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A B S T R A C T

We synthesize single crystals of a new 2,5-dimethylanilinium tin iodide organic-inorganic hybrid compound and
2,5-dimethylanilinium triiodide. Single-crystal X-ray diffraction reveals that the hybrid grows as a unique
rhombohedral structure consisting of one-dimensional chains of SnI6-octahedra that share corners and edges to
build up a ribbon along the [111] direction. Notably, we find that hypophosphorous acid, H3PO2, is of central
importance to the formation of this hybrid. In the absence of H3PO2, we synthesize 2,5-dimethylanilinium
triiodide from the same starting compounds. We investigate the synthesis routes that drive the growth of these
two compounds with distinct crystal structures, appearance and properties. Pulse-radiolysis time-resolved
microwave conductivity measurements and density functional theory calculations reveal that both compounds
have low charge carrier mobilities and very long lifetimes, consistent with their one-dimensional structural
characteristics. Our findings give a better understanding of the relation between synthesis, crystal structures
and charge carrier mobilities.

1. Introduction

Organic-inorganic hybrid perovskites, such as CH3NH3PbI3, have
attracted growing attention as promising candidates for diverse
optoelectronic applications. The combination of organic and inorganic
components in a single compound leads to a class of materials that
exhibit a large variety of properties. Because of their unique optical
[1,2] and excitonic [3,4] properties and electrical [5] and ionic
conductivity [6], various optoelectronic applications are reported in
the literature. These applications include light-emitting diodes [7,8],
lasers [9,10], photodetectors [11] and efficient planar heterojunction
solar cell devices [12–16]. However, the best performing organic-
inorganic hybrid solar cells are lead-based. Substitution of lead is
desired because of its toxicity [17]. The feasibility of substituting tin for
lead has been studied [18–21], because they are in the same group in
the periodic table and they are isoelectronic in terms of their valence
shell and both have a lone pair of electrons. However, tin has the major
disadvantage that Sn2+ can oxidize easily to Sn4+. Still, tin-based hybrid
perovskites are reported to have excellent mobilities in transistors [22]

and can be intentionally or unintentionally doped to become metallic
[23,24]. Furthermore, encapsulation under inert atmosphere allows for
the successful implementation and study of tin-based perovskite solar
cell devices [18,19].

In this work, we synthesize single crystals of a new tin-based hybrid
compound: 2,5-dimethylaniline (abbreviated as 2,5-DMA) tin iodide
(2,5-DMASnI3). The motivation for synthesizing this compound is that
tin-based compounds generally exhibit good mobilities and that the
introduction of aromatic 2,5-DMA molecules might enhance the
mobility due to possible π-π stacking. Moreover, the aromaticity of
the organic cations can benefit the crystal growth. Using single-crystal
X-ray diffraction, we find that 2,5-DMASnI3 grows as a unique
rhombohedral structure, consisting of one-dimensional (1D) chains
of SnI6-octahedra that share corners and edges to build up a ribbon
along the [111] direction. Various low-dimensional tin-based hybrid
structures have previously been reported [25]. However, the structural
motif of 2,5-DMASnI3 is of an hitherto unknown type.

In addition to the target product, 2,5-DMASnI3, we also synthesized
single crystals of another new compound: 2,5-DMAI3. This triiodide
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salt forms a monoclinic structure consisting of linear I3
- units,

separated by the organic amines. We find that both compounds,
2,5-DMASnI3 and 2,5-DMAI3, form from the same starting com-
pounds. However, the product depends on the experimental conditions
and more specifically, on the presence of H3PO2. Pulse-radiolysis time-
resolved microwave conductivity measurements and density functional
theory calculations reveal that the charge transport in both compounds
is limited to the SnI6-ribbons and I3

- units. This one-dimensional (1D)
confinement enlarges the effective mass of the charge carriers. While
their mobilities are relatively low, the charge carrier lifetimes are
lengthened by the more ionic character of the 1D units, as observed in
2,5-DMAI3. Our findings provide a better understanding of the relation
between synthesis, crystal structures and charge carrier mobilities.

