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Abstract

In this work, we propose a sparsity-exploiting dynamic rainfall monitoring methodology using rain-induced attenuation
measurements from microwave links. To estimate rainfall field intensity dynamically from a limited number of non-linear
measurements, we exploit physical properties of the rainfall such as spatial sparsity and non-negativity along with the
dynamics of rainfall intensity. We develop a dynamic state estimation algorithm, where the aforementioned spatial
properties are utilized as prior information. To exploit spatial sparsity, we use a basis function to tailor the sparse
representation of the rainfall intensity. The basis is selected based on some criteria for sparse reconstruction such as
orthonormality and mutual coherence. The tuning parameter that controls the sparsity in the spatial rainfall distribution
is dynamically updated at every correction step. The developed methodology is applied to dynamically monitor the

Keywords: Rainfall monitoring, Sparsity, Field estimation

rainfall field intensity in an area with a specified spatial resolution using less number of simulated non-linear
measurements than pixels. The proposed methodology can be generalized for any dynamic field reconstruction,
where the limited number of non-linear measurements are field intensities integrated over a linear path.

1 Introduction

Spatial rainfall mapping from the measurements of rain-
induced attenuations collected from microwave links
(used by cellular telecommunication networks) is an
emerging technology which can serve as an alternative
to traditional approaches like rain gauges and weather
radar [1]. The practicability of the method is illustrated
in [2] by comparing its performance with rain gauges
and radar. The motivation behind this methodology is
to utilize existing systems such as cellular networks to
improve the quality of rainfall estimates using rain gauges
and radar, as well as to use it as an independent rainfall
measuring unit in areas, where traditional measuring
modalities are scarce. The attenuation measurements
from microwave links can also be used for monitoring
snowfall, fog, and humidity [3]. Seminal works in this
domain include tomographic rainfall mapping [4] and a
stochastic implementation of the microwave tomographic
inversion technique (MTIT) [5]. Recently, it has been
observed that signal processing algorithms like a modified
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weighted least squares method can be implemented to
spatially map the rainfall intensity on a regular grid, using
microwave link attenuation measurements [6]. Also, a
direct spatial reconstruction from non-linear measure-
ments using a variable grid size is exhibited in [7]. The
robustness of a practical application of such techniques
is illustrated in [8], where a country-wide (the Nether-
lands) rainfall mapping is shown to be possible using link
attenuation measurements using a data set of 12 days
(with a temporal resolution of 15 min). However, in order
to achieve some desired spatial resolution of the rainfall
field estimate (in terms of number of pixels), the num-
ber of microwave links, i.e., the number of attenuation
measurements, is always much smaller than the number
of pixels in a given service area. In this case, to dynam-
ically monitor the rainfall intensity, physical properties
of rainfall like spatial sparsity and non-negativity can be
exploited as extra information. In [9], a sparse recon-
struction of the rainfall field from a limited number of
non-linear measurements is presented. In [10], a sparsity
as well as a ridge-penalized, non-negativity constrained,
ordinary least squares method is used to estimate the
spatial rainfall map from linear path-averaged rainfall
intensities, albeit for a single snapshot. Furthermore,
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incorporating the non-linearity of the measurements as
well as a state-space model, a spatio-temporal rainfall
monitoring method using an extended Kalman filter
(EKF) is described in [11]. Recently, a linear Kalman filter
is used for the reconstruction of rainfall maps inspired
by object tracking algorithms [12]. However, none of
the above dynamic rainfall monitoring methods exploits
structural properties of the rainfall field like sparsity or
non-negativity.

