

Delft University of Technology

Delft Students on Software Architecture: DESOSA 2018

Deursen, Arie van; Zaidman, Andy; Aniche, Maurício; Clark, Liam; Weterings, Gijs; Kharisnawan, Romi

Publication date
2018

Citation (APA)
Deursen, A. V., Zaidman, A., Aniche, M., Clark, L., Weterings, G., & Kharisnawan, R. (2018). Delft Students
on Software Architecture: DESOSA 2018. (DESOSA; Vol. 4). Delft University of Technology.
https://delftswa.gitbooks.io/desosa2018/

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://delftswa.gitbooks.io/desosa2018/

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

Table	of	Contents
Introduction

Akka

Angular

Docker

Eden

ElasticSearch

Electron

Godot

Jenkins

Kubernetes

Lighthouse

Loopback

Mattermost

Mbedos

OSU

Phaser

React

Spark

TypeScript

Vue.js

Xmage

Open	source	contributions

2

Delft	Students	on	Software	Architecture:	DESOSA	2018
Arie	van	Deursen,	Andy	Zaidman,	Maurício	Aniche,	Liam	Clark,	Gijs	Weterings	and	Romi	Kharisnawan.
Delft	University	of	Technology,	The	Netherlands,	July,	2018

We	are	proud	to	present	the	fourth	edition	of	Delft	Students	on	Software	Architecture,	a	collection	of	20	architectural	descriptions	of
open	source	software	systems	written	by	students	from	Delft	University	of	Technology	during	a	master-level	course	that	took	place	in
the	spring	of	2018.

In	this	course,	teams	of	approximately	4	students	could	adopt	an	open	source	project	of	choice	on	GitHub.	The	projects	selected	had	to
be	sufficiently	complex	and	actively	maintained	(one	or	more	pull	requests	merged	per	day).

During	an	8-week	period,	the	students	spent	one	third	of	their	time	on	this	course,	and	engaged	with	these	systems	in	order	to
understand	and	describe	their	software	architecture.

Inspired	by	Amy	Brown	and	Greg	Wilson's	Architecture	of	Open	Source	Applications,	we	decided	to	organize	each	description	as	a
chapter,	resulting	in	the	present	online	book.

Recurring	Themes
The	chapters	share	several	common	themes,	which	are	based	on	smaller	assignments	the	students	conducted	as	part	of	the	course.	These
themes	cover	different	architectural	'theories'	as	available	on	the	web	or	in	textbooks.	The	course	used	Rozanski	and	Woods'	Software
Systems	Architecture,	and	therefore	several	of	their	architectural	viewpoints	and	perspectives	recur.

The	first	theme	is	outward	looking,	focusing	on	the	use	of	the	system.	Thus,	many	of	the	chapters	contain	an	explicit	stakeholder
analysis,	as	well	as	a	description	of	the	context	in	which	the	systems	operate.	These	were	based	on	available	online	documentation,	as
well	as	on	an	analysis	of	open	and	recently	closed	(GitHub)	issues	for	these	systems.

A	second	theme	involves	the	development	viewpoint,	covering	modules,	layers,	components,	and	their	inter-dependencies.	Furthermore,
it	addresses	integration	and	testing	processes	used	for	the	system	under	analysis.

A	third	recurring	theme	is	technical	debt.	Large	and	long	existing	projects	are	commonly	vulnerable	to	debt.	The	students	assessed	the
current	debt	in	the	systems	and	provided	proposals	on	resolving	this	debt	where	possible.

Besides	these	common	themes,	students	were	encouraged	to	include	an	analysis	of	additional	viewpoints	and	perspectives,	addressing,
e.g.,	security,	privacy,	regulatory,	evolution,	or	product	configuration	aspects	of	the	system	they	studied.

First-Hand	Experience

Last	but	not	least,	all	students	made	a	substantial	effort	to	try	to	contribute	to	the	actual	projects.	With	these	contributions	the	students
had	the	ability	to	interact	with	the	community;	they	often	discussed	with	other	developers	and	architects	of	the	systems.	This	provided
them	insights	in	the	architectural	trade-offs	made	in	these	systems.

Student	contributions	included	documentation	changes,	bug	fixes,	refactorings,	as	well	as	small	new	features.	A	list	of	contributions
accepted	by	the	projects	under	study	is	provided	in	the	dedicated	contributions	chapter.

Feedback
While	we	worked	hard	on	the	chapters	to	the	best	of	our	abilities,	there	might	always	be	omissions	and	inaccuracies.	We	value	your
feedback	on	any	of	the	material	in	the	book.	For	your	feedback,	you	can:

Open	an	issue	on	our	GitHub	repository	for	this	book.
Offer	an	improvement	to	a	chapter	by	posting	a	pull	request	on	our	GitHub	repository.
Contact	@delftswa	on	Twitter.

Introduction

3

https://avandeursen.com
http://www.st.ewi.tudelft.nl/~zaidman/
http://www.mauricioaniche.com
https://www.linkedin.com/in/liam-clark-b5375baa/
https://www.linkedin.com/in/gijs-weterings/
https://www.linkedin.com/in/romikharisnawan
http://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=43417
http://aosabook.org/
http://www.viewpoints-and-perspectives.info/
http://www.viewpoints-and-perspectives.info/home/viewpoints/
http://www.viewpoints-and-perspectives.info/home/perspectives/
http://www.mindtools.com/pages/article/newPPM_07.htm
http://www.viewpoints-and-perspectives.info/home/viewpoints/context/
https://www.viewpoints-and-perspectives.info/home/viewpoints/development/
https://speakerdeck.com/avandeursen/lehman-versus-lehman-dealing-with-debt?slide=2
http://www.viewpoints-and-perspectives.info/home/viewpoints/
http://www.viewpoints-and-perspectives.info/home/perspectives/
https://github.com/delftswa2018/desosa2018
https://github.com/delftswa2018/desosa2018
https://twitter.com/delftswa

Send	an	email	to	Arie.vanDeursen	at	tudelft.nl.

Acknowledgments

We	would	like	to	thank:

Our	2018,	guest	speakers,	offering	students	an	industrial	perspective	on	software	architecture:	Bert	Wolters,	Sander	Knape,	Allard
Buijze,	and	Bob	Bijvoet.
All	open	source	developers	who	helpfully	responded	to	the	students'	questions	and	contributions.
The	excellent	gitbook	toolset	and	gitbook	hosting	service	making	it	easy	to	publish	a	collaborative	book	like	this.

Previous	DESOSA	editions

1.	 Arie	van	Deursen,	Maurício	Aniche,	Andy	Zaidman,	Valentine	Mairet,	Sander	van	den	Oever	(editors).	Delft	Students	on	Software
Architecture:	DESOSA	2017,	2017.

2.	 Arie	van	Deursen,	Maurício	Aniche,	Joop	Aué	(editors).	Delft	Students	on	Software	Architecture:	DESOSA	2016,	2016.
3.	 Arie	van	Deursen	and	Rogier	Slag	(editors).	Delft	Students	on	Software	Architecture:	DESOSA	2015.	DESOSA	2015,	2015.

Further	Reading

1.	 Arie	van	Deursen,	Maurício	Aniche,	Joop	Aué,	Rogier	Slag,	Michael	de	Jong,	Alex	Nederlof,	Eric	Bouwers.	A	Collaborative
Approach	to	Teach	Software	Architecture.	48th	ACM	Technical	Symposium	on	Computer	Science	Education	(SIGCSE),	2017.

2.	 Arie	van	Deursen,	Alex	Nederlof,	and	Eric	Bouwers.	Teaching	Software	Architecture:	with	GitHub!	avandeursen.com,	December
2013.

3.	 Amy	Brown	and	Greg	Wilson	(editors).	The	Architecture	of	Open	Source	Applications.	Volumes	1-2,	2012.
4.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and	Perspectives.

Addison-Wesley,	2012,	2nd	edition.

Copyright	and	License

The	copyright	of	the	chapters	is	with	the	authors	of	the	chapters.	All	chapters	are	licensed	under	the	Creative	Commons	Attribution	4.0
International	License.	Reuse	of	the	material	is	permitted,	provided	adequate	attribution	(such	as	a	link	to	the	corresponding	chapter	on
the	DESOSA	book	site)	is	included.

Cover	based	on	design	by	Valentine	Mairet	for	DESOSA	2016.	Image	credits:

Delft	Nieuwe	Kerk:	Jan	Arkesteijn	at	Wikimedia
Cat:	Smiling	Cat	Face	With	Open	Mouth	on	Apple	iOS	9.3	at	Emojipedia
Cat	Paw:	Designed	by	Freepik	at	Flaticon

Introduction

4

https://www.linkedin.com/in/bert-wolters-01652839/
https://www.linkedin.com/in/sander-knape-7bb61537/
https://www.linkedin.com/in/abuijze/
http://slides.com/bobbijvoet/
https://github.com/GitbookIO/gitbook-cli
https://www.gitbook.com/
https://delftswa.gitbooks.io/desosa-2017/content/
https://delftswa.gitbooks.io/desosa2016/content/
https://delftswa.github.io/
https://pure.tudelft.nl/portal/en/publications/a-collaborative-approach-to-teaching-software-architecture(0c7f2aeb-f2d6-4c56-9ab7-5f47f73d133f).html
http://avandeursen.com/2013/12/30/teaching-software-architecture-with-github/
http://aosabook.org/
http://www.viewpoints-and-perspectives.info/
http://creativecommons.org/licenses/by/4.0/
https://www.gitbook.com/book/delftswa/desosa2018/details
http://creativecommons.org/licenses/by/4.0/
https://delftswa.gitbooks.io/desosa2016/content/
https://commons.wikimedia.org/wiki/File:Nieuwe_kerk_20040311.jpg
http://emojipedia.org/apple/ios-9.3
http://emojipedia.org/apple/ios-9.3/smiling-cat-face-with-open-mouth
http://www.flaticon.com/authors/freepik
http://flaticon.com

Akka	-	Build	powerful	reactive,	concurrent,	and	distributed
applications	more	easily
By:	Thomas	Smith,	Carsten	Griessmann,	Martijn	Steenbergen,	Remi	van	der	Laan

Abstract

Akka	is	a	toolkit	for	building	highly	concurrent,	distributed	applications.	It	was	created	by	a	company	now	called	Lightbend,	which	is
also	behind	the	Scala	language,	and	is	maintained	by	a	core	team	of	seven	people	employed	by	them	as	well.	After	a	thorough	analysis
from	various	perspectives	and	views	of	this	software	system,	we	concluded	there	are	few	problems,	though	there	are	some	possibilities
for	improvement.	Notably,	there	are	the	problems	that	come	along	with	binary	compatibility,	which	is	mentioned	by	the	core	team
themselves	as	the	largest	time	intensive	burden	for	technical	debt.	Besides	analyzing	the	current	architecture,	we	provide	descriptions	of
its	evolution	and	concurrency	in	the	delivery	of	messages	between	actors.	This	chapter	serves	as	a	high-level	overview	for	people
interested	in	Akka	and	to	suggest	possible	improvements	to	the	project	maintainers.

Introduction

Akka

5

http://github.com/txsmith
http://github.com/Schubbcasten
http://github.com/mjwsteenbergen
http://github.com/RvanderLaan

Akka	is	a	set	of	libraries	for	building	concurrent,	distributed	and	message-driven	applications	for	Java	and	Scala.	It	allows	users	to	build
applications	in	different	programming	models,	such	as	stream	programming	or	pub/sub,	on	the	Actor	model.	The	actor	model	aims	to
take	the	core	principle	of	OOP,	sending	messages	to	objects,	and	make	it	safe	in	the	face	of	concurrency.	Akka	focuses	on	simplicity,
resilience	and	performance	which	has	made	it	widely	adopted	by	large	organizations	such	as	eBay,	Twitter	and	Walmart.	It	is	written	in
Scala	and	provides	bindings	to	Java	as	well.	It	is	one	of	the	biggest	open	source	projects	within	Scala	and	it	keeps	evolving.

In	this	chapter,	we	aim	to	provide	insight	into	the	Akka	project	and	provide	a	high-level	understanding	of	its	underlying	architecture.	We
start	by	giving	an	overview	of	its	stakeholders	and	the	context	surrounding	Akka.	Then	an	analysis	of	its	architecture	and	design	is	given
through	the	development	viewpoint,	which	additionally	describes	the	code	organization	and	standards.	This	is	followed	by	looking	into
the	evolution	of	Akka.	We	then	provide	more	insights	in	how	Akka	solves	the	problem	of	building	parallel	application	through	the
concurrency	view.	We	finish	by	looking	at	some	technical	debt	that	we	found.

Stakeholders

Akka	is	lead	and	funded	by	Lightbend.	Lightbend,	formerly	called	TypeSafe	[1],	is	a	company	founded	by	Martin	Odersky	(the	creator
of	the	Scala	language),	Jonas	Bonér	(creator	of	the	Akka	framework)	and	Paul	Phillips	(who	has	left	the	company	[2]).	Next	to
Lightbend	Akka	also	has	a	lot	of	other	stakeholders,	that	are	interested	in	the	success	of	the	product.	In	this	chapter	we	will	identify
those	using	the	categories	of	the	book	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and	Perspectives.

Acquirers

Acquirers	are	the	stakeholders	that	fund	the	project.	In	the	case	of	Akka	that	is	the	company	Lightbend.	It	employs	the	core	team	that
oversees	the	development	and	is	currently	listed	as	their	only	sponsor	[8].

Assessors

Assessors	oversee	whether	Akka	meets	all	legal	standards.	The	main	assessors	that	we	identified	are	the	license	holders	of	the
dependencies	of	Akka,	such	as	Oracle	(Java/JVM),	Lightbend	(Scala/SBT),	Google	(Protobuf)	and	Netty.	Next	to	that	there	is	probably
a	legal	department	within	Lightbend	that	also	has	that	role	for	Akka.	This	unfortunately	cannot	be	verified	due	to	it	not	being
transparent	in	the	open	source	project.

Communicators

Communicators	are	the	ones	that	explain	and	document	the	system	so	that	it	can	be	used	by	others.	The	most	important	communicator
for	Akka	is	Lightbend.	They	are	selling	consultancy	and	training	services	for	it,	which	is	an	important	part	of	their	business	model	[3].
Next	to	that,	the	extensive	documentation	of	Akka	can	be	contributed	to	by	anyone,	but	most	changes	are	added	by	its	core	team.

Developers

Since	Akka	is	an	open	source	project	and	has	existed	for	many	years	[4],	there	have	been	many	developers	who	understand	the
architecture	and	make	it	through	the	whole	development	cycle	to	make	a	contribution.	That	contribution	can	be	anything	like	a	new
feature,	a	bug-fix	or	even	a	refactor.	This	makes	them	not	only	developers	but	also	maintainers	and	testers,	since	when	making
contribution	they	also	have	to	test	it.	It	is	notable	that	many	key	contributors	are	also	Lightbend	employees	and	part	of	the	Akka	core
team.	Most	of	those	members	made	the	releases	on	the	Akka	GitHub	repository.

Production	engineers

The	production	engineer	in	this	case	is	the	one	that	is	providing	Akka's	development	infrastructure	such	as	the	build	servers	and	the	CI
environment.	This	is	again	Lightbend.	Things	such	as	deployment	itself	is	the	responsibility	of	the	users	since	Akka	is	just	a	library.

Suppliers

Akka	is	a	quite	low-level	library	and	therefor	not	reliant	on	suppliers	that	could	be	viewed	as	stakeholder.	Their	main	suppliers	like	the
JVM	or	Scala	are	not	reliant	on	Akka	being	successful	so	therefor	are	omitted	here.

Akka

6

https://en.wikipedia.org/wiki/Actor_model

Support	staff

Lightbend	provides	paid	support	for	Akka	for	Lightbend	subscription	members	[5].	Other	(visible)	support	questions	are	handled	inside
GitHub	issues	or	online	communities	like	Gitter	[7].

Users

The	users	of	Akka	can	be	seen	as	developers	of	other	projects,	such	as	PayPal,	Zalando,	Wehkamp	and	Walmart	[6].	These	developers
directly	use	of	Akka	to	build	business	applications	and	have	concerns	about	its	functionality.	They	also	are	responsible	of	the	correct
deployment	of	their	application.

System	Administrators

System	Administrators	are	not	directly	visible	since	Akka	is	not	an	in-house	developed	enterprise	product.	It	is	built	and	released	as	a
library,	but	this	does	not	require	a	system	administrator.

Competitors

Akka's	main	competitors	are	other	solutions	in	the	space	of	distributed	Actor	systems	such	as	Erlang,	Akka.net	and	Akka.js,	but	also
other	distributed	solutions	like	Kafka.

Reviewers/Integrators

The	reviewers	and	integrators	are	responsible	for	maintaining	quality	and	consistency	within	the	codebase	of	Akka	through	reviewing
pull-requests.	Here	those	are	the	members	of	core	team	that	were	active	in	the	past	6	months:

@patriknw
@johanandren
@ktoso
@raboof
@2m

Power	interest	relations

Akka

7

https://github.com/patriknw
https://github.com/johanandren
https://github.com/ktoso
https://github.com/raboof
https://github.com/2m

Figure	1	-	Power	to	interest	graph	for	Akka's	stakeholders.

To	visualize	the	importance	of	all	different	stakeholders	in	comparison	with	their	interest	in	Akka's	development,	a	power	to	interest
diagram	was	created.	The	most	important	ones	here	are	the	core	development	team,	which	always	has	the	final	say	on	the	project's
development,	and	again	Lightbend.

Context	View
The	Context	view	focuses	on	the	relationships	and	dependencies	between	Akka	and	external	entities.

Context	model	diagram

To	visualize	Akka's	interactions	with	its	environment,	the	following	diagram	was	made.

Akka

8

Figure	2	-	The	context	view	for	Akka,	showing	the	external	parties	and	their	relationship	to	it.

From	this	diagram,	one	very	important	item	is	to	be	seen	and	that	is	the	ubiquity	of	Lightbend	in	this	project.	From	funding	the	CI
server,	developers,	documentation	tools,	but	also	maintaining	the	language	(Scala)	and	the	build-tool	(SBT)	this	framework	is	written	in.
Akka's	main	dependencies	are	Scala,	SBT	and	the	JVM.	Those	are	baked	into	the	architecture	of	Akka	in	such	a	way	that	cannot	be
changed.	Akka	depends	on	several	of	those	tools	that	are	fundamental	to	the	Scala	ecosystem.	Therefore,	the	general	direction	and
development	of	Scala,	JVM	and	SBT	heavily	influence	the	possibilities	for	Akka.	So	Lightbend's	influence	on	Scala	potentially	reduces
the	risk	of	problems	occurring	in	the	ecosystem	that	affect	Akka.	Next	to	that	Akka	has	several	competing	libraries	in	the	space	of
distributed	Actor	systems.	The	most	noteworthy	here	is	Erlang.	Next	to	being	a	competitor	it's	also	a	big	source	of	inspiration	and	since
Erlang	lives	in	a	separate	eco-system	its	competition	gets	less	significant.	There	are	also	several	online	communities	that,	as	mentioned	in
the	stakeholder	analysis,	work	as	Akka's	free	support	and	as	discussion	boards.

Development	View

Introduction

Akka	is	a	big	project	and	contains	a	lot	of	modules.	To	understand	the	design	constraints	and	how	the	project	is	developed	a
Development	view	is	made.	Here	we	look	at	the	organization	of	the	modules,	analyze	standards	and	processes	and	the	source-code
organization	within	the	project.

Akka

9

Module	organization

In	this	part	of	the	development	view	we	will	focus	on	the	organization	of	the	modules	that	Akka	is	composed	of.	To	perform	our
analysis,	we	have	used	the	built-in	dependency	analysis	tools	that	JetBrains	IntelliJ	provides.	We	will	first	briefly	describe	the	purpose
of	each	module	and	then	dive	deeper	in	their	dependencies.

Core	modules

The	core	of	Akka	consists	of	two	modules	that	do	not	depend	on	each	other	or	other	modules.	They	implement	the	basic	functionality
that	Akka	provides.	As	a	consequence,	most	other	modules	depend	on	these.	The		akka-actor		module,	the	largest	module	in	the
project,	is	responsible	for	providing	a	basic	framework	to	the	Actor	model.	The		akka-protobuf		module	provides	code	used	for
serializing	and	de-serializing	messages	that	get	sent	over	the	network.	As	the	name	suggests,	this	module	relies	on	Google's	Protobuf
library.	Every	other	Akka	module	that	needs	to	send	anything	over	the	network	uses	this	module	for	serialization.

akka-persistence

	akka-persistence		enables	Actors	that	contain	internal	state	to	persist	that	state.	By	default,	it	uses	the	key	value	store	levelDB	to	do
that,	but	it	can	also	be	extended	with	various	community	plugins	to	support	other	stores,	where		akka-persistence-tck		implements	a
technology	compatibility	kit	to	ease	the	way	of	implementing	those.	The		akka-persistence-query		module	complements		akka-
persistence		with	an	asynchronous	query	interface	that	could	be	used	to	separate	the	query	side	from	the	write	side	in	a	model.

akka-stream

The	Actor	model	can	be	seen	as	a	more	low-level	model	for	stream	processing;	actors	send	and	receive	messages	that	have	to	be	dealt
with	in	(near)	real-time.	Because	building	robust	streaming	applications	on	the	Actor	model	can	be	cumbersome,	Akka	provides	an
abstraction	around		akka-actor		that	provides	reliable	streaming	capabilities.

akka-remote

The		akka-remote		module	is	responsible	for	making	the	actor	system	location	agnostic	and	allowing	actor	applications	to	be	distributed
over	multiple	servers.	It	was	designed	for	peer-to-peer	communication	and	the	API	can	be	used	to	create	and	lookup	actors	remotely.

akka-cluster

Built	on	top	of	the	core	and	remoting	modules,	Akka	provides	tools	for	managing	and	sharding	clusters	which	run	Akka	applications.
The		akka-cluster		modules	provide	fault-tolerant	cluster	membership,	leadership	election	and	failure	detection.	This	module	is
complemented	by	several	other	modules.

	akka-cluster-sharding		facilitates	sharding	of	actors	across	machines;
	akka-cluster-tools		provides	a	client	for	actor	systems	that	are	not	in	a	cluster	to	communicate	with	actors	that	do	reside	in	a
cluster;
	akka-cluster-metrics		is	an	extension	that	provides	system	health	metrics	on	actors;

akka-*-typed

These	modules	are	an	initiative	to	develop	a	new	set	of	APIs	for	each	of	the	above	modules.	These	are	more	type	safe	and	can	be	seen	as
a	layer	on	top	of	the	other	modules.	For	example,	it	provides	a	new	way	of	building	actors	for	which	the	compiler	type-checks	messages
that	actors	can	send	and	receive,	therefore	avoiding	unsafe	runtime	casts.

Dependencies	of	modules

Using	the	dependency	analysis	in	IntelliJ,	we	created	a	dependency	matrix	which	in	turn	we	used	to	visualize	the	module	structure.

Akka

10

https://doc.akka.io/docs/akka/current/general/remoting.html

Figure	3	-	The	dependency	matrix	for	all	modules	in	Akka.

From	this	matrix	one	can	determine	that	most	dependencies	are	between	modules	which	belong	in	the	same	group	(akka-cluster-*),	if
we	do	not	look	at	the	dependencies	on	Akka	core.	It	immediately	becomes	clear	from	the	table	that	Akka	does	not	have	a	layered
architecture.	The		akka-actor		module,	together	with		akka-protobuf		forms	a	core	where	nearly	all	other	modules	depend	on.	Cluster
management	modules	form	an	almost	perfect	clique,	indicating	that	the	individual	modules	are	not	independently	usable	and	thus	that
	akka-cluster-*		modules	together	form	one	large	subsystem.	Another	notable	observation	that	we	can	make	from	this	is	that	the
	persistence		modules	have	a	relatively	low	coupling.	We	can	also	clearly	see	the	modules	in	white,	that	will	be	from	here	on	out	be
classified	as		other	,	only	depend	on		akka-actor		and	therefore	have	little	impact	on	the	overall	architecture.

To	convey	the	high-level	architecture	as	naturally	as	possible,	we	abstracted	to	groups	of	modules	and	showing	the	dependencies	of
those	groups.	We	compacted	the	original	dependency	matrix	to	only	count	dependencies	between	subsystems	(like		cluster),	as	many
modules	have	the	same	prefix	and	therefore	it	can	be	said	that	they	together	solve	a	higher-level	problem.

Figure	4	-	The	high	level	dependencies	between	subsystems	in	Akka.

This	matrix	displays	what	percentage	of	external	references	from	one	of	the	rows	points	to	one	of	the	columns.	For	the	remoting
subsystem,	93%	of	its	external	references	use	one	of	the	core	modules.	Only	7%	use	functionality	in	streaming	modules.	Note	that	this
matrix	is	very	sparse;	subsystems	are	tightly	coupled	to	the	core	but	relatively	loosely	coupled	to	each	other.

Akka

11

Some	seemingly	strange	dependencies	can	also	be	seen.

	akka-remote		depends	on		akka-stream	:	This	is	caused	by	the	new	Artery	system,	a	remoting	subsystem	that	will	eventually
replace	the	old	API.	Artery	supports	sending	messages	between	actors	with	TLS	streams	instead	of	Netty	TCP.	This	is	used	for
network	communication	in	a	distributed	actor	system.
	akka-cluster-sharding		depends	on		akka-persistence	:	this	turns	out	to	be	because	user-defined	shards	can	also	be	stored	on
disk,	which	makes	them	persistent	after	a	complete	cluster	reboot.
	akka-persistence		depends	on		akka-stream	:	This	can	be	explained	by	the	fact	that	certain	database	operations	return	a	stream
for	performance	and	convenience.

An	interactive	dependency	visualization	can	be	accessed	here.

Standardization	of	Design

Since	Akka	is	open	source	and	quite	large,	the	core	Akka	team	has	defined	a	set	of	rules	and	guidelines	in	order	to	maintain	a	consistent
design	and	improve	maintainability	in	general.	We	will	investigate	the	most	interesting	ones	here.

User	extensibility

Akka	provides	various	classes	or	subsystems	with	interfaces	with	a	default	implementation	or	library.	In	fact,	extensibility	is	encouraged
though	Akka	Extensions,	which	is	how	many	features	such	as	Typed	Actors	and	Serialization	have	been	implemented.	Customized
implementations	can	be	specified	in	the	Akka	configuration	in	order	to	integrate	them	in	a	system.	More	about	user	extensibility	can	be
found	in	the	Evolution	Perspective

Quick	overview	of	standardization

Most	code	style	standards	are	standardized	automatically.	For	Scala,	the	scalariform	code	style	is	applied	and	for	Java	they	use	For
the	Oracle	Java	Style	Guide.	Akka	also	has	a	lot	of	scripts	to	make	standardization	easier	such	as	e.g.	standardizing	line	endings,
indentation	and	finding	documentation	errors	[9].
Contributions	that	add	whole	new	features	should	be	added	to	the		akka-contrib		module.
Each	module	has	to	be	tested	and	well	documented.	Testing	is	done	with		ScalaTest		and		ScalaCheck	[10].	A	continuous
integration	server	is	used	to	test	every	new	addition	to	the	codebase.	[11].
Large	changes	should	be	documented	in	the	official	documentation	in	the		akka-docs/paradox		module.

Binary	compatibility

One	major	and	obvious	design	principle	in	Akka	that	can	only	be	found	by	looking	at	documentation	is	binary	compatibility	[12].	This
will	be	explained	further	in	the	Technical	Debt	section.

Codeline	Organization

The	source	code	structure	represents	the	same	structure	as	the	previously	described	module	structure.	Each	module	has	its	own	folder
which	contains	the	src	folder	as	shown	in	figure	5.	The	settings,	plugins	and	dependencies	for	each	module	are	defined	in	the		build.sbt	
configuration	file	in	the	project	root.	It	provides	the	entry	point	for	SBT	and	there	the	separate	configuration	files	for	building	each
module	are	bundled	together.	These	all	can	be	found	inside	the	project	folder.	The	scripts	folder	contains	all	sorts	of	scripts,	for	example
for	code	formatting	or	pull-request	validation.

akka

│

└───akka-actor

│			└───src

└───akka-agent

│			└───src

|			...	(all	module	folders)

└───project

└───scripts

└───build.sbt

Akka

12

https://doc.akka.io/docs/akka/current/remoting-artery.html#remoting-codename-artery-
https://txsmith.github.io/akka-modules/detailed/
https://doc.akka.io/docs/akka/2.5/extending-akka.html
https://github.com/scala-ide/scalariform
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Figure	5	-	The	folder	structure	of	Akka.

Evolution	perspective

This	section	gives	a	quick	overview	of	the	current	and	future	state	of	Akka,	focuses	on	the	flexibility	in	regard	to	change	and	the
techniques	that	are	used	to	accomplish	this.

System	evolution

Figure	6	shows	the	major	releases	and	the	most	noteworthy	features	they	(experimentally)	introduced.	Before	version	2.4,	Akka
followed	the	Java	or	Scala	style	of	versioning:		epoch.major.minor	.	Since	2.4	however	they	follow	an	approach	closer	to	semantic
versioning:		major.minor.patch		[13].

Figure	6	-	The	version	history	of	Akka,	showing	the	features	they	(experimentally)	introduced.

After	the	initial	core	Actor	pattern	was	implemented	in	Akka,	many	features	have	been	added	to	satisfy	and	solve	problems	for	its
users.	Clusters	provide	fault-tolerant	scalability,	streams	provide	performance	in	data	transfer	and	processing	and	persistence	provides
robustness	by	allowing	the	recovery	of	actor	states	after	restarting.	Alpakka,	an	independent	project	that	will	soon	get	its	own	full	team,
provides	easy	extensibility	for	connections	to	external	technologies.	Akka	HTTP,	again	a	independent	project,	gives	users	functionality
for	HTTP	integration	needs	for	building	their	own	applications.	A	more	detailed	creation	story	can	be	found	in	their	five-year
anniversary	blog	post.

Recent	and	future	development

There	are	still	problems	being	solved	and	to	be	solved	in	the	future	of	Akka.	These	are	likely	not	goals	that	were	set	at	the	beginning	of
Akka,	but	feature	requests	that	have	developed	over	time.

Akka	Typed	is	a	new	attempt	to	bring	type	safety	to	Akka.	The	reason	why	this	was	not	integrated	at	the	start	of	the	project	is	due	to
its	heavy	inspiration	from	the	Erlang	language.	It	introduces	typed	versions	of	actors,	clusters,	and	persistence,	so	that	everything	is
type	safe	[14].	This	brings	more	compile	time	safety,	which	causes	less	debugging	at	runtime	leading	to	more	productive	development.
Two	other	attempts	in	the	past	with	the	same	goal	have	failed	and	have	become	deprecated.	Typed	Actors	was	too	slow	due	to
reflection	and	not	true	to	messaging;	a	core	principle	of	Akka.	Typed	Channels	was	too	complex	since	it	introduced	too	many	operators
and	it	relied	on	Scala	macros.	The	new	Akka	Typed	is	has	none	of	these	downsides	while	introducing	benefits,	such	as	actor	behaviors
acting	as	a	state	machine.

Artery	is	the	modern	remoting	layer,	which	utilizes	UDP	instead	of	TCP	for	better	performance	and	includes	various	other
optimizations.	Currently	it	remains	an	experimental	feature,	but	it	is	to	become	stable	relatively	soon	[15].	It	will	replace	the	old	Akka
Remoting	implementation	and	it	mostly	source	compatible	with	it,	meaning	it	can	act	as	a	drop-in	replacement	in	many	cases	[16].

Multi	Data	Center	(DC)	is	a	new	experimental	feature	that	provides	global	scalability	and	improved	stability,	with	benefits	such	as
serving	requests	close	to	a	user's	proximity	and	large	scale	load	balancing.	This	is	accomplished	by	making	one	Akka	Cluster	span	over
multiple	data	centers	[17].

Dealing	with	change

Akka	provides	some	measures	to	extend	its	public	API,	but	also	internally	strive	to	integrate	facilities	for	change.

Akka

13

https://www.lightbend.com/akka-five-year-anniversary

Public	API

Akka	makes	use	of	variation	points	in	order	to	allow	for	specific	localized	design	solutions	through	Akka	Extensions	[18].	Standard
extension	points	for	storage	back-ends	in	persistent	actors	can	be	found	in	the	community	plugins	repository	[19].	Runtime
configurations	of	actor	systems	can	be	defined	in	a	type-safe	configuration	format	developed	by	Lightbend.	This	allows	for
configuration	of	logging,	remoting,	serializing	and	much	more	[20].

Along	every	major	version	increase	an	extensive	migration	guide	is	provided,	which	includes	the	most	notable	changes	to	the	public	API
and	the	reasoning	behind	them.	The	binary	compatibility	mentioned	in	Technical	Debt	forces	changes	to	remain	compatible.	This	causes
old	features	to	become	deprecated	in	favor	of	entirely	new	features	with	the	same	goal,	as	is	the	case	with	Akka	Typed.

Internal	change

The	core	team	is	actively	working	on	creating	extensible	interfaces;	we	found	a	recent	issue	where	many	parameters	were	being	replaced
with	a	settings	file	in	order	to	provide	a	higher	level	API	for	a	certain	feature.

One	more	technique	is	the	exclusion	of	unnecessary	additions	that	can	be	implemented	by	users	themselves,	which	we	found	out	first-
hand	while	looking	for	an	issue	for	our	first	contribution.	They	rather	provide	generic	solutions	that	require	some	work	from	their	users.

An	observation	that	we	personally	made	was	that	there	is	an	inconsistent	use	of	features	from	the	Scala	language,	such	as	inheritance,
which	makes	it	difficult	for	newcomers	to	understand	the	codebase	and	has	negative	consequences	for	the	overall	maintainability.

Conclusion

Highly	flexible	systems	can	bring	significant	costs	in	terms	of	runtime	efficiency	and	performance.	However,	it	doesn't	seem	like	this	is
the	case	for	Akka;	all	configuration	is	processed	at	compile-time,	which	does	not	affect	the	runtime	performance.	The	techniques	they
apply	to	deal	with	change	ensure	that	the	system	can	evolve	while	keeping	it	well	maintainable.	The	architecture	is	built	for	both
performance	and	flexibility,	allowing	Akka	developers	and	its	users	to	easily	change	and	extend	features	to	their	pleasing.

Concurrency	View
Being	a	framework	for	distributed	actor	systems,	Akka	must	make	use	of	strong	concurrency	constructs	to	keep	actor	systems	safe	and
performant.	In	this	section	we	explore	the	main	constructs	Akka	uses	to	achieve	safe	and	fast	concurrency.

We	will	first	look	at	the	core	machinery	that	makes	actors	work.	With	the	core	infrastructure	covered,	we	can	then	explore	how	remote
messaging	between	actors	fits	in	the	picture.

Actor	component	and	threading	model

To	support	actor	concurrency	to	the	full	extent,	Akka	uses	a	unified	threading	model	for	nearly	everything	that	requires	tasks	to	be
offloaded	from	the	main	thread.	Let's	consider	a	simplified	component	model	to	illustrate	the	most	important	components	of	an	actor:

Akka

14

https://github.com/lightbend/config
https://github.com/akka/akka/issues/24324
https://github.com/akka/akka/issues/24627

Figure	7	-	A	simplified	component	model.

Figure	8	-	The	dispatcher	threading	model.

Each	actor	is	created	with	a		Mailbox		and		ActorCell		and	is	registered	with	one		MessageDispatcher	.	Multiple	actors	can	use	different
mailbox	and	dispatcher	classes.	Note	that	since		Mailbox		implements		Runnable		and		ForkJoinTask	,	it's	possible	to	schedule	a	mailbox
object	to	run	on	another	thread.	Its		run()		method	dispatches	to	the	actor's	user-defined		receive		method	for	any	message	that's
processed.	In	turn,	when		sendMessage		gets	called	on	an	actor,	it	will	use	the	registered	dispatcher	to	enqueue	the	message	in	the	receiver
mailbox	and	schedule	the	mailbox	for	execution.

Akka

15

The	default	dispatcher	uses	a		ForkJoinPool		is	used	for	scheduling.	This	is	a	threading	construct	that	runs	tasks	on	a	resizable	pool	of
threads.	Because	threads	get	reused	as	soon	as	they	become	free,	running	an	actor	is	very	inexpensive	and	running	many	actors
automatically	utilizes	a	server's	multi-core	capabilities.

This	model	is	not	only	used	to	run	individual	actors,	but	also	to	schedule	any		Future	s	that	an	actor	may	create.

Scheduler

The		Scheduler		is	another	concurrency	construct	that's	made	available	to	users	by	Akka.	The	scheduler	is	available	in	each	actor	and
enables	the	user	to	postpone	lightweight	tasks	for	a	short	amount	of	time.	It	runs	an	algorithm	based	on	a	revolving	wheel	of	buckets
that	advances	at	a	fixed	tick	rate	and	dispatches	tasks	it	finds	in	the	current	bucket	to	their	respective	ExecutionContexts.	Since	it	runs
tasks	in	their	own	ExecutionContext,	the	tasks	themselves	run	on	the	execution	model	that's	also	used	to	run	the	actors.	The	Scheduler
only	creates	its	own	thread	for	running	the	timer	used	by	the	algorithm.

Remote	messages

Sending	messages	between	remote	actors	utilizes	the	above	model.	When	remoting	is	enabled,	special	actors	get	started	that	receive
messages	that	cannot	be	dispatched	locally.	These	endpoint	actors	are	responsible	for	maintaining	the	necessary	remote	connections	and
serialization.	When	a	remote	message	is	received,	the	endpoint	actor	decides	which	local	actor	to	relay	the	message	to.	Multiple
endpoints	exist	for	communication	over	TCP,	UDP	and	TLS.

Synchronization	of	shared	state

In	a	few	key	places,	state	has	to	be	shared	between	threads	for	example	to	communicate	the	state	of	a	mailbox.	Akka	achieves	this	by
relying	mostly	on	volatile	variables	instead	of	locks	to	avoid	lock	contention.	An	example	where	this	is	needed	is	for	actor	supervision.
Actors	are	usually	organized	in	hierarchies	where	one	actor	is	supervised	by	another.	When	an	actor	terminates,	it	has	to	terminate	all	its
children	and	suspend	the	mailbox.	Likewise,	when	an	actor	crashes,	its	parent	has	to	decide	whether	to	stop,	resume	or	recreate	the
crashed	actor	and	its	children.	The	state	to	track	which	children	have	terminated	and	whether	the	mailbox	is	open	or	closed	(in	case	of
termination)	is	maintained	in	volatile	variables	that	are	set	by	means	of	compare-and-swap	operations.

User	extensibility

As	discussed	before,	Akka	values	user-extensibility.	This	also	resonates	in	their	concurrency	model.	Throughout	the	entire	framework,
one	framework	for	execution	is	used	of	which	many	parts	are	extensible	or	at	least	configurable.	Mailboxes,	dispatchers	and	thread	pools
are	all	extensible	to	support	different	application	workloads.	For	example,	the	default	dispatcher	can	be	configured	to	use	any	other
	ExecutorService		instead	of		ForkJoinPool	.	One	could	use		AffinityPool		instead	to	ensure	that	each	actor	always	runs	on	the	same
thread,	or	create	a	custom		ExecutorService	,	which	may	be	faster	in	certain	scenarios.	The	same	holds	for	mailboxes;	the	message	queue
used	internally	can	be	changed	to	anything	that	fits	a	user's	needs.	This	enables	programmers	to	make	their	own	choices	when	it	comes
to	concurrency	and	multi-core	performance	when	building	an	actor-system.

Technical	Debt

Technical	debt	can	be	described	as	the	build-up	of	problems	caused	by	making	changes	work	with	easy	solutions	instead	of	making	them
better	through	more	time-consuming	approaches.	Identifying	it	is	challenging	and	for	this	chapter	several	methods	were	run.	We	looked
at	code	hotspots	(files	that	are	often	changed),	test	coverage	and	compiler	warnings	but	were	unable	to	find	any	noteworthy	technical
debt.	Therefor	we	decided	to	focus	on	the	two	most	interesting	subjects	that	do	attribute	to	technical	debt	in	this	section.	To	also	get	a
better	impression	of	how	the	maintainers	of	Akka	experience	technical	debt,	we	decided	to	contact	them	and	ask	them	how	they	feel
about	debt	in	the	project.

Binary	Compatibility

Akka	maintains	backwards	binary	compatibility	for	minor	and	patch	versions.	This	means	that	for	users	can	safely	upgrade	Akka	to	a
newer	minor	or	patch	versions	without	risking	breakage	in	their	products;	new	JARs	are	drop-in	replacements	for	older	ones.

Akka

16

A	consequence	of	this	is	that	the	Akka	core	team	has	to	carefully	manage	which	parts	of	their	API	fall	under	the	compatibility	guarantee
and	which	parts	do	not.	The	team	maintains	several	ways	to	signal	that	an	API	is	not	subject	to	binary	compatibility:

May	change	is	used	in	module	descriptions	and	docs,
Classes	annotated	with		/**	INTERNAL	API	*/		or	with		@InternalAPI	,		@ApiMayChange	,	or		DoNotInherit	.

In	general,	developers	of	open	source	projects	have	to	strike	a	balance	between	public	and	internal	APIs.	Internal	APIs	can	be	changed
more	frequently	as	there	is	no	risk	of	introducing	breaking	changes	for	the	user.	However,	keeping	lot	of	the	APIs	internal	restricts	the
users	possibilities	to	extend	the	system.	This	may	lead	to	a	lot	of	patch	requests	for	supporting	a	new	use	case	that	wasn't	thought	of
by	the	developers.

On	the	other	hand,	if	developers	make	too	much	of	the	API	public,	they	risk	severe	inertia	as	users	will	inevitably	depend	on	all	public
APIs,	making	changes	to	the	core	hard	because	some	form	of	backwards	compatibility	has	to	be	provided.

For	Akka	specifically,	any	mistake	or	change	in	public	API	results	in	that	API	being	deprecated	and	replaced	by	something	else.
However,	the	deprecated	code	will	have	to	remain	in	the	project	until	the	next	major	release,	which	may	take	several	years.	The	cost	in
changing	APIs	is	therefore	so	high	that	maintainers	are	more	willing	to	sacrifice	cleanness	to	avoid	this	cost.	One	maintainer	mentioned	a
typical	example	of	this,	'dead	code'	that	is	kept	in	the	system	to	not	break	the	public	API:		ClusterSingleton.scala	.

Besides	releasing	a	new	major	version	of	Akka	more	often	which	may	be	undesirable,	there	is	no	clear	and	set	solution	to	this	problem.
Ultimately	it	comes	down	to	two	aspects:

balance	public	and	internal	APIs,
design	new	public	APIs	to	be	as	future-proof	as	possible.

When	asked	whether	the	team	can	quantify	the	cost	of	binary	compatibility,	the	consensus	was	that	this	is	hard	to	measure	in	practice
[21].	The	Akka	team	could	investigate	in	methods	to	make	the	time	they	spend	on	these	issues	more	quantifiable.	If	the	cost	of	working
around	public	API	changes	is	better	known	the	team	may	be	in	a	better	position	to	make	sound	decisions	on	whether	to	introduce	an
API	change	or	sacrifice	code	quality.

Temporal	Coupling

We	have	used	CodeScene	to	analyze	temporal	coupling.	This	refers	an	analysis	of	which	files	are	frequently	changed	together.	Temporal
coupling	can	be	an	indicator	for	technical	debt	as	it	can	expose	several	code	smells	such	as	Shotgun	Surgery,	Code	Duplication	and
Inappropriate	Intimacy.	After	a	first	run	of	the	analysis	we	noticed	that	the	results	needed	some	filtering	to	prevent	false	positives:

	*Test.java		and		*Spec.scala		files	tend	to	be	tightly	coupled	with	the	classes	under	test	so	we	filtered	out	any	coupling	between
files	where	one	of	the	two	was	a	test	file.
Akka	features	a	dsl-like	API	for	both	Scala	and	Java	users.	Generally	this	means	that	when	one	of	the	APIs	changes,	so	does	to
other.	We	therefore	filtered	pairs	of	files	with	the	same	name	where	one	in	in	the		javadsl		folder	and	the	other	in	the		scaladsl	
folder.

The	filtered	result	is	shown	in	figure	9.	Lines	between	files	indicate	that	they	are	often	changed	together;	thicker	lines	indicate	stronger
coupling.

Akka

17

https://github.com/akka/akka/blob/563c7fbcf0fcb374d414403900d620c8fac54d52/akka-cluster-typed/src/main/scala/akka/cluster/typed/ClusterSingleton.scala#L68

Figure	9	-	A	visualization	of	the	temporal	coupling	in	Akka.

The	abstract	pattern	that	we	see	here	is	one	that	applies	to	many	things	in	the	domain	of	data	processing.	For	many	streaming	classes,
one	is	a	dual	to	the	other:	sources	create	data,	sinks	reduce	data.	The	way	in	which	they	do	this	may	differ,	for	example,	IOSource	has	a
very	different	implementation	compared	to	AeronSource.	But	these	two	classes	will	generally	form	a	pair	where	the	behavior	of	one
must	match	the	behavior	of	the	other.	Another	example	of	where	this	applies	is	with	serialization.	A	Serializer	class	will	always	be
tightly	coupled	with	a	Deserializer	because	the	two	must	work	on	the	same	serialization	format,	causing	duplication	of	code	and	logic.
The	cost	induced	by	this	coupling	can	be	tough	to	deal	with.	A	mistake	in	one	of	the	dual	classes	can	manifest	in	the	other	in	very
unpredictable	ways.

Given	that	there	is	no	easy	way	around	this	coupling,	the	best	the	Akka	team	can	do	is	write	good	tests	for	these	cases	and	extract	as
much	common	code	as	possible	(although	the	latter	will	not	always	be	possible).	Luckily,	the	classes	in	question	are	well	covered	by
tests.

Conclusion

With	over	9	years	of	development,	Akka	has	grown	in	many	aspects;	not	only	in	size,	but	also	in	the	creation	of	a	solid	architecture.	It
remains	flexible	and	constantly	improves	its	performance	and	reliability	despite	of	the	complex	goals	it	tries	to	achieve.

Akka

18

We	have	analyzed	Akka	from	various	perspectives	and	viewpoints	to	give	an	insight	into	the	inner	workings.	It	was	impressive	to	see
how	little	actual	issues	we	could	find	in	a	project	of	this	size.	The	architecture	is	well	thought	of	and	the	core	team	behind	it	are	always
making	proper	decisions	even	if	that	sometimes	leads	to	more	pain	in	maintaining	the	project.	The	success	and	usage	of	Akka	really
prove	that.	We	think	it	will	remain	a	popular	choice	for	creating	distributed	applications	and	are	curious	on	how	the	project	will	keep
evolving.