2. Materials and methods

2.1. Crystal growth of 2,5-dimethylanilinium tin iodide

Single crystals of 2,5-dimethylanilinium tin iodide (2,5-DMASnI3)
were grown following the method previously reported by Stoumpos et al.
to synthesize methylammonium tin iodide and formamidinium tin
iodide [20]. First, the 2,5-dimethyliodide salt (2,5-DMAI) was synthe-
sized from an equimolar mixture of 2,5-DMA and HI. A syringe was used
to slowly add concentrated (57wt%) aqueous hydriodic acid (Sigma
Aldrich; 99.95%) to 2,5-DMA (Sigma Aldrich; 99%). The mixture was
heated to 70 °C to remove excess solvent. The resulting white salt was
washed with diethyl ether (Avantor) and dried in air. Subsequently, a
100mL 3-necked Schlenk flask was charged with 6.8mL concentrated
(57wt%) aqueous hydriodic acid (Sigma Aldrich; 99.95%) and 1.7mL
concentrated (50wt%) aqueous hypophosphorous acid, H3PO2 (Sigma
Aldrich). This mixture was degassed with argon and kept under an argon
atmosphere throughout the experiment. 373mg (1mmol) SnI2 (Sigma
Aldrich; 99%) was added to the flask and dissolved upon heating
the mixture to 120 °C using an oil bath, while stirring magnetically.
A yellowmixture was obtained. A stoichiometric amount of 1mmol of the
2,5-DMAI salt was added to the hot solution and dissolved immediately.
Next, the solution was slowly evaporated at 120 °C to approximately half
its original volume while stirred continuously. Stirring was then discon-
tinued and the mixture was left to cool down to room temperature at a
rate of approximately 20 °C/hour. Upon cooling, crystals shaped as
yellow needles with a length of approximately 3mm were obtained. In
the rest of this work, this synthesis method is referred to as the Stoumpos
method.

2.2. Crystal growth of 2,5-dimethylanilinium triiodide

Single crystals of 2,5-dimethylanilinium triiodide (2,5-DMAI3)
were grown at room temperature, following a modified layered-solution
synthesis method previously reported by Mitzi [26]. In this method,
60mg (0.16mmol) SnI2 (Sigma Aldrich; 99%) was added to 3.0mL of
concentrated (57 wt%) aqueous hydriodic acid (Sigma Aldrich;
99.95%). The SnI2 did not fully dissolve, and only the solution was
transferred into a standard size (18 × 150mm) glass test tube. 3.0mL
of absolute MeOH (Lab-Scan, 99.8%) was carefully placed on top of the
red-brown SnI2/HI mixture, without mixing the solutions. A sharp
interface was formed between the two layers due to a large difference in
densities. 2,5-DMA (Sigma Aldrich; 99%) was added in great excess by
adding 15 droplets, using a glass pipette. The test tube was covered
with aluminum foil and kept in a fume hood under ambient conditions.
This method turned out to be very slow. It took more than a month to
grow black/red bar-shaped crystals of up to 3mm long. Moreover, as
we observed that tin was not included in the final product (2,5-DMAI3
was the product formed), we found that this elaborate method was not
necessary. Simply adding MeOH and 2,5-DMA to the filtered SnI2/HI
mixture, briefly stirring and leaving it in the fume hood under ambient
conditions gave the same result. However, using this simplified

method, crystals were observed within 24 h. This led us to believe that
the evaporation rate was the most important parameter for obtaining
this product. Note that the addition of MeOH is not vital to the
formation of 2,5-DMASnI3. It does promote the solubility of the
organic component, as it prevents the formation of 2,5-DMAI, neces-
sary to form 2,5-DMAI3. However, the absence of MeOH reduced the
evaporation rate, and subsequently, larger crystals of up to around
8mm long were obtained. While we modified the synthesis method
from the original method designed by Mitzi [26], in the rest of this
work we still refer to this simplified method as the Mitzi method.

2.3. Single-crystal X-ray diffraction

Single-crystal X-ray diffraction (XRD) measurements were per-
formed using a Bruker D8 Venture diffractometer equipped with a
Triumph monochromator and a Photon100 area detector, operating
with Mo Kα radiation (0.71073 Å). A 0.3mm nylon loop and cryo-oil
were used to mount the crystals. The crystals were cooled with a
nitrogen flow from an Oxford Cryosystems Cryostream Plus. Data
processing was done using the Bruker Apex III software and the
SHELX97 [27] software was used for structure solution and refine-
ment. Full-matrix least squares refinement against F2 was carried out
using anisotropic displacement parameters. Multi-scan absorption
corrections were performed. Hydrogen atoms were added by assuming
a regular tetrahedral coordination to carbon and nitrogen, with equal
bond angles and fixed distances.

