, such that the number
of categories in Adams PVS scores is equal to the number of PVS. Auto-
mated quantification of PVS would be preferred as it is more objective
and faster than visual scoring. Furthermore, it would hold great potential
to study burden of PVS as a continuous rather than a categorical measure,
enabling to better disentangle “normal” structural brain changes in aging
from a pathological load of PVS.

In a recent study (Dubost et al., 2018), we proposed a regression
convolutional network to quantify PVS in the basal ganglia. In the present
work, we extend this method to other brain regions most clinically
535
relevant for PVS quantification, namely the midbrain, hippocampi and
centrum semiovale (Adams et al., 2013, 2015), and we provide a more
elaborate evaluation.

Similar to the method described by Dubost et al. (2018), the input in
our method is a T2-contrast brain scan, and the output is an automated
PVS score. The aim of the method is to reproduce the visual scores of an
expert rater, considered here as the reference standard. Our method uses
a 3D convolutional neural network inspired by ResNet (He et al., 2016)
and optimized with a mean squared error (MSE) loss function to mini-
mize the difference between visual scores and predicted scores in a set of
training images.

In all four brain regions, we compare the agreement between our
automated PVS scores and the visual PVS score of the expert rater, with
the level of inter-observer agreement. We assess scan-rescan reproduc-
ibility. Finally we check in a subset of 1485 scans whether the



Table 1
Characteristics of the Study Population, N¼ 1485. The smallest volume of
WMH was 0.53mL.

Age, years, mean (SD) 74.61 (7.32)

Men, n (%) 679 (46)
Education, years, mean (SD) 12.06 (3.76)
Ever-smoker, n (%) 1001 (67)
Systolic blood pressure, mmHg, mean (SD) 150.25 (21.05)
Diastolic blood pressure, mmHg, mean (SD) 82.70 (11.07)
Diabetes mellitus, n (%) 219 (15)
Glucose, mmol/L, mean (SD) 5.71 (1.15)
Total Cholesterol, mmol/L, mean (SD) 5.48 (1.02)
HDL Cholesterol, mmol/L, mean (SD) 1.45 (0.39)
Body mass index, kg/m2, mean (SD) 27.31 (3.87)
ApoE ε2 allele carrier, n (%) 241 (17)
ApoE ε4 allele carrier, n (%) 385 (26)
Cortical Infarct on MRI, n (%) 61 (4)
Lacunar Infarct on MRI, n (%) 192 (13)
White matter hyperintensity volume, mL, median [interquartile
range]

6.72
[3.84–13.11]

Intracranial volume, mL, mean (SD) 1144.26 (117.89)
White matter volume, mL, mean (SD) 390.33 (58.47)
Gray matter volume, mL, mean (SD) 518.84 (53.77)
Cerebrospinal fluid volume, mL, mean (SD) 232.82 (53.83)

Visual PVS scores, midbrain, median [interquartile range] 1 [0–3]
Visual PVS score, hippocampi, median [interquartile range] 3 [1–5]
Visual PVS scores, basal ganglia, median [interquartile range] 4 [2–6]
Visual PVS scores, centrum semiovale, median [interquartile
range]

7 [4–11]

Automated PVS scores, midbrain, median [interquartile range] 1.39
[0.648–2.51]

Automated PVS score, hippocampi, median [interquartile range] 2.92 [1.98–4.39]
Automated PVS scores, basal ganglia, median [interquartile
range]

3.33 [2.38–4.67]

Automated PVS scores, centrum semiovale, median
[interquartile range]

6.52 [4.57–9.6]
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associations between determinants of PVS and the automated scores are
similar to those between the same determinants and visual scores. The
determinants of PVS investigated here include demographics, cardio-
vascular risk factors, ApoE genotypes, and MRI markers.

1.1. Related work

Other researchers have published automated PVS quantification
methods involving the use of the visual scores as ground truths.

Ballerini et al. (2018) proposed to enhance PVS in the centrum
semiovale using multiscale vessel enhancement filtering (Frangi et al.,
1998). The parameters of these filters are optimized with ordered logit
models, using PVS category scores (Potter et al., 2015a; Patankar et al.,
2005) as ground truth. To evaluate their methods, the authors compute
correlations between the visual ratings and their segmentation-derived
PVS count and PVS volume in two different datasets. This method has
only been evaluated in the centrum semiovale. Results were mixed with
correlations ranging from 0.47 to 0.74 in different datasets.

Gonzalez-Castro et al. (2017) addressed PVS quantification in the
basal ganglia as a binary classification problem, where the objective is to
discriminate between scans with few (⩽10) or many (>10) PVS. Their
method uses support vector machines and bag-of-words descriptors. The
agreement between their classifier and a human observer is similar to the
inter-observer agreement. The authors also show associations between
determinants of PVS (age, Fazekas scale, and presence of lacunar infarcts)
and the binary score of the classifier. Our work extends this by proposing
a continuous score indicating the number of PVS instead of a binary
score, leading to a finer quantification. We evaluate our method in four
brain regions, and investigate associations with a wider range of
determinants.