References

1.	 Mark	Brewer.	Typesafe	Changes	Name	to	Lightbend.	https://www.lightbend.com/blog/typesafe-changes-name-to-lightbend
2.	 Paul	Phillips.	Pacific	Northwest	Scala	2013	We're	Doing	It	All	Wrong.	https://www.youtube.com/watch?v=TS1lpKBMkgg
3.	 Lightbend	Consulting	Services.	https://www.lightbend.com/services/consulting
4.	 Jonas	Bonér.	Akka	5	Year	Anniversary.	https://www.lightbend.com/akka-five-year-anniversary
5.	 Lightbend	Subscription.	https://www.lightbend.com/subscription
6.	 Lightbend	Case	Studies.	https://www.lightbend.com/case-studies
7.	 The	akka/akka	Gitter	Channel.	https://gitter.im/akka/akka
8.	 Akka.	Sponsors.	https://doc.akka.io/docs/akka/current/project/links.html#sponsors
9.	 Akka.	Contributing	Guide	https://github.com/akka/akka/blob/master/CONTRIBUTING.md
10.	 Akka.	Testing	Guidelines.	http://downloads.lightbend.com/paradox/akka-docs-new/20170511-sidenotes/java/dev/developer-

guidelines.html#testing
11.	 Akka.	Continuous	Integration	https://github.com/akka/akka/blob/master/CONTRIBUTING.md#continuous-integration
12.	 Akka.	Binary	Compatibility	Rules.	https://doc.akka.io/docs/akka/current/common/binary-compatibility-rules.html
13.	 Akka.	Versioning	Scheme.	https://doc.akka.io/docs/akka/current/common/binary-compatibility-rules.html#change-in-versioning-

scheme-stronger-compatibility-since-2-4
14.	 Konrad	Malawski.	Networks	and	Types	--	the	Future	of	Akka.	https://www.slideshare.net/ktoso/reactive-systems-tokyo-

networks-and-types-the-future-of-akka
15.	 Konrad	Malawski.	State	of	Akka	@	2017	-	The	best	is	yet	to	come.	https://www.slideshare.net/ktoso/state-of-akka-2017-the-best-

is-yet-to-come
16.	 Akka.	Remoting	(codename	Artery).	https://doc.akka.io/docs/akka/2.5/remoting-artery.html
17.	 Akka.	Multi-DC.	https://akka.io/blog/2018/01/17/multidc
18.	 Akka.	Akka	Extensions.	https://doc.akka.io/docs/akka/current/extending-akka.html
19.	 Akka.	Persistence.	https://doc.akka.io/docs/akka/current/persistence.html?language=scala
20.	 Akka.	Configuration.	https://doc.akka.io/docs/akka/current/general/configuration.html
21.	 Gitter	conversation	on	Technical	Debt.	https://gitter.im/akka/dev?at=5aaa41b7bb1018b37ae7ee04

Akka

19

https://www.lightbend.com/blog/typesafe-changes-name-to-lightbend
https://www.youtube.com/watch?v=TS1lpKBMkgg
https://www.lightbend.com/services/consulting
https://www.lightbend.com/akka-five-year-anniversary
https://www.lightbend.com/subscription
https://www.lightbend.com/case-studies
https://gitter.im/akka/akka
https://doc.akka.io/docs/akka/current/project/links.html#sponsors
https://github.com/akka/akka/blob/master/CONTRIBUTING.md
http://downloads.lightbend.com/paradox/akka-docs-new/20170511-sidenotes/java/dev/developer-guidelines.html#testing
https://github.com/akka/akka/blob/master/CONTRIBUTING.md#continuous-integration
https://doc.akka.io/docs/akka/current/common/binary-compatibility-rules.html
https://doc.akka.io/docs/akka/current/common/binary-compatibility-rules.html#change-in-versioning-scheme-stronger-compatibility-since-2-4
https://www.slideshare.net/ktoso/reactive-systems-tokyo-networks-and-types-the-future-of-akka
https://www.slideshare.net/ktoso/state-of-akka-2017-the-best-is-yet-to-come
https://doc.akka.io/docs/akka/2.5/remoting-artery.html
https://akka.io/blog/2018/01/17/multidc
https://doc.akka.io/docs/akka/current/extending-akka.html
https://doc.akka.io/docs/akka/current/persistence.html?language=scala
https://doc.akka.io/docs/akka/current/general/configuration.html
https://gitter.im/akka/dev?at=5aaa41b7bb1018b37ae7ee04

Angular

Blazej	Kula Arvind	Chembarpu Algirdas	Jokūbauskas

Delft	University	of	Technology

Abstract
Angular	is	a	Free	and	Open	Source	Typescript-based	framework	for	developing	web	applications.	It	is	a	complete	rewrite	from	its
predecessor	AngularJS	and	is	maintained	by	Google,	along	with	a	community	of	individuals	and	corporations.	It	helps	users	create	fast,
multi-platform	applications	in	Typescript	or	Javascript	with	ease.	In	this	chapter,	we	will	discuss	the	architecture	of	the	Angular
project	in	detail	and	try	to	explain	how	it	is	developed.	We	will	be	building	this	analysis	on	top	of	the	concepts	learned	in	"Software
Systems	Architecture"	by	Nick	Rozanski	and	Eoin	Woods.

Table	of	Contents
Introduction
Stakeholders
Context	View
Development	View
Technical	Debt
Things	in	Motion
Conclusion

Angular

20

https://github.com/blaz11
https://github.com/arvindch
https://github.com/algirdyz

Introduction

AngularJS	was	created	by	Google	and	released	in	2010.	The	main	idea	was	to	decouple	HTML	DOM	manipulation	from	application
logic.	It	does	so	by	introducing	Model-View-Controller	architecture	to	Client	Side	Javascript	code.	However,	a	few	years	later,	in	2014,
Google	announced	Angular	2	-	a	complete	rewrite	of	AngularJS.	It	introduced	the	possibility	to	code	in	Typescript	(a	superset	of
Javascript)	and	changed	the	internal	architecture	of	both	itself	and	applications	created	with	it.	It	also	improved	performance	and
complexity,	while	also	introducing	support	for	building	cross	platform	native	mobile	apps.	However,	the	lack	of	backwards
compatibility	with	AngularJS	created	a	lot	of	controversy	among	developers.	It	was	fully	released	in	2016	and	has	been	through	many
changes	since,	including	a	new	preview	release	version	6.0.

We	will	start	our	analysis	by	defining	the	different	stakeholders	in	the	project.	We	will	then	provide	a	contextual	view	of	the	application
showing	its	relation	to	the	environment.	Furthermore,	we	will	present	a	development	view	showing	different	modules	of	the	application
and	and	design	models	used.	Lastly,	we	will	analyze	various	kinds	of	technical	debt	that	have	accrued	over	its	lifespan.

Stakeholders
Angular	was	created	and	is	maintained	by	Google,	along	with	a	large	community	of	individuals	and	corporations.	We	compiled	this	list	of
stakeholders	by	analyzing	the	Angular	repository,	official	website,	and	Github's	Insights	&	Analytics.	In	order	to	provide	context	and
reasoning,	we	have	also	provided	notes	alongside	our	findings.	We	will	also	be	using	bold	text	to	highlight	the	actual	stakeholders	within
the	analysis.

Primary	Stakeholders

In	this	section,	we	detail	the	stakeholders	defined	by	Rozanski	and	Woods	in	the	course	book	Software	Systems	and	Architecture.

Acquirers

Google	is	arguably	the	most	important	primary	stakeholder,	considering	how	Angular	was	created	by	Google	engineers	for	Google's
projects.	They	use	Angular	internally	and	externally	for	a	variety	of	projects,	and	so	OSS	contributions	can	be	considered	to	be
continuously	"acquired"	by	Google.

Assessors

Legal	compliance	is	managed	by	Max	Sills	(Angular's	Open	Source	Lawyer,	employed	by	Google),	who	can	be	considered	as	an
assessor.	Angular	currently	uses	the	MIT	license,	but	used	to	be	distributed	under	the	Apache	2	license	-	this	was	changed	due	to
community	feedback,	as	a	community-friendly	license	contributes	to	the	project's	success	and	uptake.

Communicators

Contributors	and	Committers	are	communicators	by	default,	as	every	contribution	is	required	to	have	accompanying	documentation
and	justification.	Google	is	also	an	important	communicator,	as	they	have	dedicated	employees	who	work	on	improving	documentation
and	also	offer	services	through	the	Google	Developer	Expert	program.	They	also	conduct	events	to	promote	the	project.

Developers

Contributors	on	GitHub,	which	includes	Google	and	non-Google	developers	alike,	are	the	development	stakeholders.	All	contributions
are	made	publicly	on	GitHub	and	stakeholders	are	expected	to	participate	to	make	their	voice	and	needs	heard.

Maintainers

Angular	is	a	framework	and	not	a	deployable	product	on	its	own,	so	we	have	considered	maintenance	of	the	framework	itself	in	this
section.	Under	this	definition,	the	same	contributors	who	are	developers	can	be	considered	maintainers,	however,	not	all	of	them	are
involved	in	regular	upkeep.	Google	and	other	companies	that	utilize	Angular	have	a	greater	investment	in	keeping	Angular	running	well.

Angular

21

https://github.com/angular/angular
https://angular.io/about
https://github.com/angular/angular/pulse
https://www.viewpoints-and-perspectives.info/
https://www.madewithangular.com/categories/google
https://angular.io/about?group=Angular
https://github.com/angular/angular/blob/master/LICENSE
https://blog.angularjs.org/2016/01/angular-2-mit-open-source-licensed.html
https://github.com/angular/angular/blob/master/CONTRIBUTING.md
https://angular.io/about?group=Angular
https://angular.io/about?group=GDE
https://angular.io/events
https://github.com/angular/angular/graphs/contributors

However,	it	is	the	Angular	core	team	employed	by	Google,	which	decides	the	primary	release	schedule	and	milestones.

Suppliers

The	Git	SCM	is	used	to	track,	version,	and	control	the	source	code	and	changes.	On	top	of	this,	GitHub	provides	the	primary	platform
for	code	storage,	tracking	issues,	accepting	contributions,	and	making	releases.	Google	can	also	be	considered	a	supplier	as	they	employ
the	core	team,	provide	necessary	infrastructure,	and	various	other	resources	to	the	project.	NPM	provides	the	primary	distribution
medium	for	Angular	and	its	dependencies.	Angular	is	developed	using	TypeScript,	a	superset	of	plain	Javascript.

Support	Staff

Users	can	open	Issues	on	Github	to	obtain	support.	Gitter	provides	a	chatroom	for	users	to	discuss	issues	and	obtain	help	from	their
peers.	Further,	Google	offers	paid	professional	support	to	users	through	their	Google	Developers	Experts	program.	Google	also	offers
an	official	Google	Group	for	a	mailing-list-like	forum.	There	are	multiple	third-party	communities,	as	well	-	on	Reddit	and	on
StackOverflow.

System	administrators

Angular	only	provides	a	framework,	so	any	system	infrastructure	is	independent	of	the	project.	The	end-users	of	Angular,	who
administrate	their	own	Angular-based	product	can	be	considered	system	administrators,	but	not	necessarily	in	the	context	of	Angular
itself.

Testers

All	contributors	are	expected	to	test	and	ensure	that	their	changes	work	locally.	Further,	they	must	provide	useful	and	effective	tests
for	every	change	that	they	propose.	Google	both	develops	and	uses	Angular	in-house	so	they	also	run	independent	tests	to	ensure
compatibility	with	their	systems,	via	the	Google3	bot	(status	reported	via	NgBot).	Users	of	the	framework	also	technically	test	the
framework	in-use.	They	are	expected	to	report	bugs	and	provide	logs,	in	order	to	obtain	support.

Users

Web/Application	developers	are	the	primary	users	of	Angular.	Content-producers	who	produce	blogs,	videos,	tutorials,	guides,	etc.
related	to	Angular	can	also	be	considered	user-stakeholders.	There	are	also	a	multitude	of	OSS	projects	which	utilize	Angular.

Secondary	Stakeholders

In	this	section,	we	identify	self-defined	categories	of	stakeholders	that	we	consider	useful.

Evangelists

Like	any	other	popular	OSS	project,	Angular	has	its	fair	share	of	enthusiasts	who	introduce	and	help	others	in	using	the	framework.
They	may	do	this	through	blog	posts,	multimedia	content,	technical	guides,	textbooks,	conferences,	and	meetups.

Competitors

Competing	frontend	JavaScript	frameworks	can	also	be	considered	to	have	a	stake	in	Angular,	as	its	popularity	can	set	the	trend	for
various	programming	paradigms.	Further,	they	can	look	to	the	Angular	project	for	inspiration	in	planning	features,	quickly	making
similar	bug	or	security	fixes,	or	even	rethink	parts	of	their	own	approaches.	For	example,	React,	Vue.js,	and	Ember.

Dependencies

Angular	has	a	number	of	JS	Dependencies	which	have	a	vested	interest	as	well,	since	having	a	large	project	like	Angular	as	a	user
increases	robustness	and	contributions.

Angular

22

https://github.com/angular/angular/blob/master/docs/RELEASE_SCHEDULE.md
https://github.com/angular/angular/milestones
https://git-scm.com/
https://github.com/angular/angular
https://angular.io/about?group=Angular
https://www.npmjs.com/package/angular
https://www.typescriptlang.org/
https://github.com/angular/angular/issues
https://gitter.im/angular/angular
https://angular.io/about?group=GDE
https://developers.google.com/experts/
https://groups.google.com/forum/#!forum/angular
https://www.reddit.com/r/Angular2/
https://stackoverflow.com/questions/tagged/angular
https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-submission-guidelines
https://github.com/apps/ngbot
https://github.com/facebook/react
https://github.com/vuejs/vue
https://github.com/emberjs/ember.js
https://github.com/angular/angular/blob/master/package.json

Browsers

Leading	web	browsers	also	have	a	minimal	stake	in	frameworks	like	Angular.	They	are	incentivized	to	ensure	that	features	utilized	by
these	frameworks	are	well-supported	and	highly	performant,	in	order	to	provide	their	users	with	the	best	possible	experience.	In	fact,	a
lot	of	synthetic	benchmarks	test	framework	usage	performance.	For	example,	Google	Chrome,	Mozilla	Firefox,	macOS	Safari,	Microsoft
Edge,	and	Opera.

Power	Grid

We	identified	the	interest	and	power	of	actors	described	in	the	stakeholders	analysis.	The	most	powerful	actor	with	the	highest	interest
is	Google,	which	uses	Angular	for	many	of	its	products	and	is	maintaining	the	Angular	core	team.	Competitors	have	high	interest	in
Angular	project	as	their	popularity	is	correlated	with	Angular	success	or	failure,	however	they	do	not	exert	any	significant	power	over
it.	Since	Angular	is	written	in	TypeScript,	which	in	turn	heavily	relies	on	JavaScript,	the	language	specifications	also	have	some	power
over	the	project,	but	with	little	to	no	interest.	While	web	browsers	are	the	main	environment	where	Angular	is	used,	they	could	have
some	power	over	the	framework;	however	because	browser	vendors	mostly	only	implement	language	and	environment	standards	and
experiment	with	early	versions,	they	are	not	actually	powerful.	Community	Contributors	do	have	power	over	the	project	as	their
contribution	can	introduce	new	features	or	change	functionality	-	their	input	is	usually	taken	into	account,	however	there	is	no	way	they
can	force	Angular	to	make	significant	changes	without	substantial	support.	Web	developers	have	almost	no	power	over	the	project,
although	they	can	suggest	changes	that	best	suit	their	needs	-	which	can	then	be	picked	up	by	community	contributors	and	merged	by
the	Angular	Core	Team.	The	Core	Team	exerts	the	most	influence	over	the	project's	course	and	make	decisions	on	features	that	are
developed	by	them	and	merged	from	community	developers.

Angular

23

https://www.google.com/chrome
https://www.mozilla.org/en-US/firefox/
https://www.apple.com/lae/safari/
https://www.microsoft.com/en-us/windows/microsoft-edge
http://www.opera.com

Context	View

A	context	view	describes	the	relationships,	dependencies,	and	the	interactions	between	the	system	and	its	environment.	This	view	is
relevant	to	understand	the	system's	architecture,	as	it	defines	the	boundaries	of	the	system	and	how	it	interacts	with	external	entities
across	all	spectrums.

System	scope	&	responsibilities

Angular	is	a	front-end	web	framework.	As	a	result,	its	main	objective	is	to	help	developers	build	fast,	responsive,	robust	user-facing	web
applications.	Frameworks	focus	on	establishing	patterns	that	help	with	the	programming	and	layout	of	the	contents	of	web
applications,	by	forcing	the	user	to	conform	to	its	own	opinionated	designs	(in	contrast	to	how	libraries	work	by	providing	just	an
interface	to	use).	Technologies	used	by	those	frameworks	include	HTML	and	CSS	for	creating	and	laying	out	views	along	with
JavaScript,	TypeScript	and,	recently,	WebAssembly	for	handling	front-end	logic	such	interacting	with	view	or	fetching	data	from	server.
Angular	combines	declarative	templates,	dependency	injection,	and	tooling	to	make	development	quicker	and	easier	to	maintain.

Context	View	Diagram

Using	the	above	context-view,	from	a	high-level	perspective,	we	can	see	that	while	the	project	itself	is	open-source,	Google	is	the	chief
maintainer,	and	so	we	can	see	high	reliance	on	Google	tooling,	especially	for	development.	Other	individual	entities/groups	are	described
individually	below.

External	Entities	&	Interfaces

Developers	-	Angular	is	developed	primarily	by	the	dedicated	team	at	Google	(Angular	Core	Team)	with	contributors	from	the
large	open	source	community.	They	are	responsible	for	developing,	releasing,	and	maintaining	the	framework.
Users	-	Angular	is	a	front-end	web	application	framework	which	means	it	is	used	by	web	developers	to	create	web	applications,
and	according	to	the	StackOverflow	it	is	one	of	3	most	popular	ones	as	of	2018.	Its	users	include	individual	developers,	and
companies	creating	web	applications	for	their	clients	and	creators	of	reusable	components	for	Angular.
Runs	in	-	As	Angular	is	a	web	framework	it	runs	in	web	browsers	-	including	almost	all	modern	browsers	for	both	desktop	and
mobile	devices.	A	lot	of	consideration	is	given	to	make	Angular	work	on	as	many	platforms	with	little	effort	from	the	user.

Angular

24

https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/

License	-	Angular	is	an	open	source	project,	released	under	MIT	license.	It	states	that	users	have	unlimited	rights	to	use,	copy,
modify	and	distribute	original/modified	version	of	software.
Competitors	-	Angular's	competitors	include	all	other	web	front-end	frameworks.	Providing	an	exhaustive	list	of	them	is
challenging	given	dynamic	development	of	current	web	ecosystem,	but	the	most	notable	ones	include	React,	Vue,	Ember,	and
Blazor.
Tools	-	Angular	is	using	numerous	tools	for	development.	The	project	is	using	Git	SCM	as	its	version	control	software,	Yarn	as	the
dependency	manager,	Node.js	as	the	JavaScript	runtime,	and	Bazel	as	the	build	tool.
Dependencies	-	Angular	is	developed	in	TypeScript	and	also	heavily	depends	on	numerous	JavaScript	and	TypeScript	libraries.
Continuous	Integration	-	For	its	CI	and	automation	needs,	the	Angular	team	use	Travis	CI,	CircleCI,	and	internal	Google	Bots.
Those	bots	are	used	for	example	to	check	if	a	Contributor	License	Agreement	was	signed	or	to	test	if	changes	doesn't	break	internal
Google	repositories.
Issue	Tracking	-	Angular	is	using	GitHub	for	its	issue	tracking,	feature	planning,	and	roadmap,	though	unfortunately,	the	core
team	seem	to	be	using	internal	Google	tools	and	keeping	discussions	offline,	which	means	these	are	not	accessible	to	open	source
contributors.
Communication	-	Angular's	official	communication	channels	are	Gitter	and	Google	Group.	Its	unofficial	channels	are	Reddit	and
StackOverflow,	where	users	can	reach	out	for	help	from	the	community.

Development	View

The	development	view	for	a	system	describes	the	architecture	related	to	the	software's	development	process.	As	such,	we	have
explained	module	organization,	common	design	processes	for	components	like	code	style,	testing,	logging,	and	building,	along	with	an
explanation	of	the	codeline	organization.	Unfortunately,	there	does	not	exist	any	canonical	documentation	detailing	the	architecture	of
Angular	for	developers,	so	instead	we	have	attempted	to	derive	a	relevant	overview.

Module	Structure

Angular	source	code	is	organized	in	to	several	modules	that	encapsulate	specific	functionality	of	the	project,	represented	as	npm
packages	which	allow	for	easy	installation	by	tools	such	as	npm	or	yarn.	These	packages	are	usually	referred	to	as		@angular/*		and	are
called	"components"	within	Angular's	documentation.	Below,	we	present	Angular's	module	organization	diagram	with	their
dependencies,	which	can	be	split	into	3	groups	following	the	convention	introduced	by	the	Angular	team	-	Core,	Development	and
Support	modules.

Core	Modules

Core	modules	provide	functionalities	that	are	used	across	whole	Angular	system	and	contain	modules	necessary	for	it	to	work.

1.	 common	-	The	commonly	needed	services,	pipes,	and	directives	provided	by	the	Angular	team.
2.	 core	-	Critical	runtime	parts	of	the	framework	needed	by	every	application	-	metadata	decorators,	Component,	Directive,

dependency	injection,	lifecycle	hooks.
3.	 compiler	-	Angular's	Template	Compiler	-	it	understands	templates	and	can	convert	them	to	code	that	makes	the	application	run

and	render.

Platform	Modules

Angular

25

https://reactjs.org/
https://vuejs.org/
https://www.emberjs.com/
https://github.com/aspnet/Blazor
https://gitter.im/angular/home
https://groups.google.com/forum/#!forum/angular
https://www.reddit.com/r/Angular2/
https://stackoverflow.com/questions/tagged/angular
https://angular.io/guide/architecture
https://www.npmjs.com/
https://yarnpkg.com/lang/en/
https://angular.io/guide/architecture

Platform	modules	provide	functionalities	that	are	platform	specific.	In	the	case	of	Angular	those	dependent	on	the	browser	itself	and
sometimes	include	polyfills.	Those	modules	responsibilities	include	manipulating	DOM	(Document	Object	Model),	threading	and	server
side	rendering.

1.	 platform-browser	-	Everything	DOM	and	browser	related,	especially	the	pieces	that	help	render	into	the	DOM.
2.	 platform-browser-dynamic	-	Includes	providers	and	methods	to	compile	and	run	the	app	on	the	client	using	the	JIT	compiler.
3.	 platform-webworker	-	Angular's	support	for	threading	and	background	calculations	using	web	workers.
4.	 platform-webworker-dynamic	-	It	contains	JIT	compiler	specific	options	for	platform-webworker	module.
5.	 platform-server	-	Angular's	support	for	server	side	rendering.

Browser	Modules

Browser	modules	provide	functionalities	that	are	used	to	perform	various	actions	in	the	web	applications	like	changing	pages	via	routing,
making	HTTP	calls,	or	animations.

1.	 router	-	The	router	module	navigates	among	web	application	pages	when	the	browser	URL	changes.
2.	 http	-	Angular's	old,	soon-to-be-deprecated,	HTTP	client,	being	being	replaced	by	'@angular/common/http'.	The	HTTP	client	is

used	for	sending	and	retrieving	resources	over	internet	using	HTTP	protocol,.
3.	 forms	-	Both	template-driven	and	reactive	forms	allow	users	to	interact	with	web	application's	logic	such	as	log	in,	placing	order	or

booking	flights.
4.	 animations	-	Angular's	animations	library	for	applying	animation	effects	such	as	page	and	list	transitions.
5.	 service-worker	-	a	network	proxy	script	that	manages	caching	for	an	application.	Angular's	service	worker	is	designed	to	optimize

the	end	user	experience	of	using	an	application	over	a	slow	or	unreliable	network	connection.

Development	Modules

Development	modules	provide	functionalities	for	developers	creating	web	applications	using	Angular	as	front-end.	They	are	not
necessary	for	Angular	to	work	but	contribute	to	good	development	experience.

1.	 language-service	-	The	Angular	language	service	analyses	component	templates	and	provides	type	and	error	information	that
TypeScript-aware	editors	can	use	to	improve	the	developer's	experience.

2.	 upgrade	-	Set	of	utilities	for	upgrading	AngularJS	applications	to	Angular.
3.	 compiler-cli	-	The	Angular	compiler	CLI	tools,	which	are	mainly	used	for	compiling	templates.
4.	 angular-cli	-	Which	lies	outside	of	main	Angular	repository.	It	contains	Angular	CLI	tools,	which	consist	of	generating	scaffolding

for	web	applications,	components	or	modules	among	others.
5.	 benchpress	-	Angular's	performance	measuring	tool.	Developers	can	benchmark	their	applications	using	this	module	to	ensure	best

performance	of	their	applications.
6.	 bazel	-	Angular's	support	tools	for	building	Angular	applications	with	Bazel.	This	still	work	in	progress	and	Angular	Core	Team	is

transitioning	from	shell	scripting	build	system.

Support	Modules

Support	modules	are	used	by	the	Angular	project	internally	but	are	not	actively	maintained	in	the	project	itself.	Those	mostly	include
JavaScript	and	TypeScript	libraries.

1.	 RxJS 	-	Many	Angular	APIs	return	observables.	RxJS	is	a	library	for	reactive	programming	using	Observables,	to	make	it	easier	to
compose	asynchronous	or	callback-based	code.

2.	 zone.js	-	Angular	relies	on	zone.js	to	run	Angular's	change	detection	processes	when	native	JavaScript	operations	raise	events.
3.	 core-js	-	Polyfills	plug	gaps	in	a	browser's	JavaScript	implementation.		core-js		is	a	popular	library	for	that.

Common	Design	Model

Common	Patterns

Angular

26

https://bazel.build/

In	the	above	diagram,	we	can	see	an	overview	of	an	Angular	application's	architecture.	Modules	define	compilation	context,	and	contain
Templates	which	contain	the	view	layout	while	the	Components	contain	the	business	logic.	Metadata,	or	state,	is	shared	and	Property
and	Event	Binding	are	used	to	keep	both	these	parts	in	sync.	Services	provide	specific	functionalities,	and	are	provided	to	the
application	via	the	Dependency	Injector.	Directives	provide	view	logic	to	the	Templates.

The	Angular	project	utilizes	the	industry-standard	pattern	of	Object	Oriented	Programming,	more	specifically	Class-based
Programming.	Each	class'	behavior	is	defined	as	a	blueprint	and	objects	are	instantiated	explicitly	based	on	a	class.	Further,	this	allows
for	inheritance,	where	you	can	define	common	behaviors	in	the	parent	and	extended	behavior	in	the	subclasses.	Logic	is	encapsulated
within	the	class	definition	and	it	is	good	practice	for	objects	of	that	type	to	utilize	specific	methods	that	change	data	values	and
attributes.

Angular	also	utilizes	the	paradigm	of	Dependency	Injection	to	provide	components	with	their	dependencies	at	instantiation	time.
Dependency	Injection	(DI)	is	a	way	to	create	objects	that	depend	on	other	objects.	A	DI	system	supplies	the	dependent	objects,	i.e.	the
dependencies,	when	it	creates	an	instance	of	an	object.	The	primary	advantage	of	DI	is	that	it	forces	each	file	to	clearly	state	its
dependencies,	which	makes	for	a	clear	separation	of	concerns	resulting	in	easier	debugging	and	testing.	A	minor	disadvantage	is	that	code
ends	up	being	more	verbose	and	clunky.

Common	Processing

Common	processing	approaches	address	aspects	of	the	architecture	that	require	a	standard	approach	across	the	whole	system.	This	is	a
key	task	as	it	contributes	to	the	overall	technical	coherence	of	the	system	and	clarifies	how	and	where	processing	is	done.

Modularity

The	Angular	project	contains	multiple	directories	like		aio		for	Angular.io,		docs		for	Documentation,		integration		for	the	End-to-End
integration	tests,		packages		for	the	core	sub-modules,		scripts		for	project	scripts,	and		tools		for	tooling.

Message	Logging

The	logger	is	instantiated	only	once	-	during	the	bootstrap	step.	All	logging	is	done	through	this	common,	app-level	logger	instance.	The
advantage	of	this	is	that	all	logs	are	handled	in	a	universal	manner	with	uniform	formatting	and	styles.	Further,	logging	is	enabled	only	in
development	mode	and	not	in	production	to	prevent	exposure	of	sensitive	data	to	the	user's	console,	and	in	the	case	of	a	framework	like
Angular,	to	avoid	spamming	the	actual	applications'	logs.	Angular	does	not	log	much	in	general,	rather	it	restricts	itself	to	deprecation
warnings	and	framework	errors.

Testing

Angular

27

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class-based_programming
https://angular.io/guide/dependency-injection
https://angular.io

All	tests	are	run	in	parallel,	to	decrease	testing	time	and	increase	throughput.	A	side-effect	of	this	is	that	tests	do	not	rely	on	lack	of	race-
conditions	or	undefined	dependencies	to	work	correctly.	Any	tests	that	are	dependent	on	other	components	are	required	to	create	mocks
or	instantiate	dependencies	as	necessary.

Standard	Design

Standard	design	approaches	are	used	when	designing	the	system's	various	elements,	and	only	start	to	emerge	while	subsystems	are
fleshed	out.

Coding	Style

Google	has	standardized	rules	for	all	their	JavaScript	code	in	the	JS	style	guide	and	all	contributions	are	expected	to	follow	it	strictly.
Each	and	every	contribution	is	tested	against	these	guidelines	by	the	CI	tooling	and	is	rejected	until	changes	are	made	to	conform.	This	is
done	to	keep	the	codebase	uniform	and	remove	any	comprehension	overhead	for	developers.

Commit	Style

The	Angular	project	has	strict	rules	about	git	commit	messages	as	described	here	in	order	to	ensure	consistency	and	clarity.

Internationalization

Angular	as	a	framework	is	written	in	TypeScript,	which	means	that	the	coding	language	is	English.	However,	the	website	with
documentation	is	available	in	multiple	languages,	often	maintained	by	the	community.	Official	translations	are	maintained	on	GitHub	in
language-specific	locations,	i.e.	English	and	Chinese.

Standard	Software	Components

This	refers	to	what	common	software	should	be	used	for	different	aspects	and	how	it	should	be	used	to	maintain	consistency.	These	are
usually	the	result	of	making	higher-level	decisions	or	identifying	reusable	components.

Third	Party	Libraries

3rd	party	libraries	are	used	to	provide	a	consistent	and	stable	API	for	the	Angular	project	to	use.	This	reduces	development	time	and
effort,	as	common	patterns	can	be	offloaded	to	these	libraries.	While	this	does	open	up	possible	security	concerns,	it	is	an	industry-wide
practice	to	utilize	libraries	that	provide	stable,	tested	functionality.	A	comprehensive	list	of	these	dependencies	can	be	found	in	the
package.json.

Technical	Debt

Technical	debt	is	a	gap	between	creating	a	perfect	solution:	adhering	to	the	architectural	design,	using	good	programming	standards,	with
proper	documentation	and	thorough	tests,	and	creating	a	working	solution:	as	quickly	and	cheaply	as	possible.	Technical	debt	is	an
essence	those	aspect	of	software	that	are	incomplete,	immature,	or	inadequate	(Cunningham,	1992)	and	are	imposing	a	risk	of	causing
problems	in	the	future	if	not	properly	fixed.

We	analyzed	the	Angular	project	quantitatively	(static	code	analysis)	using	tools	such	as	Codebeat	and	qualitatively	by	manual
inspection	to	assess	evolution	of	technical	debt.	While	we	have	analyzed	the	project	to	the	best	of	our	abilities,	it	is	possible	that	there
may	be	minor	details	we	missed	due	to	the	complete	lack	of	documentation.

Historical	Analysis

The	Angular	project	is	sort	of	an	evolution	from	Angular	1,	built	with	performance	and	maintainability	in	mind.	It	was	a	complete
rewrite,	in	terms	of	code	and	architecture,	which	was	initially	performed	privately	within	Google.	Afterwards,	Angular	2	was	announced
publicly	as	a	beta	software	in	December	2015.

Angular	now	uses	semantic	versioning	and	as	a	result,	only	major	version	changes	can	introduce	breaking	changes	while	minor	version
changes	should	handle	bug/security	fixes.	This	is	a	welcome	change,	as	inconsistent	API	deprecation	can	lead	to	technical	debt,	and	was	a
major	point	of	contention	in	the	community	when	Angular	(2)	was	announced	and	required	a	complete	rewrite	of	AngularJS	(1)

Angular

28

https://google.github.io/styleguide/jsguide.html
https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-commit-message-guidelines
https://github.com/angular/angular/tree/master/aio/content
https://github.com/angular/angular-cn
https://github.com/angular/angular/blob/master/package.json
https://angularjs.org/
https://blog.angularjs.org/2016/10/versioning-and-releasing-angular.html
https://semver.org/

applications.	Angular	version	3	was	skipped	to	prevent	numbering	confusion,	and	since	then,	Angular	has	matured	with	version	6
currently	in	beta	and	version	5	considered	stable.

It	is	not	practically	feasible	to	analyze	the	entire	history	of	the	Angular	codebase,	especially	considering	the	lack	of	documentation.
Instead,	we	opted	to	choose	an	example	of	debt	evolution	-	specifically,	testing	and	building	debt.	This	aspect	is	quite	interesting	as	the
Angular	project	is	currently	in	the	middle	of	a	major	rewrite	of	their	testing	and	building	architecture.	While	it	was	earlier	handled	by
monolithic	build	and	test	shell	scripts,	they	are	now	going	to	be	handled	with	a	Google-created	tool	called	Bazel.	This	is	a	very
important	change	that	effectively	removes	a	significant	portion	of	technical	debt	from	the	project.	We	have	discussed	more	about	this
change	in	our	Solutions	in	Motion.	Furthermore,	we	have	touched	upon	other	specific	aspects	of	historical	debt	in	the	individual
sections	of	this	chapter.

Codebase	Analysis

We	analyzed	the	repository	using	SonarQube,	which	is	designed	to	find	potential	bugs,	vulnerabilities,	code	smells,	coverage,	and	code
duplication.	This	analysis	revealed	that	Angular	has	amassed	348	days	of	technical	debt	according	to	SonarQube,	which	gives	it	the
highest	A	rating.	The	KPIs	identified	are:

Bugs	-	SonarQube	identified	5360	potential	bugs	which	resulted	in	the	rating	D,	which	means	that	there	is	at	least	one	critical	bug
identified.	It	predicts	the	remediation	effort	to	be	49	days.
Vulnerabilities	-	SonarQube	identified	6	possible	security	issues,	with	rating	B,	meaning	at	least	one	minor	vulnerability	and
remediation	effort	of	0.5	hours.
Code	Smells	-	SonarQube	identified	23k	(thousands)	of	code	smells,	most	of	them	not	critical.	This	contributes	to	347	days	of
effort	from	348	days	identified.	This	is	because	bugs	and	vulnerabilities	are	ignored	in	the	debt	analysis,	as	they	are	different
category	of	problems.
Code	Duplication	-	SonarQube	identified	7168	of	blocks,	201544	lines	and	1488	files	duplication,	with	the	density	of	6.6%.	This
ratio	is	quite	high	and	it	appears	that	these	duplication	aren't	taken	into	account	while	calculating	effort	required	to	pay	the
technical	debt.

This	analysis	finds	that	Angular	project	hasn't	amassed	significant	technical	debt	in	any	unsolvable	ways.	The	identified	debt	instances
are	not	critical	and	are	few	and	far	between.	This	can	be	caused	by	a	few	different	reasons:

1.	 TypeScript	offers	typed	code	and	convenient	syntactical	sugar	which	can	help	alleviate	the	buildup	of	technical	debt.	This	is
opposed	to	JavaScript	which,	without	rigorous	code	reviews,	is	known	in	the	community	for	being	cumbersome.

2.	 Fast	release	cycles	for	Angular	-	on	a	6	month	schedule.
3.	 Complete	rewrite	of	an	existing	product	along	with	a	switch	in	programming	language	kickstarted	the	development	in	the	right

direction	while	avoiding	common	pitfalls.
4.	 Famous	code	quality	standards	of	Google,	but	this	might	just	be	wishful	thinking	on	our	part.

It	is	possible	that	some	technical	debt	instances	are	present	in	the	project	but	the	tools	and	procedures	we	used	might	have	missed	them.
It	is	however	unlikely	that	this	is	a	large	amount	as	otherwise	they	would	be	easily	noticeable.

Testing	Debt

Building	on	our	previous	analysis	of	Angular's	testing	tools,	we	proceeded	to	observe	the	output	of	each	testing	suite	and	continuous
integration	tool,	to	understand	their	purpose	and	utility.	We	also	analyzed	what	sort	of	testing	debt	they	contribute	to	the	project.

Angular	uses	Jasmine	to	unit	and	function	test	each	component	with	a	clear	definition	of	the	behavior	of	the	test	case	itself.	Karma	is	a
"test-runner"	environment	for	JS,	which	runs	suites	of	tests	in	multiple	real	browsers	and	devices,	i.e.	ensuring	cross-compatibility	and
preventing	regressions.	It	is	a	crucial	tool	for	frameworks	like	Angular,	which	aim	for	maximum	compatibility	leading	to	widespread
usage.	Protractor	is	an	end-to-end	(e2e)	testing	library	built	by	and	for	Angular.	It	support	tests	written	in		Jasmine	,	hence	decreasing
the	overhead	of	having	multiple	test	definition	frameworks.	Protractor	further	uses	WebdriverJS	which	uses	native	events	and	browser-
specific	drivers	to	simulate	real-world	user	interactions	for	testing.	This	helps	catch	bugs	that	might	not	be	apparent	in	unit	tests.	End	to
end	tests	are	crucial	in	this	regard	and	further	guarantee	the	validity	of	the	code.	BrowserStack	and	SauceLabs	are	cloud-based,	cross-
browser	and	cross-device	testing	tools.	They	do	not	offer	any	specific	testing	frameworks	or	definitions,	rather	they	are	Continuous
Integration	tools	for	running	tests	through		Karma	,	as	explained	earlier.	Angular	uses	BrowserStack	and	SauceLabs	to	track	cross-
compatibility	and	continually	test	code	against	the	test	suite	in	a	public,	online	manner.	The	result	of	this	integration	can	be	seen	in	this

Angular

29

https://bazel.build
http://voidcanvas.com/angular-2-introduction/
https://jasmine.github.io/
https://karma-runner.github.io
https://github.com/angular/protractor
http://www.webdriverjs.com/webdriverjs/
https://www.browserstack.com/
https://saucelabs.com/

compatibility	matrix	for	the		master		branch.	Here,	we	can	observe	another	aspect	of	testing	debt	-	it	appears	that	tests	are	failing	for
	Internet	Explorer	7	,		Android	<	6.0	,		iOS	10.x	,	and		Edge	on	Windows	10	.	Only		Chrome		and		Firefox		seem	to	have	maximum
support.	Angular	currently	uses	a	monolithic	test	and	build	shell	script,	which	is	in	the	process	of	being	replaced	by	Bazel.	We	have
detailed	this	technical	debt	mitigation	in	Things	in	Motion.

Things	in	Motion

Bazel	is	a	fast	and	correct	build	and	test	tool,	built	with	concepts	like	caching,	incremental	builds,	dependency	analysis,	and	parallel
execution	in	mind.	Bazel	was	built	by	Google,	and	is	now	developed	by	a	core	Google-employed	team	and	various	community
contributors	on	Github,	similar	to	how	Angular	is	managed.	Fabian	Wiles	directed	us	to	his	PR	#909,	where	he	started	the
implementation	of	Bazel	in	Angular.	We	analyzed	the	changes	made	within	and	made	some	observations:

Bazel	does	NOT	yet	have	documentation	for	Javascript/Typescript	projects.	This	is	current	technical	debt,	and	is	significant	as	the
migration	is	already	happening,	but	non-core-members	are	not	aware	of	how	Bazel	works	in	the	first	place.
As	mentioned	earlier,	core	member	are	discussing	technical	implementation	details	offline	without	documenting	their	ideas
anywhere.	Moving	forward,	this	can	contribute	to	technical	debt,	through	the	bus	factor,	as	other	contributors	are	not	made	aware
of	key	points.
Angular	uses	the		ngc	,	i.e.	Angular	compiler	tool	and	there	is	a	slight	compatibility	issue	with	Bazel	and	3rd	party	libraries.
Hence,	a	workaround	has	been	used	for	now.	This	is	an	obvious	starting	point	for	potential	technical	debt,	until	the	issue	is
resolved	and	the	workaround	is	removed.

Conclusion

This	chapter	summarized	our	analysis	of	the	Angular	project.	We	described	stakeholders	and	provided	contextual	analyses	of	the
project's	ecosystem.	We	concluded	that	Angular	is	primarily	Google's	project	and	hence	they	control	its	features	and	releases.	Our
contact	with	Angular	Core	Team	from	Google	was	successful	which	proved	that	project	is	open	for	open	source	contributions,	however
finding	useful	documentation	is	not	straight-forward.	We	investigated	project	modularity,	common	design	patterns,	coding	styles,	and
the	tools	that	are	used.	We	found	that	there	are	rather	strict	coding	rules	that	contributors	need	to	adhere	to.	There	are	numerous
automation	tools	used	during	development,	testing,	and	releasing	of	the	system.	Our	analysis	of	technical	debt	found	that	it	is	rather
minor,	in	part	thanks	to	the	complete	rewrite	performed	by	Google	from	AngularJS.	Furthermore,	Angular	is	released	regularly	in	a	6
months	cycle	and	in	the	next	one,	Angular	6,	will	introduce	the	new	building	system	based	on	Bazel,	along	with	a	new	render	engine
which	increases	performance	and	reduces	size	of	applications.	Those	changes	are	accompanied	by	an	updated	Angular	component
compiler	for	Custom	Elements	and	a	CLI	upgrade.	Our	findings	lead	us	to	believe	that	Angular	will	continue	to	lead	front-end
frameworks	popularity	rankings	for	the	near	future.

References

1.	 Nick	Rozanski	and	Eoin	Woods.	2011.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and
Perspectives.	Addison-Wesley	Professional.

2.	 Angular	-	Angular	-	Contributors.	https://angular.io/about?group=Angular
3.	 Ian	Allen.	11-01-2018.	https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
4.	 AngularJS	-	Superheroice	JavaScript	MVw	Framework.	https://angularjs.org/
5.	 Google	Javascript	Style	Guide.	https://google.github.io/styleguide/jsguide.html
6.	 Angular	-	Angular	Dependency	Injection.	https://angular.io/guide/dependency-injection
7.	 angular/angular:	One	framework.	Mobile	&	Desktop.	https://github.com/angular/angular
8.	 TypeScript	-	JavaScript	that	scales.	https://www.typescriptlang.org/

Angular

30

https://bazel.build
https://bazel.build/governance.html
https://github.com/angular/universal/pull/909
https://docs.bazel.build
https://github.com/angular/angular/issues/18810
https://github.com/angular/universal/pull/909/files#diff-6fcc5fd43953616b1cf5f442bc981cb5R1
https://angular.io/about?group=Angular
https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://angularjs.org/
https://google.github.io/styleguide/jsguide.html
https://angular.io/guide/dependency-injection
https://github.com/angular/angular
https://www.typescriptlang.org/

Docker	SwarmKit

Dhruv	Batheja,	Chantal	Olieman,	Sven	Popping,	Vincent	Robbemond

Abstract

SwarmKit	is	a	toolkit	for	container	orchestration,	with	a	focus	on	security	and	scalability	of	distributed	systems.	The	project	is	managed
by	Docker	Inc.,	is	just	over	2	years	old	and	has	been	open-source	for	almost	2	years.	SwarmKit	is	one	of	the	main	container
orchestration	tookits	on	the	market	today,	and	is	being	actively	developed.	This	is	an	analysis	of	the	SwarmKit	architecture,	by	exploring
the	full	project,	its	stakeholders,	developer	collaboration,	and	technical	debt.	First,	a	stakeholder	analysis	along	with	a	context	view	are
discussed,	followed	by	insights	from	a	core	SwarmKit	developer.	After	that,	differrent	viewpoints	are	discussed	for	the	SwarmKit	project
in	order	to	create	a	better	understanding	of	the	underlying	architecture.

Docker

31

https://github.com/live-wire/
https://github.com/chantal-olieman/
https://github.com/svenpopping/
https://github.com/VincentRbbmnd/

Table	of	Contents

1.	 Introduction
2.	 Stakeholders
3.	 Integrator	insight
4.	 Context	View
5.	 Development	View
6.	 Functional	View
7.	 Evolution	Perspective
8.	 Technical	debt
9.	 Conclusion

Introduction

SwarmKit	is	a	Docker	initiative	that	began	in	early	2016,	and	is	a	toolkit	for	orchestrating	distributed	systems.	It	includes	primitives	for
node	discovery,	raft-based	consensus,	task	scheduling	etc.	SwarmKit	is	the	orchestration	component	in	the	Moby	Project,	and	covers
Cluster	management	and	orchestration	features	in	Docker	Engine	1.12	or	later.	It	uses	the	Apache	License	for	use,	reproduction,	and
distribution.

The	main	collaborators	of	this	project	are	engineers	from	Docker	Inc.,	with	small	contributions	from	the	community.	SwarmKit	runs	on
all	popular	server	environments	that	most	of	the	popular	cloud-providers	provide.	The	project	is	very	active	and	has	grown
tremendously	since	its	inception.	There	are	daily	commits	to	the	repository	and	issues	are	actively	being	created	and	closed.	The
releases	of	SwarmKit	are	currently	coupled	with	Docker	releases.	The	most	recent	stable	release	of	SwarmKit	is		v1.12.0	.

This	chapter	is	written	as	part	of	the	Delft	Students	on	Software	Architecture	book	2018.	This	chapter	aims	to	summarize	the
architecture	of	SwarmKit,	provide	details	about	the	stakeholders,	present	different	views	ranging	from	development	to	functional,	and
evolution	of	SwarmKit.	Hence,	this	chapter	aims	to	cover	not	only	the	technical	aspects	of	the	project,	but	also	provide	a	broader	view.
This	chapter	also	covers	our	interaction	with	a	core-developer	from	SwarmKit	team,	as	well	as	contributions	made.	This	also	includes	a
section	about	possible	scopes	of	improvement	that	are	discussed	in	the	Technical	debt	section.

Stakeholders

The	definition	of	a	stakeholder	is:	people,	organizations,	groups	and/or	companies	that	have	interest	in	the	realisation	of	a	project.
Stakeholders	can	be	affected	by	or	affect	the	actions,	objectives	and	policies	of	the	organization.

Rozanski	and	Woods	classification

In	the	book	"Software	Systems	Architecture"	of	Rozanski	and	Woods	[3],	11	stakeholder	types	are	described.	Below	are	the	types	of
stakeholders	that	apply	to	SwarmKit.

Acquires

The	acquirer	of	SwarmKit	is	Docker	Inc.	They	employ	the	core	team	of	SwarmKit.	This	core	team	is	in	control	of	the	roadmap.	They
have	a	daily	stand-up	meeting	in	which	they	discuss	the	issues	they	want	to	fix	that	day.

Assessors

There	is	no	clear	role	of	an	assessor	in	this	project.	Docker	SwarmKit	is	licensed	under	the	Apache	2.0	license,	which	means	everybody
is	allowed	to	use	the	software,	without	warranty	or	liability	from	Docker	Inc.	Every	pull	request	is	checked	by	two	or	more	members	of
the	core	team.	They	also	asses	the	conformance	to	standards	and	legal	regulations.

Communicators

Docker

32

The	most	important	communicator	for	SwarmKit	is	the	team	itself,	they	regularly	monitor	developer	platforms	like	Docker	Forum,
Google	Development	Group	and	Stack	Overflow	for	questions	from	users/contributors.

Besides	the	developers,	Docker	Inc.	also	collaborates	with	so	called	training	partners.	These	are	companies	certified	by	Docker	which
provide	education	courses.

Annually	Docker	hosts	Docker	Con,	last	year	two	team	members	of	SwarmKit	gave	a	presentation	titled:	Under	the	Hood	with	Docker
Swarm	Mode.

Developers/Maintainers

The	MAINTAINERS	file	on	the	repository	contains	a	list	of	all	the	maintainers	of	the	project.	Beside	the	core	team	there	are	a	few
active	developers	that	contribute	to	the	system.	Most	tasks	like	bug	fixes,	enchantments,	etc.	are	fixed	by	the	core	team.

Suppliers

SwarmKit	is	written	in	Go,	and	compiled	binaries	run	on	any	Unix	based	OS.	GitHub	provides	the	repository	where	the	code	is	stored.
Resellers	are	companies	that	offer	a	service	to	this	customer	that	use	the	Docker	Enterprise	platform	as	core.

Support	staff

Docker	Inc.	itself	handles	all	support.	On	the	website	https://support.docker.com	you	can	post	tickets/questions	regarding	all	Docker
systems.

Testers

The	developers	create	unit/integration	tests,	these	tests	are	run	by	CircleCI	and	after,	CodeCov	will	create	a	coverage	report.

Users

SwarmKit	is	used	by	the	enterprise	customers	of	Docker.	SwarmKit	is	also	used	by	other	companies	and	private	users.

Other	classification

Listed	below	are	additional	stakeholders	which	go	beyond	the	the	classification	of	Rozanski	and	Woods.

Media

A	few	websites	have	posted	articles	about	SwarmKit,	describing	SwarmKit	and	how	it	can	improve	organizations	and	help	with
scalability.	These	may	persuade	more	organizations	to	use	SwarmKit	as	bases	for	their	infrastructure.

Researchers

A	article	has	been	published	on	improvements	of	the	container	scheduling	for	Docker	using	Ant	Colony	Optimization	[1].

Partners

Docker	Inc.	has	five	Spotlight	Partners:	Alibaba,	Cisco,	HP,	IBM	and	Microsoft.	These	partners	strive	to	improve	the	user	experience
for	developers,	by	creating	a	hybrid	infrastructure	that	supports	continuous	delivery	of	applications	and	services.	All	of	these
functionalities	should	be	available	across	all	major	operating	systems	like	Windows	and	Linux.

Power	vs.	interest	grid

A	method	to	classify	stakeholders	is	by	using	Mendelow's	power	vs.	interest	grid	[2].	Figure	1	shows	the	power	vs.	interest	grid	for	the
Docker	SwarmKit	project.	There	are	four	categories:	minimal	effort,	keep	informed,	keep	satisfied	and	key	stakeholders.