2.4. Pulse-radiolysis time-resolved microwave conductivity

Charges were generated in the materials by ionization using short
pulses (5–20 ns) of high energy electrons (3MeV) from a Van de Graaff
accelerator. In this technique, charge carriers are generated by
irradiation with a short pulse of high-energy electrons (3MeV).
Subsequently, the change in power ( P t∆ ( )) of high frequency micro-
waves reflected by the microwave cell is monitored to determine the
change in conductivity ( σ t∆ ( )) of the material. The mobility of the
charge carriers (μ) can be derived if their initial concentration (N (0)p ) is
known, according to Eq. (1). In addition, the recombination mechan-
isms are studied by varying the initial concentration of charge carriers
by varying the length of the high-energy electron pulse.

∑P
P

A σ e N μ∆ (0) = ∆ (0) = A (0)p (1)

The change in conductivity in the samples was monitored using
microwaves in a frequency range from 28 to 38 GHz. The crystals, as
synthesized, were placed in a polyether ether ketone (PEEK) holder
with a cavity of 6 × 3 × 2mm3. The PEEK block with the sample was
placed inside a rectangular waveguide copper cell of 14 mm in
length, with a 7.1 × 3.55 mm2 front side. The copper cell was
mounted in a cryostat in which the temperature can be varied
between 150 and 400 K.

2.5. Density functional theory calculations

The band structures of both crystals were computed at the density
functional theory (DFT) level of theory using VASP 5.4.1. The calcula-
tions were performed using the projector augmented wave (PAW)
pseudopotentials [28,29] with the van-der-Waals-corrected [30] PBE
exchange correlation functional [31,32]. The energy cutoff for the
charge density calculations was 500 eV and a Gamma centered K-point
grid with dimensions of 4 × 4 × 4 was chosen. A denser K-point grid of
210 K-point along the high-symmetry points in the brillouin zone was
used for the band structure calculations.
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3. Results and discussion

We explored two different methods to synthesize 2,5-DMASnI3
(2,5-DMA=2,5-dimethylaniline) and we found that the two techniques
gave rise to different products. Using the Stoumpos method, we
obtained the tin-based organic-inorganic hybrid, 2,5-DMASnI3, in the
form of yellow needles. With the Mitzi method, we obtained the
triiodide salt 2,5-DMAI3 as very dark red/black bar-shaped crystals.
No tin was observed in this structure. We used single-crystal XRD to
study both structures in detail. Moreover, we studied the reaction
parameters of both methods to understand what drives the formation
of one compound over the other. This will be discussed below. First,
both crystal structures are described (see Figs. 1 and 2).
Crystallographic and refinement parameters of both compounds are
listed in Table 1.

3.1. 2,5-DMASnI3

Fig. 1 shows the crystal structure of 2,5-DMASnI3. As listed in
Table 1, structural refinement was performed in the polar space group
R3c, using the rhombohedral setting. The combination of single-crystal
XRD measurements at 100 K and 300 K, and differential scanning
calorimetry (DSC) and thermogravimetric analysis (TGA) above room

Fig. 1. Crystal structure of 2,5-DMASnI3. (a) Polyhedral model of the full crystal structure, projected along the [111] direction. (b) A single SnI6-octahedron, showing severe distortion.
(c) A single inorganic ribbon. Shading represents the strip of SnI6-octahedra that share edges. The total inorganic ribbon consists of three such edge-sharing strips that are connected
through corner-sharing.

Fig. 2. Crystal structure of 2,5-DMAI3. The hydrogen atoms of the methyl groups are
split over two positions by symmetry and should be considered illustrative only.

Table 1
Crystallographic and refinement parameters of 2,5-DMAI3 and 2,5-DMASnI3.

2,5-DMAI3 2,5-DMASnI3

Temperature (K) 100(2) 100(2)
Formula C8H12I3N C8H12I3NSn
Formula weight (g/mol) 502.89 621.58
Crystal size (mm3) 0.08 × 0.10 × 0.16 0.02 × 0.06 × 0.22
Crystal color Black/dark red Yellow
Crystal system Monoclinic Rhombohedral
Space group P21/m (no. 11) R3c (no. 161)
Symmetry Centrosymmetric Non-centrosymmetric (polar)
Z 2 6
D (calculated) (g/cm3) 2.686 2.900
F(000) 452 2208
a (Å) 9.3195(8) 17.2991(9)
b (Å) 6.6052(6) 17.2991(9)
c (Å) 11.0657(9) 17.2991(9)
α (°) 90.0 117.373(2)
β (°) 114.095(3) 117.373(2)
γ (°) 90.0 117.373(2)
Volume (Å3) 621.82(9) 2143.5(4)
μ (mm−1) 7.497 8.980
Min/max transmission 0.380/0.585 0.196/0.810
θ range (degrees) 3.08–36.39 2.76–27.22
Index ranges −13 < h < 13 −24 < h < 24