Commingling the concepts of the aforementioned lit-
erature, estimating a spatio-temporally evolving rainfall
field can be viewed as a dynamic sparse field estimation
problem, where the spatial sparsity of the rainfall field
can be tailored by representing it as a sparse signal in
a suitable “sparsifying” basis [13]. Such a dynamic esti-
mation of sparse signals, also known as sparsity-aware
Kalman filtering, is a well-studied problem in the field
of signal processing with quite a number of applications
like target tracking and video coding. Next to the spa-
tial sparsity, also, the temporal sparsity can be exploited
in the state estimation [14]. Sparsity penalties lead to
a faster convergence than a clairvoyant Kalman filter,
as illustrated in [14]. Also, a non-negativity constrained
sparsity-aware Kalman filter is applied to the target track-
ing problem in [15]. In [16], the “dynamic filtering” is
implemented by introducing an iterative re-weighted ¢;-
norm penalty. In that work, a Bayesian hierarchical model
is used for the dynamically varying sparse coefficients of
the signal. Also, in [17], the convergence of the afore-
mentioned approach has been illustrated, formulating it
as a basis pursuit denoising (BPDN) problem. Another
notable approach of tracking a sparse signal in an under-
determined measurement scenario is viewing sparsity as
a pseudo-measurement and implementing a parallel state
and covariance update scheme for this extra measurement
[18]. In the Bayesian paradigm, a sparsity-aware state esti-
mation can be formulated as a constrained maximum a
posteriori estimator (MAP)[19].

In this work, we assume that the spatial rainfall inten-
sity can be represented as a sparse environmental signal.
We assume two scenarios for the spatio-temporal evolu-
tion of the rainfall field. In the first case, we assume that
the dynamics of the rainfall field are perfectly known. In
this case, we use a linear but non-stationary dynamical
model for the space-time evolution of the rainfall event,
which incorporates physical phenomena like advection,
diffusion, and convection [20, 21]. In the second case, we
assume that the information regarding the dynamics is not
perfectly known. In this case, we approximate the spatio-
temporal evolution by a simple Gaussian random walk
model.

We develop a complete structured framework to
dynamically monitor the rainfall intensity exploiting
a priori knowledge, ie., the spatial sparsity and the
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non-negativity of the rainfall field. The overall dynamic
rainfall monitoring setup is pictorially represented in
Fig. 1. The proposed setup accepts attenuation measure-
ments, in a given service area at any given snapshot from
the operating links, whose geometry and operating fre-
quencies are known. Accumulating these non-linear mea-
surements, the spatial rainfall intensity in the given service
area is computed in a centralized approach with a spec-
ified resolution. The developed dynamic sparsity-aware
rainfall monitoring algorithm has the following salient
features:

¢ The used measurement model is non-linear, under-
determined, and also time-varying. We perform a
dynamic linearization, followed by a state estimation
where sparsity and non-negativity is utilized, in order
to achieve a stable solution from the underdetermined
measurement setup.

e The selection of the tuning parameter controlling the
sparsity in the solution can be dynamically updated in
every correction step.

e The algorithm is also generalized to dynamically select
the representation basis that minimizes the mutual
coherence between the basis matrix and the mea-
surement matrix at a particular time instance, which
represents the geometry of the available link measure-
ments at that time instance.

The rest of the paper is organized as follows. In Section 2,
the measurement model, state model, and the spatial
covariance structure of the rainfall field are presented. In
Section 3, the dynamic rainfall monitoring algorithm is
discussed. Issues such as the selection of an appropriate
sparsifying basis and the selection of the tuning param-
eter controlling the sparsity is discussed in Section 4.
In Section 5, simulation results are presented. Here,
we mention that the true value of the rainfall, i.e., the
gauge adjusted radar images and the location of the
microwave links are known to us. But we do not have
real attenuation measurements from the microwave links.
We simulate the measurements using the ground truth,
available link locations using the non-linear measure-
ment model mentioned in Section 2 and add additive
white Gaussian noise (AWGN) of known variance.
Section 5 summarizes this paper and looks at future
directions.