Boespflug et al. (2017) proposed an automated quantification method
based on the combination of image intensities and morphologic features
(width, volume, and linearity) from several MRI sequences. They eval-
uate their method in the centrum semiovale.

Ramirez et al. (2015) used a semi-automated PVS segmentation
method based on adaptive local intensity thresholding to study the dif-
ference of PVS burden in the centrum semiovale and basal ganglia be-
tween cognitively normal and Alzheimer subjects. The number of
necessary user interactions can make this approach very time consuming.

2. Methods and materials

The objective of our method is to automatically predict the PVS visual
scores. Our framework consists of two steps. We first extract the region of
interest (ROI) (Section 2.2) and then apply a regression convolutional
neural network (CNN) (Section 2.3) to compute the PVS score. The CNN
is trained on an independent set of visually scored scans (N¼ 400 or
N¼ 1600).

2.1. Data

In our experiments we used brain MRI scans from the Rotterdam
Study. The Rotterdam Study is a prospective population study investi-
gating - among others - neurological diseases in the middle aged and
elderly, applying brain MRI in all participants (Ikram et al., 2017). In our
experiments, we use 2115 scans of 2115 subjects, acquired between 2005
and 2011.

In addition, we used 60 other scans for which 30 study participants
were scanned twice within a short period (19� 11 days). The 60 scans of
this reproducibility set are not part of the 2115 scans mentioned above
and were not visually scored for EPVS.

The Medical Ethics Committee of the Erasmus MC has approved the
Rotterdam study, according to the Population Study Act, executed by the
Ministry of Health, Welfare and Sports of the Netherlands. All partici-
pants provided written informed consent to participate in the study and
for information to be obtained from their physicians.
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2.1.1. MRI scan protocol
Brain MRI was performed on a 1.5-T MRI scanner (GE-Healthcare,

Milwaukee, WI, USA) with an eight-channel head coil to obtain: T1-
weighted (T1), T2-contrast (T2), fluid-attenuated inversion recovery
(FLAIR) and T2*-weighted gradient-recalled-echo sequences.

To compute the automated PVS scores, we only used the T2 scans.
These scans were acquired according to the following protocol:
12,300ms repetition time, 17.3ms echo time, 16.86 KHz bandwidth,
90–180� flip angle, 1.6 mm slice thickness, 25 cm2

field of view,
416� 256 matrix size. The images are reconstructed to a
512� 512� 192 matrix. The voxel resolution is 0:49� 0:49� 0:8mm3.

More details of the imaging protocol have been described elsewhere
(Ikram et al., 2015).

2.1.2. Visual PVS scores
Visual PVS scores have been created, for each region, according to a

standard procedure proposed in the international consortium UNIVRSE
(Adams et al., 2015). PVS ratings are defined as linear, ovoid or round
shaped hyperintensities on T2 scans and considered to be enlarged when
their diameter is larger than 1mm. For this study, we only use PVS with
diameter smaller than 3mm, since those larger than this cutoff have been
suggested to be of potentially different origin. For this visual scoring, a
trained observer counts the number of PVS in the midbrain, hippocampi,
basal ganglia and centrum semiovale. For the midbrain and hippocampi,
the PVS are counted in the whole volume. In the basal ganglia and
centrum semiovale, PVS are counted in a single anatomically defined
slice. For the basal ganglia, this is the slice showing the anterior
commissure. For the centrum semiovale it is the slice 1 cm above the
uppermost part of the lateral ventricles. The number of PVS in these slices
correlates well with the number of PVS in the whole volume of the re-
gions (Adams et al., 2013).

The inter-observer and intra-observer agreements of this scoring have
previously been computed in the Rotterdam Study in every region



Table 2
Agreement between automated and visual PVS scores for each brain region.
The metric reported is the intraclass correlation coefficient (ICC), computed on
an independent set of 515 scans. These ICCs are compared to the inter-observer
and intra-observer agreements reported by Adams et al. (2013). Note that the
inter-observer and intra-observer agreements were computed on a different
subset of the same dataset (Section 2.1).

Region Intra-observer
Agreement

Inter-observer
Agreement

Trained on
1600 scans

Trained on
400 scans

Midbrain 0.82 0.75 0.75 0.74
Hippocampi 0.85 0.82 0.88 0.74
Basal Ganglia 0.80 0.62 0.82 0.73
Centrum
Semiovale

0.88 0.80 0.86 0.80
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(Adams et al., 2013). Inter-observer intraclass correlation coefficients
(ICCs) have been computed with 105 MRI scans, and intra-observer ICCs
with 85 scans (Table 2). The images in our dataset (2115 scans) were
visual scored by a single expert rater (Dr. H. Adams).