−9 < k < 9 −24 < k < 24
−15 < l < 15 −24 < l < 24

Data/restraints/parameters 2051/0/76 4367/1/110
GooF of F2 1.195 1.200
No. total reflections 28,187 113,765
No. unique reflections 2051 4367
No. obs Fo > 4σ(Fo) 1983 3746
R1 [Fo > 4σ(Fo)] 0.0197 0.0494
R1 [all data] 0.0205 0.0683
wR2 [Fo > 4σ(Fo)] 0.0512 0.1128
wR2 [all data] 0.0518 0.1347
Largest peak and hole (e Å3) 0.48 and −2.71 1.61 and −1.76
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temperature, revealed that no phase transitions take place before
decomposition at around 350 K.

While 2,5-DMASnI3 has the same structural formula as the cubic
ABX3 hybrid perovskite structure, with A the monovalent organic
cation, B the divalent metal and X the halide, the structural motif is
very different. As shown in Fig. 1(a), the structure of 2,5-DMASnI3
consists of SnI6-octahedra that form 1D chains along the [111]
direction. This 1D nature is also apparent from the shape of the
crystals. The crystals grow as needles and the longest direction
corresponds to the [111] direction. As shown in Fig. 1(b), the SnI6-
octahedra are strongly distorted. The three I-Sn-I angles deviate from a
perfect 180°, with values of 171.019(1)°, 166.243(1)° and 154.760(1)°,
respectively. We believe that this distortion is caused by the interaction
of the NH3

+ group with the iodide pairs and indirectly affect the
distortion of the SnI6-units via the Sn2+ lone pair. Fig. 1(c) shows a
single inorganic ribbon. Each ribbon consists of three strips of edge-
sharing SnI6-octahedra that are connected to each other by corner-
sharing. This bonding pattern is rather unusual and we have not
encountered this in any tin-based hybrid structure reported in the
literature. The organic molecules form a herringbone-type structure.
Therefore, no π-π stacking is observed. The ammonium groups are
oriented towards the inorganic ribbons, to create hydrogen bonding.

If charge transfer would occur through both the organic and inorganic
components, we believe that the polar nature of the structure (space
group R3c) might aid charge separation. However, we also argue that the
band gap is quite large as the crystals are yellow in color. Moreover, our
previous work on lead iodide-based hybrids has shown that the
dimensionality and connectivity of the metal halide octahedra plays a
significant role in determining the band gap of the compound [33]. The
1D nature and presence of edge-sharing SnI6-octahedra in 2,5-DMASnI3
then contribute to the large band gap. As shown below, our DFT
calculations estimate the band gap to be 2.37 eV.

3.2. 2,5-DMAI3

Fig. 2 shows the crystal structure of 2,5-DMAI3. As listed in Table 1,
refinement was performed in the monoclinic space group P21/m.
Single-crystal XRD measurements at 100 K and 300 K, and DSC and
TGA above room temperature, revealed that no phase transitions take
place in 2,5-DMAI3, before decomposition at around 410 K. 2,5-DMAI3
is a triiodide salt, and while SnI2 was one of the starting compounds, no
tin was observed in the product. We used energy-dispersive X-ray
spectroscopy (EDAX) measurements to prove the absence of tin. As
shown in Fig. 2, the triiodide ions are (nearly) linear and isolated from
each other. Triiodide ions can be divided into two types: asymmetric
and symmetric. Symmetric and linearly shaped triiodide ions are often

found in charge transfer complexes, such as the organic superconduc-
tor β-(BEDT-TTF)2I3 which has linear I3

− ions at an inversion center
[34,35]. In 2,5-DMAI3, the anions are highly asymmetric: the I1-I2 and
I2-I3 distances are 3.1373(4) Å and 2.779(3) Å, respectively. This large
asymmetry means that the I3

− unit exhibits strong ionic character.
Furthermore, the triiodide ion deviates significantly from linearity with
an I1-I2-I3 angle of 175.989(2)°, which is close to the mean value for
triiodide ions taken from the Crystallographic Open Database (COD) of
178° (see Table 2) [36–40]. Moreover, linear and symmetrical I3

− ions
are generally associated with large cations, in contrast to the asym-
metric bent I3

− anions found with small asymmetric or highly charged
cations [41]. Notably, all organic molecules lie parallel to the
(101)-plane and hence, parallel to each other. The distance between
two 2,5-DMAmolecules corresponds to half a unit cell, i.e. 3.3026(6) Å.
The molecules are stacked in an off-set manner, but there is never-
theless a degree of π–π overlap between adjacent rings.