Notations: Matrices are in upper case bold while col-
umn vectors are in lower case bold. The symbol [X];; is
the (i, j)-th entry of the matrix X and [x]; is the i-th entry
of the vector x. The identity matrix of size N x N is
denoted by I;. The transpose operator is denoted by (-)7,
X is the estimate of x, 2 defines an entity, and ||x|| p =

1/p
( fif)l [[x]; |1”> is the £, norm of x. The symbols Oy
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Fig. 1 Dynamic rainfall monitoring using a sparsity exploiting framework

and 1p are the vectors of all zeros and ones of length
N, respectively. The set of N x N symmmetric positive
semidefinite and positive definite matrices are denoted by
S]X and S{‘Z » respectively.

2 Signal model

In this section, we first describe the non-linear measure-
ment model which can be used to dynamically estimate
the rainfall intensity with a prescribed spatial resolution
by the time-varying attenuation measurements. Next, we
describe the structure of the spatial covariance matrix of
the rainfall field. After that, we describe the dynamic state
model, based on the physics behind the movement of a
rainstorm both spatially and temporally.

2.1 Non-linear measurement model

The geometry of the microwave links deployed by any
telecommunication service provider in any area is fixed.
These links can be viewed as a fixed network of sen-
sors to monitor rainfall since the received signal level
(RSL) measurements related to these links depend on the
rainfall. Note that the signal attenuation on a microwave
link is not only due to rainfall but also depends on
other atmospheric effects like humidity, wet antenna
attenuation, and propagation loss [6]. For simplicity, we
assume that the attenuation caused by these other effects
(except precipitation) can be precomputed, e.g., during
“dry periods’, and subtracted from the recorded RSL mea-
surements. So, the effective measurements only include

the rain-induced attenuation. The conventional empiri-
cal relationship between the rain-induced specific atten-
uation and the path-averaged rainfall rate is given by
ys = arb, where y; is the specific attenuation of the link
(dB/km), and r is the path-averaged rainfall rate over the
link (mm/h) [22]. If L is the length (km) of the microwave
link, then the total rain-induced attenuation over the link
is y = ar’L dB. The parameters a and b are related
to the drop size distribution (DSD) of rain, the polar-
ization and frequency of the transmitted electromagnetic
wave, the length of the link, the ambient temperature,
etc. It has been extensively studied and shown in several
works that variations of the aforementioned environmen-
tal and non-environmental parameters affect the estimate
of the path-averaged rainfall rate. A quantitative analy-
sis of DSD related errors in estimating the path-averaged
rainfall from direct rain-induced attenuation measure-
ments is illustrated in [23, 24]. It can be observed that
the attenuation for links operating in frequencies around
35 GHz can be treated as a linear measurement of the
path-averaged rainfall rate [23]. A detailed analysis of the
effects of the frequency, DSD, link length, and temporal
sampling in estimating the path-averaged rainfall rate has
been presented in [25, 26]. Also, in a wide coverage area,
the link (measurement) availability in different hours of
the day may significantly vary. All of these aforementioned
studies advocate a dynamic tuning of the a and b coef-
ficients in order to better monitor the rainfall from link
attenuations.
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The non-linear attenuation measurements from the
microwave links in any given service area for a fixed time
can be used to estimate the spatial rainfall intensity over
the same area. Let us consider a uniform discretization of
the specified service area A (square) into N pixels where
we would like to estimate the rainfall intensity. Here, we
make the assumption that the rainfall intensity is constant
within any pixel. This assumption is flexible as any reso-
lution can be attained by tailoring the size of the square
pixels. Let us assume that there are M links in the given
service area. The length of the i-th link can be written
as L; = Z/]i 1 lij, where [ is the length of the i-th link
passing through the j-th pixel, where i = 1,...,M. If
the i-the link does not pass through the j-th pixel then
lij = 0; otherwise, it is computed by the link and the pixel
coordinates. The total attenuation over a link can be mod-
elled as the sum of the attenuations over the link segments
[6]. Using this, the attenuation over the i-th link at time
¢t can be expressed as y;; ~ Z]]\il Yije» Where y;;; is the
attenuation over the linksegment of length /;;. Using the
power-law relationship for the attenuations over the link
segments, the measurement model can be constructed in
the following way,