2.1.3. Potential determinants of PVS
From the 2115 participants, we randomly selected 400 participants to

optimize the parameters of our algorithm, and used the remaining 1715
participants to investigate associations between 20 determinants of PVS
and automated and visual PVS scores. From these 1715 participants, we
excluded participants without informed consent to access medical re-
cords and hospital discharge letters (n¼ 8), participants who already
suffered stroke (n¼ 98) or were diagnosedwith dementia (n¼ 32) or had
incomplete information for stroke or dementia (n¼ 1) at time of MRI
scan (de Bruijn et al., 2015; Wieberdink et al., 2012). We also excluded
scans for which the brain region segmentation algorithm (FreeSurfer,
Desikan et al. (2006)) failed for one or more regions (n¼ 91). Excluding
these resulted in a set of 1485 participants, from which the highest
number of missing values was 25 for cholesterol, HDL cholesterol and
glucose. Table 1 lists the characteristics of the study population.

2.1.3.1. Assessments of determinants. Education was obtained from self-
reported history and scaled in number of years according to the
UNESCO classification.1 Smoking behavior was assessed during home
interviews and categorized as ever- and non-smokers. Blood pressure
measurements were averaged over two readings with a random-zero
sphygmomanometer at the right upper arm, in sitting position and a
resting period of 5min. Data on serum glucose, total serum cholesterol,
serum high-density lipoprotein (HDL) cholesterol were obtained using an
automated enzymatic procedure (Boehringer Mannheim System). Dia-
betes mellitus was defined as a fasting glucose level of �7.0mmol/L, or
the use of antidiabetic medication. Body mass index was calculated by
dividing weight (in kilograms) by the height squared (in meters). ApoE
genotyping on coded genomic DNA samples was performed for the ε2
and ε4 alleles of Apolipoprotein E (ApoE-ε2 and ApoE-ε4) carrier status,
with a one-stage polymerase chain reaction and TaqMan assay (Wenham
et al., 1991). Participants who were classified ApoE - ε2ε4 counted both
as ε2 and ε4 carriers. The majority of samples (81.1%) were genotyped
with the Illumina 610 K and 660 K chips, the remaining (18.9%) were
imputed to the Haplotype Reference Consortium reference panel (version
1.0) with Minimac 3.

2.1.3.2. Assessment of MRI markers. Several focal and volumetric mea-
sures of subclinical brain damage were assessed. Cortical infarcts were
defined as lesions involving cortical gray matter with tissue loss and
lacunar infarcts as subcortical lesions� 3mm and<15mm on FLAIR, T1,
1 United Nations Educational SaCOU. International Standard Classification of
Education (ISCED) 1976. Available from: http://unesdoc.unesco.org/images/
0002/000209/020992eb.pdf.
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and T2 sequences. The presence of cortical and lacunar infarcts was
visually rated by trained research physicians using binary scores (Ikram
et al., 2017). White matter hyperintensities (WMH) were measured
quantitatively using a validated automated segmentation method (de
Boer et al., 2010). This method was also used to segment the brain into
gray matter, white matter and cerebrospinal fluid. Total brain volume
was defined as the sum of gray and white matter. And intracranial vol-
ume was defined as sum of gray and white matter, and cerebrospinal
fluid. All WMH segmentations were visually checked by experts and
corrected if needed.

2.2. Preprocessing

The first step of our method is to extract the target brain region from
the scan and mask the surrounding structures. This preprocessing step is
almost identical for all four regions.

N3 Bias field correction Sled et al. (1998) is applied prior to the
extraction of the region of interest and prior to the network training.
Then we apply the FreeSurfer multi-atlas segmentation algorithm
(Desikan et al., 2006) to obtain a binary mask for each region: midbrain,
hippocampi, basal ganglia and centrum semiovale. Note that the Free-
Surfer segmentation is based on the T1-weighted sequence. All parame-
ters are left as default, except for the skull stripping preflooding height
threshold which is set to 10. These masks are then dilated (4 consecutive
morphological binary dilations with a cube connectivity equal to one,
i.e., 6-connected in 3D), with the exception of the mask of the midbrain,
which is eroded (2 consecutive morphological binary erosions with a
square connectivity equal to one). These morphological operations can
correct segmentation errors and are especially important for the basal
ganglia and hippocampi, as PVS can often be located on the border of
these regions. On the contrary, for the midbrain, PVS are almost always
located in the center and dilating the mask can make the optimization of
the model more difficult.

For each region, the borders of the masks are smoothed with a
Gaussian kernel of standard deviation σ ¼ 2 voxel units, and multiplied
pixel-wise with the image intensities. These masked images are then
cropped around the center of mass of the mask to reduce the image size
and memory requirements. The size in voxels of these cropped images for
midbrain, hippocampi, basal ganglia and centrum semiovale are
88� 88� 11, 168� 128� 84, 168� 128� 84 and 250� 290� 14
respectively. The image values are then rescaled between zero and one to
ease the learning process. The cropped volume of the centrum semiovale
is relatively small in the craniocaudal direction (z-axis). Contrary to the
other three brain regions, the complete volume of the centrum semiovale
could not be fit in the memory of our graphics processing unit (GPU).
Therefore, as input to our algorithm we kept only the slices surrounding
the slice visually scored by the expert rater. We automatically identified
this slice by segmenting the lateral ventricles with FreeSurfer, and
selecting the slice 1 cm above, as defined by (Adams et al., 2013).