Docker

33

https://www.youtube.com/watch?v=Mw4ImA2IB10
https://github.com/docker/swarmkit/blob/master/MAINTAINERS
https://support.docker.com

Figure	1:	Power	vs.	interest	grid	for	the	Docker	SwarmKit	project

Integrator	insight

We	scheduled	a	video	call	with	@dperny,	a	core	team	member	of	Docker	SwarmKit.	Drew	Erny	graduated	in	2016	at	the	University	of
Alabama,	and	has	been	working	at	Docker	for	2	years.

Docker

34

https://github.com/dperny

During	this	call	we	asked	about	the	allocator	(docker/swarmkit#2516),	which	is	one	of	the	big	tasks	he	is	working	on.	He	explained	the
core	issue	is	there	is	no	difference	between	initialization	and	allocation	of	resources.	The	first	version	was	written	by	one	developer,
who	was	fluent	in	C,	but	fairly	new	to	Golang.	Therefore	the	code	is	messy.	Currently	Drew	is	working	on	docker/swarmkit#2579	as
the	first	PR	in	a	series	of	PRs	rewriting	the	allocator.	Due	to	a	lack	of	allocator-related	tests,	the	whole	rewrite	has	to	be	manually	tested.
As	Drew	described,	the	exact	architecture	of	the	allocator	is	not	decided	beforehand,	but	formed	throughout	the	process	of	rewriting.
This	makes	sense	considering	in	the	process	of	rewriting,	the	developers'	understanding	of	this	code	grows	and	therefore	their	view	on
the	architecture	may	change	as	well.

The	development	of	SwarmKit	is	currently	following	a	downward	trend	in	terms	of	new	features	in	the	roadmap.	Most	open	issues	are
bugs	that	were	reported	by	enterprise	customers.	Debugging	these	issues	can	be	a	hard	task,	as	many	customers	do	not	give	direct	access
to	their	clusters.	These	customer	escalations	can	take	up	quite	some	time,	depending	on	the	severity	of	the	issue.	According	to	Drew,
some	issues	can	take	up	the	entire	week,	leaving	no	time	for	developers	to	work	on	other	tasks.

Of	the	few	SwarmKit	contributors,	most	work	at	Docker.	Therefore	a	lot	of	communication	happens	internally,	face-to-face	or	through
Slack.	This	makes	it	easy	to	'forget'	SwarmKit	is	an	open-source	project,	and	communication	towards	the	community	can	be	improved.

A	lot	of	files	in	the	project	contain	long	methods	which	is	a	violation	of	the	SOLID	principle.	However	the	team	argues	that	if	the
function	interface	is	good	and	testable	and	the	code	is	dry	(no	repetition),	then	long	methods	are	not	directly	seen	as	a	problem.
Secondly	splitting	these	methods	up	into	different	function	may	obscure	the	complexity	of	the	main	method.

Upon	hearing	our	technical	debt	analysis,	Drew	agrees	that	the	project	contains	severe	testing	debt.	Apart	from	a	lack	of	functional
tests,	the	project	also	lacks	performance	tests.	The	team	is	able	to	identify	when	a	cluster	is	broken,	but	can't	yet	figure	out	what	causes
the	instability.

In	the	near	future,	the	SwarmKit	team	aims	to	fix	most	of	the	technical	debt	by	improving	code	quality	and	rewriting	parts	of	the	code
that	cause	a	lot	of	bugs.	One	of	the	long	term	goals	is	to	integrate	SwarmKit	with	Kubernetes	as	Docker	currently	support	Kubernetes.

Context	View

This	section	describes	the	context	view	of	the		docker/swarmkit		project.	The	context	view	portrays	the	relationships	and	interactions	of
	docker/swarmkit		with	the	environment.

Docker

35

https://github.com/docker/swarmkit/issues/2516
https://github.com/docker/swarmkit/pull/2579

System	Scope

The	project	repository	of	SwarmKit	uses	the	following	description:	"SwarmKit	is	a	toolkit	for	orchestrating	distributed	systems	at	any
scale.	Machines	running	SwarmKit	can	be	grouped	together	in	order	to	form	a	Swarm,	coordinating	tasks	with	each	other."

SwarmKit	is	a	separate	project	in	the	Docker	project.	It	focuses	on	implementation	of	the	orchestration	layer	and	is	used	as	is	in	the
main	project	hence	efficiently	separates	concerns.

Context	Model

Figure:	Swarmkit	Context	Model

The	figure	shows	a	simple	black-box	context	model	implementation	of	the		docker/swarmkit		project.	A	small	description	of	the
important	entities	in	the	diagram	is	as	follows:

Overview:	SwarmKit	is	the	implementation	of	the	orchestration	layer	built	for	the	Docker	project	and	aims	to	abstract	the	features
like	Orchestration,	Scheduling,	Cluster	Management	and	Security.

Requires:	The	project	is	implemented	in	the	Go	programming	language	and	requires	Go	version	1.6	or	greater.	The	project	also
requires	Protobuf	3.x	or	higher	to	regenerate	protocol	buffer.

Supported	on:	Thanks	to	the	multi	platform	support	of	Docker,	SwarmKit	is	supported	on	all	operating	systems.

Integrations:	The	project	uses	integrations	like	CircleCI	for	continuous	integration	and	Codecov.io	for	gaining	insights	about	the
code	coverage	for	testing	the	impact	of	new	changes	made	in	the	system.

Inspiration:	Moby	is	an	open-source	project	started	by	Docker	to	enable	and	accelerate	software	containerization.	SwarmKit	is
the	orchestration	component	in	the	Moby	project.	The	architectural	decisions	for	SwarmKit	are	heavily	influenced	by	Moby
guidelines.

Community:	The	project	only	uses	github	for	issue-tracking	and	development	collaboration.	It	has	an	active	community	support
and	adoption.	The	contributors	can	be	found	in	the	MAINTAINERS.

Docker

36

https://mobyproject.org
https://github.com/docker/swarmkit/blob/master/MAINTAINERS

Communication:	This	sub-project	does	not	have	a	big	online	presence	in	social	media,	but	the	Docker	project	can	be	reached	out
to	via	several	communication	mechanisms	like:	the	Docker	forums,	IRC,	Google	Group,	Twitter	and	it	also	has	a	Stack	Overflow
tag.

Sponsors:	The	Docker	project	has	raised	over	242M	from	24	investors	in	10	rounds	of	funding	and	is	valued	over	1B.	It	was
incubated	by	YCombinator	and	the	lead	investors	include	Sequoia	Capital,	Greylock	Partners	and	Insight	Ventures.

Competitors:	The	main	competitors	of	this	swarm	orchestration	project	include	Kubernetes,	Mesos,	Amazon's	Elastic	Container
Service,	Azure's	container	service	(AKS).

License:	The	project	is	licensed	under	Apache	License	2.0	to	define	terms	and	conditions	for	use,	reproduction	and	distribution.

External	and	Internal	Entities:	External	entities	where	SwarmKit	relies	on	are	the	cloud	providers	on	which	SwarmKit	is
deployed,	the	Go	programming	language	in	which	it	is	written,	CI	tools	CodeCov	and	CircleCI	and	the	communication	tools	used
by	the	core	team.The	investors	and	competitors	shown	in	the	context	diagram	can	all	be	categorized	as	external	entities	as	well.
Internal	entities	include	the	developers	as	most	of	the	contributors	are	employees	of	Docker	and	the	Moby	project	as	it	is	a	Docker
project.

Development	view

Common	Processing	Model

Encapsulating	common	processing	across	sections	of	the	project	into	separate	code	units	contributes	to	the	overall	coherence	of	the
system	and	tackles	issues	like	duplication.	Since	SwarmKit	is	written	in	Go,	it	makes	use	of	the	excellent	package	management	that	Go
provides.	Moreover,	Go	enforces	a	strict	import	regime	which	makes	the	code	more	readable	and	less	prone	to	unnecessary	import
clashes.

Common	data	store:	SwarmKit's	data	store	is	built	on	top	of	go-memdb,	which	is	a	in-memory	database	built	on	immutable	radix
trees.	SwarmKit	also	uses	Bolt	to	provide	a	simple,	fast,	and	reliable	database.

Third	party	libraries:	SwarmKit	uses	the	Cobra	for	its	CLI	module.	It	also	uses	Cloudflare's	CFSSL	for	signing,	verifying,	and
bundling	TLS	certificates.	Another	notable	dependency	is	containerd,	to	manage	the	complete	container	lifecycle	of	its	host	system.

Logging:	SwarmKit	uses	Logrus	for	logging.

Scheduling	&	Batching:	SwarmKit's	scheduling	algorithm	works	by	balancing	the	number	of	task	over	the	nodes	in	the	cluster.
However	replicas	should	not	be	on	the	same	node,	when	possible,	to	prevent	a	single	point	of	failure.

Orchestration:	A	service	gets	translated	into	a	number	of	tasks,	these	are	managed	by	the	orchestrator.	There	are	two	types	of
events	an	orchestrator	handles,	service-level	events	and	task-level	events.

SwarmKit's	Task	Model:	A	task	is	a	"one-shot"	execution	unit.	When	a	task	fails	it	while	never	be	executed	again.	The
orchestrator	may	create	a	new	task	to	retry.

Instrumentation	Analysis

Instrumentation	refers	to	the	ability	to	monitor	or	measure	the	level	of	a	product's	performance,	to	diagnose	errors	and	to	write	trace
information.

As	of	now,	SwarmKit	doesn't	have	any	specific	instrumentation	code.	SwarmKit	uses	Logrus	for	all	of	the	project's	logging.	SwarmKit
uses	Testify	with	features	like	easy	assertions,	mocking,	testing	suite	interfaces	and	functions.

Developers	can	use	instrumentation	locally,	for	instance	one	can	incorporate	gmx	to	query	the	internal	state	of	their	Go	application.
Secondly,	Delve,	a	full	featured	debugging	tool	for	Go.

Standardization	of	design

Docker

37

https://forums.docker.com
https://irc.freenode.net
https://groups.google.com/forum/#!forum/docker-dev
https://twitter.com/docker/
https://stackoverflow.com/search?tab=newest&q=docker
https://github.com/hashicorp/go-memdb
https://github.com/boltdb/bolt
https://github.com/spf13/cobra
https://github.com/cloudflare/cfssl
https://github.com/containerd/containerd
https://github.com/sirupsen/logrus
https://github.com/sirupsen/logrus
https://github.com/stretchr/testify
https://dave.cheney.net/tag/gmx
https://github.com/derekparker/delve

For	software	developers	to	contribute	to	Docker	swarmkit,	some	clear	guidelines	are	set	in	CONTRIBUTING.md.	A	guide	explains
setting	up	a	Docker	development	environment	and	the	contribution	process	for	all	Docker	projects.	The	community	guidelines	are
mentioned	specifically,	these	are	general	guidelines	for	the	community	as	a	whole	and	are	enforced	accordingly.

Code	conventions

While	reporting	an	issue,	it	is	important	the	issue	include	the		docker	version		and		docker	info	.	This	information	helps	the	team	to
review	and	fix	the	issue.	One	should	also	take	care	as	to	not	submit	duplicate	issues.

When	submitting	a	change,	the	changes	should	be	made	on	a	feature	branch	in	a	forked	repository.	The	name	of	the	branch	should	look
like	XXXX-something,	where	XXXX	is	the	number	of	the	corresponding	issue.

When	creating	or	modifying	a	feature,	it	is	desired	the	documentation	is	updated	accordingly,	here	also	the	style	guide	is	referenced,
containing	instructions	on	building	the	documentation.

To	keep	all	code	clean,	gofmt	should	be	used	to	format	all	submitted	code.	Specifically,		gofmt	-s	-w	file.go		should	be	run	on	every
changed	file.

PR's	should	always	be	rebased	on	top	of	master,	without	any	other	branches	mixed	into	the	PR.	Commits	should	be	squashed	into
logical	units	of	work	before	making	a	PR	and	the	description	should	contain	the	issue	being	addressed.

Overall,	the	coding	guidelines	from	the	Go	community	are	followed.

Signing

Every	commit	should	be	signed-off,	agreeing	to	the	Developer	certificate.

Standardization	of	testing

To	ensure	a	reliable	build	process	for	SwarmKit,	standard	practices	have	been	adopted	by	the	team	to	test	the	adapted	or	added	code.

Testing	framework

SwarmKit	leverages	a	standard	project	structure	to	work	well	with	the	standard	Go	testing	framework.	Tests	are	run	with	the		go	test	
command,	which	automatically	executes	any	function	of	the	form:

func	TestXxx(*testing.T)

In	line	with	the	testing	framework,	all	tests	have	a	filename	that	end	in		_test.go		and	live	in	the	same	directory	as	the	file	being	tested.

Automated	testing

All	code	changes	are	tested	automatically	by	triggering	a	test	on	CircleCI.	The		README.md		in	the	main	folder	holds	a	badge	showing

result	of	the	latest	tests	on	the	master	branch:	 .	NB:	The	result	of	the	automated	test	build	for	our	first	Pull	Request
can	be	found	here.

Module	Structure

Concept	of	SwarmKit

SwarmKit	can	group	hardware	in	order	to	form	a	Swarm,	in	which	tasks	can	be	coordinated	among	individual	pieces	of	hardware.	Once	a
machine	joins,	it	becomes	a	node	in	the	Swarm,	called	a	Swarm	Node.	Figure	2	shows	an	example	of	a	Swarm.

There	are	two	types	of	Swarm	Nodes,	the	worker	node	and	the	manager	node.	The	worker	node,	called	Agent,	is	responsible	for	running
Tasks	using	an	Executor.	The	manager	node,	called	Master,	accepts	input	from	the	user	and	is	responsible	for	reconciling	the	desired
state	with	the	actual	cluster	state.

Docker

38

https://github.com/delftswa2018/swarmkit/blob/master/CONTRIBUTING.md
https://docs.docker.com/opensource/
https://github.com/delftswa2018/swarmkit/blob/master/CONTRIBUTING.md#docker-community-guidelines
https://docs.docker.com/opensource/
https://golang.org/cmd/gofmt/
https://github.com/delftswa2018/swarmkit/blob/master/CONTRIBUTING.md#coding-style
https://developercertificate.org/
https://golang.org/pkg/testing/
https://circleci.com/gh/docker/swarmkit
https://circleci.com/gh/docker/swarmkit
https://circleci.com/gh/docker/swarmkit/8634

Figure	2	Example	of	the	hardware	structure	of	a	Swarm

High	level	components

Figure	3	depicts	the	dependencies	for	Tasks,	Services,	Master	and	Agents.	SwarmCtl	is	used	to	communicate	with	the	cluster.	The
	swarmctl		command	is	used	to	to	create,	update	and	delete	services	and	add/remove	nodes	from	the	swarm.

When	a	service	is	added	to	the	cluster	through	the	API,	the	Master	will	generate	tasks,	allocate	resources,	and	pick	an	available	node	to
execute	the	tasks.	For	the	coordination	of	the	tasks	SwarmKit	makes	use	of	the	Raft	Consensus	Algorithm.

Figure	3:	Dependencies	of	the	Task,	Service,	Agent	and	Master.

Within	the	Master	node	there	are	four	main	parts,	the	Orchestrator,	the	Allocator,	the	Scheduler	and	the	Dispatcher.	The	Orchestrator	is
there	to	ensure	that	the	services	have	the	appropriate	set	of	tasks	running	in	the	cluster.	The	Allocator	is	responsible	for	dispensing	the
required	amount	of	resources.	The	Scheduler	assigns	the	tasks	to	the	available	nodes.	The	Dispatcher	handles	all	communication	between
the	Master	and	the	Agent.

A	worker	consists	of	two	parts,	as	shown	in	figure	3,	the	agent	and	the	engine.	The	Engine	runs	the	containers.	The	Agent	coordinates
the	work	and	maintains	the	connection	with	the	Master,	the	Agent	notifies	the	Master	of	the	current	state	of	the	assigned	tasks.

Dependencies	of	components	and	models

Docker

39

Figure	5:	In-depth	overview	of	the	dependencies	of	components.

Figure	5	depicts	the	in-depth	dependencies	of	the	SwarmKit	project.	There	are	six	types	of	components	in	this	project,	each	type	of
component	will	be	explained.

Blue	components

Blue	depicts	vendor	components,	of	which	only	the	most	important	are	shown.	The	vendors	not	shown	in	this	figure	are	helper
classes/functions.	The	full	list	of	vendors	can	be	found	in		vendor.conf	.

Yellow	components

Yellow	depicts	the	API,	which	is	based	on	protocol	buffers.	All	communication	between	different	components	is	event	driven	and	go	via
the	API.	For	readability,	only	the	important	connections	are	shown.

Purple	components

Purple	components	are	the	available	commands	to	interact	with	the	SwarmKit	cluster.

Grey	components

The	grey	components	are	global	helper	classes/function.	The		log		is	the	global	logger	of	the	system,		remotes		keeps	track	of	remote
addresses	by	weight,	informed	by	observations,		identity		generates	random	ids	which	are	used	to	identify	components	within	the
Swarm,		ca		is	the	certificate	authenticator	of	SwarmKit	and		watch		starts	a	stream	that	returns	any	changes	to	objects	that	match	the
specified	selectors.

Green	components

The	green	components	are	part	of	the	agent	module.	The		agent/exec		is	the	executor	for	a	container,	currently	the	containers	based	on
	dockerapi		and		containerd		are	supported.

Red	components

The	red	components	are	part	of	the	manager,	which	looks	like	a	very	complex	system.

The	module		manager/store		stores	all	the	information	about	the	clusters.	The	module		manager/health		keeps	track	of	the	manager's
health	and	reports	it	to	the	API.

Scheduling	of	the	services	and	assigning	them	to	a	node	in	the	cluster	is	handled	by		manager/scheduler	.	The	scheduler	only	depends	on
the		manager/store	,	because	it	needs	information	about	the	different	nodes	to	decide	where	to	deploy	the	tasks.

Docker

40

Allocation	of	resources	for	the	task	execution	is	done	in	the		manager/allocator		module.	This	module	uses	the	vendor	library
	libnetwork		for	setting	up	an	network	connection	with	the	task.		go-events		is	used	for	the	event	driven	communication	between	the
manager	and	the	allocator.

Module		manager/dispatcher		is	responsible	for	dispatching	tasks	and	tracking	agent's	health.	The	tracking	of	the	agent's	health	is	done
via	a		manager/heartbeat	.

The	biggest	module	within	the		manager		is	the		manager/orchestrator		which	runs	a	reconciliation	loop	to	create	and	destroy	tasks	as
necessary	for	global	services.

Functional	View

SwarmKit	Functional	View

The	figure	describes	SwarmKit's	important	functional	elements,	their	responsibilities,	interfaces,	and	some	primary	interactions	among
them.	It	drives	the	shape	of	the	overall	system	design	and	architectural	decisions.	It	also	depicts	the	flexibility	of	SwarmKit	as	a	separate
pluggable	system	and	the	ease	of	adding	new	features	in	any	particular	part	of	the	project.

The	components	shown	in	the	functional	view	diagram	are	as	follows:

Cluster	API:	It	is	the	endpoint	that	is	available	for	the	users	to	create	service	requests.	The	valid	service	requests	then	end	up	as
services	which	will	be	executed	by	the	swarm.

Service:	A	service	is	a	set	of	instructions	for	the	cluster	about	what	needs	to	be	run.	It	is	the	central	structure	of	the	cluster	system
and	the	primary	root	of	user	interaction.

Task:	A	task	basically	represents	a	unit	of	work	assigned	to	a	(worker)node	in	the	cluster.	A	task	contains	a	description	about
running	the	container.	As	a	task	flows	through	the	system,	its	state	is	updated	accordingly	and	the	change	of	state	only	flows	in
one	direction.	Once	a	the	task	is	bound	to	a	node,	it	can	only	run	on	that	node	or	fail.

Orchestrator:	The	service	informs	the	orchestrator	about	how	to	create	and	manage	tasks.	The	Orchestrator	ensures	that	services
have	the	appropriate	set	of	tasks	running	in	the	cluster	according	to	the	service	configuration	and	polices.

Allocator:	The	allocator	dispenses	resources,	such	as	volumes	and	networks	to	tasks,	as	per	the	respective	task	requires.

Docker

41

Cluster:	A	cluster	is	made	up	of	an	organized	set	of	Docker	Engines	configured	in	a	manner	to	allow	the	dispatch	of	services.	It
contains	two	kinds	of	nodes:

Manager	A	manager	accepts	services	defined	by	users	through	the	cluster	API.	When	a	valid	service	is	provided,	the	manager
will	generate	tasks,	allocate	resources	and	dispatch	tasks	to	an	available	node.

Worker	A	typical	worker	contains	an	Agent	that	coordinates	the	dispatch	of	work	for	a	worker	and	the	recipt	of	tasks.	This
agent	maintains	a	connection	to	the	dispatcher,	waiting	for	the	current	set	of	tasks	assigned	to	the	node.	A	worker	also
contains	an	Engine	which	is	a	shorthand	for	the	Docker	Engine.	It	receives	and	executes	tasks	while	reporting	on	their	status.

Evolution	Perspective
SwarmKit	has	evolved	quite	a	lot	since	the	inception	of	the	project	in	Feb	2016.	A	lot	of	new	features	have	been	added	to	the	system
since	then.	There	have	been	quite	some	contributions	in	terms	of	new	features	and	bug	fixes	by	the	community.	This	section	will	briefly
cover	the	evolution	of	SwarmKit	throughout	its	development.

Docker	was	released	as	an	open	source	project	by	dotCloud,	a	platform	as	a	service	company,	in	2013.	Docker	Swarm	standalone	was
then	introduced	as	a	native	clustering	system	for	Docker.	This	basically	turns	a	pool	of	Docker	hosts	into	a	single,	virtual	host	using	an
API	proxy	system.	This	was	Docker's	first	container	orchestration	project	that	began	in	2014.	It	is	still	a	very	convenient	tool	to
schedule	containers.	Then	came	SwarmKit	in	early	2016.	This	included	cluster	management	and	orchestration	features	in	Docker	Engine
1.12	and	up.	When	Swarmkit	is	enabled,	the	Docker	Engine	is	said	to	be	running	in	swarm	mode.	Swarm	mode	(SwarmKit)	was	Docker's
response	to	the	community's	request	to	simplify	service	orchestration.	Docker	announced	the	Moby	Project	in	DockerCon	2017	which
is	an	open-source	project	created	by	Docker	to	enable	and	accelerate	software	containerization.	This	project	heavily	influences	the
architectural	decisions	for	SwarmKit	going	forward.

SwarmKit	currently	follows	the	semantic	versioning	convention	when	releasing	an	update,	that	is		vA.B.C		where		A		denotes	a	major
release,		B		denotes	a	minor	release,	and		C		denotes	a	patch	release.	The	project	currently	only	has	3	releases	published:

M1	Published	on	18	Mar	2016
M2	Published	on	29	Apr	2016
v1.12.0	Published	on	29	Jul	2016

The	most	recent	release		v1.12.0		was	the	Tag	version	of	SwarmKit	shipped	in	Docker	1.12.0.	There	has	been	a	lot	of	development	on
the	project	since	then	in	the		master		branch	and	the	version	bump	branches	which	follow	this	kind	of	versioning:		bump_v1.12.2	.	These
maintain	stable	versions	of	SwarmKit	based	on	features	developed	till	then	for	the	corresponding	semi-releases.	The	versioning	in	these
branches	is	not	very	consistent.	For	example	the	most	recent	branch	is		bump_17.03.1	.	This	is	not	a	big	issue	as	the	next	major	release
would	go	hand	in	hand	with	the	next	Docker	release.

Besides	the	new	features	and	bug	fixes	on	each	release,	SwarmKit	also	keeps	improving	its	transparency	and	product	design
documentation.	The	development	of	the	project	has	been	quite	organized	and	the	roadmap	seems	well	planned	to	address	the	technical
debts	and	service	new	feature	requests.

Technical	debt
Technical	debt	is	a	concept	that	represents	the	implied	cost	or	additional	work	of	choosing	an	easy	solution	now	instead	of	using	a	better
approach	right	away	that	is	harder	to	implement	or	takes	longer.	This	does	not	have	to	be	a	conscious	decision,	e.g.	it	can	be	a	result	of
lack	of	experience	or	knowledge.

Identifying	Technical	Debt

In	a	big	project	like	SwarmKit,	identifying	Technical	Debt	might	feel	a	bit	overwhelming,	luckily	there	are	different	approaches	to	doing
so.

The	following	approaches	were	used	to	identify	technical	debt:

1.	 Code	inspection	tools

Docker

42

http://semver.org/
https://github.com/docker/swarmkit/releases/tag/M1
https://github.com/docker/swarmkit/releases/tag/M2
https://github.com/docker/swarmkit/releases/tag/v1.12.0

2.	 Analyzing	design	and	architecture
3.	 Issue	analysis
4.	 Manual	code	inspection

One	of	the	cases	found	is	related	to	issue	#2516,	which	will	be	explained	in	the	section	on	design	debt.

An	example	found	by	manual	inspection	is	the		manager/allocator/network.go.	,	which	contains	a	lot	of	long	and	complex	methods
without	comments.	Another	example	is		manager/dispatcher/dispatcher.go	,	which	has	8	TODO's,	however,	no	issues	are	created	to
actually	fix	them.

To	realize	good	maintainability	and	understandability,	it	is	very	important	to	keep	code	documented	and	clean,	for	these	cases	it	is	safe
to	say	that	there	is	some	form	of	technical	debt	present.

Design/Architectural	Debt

This	section	will	focus	on	parts	of	the	system	that	contain	architectural	or	design	flaws,	this	means	that	for	example,	they	are	not	as
flexible	as	they	could	be.	We	will	glance	over	the	architectural	technical	debt	that	we	identified	and	explain	why	they	will	require	time
investments	to	be	fixed.

One	of	the	big	architectural	decisions	that	the	needs	to	be	made	is	referenced	by	issue	#2516	Rewrite	Allocator	by	Drew	Erny.	Which
states	the	Allocator	code	is	badly	written,	quoting	Drew:	"is	a	source	of	constant	bugs	and	breakages".	Apparently,	the	code	associated
with	the	allocator	has	a	lot	of	problems	like:

Cluttered	code	which	isn't	being	used.
Methods	implemented	straight	on	the	Allocator	object,	which	is	suggested	to	be	separate.
Under-commented	and	tangled	code,	which	makes	piece-wise	refactoring	almost	impossible.
Possible	inconsistencies	between	the	raft	state	and	the	local	state	of	the	network	allocator	because	of	logic	errors.
Race	conditions	in	local	state	initialization	because	initialization	and	allocation	using	the	same	code	paths,	resulting	in	IP	allocation
errors.

This	issue	was	marked	with	the		exp/expert		tag,	which	means	it	requires	hours	from	people	with	the	maximum	amount	of
experience/skills.	Rewriting	the	entire	allocator	component,	according	to	Drew,	would	give	them	a	clean	slate	and	would	let	them	finally
get	rid	of	the	most	ingrained	design	flaws.

Identification	of	Testing	Technical	Debt

According	to	the	CodeCov	badge	in	the		README.md		in	the	SwarmKit	repository,	the	current	test	coverage	is	61%.	This	level	of	test
coverage	has	been	around	60%	in	the	last	6	months,	however,	untested	packages	are	not	considered	in	the	calculation.

Packages	with	low	test	coverage

The	three	packages	with	the	lowest	test	coverage	are		cmd		(the	command	tools	to	interact	with	the	Swarm),		protobuf		(the	code	for	the
protocol	buffers),	and		agent		(the	code	for	the	SwarmKit	agent).

Within	the		cmd		package,	the		swarm-rafttool		has	a	test	coverage	of	12.97%.	This	is	caused	by	the	low	test	coverage	of	two	of	the
three	files,		main.go		and		dump.go		have	little	to	no	test	coverage.	The		dump.go		file	is	not	tested	at	all,	the	reason	why	is	unknown,
maybe	due	to	the	high	cognitive	complexity	(191,	as	reported	by	CodeClimate)	and	large	number	of	code	smells	(24).	The	low	test
coverage	of	the	file		main.go	,	is	due	to	the	fact	that	a	function	within	a		cobra.Command		is	really	hard	to	test.	A	possible	solution	for
this	is	by	extracting	the	command	code	into	another	function,	for	example	as	shown	below.

Before:

Docker

43

https://github.com/docker/swarmkit/issues/2516
https://github.com/dperny
https://developers.google.com/protocol-buffers/

boomCmd	=	&cobra.Command{

				Use:			"boom	<output	directory>",

				Short:	"Explode	all	the	things",

				RunE:	func(cmd	*cobra.Command,	args	[]string)	error	{

								for	_,	arg	:=	range	args	{

												println("boom	"	+	arg)

								}

				},

}

After:

boomCmd	=	&cobra.Command{

				Use:			"boom	<output	directory>",

				Short:	"Explode	all	the	things",

				RunE:	func(cmd	*cobra.Command,	args	[]string)	error	{

								boom(args...)

				},

}

func	boom(args	[]string)	error	{

				for	_,	arg	:=	range	args	{

								println("boom	"	+	arg)

				}

}

By	refactoring	the	code	according	to	the	second	example	the	function		boom		becomes	better	testable.

All	the	other	commands	in	the		cmd		package	are	not	tested	at	all.	The		main.go		files	can	be	tested	using	the	method	as	described	above.

Within	the		protobuf		package	only	two	files	are	covered	by	tests,	the	average	test	coverage	of	these	two	files	is	28.81%.	The	reason	for
this	low	test	coverage	is	that	this	specific	code	is	generated.

The		agent		package	has	a	test	coverage	of	49.78%.	This	package	contains	one	of	the	two	integration	test	in	the	whole	project.	The	test
coverage	can	easily	be	increased	by	adding	tests	for	a	number	of	small	files,	which	have	a	low	coverage.	Beside	that	a	lot	of	files	in	the
package	have	a	high	cognitive	complexity,	due	to	long	functions	with	a	lot	of	if-statements.	Splitting	these	functions	into	smaller
functions	makes	it	much	easier	to	test	the	whole	file,	increase	coverage	and	lower	the	cognitive	complexity.

Testing	procedures

The	majority	of	tests	are	pure	unit	tests	with	a	few	exceptions	of	tests	that	do	some	sort	of	class	integration	test.	There	are	two	full
integration	tests:	one	which	tests	the	main	functions	of	the	Swarm	cluster,	the	other	tests	the	agent	controller	flow	against	a	docker
instance	to	make	sure	it	does	not	blow	up.

The	SwarmKit	team	wants	to	avoid	mocking	or	implementing	fakes	for	classes,	because	they	are	expensive	to	maintain.	Due	to	this
decision	a	few	critical	parts	of	the	system	remain	untested.

//	TODO(stevvooe):	The	current	agent	is	fairly	monolithic,	making	it	hard

//	to	test	without	implementing	or	mocking	an	entire	master.	We'd	like	to

//	avoid	this,	as	these	kinds	of	tests	are	expensive	to	maintain.

The	SwarmKit	team	wants	to	decouple	classes,	which	should	make	testing	easier	(as	in	the		cobra.Command		example)	and	cheaper	to
maintain.

Tooling

This	section	describes	the	code	inspection	tools	used	to	identify	technical	debt	and	the	insights	these	tools	provided.

CodeClimate

Docker

44

The	SwarmKit	project	uses	CodeClimate	to	assess	the	maintainability	of	the	project.

At	the	time	of	writing,	this	is	the	status	of	the	project:

The	CodeClimate	maintainability	grade	for	the	SwarmKit	project	is	a	D	(Technical	Debt	ratio	between	20%	and	50%),	with	a	time
estimate	of	4	years	to	resolve	all	these	issues.	Furthermore,	there	are	2471	counts	of	code	smells	and	990	counts	of	duplication	marked
in	the	project.	These	metrics	are	skewed,	since	a	large	part	of	the	code	in	the	project	is	auto-generated	by	ProtoBuf.	A	large	portion	of
files	which	CodeClimate	graded	poorly	are	these	auto-generated	files,	for	which	maintainability	is	of	no	concern	to	the	SwarmKit
maintainers.

Disregarding	the	auto-genereted	files,	these	are	files	with	the	lowest	grades	and	longest	time	estimation	to	resolve	issues:

	manager/state/raft/raft.go	

	manager/allocator/network.go	

	manager/dispatcher/dispatcher.go	

	manager/controlapi/service.go	

	cmd/swarm-rafttool/dump.go	

It	becomes	clear	a	lot	of	maintainability	issues	stem	from	code	related	to	the	Manager.

CodeCov

CodeCov	is	a	code/test	coverage	reporting	tool.	It	has	a	straightforward	formula:		hits	/	(hits	+	misses	+	partials)	.	Here,		hits	
indicate	parts	of	the	codebase	which	are	being	executed,	while		partials		are	parts	which	are	partially	executed	by	the	test	suite.	Finally,
	misses		are	parts	of	the	code	which	have	not	been	executed.

At	the	time	of	writing,	this	is	the	status	of	the	project:

Docker

45

https://codeclimate.com/github/docker/swarmkit
https://github.com/google/protobuf
https://codecov.io/github/docker/swarmkit

Code	coverage	has	barely	changed	the	past	6	months,	since	the	SwarmKit	project	is	actively	being	developed	and	new	code	gets	added
daily,	this	means	that	a	fair	amount	of	that	code	is	being	tested.	An	additional	visualization	is	the	Sunburst,	depicting	the	folder/file
structure	and	the	test	coverage	of	that	part	of	the	project:

This	shows	us	specific	parts	of	the	project	are	well	tested,	while	others	are	not.	The	innermost	band	that	spans	half	the	core	is	the
	manager		folder,	which	also	contains	a	lot	of	low	maintainability	files	as	described	in	the	section	on	CodeClimate.	This	makes	it	easy	to
identify	large	files	with	low	coverage,	some	of	these	include:

	manager/state/raft/raft.go	

	manager/allocator/network.go	

	manager/allocator/cnmallocator/networkallocator.go	

	manager/dispatcher/dispatcher.go	

As	was	to	be	expected,	there	is	a	lot	of	overlap	with	the	files	listed	in	the	CodeClimate	section.

Impact	of	Technical	Debt

Most	of	the	violations	are	Single	Responsibility	Principle	(SRP)	based,	which	is	a	result	of	many	long	files	with	long	functions.	These
violations	can	have	a	big	impact,	because	it	often	occurs	in	the	core	of	the	program.	When	these	violations	are	re-factored,	thus	making
sure	a	class/function	has	a	single	purpose	(making	them	more	robust),	making	changes	will	be	less	daunting	(which	is	the	case	at	the
current	time,	as	seen	by	the	discussions	between	the	developers).

In	combination	with	the	low	amount	of	test	the	impact	becomes	even	higher.	After	resolving	the	SRP	violation	there	is	now	a	way	to
make	sure	that	the	code	does	actually	function	the	same	way	as	before.	So	the	emphasis	is	on	creating	a	more	extensive	test	suite,	to
provide	a	larger	safety	net	when	eventually	refactoring	becomes	inevitable.

Conclusion

This	chapter	analyzed	Docker's	SwarmKit	and	it	can	be	concluded	that	it	is	a	well	thought	out	project.

Docker

46

https://codecov.io/github/docker/swarmkit

The	first	section	throws	light	on	the	stakeholders	involved	in	this	project.	Furthermore,	stakeholders	were	analyzed	through	a	power	vs.
interest	grid,	and	concluded	that	the	stakeholders	with	the	highest	interest	and	power	include	the	core	team,	Docker	Inc.,	partners	and
the	Moby	project.

The	next	section	analyzes	the	dependencies	of	the	project	and	visualizes	this	in	a	context	diagram.	It	neatly	separates	external	and
internal	entities	of	the	project.	After	which	an	interview	with	core	developer	Drew	Erny	is	discussed.	By	interviewing	a	core	team
member,	we	got	a	better	understanding	of	the	way	the	team	copes	with	technical	debt	and	the	architectural	difficulties	they	face.

SwarmKit	has	a	modular	nature,	which	makes	it	relatively	easy	to	extend	the	project.	This	is	achieved	by	common	processing	(for
example	the	Common	Data	Store)	and	standardization	(for	example	the	Task	Model)	in	the	design	of	the	project.	The	Development	view
section	discusses	the	structure	of	SwarmKit's	codebase.	The	next	section	covers	technical	debt	of	the	project.	It	covers	a	few	major
architectural/design	debts	like	the	buggy	allocator.	The	code	quality	and	coverage	is	also	analysed	while	describing	techniques	used.

This	chapter	also	discusses	the	contributions	we	managed	to	make	which	helped	progress	the	project.	Conclusively,	SwarmKit	is	a
really	interesting	project	which	is	professionally	managed	by	a	team	of	talented	engineers.	We	loved	our	interaction	with	Drew	and
enjoyed	working	on	the	project.	We	will	follow	the	progress	of	the	project	and	try	to	keep	making	contributions.

Reference

[1]	KAEWKASI,	C.	and	CHUENMUNEEWONG,	K.,	2017.	Improvement	of	container	scheduling	for	Docker	using	Ant	Colony
Optimization,	2017	9th	International	Conference	on	Knowledge	and	Smart	Technology:	Crunching	Information	of	Everything,	KST
2017	2017,	pp.	254-259.

[2]	Mendelow,	A.	(1991)	‘Stakeholder	Mapping’,	Proceedings	of	the	2nd	International	Conference	on	Information	Systems,
Cambridge,	MA	(Cited	in	Scholes,1998).

[3]	Rozanski,	N.,	&	Woods,	E.	(2012).	Software	systems	architecture:	working	with	stakeholders	using	viewpoints	and
perspectives.	Addison-Wesley.

Docker

47

https://github.com/dperny

Eden

Team	members

Aravindakshan	Ramesh Mohammed	Al-
Owayyed Myeongjung	Park Louis	S ikkes

Abstract

Sahana	Eden	is	a	free	open	source	system	for	disaster	management	that	is	highly	regarded	for	its	configurability	and	customizability.	It
provides	a	solution	for	governments,	organizations,	civil	societies,	communities	and	affected	individuals	in	responding	to	a	disaster	when
one	occurs.	The	system	also	receives	support	of	various	types	from	volunteers	in	the	community,	as	well	as	from	several	professional
companies.

Index
1.	Introduction

2.	Stakeholder	Analysis

3.	Context	View

4.	Development	View

5.	Technical	Debt

6.	Internationalization	Perspective

7.	Deployment	View

Eden

48

https://github.com/dakshan07
https://github.com/ExtraMHD
https://github.com/Myeongjung
https://github.com/lsikkes

8.	Conclusion

Introduction
Sahana	(which	means	“relief”	in	Sinhalese)	started	after	the	tragic	Indian	Ocean	earthquake	and	tsunami	in	2004,	when	members	of	the
IT	community	in	Sri	Lanka,	called	the	Lanka	Software	Foundation	(LSF),	began	to	implement	a	solution	for	efforts	to	alleviate	human
suffering	during	the	aftermath.	In	2009,	LSF	requested	to	make	the	software	project	an	independent	nonprofit	organization	based	in	the
United	States	with	a	mission	of	providing	reliable	solutions	in	emergency	management,	humanitarian	relief	and	social	development
domains.	Since	that	time,	Sahana	Software	Foundation	(SSF)	has	developed	many	open	source	software	products,	mainly	focusing	on
solutions	used	by	relief	organizations.

Nowadays,	Sahana	Eden,	the	latest	evolution,	includes	many	functionalities	in	managing	organizations,	people,	projects,	inventory	and
assets,	as	well	as	handling	assessment	information	and	providing	situational	awareness	through	maps.	Its	goal	is	to	both	plan	ahead	so
that	response	can	be	fast	and	to	provide	a	management	tool	during	such	a	situation.	Thus,	Sahana	Eden	is	highly	appreciated	by	various
communities,	from	governmental	and	nongovernmental	organizations	(NGOs),	who	appreciate	the	customizability,	to	the	open	source
community	and	academic	researchers,	who	see	it	as	a	useful	platform	for	analyzing	and	studying	open	source	disaster	management
software.

Stakeholder	analysis
In	this	section,	we	identify	the	key	stakeholders	of	Sahana	Eden.	At	first,	we	state	the	board	of	directors	of	the	Sahana	Eden	foundation,
we	will	later	refer	to	them	as	the	core	team.	After	that	we	list	the	types	of	stakeholders	proposed	in	Rozanski	and	Woods	and	identify
them	in	a	table:

Eden

49

Type Stakeholders Description

Acquirers Core	Team The	core	team	of	Sahana	Eden	(their	board	of	directors)	oversee	the	future	roadmap	of
company	by	creating	issues	and	engaging	in	discussions	for	system	development.

Assessors
Core	Team
and
Contributors

The	core	team	assess	the	conformance	to	standards	and	legal	regulations	themselves.	In
this	category	we	have	identified	two	people:	Brent	Woodworth,	who	is	an	International
Risk	and	Crisis	Management	expert,	and	John	Smith,	who	is	a	law	enforcer	at	the
Disaster	Risk	Mitigation	(DRM).

Communicators
Core	Team
and	External
Organizations

Devin	Balkind,	the	president	of	the	project,	Nuwan	Waidyanatha,	also	a	member	of	the
board	of	directors,	and	Lutz	Frommberger	post	regular	updates	and	developments	of
Sahana	Eden	on	external	communication	platforms	(their	website,	blog,	Twitter,	etc.)

Developers
Core	Team
and
Committers

In	the	Sahana	project	the	main	people	are	Francis	Boon	(over	3000	commits),	Nuwan
Waidyanatha.	They	are	the	co-founders	of	the	project	and	integral	in	the	development	of
the	system.	They	review	almost	all	pull	requests	on	github.	Furthermore	,	Dominic
König	(over	3000	commits)	and	a	Github	user	called	trendspotter	are	also	very	active	in
the	development	process	through	Github.	The	pull	requests	and	issues	are	handled	by
Dominic	König	and	Francis	Boon

Maintainer
Core	Team
and
Contributors

The	overall	evolution	is	maintained	by	the	core	developers,	all	other	maintenance	tasks
like	bug	fixes	are	done	by	contributors.	The	localization	team	appoints	a	maintainer	for
each	language	translation	and	the	teams	are	governed	by	the	core	team	members.

Suppliers
Core	team	and
Auxiliary
Organizations

Auxiliary	organizations	provide	relief	measures	and	are	not	directly	involved	with	the
system.	Since	Sahana	Eden	is	also	a	self	hosted	system	where	the	deployment	is	done	by
users	who	use	the	system.

Support	Staff Developers Support	for	the	development	of	Sahana	Eden	is	done	by	internal	as	well	as	external
developers	through	github	and	through	Google	Groups

System
Administrators

Core	Team
and	Users Since	Sahana	Eden	is	self	deployed,	the	user	becomes	the	system	administrator

Testers
Core	Team
and
Contributors

The	core	team	is	involved	in	fixing	bugs	and	reporting	errors.	In	addition,	Sahana
community	members	can	sign	up	as	testers	to	participate	in	the	testing	of	development
branches.	trendspotter	is	one	of	the	main	testers	of	the	system.

Users End	Users
The	end	users	represent	most	of	the	Sahana	Eden	Community.	They	range	from
volunteers,health	care	organization	or	government	organizations.	They	are	mostly
concerned	about	the	functionality	of	the	system.

Going	beyond	the	book	we	have	identified	stakeholders	which	do	not	directly	fall	under	the	Rozanski	and	Woods	classification.

Competitors:	Ushahidi	is	an	open	source	disaster	response	organization	that	allows	anyone	to	gather	distributed	data	via	SMS,
email	or	web	and	visualize	it	on	a	map	or	timeline.	Their	goal	is	to	create	the	simplest	way	of	aggregating	information	from	the
public	for	use	in	crisis	response.
Researchers	and	Scientist:	They	research	and	present	findings	of	the	system	through	journals.	They	are	also	integral	in	improving
the	functionality	of	the	system.	For	instance	Pictographs	in	Disaster	Information	Communication	for	the	Linguistically	Challenged
is	a	core-recognition	project,	funded	by	the	Humanitarian	Innovation	Fund	of	UK.
Media:	They	present	unambiguous	and	reliable	sources	of	information	and	is	vital	in	the	communication	of	the	system	to	people
and	developers	who	are	interested	in	new	challenges	and	projects.	Sahana	software	and	its	role	supporting	post-tsunami	disaster
relief	in	Sri	Lanka	were	featured	in	the	2006	BBC	World	documentary	The	Code-Breakers.

Eden

50

https://groups.google.com/forum/#!forum/sahana-eden

Power	interest	diagram:	We	have	analyzed	the	stakeholders	and	grouped	them	in	a	diagram	to	give	a	better	understanding	of	who
to	monitor	and	how.

Context	View

Eden

51

The	context	view	describes	the	relationship,	dependencies	and	relationships	of	the	system	with	its	environment.	In	the	diagram	above
we	have	split	these	into	groups	that	we	have	derived	from	the	stakeholder	analysis	and	the	external	entities	that	we	will	now	discuss.

Governmental	and	non-governmental	organizations:	The	external	entities	contained	in	this	group	range	from	government
departments	and	the	police	to	healthcare	organizations	like	the	Red	Cross.	These	organizations	make	use	of	all	external	interfaces	of
the	system.	We	will	describe	the	three	most	important	ones	now:	alerting,	importing	and	exporting	and	printing	maps.	These	will	be
explained	later	in	the	document.
Volunteers:	Besides	big	organizations,	individual	volunteers	can	also	help	during	a	disaster.	These	people	will	not	have	a	wide
variety	of	assets	or	inventory	and	will	therefore	not	use	all	external	interfaces	of	the	system.	The	main	focus	of	these	people	lies	in
receiving	alerts	whenever	something	happens	or	letting	organisations	know	their	skills	and	availabilities.
Media:	The	last	external	entity	that	we	discuss	is	the	media.	They	are	not	involved	in	participating	to	support	the	disaster	area,
their	main	focus	is	to	report	on	the	activities.	They	will	therefore	only	use	the	alert	functionality	to	be	alerted	of	any	activities.

Development	View
Before	we	start	to	contribute	to	the	Sahana	Eden,	we	have	to	know	how	the	system	is	built.	In	this	document,	we	start	off	by	giving	an
overview	of	the	components	of	the	system.	In	the	second	section,	we	discuss	the	common	design	models	and	approaches	that	were	used
to	build	the	system.	Thirdly,	we	talk	about	the	guidelines	that	are	being	used	during	the	development	of	the	system,	we	do	this	by
talking	about	the	release	and	testing	processes.

Component	overview

Sahana	Eden	contains	many	different	modules	which	can	be	configured	to	provide	a	wide	range	of	functionality.	Since	these	modules	are
easily	customizable,	they	can	provide	solutions	in	a	wide	variety	of	contexts.	This	further	enhances	by	the	fact	that	these	modules	can
be	enabled	or	disabled	to	provide	the	needs	of	the	deployer.	In	this	section,	we	will	outline	these	and	explain	what	purpose	they	serve.
The	information	found	here	has	been	extracted	from	a	brochure	found	on	the	Sahana	Eden	website	[3].

Eden

52

Module	Overview:	After	analyzing	all	modules	we	have	created	the	following	diagram	to	visualize	their	dependencies	on	each
other.

This	diagram	gives	a	logical	view	of	how	the	modules	work	together,	we	have	not	extracted	this	from	the	code.	We	can	see	that	in	the
middle	the	organization	registry	interacts	with	most	other	modules.	We	then	see	that	organizations	can	perform	a	variety	of	tasks	like
managing	inventory	or	assets.	Finally,	most	modules	are	linked	to	the	map,	which	can	create	a	map	of	most	data	in	the	system.

We	have	identified	the	following	modules:

Organization	Registry:	This	module	allows	registry,	searching	and	modification	of	data	of	organizations.	It	also	allows	the
registration	of	warehouses,	offices	and	field	sites	which	can	be	mapped	to	other	modules.
Project	Tracking:	The	project	tracker	provides	a	platform	to	allow	the	organizations	to	manage	the	projects	that	are	currently	active
and	what	their	needs	are.	This	tool	is	used	for	instance	by	the	Disaster	Risk	Reduction	Project	Portal	[13].
Messaging:	The	project	allows	users	to	set	up	groups	so	a	large	audience	can	be	messaged	at	once.	Furthermore,	there	is	the
possibility	to	subscribe	to	communication	channels	such	as	email,	SMS,	Twitter	and	Google	Talk.
Scenarios	&	Events:	This	tool	can	be	used	to	map	the	needs	in	different	scenario's,	including	human	resources,	facilities,	assets	and
tasks.	There	is	the	option	to	create	specific	templates	which	can	be	used	whenever	a	new	disaster	happens.
Human	Resources:	Eden	is	able	to	track	volunteers	and	staff	of	different	organizations.	It	keeps	track	of	what	they	do,	where	they
are	and	what	their	skills	are.
Inventory:	A	wide	variety	of	items,	ranging	from	supplies	for	survival	to	tools	for	rebuilding	area's,	are	often	needed	after	a	disaster.
This	module	can	keep	track	of	inventories	and	match	requests.	It	can	be	used	to	record	and	automate	transactions	for	sending	and
receiving	shipments.
Assets:	Vehicles,	radio	equipment,	power	generators	and	more	are	all	needed	after	a	disaster.	This	module	provides	a	platform	to
track	which	assets	are	available,	where	they	are	and	in	which	condition	they	are.
Assessments:	It	is	used	to	collect	and	analyze	assessment	information	to	support	planning	ahead.	Users	can	design	templates	that
can	later	be	imported	when	a	disaster	happens.	The	module	includes	reports,	graphs	and	maps.
Map:	The	integrated	map	module	can	be	used	to	visualize	data.	It	supports	any	location-based	data	and	aims	to	provide	situational

Eden

53

awareness.	Many	formats	for	overlaying	data	are	supported	such	as	population	and	weather	data.