There are several triiodide salts reported in literature, some of
which are listed in Table 2. This list is not complete, but based on all
structures found in the Crystallographic Open Database (COD) except
for the 1-ethylpyridinium and 1,2,4-trimethylpyridinium salts, for
which no crystallographic information files (CIFs) were deposited in
the database. However, since these two organic molecules have a
similar size to 2,5-DMA, we manually constructed CIFs from the
structural data presented in the papers [42]. Note that we only
considered fully organic cations. Cations containing for example iron
or arsenic are excluded from this list [43,44]. Almost all triiodide salts
found in the COD are published as structure reports. The triiodide salts
are often reported as undesired byproducts instead of a target product.
We discuss below which experimental conditions influence the growth
of both the triiodide salt and the target product, 2,5-DMASnI3, adding
to the understanding of why triiodide salts can form under certain
conditions. Furthermore, as most triiodide salts are reported as
structure reports, not much has been said about their properties. As
shown in Table 2, a few of these compounds have π-π stacking and the
compound we present here is one of these. Note that the π-π
interaction distance is defined as the distance between the planes of
adjacent rings, along the stacking direction. This means that any off-set
stacking is ignored. The combination of the dark color (See Fig. 3(a))
and π–π stacking in our structure led us to believe that the electrical
conductivity could be large. However, the ionic character of the I3

− unit
might reduce the conductivity due to limited charge transfer between
neighboring I3

− units. Investigation of the carrier mobilities and a
theoretical analysis are discussed below.

As stated above, the formation of either 2,5-DMASnI3 or
2,5-DMAI3 directly depends on the synthesis method used. In
Table 3 we list the differences in experimental conditions between

Table 2
Appearance, I1-I2-I3 angle and presence of π-π interactions for selected triiodide salts containing an organic cation.

Organic cation Appearance I1-I2-I3 angle (°) π–π interactiona

2,5-dimethylanilinium Red/black bar 175.989(2) Yes, 3.303 Å
2-aminopyridin-1-ium [45] Orange plate 176.017(9) Yes, 3.423 Å
(E)−2-[4-(dimethylamino)styryl]−1]methylpyridinium) [46] Orange needle 180.0 Yes, 3.306 Å
4-(4-pyridyl)pyridinium [47] Yellow/brown prism 176.443(13) Yes, 3.759 Å
Trans−4-[p-(N,N-diethylamino)styryl]-N-methylpyridinium [48] Dark red prism 177.50(2) Yes, 3.585 Å
4-tert-butylpyridinium [49] Red block 177.55(3) No
1,3-bis(2,6-diisopropylphenyl)−4,5-dihydro-1H-imidazol-3-ium [50] Brown block 178.309(18) No
1,4-dimethylpyridinium [51] Brown plate 180.0 No
6,6,9,9-tetramethyl-1,2,5,6,9,9a-hexahydroimidazo[2,1-d][1,2,5]dithiazepin-1-ium] [52] Brown prism 178.05(4) No
dihydrobis(methylamine)borate [53] Red/purple needle 179.232(15) No
2-(2-pyridyl)pyridinium [41] Brown needle 177.88(5) No
1-ethylpyridinium [42] Red/black block 177.70(2) No
1,2,4-trimethylpyridinium [42] Red/black block 179.76(2) No
1,2,3,5-tetramethyl-1H-pyrazol-2-ium [54] Red prism 177.099(12) No
2,5-dibromopyrazinium [55] Yellow block 180.0 No

a Distance between the planes of the aromatic rings.
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the two methods. To understand which difference induces the different
products, we investigate the effect of all experimental conditions:
temperature, state of organic precursor, solvent and atmosphere.

3.3. Effect of temperature

We grew 2,5-DMAI3 at room temperature, while we grew
2,5-DMASnI3 at elevated temperature. To investigate the effect of
temperature, we performed both synthesis methods at the opposite
temperatures. TheMitzi method appears to be successful at 120 °C. The
same product was obtained. However, the crystals contained more
imperfections and were smaller in size. We reason that this is caused by
the rapid evaporation rate at 120 °C, which negatively influences the
crystal quality. This is a similar argument to the necessity of adding
MeOH to the reaction mixture to slow the evaporation rate as discussed
in the Materials and Methods. Conversely, the Stoumpos method does
not work at room temperature. The main problem here is that the
relatively large amount of SnI2 does not fully dissolve at room
temperature, and only crystals of SnI2 were obtained. Possibly, the
optimal relative concentrations of organic and inorganic components
were not reached or the hybrid did not nucleate due to the relatively
easy growth of existing SnI2 particles. Furthermore, we dissolved both
products in EtOH and allowed them to recrystallize at ambient
conditions. This appeared to be successful for both 2,5-DMAI3 and
2,5-DMASnI3. Consequently, both products are stable and the driving
force for formation of either of the two components lies in the initial
formation of the product. Thus, we find that the elevated temperature
is important for the growth of 2,5-DMASnI3, but as 2,5-DMAI3 can also
form at the same temperature, this is not the crucial difference between
the two methods.