In the left column, Fig. 4 shows one example of the preprocessed
images for each region.

2.3. 3D convolutional regression network

Once the images are preprocessed, they are given as input to a con-
volutional neural network (CNN) similar to the one proposed in our
earlier work (Dubost et al., 2018) but with skip connections between
layers. This network computes the automated PVS scores using a com-
bination of learned filters.

We train a different network for each region. There are two reasons
for this. PVS can have a different shape depending on their location in the
brain. For instance, in the hippocampi, the shape of PVS is more round,
while in the centrum semiovale, PVS are more elongated. Differentiating
from mimics is also region specific. For instance, motion artifacts affect
mostly the centrum semiovale and have a much lower influence in the
midbrain, and lacunar infarcts are often located in the basal ganglia.

http://unesdoc.unesco.org/images/0002/000209/020992eb.pdf
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Our CNN architecture is similar to that of a small ResNet (He et al.,
2016) adapted for regression in 3D image (see Fig. 3). Our CNN has two
3D 3� 3� 3 convolutional layers, followed by a 2� 2� 2 max-pooling
layer, again two 3D 3� 3� 3 convolutional layers, a global average
pooling layer, and a fully connected layer, combining the contribution of
the different features into a single score. The output of the network is
hence a scalar and spans ℝ. The first two convolutional layers have 32
filters each, and the last two convolutional layers have 64 filters each.
The convolutions are zero-padded, and are followed by a ReLU activa-
tion. We use skip connections between the input and output of two
successive convolutional layers, to allow the network to skip unnecessary
operations and adapt its complexity to the tasks, which can ease the
learning process (He et al., 2016). For instance, we expect the quantifi-
cation of PVS to be simpler in the midbrain than in the centrum semi-
ovale. When using skip connections, we concatenate the features maps,
instead of summing them as proposed in He et al. (2016). There is little
evidence that using either one or the other strongly impacts the perfor-
mance. However, the concatenation is easier to implement as it does not
require to have the same number of feature maps. In total, our model has
less than 200 000 parameters.

For the regularization, we use on-the-fly data augmentation (trans-
lation, rotation and flipping), and when training with smaller sets, we
used dropout (Srivastava et al., 2014) (30%) after each convolutional
layer and after the global pooling layer. See section 3.1 for details.

To train the network, we minimize the MSE loss function between the
outputs of the network and the ground truth labels indicating the number
of PVS in the given brain region.

The method proposed in our earlier work (Dubost et al., 2018)
quantifies PVS in the basal ganglia also with regression CNN, but with a
different architecture. There are three differences with the CNN we
proposed in the current work. Firstly, the proposed network is simpler
and lighter. Experiments on the parameters of the network (Dubost et al.,
2018), indeed suggested that simpler models performed equally good
with enough training data. In our experiments, the training of deeper
models was also much longer with small training set (400 scans), espe-
cially for the centrum semiovale and hippocampi. The second change is
the introduction of skip connections between blocks. The third and last
change is the use of global pooling instead of two fully connected layers
of 2000 neurons. Using global pooling does not harm the performance
and saves large amounts of GPU memory. This change was also proposed
by He et al. (2016) over the architecture proposed by Simonyan and
Zisserman (2015), the preceding state-of-the-art neural network on the
ImageNet challenge (Deng et al., 2009).

2.4. Model training

During training, a validation set is used to stop the optimization of
network before over-fitting occurs. In most experiments the models were
trained on a set of 1600 scans (1200 for training and 400 for validation).
To demonstrate that reasonable results can still be achieved with less
Fig. 3. Architecture of the neural network. The input is a 3D scan cropped around
for convolutional layer, and is followed by the number of filters and the filter size; ‘M
fully connected layer; and the curved arrows represent skip connections with conca

538
training data, we also performed some experiments with a smaller subset
of 400 scans (320 training and 80 validation).

As mentioned in section 2.3, a separate model is trained for each
region. The training of such models can be unpredictably long for the
hippocampi and centrum semiovale. To speed up the training, we first
train the models in the basal ganglia, as the convergence is faster there.
Then we fine-tune the networks with the target region only (hippocampi
or centrum semiovale). The training in the midbrain converges quickly
and no pre-training is needed. We chose to pre-train with the basal
ganglia and not in the midbrain, as PVS in the basal ganglia are more
similar to PVS in the hippocampi and centrum semiovale.