Common	design	models

The	Eden	project	is	built	in	two	languages,	Python	and	Javascript.	They	use	Web2Py	with	the	goal	of	making	the	web	development
easier,	faster	and	more	secure.	This	framework	enforces	to	build	an	MVC	environment.	The	other	big	framework	that	is	used	is	the	S3
API.	They	use	this	for	a	lot	of	their	functionalities:	authentication,	authorization	and	accounting,	logging,	as	a	RESTful	API,	accessing
the	database,	exporting/importing,	GUI's	and	mapping.	Finally,	to	import	and	export	data	they	use	the	XSLT	format.	This	allows	them
to	import	and	export	data	easily	and	even	on-the-fly.	Their	repository	contains	2	folders	dedicated	to	defining	the	resulting	structure	of
the	XML	files.	Furthermore,	the	import/export	templates	are	stored	in	the	static/formats/...	folder.	We	will	now	delve	more	specific	into
two	design	models:	internationalization	and	importing	and	exporting.

Internationalization

Since	different	people	from	different	countries	and	cultures	have	to	interact	with	this	system	it	is	important	that	the	system	is
understandable	for	all	of	the	users.	Most	of	the	languages	are	handled	using	the	web2py	localization	engine.	This	contains	a	file	for	each
language	which	contains	the	translations	from	English	to	the	correct	language.	Some	of	these	files	have	been	established	using	Google
Translate.

Importing	and	exporting

Since	Sahana	Eden	is	allowing	organizations	to	collaborate	each	other	it	has	to	import	data	from	most	of	these	organizations.	This	data
can	range	from	inventory	information	to	data	about	a	certain	area.	To	support	a	wide	variety	of	different	formats	to	use	for	importing
and	exporting	data	they	use	XSLT	templates.	This	can	be	used	to	create	for	instance	csv	and	XML	files	on	the	fly.

Code	conventions

A	full	list	can	be	found	here	[15].	To	check	for	these	code	conventions	they	use	several	tools	including	PEP8,	PyLint	and	PyChecker.
Since	they	aim	to	be	internationally	available,	all	strings	should	be	labeled,	so	that	the	appropriate	language	can	be	gathered	from	its
corresponding	file.	Furthermore,	all	files,	classes	and	functions,	should	have	docstring	to	allow	auto-generation	of	API	documentation
using	Epydoc.

Codeline	model

In	this	section,	we	will	describe	the	components	that	make	up	the	code	of	the	project.	For	this,	we	have	studied	their	Github	repository
[10]	and	analyzed	the	components	that	can	be	seen	in	the	picture	below.	This	picture	was	found	on	their	website.	We	expected	to	find
some	of	the	module	structure	that	we	have	found	earlier	in	this	document	to	be	present	in	the	code.	This	is	not	the	case,	all	the
functionalities	from	these	modules	are	handled	in	the	controller	folder,	which	has	no	further	structure.	We	will	discuss	this	later	on.

We	can	see	in	the	picture	below	that	there	are	6	main	folders.	In	the	repository	itself,	there	are	four	more	folders	on	the	same	level.
These	folders	are	'cron',	'docs',	'private'	and	'tests'.	In	the	'docs'	and	'private'	folders,	we	found	some	documents	unrelated	to	the	rest	of
the	code	so	we	will	only	not	analyze	these	any	further.	While	observing	the	repository	we	found	very	minimal	use	of	a	folder	structure
within	these	specified	folders,	most	of	them	contain	a	bunch	of	files	that	do	a	wide	variety	of	things.

Eden

54

Folder	structure	of	the	repository

Model,	View	&	Controllers	:	The	controllers	are	the	part	of	this	system	where	the	logic	happens	(.py	files).	Instead	of	a	further
structure	inside	this	folder,	we	found	some	single	files	that	are	related	to	a	module.	For	instance,	the	'project.py'	file	handles	project
registry	and	the	'inv.py'	file	handles	managing	the	inventory.	The	models	are	.py	files	and	the	views	are	HTML	files,	both	folders
have	no	further	structure.
Languages	:	The	files	in	here	are	Python	files	that	translate	English	to	another	language.	The	format	of	the	files	is	as	follows:	
{	
"%s	rows	deleted',nrows":	"%s	lignes	supprimées',nrows",	
...	
}
Modules	:	Contains	external	modules	like	GeoJSON	(an	open	standard	format	designed	for	representing	simple	geographical
features),	S3	(accommodates	cloud	object	storage),	S3	database,	S3	unit	tests,	ClimateDataPortal,	GeoPy,	a	name	parser	and
PyGSM.
Static	:	The	static	folder	contains	any	static	files	that	are	stored	once	and	rarely	touched	afterwards.	In	here	we	can	find	images,
themes,	styles,	fonts,	scripts	and	more.
Tests	:	Contains	the	tests,	we	will	talk	about	these	later.
CRON	:	To	perform	some	time-based	jobs	they	make	use	of	CRON.	In	here	we	find	only	3	files	of	which	one	is	empty	and	1
contains	only	1	line	that	sets	a	heartbeat.	The	final	file	is	an	SMS	handler	that	probably	sends	automated	messages.

The	release	process

Whenever	new	contributions	are	ready	to	be	published	they	will	plan	to	make	a	release	version	of	the	system.	This	consists	of:

Creating	a	QA	branch	in	which	final	integration	testing	will	be	done	before	pushing	it	to	the	Stable	branch
Creating	a	Stable	branch,	deployment	will	be	done	from	this	branch
Adding	appropriate	tags	to	the	release,	the	following	schema	will	be	used	[Branchname]-[Major].[Minor].[Sub]
Building	upgrade	scripts,	the	pull	script	has	been	modified	to	call	this	script	automatically

Eden

55

The	testing	process

An	important	step	in	the	development	process	is	verifying	that	the	system	works	properly.	To	this	extend	Eden	has	implemented
several	testing	approaches	that	we	will	discuss	in	this	section.	In	the	technical	debt,	we	have	tried	to	run	these	tests.	We	will	discuss
them	further	in	that	chapter.

EdenTest

EdenTest	is	a	Robot	Framework	based	test	framework	used	for	automated	testing	in	Sahana	Eden.	The	files	implementing	these	tests	are
.txt	files	that	contain	almost	regular	language	instructions,	for	instance:	"Open	Advanced	Filter	Options".	These	functions	are	defined	in
separated	files	which	makes	it	easy	to	reuse	them.

Unit	Tests

From	the	website,	we	found	that	unit	tests	are	used	to	detect	problems	early	during	the	development	process.	This	indicates	that	they
make	use	of	test-driven	development.	Each	module	has	their	own	test	set	that	was	separately	run.	Aside	from	validation	they	use	these
tests	to	validate	the	design	against	requirements,	keep	implementation	simple	and	focused	and	mention	that	this	can	be	a	great	source	of
code	samples	as	to	how	to	apply	your	API	methods.	A	Continuous	Integration	server	that	uses	Travis	has	been	set	up.	Whenever	a	pull
request	is	created	all	unit	tests	are	run	before	and	have	to	succeed	before	it	can	be	merged.

Technical	Debt

Bugs	&	Reliability
SonarQube	rated	Sahana	Eden's	reliability	as	an	E	(from	A	to	E),	which	means	there	is	at	least	1	blocker	bug	presented	in	the	program.
Upon	further	inspection,	it	was	discovered	that	SonarQube	flags	Python	2	code	as	errors	if	the	code	is	not	compatible	with	Python	3.
Thus,	Python	2	-specified	errors	were	eliminated	to	judge	the	code	quality	fairly.	Bugs	that	do	not	create	errors	or	affect	the	program’s
behavior	are	still	present	in	the	major	and	minor	code,	but	with	an	overall	better	rating	of	B	instead	of	E.	Most	of	the	major	issues	were
due	to	the	absence	of	HTML5	format	that	SonarQube	checks	(e.g.,	deprecated	elements	such	as	center),	similar	to	the	Python	2	issue
discussed	previously.	Overall,	the	code	is	well-written	and	reliable	with	few	to	no	bugs	affecting	the	behavior,	but	could	benefit	from
using	more	modern	versions	to	keep	all	files	up	to	date	(i.e.,	Python	3	and	HTML5).

Eden

56

An	Overview	of	reliability	and	bugs

Vulnerabilities

In	this	section,	we	will	discuss	the	vulnerabilities	that	were	found	by	SonarQube.	It	found	a	total	of	434	vulnerabilities	and	gave	the
rating	D	since	there	was	at	least	1	critical	vulnerability.	97	of	the	vulnerabilities	were	marked	as	critical	and	337	as	minor.	In	the	graph,
we	can	see	the	overall	severity	of	the	vulnerabilities	and	how	long	it	would	take	to	fix	them.	We	notice	that	there	are	some	small	volume
severe	vulnerabilities	that	should	not	take	too	long	to	fix,	but	most	of	the	code	is	secure.

We	first	analyse	the	critical	vulnerabilities,	which	only	1	type	of	issues	was	found:	validating	arguments	before	making	a	function	call.
Although	this	is	faster	than	dynamically	evaluating	the	code,	it	can	expose	the	program	to	random,	unintended	code	which	can	pose	a
security	risk.	When	analyzing	the	minor	vulnerabilities	are	concerned	with	hardcoded	IP	addresses	(like	localhost)	or	debug	code	still
there.

Eden

57

Code	Smells

In	this	section,	we	talk	about	the	Code	Smells	which	we	derived	from	SonarQube.	We	basically	look	at	how	simple	or	how	complicated
the	code	is	and	look	to	enhance	their	code	with	solutions	which	we	deem	can	satisfy	the	technical	debt	and	improve	the	overall	quality
of	the	code.	SonarQube	found	14.000	code	smells.	The	minor	errors	mostly	deal	with	renaming	local	variables	and	removing	empty
statements,	due	to	time	constraints	we	leave	it	out	not	because	they	are	not	important	but	they	do	not	need	immediate	attention	right
away.	SonarQube	gives	a	maintainability	rating	as	A	since	the	technical	debt	ratio	is	less	than	5%.

The	below	comments	are	treated	as	critical	and	major	by	SonarQube.	These	errors	seem	to	be	repetitive.	One	example	is	an	initialisation
function	that	has	16	parameters,	this	is	too	much.	Another	example	is	an	assignment	to	a	variable	that	is	not	used	later	on.

Duplications

We	have	found	several	files	that	were	completely	duplicated.	Below	in	the	figure	is	a	Treemap,	generated	by	SonarQube	of	duplications
on	directory	level	in	the	Sahana	Eden	project.

Eden

58

Treemap	of	duplications

The	color	of	the	squares	indicates	the	level	in	which	duplicated	code	exists.	Red	indicates	a	high	percentage	and	green	indicates	a	low
percentage	of	duplications.	There	are	not	a	lot	of	duplications	when	looking	on	the	folder	level,	some	functions	are	duplicated.	For
example,	mouse	move,	touch	move	functions,	calculation	functions,	etc.	However,	if	we	move	into	class	level,	there	are	a	lot	of
duplicated	files,	even	in	the	directories	that	are	green	in	the	Treemap.

The	density	of	the	duplicated	lines	is	18%,	which	we	find	quite	high.	Most	of	the	files	that	are	duplicated	are	HTML	or	JavaScript	files.
These	mostly	occurred	in	modules,	especially	the	templates	and	static/script	folder.	The	files	that	are	duplicated	are	often	functions	such
as	list	filter,	update,	appadmin,	config,	cache	or	auxiliary.	The	percentage	of	duplications	is	quite	diverse	throughout	the	files.	There	are
files	which	are	100%	duplicated	and	some	files	even	have	the	same	name	with	a	different	location.	Some	duplicated	files	are	in	the	same
location	with	a	different	name.	This	is	in	violation	with	one	of	the	SOLID	principles:	the	single	responsibility	principle.	Most	highly
duplicate	files	are	about	display,	comments,	list,	and	layout.	Although	these	duplicates	are	not	critical	issues	yet,	these	features	can
become	problems	later	on	and	should	be	resolved	as	soon	as	possible.	Removing	these	duplications	would	play	a	key	role	in	reducing	the
technical	debt.

Historical	Analysis
In	this	section,	we	identify	how	Sahana	Eden	has	attempted	to	improve	the	technical	debt	over	the	years.	We	will	discuss	how	they
found	and	solved	these	issues.	The	tools	that	we	will	use	to	analyze	this	are	SonarQube	and	Github	statistics.

First,	we	filtered	the	major	and	critical	issues	with	code	smells	in	SonarQube.	The	result	is	the	following:

Eden

59

Historical	analysis	by	SonarQube

As	can	be	seen	in	image,	most	files	have	not	changed	since	they	were	created	6	years	ago.	This	image	only	shows	the	code	smell	part.
Also,	bug	and	vulnerability	sections	showed	almost	the	same	results.	One	thing	we	could	find	latest	changes	in	is	vulnerability.	The
changes	were	in	simple	syntax	errors	(e.g.,	if	(delay	==	'undefined')	to	if	(delay	==	undefined)).	However	these	changes	are	not	the	issues
detected	by	SonarQube.

Code	frequency	in	Github

The	image	above	shows	the	code	frequency	by	means	of	the	additions	and	deletions	per	week.	The	significant	changes	were	6	years	ago
when	they	were	created.	After	that,	the	code	frequency	did	not	show	any	significant	changes	over	the	years.

Secondly,	Eden	project	core	members	and	developer	are	clearly	aware	of	the	technical	debt	and	bugs.	There	are	'bug'	and	'enhancement'
labels	and	they	are	also	divided	by	'Major'	and	'Minor'	issues	that	are	well-explained.	The	developers	identified	the	problems	and	how
(not)	to	fix	them,	as	can	be	seen	in	PR#1348.	In	this	example,	they	are	aware	what	the	problem	is,	and	refactored	the	code	to	solve	them.
This	PR	has	been	merged,	some	of	the	technical	debts	have	been	solved	as	refactoring	as	well.

Testing
In	the	development	view,	we	have	mentioned	that	Sahana	Eden	uses	a	couple	of	different	tests.	These	tests	were	executed	and	we	will
report	the	results	in	this	section.

EdenTest

Eden

60

https://github.com/sahana/eden/pull/1348

The	EdenTest	is	a	Robot	Framework	used	for	automated	testing.	In	order	to	install	it,	we	had	to	download	a	few	packages	including
Selenium.	We	followed	the	guide	for	running	the	tests	but	found	that	not	all	steps	that	had	to	be	taken	were	explained.	There	is	a	section
that	explains	how	to	create	a	configuration	file	but	it	does	not	explain	how	or	what	we	should	change	in	here.	We	also	had	to	erase	and
populate	the	database	(using	a	script	in	the	project)	before	running	the	tests	but	the	database	stayed	empty	while	running	this.	As	a
result,	a	lot	of	lookup	functions	failed	since	the	entry	that	they	were	searching	for	did	indeed	not	exist.	We	found	that	most	basic
functions	were	tested,	but	no	attempts	to	break	the	system	were	made	in	these	tests.

Unit	Tests

On	their	website,	they	mention	that	they	use	unit	tests	to	detect	problems	early	during	development.	This	indicates	that	they	use	test-
driven	development.	We	observe	a	total	of	610	tests	which	we	ran	from	the	command	line.	All	tests	succeed	so	we	inspected	what	was
tested	in	these	tests.	Most	functionalities	are	tested	like	parsing,	initialising	and	other	functions,	with	again	only	1	test	per	function	/
functionality.	The	documentation	did	not	describe	how	to	generate	code	coverage.

Other	Tests

Here	we	will	discuss	the	other	tests	that	were	incorporated.	Smoke	Tests	simply	click	on	every	link	within	the	Sahane	Eden	project	to
check	for	broken	links	or	errors	made.	They	ran	successfully	and	reported	nothing	was	broken.	These	tests	are	good	to	make	sure	that
you	have	not	accidentally	overlooked	something.	They	do	however	not	give	any	guarantee	that	what	is	shown	is	what	should	be	shown.
When	running	the	script	for	the	Role	Tests	these	did	not	seem	to	be	working.	The	documentation	mentioned	that	these	are	limited	at	the
moment.	Finally,	we	ran	the	Benchmark	Tests	which	gave	us	some	numbers	but	no	further	explanation	was	given	about	these	numbers
and	although	they	mention	that	the	result	of	these	tests	will	rate	the	performance	relative	to	the	system	that	we	ran	it	on,	we	could	not
find	such	a	result.

To	conclude	the	tests	and	their	documentation	have	a	lot	of	room	for	improvement.	We	found	setting	up	the	tests	to	be	harder	than	it
should	be	because	of	a	lack	of	documentation.	There	was	also	no	mention	of	code	coverage	or	how	to	set	it	up.	We	saw	that	most	of	the
functionalities	were	tested,	which	is	good.	More	tests	could	be	implemented	to	check	for	corner	cases	to	try	and	identify	bugs	or
vulnerabilities	in	order	to	increase	the	solidity	of	the	system.

Internationalization	Perspective
The	rationale	behind	choosing	this	is	that	Sahana	Eden	operates	in	various	languages	for	different	regions	as	per	the	needs	of	their
deployment.	As	a	disaster	management	system,	including	different	languages	would	help	to	deploy	the	system	whenever	a	disaster
occurs,	as	the	system	must	be	understandable	to	the	interested	parties.	This	perspective	was	chosen	because	the	Sahana	foundation
should	appeal	to	international	society,	and	to	achieve	that,	it	is	not	enough	to	only	translate	the	right	meaning	of	words;	the	right
orientation	(some	languages	are	written	from	right	to	left),	character	sets,	currencies	or	any	other	localization	issues	must	be	addressed,
as	well.

As	stated	before,	Sahana	Eden	was	deployed	following	the	2010	Haiti	earthquake.	Since	then,	more	than	60	different	nonprofit	or
government	agencies	used	it	as	means	for	disaster	management	[1].	The	system	has	been	deployed	notably	for	wildfires	in	Chile	(2012),
earthquake	and	tsunami	in	Japan	(2011)	and	Flooding	in	Colombia	(2011).	Various	organizations	adopted	Sahana	Eden,	such	as	Asian
Disaster	Preparedness	Center	(ADPC)	for	its	Disaster	Risk	Reduction	Projects	Portal,	International	Federation	of	Red	Cross	(IFRC)
and	National	Disaster	Relief	Services	Center	(NDRSC).

Sahana	Eden	has	39	different	languages	files	[2],	which	mostly	include	translations	for	the	majority	of	the	text	shown	on	the	website.
The	software	inherits	Web2Py	localization	architecture,	which	simplifies	the	process	of	adding	a	new	language.	Also,	files	could	be
edited	directly	from	the	GitHub	repository.	Furthermore,	a	tool	is	recommended	in	Sahana	wiki	for	auto-translating	using	the	Google
Translate	API,	which	explains	the	literal	translation	that	we	found	and	fixed	in	the	Korean	language	file.	However,	languages	that	are
most	likely	to	be	used	due	to	their	associations	with	targeted	areas	(e.g.,	conflict	zones	and	disaster	areas)	have	an	understandable	but
incomplete	translation.	The	small	percentage	of	untranslated	words	are	presented	in	English,	which	is	the	default	language	for	the
system.	Regarding	the	orientations	for	right-to-left	written	languages,	those	languages	have	an	inversed	web	page	layout	to	correspond
with	its	flow.	As	can	be	observed	from	Arabic	language	page	that	displays	the	menu	on	the	right	instead.	Furthermore,	all	characters
from	different	languages	are	shown	correctly,	as	it	uses	UTF-8	for	encoding.	Another	inspected	issue	is	currency	and	unit	converting

Eden

61

between	different	regions,	which	was	avoided	by	letting	the	user	who	inputs	the	amount	has	to	enter	the	currency	or	the	measurement
unit	as	well,	with	the	exception	of	capacity	that	always	follows	the	metric	system	(m³).	The	date	format	used	is	fixed	across	different
languages	(dd-mm-yyyy).

Deployment	View
Sahana	Eden	is	highly	configurable	so	that	it	can	be	used	in	a	wide	variety	of	different	contexts	and	easy	to	modify	in	order	to	build
custom	solutions.	Different	levels	of	support	are	available	from	both	the	voluntary	community	and	professional	companies.	Especially,
Sahana	Eden	can	be	accessed	from	the	web	or	locally	from	a	flash	drive,	allowing	it	to	be	used	in	environments	with	poor	Internet.	Local
&	web	versions	can	be	configured	to	synchronize	to	allow	data	to	be	shared	between	them.

The	deployment	view	looks	at	parts	of	the	system	that	are	relevant	one	the	system	has	been	built	or	deployed.	It	defines
computational,	physical	and	software-based	requirements	for	running	the	system.	First	of	all,	Sahana	Eden	runs	on	Python	and
JavaScript	and	hence	requires	Python	2.7	and	JavaScript	1.8	respectively.	Sahana	Eden	can	be	downloaded	from	the	Sahana	Software
Foundation	and	installed	with	its	requirements.	In	order	to	contribute	to	code,	the	developer	should	have	your	own	repository	on
GitHub,	a	community	collaboration	platform	based	on	the	Git	distributed	version	control	system.	The	other	dependencies	are	as	follows
:

Web	Server:	Apache	is	preferred	but	other	web	servers	such	as	Cherokee	can	also	be	used.
Operating	System:	For	production	installations,	Debian	Linux	v7	"Wheezy"	is	recommended	as	this	is	the	environment	for	which
the	most	support	is	available.	Windows	and	Mac	OS	X	are	possible,	but	only	recommended	for	single-user	environments.

Hardware	Requirements:

A	virtual	server	executing	the	main	functional	elements	of	the	system	and	allowing	users	to	access	the	system	should,	at	the	very
least,	have	1GB	of	RAM	and	4GB	HDD.
Sahana	Eden	must	be	installed	on	a	medium	in	which	Python	programming	language	can	be	run	and	where	any	database	systems
such	as	PostgreSQL	database	is	supported.

Database	Settings:

It	is	recommended	that	production	systems	use	PostgreSQL	or	MySQL	rather	than	the	default	SQLite.	For	these	databases,	it	is
more	secure	to	provide	the	application	with	a	database	account	with	minimal	privileges.
S3XML	is	a	data	exchange	format	for	Sahana	Eden.
S3XML	is	a	meta-format	and	does	not	specify	any	particular	data	elements.	The	interface	is	entirely	introspective	to	the
underlying	data	model,	thus	the	specific	constraints	defined	in	the	data	model	also	apply	for	S3XML	documents.

Web	Application	Framework:	The	database	is	examined	using	Web2Py's	interface.

Mapping	API:

API	allows	developers	to	be	able	to	display	customised	data	output	relevant	to	a	specific	module	on	the	Map.
Sahana	Eden's	mapping	client	is	based	on	OpenLayers	&	GeoExt.
OpenLayers	provides	access	to	a	wide	range	of	data	sources,	from	public	services	based	on	OGC	standards.
GeoExt	provides	UI	widgets	to	allow	the	user	to	interface	with	the	map.

Eden

62

Deployment	View	of	Sahana	Eden

Conclusion
Sahana	Eden	has	a	solid	foundation	with	a	passionate	set	of	developers	and	contributors.	Ever	since	it's	initial	release	it	has
accomplished	a	lot	and	is	still	evolving	constantly	adding	new	modules	and	technologies	to	its	platform.	However,	we	have	identified
rooms	for	improvement	throughout	this	document	which	is	summarized	below.

Sahana	Eden	consists	of	different	modules,	used	for	managing	disasters	and	planning	ahead.	These	modules	can	be	enabled	or	disabled	to
create	custom	solutions	in	different	contexts.	In	the	code	itself,	we	have	not	found	this	module	structure	but	only	a	basic	structure.	The
project	incorporates	different	testing	methods	to	guarantee	all	parts	of	the	system	are	working.	Overall	we	found	that	the	mapping	of
the	codebase	is	rather	poor	and	we	see	room	for	improvement	here.

Sahana	Eden	has	a	varied	analysis	on	technical	debt.	Using	SonarQube	they	were	rated	B	for	Bugs,	D	for	vulnerability	and	A	for	Code
Smells.	On	analysing	duplication	of	the	code	we	realized	that	the	density	of	duplication	is	too	high.	Although	this	is	not	directly
harmful,	this	is	still	a	potential	weakness	that	lowers	the	quality	of	the	code.	Vulnerabilities	were	examined	and	certain	functions	can
expose	the	program	to	random,	unintended	code	which	can	pose	an	operational	and	security	risk.

Even	though,	Sahana	Eden	could	improve	from	a	developer's	view,	their	main	focus	is	to	help	people	in	need	which	they	are	doing	a
commendable	job.

Resources

[1]	Sahana	Eden	deployments	-	https://sahanafoundation.org/eden/deployments/	
[2]	Github	language	files	-	https://github.com/sahana/eden/tree/master/languages	
[3]	The	website	of	the	Sahana	foundation.	It	contains	information	about	who	is	contributing,	guidelines,	a	blog	and	also	links	to	other
useful	resources.	-	https://sahanafoundation.org/	-	
[4]	A	book	describing	the	system	-	http://archive.flossmanuals.net/_booki/sahana-eden/sahana-eden.pdf	
[5]	The	demo	of	the	system	was	used	to	get	a	good	overview	of	the	system.	-	http://demo.sahanafoundation.org/eden/	
[6]	Google	Groups	for	discussions	-	https://groups.google.com/forum/#!forum/sahana-eden	
[7]	Twitter	-	https://twitter.com/sahanafoss	
[8]	Facebook	-	https://www.facebook.com/SahanaFOSS/	
[9]	XSLT	Templates	-	http://eden.sahanafoundation.org/wiki/XsltTemplates	-	
[10]	Sahana	Eden	Github	repository	-	https://github.com/sahana/eden	
[12]	Sahana	Eden	brochure	-	https://www.slideshare.net/SahanaFOSS/sahana-eden-brochure-10577413	
[13]	Disaster	Risk	Reduction	Project	Portal	website	-	http://www.drrprojects.net/drrp/	

Eden

63

https://sahanafoundation.org/eden/deployments/
https://github.com/sahana/eden/tree/master/languages
https://sahanafoundation.org/
http://archive.flossmanuals.net/_booki/sahana-eden/sahana-eden.pdf
http://demo.sahanafoundation.org/eden/
https://groups.google.com/forum/#!forum/sahana-eden
https://twitter.com/sahanafoss
https://www.facebook.com/SahanaFOSS/
http://eden.sahanafoundation.org/wiki/XsltTemplates
https://github.com/sahana/eden
https://www.slideshare.net/SahanaFOSS/sahana-eden-brochure-10577413
http://www.drrprojects.net/drrp/

[14]	Sahana	Eden	Wiki	-	http://eden.sahanafoundation.org/wiki/	
[15]	Sahana	Eden	coding	conventions	-	http://eden.sahanafoundation.org/wiki/DeveloperGuidelines/CodeConventions	
[16]	SonarQube	-	https://www.sonarqube.org/

Eden

64

http://eden.sahanafoundation.org/wiki/
http://eden.sahanafoundation.org/wiki/DeveloperGuidelines/CodeConventions
https://www.sonarqube.org/

Elasticsearch	-	The	Heart	of	the	Elastic	Stack

By	Mathias	Meuleman,	Bart	van	Oort,	Menno	Oudshoorn,	Mark	van	de	Ruit

Delft	University	of	Technology,	2018

Elasticsearch	is	a	distributed,	RESTful	search	and	analytics	engine.	It	lies	at	the	heart	of	the	Elastic	Stack:	a	group	of	multiple
applications	developed	and	managed	by	the	Elastic	company.	The	Elastic	Stack	provides	a	way	to	reliably	and	securely	take	data	from
any	source	in	any	format,	and	search,	analyze,	and	visualize	it	in	real	time.

We,	four	master	students	of	the	TU	Delft,	have	analyzed	the	architecture	of	Elasticsearch	and	aim	to	provide	insight	into	the	system
from	different	viewpoints.	We	do	so	by	first	identifying	the	stakeholders	of	Elasticsearch,	after	which	we	put	Elasticsearch	into	context.
We	then	look	into	the	module	organization	of	the	system.	Furthermore,	we	analyze	how	information	is	handled	within	Elasticsearch	and
how	performance	and	scalability	are	monitored	and	upheld.	Finally,	we	dive	into	the	system	to	identify	technical	debt	and	propose
ways	to	decrease	it.

Table	of	Contents
1.	Stakeholders

Power/Interest	grid
2.	Context	View
3.	Module	Organization

Server	module
Client	module
Client-server	communication

4.	Information	View
Storage	model
Data	representation	and	relations

5.	Performance	&	Scalability	Perspective
Benchmark	suite
Addressed	perspective	concerns
Performed	perspective	activities
Leveraged	perspective	tactics

ElasticSearch

65

6.	Technical	Debt
SonarQube	analysis

Deliberate	violations
Actual	technical	debt

SOLID	violations
Single	Responsibility	Principle
Open-Closed	Principle

Instrumentation
Javadoc
Testing	debt

Testing	procedures
Test	coverage	generation

7.	Conclusion
References

1.	Stakeholders

The	stakeholders	of	Elasticsearch	are	categorized	according	to	the	stakeholder	types	described	in	Rozanski	&	Woods	(2012),	including
three	additional	types:	competitors,	investors,	and	marketers.	The	categories	have	been	placed	in	alphabetical	order.

ElasticSearch

66

Type Stakeholders

Acquirers The	Elastic	company	itself,	mainly	its	founders,	leadership,	and	board.

Assessors Baird	Garett	(Senior	Vice	President	of	Legal)	and	Robin	Sharpe	(Vice	President	of	Operations).

Communicators
Marty	Messer	(Vice	President	of	Customer	Care)	is	the	main	responsible	person	for	the	training	and
consulting	of	the	customers	of	Elastic.	There	is	also	a	three-day	Elastic{ON}	event,	as	well	as	a	number	of
paid	online	training	courses	and	private	courses	on	location.

Competitors Apache	Solr	is	the	most	direct	competitor,	as	it	also	uses	Apache	Lucene.	Other	competitors	include	Sphinx,
Hawksearch,	Commvault,	and	SwifType.

Developers
Every	contributor	on	GitHub.	The	three	biggest	contributors	we	identified	are	Shay	Banon	(@kimchy,
creator	of	Elasticsearch),	Simon	Willnauer	(@s1monw,	founder)	and	Jason	Tedor	(@jasontedor,	currently
most	active	developer).

Investors Elastic	company.	Elastic	is	funded	by	three	main	investors:	Benchmark	Capital,	Index	Ventures,	and	New
Enterprise	Associates	Inc.	(NEA).

Integrators
Members	of	the	Github	Elastic	organization.	The	most	important	integrators	are	Jason	Tedor,	Luca	Cavanna
(@javanna),	Christoph	Büscher	(@cbuescher),	Boaz	Leskes	(@bleskes)	and	Colin	Goodheart-Smithe
(@colings86).

Maintainers Large	overlap	with	developers.	The	three	most	active	are	Jason	Tedor,	Simon	Willnauer	and	Jim	Ferenczi
(@jimczi).

Marketers Elastic	has	'Go-To-Market'	partners,	who	help	market	Elasticsearch.	A	list	of	over	25	of	these	partners	is
available	here.

Suppliers

Apache	Lucene	provides	the	base	functionality	of	Elasticsearch,	with	Elasticsearch	providing	a	REST	API	on
top	of	Lucene,	among	other	functionalities.	Elasticsearch	also	runs	on	Apache	Hadoop,	Amazon	Web
Services	(AWS),	and	Google	Cloud	Platform	(GCP),	thus	making	Apache,	Amazon,	and	Google	their	main
suppliers.

Support	staff Marty	Messer	(Vice	President	of	Customer	Care).	Elastic	also	provides	subscriptions	for	dedicated	support
for	Elastic's	products.	Elastic's	open	forums	handle	general	questions	on	using	Elasticsearch.

System
administrators

IT	departments	of	the	companies	that	use	Elasticsearch,	as	well	as	the	people	who	manage	the	Elastic	Cloud
platform.

Testers Most	developers	are	also	testers.	One	contributor	stands	out	in	his	involvement	in	testing	as	well	as
documentation:	Luca	Cavanna.

Users A	large	number	of	users,	both	simple	individuals	as	well	as	large	companies,	use	Elasticsearch.	Some	of	the
largest	users	include	Sprint,	eBay,	and	Zalando.

Power/Interest	grid

The	various	types	of	stakeholders	can	be	placed	in	a	Power/Interest	grid,	which	shows	the	interest	that	each	stakeholder	category	has	in
the	system	versus	the	power	they	have	to	influence	the	system.	The	grid	is	shown	below:

ElasticSearch

67

https://www.elastic.co/about
https://www.elastic.co/about/leadership
https://www.elastic.co/about/board
https://www.elastic.co/elasticon
https://www.elastic.co/training
http://lucene.apache.org/solr/
http://sphinxsearch.com/about/sphinx/
https://www.hawksearch.com/
https://www.commvault.com/
https://swiftype.com/
https://github.com/kimchy
https://github.com/s1monw
https://github.com/jasontedor
https://www.elastic.co/about/board
http://github.com/elastic
https://github.com/javanna
http://github.com/cbuescher
http://github.com/bleskes
http://github.com/colings86
https://github.com/jimczi
https://www.elastic.co/about/partners/go-to-market
https://www.elastic.co/subscriptions
https://discuss.elastic.co/c/elasticsearch
https://www.elastic.co/cloud
https://www.elastic.co/use-cases/sprint
https://www.elastic.co/videos/ebay-and-elasticsearch-this-is-not-small-data
https://www.elastic.co/videos/creating-the-fashion-experience-of-the-future-with-elasticsearch-at-zalando

Each	of	the	stakeholder	categories	mentioned	above	has	been	included	in	the	grid.	We	made	a	distinction	between	users	with	a
subscription	and	users	without	one,	as	users	with	a	subscription	are	able	to	get	quick	support	and	emergency	patches	if	necessary,	thus
giving	them	more	power	over	other	users.	While	users	have	a	high	interest	in	Elasticsearch,	suppliers	do	not,	although	they	do	have	a
high	power	over	Elasticsearch;	should	they	decide	to	stop	supplying	their	product,	then	Elastic	will	have	to	adapt	their	products
accordingly.	Marketers,	on	the	other	hand,	have	hardly	any	power	over	Elasticsearch	and	are	mainly	interested	in	its	core	and/or	most
impressive	features	to	use	as	selling	points.

2.	Context	View

We	have	identified	a	number	of	external	entities	and	categorized	them	by	their	involvement	in	Elasticsearch.	This	resulted	in	a	context
view,	of	which	the	general	overview	is	discussed	here.	The	following	image	shows	the	majority	of	these	entities.

ElasticSearch

68

There	are	a	few	categories	that	we	highlight	here,	the	first	one	being	the	"Users"	category.	There	are	many	companies	that	use
Elasticsearch.	The	Elastic	website	alone	lists	117	companies,	which	is	not	an	exhaustive	list.	There	are	some	large,	well-known
companies	in	this	list,	such	as	Accenture,	Zalando,	Blizzard	Entertainment	and	eBay.	It	becomes	clear	that	Elasticsearch	can	be	used	in
many	different	ways.	For	example,	eBay	uses	it	as	their	search	engine	so	customers	can	find	the	product	they	are	looking	for	easily,
whereas	Blizzard	uses	it	as	a	data	analytics	tool	to	gain	insight	in	the	large	amounts	of	data	generated	by	their	games.	Due	to	the
extensive	REST	API	provided	by	Elasticsearch,	any	user	can	connect	to	Elasticsearch	in	a	way	that	caters	to	their	requirements	and
business	processes.

Furthermore,	there	is	the	"Partners"	category.	Elastic	partners	with	various	companies	in	various	ways	to	increase	their	reach	and	market
share.	There	are	Go-To-Market	partners	that	focus	on	identifying	commercial	customer	opportunities.	Furthermore,	there	are
Technology	and	Platform	partners	which	help	Elastic	to	create	more	impactful	and	easier-to-deploy	solutions	based	on	their	products.
Finally,	there	are	Original	Equipment	Manufacturer	(OEM)	partners	which	use	Elastic	products'	features	as	part	of	their	own	product.
Two	major	partnerships	are	with	Google	Cloud	Platform,	to	provide	Elastic	Cloud	on	Google	Cloud	servers,	and	Cloudera,	to	connect
Elasticsearch	with	Hadoop,	a	big	data	storage	and	processing	tool.

The	final	category	we	highlight	here	is	small,	but	contains	one	important	entity.	This	one	entity,	Apache's	Lucene	project,	is	the	main
project	on	which	Elasticsearch	is	built.	It	is	a	high-performance,	full-featured	text	search	engine	library	written	entirely	in	Java.	This
makes	it	a	technology	suitable	for	nearly	any	application	that	requires	full-text	search,	especially	cross-platform	applications.
Elasticsearch	is	built	upon	Lucene	and	uses	its	API	for	data	indexing	and	searching.	Because	these	features	lie	at	the	core	of	what
Elasticsearch	does,	Lucene	is	an	important	external	entity	that	should	be	closely	monitored	by	Elasticsearch.

3.	Module	Organization

In	this	section,	we	detail	the	module	organization	of	Elasticsearch,	as	well	as	important	dependencies	between	these	modules,	in	order	to
illustrate	the	overall	internal	code	structure	of	Elasticsearch.	We	first	discuss	the		server		module	of	Elasticsearch,	which	is	the	module
that	contains	the	core	functionality	of	Elasticsearch.	Afterward,	we	take	a	look	at	the		client		module,	which	mainly	functions	as	a

ElasticSearch

69

https://lucene.apache.org/core

library	to	connect	to	an	Elasticsearch	cluster	and	send	requests	to	it.	Finally,	we	zoom	out	and	take	a	look	at	how	these	two	modules
relate.	The	various	extracted	Elasticsearch		modules	,	their	purpose	and	relation	to	the	core		server		and		client		modules	are	also
discussed.

Do	not	confuse	Elasticsearch		modules		with	the	module	organization	discussed	in	this	chapter.	The	former	represents	extracted
functionality	from	Elasticsearch	that	can	be	reused,	while	the	latter	represents	a	large	unit	in	a	system	containing	related	code,	as
described	by	Rozanski	and	Woods	(2012).

Server	module

We	first	look	at	the		server		module,	which	contains	the	core	functionality	of	Elasticsearch.	The	server	module	is	structured	as	a	large
collection	of	packages	that	all	provide	differing	functionality.	We	attempt	to	divide	these	packages	into	different	component	layers,	as
demonstrated	by	Rozanski	and	Woods,	in	order	to	give	a	clearer	overview	of	the	different	parts	of	the	system,	and	to	avoid	cluttering	the
component	diagram	with	many	individual	packages	and	dependencies.	The	figure	below	shows	these	component	layers	and	their
relations.

We	define	the		core		layer,	which	contains	packages	that	are	either	used	by	all	other	layers	or	serve	functionality	pertaining	the	system's
runtime.

Then	we	define	the		communication		layer,	which	contains	all	packages	directly	connected	with	the	system's	endpoints.	This	layer	makes
direct	use	of	the		updating	cluster		and		searching	cluster		layers	to	answer	possible	user	queries.	These	layers	are	discussed	below.

ElasticSearch

70

Furthermore,	we	define	the		cluster		layer	to	contain	all	packages	related	directly	to	building	and	maintaining	an	Elasticsearch	cluster.
The		cluster		layer	uses	the		platform		layer	for	storage	and	file	system	access.	This	layer	is	discussed	below.

Subsequently,	we	define	the		updating	cluster		and		searching	cluster		layers,	which	contain	all	packages	necessary	for	either
modifying	the	cluster	or	traversing	it	for	results.	Both	these	layers	make	heavy	use	of	the		cluster		layer,	as	they	operate	directly	on	it.
They	also	make	use	of	the		search		package,	which	contains	many	packages	related	to	search	operations.

Finally,	we	define	the		platform		layer	to	contain	all	packages	related	to	low-level	operations,	OS	related	operations,	or	other	operations
requiring	direct	file	system	access.

Client	module

The		client		module	provides	an	interface	for	other	Java	applications	to	an	Elasticsearch	server.	From	the	client's	perspective,	the	main
point	of	entry	to	the	server	is	the	REST	API.	The		client		module	contains	a		rest		package	which	constructs	REST	requests	and
sends	them	to	the	server.	To	simplify	the	generation	of	REST	requests,	the		client		module	provides	a		rest-high-level		package,
which	wraps	the	lower-level		rest		package.

The		sniffer		package,	meanwhile,	provides	clients	with	the	functionality	to	automatically	discover	nodes	by	utilizing	Nodes	Info	API,
so	the	user	does	not	have	to	manually	check	for	new	nodes	in	the	cluster.

Client-server	communication

Having	discussed	the	structure	of	the		server		and		client		modules,	we	now	zoom	out	and	look	at	important	package	relations
between	them	from	a	client's	perspective.	We	also	show	how	Elasticsearch	has	extracted	functionality	from		server		into	Elasticsearch
	modules	.	The	figure	below	shows	this	component	diagram.

The	client	and	server	communicate	through	a	REST	API.	All	of	these	REST	requests	are	received	by	the	server-side		rest		package	and
are	dispatched	to	the	accompanying		rest.action		package.	These		rest.action		packages	depend	on	other	packages	in	the	server
module,	as	can	be	seen	in	the	component	diagram.	Therefore,	the	server	and	client		rest		packages	represent	the	link	between	the	client
and	the	server.

In	the	client-server	component	diagram,	there	are	several	components	that	are	not	part	of		server		or		client	.	These	are	Elasticsearch
modules,	which	are	pieces	of	functionality	that	are	extracted	to	be	reusable.	These	modules	either	use	one	of	the	core	packages
themselves	or	are	used	either	by	the	core	server	or	client	packages.

ElasticSearch

71

4.	Information	View

This	section	describes	how	information	is	handled	in	Elasticsearch.	First,	we	analyze	the	storage	model	used	by	Elasticsearch,	and	how
the	way	that	data	is	divided	increases	performance	and	provides	high	availability.	Secondly,	we	discuss	data	representation	and	how
relations	between	entities	are	handled.

Storage	model

The	Elasticsearch	storage	model	is	based	on	various	components,	as	briefly	explained	below.

Document:	a	basic	unit	of	information	that	can	be	indexed.	For	example,	this	could	be	a	document	for	a	blog	post	with	its	creation
date	and	content.
Index:	a	collection	of	documents	of	the	same	type.
Node:	a	group	of	indices	that	reside	on	a	single	server.
Cluster:	a	collection	of	one	or	more	nodes	over	which	all	data	is	distributed.	It	provides	indexing	and	search	capabilities	across	all
nodes.

Elasticsearch	indices	are	built	on	top	of	Lucene	indices	and	are	stored	in	a	NoSQL	database.	More	on	the	NoSQL	nature	of	Elasticsearch
in	the	next	section.

An	index	could	store	such	a	large	amount	of	data	that	it	exceeds	the	hardware	limits	of	a	single	node.	To	solve	this	problem,	Elasticsearch
provides	the	ability	to	divide	an	index	into	multiple	pieces	called	shards.	The	number	of	shards	is	specified	by	the	user.	Sharding	allows
for	horizontal	splitting	of	volumes	as	well	as	distributing	and	parallelizing	operations	across	shards,	thus	increasing	performance	and
throughput.

To	provide	high	availability,	Elasticsearch	also	provides	functionality	for	replicating	shards.	This	means	that	one	or	more	copies	of
shards	exist	on	different	nodes.	If	one	node	fails,	all	data	is	still	available.	It	also	results	in	more	throughput,	as	searches	can	be	executed
on	all	replicas	in	parallel.

The	figure	below	shows	an	Elasticsearch	cluster	with	four	nodes	and	two	indices;	a		Users		index	with	two	shards	and	one	replication,
and	a		Products		index	with	a	single	shard	and	a	single	replication.	A	failure	of	e.g.	node	4	would	not	result	in	any	data	loss,	as	both
shards	present	on	that	node	are	replicated	on	another	node.

Data	representation	and	relations

From	a	user's	perspective,	all	data	is	represented	in	JavaScript	Object	Notation	(JSON),	a	ubiquitous	internet	data	interchange	format.
The	data	in	nodes	is	stored	using	a	NoSQL-like	structure.	Opposed	to	relational	databases	that	are	specifically	designed	to	manage
relationships,	NoSQL	databases	treat	the	world	as	though	it	were	flat.	An	index	is	a	flat	collection	of	independent	documents.	A	single
document	should	contain	all	information	that	is	required	to	decide	whether	it	matches	a	search	request.	However,	relationships	still
matter.	Therefore,	there	are	various	techniques	to	manage	relational	data	in	Elasticsearch,	which	are	briefly	discussed	below.

Application-side	joins.	By	storing	a	reference	to	a	document	from	a	different	index,	e.g.	an	id,	users	can	first	fetch	this	id	from	one

ElasticSearch

72

index,	and	then	perform	another	query	to	fetch	the	related	document	from	another	index.	The	obvious	disadvantage	is	the	need	to
run	multiple	queries.
Data	denormalization.	Data	denormalization	is	the	process	of	including	redundant	copies	of	data	in	each	document	that	it
requires	access	to.	For	example,	one	can	store	the	name	of	a	blog	post's	author	in	both	the		blog	post		document	itself,	as	well	as	in
an		author		document.	The	advantage	of	this	method	is	speed,	the	disadvantage	is	data	duplication.
Nested	objects.	Related	entities	can	be	stored	within	the	same	document.	For	example,	a	blog	post	could	be	stored	together	with	all
its	comments,	simply	by	passing	an	array	of	comments	in	the		blog	post		index.
Parent-child	relationships.	Elasticsearch	provides	the	functionality	to	specify	parent-child	relationships	between	indices.	This
method	is	similar	to	nested	objects,	but	the	children	are	now	separate	documents.

5.	Performance	&	Scalability	Perspective

This	section	introduces	a	perspective	to	cover	the	performance	and	scalability	of	Elasticsearch.	First,	we	recap	the	notion	of	a
perspective.	Then,	we	address	the	benchmark	suite	Elasticsearch	provides	and	afterward,	we	briefly	discuss	concerns	this	perspective
covers	and	how	Elasticsearch	interprets	these.	Thereafter,	we	provide	an	overview	of	the	activities	that	Elasticsearch	undertakes	as	part
of	this	perspective.	Finally,	we	discuss	tactics	Elasticsearch	leverages	in	this	perspective.

A	perspective,	as	defined	by	Rozanski	and	Woods	(2012),	is	a	collection	of	concerns,	activities	and	tactics	used	to	ensure	that	a	system
exhibits	a	particular	set	of	qualities,	properties,	or	behaviors.	A	perspective	can	be	applied	to	an	architectural	view	of	the	system,	to
ensure	that	the	architecture	(in	the	context	of	this	view)	fits	its	purpose	as	defined	by	the	perspective.

For	a	detailed	specification	of	the	concerns,	activities	and	tactics	that	are	generally	part	of	a	performance	and	scalability	perspective,
please	refer	to	the	source	material.

Benchmark	suite

Elasticsearch	has	an	extensive	benchmark	suite,	consisting	of:

The	microbenchmark	suite	contains	microbenchmarks	intended	to	spot	performance	regressions	in	performance-critical	sections.
Elastic/Rally,	a	macrobenchmark	framework	intended	to	identify	performance	issues	through	(profiled)	use	of	an	Elasticsearch	test
cluster.	This	framework	is	periodically	run	against	the	Elasticsearch	master	branch,	using	many	test	clusters	with	different	datasets.
Detailed	results	can	be	found	at	the	Elasticsearch	Benchmarks	website.

This	benchmark	suite	is	a	useful	tool	for	building	this	perspective,	as	is	seen	below.

Addressed	perspective	concerns

This	perspective	relates	to	a	number	of	concerns	regarding	performance	and	scalability,	which	the	Elasticsearch	team	can	address	with
the	assistance	of	the	benchmark	suite.	For	one,	Rally	records	latency	and	service	time	of	the	system,	addressing	response	time	concerns.
For	another,	it	measures	minimal,	median	and	maximal	throughput	of	the	system	at	different	levels	of	system	load,	addressing	both
throughput	and	peak	load	behavior	concerns.	Lastly,	it	measures	median	CPU	usage	during	execution,	allowing	the	team	to	address
hardware	resource	requirement	concerns.