N
b; ,
yi,t = ﬂi,t Z u]’,lt’tlij + ei,t: L= 1; e !M) (1)
j=1

where y;; is the attenuation measurement of the i-th link
and u;; is the intensity of the rainfall field in the j-th pixel
at time £. The power-law coefficients of the i-th link at
time ¢ are given by a; ; and b; ;. The measurement model in
(1) is a generalized time-varying non-linear tomographic
measurement model. In this work, we consider the fact
that all the M links are operated in the same frequency
and that the other environmental conditions (e.g., DSD,
temperature) are fixed for all £. Based on these assump-
tions, the aforementioned measurement model can be
simplified as

N
yie=ay ullj+ey i=1,..,M 2)
j=1

The measurement noise incurred at the i-th link mea-
surement at time ¢ is given by e;;. The measurements are
corrupted by errors which are mainly due to quantiza-
tion but also other sources of noise exist. A more detailed
description of the statistical nature of the measurement
noise can be found in [6]. For the sake of simplicity, let
us assume that e;; is zero-mean spatio-temporally white
Gaussian noise with variance 2. Further, we assume that
e; ¢ is uncorrelated with ;.
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Combining all the measurements from the M links at
time ¢, we can construct the following non-linear mea-
surement model at time £:

Y = ®(uy) + ey (3)

where y; € RM stacks the measurements from the M links
at time ¢, whereas e; € RM does the same for the noise.
The vector u; € RN gathers the rainfall intensities for all
of the N pixels at time ¢, i.e,, it is the parameter to be esti-
mated dynamically. The non-linear mapping between the
rainfall intensities and the attenuation measurements is
given by @ : RN — RM and it is assumed to be perfectly
known. The elements of u; are given by [w];= u;; =
us(x;), where u;(x) represents the continuous rainfall field
at any arbitrary location x € R? and x; :[xj,yj]T is the
centroid of the j-th pixel of the service area. The mea-
surement noise components associated with the M link
measurements are characterized by e; ~ N'(0, R;), where
R; =R = o2y

2.2 Spatial variability of u;

At any snapshot ¢, the spatial rainfall intensity u,(x;), for
j = 1,...,N can be viewed as a wide-sense stationary
(WSS) random process. In spatial statistics, u;(x;) is WSS
(or second-order stationary) if it satisfies IE[ u;(x;)] = s
(for allj = 1,...,N in the service area) and if the spa-
tial covariance between any two points is dependent only
on the distance between them (i.e., isotropic) [27]. The
parameter u; is the mean/trend of the rainfall field. A
variogram model can be used to represent the spatial
variations. The variogram (i.e., 2§ (/4)) or semivariogram
(ie., £(h)), as a function of # = |x; — Xj|l2, can be
written as £(h) = %E[ ur(x;) — ut(xj)]2 for any two spa-
tial points, x; =[x;, 9,17, X; :[xj,yj]T, Vi,j € {1,...,N}
[27]. Generally, several variogram models are used as it is
computationally hard to calculate the spatial dependency
for every lag distance 4. Some statistical functions like
a Gaussian, exponential, or empirically fitted models like
spherical functions are often used as variogram models
[28]. From the analysis of [29], the spherical variogram
model is seen to be an appropriate model to describe the
spatial variability of rainfall. This is given as,

No+50[ % - ] ifo<n=d,

243 (4)
ifth>d.