2.5. Statistical analyses

To evaluate associations between determinants of PVS and PVS scores,
we used zero-inflated negative binomial regression models with the PVS
score as outcome, as in the study of Adams et al. (2014). We used the
‘glmmADMB’ package for generalized linear mixed models in R. The
models were corrected for age and sex (except for the associations of age,
sex respectively) and additionally for intracranial volumewhen computing
associations with volumetric measures (white matter, gray matter, and
cerebrospinal fluid). To account for the skewed distribution of WMH, we
log transformed the WMH volumes. Continuous determinants were
normalized by computing z-scores. Bonferroni correction was used,
therefore associations with a p-value below 0:05=ð20 determinants� 4
brain regions)¼ 6:25� 10�4 were considered significant.

3. Results

We evaluate the performance of the proposed model with three series
of experiments. First, we inspect attention maps of the model, revealing
that the model indeed focuses on PVS. Second, we measure the agree-
ment between automated and visual scores, and show that this agree-
ment is at least at the level of the human inter-observer agreement for
each region. Then we verify the scan-rescan reproducibility of the
automated PVS scores. Finally, we show that the associations between 20
determinants of PVS and the automated scores are similar to associations
between the same determinants and visual scores.

3.1. Experimental settings

We initialize the weights of the CNN by sampling from a Gaussian
distribution, use Adadelta (Zeiler, 2012) for optimization, and augment
the training data on-the-fly with randomly transformed samples. The
transformation parameters for augmentation are uniformly drawn from
an interval of 0.2 radians for rotation, 2 pixels for translation and flipping
in the x and y direction. During training, the images are augmented with
a random combination of these parameters. The network is trained per
sample (mini-batches of a single 3D image of the preprocessed region of
interest). We implemented our algorithms in Python in Keras (Chollet
the region of interest, and the output is the automated PVS score. ‘Conv’ stands
axPool’ stands for max pooling layer; ‘GAP0 for global average pooling, ‘FC0 for

tenation of feature maps.



Fig. 4. Attention maps of the neural network. From
left to right: preprocessed input image, attention map,
overlay of the input image and the attention map. From
top to bottom: midbrain, hippocampi, basal ganglia, and
centrum semiovale. In the overlay, the heatmaps reflect
the contribution of pixels to the prediction of the net-
works: red pixels contributed the most, while blue pixel
did not contribute. One can notice that many slightly
enlarged perivascular spaces appear in orange. The
network detected these, but they influenced its prediction
less than the larger PVS.
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et al., 2015) with Tensorflow as backend, and ran the experiments on a
Nvidia GeForce GTX 1070 GPU and Nvidia Tesla K40.2 The average
training time was one day. We stop the training after the validation loss
converged to a stable value, or before over-fitting happens. The networks
were trained for 450 epochs on average. The learning rate of the opti-
mizer was set to 1, its default value in Keras. We chose Adadelta which is
not sensitive to the initial setting of the learning rate. Once the CNN is
trained, the automatic PVS scoring, given the segmented region of in-
terest, takes in average 287ms per region.
3.2. Attention maps

As first qualitative evaluation we check whether the neural networks
learned to identify the structures of interest (PVS), or detected some
other features that are correlated to the PVS. We use attention maps
computed via “guided backpropagation” (Springenberg et al., 2015).
These attention maps are computed as the derivative of the automated
PVS scores (the output of the CNN) with respect to the input image.
Springenberg et al. (2015) improved the original attention map compu-
tation proposed by Simonyan et al. (2014) by additionally masking out
the values corresponding to negative entries of the top gradient in the
2 Nvidia Tesla K40 are GPUs available at Cartesius, a dutch national cluster.
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ReLU activations, which clears noise in the attention maps.
Fig. 4 shows examples of these attention maps for each of the four

regions. We notice that the neural networks focus on the PVS, even
though they are trained using global, image-wise labels only.

In Fig. 5, we verify with attention maps that the algorithm can
discriminate between WMH, lacunar infarcts and PVS. We also investi-
gate the limits of the method by showing an attention map for �etat cribl�e.
For visualization, the PVS attention maps were thresholded to create a
segmentation, and WMH segmentations were computed with another
automated segmentation method (de Boer et al., 2010) and manually
corrected by experts as described in Section 2.1.3. We selected scans with
large volumes of WMH, and with lacunar infarcts in the basal ganglia.
Segmented PVS and WMH rarely overlap, and when they do, it is often
because of co-occurring PVS and WMH. The behavior is similar for
lacunar infarcts. For the participant with �etat cribl�e, we notice that most
of the PVS are detected.

Fig. 5 also shows the example of an attention map computed over a
white matter slice lower in the brain, 1 cm below the uppermost part of the
lateral ventricles. Although this region was not seen during training, PVS
are identified as accurately as in the slice used for visual rating. Because the
texture of the white matter is relatively uniform, PVS can be quantified in
other slices of the white matter using the network optimized on a single
slice of the CSO. For a full quantification we would recommend to train on
other slices as well, as anatomical configurations differ with location.