While	scalability	of	the	system	could	be	measured	through	the	benchmark	suite,	Elasticsearch	explicitly	states	that	Rally	does	not
intentionally	test	this.	It	should	be	noted,	however,	that	Rally	is	run	against	large	datasets.

Performed	perspective	activities

To	address	the	concerns	mentioned	above,	the	Elasticsearch	team	appears	to	perform	a	number	of	activities.	The	team	has	clearly
captured	performance	requirements,	as	per	their	website:	they	claim	the	system	works	for	extremely	large	indices	while	providing
excellent	performance.	Furthermore,	they	routinely	perform	practical	testing,	as	follows	from	their	periodically	run	macrobenchmark
framework.	Finally,	Rally	is	run	against	varying	sizes	of	data,	ranging	from	at	least	two	million	to	at	least	sixty	million	documents.	As
such,	we	see	that	Elasticsearch	assesses	their	set	requirements	from	time	to	time.

Leveraged	perspective	tactics

ElasticSearch

73

https://github.com/elastic/elasticsearch/tree/master/benchmarks
https://github.com/elastic/rally
https://elasticsearch-benchmarks.elastic.co

Finally,	there	are	some	tactics	related	to	this	perspective,	that	we	see	Elasticsearch	leverage	to	improve	the	performance	and	scalability
of	their	system.	First,	as	Elasticsearch	is	by	its	nature	distributed,	it	makes	thorough	use	of	asynchronous	processing	to	reduce	index
operations.	Secondly,	Elasticsearch	addresses	resource	contention	(which	happens	often	in	distributed	systems)	through	replication	of
data:	multiple	index	nodes	can	share	duplicates	of	a	shard	to	provide	fast	localized	access	to	data.	Thirdly,	we	see	that	Elasticsearch
focuses	on	optimizing	often-repeated	processing,	evident	from	the	microbenchmark	suite,	which	tests	relevant	often-called	code.

6.	Technical	Debt

During	our	research,	we	found	that	the	Elasticsearch	developers	do	evaluate	the	trade-off	between	added	value	and	technical	debt	when
adding	new	functionalities,	but	hardly	have	any	discussions	on	the	current	technical	debt	in	the	system.	We	analyzed	Elasticsearch's
technical	debt	in	several	ways.	First,	we	analyzed	Elasticsearch	using	SonarQube.	Then,	we	manually	looked	for	violations	of	SOLID
principles,	went	through	their	instrumentation	and	analyzed	their	Javadoc.	Finally,	we	looked	into	their	testing	debt	and	accidentally
stumbled	upon	some	massive	technical	debt	regarding	test	coverage	generation.

SonarQube	analysis

To	analyze	the	project	in	terms	of	possible	bugs,	vulnerabilities	and	code	smells,	we	opted	to	run	SonarQube	over	the	entire
	org.elasticsearch		package	of	the	server	module,	resulting	in	the	following	overview.	The	entire	result	has	been	made	public	here.

As	the	overview	shows,	SonarQube	identified	280	days	of	technical	debt,	meaning	that	fixing	all	of	the	mentioned	violations	would	take
280	working	days,	approximately	9	months.	On	further	inspection,	however,	it	turned	out	to	be	better	than	it	seemed.	Some	of	those
violations	were	deliberate	choices,	while	others	did	contribute	to	actual	technical	debt.	Both	are	discussed	in	their	respective	subsections.

Deliberate	violations

ElasticSearch

74

https://www.sonarqube.org/
https://sonarcloud.io/dashboard?id=elasticsearch%3Aserver

Some	SonarQube	violations	are	actually	code	style	choices	that	the	Elasticsearch	team	made	during	its	development	cycles	and	therefore
do	not	constitute	actual	technical	debt.	We	show	two	examples	of	this,	though	there	are	a	few	more	of	these	to	be	found	in	the	analysis.
For	conciseness'	sake,	these	other	examples	will	not	be	covered	here.

The	first	example	of	this	considers	boolean	comparison	in	conditionals,	which	is	the	largest	contributor	of	violations	in	Elasticsearch,
accounting	for	1380	code	smells.	Boolean	comparisons	in	conditionals	between	e.g.	a	variable		foo		and	the	value		false		are
persistently	written	as		if	(foo	==	false)	.	SonarQube	flags	this	as	a	code	smell	and	suggests	to	write		if	(!foo)		instead.	Although
this	is	a	logical	choice	from	SonarQube,	as	it	reduces	code	length	and	therefore	the	chance	of	bugs,	the	choice	made	by	the	developers	is
also	a	sound	one.	Using	the	former	option	is	more	expressive	than	the	latter,	making	the	code	more	readable.	This	means	the	choice	is	a
tradeoff	between	code	size	and	readability,	something	SonarQube	and	the	Elasticsearch	team	decided	on	differently.

The	second	example	considers	method	and	field	naming	conventions.	SonarQube	reports	132	blocker	type	issues,	which	are	issues	of
the	highest	severity	level.	The	Elasticsearch	developers	have	a	tendency	to	name		String		literals	with	an	all-caps	name,	such	as		String
FOO	.	These	literals	mostly	represent	the	name	of	a	certain	field	in	a	class,	e.g.		String	FOO	=	"foo"	.	These	literals	are	used	in	so-called
	XContent		methods,	which	deal	with	different	types	(X		types)	of	content	that	needs	to	be	written	to	an	output	stream.	Instead	of
hardcoding	the	actual	strings	in	such	an		XContent		method,	the	all-caps	String	definitions	are	used.	This	causes	a	number	of	classes	to
contain	both	the	normal	field		foo	,	which	is	named	in	lower-case,	as	well	as	the		XContent		field		FOO	,	named	in	upper-case.	Although
this	is	a	deliberate	choice	made	by	the	developers,	SonarQube	flags	this	as	a	blocker	type	issue,	meaning	an	immediate	fix	is	preferred.

Actual	technical	debt

There	are	also	SonarQube	violations	that	cannot	be	explained	by	the	previously	mentioned	code	style	choices.	Seeing	as	we	cannot	cover
all	of	the	issues	flagged	by	SonarQube,	we	look	at	two	primary	categories	of	these	violations	that	contain	a	large	number	of	issues,	as
well	as	one	easily	fixable	category	in	which	we	contributed	towards	decreasing	the	technical	debt.

The	first	of	these	categories	is	collectively	named	Cognitive	Complexity,	which	tests	how	many	control	flow	statements	are	used	within
a	method	and	how	deep	these	statements	are	nested.	A	cognitive	complexity	score	is	calculated	with	these	criteria	and	compared	to	a
default	maximum.	SonarQube	flags	573	occurrences	of	these,	of	which	an	example	from		MultiGetRequest#parseDocuments		is	displayed	in
the	image	below.	Some	of	them	might	have	a	valid	reason	to	exist,	but	most	of	them	should	be	refactored	into	separate	methods	to	reduce
technical	debt.

ElasticSearch

75

https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/action/get/MultiGetRequest.java#L399

The	second	category	deals	with	superfluous	code.	SonarQube	finds	117	occurrences	of	unused	method	parameters	and	237	occurrences
of	unused	import	statements.	Keeping	code	clean	is	important,	as	this	leads	to	more	readable	code,	which	leads	to	an	easier	development
process.	Cleaning	up	code	like	this	is	one	of	the	simpler	tasks	that	can	be	found	in	this	project,	but	this	still	requires	some	more	work	to
be	done.

The	final	category	deals	with	issues	in		equals(Object	other)		methods:	these	should	test	the	argument's	type	before	casting	it.	Also,
once	cast,	some	of	these		equals		methods	actually	compare	identical	expressions.	For	example,	if	an	object	has	a	field		foo	,	then	the
method	would	compare	the	equality	this	field	using		Object.equals(foo,	foo)		instead	of		Object.equals(foo,	other.foo)	.	Both	of
these	issues	are	easily	fixable,	but	can	cause	serious	bugs,	so	we	decided	to	fix	all	instances	of	both	these	violations	in	a	pull	request.

SOLID	violations

We	also	identify	two	examples	of	SOLID	violations	in	the	Elasticsearch	codebase,	for	which	we	propose	a	solution	if	deemed	possible.
For	conciseness'	sake,	we	do	not	cover	the	Liskov	Substitution,	Interface	Segregation	and	Dependency	Inversion	principles	here.

Single	Responsibility	Principle

First	off,	the	Single	Responsibility	Principle	is	violated	in		org.elasticsearch.index.shard.IndexShard	.	This	class	represents	a	shard,	as
explained	in	the	information	view.	To	our	knowledge,	the	class	is	responsible	for	at	least	the	following:

ElasticSearch

76

https://github.com/elastic/elasticsearch/pull/29348
http://confreaks.tv/videos/goruco2009-solid-object-oriented-design
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/index/shard/IndexShard.java

Creating,	storing,	updating	and	searching	through	a	single	index	inside	the	shard.
Recovery	of	the	shard	and	its	index	after	a	restart.
Read/write	operations	between	heap	and	file	system	concerned	with	indices.
Error	recovery	when	some	operation	on	the	index	fails.

This	class	is	imported	into	other	classes	97	times,	spans	over	2600	lines	of	code,	and	its	constructor	uses	18	parameters.	Given	that	it
carries	many	responsibilities,	is	coupled	to	a	major	part	of	the	codebase	and	is	so	large,	we	also	consider	this	class	a	prime	example	of
the	God-Object	anti-pattern.

As	such,	modifying	this	class	to	adhere	to	the	Single	Responsibility	Principle	becomes	complex,	requiring	modifications	to	almost	the
entire	codebase,	making	such	a	modification	almost	unattainable.

Open-Closed	Principle

Secondly,	we	identify	a	violation	of	the	Open-Closed	Principle	concerning		org.elasticsearch.action.BulkRequest		and
	org.elasticsearch.action.DocWriteRequest	.	Specifically,	the		BulkRequest#add(DocWriteRequest,	Object)		method	(shown	in	the	figure
below)	must	be	expanded	if	ever	a	new	type	of	request	is	to	be	supported	by		BulkRequest	,	which	implies	that		BulkRequest		is	not
closed	for	modification.

A	solution	would	be	to	move	this	functionality	into	the	respective		DocWriteRequest		child	classes	by	adding	an		addTo(BulkRequest,
...)		method	to	the		DocWriteRequest		interface,	as	shown	in	the	figure	below.

ElasticSearch

77

https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/action/bulk/BulkRequest.java
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/action/DocWriteRequest.java
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/action/bulk/BulkRequest.java#L125

This	way,	the		BulkRequest		class	does	not	have	to	be	extended	whenever		BulkRequest		needs	to	support	a	type	of	request.	The
functionality	is	simply	pushed	to	the	new	child	class	(open	for	extension),	while	the		BulkRequest		class	remains	the	same	(closed	for
modification).

Instrumentation

Lack	of	instrumentation	is	also	a	form	of	technical	debt.	We	found	that	Elasticsearch	does	miss	some	important	static	code	analysis
tools,	such	as	PMD	and	FindBugs,	and	does	not	make	optimal	use	of	CheckStyle.

Elasticsearch	uses	Gradle	as	their	build	system	and	allows	users	to	execute	the	static	code	checks	using		./gradlew	precommit	.	They
employ	CheckStyle	to	verify	code	style	conventions,	although	their	CheckStyle	configuration	is	not	very	extensive.	They	only	check	a
small	number	of	rules,	such	as	avoiding	star	imports,	naming	files	in	compliance	with	the	classes	they	contain,	and	avoiding	empty
Javadoc	comments.	However,	they	do	not	check	if	there	are	any	Javadoc	comments	at	all,	nor	do	they	check	method	length,	class	length,
method	and	class	complexity,	or	proper	indentation.	What	is	even	more	interesting	is	their	check	for	line	length:	their	CheckStyle
configuration	defines	a	maximum	line	length	of	140	characters,	but	the	colocated	CheckStyle	suppressions	file	suppresses	this	check	for
every	file	that	does	not	pass	it	until	these	files	start	to	pass	the	check,	as	stated	in	the	documentation.

Javadoc

Looking	through	the	codebase,	we	noticed	that	many	methods	and	classes	are	missing	Javadoc.	We	happened	to	find	this	issue	in	which
a	community	member	indicates	the	same.	An	Elasticsearch	member	responds	by	saying	that	he	is	happy	with	the	current	situation
regarding	Javadoc,	also	seeing	as	they	had	"almost	no	Javadoc	4	years	ago".	He	makes	it	clear	that	they	have	recently	started	being
"much	more	diligent	about	adding	Javadocs	to	public	methods	whenever	we	add	them	or	touch	existing	ones,	also	enforcing	that	habit	as
part	of	the	review	process".	While	this	does	show	that	there	are	some	efforts	being	made	to	reduce	Javadoc	debt,	it	also	becomes	clear
that	the	main	focus	is	to	keep	the	number	of	uncommented	methods	as	small	as	possible	in	the	public	API,	indicating	that	the
Elasticsearch	developers	focus	on	the	user	experience	first	and	on	the	developer	experience	second.

Testing	debt

Especially	for	large	and	distributed	projects	such	as	Elasticsearch,	it	is	important	that	software	is	properly	tested.	Weak	tests	or	low
test	coverage	are	therefore	also	part	of	the	technical	debt	of	a	system.	This	section	identifies	a	part	of	the	testing	debt	present	in
Elasticsearch.	First,	we	look	at	the	testing	procedures;	how	to	run	the	tests,	as	well	as	how	to	write	them.	Then,	we	analyze	the	test
coverage,	or	rather	the	lack	thereof.

Testing	procedures

The	Elasticsearch	repository	contains	a	TESTING.asciidoc	file	that	explains	how	to	use	Gradle	to	compile	Elasticsearch	and	run	its
tests.

Unless	one	is	specified,	a	randomized	testing	seed	is	generated	each	time	the	tests	are	run.	This	enables	randomized	testing,	a	black-box
testing	technique	where	test	inputs	are	randomly	generated,	so	over	time	a	large	number	of	possible	test	inputs,	if	not	all,	are	fed	to	the
class	or	method	under	test.	This	may	cause	flaky	tests,	but	mainly	reduces	the	chance	of	bugs	being	overlooked	due	to	a	developer's
misplaced	trust	in	the	code	and	is	easy	to	set	up.

Elasticsearch	also	contains	a	testing	framework	used	throughout	their	tests,	holding	a	number	of	abstract	test	case	classes	as	well	as	a
large	number	of	utility	classes	that	aid	in	creating	mocks	of	certain	parts	of	Elasticsearch.	Such	a	testing	framework	provides	a	good	basis
for	creating	concrete	test	cases,	creates	consistency	between	testing	environments	for	different	tests	and	minimizes	code	duplication
across	test	suites.

The	basis	for	all	Elasticsearch	test	cases	is	the		ESTestCase		class,	which	contains	a	number	of	methods	for	initializing	and	cleaning	up
test	cases,	some	convenience	methods	for	generating	random	inputs,	custom	assertions,	and	a	host	of	other	utility	methods.	The	testing
framework	also	contains	other	such		TestCase		classes	extending	from		ESTestCase	,	each	providing	additional	setup	and	cleanup,	or
more	specific	convenience	methods	and	custom	assertions	to	be	used	in	specific	tests.	Elasticsearch	even	has	tests	for	the	more	complex
parts	of	their	testing	framework.

ElasticSearch

78

https://github.com/elastic/elasticsearch/blob/master/buildSrc/src/main/resources/checkstyle.xml
https://github.com/elastic/elasticsearch/blob/master/buildSrc/src/main/resources/checkstyle_suppressions.xml
https://github.com/elastic/elasticsearch/issues/22705
https://github.com/elastic/elasticsearch/blob/master/TESTING.asciidoc
https://github.com/elastic/elasticsearch/blob/master/test/framework/src/main/java/org/elasticsearch/test/ESTestCase.java

Test	coverage	generation

The	testing	documentation	stated	until	recently	that	a	test	coverage	report	could	be	generated	using		mvn	-Dtests.coverage	test
jacoco:report	.	However,	this	is	a	Maven	command,	while	Elasticsearch	migrated	to	Gradle	in	October	2015.	As	this	documentation
was	not	updated	since,	this	may	indicate	that	the	developers	do	not	pay	much	(if	any)	attention	to	their	test	coverage.

We	notified	them	of	this,	to	which	they	replied	that	JaCoCo	is	not	included	in	their	build	configuration.	Applying	JaCoCo	is	usually	as
simple	as	adding		project.pluginManager.apply('jacoco')		to	the	building	code,	but	this	did	not	work.	Upon	further	investigation,	we
found	that	the	Elasticsearch	build	system	replaces	each	Gradle		Test		task	with	their	own		RandomizedTestingTask		in	order	to	enable
randomized	testing.	While	this	class	should	extend	Gradle's		Test		task	to	be	recognized	as	a	testing-related	task,	it	instead	extends	the
	DefaultTask		class.	Seeing	as	JaCoCo	binds	to	instances	of		Test	,	JaCoCo	is	unable	to	find	any	tasks	to	bind	to.	An	Elasticsearch
developer	did	inform	us	that	he	originally	wanted		RandomizedTestingTask		to	extend		Test	,	but	that	there	were	many	issues	with	it.
After	more	experimenting,	we	concluded	that		RandomizedTestingTask		would	need	a	significant	rewrite	by	someone	with	sufficient
experience	so	as	to	keep	the	required	existing	functionalities,	though	we	did	update	the	outdated	documentation.

Having	a	build	configuration	unable	to	support	testing	instrumentation	such	as	JaCoCo	is	a	major	technical	debt,	as	it	also	causes
problems	upon	integrating	other	instrumentation,	such	as	SonarQube	or	mutation	testing	tools.

7.	Conclusion

This	chapter	provided	an	overview	of	the	software	architecture	of	Elasticsearch.	We	identified	different	stakeholders,	and	used	several
architectural	viewpoints	to	gain	insight	into	the	system.	We	also	identified	and	analyzed	the	technical	debt	in	the	Elasticsearch	codebase,
both	from	a	code	quality	and	testing	perspective.

We	can	draw	various	interesting	conclusions.	First,	we	believe	that	the	different	modules	in	the	Elasticsearch	codebase	are	well
organized.	Each	package	has	a	clear	responsibility,	and	the	extraction	of	reusable	modules	provides	a	good	separation	between	core	and
additional	functionality.

The	Elasticsearch	team	also	has	a	good	focus	on	performance	and	scalability.	There	is	an	extensive	benchmark	suite,	which	is	also	used	in
GitHub	discussions	when	making	merge	decisions.

However,	there	are	also	some	issues	present	in	the	system.	There	is	a	substantial	amount	of	technical	debt	present	in	the	system.
Furthermore,	there	are	some	fundamental	issues	with	the	build	system,	which	prevents	generating	test	coverage	reports.	The	main	focus
of	the	core	developers	lies	on	user	experience,	rather	than	developer	experience.

References

1.	 Rozanski,	N.,	&	Woods,	E.	(2012).	Software	Systems	Architecture	(2nd	ed.).	Pearson	Education.

ElasticSearch

79

https://github.com/elastic/elasticsearch/issues/13930
https://github.com/elastic/elasticsearch/issues/28867
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html
https://github.com/elastic/elasticsearch/blob/master/buildSrc/src/main/groovy/com/carrotsearch/gradle/junit4/RandomizedTestingTask.groovy
https://docs.gradle.org/current/javadoc/org/gradle/api/DefaultTask.html
https://github.com/gradle/gradle/blob/master/subprojects/jacoco/src/main/java/org/gradle/testing/jacoco/plugins/JacocoPlugin.java#L149
https://github.com/elastic/elasticsearch/issues/28867#issuecomment-372842967
https://github.com/elastic/elasticsearch/pull/29255

Electron	|	Build	cross-platform	desktop	apps	with	JavaScript,
HTML,	and	CSS

By	Shivam	Miglani	and	Sharad	Shriram,	Delft	University	of	Technology.

Abstract

Electron	is	an	open-source	software	framework	that	was	initially	developed	by	Cheng	Zhao,	an	engineer	at	GitHub	for	building	native
desktop	GUI	applications	with	web	technologies	like	JavaScript,	HTML,	and	CSS[1].	This	project	is	developed	using	node.js	runtime
as	back-end	and	chromium	as	the	front-end.	Several	popular	and	widely-used	open	source	projects	like	Atom,	Slack,	Skype,	VS	Code,
Github	Desktop,	and	about	500	more	native	desktop	applications	are	built	on	Electron.	This	chapter	summarizes	the	architecture	of
Electron	through	stakeholders	involved	and	their	interests,	different	views	ranging	from	development	to	deployment,	and	perspectives
such	as	evolution	and	security.

Table	of	contents

1.	 What	is	Electron?
2.	 Stakeholder	Analysis
3.	 Architecture

3.1	Views
3.1.1.	Context	View
3.1.2.	Development	View
3.1.3.	Deployment	View

3.2.	Architectural	Perspectives
3.2.1.	The	Evolution	Perspective	and	the	related	Technical	Debt
3.2.2.	Security	Perspective

4.	 Conclusions
5.	 References

1.	What	is	Electron?

Developing	desktop	GUI	applications	is	laborious	and	it	requires	Operating	System	(OS)	specific	expertise,	which	leads	to	additional
cost	and	time	overhead	along	with	an	increase	in	the	technical	complexity	of	the	project.	For	such	projects,	maintaining	the	quality,
functionality,	and	security	across	multiple	operating	systems	is	a	difficult	task.	Electron	provides	a	solution	to	this	problem	by
providing	a	framework	for	developing	cross-platform	native	desktop	applications	using	web	technologies	like	JavaScript,	HTML	and
CSS.	This	means	that	a	skilled	web	developer	can	develop	such	cross-platform	applications	without	the	need	of	breadth	of	OS-specific
skills.

Electron

80

https://github.com/Shivam-Miglani
https://github.com/sharadshriram
https://github.com/zcbenz
https://github.com/nodejs/node
https://github.com/chromium/chromium
https://github.com/atom/atom
https://electronjs.org/apps/slack
https://electronjs.org/apps/skype
https://github.com/Microsoft/vscode
https://desktop.github.com/
https://electronjs.org/apps

The	applications	built	from	Electron	consist	of	two	types	of	processes:	the	main	process	and	multiple	renderer	processes	which	follow
a	master-slave	pattern.	The	main	process	of	the	application	is	the	master	and	the	multiple	renderer	processes	are	the	slaves	which
communicate	using	Inter-Process	Communication	(IPC).	Fig.	1	shows	that	this	is	analogous	to	a	Chromium	browser	where	there	is	one
main	window	and	multiple	tabs	(renderer	processes).

Figure	1:	One	Main	process	with	Multiple	renderer	processes.	This	is	analogous	to	a	window	of	Chromium	browser	with	multiple	tabs

Specifically,	Electron	looks	into	the	start	entry	in	the		package.json		manifest	included	in	the	project	to	determine	the	entry	point	of	the
application,	which	runs	as	the	main	process.

Main	process:	The	main	process	is	responsible	for	responding	to	application	lifecycle	events	such	as	starting	up,	quitting,
preparing	to	quit,	going	to	the	background,	coming	to	the	foreground,	and	more.	The	main	process	is	also	responsible	for
communicating	to	native	operating	system	APIs.	For	example,	to	display	a	dialog	to	open	or	save	a	file.	[2]	The	main	process	can
also	create	and	destroy	renderer	processes	using	Electron’s		BrowserWindow		module.

Renderer	processes:	Renderer	processes	can	load	web	pages	to	display	a	GUI.	Each	process	takes	advantage	of	Chromium’s	multi-
process	architecture	and	runs	on	its	own	thread.	Unlike	normal	web	pages,	there	is	access	to	all	the	Node	APIs	in	the	renderer
processes,	allowing	developers	to	leverage	native	modules	and	lower-level	system	interactions.	[2]

At	the	time	of	writing,	the	stable	version	of	Electron	is	1.8.4	and	all	our	analysis	are	mainly	focused	on	the		master		branch	of	core
Electron's	repository.	Before	doing	in-depth	architectural	analysis	let's	look	at	the	people	and	organizations	involved	in	Electron's
development.

2.	Stakeholder	Analysis

Stakeholder	Analysis	describes	the	people	involved	in	Electron	and	their	roles.	We	have	categorized	them	according	to	the	eleven	types
proposed	by	Rozanski	and	Woods[3].

Electron

81

http://github.com/electron/electron

Type Stakeholders Description

Developers

Core
developers,
Committer
team	and
contributors

Core	developers	like	@zcbenz,	@zeke	and	others	set	policies	and	are	the	general
managers.	Most	of	the	core	developers	work	at	Github	(which	sponsors	Electron).
Committers	like	@deepak1556	and	open-source	active	developers	like	Alexey	Kuzmin
from	Microsoft,	Felix	Rieseberg	from	Slack	help	the	core	developers	with	pull	requests.

Acquirers
Core
Developers	at
Github

The	core	developers	and	(some)	senior	contributors	from	prominent	users	(Alexey
Kuzmin	from	Microsoft	and	Felix	Rieseberg	from	Slack)	decide	the	future	roadmap	for
Electron.

Assessors Developers Developers	of	Electron	as	well	as	from	the	user	organizations	using	Electron	assess	the
conformance	to	standards	and	legal	regulations	themselves.

Communicators Teachers Electron	is	taught	by	teachers	in	online	environments	such	as	YouTube	Videos,	Tutorials
and	Blogs	on	the	web.

Maintainers
Core
developers,
Contributors

The	overall	evolution	is	maintained	by	the	core	developers,	and	maintenance	tasks	by
both	core	developers	and	contributors.

Production
Engineers

John
Kleinschmidt
and	team

Manages	the	production	releases	and	runs	tests	on	new	builds.	He	also	manages	the	code
for	Circle-CI	integration	tests.

Suppliers Github Github	sponsors	Electron	and	is	a	supplier	for	Electron	as	it	provides	software	and
infrastructure	for	Electron	to	run.

Support	Staff Developers,
Teachers

Support	for	development	and	contributions	for	Electron	is	done	through	mailing	lists,
Slack,	Discuss	Forums	and	platforms	such	as	StackOverflow.

System
Administrators

John
Kleinschmidt
and	Core
developers

They	control	the	evolution	and	development	of	the	project.	They	also	manages	the	code
for	integration	tests	through	Circle-CI,	Travis-CI,	AppVeyor	etc.

Testers
Developers,
Committer
team

They	are	responsible	for	the	testing	of	new	commits	and	builds	through	explicit	unit	and
application	tests.

Users

Developers
and
organisations
using	Electron

Electron	is	used	in	Skype,	Slack,	WhatsApp,	Atom	close	to	7400	independent	developer
forks.

Going	beyond	Rozanski	and	Woods	classification:

The	following	stakeholders	identified	are	additional	stakeholders	who	do	not	match	the	groups	in	Rozanski	and	Woods[3].

Other	repositories	and	products	in	Electron	Umbrella	project	like	Spectron	the	testing	framework,	i18n	the	home	for
documentation	and	its	translations,	electronjs.org	the	website,	libchromiumcontent	the	content-rendering	library	of	Chromium,	node
the	backend	component,	devtron	the	chrome	development	tools	and	around	40	other	repositories	complete	Electron	as	a
framework.

End-Users	are	normal	users	who	experience	a	native	desktop	app	built	on	Electron	and	it	indirectly	influences	Electron's
development.

Bloggers	are	unambiguous	and	reliable	sources	of	information	who	use	and	help	new	developers	to	use	Electron.

Translators	contribute	to	translations	for	Electron's	documentation	to	different	languages	for	its	website	and	there	are	close	to	300
translators	(including	us)	who	have	contributed	for	this	purpose	till	date.

Quantifying	the	stakeholder's	involvement:	Power	vs	Interest	Grid

Electron

82

https://github.com/zcbenz
https://github.com/zeke
https://github.com/deepak1556
https://github.com/alexeykuzmin
https://github.com/felixrieseberg
https://github.com/alexeykuzmin
https://github.com/felixrieseberg
https://www.youtube.com/watch?v=tqBi_Tou6wQ
https://www.tutorialspoint.com/electron/index.htm
https://medium.com/developers-writing/building-a-desktop-application-with-electron-204203eeb658
https://github.com/jkleinsc
http://atom-slack.herokuapp.com/
https://discuss.atom.io/c/electron
https://github.com/jkleinsc
https://electronjs.org/apps/skype
https://electronjs.org/apps/slack
https://electronjs.org/apps/whatsapp
https://electronjs.org/apps/atom
https://github.com/electron/electron/network/members
https://electronjs.org

Mendelow's	power/interest	grid[5]	is	used	to	classify	the	groups	of	stakeholders	necessary	to	be	managed	closely.	Figure	2	shows	that
the	core	developers,	committer	team,	active	contributors	from	prominent	products	like	Skype,	Slack,	etc.	using	Electron	are	stakeholders
who	have	both	high	interest	and	power.	These	are	the	people	that	actively	contribute	to	and	maintain	the	project	and	need	to	be	managed
closely.	Teachers	and	projects	that	use	Electron	without	active	contributions	show	high	interest	but	have	low	power	and	must	be
informed	well.	Electron’s	dependencies	have	low	interest	and	low	power.	The	power	of	Chromium	is	slightly	higher	because	it	influences
Electron's	future	developement	as	explained	in	the	development	viewpoint.

Figure	2:	Power	Interest	Grid	of	Electron	where	the	interest	of	the	stakeholder	is	shown	on	the	horizontal	axis	and	the	power	of	the
stakeholder	is	shown	on	the	vertical	axis.

3.	Architecture
In	this	section,	we	describe	the	architecture	of	Electron	based	upon	various	(1)	views	and	(2)	perspectives.	According	to	Rozanski	and
Woods	[3],	a	view	is	a	representation	of	one	or	more	structural	aspects	of	an	architecture	that	illustrates	how	the	architecture	addresses
one	or	more	concerns	held	by	some	stakeholder	and	an	architectural	perspective	is	a	collection	of	activities,	tactics,	and	guidelines	that
are	used	to	ensure	that	a	system	exhibits	a	particular	set	of	related	quality	properties	that	require	consideration	across	a	number	of	the
system’s	architectural	views.

3.1	Views
In	this	section,	we	describe	the	context,	development	and	deployment	viewpoints	of	Electron.

3.1.1	Context	Viewpoint

Electron

83

The	context	view	describes	the	scope	and	responsibilities,	relationships,	dependencies	and	interactions	around	Electron	[3],	as	shown	in
Figure	3.

Figure	3:	Context	View	of	Electron	showcasing	relationships	with	its	environment

Some	prominent	findings	from	the	context	view	diagram	are:

Integrators	are	the	active	core	developers	from	Github.	The	are	the	architects	of	the	Electron	and	their	merging	their	challenges	and
merging	strategies	are	explained	in	the	Evolution	Perspective

Users	are	organizations	and	developers	of	cross-platform	desktop	applications	using	Electron.	The	communicators	are	the	link
between	users	and	Electron's	developer	community.

Testing	Frameworks	and	Continuous	Integration:	Spectron	is	the	testing	framework	for	Electron	apps.	Travis	and	Jenkins	are
the	CI	systems	for	testing	new	application	build	using	the	virtual	display	driver	for	Chromium.

GitHub	sponsors	the	entire	project	and	provides	infrastructure	for	version	control	using	git	and	issue	tracking	with	Github	issue
tracker.

Target	Platforms:	The	Electron	apps	are	built	on/for	MacOS,	Windows	and	Linux	platforms.	The	Packaging	tools	allow	for
automatic	packaging	of	Electron	apps	for	these	platforms.

Add-ons	like	Native	Node	modules,	Pepper	Flash	plugin	etc.	are	supported	by	Electron	and	enhance	the	features	of	developed
applications.

3.1.2	Development	Viewpoint

Electron	combines	Chromium's	single	thread	multi-process	model[18]	and	Node's	single	thread	event-loop[13]	model	into	single
runtime.	As	a	consequence,	Electron	design	patterns	resembles	its	two	primary	dependencies	namely	Node.js	and	Chromium	Webkit.
Electron	includes	customized	forked	embeddings	of	Chromium	and	Node	modules	to	keep	its	size	small.	Electron	application's	design
pattern	is	similar	to	the	master-slave	pattern	as	discussed	in	section	1.

The	layered	architecture	shown	in	Figure	4	gives	a	very	high-level	overview	of	Electron	and	applications	built	using	Electron.	In	this
section,	the	development	view	of	Electron's	core	is	summarized	using	module	organization	and	dependencies,	common	design	models
and	codeline	models

Electron

84

https://github.com/electron/spectron
https://github.com/electron/electron/tree/master/chromium_src
https://github.com/electron/node

Figure	4:	Layered	Architecture	of	Electron

Module	Organization

Apart	from	reducing	size,	the	customized	forked	embeddings	of	Chromium	and	Node	removes	the	need	for	external	interfacing
dependencies,	and	improves	speed	and	performance	through	preconfiguration	of	dependencies.	The	module	organization	in	Figure	5
demonstrates	high	cohesion	through	Electron	Core	block	and	low	coupling	as	demonstrated	through	custom	embeddings	of	the
dependencies	in	Electron	extensions,	which	is	an	example	of	good	software	design.

Figure	5:	High-level	module	organization	of		electron/electron		repository	and	the	other	45	repositories	where	the	links	to	external
dependencies	are	shown	in	color	blue	whereas	internal	dependencies	in	Electron's	core	are	shown	in	green.

Now	we	explain	the	3	blocks	in	the	diagram:

V8	engine:	Electron,	Node	and	Chromium	use	V8,	an	open-source	engine	which	converts	JavaScript	directly	into	native	machine
code	with	major	optimizations.	The	V8	engine	optimizes	the	code	at	runtime	based	on	code	heuristics	and	employing	different
optimization	strategies	like	inline	caching.

Electron

85

https://github.com/electron/electron
https://github.com/electron/
https://github.com/electron/node
https://github.com/electron/ibchromiumcontent
https://developers.google.com/v8

Electron	extensions:

Electron	embeds	different	Chromium	modules	like		libchromiumcontent	,	the	content-rendering	module.	Other	examples	are
	native-mate		which	makes	writing	JS	bindings	easy,	and	automatically	converts	V8	types	to	C++	types,	and		pdf-viewer		is
a	fork	of	Chrome's	pdf	extension	to	work	as		webui		page,	etc.

The	custom	embedding	of	Node	runtime	environment	handles	the	interactions	between	with	the	native	OS	and	various	add-on
node	packages.	Electron	also	uses	some	node	packages	for	internal	use	like		node-minidump		is	used	to	process	minidump	files,
and	the	full	list	can	be	seen	in	[10].

All	of	the	Electron's	documentation	and	translations	are	collected	in	i18n	repository	as	a	large	JSON	object	in	every	language.	The
JSON	object	from	i18n	repository	is	used	as	content	in	the	electronjs.org	website.

Native	OS	installers	are	modules	developed	for	different	native	operating	systems	on	which	Electron	can	be	installed	like		windows-
installer		for	the	Windows	operating	system.	Electron	apps	can	be	packaged	to		Asar		format	which	is	a	tar	like	archiving	format
providing	advantages	of	mitigating	issues	like	long	file	names	in	Windows,	speeding	up		require		and	concealing	source	code	from
cursory	inspection.[21].	Electron	supports	native	Node.js	module	injection	using		electron-rebuild		which	rebuilds	native	them
against	the	currently	installed	Electron's	version.

Electron's	Core:

Framework	Modules	and	APIs	for	applications:	In	applications,	Electron	APIs	can	be	used	for	both	the	main	process	and
renderer	process.	Node	APIs	are	available	globally,	while	only	DOM/Browser	APIs	are	available	in	a	renderer.	Based	on	Figure
6	and	the	API	documentation	[11],	the	following	is	an	overview	of	some	common	APIs	used:

Main	process:
1.	 	app		control	application's	event	lifecycle.
2.	 	ipcMain		for	asynchronous	communication	from	the	main	process	to	renderer	processes.
3.	 	autoUpdater		enables	automatic	updates	for	apps
4.	 	session		maanage	browser	sessions,	cookies,	cache,	proxy	settings,	etc.

Renderer	process
1.	 	ipcRenderer		for	asynchronous	communication	from	a	renderer	process	to	the	main	process.
2.	 	remote		remote	invocation	of	methods	in	the	main	process.
3.	 	webFrame		customises	the	rendering	for	the	current	web	page

Common	APIs
1.	 	crashReporter		submits	crash	reports	to	a	remote	server.
2.	 	clipboard		performs	copy	and	paste	operations	on	the	system	clipboard.

Electron

86

https://github.com/electron/libchromiumcontent
https://github.com/electron/native-mate
https://github.com/electron/pdf-viewer
https://github.com/electron/node
https://github.com/electron/node-minidump
https://github.com/electron/i18n
https://github.com/electron/windows-installer
https://github.com/electron/asar
https://github.com/electron/electron-rebuild
https://electronjs.org/docs/api
https://electronjs.org/docs/api/app
https://electronjs.org/docs/api/ipc-main
https://electronjs.org/docs/api/auto-updater
https://electronjs.org/docs/api/session
https://electronjs.org/docs/api/ipc-renderer
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/web-frame
https://electronjs.org/docs/api/crash-reporter
https://electronjs.org/docs/api/clipboard

Figure	6:	Venn	Diagram	of	Electron	module	APIs	to	be	used	by	developed	application's	main	and	renderer	process.	The	universal	set	is
other	node.js	module	APIs	which	are	available	globally.

Script,spec	and	tools	modules:		script		contains	scripts	used	for	development	purposes	like	building,	packaging	and	testing.		spec	
contains	automatic	tests	for	the	framework	APIs	(main,	renderer	and	common),	packaging	formats	(asar),	version	checks	etc.
	tools		contains	non	user	centric	helper	functions.	The	framework	(API)	modules	use		tools		as	helper	functions	and		spec		for
creating	automatic	tests.

Common	Design	Models

Commonality	across	the	different	versions	of	Electron	is	done	by	defining	a	set	of	strict	design	constraints	that	are	followed	in	Electron's
development.

Common	Processing:	Based	on	[3],	the	common	processing	models	for	Electron	combines	the	processing	models	used	in	the
framework	architecture	and	the	application	architecture

Termination	and	restart	of	operation	on	the	framework	during	application	development	is	with	the		main	process	.	For
applications,	the	app	API	that	controls	the	application's	event	lifecycle	is	responsible	for	the	termination	and	restart
operations.

Message	Logging	-		crashpad		is	a	Chromium	project	used	for	capturing,	storing	and	transmitting	postmortem	crash	reports
from	a	client	to	an	upstream	collection	server	for	diagnostic	purposes[14,	15].	For	applications,	communication	between	the
main	and	renderer	processes	are	done	as	IPC	messages	using	the		ipcMain		and		ipcRenderer		API	modules.

Internationalization	-	Electron's	developer	community	is	worldwide	and	thus	Electron's	documentation	is	translated	into
different	languages	under	the	Electron-i18n	project.	Moreover,	to	facilitate	better	contribution	and	maintain	a	supportive,
active	community	the	conduct	of	conduct	states,

In	the	interest	of	fostering	an	open	and	welcoming	environment,	we	as	contributors	and	maintainers	pledge	to	making
participation	in	our	project	and	our	community	a	harassment-free	experience	for	everyone,	regardless	of	age,	body	size,
disability,	ethnicity,	gender	identity	and	expression,	level	of	experience,	nationality,	personal	appearance,	race,	religion,
or	sexual	identity	and	orientation.

Electron

87

https://electronjs.org/docs/api/app
https://github.com/electron/crashpad
https://dev.chromium.org/Home
https://electronjs.org/docs/api/ipc-main
https://electronjs.org/docs/api/ipc-renderer
https://electronjs.org/languages
https://github.com/electron/i18n
https://github.com/electron/electron/blob/master/CODE_OF_CONDUCT.md

Internal	and	external	interfacing	in	Electron	is	applicable	to	both	the	framework	and	application	APIs.	In	the	framework,	the
different	code	modules	and	method	invocations	between	the	framework	are	internal	interfacings	whereas	the	Node	and
Chromium	modules	used	the	account	as	external	interfacing.	In	applications,	the	API	bindings	between	the	main	process	and
renderer	processes	are	internal	whereas	additional	Node	packages	that	are	used	on	applications	as	add-ons	are	the	external
interfacing.

Standardization	of	Design:	Electron's	development	guide	documents	the	steps	for	issue	creation,	contributing	to	issues,	making	pull
requests	in	accordance	to	the	conduct	of	conduct	which	is	adhered	by	every	developer	and	contributor.	This	section	briefly
summarizes	the	design	standards	laid	out	for	Electron.

Issues	is	the	first	stop	for	either	a	developer,	contributor	or	a	user	to	get	technical	assistance	with	build-specific	issues	like
compilation	errors,	display	errors,	system	crashes,	etc.	The	issues	found	on	the	repository	of	Electron,	are	generally	resolved
within	3-7	days	[6].

Pull	Requests	facilitate	the	contribution	to	addition	of	new	features,	modification	of	existing	features	or	bug	fixes	for	a
particular	feature	of	Electron.	There	is	an	official	documentation	for	pull	requests	which	standardizes	the	steps	to	be	followed
for	submitting	a	new	pull	request	to	Electron.	Every	pull	request	is	subjected	to	a	Continuous	Integration	(CI)	check	and	the
merge	pattern	involves	thorough	code	review	and	discussion	with	contributors.

Coding	Styles	standardizes	formatting	the	source	code	making	it	easy	to	read	and	understand	by	the	contributor	community.

1.	 Electron	is	mostly	written	in	C++	with	some	flavours	of	Objective-C	codes	which	is	styled	based	on	Chromium's	C++
Style	Guide.	Electron	uses	the		clang-format		for	formatting	C++	source	code.

2.	 Electron	uses	Python	version	2.7	as	per	the	documentation	for	generating	projects,	follows	the	Chromium	Coding	Style
and	uses		script/cpplint.py		script	to	check	code	formatting	to	conformance.

3.	 Electron	is	well	documented	and	is	written	entirely	on	Markdown	with	the	Github	style.	A	node	package	called
	electron-docs-linter		developed	to	ensure	that	documentation	changes	are	formatted	correctly	and	can	be	used	as		npm
run	lint-docs	

4.	 JavaScript	engines	used	in	Electron	are	written	in	the	standard	style	with	the	newer	ES6/ES2015	syntax	where
appropriate.

5.	 Naming	Conventions	for	files	and	variables	in	the	source	code	is	a	good	design	practice	which	makes	the	code	base
consistent	and	stable	for	continuous	development.	In	Electron,	file	names	should	be	concatenated	with		-		instead	of		_	
and	naming	variables	in	code	is	similar	to	Node.js	as	Electron	APIs	uses	the	same	capitalization	scheme.

Standardization	of	Testing:	Testing	in	Electron	can	be	done	in	the	framework	and	application	levels.	In	this	section,	the	tools	used	in
Electron	for	testing	is	discussed,

Framework	Testing	in	Electron	is	a	continuous	testing	framework	to	maintain	stable	builds[16].	Electron	uses	Jenkins	for
continuous	integration	tests	on	builds	in	Mac	and	Linux,	AppVeyor[16]	for	Windows,	and	Circle	CI	for	pull	requests.

Application	Testing	-	Spectron	is	a	testing	framework	built	upon	WebdriverIO	with	helpers	to	access	Electron	APIs	in	tests
and	bundles	ChromeDriver.	WebDriverJs	and	WebdriverIO	provide	Node	packages	for	testing	with	web	driver[18].	Devtron,	is
a	Electron	Dev	Tool	developed	on	the	Chrome	Developer	Tools	for	developers	to	inspect,	monitor,	and	debug	their	Electron
apps	[19].	Devtron	can	be	used	to	visualize	dependency	graphs,	inspect	the	events	and	event	listeners	registered	on	the
Electron	app,	monitor	the	IPC	messages	between	the	main	process	and	renderer	process	and	check	the	application	for
consistent	code	styles	or	linting.

Codeline	models

According	to	Rozanski	and	Woods[3],	the	codeline	models	describe	the	source	code	structure,	release	process,	configuration
management,	build	and	testing	approaches.

Source	Code	Structure:	The	source	code	organization	structure	of	Electron	is	compliant	with	Chromium's	Multi-Process	model
[22].	For	example,		atom/		(C++	source	code)	and		lib/	(Javascript	source	code)	contains	modules		browser/	,		renderer/		and
	common/		which	contain	submodules	for	main	process,	renderer	process	and	main	and	renderers	(both)	respectively.	All	the	scripts
are	maintained		script		folder.	These	are	examples	of	classic	Chromium	style	coding.	The		third_party		dependencies	of	Electron

Electron

88

https://electronjs.org/docs/api
https://electronjs.org/docs/development/
https://github.com/electron/electron/blob/master/CODE_OF_CONDUCT.md
https://github.com/electron/electron/issues
https://github.com/electron/electron/issues
https://github.com/electron/electron/
https://github.com/electron/electron/pulls
https://electronjs.org/docs/development/pull-requests
https://electronjs.org/docs/development/pull-requests#continuous-integration-testing
https://electronjs.org/docs/development/coding-style
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md
https://electronjs.org/docs/development/clang-format
https://github.com/electron/gyp
https://www.chromium.org/developers/coding-style
https://www.npmjs.com/package/electron-docs-linter
https://npm.im/standard
https://mac-ci.electronjs.org/blue/organizations/jenkins/Electron%20org%2Felectron/activity/?branch=master
https://electronjs.org/docs/tutorial/testing-on-headless-ci
https://electronjs.org/spectron
https://electronjs.org/devtron
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://dev.chromium.org/developers/design-documents/multi-process-architecture

such	as	Node	and	Chromium's		libchromiumcontent		are	found	under	the		/vendor		sub-directory	to	prevent	a	naming	conflict	with
Chromium's	Source	Tree	[20].	The	complete	directory	organization	of	Electron	based	on	the	docs	[7]	with	some	additions	to	match

the	current	repository	is	made	below:

Electron

├──	atom/	-	C++	source	code.	Called	atom	because	Electron	was	called	atom	at	first.

|			├──	app/	-	System	entry	code.

|			├──	browser/	-	The	frontend	including	the	main	window,	UI,	and	all	of	the

|			|			main	process	things.	This	talks	to	the	renderer	to	manage	web	pages.

|			|			├──	ui/	-	Implementation	of	UI	for	different	platforms.

|			|			|			├──	cocoa/	-	Cocoa	specific	source	code.

|			|			|			├──	win/	-	Windows	GUI	specific	source	code.

|			|			|			└──	x/	-	X11	specific	source	code.

|			|			├──	api/	-	The	implementation	of	the	main	process	APIs.

|			|			├──	net/	-	Network	related	code.

|			|			├──	mac/	-	Mac	specific	Objective-C	source	code.

|			|			└──	resources/	-	Icons,	platform-dependent	files,	etc.

|			├──	renderer/	-	Code	that	runs	in	renderer	process.

|			|			└──	api/	-	The	implementation	of	renderer	process	APIs.

|			└──	common/	-	Code	that	used	by	both	the	main	and	renderer	processes,	

|							including	some	utility	functions	and	code	to	integrate	node's	message

|							loop	into	Chromium's	message	loop.

|							└──	api/	-	The	implementation	of	common	APIs,	and	foundations	of

|											Electron's	built-in	modules.

├──	brightray/	-	Thin	shim	over	libcc	that	makes	it	easier	to	use.

├──	chromium_src/	-	Source	code	copied	from	Chromium.

├──	default_app/	-	The	default	page	to	show	when	Electron	is	started	without	an	app.

├──	docs/	-	Documentations.

├──	lib/	-	JavaScript	source	code.

|			├──	browser/	-	Javascript	main	process	initialization	code.

|			|			└──	api/	-	Javascript	API	implementation.

|			├──	common/	-	JavaScript	used	by	both	the	main	and	renderer	processes

|			|			└──	api/	-	Javascript	API	implementation.

|			└──	renderer/	-	Javascript	renderer	process	initialization	code.

|							└──	api/	-	Javascript	API	implementation.

├──	script/	-	scripts	used	for	development	purpose	like	building,	packaging,	testing,	etc.

├──	spec/	-	Automatic	tests.

├──	tools/	-	helper	scripts	used	by	gyp	files,	unlike	script,	

|												scripts	put	here	should	never	be	invoked	by	users	directly.

├──	vendor/	-	source	code	for	third-party	dependencies.

├──	electron.gyp	-	Building	rules	of	Electron.

└──	common.gypi	-	Compiler	specific	settings	and	building	rules	for	other

		components	like	`node`	and	`breakpad`.

Build	Approach:	Electron	uses	gyp	for	project	generation	which	is	built	using	ninja-build.	The	binaries	of	third-party	frameworks
that	are	used	in	Electron	but	are	not	supported	in		gyp		build	are	found	in	the		external_binaries		directory.