3.4. Effect of the state of the organic precursor

In the Stoumpos method, 2,5-DMA is added as a pre-made
2,5-DMAI salt, while in the Mitzi method, 2,5-DMA is directly used.
Here we explored the necessity of forming the 2,5-DMAI salt before
continuation of the synthesis process. We found that this step can be
removed from the synthesis procedure. The salt immediately dissolves

in HI, and adding the salt instead of the solution, only adds more
iodine to the reaction mixture, while there is already a great excess
of HI. For the Mitzi method, the use of the pre-made 2,5-DMAI salt,
instead of 2,5-DMA as a solution, also did not influence the product
formed. This method is also based on an excess of HI, therefore no
change is observed. Thus, the state of the organic component does not
influence the formation of the final product in either of the synthesis
methods.

3.5. Effect of atmosphere and hypophosphorous acid

Despite the fact that both 2,5-DMAI3 and 2,5-DMASnI3 are stable
in air for at least 24 h, both synthesis methods are performed under
different environmental conditions. The Stoumpos method is per-
formed under inert atmosphere, while the Mitzi method is performed
under ambient conditions. Notably, when the opposite type of atmo-
sphere was used, both synthesis methods failed. The Stoumpos method
failed in ambient atmosphere, as no 2,5-DMASnI3 was formed. The
Mitzi method also failed to give any product under inert environment.
However, when the reaction mixture was exposed to air, 2,5-DMAI3
formed within one hour. This leads to the conclusion that oxygen plays
a crucial role in the formation of the triiodide salt. While Sn2+ easily
oxidizes to Sn4+, neither was observed in the final product 2,5-DMAI3.
Notably, HI is also not very stable in air. The iodide ions, I−, can be
oxidized to iodine, I2. This is the reason why H3PO2 should be
introduced [56]. H3PO2 is a reducing agent that reduces I2 back
to I−. Consequently, 2,5-DMASnI3 can be formed with the Stoumpos
method. In the case of the Mitzi method, the presence of ambient air
and lack of any reducing agent oxidizes a significant amount of I- to I2,
which in turn reacts with I- to form the triiodide complex: I3

−. This
triiodide easily combines with the organic component to form the
triiodide salt, 2,5-DMAI3. Thus, the addition of H3PO2 is crucial for the
synthesis of the 2,5-DMASnI3 hybrid. However, H3PO2 is not the only
experimental requirement for the synthesis of the hybrid; as stated
above, the reaction temperature is also crucial. Additional experiments
showed that adding H3PO2 to the reaction mixture used in the Mitzi
method (25 vol%) still produced 2,5-DMAI3 when exposed to air. The
main difference is that it took significantly longer to grow the crystals.
Thus, in order to grow the 2,5-DMASnI3 hybrid, H3PO2, inert atmo-
sphere and elevated temperatures are required. Leaving out any of
these three conditions prevents the desired product from forming or
gives 2,5-DMAI3. In order to grow 2,5-DMAI3, the key experimental
condition is the absence of inert atmosphere.

Peculiar to the Mitzi method is the fact that no triiodide salt forms
when different organic molecules are used. We have tried this method
with several organic moieties, including benzylammonium and
2-thiophenemethylammonium, but none gave any product. As shown
in Table 2, several organic triiodide salts have been successfully made,

Fig. 3. (a) Photograph of 2,5-DMAI3 single crystals. (b) Absorption spectrum of 2,5-DMAI3 single crystal, showing excitonic absorption at around 720 nm.

Table 3
Comparison of synthesis parameters used in both synthesis methods.

Stoumpos method [20] Mitzi method [26]

Temperature 120 °C 25 °C
State of organic precursor 2,5-DMAI (s) 2,5-DMA (l)
Solvents HI and H3PO2 HI (and MeOH)
Atmosphere Argon Ambient
Obtained compound 2,5-DMASnI3 2,5-DMAI3
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but we believe that it is not possible to form salts with every organic
cation. We believe that 2,5-DMA has a more favorable size and shape
for inclusion in a triiodide salt. While benzylammonium and
2-thiophenemethylammonium have a relatively long shape with re-
spect to the ammonium group, 2,5-DMA has a wider shape.
Furthermore, the widest span in 2,5-DMA is between the two methyl
groups and corresponds to 5.8545(3) Å. Notably, the span of the
I3

− complex in 2,5-DMAI3 is 5.9088(3) Å, which is very similar. We
believe that the growth of 2,5-DMAI3 is favorable compared to some
other XI3 salts, with X being an organic cation, as both building blocks
are similar in size.