Fig. 5. PVS detection in challenging situations. In each row we display three images of the same region of interest for the same participant but with different mo-
dalities: first the T2-w scan, then the overlap between PVS and/or WMH segmentations and the T2-w scan, and finally the FLAIR-w scan. PVS are quantified in the centrum
semiovale on the left side, and in the basal ganglia on the right side. WMH are indicated in blue, PVS in red, and lacunar infarcts with a green arrow. The PVS seg-
mentations were obtained by thresholding the attention maps (Section 3.2) with a fixed threshold for all scans. In the last left row, the PVS attention map was computed in
a white matter slice lower in the brain. White matter slices in that location were never used during training. In the last right row, we show the example of participant with
�etat cribl�e. In the second row of the basal ganglia images, the algorithm detects a PVS at the border of the infarct. This can be verified by checking the upper slices.
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3.3. Agreement between automated and visual scores

In this section, we evaluate the proposed automated scores by
comparing with expert visual scores. We optimized the parameters of the
CNN on a set of 1600 scans (1200 for training and 400 for validation). We
also optimized the same model using only a subset of 400 scans (320
training and 80 validation), where we used dropout (Srivastava et al.,
2014) after each convolution to avoid over-fitting. We evaluated both
models on an independent set: the remaining 515 scans. The results are
reported in Table 2. Fig. 6 shows Bland Altman plots for each region.
Note that on the Bland Altman plots, the discrete nature of the distri-
bution of the points, especially visible for the midbrain and hippocampi,
is a consequence of the visual PVS scores being integer numbers.

When trained on 1600 scans, the ICC between the automated and vi-
sual scores were higher than the inter-observer agreement previously re-
ported for each region. On the Bland Altman plots, one can notice that the
largest errors usually occur for scans with many PVS, and for which there
Fig. 6. Bland-Altman plots between the automated and visual PVS scores in the
515 scans. For the differences, the automated scores were subtracted from the visua
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are only few training examples. Also, even for expert raters the rating
becomes more difficult and variable for scans with many PVS. This is due
to the continuous nature of the enlargement of perivascular spaces:
keeping a consistent threshold of enlargement becomes more challenging.
In case of large disagreement, the automated scores mostly underestimate
the number of PVSwith respect to the visual scores.We also notice that the
largest differences between automated and visual scores seem to scale
linearly with the number of lesions before reaching a plateau. This is
especially noticeable for the hippocampi and basal ganglia. The level of
this plateau depends on the region of interest and is higher in the basal
ganglia and centrum semiovale compared to midbrain and hippocampus.

3.4. Reproducibility

The reproducibility of the automated PVS scores is evaluated on a
reproducibility set of 30 participants scanned twice (see Section 2.1). The
ICCof the automatedPVS scoresbetween thefirst and second sets of scans is
four regions. The algorithms were optimized with 1600 scans, and evaluated on
l scores.
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0.82 for the midbrain, 0.93 for the hippocampi, 0.92 for the basal ganglia,
and 0.87 for the centrum semiovale. Except for the centrum semiovale, all
values are higher than the intra-rater agreement computed on another
subset of the same dataset and reported by Adams et al. (2013) (Table 2).

3.5. Associations with determinants of PVS

We investigate associations between 20 potential determinants of
Fig. 7. Associations between determinants of PVS and PVS scores.
Odds ratio with 95% confidence intervals (non Bonferroni corrected). Characteristic
inversely proportional to the size of the confidence intervals of the odds ratio.
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PVS (characteristics in Table 1) and the automated PVS scores, and
compare them with the associations between the same determinants and
the visual PVS scores. The neural networks are first optimized using 400
scans for each region (we reuse the second model presented in section
3.3), and then applied to the remaining 1715 independent scans to
produce the automated scores. We investigate associations on this set of
1715 scans. After excluding participants as described in section 2.1, this
resulted in 1485 stroke-free and non-demented participants with
s of the study population are given in Table 1. The size of the colored boxes is
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available brain imaging.
Fig. 7 shows forest plots for each determinant, and a sorted list of all

p-values can be found in supplementary materials. Overall, association
patterns are very similar for visual and automated scores.

We found that white matter hyperintensity volume is associated with
both visual and automated PVS scores in the basal ganglia and in the
hippocampi. Age is associatedwith both visual and automated PVS scores
in the basal ganglia. The presence of lacunar infarcts is also associated
with both visual and automated PVS scores in the basal ganglia. And
finally, intracranial volume is associated with both visual and automated
PVS scores in the centrum semiovale. In all cases, determinants that are
significantly associated with visual PVS scores, also show significant
association with the automated PVS scores, and in almost the same order
of p-values.