Release	Process:	The	release	process	begins	with	the	selection	of	the	Release	Candidate	(RC)	branch.	In	the	RC	branch	the
	prepare-release		script	is	run	to	perform	checks,	update	version	number	and	auto-generate	draft	release	notes.	After	the		prepare-
release		script	execution	is	done,	the	release	notes	are	compiled	with	major	and	minor	changes	done	on	the	code	base.	The	release
takes	place	after	the	completion	of	the	release	draft	and	the	release	branch	is	pushed/	published.[24]

Configuration	Management:	Electron	is	managed	on	Github	and	new	versions	of	Electron	are	released	through	Github	releases.
Github	provides	a	powerful	version	control	system	to	maintain	the	source	code	which	supports	repeatability	via	branches	and
commits.	The	technical	integrity	of	the	main	code	is	preserved	as	the	master	branch	is	always	version-less.	The	configuration
structures	used	are	repositories,	branches,	labels,	tags,	milestones,	issue	trackers	and	pull	requests.

3.1.3	Deployment	View

In	the	previous	sections,	a	view	of	the	dependencies	which	make	Electron	work	is	described.	This	section	summarizes	the	system
requirements	and	additional	frameworks	to	successfully	run	Electron.	We	now	explain	the	Figure	deployment	view	of	Electron	as
illustrated	in	figure	7.

Electron

89

https://gyp.gsrc.io/
https://ninja-build.org/

Figure	7:	Deployment	view	of	Electron.

Third-party	software	requirements:	Electron	uses	different	Chromium	modules	and	Node	packages,	like		libchromiumcontent		for
content	rendering,		pdf-viewer		for	rendering		webui		pages,	like		node-minidump		for	processing	minidump	files,	and	other	packages
like		Chromium's	Crashpad		for	message	logging.	There	is	also	a	collection	of	binary	frameworks	that	are	bundled	by	Electron	for
making	it	truly	cross-platform.	These	assets	are	downloaded	as	part	of	Electron's	bootstrapping	process	and	form	the	third-party
system	requirements	for	running	Electron	apps.

DirectX	SDK.aspx)
MS	Visual	Studio	C++	Runtime
Mantle
Reactive	Cocoa
Squirrel	for	Mac

Runtime	Environment:	Electron	uses	the	Node	runtime	as	its	back-end	component	and	this	interacts	with	native	Operating	System.
Electron	and	its	two	dependencies	also	use	Google's	V8	high-performance	JavaScript	engine	which	adds	up	as	a	runtime
environment.	Electron	does	not	require	additional	downloads	for	runtime	environments	as	they	are	embedded	as	pre-configured
forks	ready	for	use	out-of-the-box.

Operating	Systems:	Electron	is	built	on	Node	and	Chromium	which	are	cross-platform	which	makes	Electron	and	applications
built-on	it	cross-platform.	Thus,	Electron	is	supported	on	Windows	(both		32		and		64	bit		versions	from	Windows	7	and	above),
macOS(64	bit		of	macOS	10.9)	and	Linux	(arm	,	32		and		64	bit		versions	of	Ubuntu	12.04	and	later,	also	works	on	Fedora	21
and	Debian	8)

3.2	Architectural	Perspectives
We	give	an	overview	of	evolution	perspective	of	Electron	and	also	depict	some	interesting	facts	about	the	analyzed	technical	debt	related
to	it.	We	then	describe	the	security	perspective	of	the	Electron.

Electron

90

https://github.com/electron/electron/blob/master/script/update-external-binaries.py
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663275(v=vs.85
https://msdn.microsoft.com/en-us/library/abx4dbyh.aspx
https://github.com/Mantle/Mantle
https://github.com/ReactiveCocoa/ReactiveCocoa
https://github.com/Squirrel/Squirrel.Mac/

3.2.1	The	Evolution	Perspective	and	the	related	Technical	Debt

Electron	started	as	a	fork	of	NW.js[6]	for	building	GitHub's	Atom	editor	and	was	called	Atom-Shell	in	2013.	The	project	was	developed
a	Cheng	Zhao,	an	intern	at	GitHub.	By	spring	2014[2],	Atom	and	Atom-Shell	branched	out	into	two	separate	projects.	Atom-Shell	was
renamed	as	Electron	in	2015	and	in	2016	Electron	reached	version	1.0	with	the	support	to	publish	apps	to	Mac	and	Windows	App
Store.	In	the	perspecitve	of	technical	debt(TD),	this	is	an	indication	of	single-point	of	failure	in	terms	of	only	one	contributor	Cheng
Zhao,	which	can	be	inferred	from	the	code	additions	to	the	project	in	Figure	8.

Figure	8:	Electron's	dependence	on	Cheng	Zhao,	a	single-point	of	failure	type	of	Technical	Debt

After	2015,	around	the	time	when	Electron	branched	out	from	Atom	more	core	developers	like	@zeke	joined	and	the	single-point	of
failure	TD	started	to	reduce	gradually	as	seen	in	Figure	9.	To	minimize	TD	in	the	code	level	the	core	developers	standardized	writing	and
testing	contributions	to	ensure	stable	builds	which	has	helped	Electron	develop	at	a	rapid	pace	attracting	many	new	contributors	to	the
project.

Electron

91

https://github.com/zcbenz
https://github.com/zcbenz
https://github.com/zeke

Figure	9:	Electron's	development	timeline

From	Rozanski	and	Woods	3,	the	evolution	perspective	is	defined	by:

Magnitude	and	Speed	of	Change:	At	the	time	of	testing,	the	stable	version	was		1.8.4	.	Given	the	speed	of	evolution	for
Electron	and	still	staying	at	the	major	version		1.x.x		from	2016	till	Spring	2018	indicates	stability	of	the	platform.	This	indicates
that	the	magnitude	of	major	change	in	Electron	is	long-term	and	minor	releases	are	short-term	in	nature.

Product	Management/	Integrators	are	the	architects	of	the	Electron.	The	core	developers	at	Github	like	@zcbenz,@zeke	and
@ckerr	are	the	integrators.	Their	challenge	is	to	keep	Electron	releases	stable	as	only	pull	requests	(PR)	that	pass	all	the	continuous
integration	checks	and	review	requirements	are	merged.	The	code	reviews	are	done	by	the	integrators	and	there	is	a	thorough
discussion	on	the	proposed	change	to	make	sure	that	the	integrator	and	the	contributor	are	on	the	same	page,	and	this	results	in
maintaining	quality	across	contributions.	PRs	are	subject	to	CI	checks	on	CircleCI,	Appveyor,	Travis	and	Jenkins	for	different	OS
so	that	the	changes	are	non-breaking,	forward	and	backward	compatible	across	all	Electron	versions	and	satisfy	the	contributing
guidelines	like	linting	of	code,	etc.

Dimension	of	Change:	Platform	evolution	are	the	major	version	updates	like		v2.0.0		in	which	even	the	versioning	strategy	has
changed	to		semver	.	This	requires	Electron	to	change	for	every	major	update	of	its	dependencies	(Node	and	Chromium).	The
functional	evolution	is	periodic	through	patch	and	minor	version	increments.

Changes	driven	by	External	Factors:	Electron	evolves	with	the	version	of	Chromium	which	is	used	for	rendering	the	GUI
components.	Since,	Electron	uses	custom	embeddings	of	its	dependencies	the	Chromium	update	could	be	done	at	a	later	time	and
need	not	be	an	immediate	one.	But	when	the	Electron	2.0	arrives,	Electron	will	conform	to		semver		which	requires	Electron	to

Electron

92

https://github.com/zcbenz
https://github.com/zeke
https://github.com/ckerr
https://electronjs.org/docs/tutorial/electron-versioning#semver
https://electronjs.org/docs/tutorial/electron-versioning#semver

change	for	every	major	update	of	Node	and	Chromium.

At	the	time	of	writing	this	chapter	the	major	update	version	2.0.0	is	in	the	final	stages	of	development	and	we	analyzed	the	technical
debt	on	the	versionless		master		during	an	impending	new	version	release.	The	tools	used	were:

Name	of	Tool Purpose

SonarQube Code	smells,	code	duplicates,	finding	bugs	and	security	vulnerability

github-grep for	finding		FIXME		and		TODO	

Github	Insights to	find	indicators	of	technical	debt	from	contributions	and	contributors

Results	from	SonarQube

Following	are	the	results	we	got	from	using	SonarQube	to	assess	the	code	quality	of	core	electron	repository:

Code	Smells:	Code	smell	analysis	shows	2	days	technical	debt,	which	is	very	low	considering	the	size	and	lines	of	codes	in
Electron.	The	140	code	smells	depicted	were	not	representative	of	real	issues	and	were	from	the	limitation	of	selecting	primary
language	in	SonarQube	as	JavaScript.	About	70	of	these	were	about	refactoring	function	names	which	is	not	applicable	to	C++	files.
The	real	code	smell	founds	were	mostly	in	testing	and	scripting	files	which	don't	form	an	important	component	for	core	of	Electron
and	does	not	affect	it's	stability.	The	figure	also	shows	the	maintainability	rating		A		for	all	files	except	one	testing	file.	Hence,	we
can	say	current	version	of		master		of	electron	is	maintained	pretty	well.

Duplicates:	There	are	only	4%	duplications	found	which	again	comes	from	testing	code.	Our	analysis	states	that	these	duplicates
cannot	be	avoided	due	to	the	nature	of		describe-it		statements	in	Mocha	and	Chai	testing	frameworks.

Still,	one	can	say	that	testing	methods	have	a	little	bit	of	technical	debt	in	terms	of	code	smells	and	duplicates	but	electron	developers	do
discuss	about	these	through	TODOs	and	FIXMEs	as	explained	in	point	4	below.

Electron

93

https://www.sonarqube.org/
https://mochajs.org/
https://chaijs.org/

Bugs	and	Vulnerabilities:	SonarQube	detected	15	bugs	and	3	security	vulnerabilities.	The	bugs	were	related	to	coding	style	such	as
defining	functions	outside	loop	and	argument	mismatch.	Only	one	of	them	was	critical	in	nature	and	was	related	to	how		eval	
function	was	used	at	runtime	to	call	an	object's	property.	The	solution	is	to	call	the	object's	property	at	compile	time.	It	also
estimates	security	remediation	would	take	only	about	an	hour	to	fix	all	three	of	them.	Again,	this	is	extremely	low	number	of	bugs
and	security	warnings	compares	to	the	size	of	electron.

Results	from	github-grep	for	TODOs	and	FIXMEs

The	developers	of	Electron	do	discuss	about	the	technical	debt	there	is	and	they	communicate	through	code	as	well	as	github	issue
tracking	by	mentioning	TODOs	and	FIXMEs.	We	used		github	-grep		to	find	TODOs	and	FIXMEs	in	the	code.	In	total	there	were	79
TODOs	and	46	FIXMEs	found.	Each	of	them	decribed	who	wrote	it	and/or	who	will	fix	it.	Examples	are	shown	below:

	atom/browser/api/atom_api_app.cc:	//	TODO(juturu):	Remove	in	2.0,	deprecate	before	release	

	chromium_src/chrome/browser/process_singleton.h:	//	TODO(brettw):	Make	the	implementation	of	this	method	non-platform-

specific	

	spec/api-crash-reporter-spec.js:	//	TODO(alexeykuzmin):	Skip	the	test	instead	of	marking	it	as	passed.	

	spec/webview-spec.js:	//	FIXME(alexeykuzmin):	Skip	the	test.	

	atom/browser/web_contents_preferences.h:	//	FIXME(zcbenz):	This	method	does	not	belong	here.	

Majority	of	them	were	about	skipping	tests	instead	of	marking	them	passed	in	the	version	2.0.	However,	by	doing	this	we	got	to	know
the	technical	debt	(still	relatively	very	small	compared	to	repo's	size)	not	found	by	automatic	finders	like	SonarQube	and	can	only	be
found	through	developer	insights	and	project's	long	term	plans.	The	TODOs	in	core	Electron's	code	represent	deprecations	to	be	done	in
release	2.0	of	the	release.	Our	solution	to	this	is	that	these	2.0	TODOs	should	not	be	in	the	versionless	master	branch	but	1.8.4	(current
production	version's)	branch.

There	is	also	discussion	about	these	on	github	issue	tracking.	The	TODOs	and	FIXMEs	there	are	on	much	higher	abstraction	level	as
described	in	this	recent	example	on:

https://github.com/electron/electron/issues/10836:	List	of	hacks	and	workarounds	made	during	the	upgrade	to	Chromium	61.	They
are	to	be	fixed	before	Chromium	61	is	merged	or	right	after.	Most	of	the	issues	are	fixed	already.	This	reinforces	that	Electron's
developers	are	very	active	and	keep	it's	technical	debt	low.
https://github.com/electron/electron/issues/11242:	This	described	the	debt	in	terms	of	updating	documentation	(Remove	async
menu	from	the	docs)	that	came	with	upgrades	in	Chromium	61.

We	can	infer	from	this	activity	that	Electron	developer's	community	is	well	aware	of	the	technical	debt	that	is	arising	from	the	new
incoming	version	2.0	and	is	actively	working	towards	reducing	the	same.	This	makes	evolution	of	Electron	future-proof	and	their	steps
towards		semver	,	where	they	will	update	Electron	with	every	major	update	of	its	dependencies	reinforces	this	fact.

3.2.2	Security	Perspective

It	is	important	to	distinguish	that	Electron	is	not	a	web-browser	and	the	applications	are	built	using	Chromium	as	a	renderer	and	Node
to	make	remote	calls	to	sources	on	the	web.	The	security	of	applications	built	on	Electron	depends	on	the	current,	latest	version	of
Chromium.	Chromium	has	an	off-the-shelf	sandbox	to	run	processes	which	can	freely	use	CPU	and	memory.	However,	being	a
restrictive	environment,	there	are	well-defined	policies	for	processes	which	prevents	bugs	and	attacks	during	IO	operations.

Electron

94

https://github.com/electron/electron/issues/10836
https://github.com/electron/electron/issues/11242

To	provide	applications	with	desktop	functionality,	the	Electron	team	modified	Chromium	to	introduce	a	runtime	to	access	native	APIs
as	well	as	Node.js’s	built	in	and	third-party	modules.	To	do	this	the	Chromium	sandbox	protection	was	disabled,	meaning	any
application	running	inside	Electron	is	given	unfiltered	access	to	the	operating	system.

Figure	15:	Electron's	architecture	combined	with	disabled	Chromium	sandboxes	[28]

This	is	not	a	concern	for	a	lot	of	Electron	applications,	especially	those	that	don’t	pull	in	remote	data	and	need	extensive	operating
system	privileges	anyway	(such	as	an	IDE).	However,	this	is	a	(potentially)	serious	and	unnecessary	security	risk	for	applications	that
do	pull	in	remote	data,	any	successful	XSS	attack	would	give	the	attacker	full	control	over	the	victim’s	machine!	It’s	worth	stressing	that
a	successful	XSS	attack	within	a	sandboxed	application	is	still	a	catastrophic	event	that	can	do	untold	damage.	Even	restricted	to	the
sandbox,	an	attack	can	execute	scripts	to	hijack	user	sessions,	deface	web	sites,	insert	hostile	content,	redirect	users	and	install	malware.
Nonetheless,	unless	they	escape	the	sandbox	the	potential	for	damage	stops	at	the	browser	level	with	the	operating	system	left
unharmed	and	only	data	explicitly	shared	with	the	browser	at	risk.[28]

A	cross-site-scripting	(XSS)	attack	is	more	dangerous	if	an	attacker	can	jump	out	of	the	renderer	process	and	execute	code	on	the	user's
computer.	Cross-site-scripting	attacks	are	fairly	common	-	and	while	an	issue,	their	power	is	usually	limited	to	messing	with	the	website
that	they	are	executed	on.	Disabling	Node.js	integration	helps	prevent	an	XSS	from	being	escalated	into	a	so-called	"Remote	Code
Execution"	(RCE)	attack.[29]

It’s	worth	pointing	out	that	there’s	an	open	discussion	around	Electron’s	security	model	on	GitHub,	so	further	changes	and
improvements	are	likely	to	be	made	once	this	discussion	is	finalised.

To	summarise,	Electron	currently	has	its	fair	share	of	security	issues	that	complicate	the	process	of	building	secure	applications.	Various
workarounds	also	exist	that	circumvent	turning	node	integration	off	in	the	event	of	an	XSS	attack.	One	major	goal	should	be	a	more
secure	way	for	applications	that	do	need	some	node	and	desktop	integration	to	interact	with	the	operating	system.	Fortunately,	due	to
the	framework’s	popularity	and	active	community	the	Electron	team	are	already	making	good	progress	to	resolving	these	issues.[28]

4.	Conclusions

We	can	summarize	our	detailed	analysis	through	the	following	points:

Electron	makes	thing	easy	by	providing	a	framework	for	developing	cross-platform	desktop	apps	through	web	technologies.
Electron	has	a	large	and	friendly	community,	who	is	always	eager	to	welcome	new	contributors.	The	experience	is	based	on	our
own	contributions.	One	of	the	core	developers	@Zeke	even	did	a	video	call	to	help	us	with	coding	issues	for	the	contribution.
Lots	of	applications	are	dependent	on	Electron	and	hence,	extra	focus	is	given	on	Electron's	stability	at	any	given	point	of	time.
Electron	is	backed	up	by	Github	and	other	large	communities.	The	developers	of	Electron	are	well-aware	of	the	technical	debt	that
comes	with	evolving	and	actively	discuss	and	contribute	towards	keeping	it	low.
Electron	is	gaining	a	lot	of	attention	and	the	contributor	community	is	large,	skilled	and	fast	growing,	and	so	when	you	might	be
reading	this	chapter,	a	new	version	2.x.x	must	be	available.
In	2.x.x,	Electron	has	promised	to	update	according	to	every	major	update	to	its	depedencies	making	it	more	secure	and	robust.

Electron

95

https://github.com/atom/electron/issues/1753
https://github.com/zeke

Do	you	want	to	contribute	to	Electron	as	well?	Take	a	look	at	Electron	and	the	contributing	guidelines	for	the	Electron	project.	It's	our
guarantee	that	you	will	be	welcomed	with	open	arms	by	team	Electron	and	will	provide	help	and	feedback	by	all	means	possible	for	your
contributions.

References

1.	Electron	(software	framework)(2018).	[online]	Available	at:	https://en.wikipedia.org/wiki/Electron_(software_framework)	[Accessed
23	Feb.	2018].

2.	Steve	Kinney	(2018),	Introducing	Electron	in	Electron	in	Action(pp.	1-15),	Manning	Publications.

3.	Rozanski,	N.,	&	Woods,	E.	(2012).	Software	systems	architecture:	working	with	stakeholders	using	viewpoints	and	perspectives.
Addison-Wesley.

4.	Electron:	Tutorial	(2018).	[online]	Available	at:	https://electronjs.org/docs/tutorial/	[Accessed	23	Feb.	2018].

5.	Olander,	S.,	&	Landin,	A.	(2005).	Evaluation	of	stakeholder	influence	in	the	implementation	of	construction	projects.	International
journal	of	project	management,	23(4),	321-328.

6.	Lynch,	A.	(2017).	Beyond	The	Browser:	From	Web	Apps	To	Desktop	Apps.	[online]	Available	at:
https://www.smashingmagazine.com/2017/03/beyond-browser-web-desktop-apps/	[Accessed	at	4	March,	2018]

7.	Electron:	Source	code	structure(2018).	[online]	Available	at:	https://github.com/electron/electron/edit/master/docs/development/source-
code-directory-structure.md	[Accessed	4	March,	2018]

8.	Betts,	P.	(2016).	Building	Hybrid	Applications	with	Electron.	[online]	Available	at:	https://slack.engineering/building-hybrid-
applications-with-electron-dc67686de5fb	[Accessed	at	4	March,	2018]

9.	Betts,	P.	(2016).	Using	ES2015	with	Electron — introducing	electron-compile.	[online]	Available	at:	https://slack.engineering/using-
es2015-with-electron-introducing-electron-compile-2a0e5ccbadb6	[Accessed	at	4	March,	2018]

10.	Electron's	dependecies	(2018),	[online]	Available	at:	https://david-dm.org/electron/electron?type=dev	[Accessed	at	4	March,	2018]

11.	Elctron	API	documentation,	[online]	Available	at:	from	https://electronjs.org/docs/api	[Accessed	at	4	March,	2018]

12.	Nokes,	C.	(2016).	Deep	dive	into	Electron’s	main	and	renderer	processes.[online]	Available	at:	https://codeburst.io/deep-dive-into-
electrons-main-and-renderer-processes-7a9599d5c9e2	[Accessed	at	5	March,	2018]

13.	Norris,	T.	(2015).	Understanding	the	Nodejs	Event	Loop.	[online]	Available	at:	http://nodesource.com/blog/understanding-the-
nodejs-event-loop/	[Accessed	at	5	March,	2018]

14.	Crashpad	README(2018).	[online]	Available	at:	https://github.com/electron/crashpad/blob/master/doc/overview_design.md
[Accessed	at	5	March,	2018]

15.	Crashpad-	Development	Notes	(2018).	[online]	Available	at:	https://github.com/electron/crashpad/blob/master/doc/developing.md
[Accessed	at	5	March,	2018]

16.	Electronjs.org	Testing	on	Headless	CI	(2018).	[online]	Available	at:	https://electronjs.org/docs/tutorial/testing-on-headless-ci
[Accessed	at	5	March,	2018]

17.	Electronjs.org	Testing	(2018).	[online]	Available	at:	https://electronjs.org/docs/development/testing	[Accessed	at	5	March,	2018]

18.	Spectron.	(2018).	[online]	Available	at:	https://github.com/electron/spectron	[Accessed	at	5	March,	2018]

19.	Devtron.	(2018).	[online]	Available	at:	https://github.com/electron/devtron	[Accessed	at	5	March,	2018]

20.	Electronjs.org	source	code	strucutre.	(2018).	Source	Code	Directory	Structure.	[online]	Available	at:
https://electronjs.org/docs/development/source-code-directory-structure	[Accessed	at	6	March,	2018]

21.	Electronjs.org/	build	overview.	(2018).	Build	System	Overview.	[online]	Available	at:	https://electronjs.org/docs/development/build-
system-overview	[Accessed	at	6	March,	2018]

Electron

96

https://en.wikipedia.org/wiki/Electron_(software_framework
https://electronjs.org/docs/tutorial/
https://www.smashingmagazine.com/2017/03/beyond-browser-web-desktop-apps/
https://github.com/electron/electron/edit/master/docs/development/source-code-directory-structure.md
https://slack.engineering/building-hybrid-applications-with-electron-dc67686de5fb
https://slack.engineering/using-es2015-with-electron-introducing-electron-compile-2a0e5ccbadb6
https://david-dm.org/electron/electron?type=dev
https://electronjs.org/docs/api
https://codeburst.io/deep-dive-into-electrons-main-and-renderer-processes-7a9599d5c9e2
http://nodesource.com/blog/understanding-the-nodejs-event-loop/
https://github.com/electron/crashpad/blob/master/doc/overview_design.md
https://github.com/electron/crashpad/blob/master/doc/developing.md
https://electronjs.org/docs/tutorial/testing-on-headless-ci
https://electronjs.org/docs/development/testing
https://github.com/electron/spectron
https://github.com/electron/devtron
https://electronjs.org/docs/development/source-code-directory-structure
https://electronjs.org/docs/development/build-system-overview

22.	Chromium.org/	multi-process	architecture.	(2018).	Multi-Process	Architecture.	[online]	Available	at:
https://www.chromium.org/developers/design-documents/multi-process-architecture	[Accessed	at	6	March,	2018]

23.	Lord,	J.	(2018).	Jlordus.	[online]	Available	at:	http://jlord.us/essential-electron/	[Accessed	at	6	March,	2018]

24.	Electronjs.org	Releasing	(2018).	[online]	Available	at:	https://electronjs.org/docs/development/releasing	[Accessed	at	6	March,	2018]

25.	Electronjs.org.	(2018).	Releasing.	[online]	Available	at:	https://electronjs.org/docs/tutorial/application-packaging	[Accessed	at	6
March,	2018]

26.	Cunningham,	W.	(2011).	Ward	Explains	Debt	Metaphor.	[online]	Available	at:	http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
[Accessed	at	15	March,	2018]

27.	Electron's	Versioning	Documents.	[online]	Available	at:	https://github.com/electron/electron/blob/master/docs/tutorial/electron-
versioning.md	[Accessed	at	15	March,	2018]

28.	Kerr,	D.	(2018).	As	It	Stands	-	Electron	Security.	[online]	Available	at:	http://blog.scottlogic.com/2016/03/09/As-It-Stands-Electron-
Security.html	[Accessed	1	Apr.	2018].

29.	Electronjs.org.	(2018).	Security.	[online]	Available	at:	https://electronjs.org/docs/tutorial/security	[Accessed	1	Apr.	2018].

Electron

97

https://www.chromium.org/developers/design-documents/multi-process-architecture
http://jlord.us/essential-electron/
https://electronjs.org/docs/development/releasing
https://electronjs.org/docs/tutorial/application-packaging
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
https://github.com/electron/electron/blob/master/docs/tutorial/electron-versioning.md
http://blog.scottlogic.com/2016/03/09/As-It-Stands-Electron-Security.html
https://electronjs.org/docs/tutorial/security

Godot

By	Alkis	Antoniades,	Miriam	Doorn,	Marie	Kegeleers,	Felix	Yang

Delft	University	of	Technology,	2018

Introduction
Godot	is	a	community-developed,	cross-platform,	open-source	game	engine	released	under	the	MIT	license	and	is	free	for	commercial
applications.	A	large	and	growing	online	community	actively	contributes	to	the	development	by	coding,	testing,	documenting	and
promoting	the	Godot	Project.

In	this	chapter,	we	will	describe	our	research,	analysis	and	documentation	of	the	architecture	and	development	of	the	Godot	Engine.
Who	are	the	stakeholders	most	interested	in	the	development?	What	are	the	qualities	which	are	most	important	for	such	a	system,	and
how	do	we	ensure	those	qualities	are	implemented	in	the	system?

Table	of	contents

1.	 Introduction
2.	 Stakeholder	Analysis
3.	 Context	Viewpoint

i.	 System	Scope	and	Responsibilities
ii.	 Entities	and	Interfaces	of	Interests

4.	 Functional	Viewpoint
5.	 Development	Viewpoint

i.	 Module	Structure
ii.	 Common	Design
iii.	 Standardization	of	Design	and	Testing
iv.	 Codeline	Organization

6.	 Deployment	Viewpoint
7.	 Internationalization	Perspective
8.	 Technical	Debt
9.	 Conclusion

Stakeholder	Analysis

Godot

98

https://github.com/Deathex
https://github.com/millenniumproof
https://github.com/Mari3
https://github.com/Falke117

Stakeholder	analysis	helps	identify	responsibilities	of	persons	involved	in	the	project.	The	following	table	shows	the	types	of
stakeholders	present	in	the	project	and	their	involvement.	Due	to	the	project	being	completely	non-profit,	community-developed	and
released	under	MIT	license,	the	stakeholder	types	are	quite	unique.

Stakeholder Person/Entity Involvement

Lead
Developer Juan	Linietsky	(reduz) Creation	of	most	of	the	code,	and	high-level	decision

making.

Committee
Members

Juan	Linietsky	(reduz),	Ariel	Manzur	(punto),
Rémi	Verschelde	(akien-mga),	George	Marques
(vnen),	and	Andreas	Haas	(Hinsbart)

Financial	management.

Project
Manager Rémi	Verschelde	(akien-mga)

Maintainer,	integrator	and	manager	of	Godot
repositories,	also	acts	as	the	representative	of	Godot
Engine	to	the	public.

Senior
Developers Members	of	Godot	Engine

Assist	the	lead	developer	with	software	development,
and	assist	the	project	manager	with	issues	&	pull
requests	management	and	integration.

Community
Contributors Contributors	of	any	repositories	of	Godot	Engine Bugfixing,	the	creation	of	minor	new	features,

documentation	creation	and	maintenance,	testing,	etc.

Users Individuals	or	companies	that	develop	games	with
the	Godot	Engine

Use	the	product,	report	encountered	bugs,	and	request
new	features.

Sponsors Patrons	of	the	Godot	Project	on	Patreon]
(https://www.patreon.com/godotengine)

Support	the	development	with	money,	and	lean	in	the
development	process	with	their	opinions.

Competitors Unity	3D,	Unreal,	etc Game	engines	offering	similar	features	and	tools.

Context	Viewpoint

Godot

99

https://github.com/reduz
https://github.com/reduz
https://github.com/punto-
https://github.com/akien-mga
https://github.com/vnen
https://github.com/Hinsbart
https://github.com/akien-mga
https://github.com/godotengine
https://github.com/godotengine
https://www.patreon.com/godotengine

	

System	Scope	and	Responsibilities

Godot	is	a	game	engine	that	provides	a	large	set	of	tools	used	in	game	development,	including	an	editor	with	a	graphical	interface,	which
runs	on	Windows,	macOS,	Linux	and	BSD,	and	can	create	games	targeting	PC,	console,	mobile,	and	web	platforms.	The	project	extends
to	include	documentation	on	how	to	use	the	editor,	as	well	as	translations	for	it.

System	Responsibilities:

Support	for	development	of	both	2D	and	3D	games.
Providing	an	intuitive,	cohesive	and	integrated	development	environment.
Cross-platform	support	for	development	environment	(Windows,	Mac	OS,	Linux).
Even	greater	cross-platform	support	for	publishing	games	(mobile,	web,	console,	PC).
Performance	should	be	comparable	to	mainstream	engines	such	as	Unity	3D	and	Unreal.
Clear	and	comprehensive	documentation.
Free	for	all	applications.
Open	to	customization.

Entities	and	Interfaces	of	Interests

Funding

Godot

100

The	Godot	project	is	being	crowdfunded	on	Patreon	and	by	direct	donations	using	Paypal.	At	the	moment	there	are	four	corporate
sponsors	through	Patreon,	with	the	rest	of	the	donors	being	individual	members	of	the	Godot	community.	The	Software	Freedom
Conservancy	(SFC)	acts	as	a	fiscal	sponsor,	and	any	funding	goes	through	it.

Development

Juan	Linietsky	and	Rémi	Verschelde	manage	a	large	group	of	community	developers	who	contribute	to	the	Godot	Engine	code	base	via
GitHub.	GitHub	is	used	as	an	interface	where	developers	and	users	can	access	the	codebase	that	is	hosted	there,	and	is	also	used	for
discussions	and	project	management.

When	a	pull	request	is	made	for	a	code	contribution	on	GitHub,	Travis	CI	and	AppVeyor	are	deployed	to	check	whether	the	changes
suggested	pass	certain	tests.	SCons	is	used	as	a	tool	to	generate	builds	for	multiple	platforms.

Documentation

The	source	code	for	the	documentation	of	the	Godot	Engine	has	its	own	github	repo,	and	contributors	are	encouraged	to	make	additions.
The	documentation	is	accessible	on	the	Godot	Docs	website,	as	well	as	directly	inside	the	Godot	Editor.

Translation

The	translation	interface	will	be	described	in	detail	in	the	section	on	Internationalization.

Communication

The	community	of	the	project	uses	many	channels	to	interact,	such	as	Twitter,	Reddit,	Facebook,	Discord,	IRC,	etc,	where	members
help	each	other	when	they	have	questions	or	want	to	discuss	the	development	of	games,	as	well	as	the	development	of	the	Godot	engine
project.	Users	can	act	as	advocates	for	the	Godot	engine	by	showcasing	the	games	they	make	using	the	Godot	editor.

When	a	stable	release	is	ready	for	deployment,	it	gets	released	on	the	Godot	official	website	and	on	Steam	for	supported	platforms.

Functional	Viewpoint
	

	

Godot

101

https://travis-ci.org/
https://travis-ci.org/
http://scons.org/
https://github.com/godotengine/godot-docs
http://docs.godotengine.org/en/3.0/
https://godotengine.org/community
https://godotengine.org/download/windows
http://store.steampowered.com/app/404790/Godot_Engine/

The	diagram	above	illustrates	the	functional	structure	of	the	Godot	Engine,	which	consists	of	multiple	internal	and	external	entities,	and
the	interfaces	and	dependencies	between	them.

Engine

Most	internal	entities	are	contained	within	the	group	Engine,	the	core	of	the	whole	system.	Engine	renders	game	scenes	and	executes
game	logic.

The	biggest	entity	within	Engine	is	OS.	It	serves	many	fundamental	purposes,	including	communicating	with	User	OS,	initializing	the
system,	etc.

Driver	and	Server	together	implement	graphics	and	audio	effects	in	games,	with	the	difference	being	that	the	former	handles	low-level
communication	with	APIs	and	is	hidden	from	the	user,	while	the	latter	is	visible	to	script	writers.

Renderer	makes	use	of	Server	and	renders	the	current	scene,	which	makes	it	dependent	on	the	Scene	entity.	Scenes	in	the	Godot	engine
consist	of	multiple	nodes	in	a	tree	structure,	which	makes	Scene	dependent	on	Node.

A	project	in	the	Godot	engine	consists	of	multiple	scenes,	which	explains	the	dependency	from	Project	to	Scene.	A	project	is	also	a	basic
unit	the	game	builder	takes	in	to	build	game	executables,	thus	the	dependency	from	Builder	to	Project.	Any	changes	to	a	project	that
need	to	be	read	or	written	are	handled	via	File	I/O.

	

	

	

	

	

Editor

	

Godot

102

	

Editor	serves	as	an	interface	between	User	OS	and	Engine	OS,	to	help	users	manage	projects	easier,	and	display	information	from
Engine	in	an	intuitive	way.	The	above	diagram	shows	the	many	sub-entities	of	Engine	that	offer	functionality	to	the	user	in	a	Graphical
User	Interface	(GUI).

Project	Manager	is	used	to	create	new	projects,	load	existing	ones,	and	it	contains	a	list	of	templates,	which	are	essentially	demos
showcasing	different	game	mechanics	that	developers	can	use	to	simplify	certain	aspects	of	their	project	development.

File	System	facilitates	the	import	of	game	assets	such	as	textures,	3D	models,	etc,	and	the	creation	of	scripts	which	are	used	for
specifying	game	logic,	or	shaders	that	can	be	attached	to	game	objects,	as	well	as	game	scenes	which	can	consist	of	game	assets	with	their
attached	scripts.

Scripts	can	be	edited	in	the	built-in	Script	Editor,	which	has	its	own	Debugger.

	

Godot

103

	

Scene	Tree	can	be	used	to	create	Nodes	and	edit	the	scene	tree	in	a	visual	way.	The	above	diagram	shows	a	visual	representation	of	a
scene	tree	and	the	types	of	Nodes	it	can	contain.	Properties	can	be	set	to	Nodes	in	the	Inspector.	Scene	shows	the	Nodes	in	a	2D	or	3D
environment.

In	Animation	Panel,	users	can	create	and	edit	animations	for	nodes	in	the	scene	tree,	including	those	that	have	gameplay	related	values.

Audio	Panel	can	be	used	to	edit	the	settings	of	audio	buses.	Audio	streams	can	be	set	to	play	from	the	target	audio	bus.

Through	the	Asset	Library	GUI,	users	can	search	for	and	download	assets	from	AssetLib.	The	interface	between	the	Editor	and	AssetLib
server	is	based	on	the	REST	API

Development	Viewpoint

Module	Structure

The	Godot	Engine	has	a	layered	architecture	with	the	modules	organized	in	four	layers	with	intermodule	dependencies,	something	which
the	structure	diagram	below	illustrates.	This	diagram	is	based	on	the	architecture	diagram	found	in	the	Godot	Documentation,	and	even
though	this	diagram	was	made	over	a	year	ago,	the	basic	structure	of	the	engine	remains	the	same.

Godot

104

http://docs.godotengine.org/en/3.0/development/cpp/introduction_to_godot_development.html

	

Core:	The	core	layer	consists	of	the	main	loop	of	the	program,	which	keeps	it	running,	along	with	class	modules	that	can	be
inherited	from	to	form	a	consistent	base	for	each	class.	The	most	important	classes	here	are	Variant	and	Object.	Variant	can	contain
all	data	types	that	are	useful	to	the	engine	and	can	therefore	be	used	as	a	dynamic	type	in	C++.	Variants	can	be	set	to	Objects	as
properties.	Object	forms	a	general	base	for	a	class	by	providing	elements	like	id,	flags	and	get	methods.	Reference	contains	basic
elements	for	classes	that	involve	resources,	configurations,	parameters	etc.	All	the	nodes	and	resources	inherit	from	the	Object
class.	The	core	also	contains	many	basic	low	level	functionalities	such	as	Math	and	File	Input/Output.
Scene:	This	layer	contains	all	modules	concerning	the	scene	which	is	everything	that	the	user	interacts	with	when	building	a	game.
Each	scene	is	built	up	using	a	SceneTree	which	consists	of	nodes,	instances	of	classes	that	inherited	from	the	Node	class.	Some
examples	of	nodes	are	controls,	3D	objects	and	GUI	elements.
Servers:	This	layer	contains	detailed	implementation	for	aspects	like	Graphics,	Physics,	Audio	etc,	and	users	can	interact	with
them	via	scripts	and	the	editor.	The	most	prevalent	one	is	the	VisualServer,	since	everything	that	is	visible	in-game	gets	processed
by	it.
Drivers:	This	layer	implements	functionalities	provided	by	the	Server	layout	on	a	lower	level.	The	drivers	layer	handles	various
platforms	and	exterior	systems,	thus	making	the	low-level	details	opaque	to	the	Servers	layer.	For	example,	the	I/O	and
Loaders/Savers	deal	with	different	read	and	write	methods	on	different	platforms,	etc..
Editor:	The	editor	group	is	a	collection	of	all	modules	that	make	up	the	Godot	Editor	application.	The	editor	is	not	part	of	the
Godot	Engine	per	se,	and	in	fact	it	has	been	created	using	it,	and	is	thereby	dependent	on	modules	from	all	the	layers	in	it.

Common	Design

Godot

105

Graphics	Rendering

One	of	the	concerns	of	the	Godot	Engine	is	that	games	made	using	the	engine	should	be	portable	to	different	platforms	and	operating
systems.	You	can	imagine	that	rendering	for	a	mobile	game	is	done	differently	from	rendering	for	a	Linux	desktop.	To	enable	this	quality,
all	classes	that	draw	graphics	have	to	interface	with	the	Visual	server	singleton	class,	which	then	interfaces	with	the	OpenGL	ES	API	for
rasterization	and	rendering.

Portability

All	components,	including	custom	user	modules,	must	include	an	SCsub	file,	which	contains	Python	code	that	enables	a	third-party
software,	SCons,	to	include	them	in	the	engine	build.	SCons	is	an	open	source	cross-platform	software	construction	tool	that	uses
Python	scripts	for	configuration	files,	and	according	to	the	Godot	engine	authors,	it	plays	a	pivotal	role	since	it	facilitates	building	the
engine	for	different	platforms,	without	breaking	the	build.	Custom	user	modules	also	need	to	have	a	config.py	file,	which	states	whether
it	is	ok	to	build	for	a	specific	platform.

Writing	Scripts

GDScript	is	a	high	level,	dynamically-typed	programming	language	similar	in	syntax	to	Python,	which	has	been	developed	to	make	it
easy	and	intuitive	for	game	developers	to	use	the	Godot	Engine.	For	the	scripting	engine	to	determine	the	available	types	when	coding	in
GDScript,	ClassDB	is	used,	which	is	a	static	class	holding	a	list	of	registered	classes	that	inherit	from	Object,	along	with	dynamic
bindings	to	all	their	method	properties.	Each	class	desired	to	be	available	in	GDScript	needs	to	be	registered	to	ClassDB,	and	should
users	creating	modules	in	C++	want	the	classes	to	be	available	in	GDScript,	they	need	to	apply	these	bindings.

Game	developers	can	also	write	code	in	VisualScript,	which	makes	the	coding	process	more	visual	to	allow	for	a	lower	entry	barrier	to
using	the	engine,	and	C#.	C++	is	the	programming	language	used	for	developing	the	game	engine	itself.

Memory	Usage

Godot	employs	various	tools	for	tracking	memory	usage	in	a	game,	especially	during	debug,	so	the	regular	C	and	C++	library	calls
should	be	avoided	in	favor	of	Godot-provided	macros,	such	as	memalloc(),	instead	of	malloc,	etc,	and	for	memory	allocation	in	the	style
of	C++,	special	macros	are	provided.	Objects	are	also	notified	right	after	they	are	created,	and	right	before	they	are	deleted.	The
DVector<>	template	is	also	provided	for	dynamic	memory	purposes.

Use	of	third-party	libraries

The	Godot	Engine	makes	use	of	third-party	libraries	that	either	have	the	same	MIT-license	as	the	Godot	Engine	or	one	that	is	similarly
open	and	free,	with	the	full	list	of	libraries	used	being	available	in	the	documentation.

Standardization	of	Design	and	Testing

Standardization	of	Design	and	Code

Defining	code	style	standards	ensures	good	collaboration	and	overall	quality.	The	Godot	developers	advice	code	contributors	to	conform
to	the	existing	style	of	code.	Each	pull	request	has	a	code	review	by	one	of	the	core	developers,	to	ensure	that	the	code	is	clean	and
maintainable.	The	code	style	rules	are	formalized	in	the	.clang	format	file	found	in	the	Godot	repository,	and	the	style	for	C++	code	is
checked	automatically	using	Travis	CI	when	a	contributor	creates	a	pull	request.

There	are	very	few	comments	to	be	found	in	the	code,	and	the	core	developers	say	this	is	mostly	because	people	don't	bother	to	make
the	effort.	Having	comments	in	non-trivial	code	would	be	a	useful	addition,	however	there	are	no	guidelines	defined	for	code
commenting,	because	they	believe	this	would	disencourage	people	from	contributing	and	it	would	add	an	extra	step	in	code	review	to
determine	whether	certain	comments	in	the	code	are	necessary.

For	Python	scripts,	such	as	those	used	in	the	SCons	build	system,	the	PEP-8	style	guide	is	adhered	to.	For	Java	scripting	there	is	no
chosen	style	standard,	and	contributors	are	encouraged	to	keep	their	code	as	clean	as	possible.

There	are	also	guidelines	on	the	proper	format	to	use	when	filing	an	issue	on	the	project's	GitHub	page.

Godot

106

https://github.com/godotengine/godot/tree/master/thirdparty
https://github.com/godotengine/godot/blob/master/.clang-format
http://godot.eska.me/irc-logs/devel/2018-03-08.log
https://www.python.org/dev/peps/pep-0008/
http://docs.godotengine.org/en/3.0/community/contributing/ways_to_contribute.html#testing-and-reporting-issues

The	Godot	documentation	offers	guidelines	on	organizing	issues	posted	on	Github,	including	a	list	of	the	labels	currently	defined	in	the
Godot	repository.

Test	and	Build	Strategy

Before	a	pull	request	is	merged,	automated	tests	are	run	on	the	code	submitted.	For	continuous	integration,	the	Godot	project	uses
Travis	CI	and	Appveyor.	Travis	CI	is	used	to	make	sure	the	code	has	the	correct	formatting,	and	Appveyor	is	used	to	make	sure	the
project	builds	without	problems.	For	creating	builds,	the	tool	SCons	is	used.

The	engine	is	mostly	tested	by	its	users.	There	are	reliable	unofficial	sites	offering	daily	builds	such	as	here	and	here,	and	quite	a	few
users	work	with	them,	therefore	when	there	are	pressing	issues	they	are	found	and	fixed	quickly,	often	within	hours.	Many	things
cannot	be	tested	automatically,	such	as	problems	in	the	editor,	something	which	requires	users	to	notice	the	issue	and	report	it	to	the
developers.	Furthermore,	since	the	code	base	is	changing	so	rapidly	and	features	are	being	added	constantly,	it	would	be	difficult	to	keep
automated	tests	up-to-date,	therefore	making	user	testing	the	more	agile	approach.

Codeline	Organization

Code	Management

The	Godot	Project	uses	the	“Pull	Request	workflow”,	which	is	common	with	projects	on	GitHub.	Contributors	fork	the	project,	make
modifications,	and	create	a	pull	request,	usually	to	the	master	branch.	Other	contributors	can	then	review	the	code,	comment	on	it	and
suggest	changes	when	needed.	When	a	pull	request	is	approved,	one	of	the	core	developers	(mostly	Rémi	(akien-mga))	will	merge	it.
You	don't	need	to	sign	a	CLA	to	contribute	to	the	project,	since	in	the	words	of	the	project	manager,	Rémi:

"CLAs	make	contributing	to	open	source	projects	ridiculously	bureaucratic	and	slow."

Some	pull	requests	spark	discussion,	since	a	developer	may	want	to	include	a	feature	that	is	deemed	unnecessary	by	others,	and	in	such
a	case,	it	may	happen	that	the	PR	will	be	discussed	in	a	meeting	on	the	Godot	developer	IRC	channel.	The	PR	will	only	be	merged	after
a	consensus	is	reached.

Some	developers	have	expertise	in	a	certain	area	of	the	project	and	are	allowed	to	commit	directly	if	it	falls	within	their	field	of
responsibility.

Release	Process

Development	on	the	master	branch	is	working	towards	a	new	stable	release,	and	there	is	also	work	being	done	on	the	previous	releases	in
a	separate	branch.	After	the	big	update	from	version	2	to	3,	there	were	compatibility	issues	when	users	wanted	to	import	projects	into
the	new	version	of	the	editor	and	engine,	therefore	there	are	still	people	working	on	their	games	using	an	older	version	of	the	engine.
Development	on	older	versions	generally	is	restricted	to	bug	fixing,	while	in	the	master	branch	for	the	new	releases	new	features	and
tools	are	constantly	being	added.

When	a	big	release	is	approaching,	a	callout	is	made	for	developers	to	fix	remaining	issues.	Sometimes	before	a	stable	release,	a	test	build
is	released.	These	builds	are	announced	on	the	blog,	and	anyone	interested	can	test	them	and	report	issues.

The	release	schedule	of	intermittent	updates	is	not	determined	and	dependent	on	the	severity	of	issues	found	and	fixed.

Deployment	Viewpoint

The	Godot	Engine	offers	support	to	build	projects	using	the	engine	to	the	following	platforms:	Android,	iOS,	HTML5,	macOS,
Windows	Universal,	Windows	Desktop	and	Linux/X11.	To	build	the	Godot	Engine	from	the	source	code,	the	cross-platform	build	tool
SCons	is	required,	which	in	turn	requires	Python	2.x	to	run.	If	a	user	wants	to	build	a	project	for	a	specific	platform,	they	need	a	proper
set-up	for	the	target	platform	as	well	as	an	export	template	provided	by	Godot.

Some	platforms	have	extra	requirements	to	generate	builds	for	them,	as	can	be	seen	in	this	table:

Godot

107

http://docs.godotengine.org/en/3.0/community/contributing/bug_triage_guidelines.html
http://godot3builds.digitecnology.com/
https://hugo.pro/projects/godot-builds/
http://docs.godotengine.org/en/3.0/community/contributing/pr_workflow.html
https://godotengine.org/article/hero-wanted-campaing-fixing-final-bugs-launchs
https://godotengine.org/article/hero-wanted-help-fix-remaining-issues-30

Environment Requirements	for	Exporting	a	Godot	Engine	Project	to	Platform

Android Install	ADK.	Install	JDK	6	or	8.	Generate	Debug	Keystore	File.

iOS	\	macOS Must	export	from	a	computer	running	macOS	with	Xcode	installed.

For	web	exports	(HTML5),	running	the	export	requires	support	for	WebAssembly	and	WebGL	2.0	in	the	user’s	browser.

The	export	templates	are	used	to	set	properties	that	are	specific	to	a	certain	platform.	For	mobile	platforms	for	example,	you	can	set	the
screen	orientation	for	the	application	to	portrait	or	landscape	mode.	You	can	also	manage	asset	compression	and	level	of	detail	for	the
graphics.	The	export	templates	are	required	to	create	packages.	In	the	Godot	Editor	you	can	easily	install	the	export	templates	from	the
menu,	and	they	can	also	be	obtained	from	the	download	page	on	the	website.

Supporting	all	the	formats	out-of-the-box	is	impractical,	as	it	would	bloat	the	core	with	a	lot	of	logic	people	would	not	be	using,	and
therefore	platform-specific	code	can	be	found	in	the	platform	folder	of	the	Godot	Engine	source	code.	For	rendering	graphics,	the	Godot
Engine	depends	on	the	OpenGL	ES	3.0	API,	thus	any	devices	that	wish	to	execute	projects	made	using	the	Godot	Engine	(this	includes
the	Godot	Editor)	must	have	an	OpenGL	ES	3.0	compatible	operating	system	and	hardware.

Internationalization	Perspective

The	game	market	is	a	global	one,	therefore	by	including	localization,	games	can	reach	a	larger	audience.	One	of	the	functionalities	the
Godot	Engine	offers	is	support	for	internationalization.