S(h)=[

Np + So

The parameters that characterize a variogram model are
the sill No + Sp of the variogram (& (%) for 1 — oo) with
So as the partial sill, the nugget Ny (non-zero value of & (%)
for h — 0), and the range d (value of & for which the
variogram reaches the sill). The advantage of the spheri-
cal variogram model is that the parameters Sy, Ny, and d
can be well estimated in hourly scales for a specific day of
the year [29]. Now, the spatial covariance function C, (%)
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can be defined as C,(h) = E[ (s (x;) — pe) (e () — o).
Using the second-order stationarity of the random pro-
cess uy(x;), the semivariogram can be related to the spa-
tial covariance function C,(%) by the relation £&(h) =
(No + So) — Cy(h) [27]. Now, the elements of the spa-
tial covariance matrix X, can be computed as [ X,]; =
Co(lIx; — xjll2), ¥i,j € {1,...,N}. The covariance matrix,
constructed in this way, is symmetric and positive definite.

2.3 State model

2.3.1 AKernel-based state model

One standard approach of modelling the spatio-temporal
evolution of any environmental field is based on the
integro-difference equation (IDE) [28]. Following this
approach, the dynamics of the rainfall field for any spe-
cific temporal sampling interval §; can be modelled as the
following discrete time IDE

ur(x) = fA 206, X;50)u—1 (X)dx' + g (x). (5)

Here, g(x,x’;0) is the space-time interaction function
parameterized by 6, which can be deterministic or ran-
dom and dependent on the temporal sampling interval §;.
The quantity g;(x) is the process noise which is generally
modelled as independent in time but correlated in space.

The space-time interaction function g(-) can be mod-
elled as a parameterized Gaussian dispersal kernel which
captures the underlying physical processes behind the
spatio-temporal evolution of rainfall, i.e., diffusion, advec-
tion, and convection [20, 21]. In this case, the space-
time interaction function is given as g(x,x’;w;, D, ) =
a exp[—(x — X — w)ID7I(x — X — wy)], ie, a Gaus-
sian kernel. The translation parameter of the kernel, i.e.,
w; € R? models the time-varying advective displacement,
i.e., the spatial drift of the rain storm, and the dilation
parameter of the kernel, i.e, D € S2+ 1 models the diffu-
sion. Note that w; can also vary with space but we assume
that it is averaged over the entire area and fixed. The dif-
fusion coefficient D can be used to model isotropic as well
as anisotropic diffusion. The amount and the directions of
the spatial anisotropy can be introduced by D. The param-
eter D can also vary with time but this is not considered
here. The scalar scaling parameter « € R, is used to
control the stability (i.e., to avoid the explosive growth) of
the dynamic process.

Here, the entire service area is uniformly discritized into
N pixels. We assume a state transition matrix H, € RN*N
whose elements are modelled by the aforementioned sim-
ple 2D Gaussian kernel. After proper vectorization of the
field intensities and state noise for N pixels, we obtain

u; = Hyu 1 4 qq, (6)

where the elements of the state transition matrix H; are
given by [ H;];; = o exp| —(xi—xj—wt)TD’1 (x;—x;—wy)],
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and q; is the spatially colored yet temporally white
Gaussian state noise vector. The quantity w; is the advec-
tive displacement during the temporal sampling interval
8¢, which can be represented more precisely as w; = v;6;,
where v; is the advection velocity. Note that the afore-
mentioned model is non-stationary when the advection
vector w; changes with time, which happens in many
real scenarios [20]. If there is no advection, i.e., w; = 0
and D = I, the model is stationary and isotropic. We
assume that the dynamic model, i.e., the state transition
matrix Hy is perfectly known through the parameters wy,
D, and o which are considered to be deterministic and
known. Without loss of generality, we follow the assump-
tions of [20] and [30] that the distribution of q; is given by
q: ~ N(Oyn,Qp). But this assumption is not true in
practical scenarios because the rainfall process cannot be
negative. In the simulation section, after generating u;
using the sate model of (6), we set the negative elements
of u; to 0. This is a modelling approximation.

One notable advantage of the model in [20] is the linear
relation of the rainfall intensities in one snapshot with the
ones in the previous snapshot.