As shown in Table 2, the appearance of 2,5-DMAI3 is rather dark,
indicating a relatively small band gap. The absorption spectrum is
shown in Fig. 3(b). The spectrum appears to show some excitonic
absorption at around 720 nm. As shown below, our DFT calculations
estimate the band gap to be 1.53 eV, in close agreement with Fig. 3(b).
While we argue that the experimental band gap will be of the order of
1.55 eV, it is difficult to extract the exact band gap due to absorbance
that extends beyond 1.55 eV (800 nm). Notably, no emission could be
detected. However, Fig. 4(d) indicates a direct band gap in this
material.

In order to clarify the electronic properties of these materials, we
performed DFT band structure calculations. 2,5-DMASnI3 has an
indirect band gap and 2,5-DMAI3 has a direct band gap at the D point.
Moreover, we found that the effective mass of the charge carriers in
these materials is one to two orders of magnitude larger than for 3D
and 2D perovskites (see Fig. 4 and Table 4) [57–59]. This is in
agreement with our experimental results. We attribute these lower
charge carrier mobilities to the distortions in the structure that reduce
the dimensionality of charge transport by creating 1D fragments. In
2,5-DMASnI3, clear 1D pathways are formed by the corner- and edge-
sharing of SnI6-octahedra. Bader charges were calculated for the
I3

− units and the organic cations and we found that the I3
− unit has

a charge of –0.76 and the organic cation has a charge of +0.76. This
indicates the pure ionicity of the compound. In 2,5-DMAI3, alternating
1D columns of I3

− and DMA can be identified. For both compounds,
this 1D confinement leads to higher effective masses of the charge
carriers and hence a lower mobility [57–59]. The charge densities at
the top of the valence band and the bottom of the conduction band for
both compounds are shown in Fig. 4. 2,5-DMASnI3 has both the top of
the valence band and bottom of the conduction band on the π-orbitals
of the Sn and I atoms. 2,5-DMAI3 has both the top of the valence band
and bottom of the conduction band on the π-orbitals of the I atoms. It
is clear that for both 2,5-DMASnI3 and 2,5-DMAI3, these bands are
restricted to a one-dimensional region of the crystal. In 2,5-DMASnI3,
both the valence and the conduction band are located at the Sn and
I atoms, while for 2,5-DMAI3, both bands are on the columns
consisting of I3

− ions. The effective mass depends on how the orbitals
combine to result in a band. The coupling in the case of the 2,5-DMAI3
valence band can be regarded as fairly inefficient due to the decoupled
orbitals of iodide, whereas in the case of the 2,5-DMASnI3 valence
band the coupling is more dominant and the orbitals are not
decoupled. This explains why the hole effective mass is lower in the

Fig. 4. DFT band structure calculations and charge densities at the bottom of the conduction band and the top of the valance band for 2,5-DMASnI3 (a, b and c) and 2,5-DMAI3 (d, e and
f).

Table 4
Band gap, band width and effective mass of charge carriers at the top of the valence band
and bottom of the conduction band for 2,5-DMASnI3 and 2,5-DMAI3. The effective
masses for 2,5-DMASnI3 are calculated at the Gamma point (0, 0, 0) between X and Y.
The effective masses for 2,5-DMAI3 are calculated at the D point (0.5, 0, 0.5).

2,5-DMASnI3 2,5-DMAI3

Band gap (eV) 2.37 1.53
HOMO (eV) 0.16 0.12
LUMO (eV) 0.37 1.19
Hole effective mass (m*) 0.12 60.88
Electron effective mass (m*) 1.06 0.59
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case of 2,5-DMASnI3 compared to 2,5-DMAI3. The electron effective
masses are given by the conduction band, which has a high coupling as
seen in the charge density plots of Fig. 4. Thus, the electron effective
masses of both compounds are of the same order of magnitude. The
low dimensionality is also reflected by the band curvature in different
directions. For directions perpendicular to the 1D pathway, the
effective mass is much larger than along these pathways.