As the automated method takes as input the MRI scans, and is only
optimized using global labels (the number of PVS), in the scans other
information than PVS might be used to compute the automated PVS
scores. This is an unwanted behavior. We did not notice any bias of the
automated method towards more significant associations with imaging
markers. For instance, for both visual and automated PVS scores, 9 of the
20 most significant associations were between imaging markers and PVS
scores. However, computing the p-value of the difference of z-scores of
the associations showed a significant difference for gray matter and PVS
scores in the basal ganglia. In Fig. 7, we notice the same trend for the
association between intracranial volume and PVS scores in the basal
ganglia. There was also a significant difference (though with a higher p-
value) for associations between intracranial volume and PVS scores in the
hippocampi.

Computing the p-value of the difference of z-scores of the associations
revealed a last significant difference: the association between age and the
automated PVS scores in the midbrain (odds-ratio 1.008
[1.002–1.0013]) was significantly stronger than the association between
age and the visual scores in the midbrain (odds-ratio 0.999
[0.992–1.006]).

4. Discussion

The algorithm developed in this work computes automated scores to
quantify enlarged perivascular spaces (PVS) in the midbrain, hippo-
campi, basal ganglia and centrum semiovale - the four brain regions
currently deemed most clinically relevant for PVS quantification. We
demonstrated the performance of our algorithm using a set of 2115 MRI
scans that were visually scored by an expert rater. For all four regions, the
intraclass correlation coefficient between the automated scores and the
visual scores was found to be higher than the inter-observer agreement,
which was previously computed on a smaller subset of the same study
population (Adams et al., 2013). Scan-rescan reproducibility was high
(ICC 0.82–0.93). We also demonstrated the application of our automated
scores by verifying the associations between determinants of PVS and our
automated scores in a test set of 1485 scans, and comparing these asso-
ciations to the visual scores. Based on these results, we believe that our
automated scores could ultimately replace visual scores in future
research projects studying the etiology and clinical relevance of PVS.

Automated PVS scores have two major advantages over visual scores:
they are more objective (because the algorithm is deterministic), and can
be computed more quickly. While a trained expert rater needs several
minutes to score a scan, the computation of the automated PVS score on
modern hardware (GPU) lasts less than a second. Quantifying PVS
through all the white matter could also be achieved by applying the
network optimized in the centrum semiovale in a sliding window in z.
This process would last approximately 6 s on modern hardware after
preprocessing. This makes our automated approach suited to be used in
large scale studies, investigating for instance the etiology of PVS, their
distribution in brain aging, their implications, and their potential as a
biomarker for early diagnosis of cerebral small vessel disease. In addi-
tion, our method could be extended to fully quantify PVS by assessing
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their volume with the attention maps produced by the neural networks
(Fig. 4). These attention maps indeed provide a voxel-wise probability of
PVS presence, which can for instance be summed over a region of in-
terest, to yield a total volume or burden of PVS.

As the intensity histograms of WMH and PVS can overlap, using
global intensity features to discriminate between WMH and PVS is
impossible.

Using a multisequence input could ensure that the automated PVS
quantification method does not misclassify other small vessel disease
markers such as WMH or lacunar infarcts as PVS. Additional sequences
could be added as additional input channels in the architecture of the
networks. For the sake of simplicity, in this work we used only the T2-w
sequence, and verified the performance of the algorithm in this scenario.
It appeared that using other sequences was not necessary. Because they
follow blood vessels, PVS have a characteristic shape, while the shape of
WMH and lacunar infarcts is much more irregular. Finally, PVS are
usually sharper delineated than WMH.

As mentioned in section 3.5, other imaging markers are not intended
to be used in the computation of the automated PVS scores, because they
would interfere with the detection of PVS and the explainability of the
method. Fig. 5 illustrates that PVS in the attention maps do not overlap
with WMH or with lacunar infarcts. In addition, apart from the associa-
tions between gray matter volume and PVS scores in the basal ganglia, we
did not notice any strong trend of our method towards a stronger asso-
ciation with imaging markers. This difference of association in the basal
ganglia most probably results from the automated PVS scores being
computed across the complete volume of the basal ganglia, while visual
EPVS scores are rated in a single slice (Section 2.1). The consequences of
this difference have been thoroughly investigated by Dubost et al.
(2018), and seem to favor the automated PVS scores, as they are less
sensitive to perturbations, such as missed PVS. Although we found as-
sociations between WMH and PVS, and between lacunar infarcts and
PVS, it should be noted that these associations are similar for automated
and visual scores. This suggests that the cause is not a confusion between
these types of lesions for the automated approaches but rather thatWMH,
lacunar infarcts and PVS are all markers of cerebral small vessel disease.
Hurford et al. (2014), Adams et al. (2014), and Gonzalez-Castro et al.
(2017) also found similar associations.

In none of the steps of our method did we model the anisotropy of the
data, as we expect the network to be able to correct for anisotropy.