2.3.2 Gaussian random walk model

In the last section, we assume that the parameters of
the state model are perfectly known. But in many prac-
tical scenarios for a large N, it can be computationally
intractable to estimate the N2 elements of the state tran-
sition matrix H; using the available data. In this case,
without any prior knowledge regarding the parameteriza-
tion of H;, one way to approximate the dynamics is by
assuming that the process follows a Gaussian random walk
model [31]. In this case, we assume that H; = H = I and
the process model is given by

W =u—1+q. (7)

The benefit of a Gaussian random walk model is that it
has very few model parameters rather than a parameter-
ized process model as mentioned in Section 2.3.1.

Note that the parameterized state model of (6) can be
viewed as a random walk model by incorporating negligi-
ble diffusion, i.e., D = €I, where € < 1 and no advection,
i.e.,, w; = 0. In this case, we have H; ~ I assuming « = 1.

2.4 Structure of the state error covariance matrix

It is assumed that the state error, i.e., q;, is a spatially
colored but temporally white Gaussian process. Assum-
ing spatial isotropy and stationarity of the state error q,
the elements of the covariance matrix Q; = Q can be
represented using the Matern covariance function as

) 21=7 [ /2p|Ix; — Xjll2 P V2plIxi — X2
= o Kyl ——— ),
T'(p) 1 14

[Ql;
8
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where I'(-) is the Gamma function, K,(-) is the modified
Bessel function of the second kind, and y is a positive
shaping parameter [28]. With p — oo and p = 1/2, (8)
becomes the squared exponential and the exponential

2
. . . Xi—X;
covariance functions, i.e., [Q]; = 032 exp (—|’2y2’|2>, and

[Ql;= o2exp (—M), respectively.

3 Dynamic rainfall mapping

We dynamically estimate the rainfall intensities at the N
pixels, i.e, us at £ = 1,..., T snapshots from the attenua-
tion measurements y; at £ = 1,..., 7. The measurement
and state models can be represented in the following
forms

Ye = P(uy) + e )

w; = Hwg + qe (10)

A standard practice to estimate the rainfall intensity u;
at every time ¢ = 1,...,T from the measurement and
state equations of (9) and (10) is the non-linear sem-
blance of the standard Kalman filter, i.e., the extended
EKF [32]. Note that we have non-linearity only in the
measurements.

As one of the criteria for the optimal behavior of the
Kalman fiter, we assume that the measurement and the
state noise statistics are completely known. The mea-
surement and the state noises are characterized by e; ~
N(0x,R), and q; ~ N (0n, Q), respectively. The dimen-
sion of the measurement noise covariance matrix depends
on the number of the available measurements at time ¢.
As the state model is a linear function of u;, the standard
Kalman fiter prediction steps are given by

(11)
(12)

Urpo1 = Hpap1pp-1
T
Myi—1 = HiM;_1,1H; +Q,

where the prediction of u; from the last ¢ — 1 observa-
tions is given by ti;;—1 with the error covariance matrix
My;—1 = E[ (u; — Gge—1) (u; — ﬁt\t—l)T] [32]. The terms
0;_1,—1 and M;_1;—1 are calculated in the previous time
step.

The prediction based on the state model is corrected by
the measurements. But here, we have a non-linear mea-
surement model. To linearize that model, let us introduce
the M x N Jacobian matrix computed at w; = @ ;—1 as

29
Jo = &

= a7 . The elements of the Jacobian matrix
t

uy =ty

are given by [J];; = abl,y[ﬁﬂtfl]}l«’_l, withi = 1,...,M,
and j = 1,...,N. A first order Taylor series expansion
of the non-linear measurement function around @y;—1
is then given as ®(u;) ~ @ e—1) + J[ur — Q1]
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Substituting this in (9), we obtain the following linearized
measurement equation:

Ve =Jou +ey (13)

where y; = y; — ®(0;;—1) + J:0z;—1. Note that here, we
have less observations than unknowns, i.e., the number of
links (M) is much smaller than the number of pixels (N),
i.e., the dimension of u;. Hence, in the correction step, to
utilize the measurements along with the state model, we
need to solve the underdetermined system (13) in order to
update Giy;—1 leading to tis;. After the dynamic lineariza-
tion, the state estimates can be obtained using a standard
Kalman filter. In this case, both the expressions for the
state estimate @;; and its state error covariance My; can
be obtained in closed form [32].