To study the mobility and recombination mechanisms of charge
carriers in both 2,5-DMASnI3 and 2,5-DMAI3, we performed pulse-
radiolysis microwave conductivity measurements (PR-TRMC) [60,61].
Fig. 5(a) shows the mobility of 2,5-DMASnI3 and 2,5-DMAI3 as a
function of temperature. The mobilities for both compounds are very
similar at room temperature, 0.006 cm2 V−1 s−1 and 0.004 cm2 V−1 s−1,
respectively, and fall within the same error margin. Moreover, the
values do not change significantly at higher or lower temperatures.
Notably, these values are three orders of magnitude lower than the
values measured with the same technique for three-dimensional hybrid
perovskites, such as CH3NH3PbI3 (~1.5 cm2 V−1 s−1) [58,59], and two
orders of magnitude lower than for two-dimensional hybrids, such as
[CH3(CH2)3NH3]2PbI4 (~0.3 cm2 V−1 s−1) [57]. These results are in
agreement with our DFT calculations, as the charge carrier mobility is
inversely proportional to the effective mass. We believe that these lower
mobilities are caused by the large distortions in the structure of the
materials that introduce 1D structural fragments.

The change in conductivity as a function of time is shown in
Fig. 5(b). The lifetime of the charge carriers is very long for both
compounds: approximately 400 μs for 2,5-DMASnI3 and 1ms for
2,5-DMAI3. These long lifetimes are caused by the nature of the
experiment and the structure of the materials. During PR-TRMC
measurements, the electron pulse ionizes the charge carriers with a
high energy (20 eV per ionization event on average) [60,61].
Consequently, the electrons and holes are generated far away from
each other. Considering the structure of both compounds, the electrons
and holes are most likely generated in different 1D ribbons of SnI6-
octahedra in 2,5-DMASnI3 and in different I3

− units in 2,5-DMAI3. The
1D confinement and large effective masses in the perpendicular
direction results in slow recombination and very long carrier lifetimes.
The longer lifetime of 2,5-DMAI3, compared to 2,5-DMASnI3, is
possibly related to the high ionic character of the I3

− units, which aids
charge separation. To study the lifetime when the charge carriers are
generated close to each other, we performed photoconductivity TRMC
measurements with laser excitation [57]. However, we did not obtain
any photoconductivity signal. By definition, these measurements yield
the product of the mobility and charge dissociation [57]. From the
PR-TRMC measurements, it is clear that the charge carriers are mobile.
Thus, the absence of a photoconductivity signal means that the charge
carriers do not dissociate or recombine very quickly due to a high

exciton binding energy. We conclude that the exciton binding energy is
probably very large in these materials, as a result of the strong 1D
confinement in both materials. This is consistent with previous
measurements on 2D perovskite structures where much lower photo-
conductivity was measured, combined with very short carrier lifetimes
[57].

4. Conclusion

In conclusion, we have synthesized and investigated the crystal
structures of two new compounds: 2,5-dimethylanilinium tin iodide
organic-inorganic hybrid and 2,5-dimethylanilinium triiodide. Starting
from 2,5-dimethylaniline and SnI2, we have investigated the experi-
mental conditions that drive the formation of the hybrid and the
triiodide salt. Our findings reveal that the hybrid only grows at elevated
temperatures, under inert atmosphere and with the addition of
hypophosphorous acid, H3PO2. Leaving out any of these three condi-
tions prevents the formation of any product or yields an alternative
compound. Crucial for the growth of the triiodide salt is the absence of
inert atmosphere. As HI is not very stable in air, the iodide ions, I-, can
easily oxidize to iodine, I2. This happens in the presence of ambient air
and in the absence of any reducing agent, such as H3PO2. As a result, a
significant amount of I2 will be formed, which can react with I- to form
the reactive triiodide anion: I3

−. This triiodide ion then easily reacts
with the organic moiety to form the triiodide salt. The affinity between
the organic and inorganic groups is therefore an essential design motif
for organic-inorganic hybrid structures. Our result shows an alternative
structural motif for organic-inorganic hybrids with structural formula
ABX3. Pulse-radiolysis time-resolved microwave conductivity measure-
ments and density functional theory calculations reveal that both
compounds have low charge carrier mobilities and very long lifetimes,
consistent with their low-dimensional structural characteristics. Our
findings add to the understanding of how experimental conditions
drive the formation of tin-based organic-inorganic hybrid compounds
and how their crystal structures relate to their charge carrier mobilities.

Associated content

Crystallographic information files of the new 2,5-DMAI3 and 2,5-
DMASnI3 compounds (CIF). The CIFs is also deposited to the CCDC
and are available under the numbers 1839245 and 1839247, respec-
tively.
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