The	internationalization	system	in	Godot	is	based	on	the	well-established	gettext/PO	files	workflow,	although	using	a	tailor-made
parsing	and	integration	of	the	translated	strings	that	does	not	rely	on	gettext.	Strings	that	users	will	see	can	be	wrapped	in	the	TTR()-
function.	The	supplied	strings	are	used	as	keys	for	looking	up	alternative	translations.	When	no	translation	is	available,	the	function	will
return	the	original	string.	Translations	can	be	imported	into	game	projects	as	resources.	The	Translation	class	maps	one	string	to	another
string,	and	the	Translation	Server	singleton	manages	all	the	translations.	Godot	has	a	special	importer	for	CSV-files	and	for	.po-files.

The	Godot	Engine	supports	Unicode,	so	languages	with	diverse	characters	such	as	Chinese,	Japanese,	and	Arabic	can	be	encoded	as
well.	The	Godot	Docs	has	a	list	of	all	the	supported	languages.

Translating	the	Godot	Editor

The	work	of	translating	the	Godot	Editor	is	being	crowdsourced	to	the	community	through	Weblate,	a	free	web-based	translation	tool
that	supports	the	use	of	GitHub	for	version	control	integration,	with	translations	to	45	languages	(including	Pirate(!))	in	progress	as
shown	on	the	Godot	project	page	on	Weblate.	Users	can	fill	in,	correct	and	confirm	translations,	and	even	add	new	languages.	Weblate
generates	.po-files.	Occasionally,	one	of	the	Godot	core	developers	will	synchronize	the	translations	from	Weblate	with	the	git
repository.

Technical	Debt

When	a	coding	team	decides	to	achieve	something	using	suboptimal	means	that	only	solve	the	imminent	problem,	what	they	are	doing	is
essentially	borrowing	time	and	manpower	from	the	future,	since	replacing	it	down	the	line	will	end	up	taking	even	more	time	and
manpower	than	what	the	team	borrowed.	This	concept	is	referred	to	as	'Technical	Debt'.

Analysis	of	Technical	Debt

Code	Debt

Thanks	to	the	excellent	workflow	model	of	the	project,	code	debt	is	relatively	rare	in	the	Godot	project.	Most	contributors	assign
themselves	to	an	issue	or	feature,	and	then	work	to	solve	it,	something	which	gives	each	pull	request	a	clear	goal.	Moreover,	the	project
manager,	Rémi,	with	help	from	other	senior	contributors,	inspect	every	pull	request	and	conduct	proper	code	reviews	to	ensure	certain
quality	standards.	Since	the	Godot	Project	is	community-developed	and	not-for-profit,	the	developers	do	not	need	to	rush	production	to
meet	deadlines,	something	which	therefore	results	in	less	amount	of	‘hacks’	that	aim	in	only	addressing	something	in	the	short-term.

Godot

108

https://en.wikipedia.org/wiki/Gettext
http://docs.godotengine.org/en/3.0/tutorials/misc/locales.html#doc-locales
https://weblate.org/en/
https://hosted.weblate.org/projects/godot-engine/godot/
https://github.com/godotengine/godot/blob/master/editor/translations/pr.po
https://www.techopedia.com/definition/27913/technical-debt

As	the	lead	developer	and	one	of	the	original	creators	of	the	engine,	Juan	is	very	much	concerned	with	keeping	the	core	engine	optimized
and	the	code	base	maintainable,	therefore	he	followed	the	SOLID	principles	during	the	development	of	the	engine.	The	Single
Responsibility	Principle	can	be	observed	in	individual	classes,	while	other	principles	can	be	observed	in	the	way	the	class	inheritance
and	interface	are	designed.

High-Level	Debt

The	largest	part	of	the	code	base	is	written	in	C++03	which	by	now	is	a	relatively	old	version,	however,	to	compile	the	Godot	Engine,	a
C++11	compiler	is	required	as	some	features	of	this	version	are	used	in	the	code.

Historical	Analysis

As	demonstrated	in	this	issue,	developers	have	discussed	converting	everything	to	fit	more	recent	versions	of	the	C++	language,
however	there	are	no	plans	to	actually	implement	this	anytime	soon.

Just	like	the	programming	language	issue,	there	has	been	some	discussion	about	changing	to	another	build	system,	however	there	are	no
plans	to	act	upon	it	in	the	near	future.	One	of	the	developers	said:

"It's	hard	to	deny	that	a	flawed	but	existing	and	working	and	reliable	system	is	better	than	a	potentially	more	efficient,	yet
mostly	theoretical	and	difficult	to	(re)implement	one"

Documentation	Debt

Proper	documentation	is	of	paramount	importance	in	every	project,	but	more	so	in	one	as	big	and	complex	as	a	game	engine.
Documentation	in	this	case	is	important	for	both	developers	and	users,	since	it	can	assist	them	in	understanding	what	the	code	is
supposed	to	do,	so	adjusting	or	adding	to	it	can	be	less	complicated,	and	it	can	help	game	developers	understand	the	use	of	the	different
functionalities	available	to	them.	So	in	turn,	documentation	debt	can	be	detrimental	to	the	manageability	of	a	project,	and	especially	of	an
open	source	one	where	everyone	can	make	contributions.

	

	

Historical	Analysis

Extensive	documentation	exists	in	the	previously	mentioned	GitHub	repository,	however	the	main	problem	is	that	in	many	cases	pull
requests	with	no	documentation	are	merged,	something	that	will	cause	problems	in	the	future.

Project	Debt

As	can	be	seen	from	previous	sections,	the	backlog	of	issues	continues	to	grow	and	there	is	no	process	in	place	to	pay	of	this	debt.	The
bulk	of	organizing	this	large	amount	of	issues	falls	to	the	Project	Manager,	Rémi,	who	has	other	tasks	and	responsibilities	related	to
Godot,	and	can	be	unavailable	at	times.	While	other	developers	have	the	privileges	to	add	labels	and	milestones	to	issues,	most	of	them
are	hesitant,	believing	Rémi	and	Juan	to	have	a	better	judgment	on	these	issues.	This	causes	work	to	pile	up,	increasing	the	backlog.
Having	so	few	people	carry	so	much	responsibility	is	a	technical	debt,	as	it	will	be	difficult	to	replace	them	when	they	are	unavailable.
Also,	there	is	a	need	for	more	developers	to	contribute	to	the	project,	especially	those	with	an	expertise	in	some	of	the	more	specialized
areas	that	require	high	level	mathematics,	such	as	rendering.

Historical	Analysis

Efforts	have	been,	and	are	being	made	to	pay	off	this	technical	debt.	When	Rémi	is	overwhelmed	by	the	workload,	he	has	in	the	past
used	the	mailing	list	to	call	out	for	help.	On	a	semi-regular	basis,	the	core	developers	get	together	on	the	development	IRC	channel	to	do
PR	reviews	together,	which	is	a	good	opportunity	to	have	several	developers	give	their	opinion	on	changes	that	are	under	discussion.

Godot

109

https://github.com/godotengine/godot/issues/9694
http://godot.eska.me/irc-logs/devel/2018-02-06.log
https://github.com/godotengine/godot-docs
https://listengine.tuxfamily.org/godotengine.org/devel/2018/03/msg00003.html

To	compensate	for	the	lack	of	skilled	developers,	an	approach	that	has	been	used	in	the	past	is	to	replace	code	written	by	Godot
developers	with	better-performing	third-party	libraries,	with	an	example	being	the	physics	system,	which	is	being	phased	out	of	the
project,	now	that	the	Bullet	physics	library	has	been	fully	integrated.

Part	of	the	money	raised	by	the	Patreon	campaign	will	be	used	to	hire	some	of	the	skilled	core	developers	of	the	project	to	spend	more
time	working	on	the	more	difficult	areas	of	the	code	base.

Solutions

Using	an	old	version	of	C++	has	already	created	some	technical	debt	and	could	create	a	lot	more	in	the	future,	especially	since	using	an
older	version	of	a	language	always	comes	with	the	risk	of	code	becoming	obsolete.	We	recommend	keeping	the	discussion	going	and
perhaps	begin	to	slowly	port	code	over	so	that	the	amount	of	work	necessary	will	be	less,	when	the	decision	is	finally	made.

To	avoid	further	documentation	debt,	we	suggest	that	contributors	are	encouraged	to	document	their	pull	requests,	and	in	the	case	of
new	feature	additions,	we	recommend	not	merging	them	until	the	authors	provide	sufficient	documentation.	For	existing	documentation
debt,	we	suggest	having	a	dedicated	team	of	developers	track	undocumented	features,	and	either	contact	the	authors	to	provide
documentation,	or	examine	the	code	and	write	documentation	directly.

Certain	older	issues	are	not	relevant	anymore,	so	it	would	be	prudent	to	create	issue-testing	teams,	with	the	task	of	verifying	whether
they	have	already	been	addressed.	If	so,	they	can	be	closed,	otherwise	they	can	be	assigned	to	the	upcoming	milestone	so	that
developers	will	have	a	look	at	it	when	a	new	release	approaches.

Conclusion

Game	development	is	known	for	code	being	written	in	an	unstructured	manner	as	scope	is	changing	constantly.	A	game	engine	on	the
other	hand,	is	an	on-going	project	that	needs	to	have	a	well	defined	architecture,	that	is	robust	as	well	as	flexible.	It	has	to	be	able	to
provide	tools	so	that	game	developers	are	free	to	explore	different	genres	and	features	for	their	games.	In	our	analysis	we	found	the	most
important	qualities	for	a	game	engine	system	to	be	stability,	portability,	maintainability	and	modifiability.	Stability	is	maintained	by
constant	testing	by	the	user	base.	The	code	base	is	kept	maintainable	by	diligent	code	review	by	the	core	developers,	giving	the	project	a
high	level	of	code	quality	despite	being	worked	on	mostly	by	volunteers.	Long	term	solutions	are	prefered	and	quick	fixes	avoided	as
much	as	possible.	The	layered	architecture	for	the	Godot	Engine	separates	platform-independent	from	platform-dependent	code	to
facilitate	portability	to	various	platforms.	Interfaces	to	the	engine	can	be	used	so	that	developers	can	create	modules	that	expand	the
functionalities	of	the	engine	making	the	engine	very	modifiable.

While	many	issues	remain,	we	are	confident	that	with	the	help	of	the	excellent	workflow,	clear	architectural	model,	and	enthusiasm	from
the	community,	the	Godot	Engine	will	not	crumble	to	its	technical	debts,	but	will	instead,	grow	even	better	over	time.

Godot

110

https://www.patreon.com/godotengine

JENKINS:	Build	great	things	at	any	scale.

Contributors:

Federico	Fiorini	(4743105)
Jeroen	Vrijenhoef	(1307037)
Ka	Wing	Man	(4330714)

Abstract
Jenkins	is	the	leading	open	source	automation	server,	which	provides	an	efficient	and	user-friendly	way	to	support	building,	testing,
deploying	and	automating	any	project.	The	aim	of	the	entire	project	is	to	meet	each	developer's	needs	by	providing	not	only	the	Jenkins
automation	server	itself,	but	also	a	list	of	hundreds	possible	plugins	which	could	be	used	to	enhance	Jenkins'	capabilities.	This	chapter
provides	different	views	and	perspectives	of	the	project,	with	the	aim	to	create	the	possibly	most	complete	overview	of	the	architecture
itself	and	all	the	things	that	are	involved	around	it.	These	views	and	perspective	range	from	the	stakeholders	analysis	to	the	developers
perspective,	highlighting	the	key	architectural	and	functional	features	of	Jenkins	(and	how	it	interacts	with	its	plugins).	Furthermore,	we
will	conclude	the	chapter	presenting	an	evolution	perspective	to	highlight	the	key	phases	of	the	development	of	Jenkins,	and	a	brief
conclusion	of	what	we	think	of	the	project	itself.

Acknowledgments:	We	thank	former	team	member	Haris	Adzemovic	for	his	contributions	to	this	chapter.

Introduction
Jenkins	is	a	continuous	integration	tool,	having	over	hundreds	of	plugins	that	provide	support	for	automating	tasks	like	building,	testing,
delivering	and	deploying	the	users'	own	projects,	running	tests	to	detect	bugs	and	other	issues	and	doing	static	code	analysis,	so	that
users	can	actually	spend	their	time	doing	things	machines	cannot.	[1].	The	tool	is	a	Java-based	program	with	packages	for	Windows,
Mac	OS	X	and	other	Unix-like	operating	systems.	The	tool	is	accessed	and	configured	on	its	web	interface	and	the	tool	can	be,	as
mentioned	before,	extended	via	its	plugin	architecture,	being	able	to	provide	(possibly)	infinite	functionalities	for	Jenkins.	Jenkins	can
also	distribute	work	across	several	devices,	making	Jenkins	tasks	across	multiple	platforms	faster.

The	Jenkins	project	is	open-source	and	though	it	has	its	main	development	team	that	does	most	programming,	everybody	can	contribute
and	make	pull	requests	to	the	project.	Not	only	writing	lines	of	codes,	users	can	also	help	translating,	make	documentation	and	test	the
project.

In	the	Jenkins	project,	you	might	see	some	associations	with	Hudson,	another	continuous	integration	tool	developed	by	Sun
Microsystems	(owned	by	Oracle	Corporation).	This	is	because	Jenkins	is	a	fork	of	Hudson,	made	in	early	2011	[2].

This	chapter	provides	an	overview	of	the	Jenkins	projects,	to	show	the	reader	how	the	project/community	of	Jenkins	is	built	up.	Next,
the	chapter	identifies	the	stakeholders	and	integrators	of	the	project,	as	well	as	a	context	view	in	which	Jenkins	is	placed.	Then,	it
provides	both	a	functional	and	a	development	view	of	the	project,	explaining	the	structure	of	the	project	in	terms	of	interfaces	and

Jenkins

111

modules.	The	last	part	contains	an	overview	of	the	technical	debt	of	the	project.

Stakeholders	Analysis
Acquirers	
Oversee	the	procurement	of	the	system	or	product
The	Governance	board	members	acts	as	acquirers	of	the	project.	The	board	is	involved	in	making	the	ultimate	decision	when	the	issues
cannot	be	resolved	by	the	community	of	the	Jenkins	project.	The	members	of	the	board	can	be	found	on	the	Governance	Board	Page.
The	members	(at	the	time	of	writing	this	document)	are		R	Tyler	Croy	,		Kohsuke	Kawaguchi		and		Dean	Yu		[4]	[5].

Assessors	
Oversee	the	system’s	conformance	to	standards	and	legal	regulations
The	governance	board	also	acts	as	a	public	representative	of	the	project	and	therefore	are	most	likely	the	ones	that	deal	with	standards
and	legal	regulations	[4].

Communicators
Explain	the	system	to	other	stakeholders	via	its	documentation	and	training	materials
Jenkins	also	has	a	website	with	documentation,	a	blog,	users	mailing	list,	developers	mailing	list,	a	Wiki,	Twitter	account	and	so	on.
They	could	be	used	to	communicate	with	stakeholders	of	this	project	[1].

There	are	also	companies	who	offer	support	ranges	from	training	for	using	Jenkins	to	consultancy	on	the	software.	One	of	these
companies	is	Cloudbees,	where	the	Jenkins	creator		Kohsuke	Kawaguchi		works.

Developers
Construct	and	deploy	the	system	from	specifications	(or	lead	the	teams	that	do	this)
As	this	is	an	open	source	project,	everybody	may	contribute	to	this	project	and	thus	the	code	contributors	to	this	project	can	play	the
role	of	developers.	These	contributions	include	bug	fixes	and	new	features.

Maintainers
Manage	the	evolution	of	the	system	once	it	is	operational
The	maintainers	are	people	who	fix	bugs	and	add	new	features	to	the	project	after	it	has	been	launched.	They	are	also	responsible	for
actual	accepting	and	rejecting	pull	requests	and	pull	request	code	review.	Everybody	who	has	been	contributing	with	code	belongs	to	the
group	of	maintainers.

The	top	5	people	reviewers	in	26-01-2018	–	26-02-2018.	The	ones	in	italics	actually	merged	the	pull	requests.

1.	 oleg-nenashev	31
2.	 daniel-beck	20
3.	 Jglick	11
4.	 Wadeck	9
5.	 MarkEwaite	5

Support	staff
Provide	support	to	users	for	the	product	or	system	when	it	is	running
Jenkins	does	not	have	an	official	support	staff	which	you	can	contact	if	you	need	any	help	with	Jenkins.	Support	can	be	given	by	the
community	of	Jenkins	instead.

Infrastructure	admins
The	Infrastructure	admins	have	root	access	to	several	servers	and	build	slaves	that	run	on	the	domain		jenkins-ci.org		and	the	other
sub-domains.	Their	tasks	is	to	keep	the	aforementioned	servers	running,	installing	new	software,	coordinating	mirrors,	handling	keys	and
certificates	and	make	sure	that	the	comunity	keeps	updating	the	Jenkins	project	with	code.	The	admins	also	often	appoint	others	to
delegate	some	partial	access	to	the	system	to	complete	some	tasks.	The	list	of	admins	can	be	found	on	the	Infrastructure	Administrators
page	[4]

Contributor
As	specified	before	(and	by	Jenkins	website),	basically	anyone	can	contribute	to	the	project.	This	means	not	only	write	code	for	the
core	or	its	plugins,	but	basically	anything	related	to	the	project	itself,	namely	translators,	documentation	makers,	testers,	and	so	on.

Jenkins

112

That	means	that	a	contributor	is	not	strictly	identified	as	a	developer	or	a	tester,	but	could	be	anything	at	any	time	(there's	no	indication
related	to	the	fact	that	a	contributor	can	switch	its	role	inside	the	project).	Therefore,	in	open	source	projects	the	contributor	can	be	seen
as	a	different	kind	of	stakeholder	with	(often)	the	same	functions	as	a	developer,	but	maybe	with	less	decisional	power	or	who	is	part	of
the	online	community	and	not	of	the	company/organisation.

Stakeholder	involvement

Another	way	to	classify	the	stakeholders	is	to	classify	them	by	the	power	to	be	able	to	change	the	system	and	by	their	interest	in	the
system.

1.	 Official	Jenkins	members	
The	people	who	are	officially	associated	with	Jenkins	in	any	way.

2.	 Jenkins	Community	
The	Jenkins	community	is	the	community	that	helps	contribute	in	Jenkins	in	any	way	(e.g.	code,	documentation	etc).

3.	 Developers	community	
Developers	are	the	users	that	uses	Jenkins	for	their	own	projects.

4.	 Communicators	
See		R&W	Stakeholders		section

Fig.	1	-	Power-Interest	Grid	for	Jenkins'	stakeholders

Jenkins

113

Integrators
It's	possible	to	identify	Daniel	Beck	and	Oleg	Nenashev	as	the	main	integrators	[6],	as	they're	involved	in	every	pull	request;
moreover,	their	work	is	coadiuvated	by	a	restricted	(and	private)	group	of	contributors,	namely	the	jenkinsci/code-reviewers,	which
helps	the	two	major	integrators	in	the	reviewing	process.	The	integrators	decide	whether	to	accept	a	change	based	mainly	on	code
quality	and	both	project	and	technical	fit;	in	case	the	code	has	some	problems,	they	usually	propose	changes	using	long	discussions	and
reviews,	in	which	usually	ask	the	contributor	to	explain	why	he/she	has	made	that	choice.	Last	but	not	least,	they	focus	on	testing:	in
fact,	in	order	to	accept	a	pull	request,	that	has	to	pass	from	an	automatic	code	checking	and	testing	(named	continuous-
integration/jenkins/pr-head)	which	highlights	if	the	code	has	failures	and,	in	that	case,	it	needs	a	further	review.	Most	of	the	times,	if	the
code	proposed	doesn't	pass	the	tests,	no	merge	is	performed.	The	acceptance	time	ranges	generally	from	one	day	to	one	week,
depending	on	how	fast	the	debate	for	a	pull	request	goes	and	on	how	"important"	the	contributor	is:	if	it's	a	top	developer,	the
discussion	would	take	less	time	and	usually	those	PRs	are	closed	within	one	day.

Context	View

System	Scope

Jenkins	is	a	self-contained,	open	source	automation	server	built	in	Java	which	can	be	used	to	automate	all	sorts	of	tasks	related	to
building,	testing,	and	delivering	or	deploying	software.	It	works	along	Docker,	a	container-virtualisation	software,	and	JRE	(Java
Runtime	Environment).	Both	should	be	installed	while	trying	to	install	and	setup	Jenkins.

It	works	with	all	operating	systems:	Windows,	MacOS	and	other	Unix-based	OSs.

It	can	be	enhanced	with	many	plugins,	extending	its	functionality	for	every	user's	demand;	they're	provided	and	can	be	downloaded
through	the	Update	Centre.	[7]	They	can	also	be	browsed	using	the	plugin	browser.	[8]

It	can	either	run	on	a	single	PC	or	a	distributed	system,	in	order	to	spread	the	computational	load.

Through	special	files	(jenkinsfile)	or	the	Blue	Cloud	interface	(included	in	the	basic	plugin	package)	it	is	possible	for	users	to	define
and	manage	their	own	workflows	("pipelines").

It's	also	possible	to	access	details	such	as	instance	log	files	or	console	outputs	to	see	if	the	build/execution/test/etc.	is	working	as
predicted

Users	can	be	notified	during	the	execution	of	a	pipeline.

External	entities	involved

Jenkins	(more	precisely,	its	core)	have	to	interact	with	many	entities,	which	are	both	internal	and	external	systems.	The	most	important
internal	systems	with	which	the	core	interacts	are	the	Jenkins	plugins,	as	many	use	cases	for	the	system	involve	at	least	some	basic
plugins.	There's	a	frequent	interaction	between	core	and	plugin	while	the	system	is	working,	and	it's	all	managed	by	the	code	and
therefore	completely	automated	(so	it's	basically	transparent	to	users).	These	plugins	act	as	both	service	and	data	providers	and
consumers,	as	they	need	the	core	for	their	functionality	and	they	extent	the	core's	capabilities	or	features.	Another	internal	system	is	the
so-called	Jenkins	Remoting	[9],	which	is	a	library	and	an	executable	Java	archive	which	implements	the	communication	layer	in	Jenkins.
This	system	is	essential	for	the	correct	operations	of	the	core	as	it	provides	all	procedures	and	protocols	that	allow	communication
between	all	system's	components	through	a	network.	The	core	and	the	remoting	system	interact	frequently	and	it's	all	transparent	to
users	as	well.

There	are	also	several	external	systems	with	which	the	core	interacts:

[Jenkins	Infrastructure]
Since	it's	an	independent	and	open	source	project,	the	entire	infrastructure	on	which	Jenkins	is	running	is	maintained	along	with	the
project.	It	can	be	considered	as	external	because	it's	not	directly	part	of	the	core	itself,	but	it	interacts	with	it	as	the	core	needs	the

Jenkins

114

infrastructure	to	work.	Moreover,	it's	needed	in	all	use	cases	that	require	Jenkins	to	be	distributed.	[10]	It's	possible	to	have	failures
in	the	infrastructure,	but	there	might	be	redundancy	measures	to	preserve	Jenkins'	functionalities.

Github	and	other	communication	means
GitHub	is	the	principal	tool	for	project	management,	versioning	and	communication	used	by	Jenkins.	It's	also	the	primary	source
for	the	code,	and	all	contributors	must	use	it	to	make	their	own	modifications	(either	fixes	or	new	features).	Jenkins	communicates
with	Github	in	several	ways,	for	example	if	the	results	of	the	builds	of	other	projects	that	uses	Jenkins	are	shown	on	the	Github
webpage.	Github	is	also	used	for	integrating	builds.	Other	communication	means	include	mailing	lists,	forums	and	also	a	dedicated
Issue	Tracker	website.	[11]

Java	and	Docker
Java	and	Docker	are	required	for	the	installation	of	Jenkins,	and	therefore	they	can	be	mentioned	as	two	major	external	systems
with	which	Jenkins	interacts.	Java	provides	the	framework	and	the	programming	language,	while	Docker	provides	a	virtualisation
means	[12].	They're	both	vital	in	order	for	the	system	to	work,	and	their	interactions	are	completely	hided	from	the	users,	as
they're	all	automated	by	the	code.

Context	View	Explanation
The	final	context	view	can	be	seen	in	the	diagram	below:	

Fig.	2	-	Context	Diagram	for	Jenkins

As	it	has	said	before,	Jenkins	and	its	many	plugins	live	symbiotically.	There	are	very	few	use	cases	where	anyone	would	use	Jenkins
without	any	plugins	at	all.	The	only	feasible	use	cases	we	have	come	up	with	are	related	to	development	of	Jenkins	itself.	All	other	use
cases	include	at	least	some	basic	plugins	such	as	the	Green	Balls	plugin,	which	colors	the	icons	of	tests'	status	in	more	intuitive	colors
than	the	core	package	offers.	Since	most	users	rely	on	plugins,	the	Jenkins	core	team	is	very	careful	not	to	break	plugin	compatibility
while	upgrading	the	core	since	this	could	lead	to	user	abandonment	if	their	workflow	is	interrupted.	The	plugins	themselves	of	course
also	rely	on	Jenkins	as	without	a	working	core,	they're	useless.

Communication	is	spread	out	over	many	entities	as	the	bigger	plugins	often	have	their	own	websites,	forums,	mailing	lists	etc.	Jenkins
itself	mostly	uses	GitHub,	mailing	lists	and	its	own	website	[1].	Documentation	is	handled	by	the	open	source	community	and	available
through	the	same	channels	as	the	communication.

Jenkins

115

Development	of	Jenkins	is	done	by	the	open	source	community.	Oleg	Nenashev	and	Daniel	Beck	are	two	identified	main	integrators
who	approve	and	merge	pull	requests.	Development	of	plugins	is	individual	for	each	plugin.

Functional	View
This	chapter	focuses	on	the	architectural	elements	of	Jenkins	that	deliver	its	functions	at	runtime

Capabilities

The	key	capabilities	offered	by	Jenkins	are:

Continuous	integration	and	delivery

Extensibility

Ease	of	configuration

Maintaining	backwards	compatibility

Dedicated	CLI	for	different	types	of	users

In	that	sense,	Jenkins	is	expected	to	provide	an	efficient	service	that	helps	developers	in	building,	testing	and	delivering	their	projects.	In
order	to	provide	a	better	user	experience,	and	to	help	users	to	personalize	the	building	processes,	Jenkins	is	designed	to	be	extensible,	in
the	sense	that	it's	possible	to	install	multiple	plugins	and	configure	them	easily	to	meet	the	developers'	needs.	Next	we	point	out	some
of	the	architectural	principles	that	might	have	been	used	in	designing	Jenkins:

Ease	of	extension

High	separation	of	functionalities	and	concerns

Loose	coupling	for	core	functionalities

Interfaces	and	structure
The	following	image	gives	a	high-level	view	of	the	runtime	model	of	Jenkins:

Jenkins

116

Fig.	3	-	Functional	interfaces	and	entities	for	Jenkins

It's	possible	to	identify	some	external	interfaces,	such	as:

extension	points

web	client,	user/admin/infrastructure	CLI:

remoting

In	particular,	extension	points	are	used	to	extend	core's	and	cli's	capabilites	and	create	new	plugins,	which	will	need	the	core	itself	in
order	to	work	and	to	provide	new	functionalities	and	tools.	They're	basically	interfaces	and	abstract	classes	or	methods	which	can	be
extended	for	whatever	use.	Jenkins	Remoting	is	used	to	make	the	CLI	and	the	core	communicating,	especially	in	a	distributed
environment,	and	it's	actually	not	part	of	the	Jenkins	project	itself:	it	only	provides	communication	APIs	and	procedures.	Last	but	not
least,	there	exist	many	user	interfaces,	each	one	of	them	designed	to	be	used	for	specific	purposes:	web	client	and	user	CLI	are	used	by
normal	users	to	install,	upgrade,	manage	and	work	on	Jenkins,	while	the	admin	CLI	is	used	by	system	administratos	to	monitor	Jenkins
and	its	plugins.	The	infrastructure	CLI	is	normally	used	by	the	maintainers	of	the	Jenkins	Infrastructure	sub-project,	and	it's	function	is
to	ease	the	monitoring	of	all	the	components	that	help	Jenkins	to	work.

Jenkins

117

Development	View
This	chapter	is	focusing	on	the	development	view	of	the	Jenkins	project.

Module	Structure
Jenkins	is	a	large	project,	with	a	complex	architecture	consisting	of	several	thousands	of	lines	of	source	code	spread	over	hundreds	of
files:	in	order	to	have	a	better	understanding	of	the	architecture,	as	well	as	for	ease	of	testing	and	maintenance,	the	source	code	is
organized	into	four	different	modules,	each	one	of	them	providing	a	specific	functionality.
The	four	modules	are:

cli	it	provides	the	command	line	interface	for	Jenkins

core	the	core	source	code	for	the	project

test	unit	for	functional	tests	on	the	core	code

war	responsible	to	create	the	.war	file

The	first	three	modules	can	also	be	divided	further	into	submodules.	In	particular,	both	core	and	cli	have	their	own	test	units	inside	the
modules,	which	provide	specific	test	functions	(in	contrast	with	the	more	general	testing	units	provided	in	the	test	module).
Furthermore,	core	module	is	divided	into	two	logical	modules,	named	Jenkins	and	Hudson,	which	are	further	divided	into	modules,	each
of	them	providing	a	different	functionality	to	the	core	itself.	In	the	following	picture	there's	a	quick	overview	of	the	main	modules	in
deep:

	
Fig.	4	-	Module	Structure

Jenkins

118

Module	dependencies

The	following	picture	represents	a	high-level	and	conceptual	view	of	modules	dependencies,	analyzed	through	code	inspection.

Fig.	5	-	Jenkins	module	dependencies

All	dependencies	can	be	found	also	looking	at	the		pom.xml		files	contained	in	each	module,	which	are	Maven	files	concerning	the
project's	properties,	as	well	as	single	modules	properties.	In	particular,	in	each	of	them	there's	a	detailed	list	of	modules	(internal	to	the
project	or	external	libraries)	on	which	a	certain	module	depends.	It's	important	to	point	out	that	there's	an	explicit	relation	between	the
Hudson	and	the	Jenkins	submodules:	in	particular,	lots	of	function	used	in	the	latter	invoke	functions	contained	in	the	former	one.

An	example	of	how	these	dependencies	work	can	be	seen	in	the	following	picture,	which	refers	to	code	analysis	done	using	IntelliJ	IDEA
and	emphasizes	when	these	dependencies	are	needed.

Jenkins

119

Fig.	6	-	Example	of	dependencies	depicted	by	IntelliJ	IDEA

Common	Design

This	section	focuses	on	common	processing	inside	the	Jenkins	project.	It's	further	divided	into	subsection	for	each	important	area

Jenkins	as	common	processing

Jenkins	plugins	can	be	considered	the	most	important	part	of	the	entire	Jenkins	ecosystem,	as	they	provide	augmented	core	capabilities
and	new	tools	or	utilities	to	simplify	user	interaction	or	processes.	In	that	sense,	it's	common	to	say	that	plugins	are	made	to	meet
specific	projects'	needs.	While	their	development	is	not	provided	by	Jenkins	core	developers,	it's	possible	to	state	that	core	and	plugins
are	somewhat	entangled:	in	that	sense,	Jenkins	core	works	as	the	starting	point	for	developing	and	building	new	plugins,	and	they	all	use
its	core	functions	to	work;	moreover,	core	developers	themselves	have	made	the	core's	source	code	in	a	way	that	it	has	some	extension
points,	from	which	it's	possible	to	create	new	plugins	and	functions.

External	libraries	and	dependencies

Jenkins	modules	heavily	depends	on	third-party	libraries	in	order	to	work,	so	it's	important	to	define	the	most	important	dependencies.
Mostly	all	modules	depend	on	a	specific	set	of	libraries,	including:

JUnit4	[13]	,	Mockito	[14],	Powermock	[15]	for	testing	purposes

Apache	Commons	[16]	includes	all	reusable	code	for	I/O	purposes,	authentication	methods,	XML	scripting,	configuration	files,
logging	purposes,	ecc.

Ant	[17]	and	Maven	[18]	for	project	build	and	management

Jenkins

120

Jenkins	Remoting	[19]	for	communication	layer	libraries	and	functions

GitHub	APIs	[20]	to	manage	GitHub	compatibility	with	Java	(directly	developed	by	Kohsuke	Kawaguchi)

Required	design	constraints

The	philosophy	of	the	project	is	to	have	low	barriers	of	entry,	so	basically	anyone	can	contribute	to	the	project.	However,	new
contributors	have	to	adhere	to	the	standards	explained	in	the		contributing.md		file,	which	basically	provides	a	template	for	the	pull
requests	and	an	overview	of	the	procedures.	[21]	Furthermore,	the	developing	team	tries	to	adhere	to	the	Sun	Coding	Convention	[16],
but	they	don't	require	additional	code	formatting	rules;	they	also	require	contributors	to	look	for	an	overall	ease	of	code	understanding,
testing	and	extensibility	while	making	a	contribution,	as	well	as	looking	to	retro-compatibility	(so	it's	not	safe	to	remove	completely
some	functionalities	from	the	codeline).	It	must	be	pointed	out,	however,	that	they	don't	force	contributors	to	use	these	general	coding
conventions.	Citing	the	governance	document:

With	that	said,	we	do	not	believe	in	rigorously	enforcing	coding	convention,	and	we	don’t	want	to	turn	down	contributions
because	their	code	format	doesn’t	match	what	we	use.	So	consider	this	informational.	[4]

Concerning	plugins,	as	the	developing	processes	are	separated,	there	are	no	constraints	at	all,	but	they	can	be	required	by	each	plugin's
developing	team.

Internationalization

Jenkins	is	used	almost	everywhere	in	the	world,	so	having	a	correct	translation	for	messages,	client	interfaces	and	software	itself
enhances	the	user	experience	and	also	helps	contributors	from	different	countries	to	work	on	the	software.	The	internationalization
extension	is	therefore	a	crucial	aspect	of	the	overall	development	of	Jenkins,	and	translators	are	warmly	encouraged	to	contribute.
However,	there	are	a	few	common	aspects	that	translator	need	to	know:

Translation	Tool	and	Translation	Assistance	Plugin	are	possible	tools	to	make	internationalization	contributions	[22]

There	are	three	types	of	resources	that	need	internationalization:

1.	 messages,	which	have	to	be	put	into	the	related		Message.properties	
2.	 Jelly	messages
3.	 static	HTML	references	for	the	website

Once	the	translator	has	done	its	work,	it	can	submit	it	like	normal	code	contributions.

Codeline

Source	Code	Structure

The	source	code	is	organized	according	to	the	module	structure	explained	before,	and	in	each	folder	we	can	see	the		pom.xml		file	needed
to	analyze	dependencies	and	properties	for	that	particular	component.

Jenkins

121

	
Fig.	7	-	IntelliJ	module	representation	for	Jenkins

This	simple	approach	allows	an	easier	understanding	of	where	to	put	the	source	files,	and	the	naming	conventions	used	for	packages	and
directories	further	simplify	the	maintenance	process,	as	it's	possible	to	locate	every	file	with	a	small	effort.

Build,	Integration	and	Test	approach

Jenkins	uses	a	peculiar	approach	when	it	comes	to	build	and	test	new	features	or	fixes,	because	it	uses	Jenkins	itself	to	automate	the
process.	In	that	way,	developers	can	have	direct	feedback	on	the	software's	capabilities	and	functions,	and	it	might	be	helpful	to	spot
new	bugs	or	possible	performance	improvements.	In	addition,	the	building	process	is	further	automated	using	Maven,	and	the	testing
units	are	made	using	automated	tools	such	as	the	Acceptance	Test	Harness.	[23]

Release	Process

In	the	Jenkins	project,	we	can	define	two	types	of	releases	that	can	be	made:

Weekly	Releases	
Used	to	deliver	bug	fixes	and	new	features	rapidly	to	users	and	plugin	developers	who	need	them.	Usually	these	releases	involve
small	or	minor	changes,	and	usually	contains	only	a	few	of	them.

Jenkins

122

Long-Time	Supports	(LTS)	Releases
These	releases	are	made	for	more	conservative	users,	which	don't	need	frequent	updates	in	terms	of	features	or	minor	bug	fixes,	and
they	use	the	same	concepts	applied	for	Ubuntu's	LTSs.	Usually	this	kind	of	release	contains	major	or	crucial	bug	fixes,	and	they	are
made	to	ensure	a	stable	environment	in	which	use	Jenkins.	The	process,	described	briefly	in	the	LTS	download	page,	involves
special	types	of	pull	requests,	which	are	called	candidates	and	are	tested	for	several	weeks	before	being	published.	[24]

Technical	Debt
For	analyzing	the	technical	debt,	we	have	used	static	analysis	tools		CodeFactor		and		Findbugs		[25][26].	Along	with	static	analysis	we
have	also	looked	at	the	test-suite	and	Todo's.	Using		IntelliJ	IDEA	,	we	have	imported	the	Jenkins	project	before	to	do	a	contribution
for	D2.	As	IntelliJ	IDEA	can	also	be	used	for	analyzing	this,	this	IDE	was	also	used	for	analyzing	coding	style.

Code	Quality

CodeFactor

CodeFactor	analyses	every	source	file	contained	in	the	repository	independant	on	what	type	of	language	is	used.	Overall	a	grade	of	B-
(Good)	is	given	to	the	master	branch	of	Jenkins.	The	most	issues	were	found	in	Style	and	Maintainability	categories.	Where	most	of	the
problems	involve	unresolved	warning	statements	and	unused	variables.

Findbugs

The	results	for	the	Findbugs	analysis	for	the	core	and	cli	modules	are	condensed	in	the	table	below.	The	most	prevalent	warnings	in	the
core	module	involve	either	bad	practises,	dodgy	code	and	even	security	related	warnings.	Examples	of	bad	practises	that	are	common	are
shadowing	of	superclass	names	by	base	classes,	incorrect	handling	of	double/float	values	and	improper	exception	handling	(ignoring
exceptions).	Examples	of	dodgy	code	are	potential	integer	overflows	and	null	pointer	dereferences	(which	arguably	should	also	be
security	warnings).	The	security	warning	is	related	to	HTTP	header	parameters	in	server	responses	that	contain	unsanitized	user	input.
Making	it	possible	for	a	user	to	insert	arbitrary	header	fields	in	the	response	by	including	carriage	returns/line	breaks	in	certain	user
input.

The	high	priority	warnings	for	the	cli	module	are	all	internationalization	warnings,	related	to	reliance	of	the	code	on	default	encoding.
This	could	lead	to	problems	when	the	project	is	compiled	on	systems	that	have	different	locale	settings,	as	encoding	is	different.	The
dodgy	code	warning	involves	a	redundant	nullcheck.

Metric core cli

High	Priority	Warnings 96 9

Medium	Priority	Warnings 421 1

Total	Warnings 517 10

Historical	debt

For	the	historical	debt	we	decided	to	analyze	past	releases	of	Jenkins	over	a	time	period	of	~6	months	from	August	2017	to	Februari
2018.	Unfortunately	CodeFactor	does	not	support	analyzing	releases	(only	branches),	so	we	opted	to	use	the	Findbugs	plugin	from
	IDEA	IntelliJ		to	get	an	idea	of	how	the	technical	debt	related	to	buges	changed	over	time.

The	amount	of	bugs	found	found	by	Findbugs	per	category	of	bugs	over	time	in	the	cli	module	are	shown	in	the	table	below.	As	can	be
seen	there	is	only	1	internationalization	warning	removed	in	a	6	month	period.	The	dodgy	code	(redundant	null	check)	is	never	fixed.

Jenkins

123

Warning	Type 8-2017 9-2017 10-2017 11-2017 12-2017 1-2018 2-2018

Internationalization	Warnings 10 10 9 9 9 9 9

Dodgy	code	Warnings 1 1 1 1 1 1 1

Total 11 11 10 10 10 10 10

The	results	for	the	core	module	is	shown	in	the	table	below.	Overall	the	amount	of	bugs	found	is	actually	increasing	over	time.	Some
subcategories	decrease,	such	as	Bad	practise	warnings.	But	when	they	do	other	bug	categories	such	as	correctness	and	dodgy	code
warnings	actually	increase	in	count.	This	indicates	that	while	the	project	is	actively	being	developped	they	also	amount	more	technical
debt.

Warning	Type 8-2017 9-2017 10-2017 11-2017 12-2017 1-2018 2-2018

Bad	practice	Warnings 137 137 137 136 130 137 129

Correctness	Warnings 137 138 138 142 150 140 150

Experimental	Warnings 2 2 2 2 2 2 2

Internationalization	Warnings 52 52 52 52 52 52 52

Malicious	code	vulnerability
Warnings 90 90 90 88 89 90 89

Multithreaded	correctness	Warnings 21 21 21 21 21 21 21

Performance	Warnings 19 19 19 19 19 19 19

Security	Warnings 1 1 1 1 1 1 1

Dodgy	code	Warnings 435 436 437 448 457 443 457

Total 894 896 897 909 921 905 919

Test	Coverage
This	section	contains	the	analysis	of	the	existing	testing	debt	for	the	Jenkins	project.	Every	module	in	the	Jenkins	project	structure	has
its	own	directory	with	a	test	suite.	However,	the	bulk	of	the	functional	testing	for	the	core	and	cli	module	is	done	in	the	test	project.
The	test	suites	that	are	located	in	the	core	and	cli	modules	are	still	being	used	and	contain	mostly	unit-tests	for	their	respective	parent
modules.	These	former	testsuite	contains	6	unit	tests	and	the	latter	contains	3567	unit	tests.	Combined	with	the	functional	test	suite
from	the	test	module	which	contains	9311	tests,	makes	for	a	total	of	12884	tests.	We	did	not	take	the	javascript	test	suite	from	the	war
module	into	consideration.	The	test	module	also	contains	integration	tests	that	test	the	interaction	between	classes.

The	overall	test	coverage	results	for	the	core	and	cli	module	are	summarized	in	the	table	below.	For	brevity,	the	individual	coverage
results	for	modules	are	left	out.

Package Class,	% Method,	% Line,	%

all	classes 77.8%	(1849/	2376) 59.8%	(8468/	14167) 56.3%	(28147/	49986)

When	looking	at	the	overall	coverage	results	the	line	coverage	percentage	of	56.3%	looks	fairly	decent.	However	when	looking	at	the
coverage	at	the	module	level	it	becomes	apparent	that	some	classes	are	very	well	tested,	while	others	are	not	tested	at	all.	For	example
the	core	module	is	completely	lacking	in	unit	tests	for	system	management	functionality	such	as	file	streams	and	there	is	a	lack	of
testing	of	security	related	code	such	as	the	LDAP	authenticator.	It	is	also	important	to	note	that	most	tests	involve	unit	tests	that	test	a
single	method/class	as	opposed	to	integration	tests.

Possible	Improvements

Jenkins

124

The	results	from	all	previous	analysis	indicate	that	there	is	a	lot	of	technical	debt	in	the	Jenkins	project,	and	that	the	debt	touches	on
multiple	aspects	from	the	project.	Looking	at	the	bugreports	from		IDEA	Intellij	,		CodeFactor		and		Findbugs		the	biggest	issues	are
related	to	either	dodgy	code	practises	(that	lead	to	security	vulnerabilities	in	the	code)	and	the	reliance	on	default	encoding.	Code
duplication	and	code	redundancy	is	also	a	big	issue,	indicating	that	a	lot	of	code	should	be	refactored.

The	Jenkins	war	module,	which	contains	the	website	frontend	also	has	a	lot	of	potential	improvements.	Biggest	problems	identified	here
by		CodeFactor		are	missing	gradient	files	for	CSS,	leading	to	bad	browser	support,	lots	of	overqualified	CSS	elements	and	unused
variables.	The	HTML	code	also	contains	a	lot	of	deprecated	tags	and	there	is	a	big	reliance	as	well	on	default	encoding.	The	web
frontend	is	also	a	big	source	of	technical	debt	and	should	be	updated	or	either	completely	rewritten.

Looking	at	the	test	coverage	for	both	the	core	and	cli	project,	it	is	obvious	some	parts	of	the	code	are	well	tested	while	other	parts	are
not	tested	at	all.	Also	adding	more	integration	tests	is	also	a	big	area	of	improvement.

Evolution	perspective
Originally,	Jenkins	was	developed	as	the	Hudson	project,	a	open-source	project	developed	in	Java	by	Sun	Microsystems	[27].	The
development	began	in	the	summer	of	2004	with	the	head	developer	being	Kohsuke	Kawaguchi,	who	worked	for	Sun	Microsystems	and
its	first	release	was	in	February	2005.

After	Oracle	acquired	Sun	Microsystems,	and	therefore	also	Hudson	and	its	trademark	ownership,	the	company	insisted	on	certain
changes	to	the	code,	infrastructure	decisions,	process	etc.	which	Kohsuke	and	other	prominent	members	of	the	Hudson	community
disagreed	to	do	so.	Because	Oracle	had	the	trademark	ownership	of	the	name	Hudson,	it	could	at	any	time	revoke	the	project's	right	to
call	itself	Hudson.

After	the	issue,	votes	were	made	to	change	project	name	from	Hudson	to	Jenkins.	Oracle,	however,	decided	to	continue	the	Hudson
project	under	the	name	of	Hudson.	Thus,	Jenkins	and	Hudson	continued	as	two	independent	projects.

Looking	from	the	split	onward,	Jenkins	has	been	continuously	update	by	the	Jenkins	community,	with	759	releases	being	released	since
the	initial	release	of	Jenkins	in	February	2011	version	1.0.0	to	the	latest	release	in	April	2018	version	2.114	at	time	of	writing	this
chapter.	Major	changes	have	been	made	in	version	2.0,	released	in	April	2016.	[28][29][30].

Jenkins

125

Fig.	8	-	Code	Frequency	diagram

In	the	graph,	there	were	already	commits	even	before	the	Jenkins	and	Hudson	split	issue.	These	commit	might	be	old	commits	from
Hudson	before	the	split,	but	made	to	the	Jenkins	repository	after	it	was	created.	The	time	of	commits	can	be	changed	easily,	not
reflecting	the	real	time	of	committing.

Other	major	releases	can	be	seen	in	the	peeks:

1	-	6.	Version	1.395	to	1.402,	1.410	to	1.420,	1.421	to	14.427,	1.428	to	1.430,	1.438	to	1.441,	1.526	to	1.537:	Lots	of	bug	fixes	and
small	new	features.	Some	of	these	features	are	Hudson	changes	to	Jenkins	and	third-parts	libraries	upgrades.

1.	 Added	infrastructure	for	moving	items	into/out	of	folders.	Addition	of	a	new	API.	Updates	of	libraries.	UI	redesigns.

2.	 Version	2.0:	This	version	requires	Servlet	3.1	and	removed	AJP	support	when	using	embedded	Winstone-Jetty	container,	other
implementations.	Improvement	of	documents.	Lots	of	small	bug	fixes	and	small	new	features.

3.	 Version	1.530	to	1.541:	Core	of	Jenkins	migrated	from	Java	5	to	Java	6.	Lots	of	small	bug	fixes	and	small	new	features.

There	are	still	a	lot	of	issues,	1108	critical	issues	where	no	solution	has	yet	been	committed.	With	more	issues	being	created	than	fixed,	it
seems	more	contributors	are	needed	to	shrink	the	amount	unfixed	issues.

Conclusions
After	all	the	analysis	we	did	on	Jenkins,	we	can	conclude	that	unless	its	complexity	it's	a	very	well-organized	project	when	it	comes	to
the	source	code	structure,	making	it	easy	to	build,	test	and	deploy.	Furthermore,	having	a	community	of	contributors,	testers	and
maintainers	which	gets	bigger	and	bigger	every	year	contribute	to	the	overall	improvement	of	the	project	itself	and	its	plugins	at	each
new	release;	this	also	makes	Jenkins	one	of	the	biggest	open	source	projects	you	can	possibly	find	on	GitHub,	as	shown	by	the
impressive	number	of	repositories	and	forks	of	the	main	repo.	The	analysis	we	performed	during	the	last	weeks	also	helped	us	to
understand	that,	despite	a	good	structure	of	the	code,	there	are	lots	of	possible	improvements	to	the	project	when	it	comes	to	bug	fixing
and	test	coverage,	as	pointed	out	in	the	potential	improvements	section.	Nevertheless,	Jenkins	remains	a	leading	automation	server,	and

Jenkins

126

its	being	open	source	surely	helped	the	great	spreading	this	software	has,	although	it	also	stopped	further	improvements	concerning	test
coverage	and	overall	code	quality	(this	could	be	seen	as	a	direct	consequence	of	being	open	source,	as	well	as	having	low	entry	barriers
for	new	contributors,	but	in	general	it's	not	much	of	an	issue	yet).