3.1 Limitations of a standard EKF
The estimation of u; from only M measurements using an
ordinary EKF has the following uncertainties.

e First of all, the quality of the estimate strongly depends
on the degree of non-linearity and the accuracy of
the linearization [32]. Also, for a highly underdeter-
mined (M <« N) and unpredictable measurement
matrix (many rows of J; can be zero for any @ ;—1),
the solution can be highly inaccurate and dependent
mainly on the predictions using the state model and
the initialization.

e In the above case, if the available information regard-
ing the dynamics are incomplete or imperfectly
known, then the prediction using the state model
will be inaccurate. In this case, an ordinary EKF may
produce unrealistic estimates in the presence of high
measurement noise.

e Also, there is no guarantee that an ordinary EKF
will always produce non-negative estimate of ;. For
instance, let us assume that an element of the pre-
dicted value, i.e., [ @;;—1]; (predicted using (11)) is less
than 0 at any t. In that case, if /;; # 0, we may have an
imaginary [J;]; = abl,-j[ﬁm_l]]l»’*l, if b — 1 is a frac-
tional quantity. As mentioned in [22], the standard
values for b mainly lie in the interval of 0 < b < 2.

In these circumstances, any further prior information
about u; (beyond the dynamics) is desirable to achieve a
stable and more accurate solution.

3.2 Available prior knowledge regarding rainfall field

Prior information about u; can be acquired from the
physical properties of rainfall such as sparsity and non-
negativity. In a given area, the rainfall intensity itself can
be assumed to be a sparsely distributed environmental
field over the entire service area [9, 33]. But sparsity can
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also be introduced by representing u; in an orthonormal
basis W, which can in principle be time-varying. When
rainfall itself is sparse, we simply have ¥, = I. Denot-
ing u; = Wz, sparsity is measured by the number of
non-zero entries in z, i.e., ||z¢]|o.

As the rainfall intensity cannot be negative, another
prior knowledge about u; is the non-negativity of the
rainfall field. For N pixels, this is represented as u; > Op.

Comment: Here, we mention that the prior informa-
tion regarding sparsity and non-negativity along with the
measurements can be efficiently utilized to monitor the
rainfall over multiple snapshots. For this, we do not need
any information regarding the dynamics. This can be
implemented for both linear [10] as well as non-linear
[9] measurement models. However, one limitation of
this dynamics-agnostic method is that the rainfall events
should occur in areas where microwave links are present
for accurate estimation. Otherwise, the effect of the mea-
surement noise can be dominant. In this case, we need
other spatial/temporal information (e.g., covariance struc-
ture, dynamics) to interpolate the rainfall field over the
entire service area.

In the next section, we illustrate iterative approaches
to dynamically estimate the state of u; fort = 1,..., T,
exploiting both sparsity and non-negativity.

3.3 Estimation of u;

A simple Kalman estimation step without the sparsity and
the non-negativity constraint can be formulated as the fol-
lowing weighted least squares optimization problem [34]:

. L 2 ~ 2
Uy = arg min ||z — ut||M—‘1 ) + 11y: — Jeuell g1
u; te—

(14)

This estimation step is not aware of sparsity or non-
negativity. The sparsity information can be incorporated
in the optimization problem of (14), by adding an ¢;-
penalty that enforces sparsity. Note that here, we use the
£1 norm as a convex relaxation of the non-convex £ norm.
Using the sparse representation of uy, i.e., z, the optimiza-
tion problem of (14) can be formulated as a spar