The Pearson correlation coefficients between visual PVS scores
(Potter et al., 2015a,b) and automated PVS scores reported by Boespflug
et al. (2017) are 0.65, 0.69, and 0.54 in the CSO for three different raters.
Ramirez et al. (2015) measured the Pearson correlation coefficients be-
tween the segmented volumes of their semi-automated method and vi-
sual PVS scores (Patankar et al., 2005). The results were 0.84 in the CSO,
and 0.75 in the basal ganglia. In comparison, in our work the ICC be-
tween the visual and automated PVS scores optimized on 1600 scans
were 0.86 in the CSO, and 0.82 in the basal ganglia. Contrary to Ramirez
et al. (2015), in cognitively normal participants we found significant
associations between WMH and PVS, and between lacunar infarcts and
PVS. Gonzalez-Castro et al. (2017) computed automatic binary scores of
PVS burden in the basal ganglia and investigated associations with de-
terminants of PVS. They found significant associations with higher age,
Fazekas WMH scale, and the presence of lacunar infarcts, while there was
no significant associations with brain atrophy, hypertension, or stroke
subtype. In the current study, we found the same significant associations
(age, WMH, and presence of lacunar infarcts) for the basal ganglia.

There is increasing evidence that ageing affects PVS, and putative
mechanisms are dysfunction of the blood-brain barrier, or impaired
perivascular drainage (Brown et al., 2018). Higher age was previously
shown to be associated with higher visual PVS scores in the four regions
investigated in the current study: midbrain, hippocampi, basal ganglia,
and centrum semiovale (Adams et al., 2014). The study by Adams et al.
(2014) has been carried out in a significantly larger population study
(3146 participants against 1485 for our study). In the current study, age
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was only associated with visual PVS scores in the basal ganglia. Higher
age was also associated with higher automated PVS scores in the basal
ganglia. Previous studies with visual PVS scoring have shown similar
associations with age and basal ganglia PVS (Gutierrez et al., 2013;
Martinez-Ramirez et al., 2013; Potter et al., 2015b). In the current study,
in comparison with visual PVS scores, the automated PVS scores showed
a significantly higher association power in the midbrain, which may
suggest that they better capture the burden of PVS than visual scores. We
did not find significant associations between age and PVS in the hippo-
campi or in the centrum semiovale (neither with visual PVS scores, nor
with automated PVS scores). Similarly, in a recent study on a 7 T scanner
by Bouvy et al. (2016), no association was found between age and PVS in
centrum semiovale. While Adams et al. (2014) found the weakest asso-
ciation between age per decade and PVS to be in the hippocampi (odds
ratio of 1.07 [1.02–1.12]), they also found the strongest association be-
tween age per decade and PVS to be in the centrum semiovale with an
odds ratio of 1.24 [1.19–1.30]. While there seems still to be controversy
in the detailed relationship between age and PVS, automated PVS scores
could possibly be more powerful to better disentangle possible mecha-
nisms of PVS which effect brain health in ageing.

The proposed PVS quantification method requires prior brain struc-
ture segmentation. We reused FreeSurfer Desikan et al. (2006) segmen-
tations computed for previous projects. Other potentially more robust or
faster methods could be used instead. For instance, Mehta and Sivasw-
amy (2017) and Roy et al. (2018) reported results at least as accurate as
FreeSurfer, while being much faster. Including FreeSurfer segmentation
time, the overall pipeline would last several hours. However, by replac-
ing FreeSurfer with other brain structures segmentation methods such as
Mehta and Sivaswamy (2017) or Roy et al. (2018), the overall pipeline
could last less a minute on modern hardware.

The main limitation of this work is that, contrary to the UNIVRSE
rating system (Adams et al., 2015), the method was evaluated using MRI
scans acquired on a single scanner, precluding the assessment of per-
formance on different datasets. However, we believe this method can
easily be applied to other datasets by only fine-tuning the CNN param-
eters on a few scans (Yosinski et al., 2014). Besides the performance of
the algorithm should also be evaluated in multi-center or multi-scanner
data.

Another potential limitation of this work is that the models were
trained and validated on a general population from which subjects with
prevalent stroke or dementia were excluded, in order to focus on vari-
ability in the normal aging process. Our dataset thus may have included
relatively fewer scans with exceptionally many PVS, such as e.g. in �etat
cribl�e or neurological diseases (Fig. 5). These scans have a low preva-
lence and are rarely used during the optimization of our models. We
expect that the good performance of our model in a population with more
subtle brain changes will translate well to more extreme settings, though
this has to be evaluated.

5. Conclusion

We present a regression method to automatically quantify the number
of enlarged perivascular spaces in the midbrain, hippocampi, basal
ganglia, and centrum semiovale. The automated scores are more objec-
tive than visual scores and less time consuming. We validated our
approach on 1485 brain MRI scans, demonstrated that the automated
PVS show good agreement with visual PVS scores, and showed that the
automated PVS scores are associated with several determinants of PVS, in
a similar fashion to the PVS visual scores. We believe that this method
could replace visual scoring of PVS in epidemiological and clinical
studies, and therefore advance research into the etiology of PVS and its
potential as a risk indicator of small vessel disease.
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