References
[1]	Jenkins	Homepage.	https://jenkins.io/	
[2]	Hudson's	future,	blog	post	by	Andrew	Bayer.	https://jenkins.io/blog/2011/01/11/hudsons-future/
[3]	Jenkins	governance	board.	https://wiki.jenkins.io/display/JENKINS/Governance+Board
[4]	Jenkins	governance	document.	https://jenkins.io/project/governance/
[5]	Jenkins	commercial	support.	https://wiki.jenkins.io/display/JENKINS/Commercial+Support
[6]	Integrators,	blog	post	by	Georgios	Gousios.	http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html
[7]	Jenkins	update	centre.	https://updates.jenkins.io
[8]	Jenkins	plugins	browser.	https://plugins.jenkins.io
[9]	Jenkins	Remoting	project	homepage.	https://jenkins.io/projects/remoting/
[10]	Jenkins	Infrastructure	project	homepage.	https://jenkins.io/projects/infrastructure/
[11]	Jenkins	JIRA	Issue	Tracker.	https://issues.jenkins-ci.org/secure/Dashboard
[12]	Docker	and	Jenkins	Homepage.	https://jenkins.io/solutions/docker/	[13]	JUnit4	Homepage.	https://junit.org/junit4/
[14]	Mockito	Homepage.	http://site.mockito.org
[15]	PowerMock	GitHub	page.	https://github.com/powermock/powermock
[16]	Apache.org	Homepage.	https://commons.apache.org
[17]	Ant	Homepage.	http://ant.apache.org
[18]	Maven	Homepage.	https://maven.apache.org
[19]	Jenkins	Remoting	project	homepage.	https://jenkins.io/projects/remoting/
[20]	GitHub	APIs,	Kohsuke	Kawaguchi.	http://github-api.kohsuke.org
[21]	Contributing.md	file	on	jenkinsci/jenkins.	https://github.com/jenkinsci/jenkins/blob/master/CONTRIBUTING.md
[22]	Sun	Coding	Convention.	http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
[23]	Jenkins	acceptance	test	harness.	https://github.com/jenkinsci/acceptance-test-harness
[24]	Jenkins	wiki	page.	https://wiki.jenkins.io/display/JENKINS/
[25]	Jenkins	LTS	download	page.	https://jenkins.io/download/lts/
[26]	CodeFactor	Homepage.	https://www.codefactor.io
[27]	FindBugs	Homepage.	http://findbugs.sourceforge.net
[28]	Jenkins	release	1.936	blog	post.	http://jenkins-ci.361315.n4.nabble.com/Jenkins-1-396-released-td3257106.html	
[29]	Jenkins	changelog	(old	version).	https://jenkins.io/changelog-old/
[30]	Jenkins	changelog.	https://jenkins.io/changelog/

Jenkins

127

https://jenkins.io/
https://jenkins.io/blog/2011/01/11/hudsons-future/
https://wiki.jenkins.io/display/JENKINS/Governance+Board
https://jenkins.io/project/governance/
https://wiki.jenkins.io/display/JENKINS/Commercial+Support
http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html
https://updates.jenkins.io
https://plugins.jenkins.io
https://jenkins.io/projects/remoting/
https://jenkins.io/projects/infrastructure/
https://issues.jenkins-ci.org/secure/Dashboard
https://jenkins.io/solutions/docker/
https://junit.org/junit4/
http://site.mockito.org
https://github.com/powermock/powermock
https://commons.apache.org
http://ant.apache.org
https://maven.apache.org
https://jenkins.io/projects/remoting/
http://github-api.kohsuke.org
https://github.com/jenkinsci/jenkins/blob/master/CONTRIBUTING.md
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
https://github.com/jenkinsci/acceptance-test-harness
https://wiki.jenkins.io/display/JENKINS/
https://jenkins.io/download/lts/
https://www.codefactor.io
http://findbugs.sourceforge.net
http://jenkins-ci.361315.n4.nabble.com/Jenkins-1-396-released-td3257106.html
https://jenkins.io/changelog-old/
https://jenkins.io/changelog/

Kubernetes	-	Container	Orchestration
By	Enreina	Annisa	Rizkiasri,	Francisco	Morales,	Haris	Suwignyo,	and	Mohammad	Riftadi.	Delft	University	of	Technology

Table	of	Contents

Introduction
Stakeholders
Functional	View
Context	View
Development	View
Evolution	Perspective
Technical	Debt
Conclusion
References

Introduction

Kubernetes	is	an	open	source	system	for	managing	containerized	applications	across	multiple	hosts;	providing	basic	mechanisms	for
deployment,	maintenance,	and	scaling	of	applications	[1].	After	Google	and	the	Linux	Foundation	established	a	partnership	and
announced	Kubernetes	1.0	in	2015,	Kubernetes	was	taken	as	the	flagship	project	under	the	umbrella	of	the	Cloud	Native	Computing
Foundation	(CNCF)	[2].	Nowadays,	it	is	one	of	the	most	used	orchestration	system	for	containerized	applications,	with	a	large	base	of
users,	partners,	and	an	active	development	community.

Kubernetes	provides	a	centralized	management	environment	for	containers,	microservices,	and	cloud	platforms.	It	orchestrates
computing,	networking,	and	storage	infrastructure	on	behalf	of	the	user.	Thus,	it	combines	the	simplicity	of	Platform	as	a	Service	(PaaS)
with	the	flexibility	of	Infrastructure	as	a	Service	(IaaS),	enabling	portability	across	infrastructure	providers.

In	this	chapter,	we	cover	who	is	involved	in	the	development	and	growth	of	Kubernetes;	we	describe	its	context	view	and	its	functional
building	blocks.	Afterwards,	we	dive	into	the	development	practices	inside	Kubernetes,	describing	its	module	organization	and	common
designs.	We	also	analyze	the	presence	of	technical	debt	in	Kubernetes	project	and	how	it	has	evolved.	Finally,	we	present	our
conclusions	regarding	the	architecture	of	this	project.

Stakeholders

Identifying	Stakeholders

In	order	to	understand	the	stakeholders'	interests	around	such	a	large	project	as	Kubernetes,	it	is	necessary	to	introduce	the	Cloud
Native	Computing	Foundation	(CNCF)	first.	CNCF	was	born	from	a	partnership	between	Google	and	the	Linux	Foundation	when
Kubernetes	1.0	was	announced	in	2015	and	considered	as	its	flagship	[3].	Since	then,	many	cloud	computing	and	IT	industry	players
plus	other	related	organizations	have	joined	CNCF	to	incubate,	develop,	and	maintain	an	ecosystem	of	cloud	projects	under	a	shared,
common	vision.	CNCF	members	are	distributed	in	Platinum,	Gold,	Silver,	End-User,	Academic	and	Non-profit	membership	levels.
Leading	CNCF	members,	which	include	Google,	Docker,	IBM,	VMware,	Cisco,	Red	Hat,	and	Oracle,	own	a	Platinum	membership
among	others.

Kubernetes

128

https://github.com/enreina
https://github.com/nidorano
https://github.com/harissuwig
https://github.com/riftadi
https://kubernetes.io/
https:///www.cncf.io

To	identify	Kubernetes	stakeholders,	we	follow	the	categories	from	the	book	Software	Systems	Architecture	by	Nick	Rozanski	and
Eoin	Woods	[4].	The	main	Kubernetes	stakeholders	are	found	as	part	of	the	CNCF	or	the	Kubernetes	general	community.	CNCF's
charter	defines	several	organization	divisions	with	representatives	from	different	CNCF	members.	Stakeholders'	roles	can	be	matched	to
these	organization	divisions	and	to	other	groups	derived	from	the	CNCF	members	and	the	general	Kubernetes	community	as	described
next.

There	are	three	high-level	divisions	inside	CNCF,	which	is	a	key	aspect	of	stakeholder	identification:	Governing	Board,	Technical
Oversight	Committee	(TOC),	and	the	End	User	Technical	Advisory	Board	(TAB).	The	Governing	Board	(Acquirer,	Assessor,	mostly
formed	by	Platinum	CNCF	members)	is	responsible	for	budget	decisions,	marketing	(Communicator,	through	a	Marketing	Committee),
and	defining	and	enforcing	policies	regarding	the	use	of	trademarks	and	copyrights	of	the	foundation.	The	Technical	Oversight
Committee	(Assessor)	is	expected	to	define	and	maintain	the	technical	vision	for	the	CNCF,	align,	remove	or	archive	projects,	define
common	practices	to	be	implemented	across	CNCF	projects,	among	other	duties.	The	End	User	TAB	(User)	receives	the	input	from	the
End	User	community	(CNCF	members	and	no	members)	to	coordinate	and	drive	activities	important	to	the	users	and	consumers	of
CNCF	projects.	Some	specific	Kubernetes	end	users	include	Huawei,	Bla	Bla	Car,	ebay,	Goldman	Sachs,	and	Philips	[5].

Besides	CNCF	organizations,	Kubernetes	attracts	thousands	of	contributors	worldwide	which	coordinate	their	efforts	through	online
platforms	like	Github,	Slack,	and	StackOverflow	(Suppliers).	Kubernetes'	development	is	in	charge	of	Special	Interest	Groups	(SIG).
SIGs	range	from	Architecture	(Maintainer,	ensures	architectural	consistency	over	time),	Product	Management	(User,	manages	user
requests	and	feedback),	testing	(Tester),	to	specific	implementations	for	service	providers	like	AWS,	GCP,	Azure	(Production
Engineers,	Support	Staff,	and	System	Administrators	often	belong	to	service	providers).

Based	on	the	number	of	commits,	we	have	identified	the	top	5	developers	on	Github:

smarterclayton,
brendandburns,
wojtek-t,
deads2k,	and
caesarxuchao.

Other	Stakeholders

Table	1	identifies	four	special	types	of	Kubernetes	stakeholders	[6].

Table	1.	Kubernetes	special	stakeholders

Stakeholder	Type Description

Certified	Service	Providers Service	providers	with	deep	experience	helping	enterprises	successfully	adopt	Kubernetes.	E.g.
Accenture

Certified	Platforms	&
Distributions

Software	conformance	ensures	that	every	vendor’s	version	of	Kubernetes	supports	the	required
APIs.	E.g.	Cisco

Technology	Partners Integrations	and	plugins	that	add	features	to	Kubernetes	applications.	E.g.	Aporeto

Service	Partners Consulting	or	management	services	to	help	companies	implement	Kubernetes	in	commercial
applications.	E.g.	NebulaWorks

Power	vs	Interest	Grid

Figure	1	shows	the	Power	vs	Interest	grid,	which	divides	the	stakeholders	in	four	categories:

Kubernetes

129

https://www.cncf.io/about/charter/
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
https://stackoverflow.com/questions/tagged/kubernetes
https://github.com/kubernetes/community/blob/master/sig-architecture
https://github.com/kubernetes/community/blob/master/sig-product-management
https://github.com/kubernetes/community/blob/master/sig-testing/README.md
https://github.com/kubernetes/community/blob/master/sig-aws/README.md
https://github.com/kubernetes/community/tree/master/sig-gcp
https://github.com/kubernetes/community/blob/master/sig-azure
https://github.com/smarterclayton
https://github.com/brendandburns
https://github.com/wojtek-t
https://github.com/deads2k
https://github.com/caesarxuchao
https://www.accenture.com/us-en/service-application-containers
https://www.cisco.com/
https://www.nebulaworks.com/container-platforms

Figure	1.	Power	vs	Interest	Grid

High	power	and	high	interest	:	Given	that	the	CNCF	Governing	Board	manages	budget	matters	there	is	no	doubt	it	has	the
maximum	power	on	its	projects,	followed	by	the	CNCF	TOC,	with	the	attribution	to	add	and	remove	projects	such	as	Kubernetes.
Considering	Kubernetes	exclusively,	the	Architecture	SIG	is	key	because	it	decides	the	future	of	the	project.
High	power	and	low	interest	:	The	CNCF	Marketing	Committee,	derived	from	the	CNCF	Governing	Board,	takes	care	of	the
project	brands	and	other	business-related	activities.
Low	power	and	high	interest	:	Compared	to	the	stakeholders	with	high	power	over	Kubernetes,	the	CNCF	End	User	TAB,
platform/service	providers	staff,	Test	SIG,	and	Kubernetes	general	developer	community	depend	on	the	continuous	development	of
the	project,	what	involves	a	high	interest.
Low	power	and	low	interest	:	Coordination	platforms	(e.g.	GitHub)	have	little	power	and	interest	over	the	project	given	that	other
platforms	could	serve	a	similar	purpose	if	they	were	not	taken	into	account.

Analysis	of	Issues	and	PRs

After	analyzing	recent	issues	and	Pull	Requests	(PRs),	we	obtained	useful	insight	about	Kubernetes	project.	For	instance,	Kubernetes
already	has	a	sophisticated	method	on	working	with	issues	and	PRs:	it	uses	templates,	labels	according	problem	domain	and	size,
automated	code	checking	tools,	or	bots	for	tracking.	Moreover,	SIGs	elect	their	leaders	democratically,	while	holding	responsibility	and
autonomy.	Every	contributor	must	follow	canonical	principles	like	design	security	from	ground-up	or	do	unit	tests.	However,	this
complexity	introduces	a	steep	learning	curve	for	new	contributors	in	spite	of	existing	documentation.

Integrators

Kubernetes

130

Kubernetes	project	has	a	well-defined	procedure	to	modify	its	code.	New	code	is	merged	only	if	approvers	agree	with	the	modifications.
Consequently,	approvers	are	the	integrators.	The	main	Kubernetes	repository	integrators	include	[7]:

bgrant0607
brendandburns
dchen1107
jbeda
monopole

Contacts

Table	2.	Contact	list

SIG Contacts Why?

Architecture bgrant0607,	jdumars They	are	the	Kubernetes	Architects.

Contributor
Experience Phillels,	parispittman Their	main	purpose	is	to	keep	the	contributors	"happy	and	productive".

-
Experienced
contributors	(e.g.
nikhita)

They	actively	participate	on	communication	channels	(e.g.	Slack).	They	enjoy
sharing	ideas	and	solve	newcomers'	doubts.

Functional	View
Kubernetes	services	are	organized	into	two	primary	functions:	master	and	worker	services.	Figure	2	shows	a	high-level	diagram	of
Kubernetes	Functional	View.

Figure	2.	Kubernetes	Functional	View

This	subsection	is	derived	from	the	official	Kubernetes	Components	document	[8].

Master	Node	Components

The	master	node	is	responsible	for	managing	the	whole	Kubernetes	cluster.	It	provides	the	main	interface	for	the	user	to	interact	with	the
system.	Conceptually,	there	should	be	no	container	service	running	on	the	master	node.

Kubernetes

131

https://github.com/bgrant0607
https://github.com/brendandburns
https://github.com/dchen1107
https://github.com/jbeda
https://github.com/monopole
https://github.com/kubernetes/community/blob/master/sig-architecture/README.md
https://github.com/bgrant0607
https://github.com/jdumars
https://github.com/kubernetes/community/tree/master/sig-contributor-experience
https://github.com/Phillels
https://github.com/parispittman
https://github.com/nikhita
https://kubernetes.slack.com/threads

kube-apiserver

The		kube-apiserver		provides	REST	API	service	to	interact	with	other	components	of	the	system.	It	processes	every	REST	API
request,	validates	it,	and	finally	instructs	the	appropriate	service	to	execute	it.	It	employs		etcd-storage		as	its	persistent	storage
component.

etcd-storage

The	master	node	uses	etcd	to	store	its	states,	for	example	jobs	being	scheduled,	created	and	deployed;	pod	details	and	state;	namespace
and	replication	information;	and	so	on.

kube-scheduler

The	scheduler	is	responsible	for	finding	the	most	suitable	node	for	a	pod	or	service	to	run,	based	on	some	constraints.	By	default,	it	tries
to	balance	out	the	resource	utilization	of	nodes	[9].	It	also	watches	resources	available	on	all	members	of	the	cluster.

controller-manager

The	controller	manager	is	a	process	that	encapsulates	various	controllers.	In	Kubernetes,	a	controller	is	defined	as	a	control	loop	that
watches	the	shared	state	of	the	cluster	through	the		kube-apiserver		and	makes	necessary	changes	to	move	the	current	state	towards	the
desired	state.	It	is	organized	into	2	modules:	Kubernetes	and	cloud	controller-manager.

kubectl

While	technically		kubectl		is	not	a	part	of	the	master	node,	it	is	worth	mentioning	here	as	it	is	used	to	interact	with	the	master	node.
	kubectl		is	a	command	line	interface	for	running	commands	against	Kubernetes	clusters.	It	communicates	with	the		kube-apiserver		via
REST	API	service.

Worker	Node	Components

A	Kubernetes	worker	node	contains	three	main	elements	to	be	able	to	run	appropriate	containers	inside	the	worker	nodes.	The	elements
are:		kubelet	,		kube-proxy	,	and	container	runtime.

kubelet

	kubelet		is	a	service	responsible	for	communicating	with	the	master	node	and	interacts	with	the	container	runtime	service	to	run	a
Kubernetes	pod.	It	gets	the	descriptive	configuration	of	a	pod	from	the		kube-apiserver		via	REST	API,	then	instructs	the	container
runtime	service	to	run	the	appropriate	containers.

kube-proxy

	kube-proxy		is	responsible	for	manageing	network	services	in	worker	node,	e.g.	the	exposure	of	network	ports	to	the	outside	world,
load	balancing	inbound	traffic.

Container	runtime

The	container	runtime	is	the	software	that	is	responsible	for	running	containers.	Kubernetes	supports	several	runtimes:	Docker,	rkt,
runc	and	any	OCI	runtime-spec	implementation.

Context	View
In	this	section,	the	scope	of	Kubernetes	and	its	interaction	with	its	surrounding	environments	are	explained.	The	section	consists	of
what	the	system	does	and	does	not	do	and	also	external	entities	that	the	system	interacts	with.

Kubernetes

132

https://github.com/coreos/etcd
http://www.docker.com/
https://coreos.com/rkt/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runtime-spec

System	Scope

Kubernetes	is	a	container	orchestration	tool	which	is	a	system	for	managing	containerized	application	[10].	The	main	tasks	of
Kubernetes	are	deployment,	scaling,	and	management	of	containerized	application.	Each	role	is	defined	as	follows.

Deployment:	manages	the	deployment	of	application	by	assigning	application	instances	onto	Nodes	in	a	cluster
Scaling:	scale	the	application	to	keep	up	with	user	demand	by	adjusting	cluster	size	and	number	of	pod	replicas
Management:	provide	interface	for	managing	the	cluster	and	its	containerized	application

External	Entities

The	relationship	between	Kubernetes	and	its	external	entities	are	summarized	in	Figure	3:

Figure	3.	Context	Model

We	will	discuss	some	of	the	entities	regarding	their	relation	with	four	focuses	of	the	system:	stakeholders,	development,	platforms,	and
competitors.

Stakeholders

In	relation	to	the	stakeholders	discussed	in	the	previous	section,	the	context	model	includes	interfaces	between	the	Kubernetes	system
and	some	stakeholders.	In	this	case,	there	are	stakeholders	entities:	CNCF	as	the	supervisor	of	the	project	which	was	listed	as	the
acquirer,	GitHub	as	a	supplier,	and	some	companies	who	uses	Kubernetes	in	their	system	such	as	Huawei,	BlaBlaCar,	eBay,	and
Philips	[5].

Development

The	Go	programming	language	is	the	main	language	used	in	Kubernetes	development.	Also,	Kubernetes	depends	on	several	external
libraries	such	as	the	AWS	SDK,	Container	Network	Interface	(CNI),	Docker	API,	Azure	SDK,	and	Gophercloud.	Additionaly,
Kubernetes	is	developed	using	GitHub	for	version	controling	and	Jenkins	for	managing	continuous	integration.

Kubernetes

133

Platforms

Kubernetes	acts	as	a	portable	cloud	platform	and	can	run	on	various	platforms	[11].	Their	documentation	provides	some	extensive	list
of	Infrastructure-as-a-Service	(IaaS)	providers	that	Kubernetes	is	compatible	with.	The	list	includes	Azure	Container	Service,
Amazon	Web	Service	(AWS),	and	OpenShift.	Kubernetes	communicates	with	those	platforms	with	their	respective	SDK.

Competitors

Two	of	notably	known	competitors	who	also	serve	as	a	container	orchestration	tool	are	the	Docker	Swarm	and	Mesosphere's
Marathon.	Marathon	is	the	orchestration	platform	for	Apache	Mesos,	while	Docker	Swarm	(now	integrated	into	Docker	system	as
the	Swarm	Mode)	is	the	native	clustering	for	orchestrating	Docker	containers.

Development	View

Module	Organization

Kubernetes	source	code	is	organized	into	layers	of	modules	based	on	its	functionality.	The	general	overview	of	the	partition	of	the
modules	is	shown	in	Figure	4.

Figure	4.	Kubernetes	Module	Organization

The	layers	and	their	functions	description	in	this	subsection	are	derived	from	the	architectural	roadmap	of	Kubernetes	[12].

The	Nucleus:	API	and	Execution

The	nucleus	contains	the	minimum	set	of	features	needed	to	build	the	higher	layers	of	the	system	and	is	composed	of	API	and	Execution
modules.	API	modules	provide	a	collection	of	REST	APIs	and	the	execution	modules	of	Kubernetes	are	responsible	for	executing
application	within	containers.	The	most	important	execution	module	in	Kubernetes	is		Kubelet	.

The	Application	Layer:	Deployment	and	Routing

The	application	layer	provides	self-healing,	scaling,	application	lifecycle	management,	service	discovery,	load	balancing,	and	routing.
Further,	the	deployment	module	provides	container-centric	methods	and	lifecycle	controllers	to	support	orchestration,	while	the	routing
module	provides	scheduling	service.

Kubernetes

134

https://mesos.apache.org/
https://docs.docker.com/swarm/overview/
https://kubernetes.io/docs/admin/kubelet/

The	Governance	Layer:	Automation	and	Policy	Enforcement

This	layer	contains	the	automation	module	which	provides	automatic	scaling	of	the	cluster	and	automatic	provisioning	of	nodes.	The
policy	enforcement	module	provides	means	to	configure	and	discover	default	policies	for	the	cluster.

The	Interface	Layer:	Libraries	and	Tools

This	layer	contains	commonly	used	libraries,	tools,	systems,	and	UIs	in	Kubernetes	project.	One	of	the	most	important	tools	in	this
layer	is		kubectl	.	It	also	contains	other	client	libraries	such	as	client-go	and	client-python.

The	Ecosystem

This	layer	is	not	really	part	of	Kubernetes,	but	it	provides	functionality	commonly	needed	to	deploy	and	manage	containerized
applications.	The	most	popular	example	of	this	supporting	layer	is	Docker,	which	runs	the	actual	container	in	nodes.	Modules	used	to
communicate	with	cloud	provider	also	belong	here.

Common	Design	Model

In	this	section,	we	will	look	at	the	common	design	models	that	Kubernetes	developers	can	refer	to.	We	looked	at	the	common
processing,	design	standardization,	and	testing	standardization	that	Kubernetes	developer	teams	have.	According	to	[4],	these	common
design	models	can	be	used	so	that	the	system	is	easy	to	understand,	operate,	and	maintain	.

Common	Processing

In	the	development	of	Kubernetes,	there	is	a	common	processing	across	different	elements	in	order	to	simplify	cross-element	integration
of	code	units.	Two	of	the	most	important	common	processing	elements	are	instrumentation	and	logging.	They	are	part	of	the	Kubernetes
developer	guide	[13].

Through	instrumentation,	we	can	measure	the	performance	of	a	certain	metric.	The	ability	of	a	system	to	do	instrumentation	can	help
developers	during	the	development.	Kubernetes	follows	the	general	Instrumentation	advice	from	the	Prometheus	Go	client	library	[14].
According	to	the	Kubernetes's	instrumentation	guide	[15],	Kubernetes	added	an	extra	convention	on	instrumentation,	mainly	the	naming
of	the	metrics.	The	naming	of	a	metric	should	be	as	follow:		<<component_name>>_<metric>	.	This	is	done	to	avoid	collisions	of	metrics
between	the	components	since	sometimes	the	measurement	of	one	metric	is	done	in	several	components.

The	other	way	to	understand	the	performance	and	real	way	of	working	of	our	system	is	by	logging.	Logging	is	one	of	the	common	design
models	that	are	essential	for	developers	during	development	to	ensure	that	the	system	worked	as	intended	and	can	be	understood	by
another	developer.	Logging	is	also	useful	during	debugging	to	know	the	error	encountered	during	the	build.	According	to	the	logging
convention	[16],	Kubernetes	uses	the	built-in	glog	logging	function	in	Golang.	The	logs	provided	by	glog	are	standard,	such	as	error	log,
warning	log,	and	info	log.

Design	Standardization

To	ensure	a	project	to	be	maintainable,	cohesive,	and	easy	to	reproduce,	developers	that	are	working	on	the	project	need	to	adhere	to	a
certain	design	standard.	Since	Kubernetes	has	a	variety	of	developers	who	intend	to	contribute	to	the	project,	the	Kubernetes	team
formulated	a	design	standardization	for	the	coding,	which	is	stated	in	the	Coding	Conventions	document	[17].	Since	Kubernetes	is
developed	using	Go	language,	the	main	coding	conventions	that	Kubernetes	developers	have	to	adhere	is	the	Effective	Go	guideline	[18].
Developers	also	have	to	avoid	Go	landmines	to	ensure	the	effectiveness	of	the	code	[19].	Several	other	code	conventions	include	code
commenting,	command-line	flags,	naming,	and	other	conventions,	such	as	API	and	logging	conventions	[16][20].

Codeline	Model

Kubernetes

135

https://kubernetes.io/docs/reference/kubectl/overview/
https://github.com/prometheus/client_golang
http://godoc.org/github.com/golang/glog

Figure	5.	Source	Code	Structure

The	overall	Kubernetes	project's	source	code	structure	is	depicted	in	Figure	5.	Kubernetes	is	developed	on	top	of	packages.	The	main
packages	are	organized	inside	the		pkg		folder,	while	dependencies	on	the	external	package	are	managed	by	Godep.

The	description	of	each	category	illustrated	in	Figure	5	is	covered	in	more	detail	in	Table	3.

Table	3.	Source	Code	Structure

Category Description

Dependency
Management

This	category	mainly	consists	of	folders	generated	by	Godep.	The		vendor		folder	also	contains	packages
from	Kubernetes	external	repository.	These	packages	are	symlinked	to	the		staging		folder	for	development
purposes.

Main	Source
Code	&	Binary

The		pkg		folder	is	where	all	source	code	is	organized	in	multiple	packages.	There	is	also	the		cmd		folder
containing	binaries	(source	code	for	main	executables).

Scripts Scripts	for	automating	build	process	are	stored	in		build		folder,	while		hack		folder	contains	shell	(.sh)
scripts	for	development	automation.

Testing For	unit	and	integration	testing	purposes.

Localization Contains	translations	to	multiple	languages	for	messages	shown	by		kubectl	.

Documentation
&	Examples

Contains	documentation	for		kubectl	,	API	reference,	and	some	examples	of	how	to	run	real	applications	in
Kubernetes.

Others This	category	includes	miscelaneous	stuff	such	as	API	specification,	logo	images,	and	the	deprecated
	cluster		folder.

Additionally,	Table	4	lists	the	code	structure	inside	the		cmd	,	describing	how	main	executables	source	code	is	organized.	The	related
package	(from	the		pkg		folder)	used	by	the	respective	executables	is	also	listed	in	the	table.

Table	4.	Folders	under		cmd	

Kubernetes

136

https://github.com/tools/godep

Directory SIG
Owner Description Related	Package

	clicheck	 common	CLI	checking 	pkg/kubectl	

	cloud-

controller-

manager	

sig-api-
machinery

External	controller	manager	for	running	cloud
specific	controller	loops

	pkg/cloudprovider	

	hyperkube	 sig-release An	executable	that	can	morph	into	other
kubernetes	binaries

	pkg/kubectl	

	kube-apiserver	
sig-api-
machinery Main	api	server	and	master	for	the	cluster 	pkg/kubeapiserver	

	kube-controller-

manager	
Monitoring	replication	controllers 	pkg/cloudprovider	,

	pkg/controller	

	kube-proxy	
For	managing	proxy	server	between	localhost
and	API	server

	pkg/apis	,	pkg/kubelet	,
	pkg/proxy	,		pkg/master	

	kube-scheduler	
sig-
scheduling Scheduler	for	assigning	nodes	to	pods 	pkg/scheduler	

	kubeadm	
sig-cluster-
lifecycle Toolkit	to	setup	Kubernetes	cluster 	pkg/api	

	kubectl	 sig-cli Main	CLI	for	running	commands	against
clusters

	pkg/kubectl	

	kubelet	 sig-node Maintaining	a	set	of	containers	on	a	particular
host	VM.

	pkg/kubelet	

	kubemark	
sig-
scalability Performance	testing	tool 	pkg/kubemark	

Evolution	Perspective

Since	the	first	commit	at	GitHub	on	June	7,	2014,	Kubernetes	has	evolved	throughout	the	years,	having	a	lot	of	new	feature	being	added
to	the	system	and	bug	being	fixed.	In	this	section,	we	look	at	the	evolution	of	the	Kubernetes	software	throughout	its	development.

Kubernetes	project	was	first	developed	by	Google.	The	project	was	heavily	influenced	by	Borg,	a	similar	project	at	Google,	and	was
made	open-source	[21]	[22].	Kubernetes	follows	the	semantic	versioning	convention	[23]	when	releasing	an	update,	that	is	Kubernetes
	vX.Y.Z		where		X		denotes	a	major	release,		Y		denotes	a	minor	release,	and		Z		denotes	a	patch	release.

Before	the	first	major	release	of	Kubernetes		v1.0.0	,	the	project	was	still	not	ready	for	use	in	production.	The	project	was	released	on
a	bi-weekly	basis	up	until		v0.21.0	,	which	was	released	on	July	8,	2015,	and	every	minor	release	has	new	features	being	added,	such	as
AWS	support	in	the		v0.5.0		release	and	Kubernetes	UI	with	dashboard	components	in	the		v0.16.0		release.

When	the	first	major		v1.0.0		of	Kubernetes	was	released	in	July	13,	2015,	Google	ceded	the	control	over	the	project	to	Cloud	Native
Computing	Foundation	(CNCF)	and	the	software	is	considered	ready	for	use	in	production	environment	[24].	After	this	major	release,
the	project	was	released	on	a	quarterly	basis	every	year.	Some	of	the	most	notable	releases	were	[25]:

1.	 	v1.2.0	:	The	introduction	of	Special	Interest	Group	(SIG)	in	the	project	and	the	scaling	improvements	where	at	that	version,
Kubernetes	could	support	up	to	1000	nodes.

2.	 	v1.5.0	:	Simplification	of	cluster	deployment	and	Windows	Server	Container	support.
3.	 	v1.6.0	:	Migration	to	etcd	v3	which	can	support	up	to	5000	nodes	and	overall	improved	documentation	of	the	project	through	the

Community	Repository.
4.	 	v1.7.0	:	Security	enhancement	such	as	node	authorizer	and	TLS	certificate	rotation;	and	added	internationalization	support	for	the

Chinese	and	Japanese	language.
5.	 	v1.8.0	:	Improved	workload	API	to	support	Apache	Spark.

Kubernetes

137

https://github.com/kubernetes/community/blob/master/sig-api-machinery/README.md
https://github.com/kubernetes/community/tree/master/sig-release
https://github.com/kubernetes/community/blob/master/sig-api-machinery/README.md
https://github.com/kubernetes/community/tree/master/sig-scheduling
https://github.com/kubernetes/community/tree/master/sig-cluster-lifecycle
https://github.com/kubernetes/community/blob/master/sig-cli/README.md
https://github.com/kubernetes/community/tree/master/sig-node
https://github.com/kubernetes/community/tree/master/sig-scalability
https://github.com/kubernetes/community

The	most	recent	version	of	Kubernetes,	up	to	the	time	of	writing,	is	the		v1.10.0		release.	Besides	the	new	features	and	bug	fixes	on
each	release,	Kubernetes	also	improves	its	documentation	and	its	product	management	through	separate	repositories	such	as
Community,	SIG-Release,	and	Features	so	that	the	development	of	Kubernetes	is	more	organized.

Technical	Debt

In	this	section,	we	look	at	all	possible	sources	of	technical	debt	in	Kubernetes	project.	We	have	performed	several	types	of	analysis,
which	are	the	analysis	of	general	technical	debt	as	well	as	specific	testing	debt	and	historical	analysis.

Manual	Identification

As	part	of	the	analysis	of	Kubernetes	technical	debt,	we	manually	skimmed	the	Kubernetes's	GitHub	repository	and	the	code	structure
looking	for	technical	debt	traces.	We	found	that	Kubernetes	community	members	are	familiar	with	the	terminology	and	are	aware	of
some	areas	concerning	this	technical	debt	as	there	are	issues	specifically	labelled	as		kind/technical-debt		such	as	scheduling	(58346,
56236)	and	api-machinery	(54511,	44263)	issues.	These	issues	date	as	far	back	as	2015,	which	means	that	technical	debt	exists	and	the
project	maintainers	make	efforts	to	manage	and	deal	with	technical	debt	in	one	way	or	another.	Besides	that,	a	quick	search	through	the
code	reveals	many	TODO	comments	regarding	work	that	is	still	required	inside	several	source	code	files,	some	of	them	as	important	as
kubelet.go,	master.go,	gce.go,	among	others.	It	is	worth	noticing	that	many	of	these	files	also	under	the	supervision	of	api-machinery
SIG.

Automated	Code	Quality	Analysis

Here	we	analyze	Kubernetes	project	regarding	its	technical	debt	using	available	tools	that	examine	the	quality	of	the	code.	For	that
purpose,	we	used	Codebeat	as	a	tool	to	assess	code	quality	automatically.	This	tool	inspects	code	quality	by	calculating	a	set	of	metrics
that	are	related	to	software	quality,	extensibility,	and	maintainability	[26].

Codebeat	assesses	metrics	in	the	code's	function	and	namespace	level.	It	analyzed	the	Total	Complexity	and	Code	Duplication	aspects
of	the	code,	among	others.

Total	Complexity

The	high	number	of	complexity	indicates	that	the	code	contains	too	much	logic	and	should	probably	be	broken	down	into	smaller
elements.	The	complexity	of	the	code	can	be	measured	using	several	metrics	such	as	the	number	of	arguments	and	return	values	in	a
function;	and	the	number	of	conditional	cases.	One	of	the	example	of	this	can	be	seen	in	Figure	6.	In	this	example,	there	are	eight
arguments	in	the	function		AttachContainer		which	might	cause	confusion	when	using	this	function.

Figure	6.	Complexity	code	example

Code	Duplication

Kubernetes

138

https://github.com/kubernetes/community
https://github.com/kubernetes/sig-release/
https://github.com/kubernetes/features
https://github.com/kubernetes/kubernetes/labels/kind%2Ftechnical-debt
https://github.com/kubernetes/kubernetes/issues/58346
https://github.com/kubernetes/kubernetes/issues/56236
https://github.com/kubernetes/kubernetes/issues/54511
https://github.com/kubernetes/kubernetes/issues/44263
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/kubelet.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/master/master.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/providers/gce/gce.go
https://github.com/kubernetes/community/tree/master/sig-api-machinery
https://codebeat.co
https://codebeat.co

One	of	the	canonical	principles	in	software	development	is	Don't	Repeat	Yourself:	"Every	piece	of	knowledge	must	have	a	single,
unambiguous,	authoritative	representation	within	a	system"	[27].	From	that	perspective,	the	number	of	duplication	in	the	code	is
considered	as	one	of	the	most	important	metrics	when	measuring	the	code	quality	as	it	may	lead	to	difficulty	during	maintenance	since
changing	one	instance	of	code	would	need	replication	in	other	instances	as	well.

One	example	of	code	duplication	pointed	out	by	Codebeat	is	in		pkg/kubelet/apis/cri/runtime/v1alpha2/api.pb.go	.	The	developer	used
the	same	lines	of	code	in	several	functions.	This	means	that	they	have	to	change	all	code	in	corresponding	functions	whenever	they	need
to	change	logic.

Testing	Debt

In	this	section,	we	will	discuss	some	technical	debt	related	to	testing	that	is	found	in	the	Kubernetes	system.	The	analysis	is	based	on
the	Testing	Guide,	Unit	Test	Coverage,	and	GitHub	Issues	of	their	main	repository	[28][29].	Overall,	the	Kubernetes	community	puts	a
lot	of	effort	in	managing	testing	debt	because	they	are	aware	that	the	project	is	enormous	and	involve	many	contributors,	so	testing	debt
is	unavoidable,	but	they	need	to	manage	it	somehow.

Unit	Test	Coverage

We	did	an	analysis	on	unit	test	coverage	of	Kubernetes	by	using	script	provided	by	Kubernetes:		make	test	KUBE_COVER=y		[28].	We
found	that	the	average	coverage	is	52%	among	1.833	source	files.	As	we	can	see	in	Figure	7,	there	are	still	many	files	which	have	below
10%	coverage;	some	has	even	0%	coverage.	Although	the	testing	guide	provided	is	quite	comprehensive,	we	can	see	that	there	are	still
some	debts	left	of	writing	tests	for	some	source	files.

Figure	7.	Distribution	of	Code	Coverage

Nonetheless,	this	just	shows	that	there	are	lines	of	code	that	are	not	covered	in	unit	tests.	As	mentioned	before,	Kubernetes	does
incorporate	integration	and	E2E	test	suite,	so	this	percentage	is	just	indicator	for	coverage	by	unit	testing.

Flaky	Tests

In	the	Kubernetes	contribution	guide,	there	is	a	special	testing-related	section	about	Flaky	Tests	[30].	The	flaky	test	is	a	test	that
occasionally	fails.	Because	the	nature	of	Kubernetes	system	in	the	real	world	could	be	run	in	various	environments	with	resource
limitations,	the	team	tries	to	avoid	flaky	test	as	much	as	possible.	They	encourage	contributors	to	run	tests	multiple	times	to	reduce	the
chance	that	it	is	not	flaky.	They	even	have	a	dedicated	issue	label		kind/flake		for	contributors	to	report	flaky	tests.	As	of	now,	there
are	20	open	issue	related	to	flake	tests,	and	if	they	are	not	dealt	with	properly,	it	can	be	a	technical	debt	that	they	have	to	address	later
when	the	failed	test	cause	a	queue	of	PRs	to	be	merged.

Historical	Analysis

Kubernetes

139

https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/cri/runtime/v1alpha2/api.pb.go

Scope	Definition

Considering	the	vast	amount	of	Kubernetes	objects	(at	least	22.286	unique	objects	in	the	last	nine	major	releases!),	we	decide	to	limit	the
context	of	this	analysis	to	top	20	most	important	objects	in	Kubernetes.	Further,	we	also	define	the	number	of	commits	to	each	object
as	the	indicator	of	how	important	an	object	is,	i.e.	higher	commit	amounts	indicates	more	importance.	Table	5	shows	the	top	20	objects
(without	test	object)	in	terms	of	commits	amount.

Table	5.	Top	20	objects	based	on	commit	amount.

Path Commits

kubelet/kubelet.go 1734

master/master.go 643

kubelet/rkt/rkt.go 343

kubectl/cmd/util/factory.go 333

cloudprovider/providers/aws/aws.go 332

kubectl/cmd/cmd.go 249

cloudprovider/providers/gce/gce.go 231

controller/deployment/deployment_controller.go 229

proxy/iptables/proxier.go 206

kubectl/cmd/run.go 205

api/testing/fuzzer.go 194

apis/componentconfig/types.go 193

volume/glusterfs/glusterfs.go 172

kubelet/container/runtime.go 165

printers/internalversion/describe.go 162

kubectl/cmd/util/helpers.go 160

kubelet/kubelet_pods.go 153

controller/controller_utils.go 148

apis/extensions/types.go 147

kubectl/cmd/create.go 147

We	also	define	the	temporal	scope	of	the	major	releases,	which	are:

1.	 Kubernetes	v1.2.7,
2.	 Kubernetes	v1.3.10,
3.	 Kubernetes	v1.4.4,
4.	 Kubernetes	v1.5.0,
5.	 Kubernetes	v1.6.0,
6.	 Kubernetes	v1.7.0,
7.	 Kubernetes	v1.8.0,
8.	 Kubernetes	v1.9.0,	and
9.	 Kubernetes	v1.10.0-beta4.

They	represent	the	nine	latest	major	releases	of	Kubernetes.

Evolution	Matrix	Analysis

Kubernetes

140

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.2.md#v127
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.3.md#v1310
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.4.md#v144
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.5.md#v150
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.6.md#v160
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.7.md#v170
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.8.md#v180
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.9.md#v190
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.10.md#v1100-beta4

We	start	our	analysis	by	building	an	evolution	matrix	[31]	to	inspect	pattern	in	the	length	of	codes	in	those	20	objects.	The	metric	used
to	build	this	evolution	matrix	is	the	line	of	code	of	each	object	including	comments.	The	width	and	height	metric	of	the	rectangle	are
defined	to	be	the	same,	i.e.	the	lines	of	code.

Figure	8	exhibits	the	evolution	matrix	of	the	20	most	committed	objects.	Note	that	the	20	most	committed	objects	start	to	exist	from
version	1.5.0.	To	see	the	complete	version,	interested	readers	can	refer	to	our	version	of	complete	evolution	matrix	of	Kubernetes	for
nine	latest	major	releases.

Figure	8.	Evolution	matrix	of	the	top	20	objects.

From	the	evolution	matrix	of	the	20	most	committed	objects,	we	can	observe	that	in	general	the	number	of	lines	is	increasing	but	not	too
significant	relative	to	time.	In	terms	of	artefacts	described	in	[31],	these	stable	objects	can	be	categorized	as	persistent.	This	observation
may	indicate	the	maturity	of	these	objects	and	also	the	engineering	process	in	this	project.

Beside	of	the	persistent	objects,	we	also	see	the	pattern	of	a	pulsar	in	object		cloudprovider/providers/gce/gce.go	.	Pulsar	is	a	term	for
an	object	that	grows	and	shrinks	as	time	progresses	because	of	repeated	modifications.	Pulsar	objects	can	be	seen	as	hotspots	in	the
system:	for	every	new	version	of	the	system,	changes	on	a	pulsar	object	must	be	performed	[31].	In	this	specific	case,	the	object		gce	
is	responsible	to	provide	methods	needed	for	Kubernetes	to	be	deployed	in	a	Google	Compute	Engine	environment.	Reducing	hotspots
in	this	object	is	a	form	of	technical	debt.

Another	thing	that	we	can	inspect	is	that	there	is	also	a	pattern	of	a	white	dwarf	in	object		kubectl/cmd/util/factory.go	.	In	version
1.5.0,	this	object	had	1,334	line	of	codes,	and	in	the	following	version	of	1.6.0,	the	number	of	lines	was	reduced	drastically	to	506	line	of
codes.	It	keeps	shrinking	through	time	until	it	gets	to	its	current	size	of	337	lines	in	1.10.0-beta4.	From	the	blame	view,	we	can	observe
that	the	methods	in	this	object	were	refactored	to	various	objects	in		pkg/kubectl/cmd/util/	.	This	indicates	that	this	object	was	already
identified	as	a	technical	debt	and	refactored	accordingly.

To	conclude,	we	can	observe	that	most	of	the	objects	in	Kubernetes	are	persistent	objects.	This	fact	is	a	proof	that	Kubernetes
developers	team	have	done	a	remarkable	job	in	designing	objects	and	enforcing	strict	engineering	policies.

Conclusion
Throughout	the	whole	chapter,	we	have	analyzed	Kubernetes'	software	architecture	by	looking	at	its	stakeholders,	viewpoints,	and
perspectives.

Stakeholders	analysis	provides	us	insight	into	how	Kubernetes	developers	are	organized	through	SIGs	and	how	feature	development	or
bug	fixing	are	being	performed	on	GitHub.	Looking	into	the	functional	and	context	views	of	Kubernetes,	we	studied	how	Kubernetes	is
organized	as	a	system,	how	the	components	interact	with	each	other,	and	also	how	Kubernetes	interacts	with	external	parties.

Kubernetes

141

https://public.tableau.com/profile/mohammad.riftadi#!/vizhome/EvolutionMatrixKubernetesv2-10/EvolMat?publish=yes
https://cloud.google.com/compute/
https://github.com/kubernetes/kubernetes/blame/master/pkg/kubectl/cmd/util/factory.go

Furthermore,	we	have	analyzed	the	development	view	to	gain	insights	on	how	the	development	of	Kubernetes	progresses,	especially
when	there	are	lots	of	developers	working	on	the	same	project.	We	learned	how	conventions,	such	as	coding	convention,	helped
developers	on	the	previously	mentioned	problem.	Looking	at	the	evolution	of	Kubernetes,	we	learned	about	how	Kubernetes	has
matured	throughout	the	years.

Finally,	we	thoroughly	analyzed	the	technical	debt	that	Kubernetes	has	and	how	it	is	managed.	Even	though	there	are	still	technical	debts
to	be	solved,	we	firmly	believe	that	Kubernetes	will	keep	growing	due	to	its	active	community	and	reliable	architecture.

References

[1]	“What	Is	Kubernetes?”	Kubernetes.	Accessed	April	5,	2018.	https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[2]	Vaughan-Nichols,	Steven	J.	“ Google	Releases	Kubernetes	1.0:	Container	Management	Will	Never	Be	the	Same.”	ZDNet.	Accessed
April	5,	2018.	https://www.zdnet.com/article/google-releases-kubernetes-1-0/.

[3]	Conway,	Sarah.	“Kubernetes	Is	First	CNCF	Project	To	Graduate.”	Cloud	Native	Computing	Foundation	(blog),	March	6,	2018.
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/.

[4]	Rozanski,	Nick,	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and	Perspectives.
Addison-Wesley,	2012.

[5]	“Case	Studies.”	Kubernetes.	Accessed	April	5,	2018.	https://kubernetes.io/case-studies/.

[6]	“Partners.”	Kubernetes.	Accessed	April	5,	2018.	https://kubernetes.io/partners/.

[7]	Kubernetes:	Production-Grade	Container	Scheduling	and	Management.	Go.	2014.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/kubernetes.

[8]	“Kubernetes	Components.”	Kubernetes.	Accessed	April	5,	2018.	https://kubernetes.io/docs/concepts/overview/components/.

[9]	bobsky.	“Advanced	Scheduling	in	Kubernetes.”	Accessed	April	5,	2018.	https://kubernetes.io/blog/2017/03/advanced-scheduling-in-
kubernetes.

[10]	“Kubernetes	Documentation.”	Kubernetes.	Accessed	April	5,	2018.	https://kubernetes.io/docs/home/.

[11]	“Picking	the	Right	Solution.”	Kubernetes.	Accessed	April	5,	2018.	https://kubernetes.io/docs/setup/pick-right-solution/.

[12]	Kubernetes	Architectural	Roadmap.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/blob/master/contributors/devel/architectural-roadmap.md.

[13]	Kubernetes	Developer	Guide.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/tree/master/contributors/devel.

[14]	“Instrumentation	|	Prometheus.”	Accessed	April	5,	2018.	https://prometheus.io/docs/practices/instrumentation/.

[15]	Intrumenting	Kubernetes.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/blob/master/contributors/devel/instrumentation.md.

[16]	Kubernetes	Logging	Conventions.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/blob/master/contributors/devel/logging.md.

[17]	Kubernetes	Coding	Conventions.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/blob/master/contributors/guide/coding-conventions.md.

[18]	“Effective	Go	-	The	Go	Programming	Language.”	Accessed	April	5,	2018.	https://golang.org/doc/effective_go.html.

[19]	“Golang	Landmines.”	Gist.	Accessed	April	5,	2018.	https://gist.github.com/lavalamp/4bd23295a9f32706a48f.

[20]	Kubernetes	API	Conventions.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md.

[21]	“Google	Open	Sources	Its	Secret	Weapon	in	Cloud	Computing	|	WIRED.”	Accessed	April	3,	2018.
https://www.wired.com/2014/06/google-kubernetes/.

Kubernetes

142

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.zdnet.com/article/google-releases-kubernetes-1-0/
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/
https://kubernetes.io/case-studies/
https://kubernetes.io/partners/
https://github.com/kubernetes/kubernetes
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/setup/pick-right-solution/
https://github.com/kubernetes/community/blob/master/contributors/devel/architectural-roadmap.md
https://github.com/kubernetes/community/tree/master/contributors/devel
https://prometheus.io/docs/practices/instrumentation/
https://github.com/kubernetes/community/blob/master/contributors/devel/instrumentation.md
https://github.com/kubernetes/community/blob/master/contributors/devel/logging.md
https://github.com/kubernetes/community/blob/master/contributors/guide/coding-conventions.md
https://golang.org/doc/effective_go.html
https://gist.github.com/lavalamp/4bd23295a9f32706a48f
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://www.wired.com/2014/06/google-kubernetes/

[22]	Oppenheimer,	David.	“Borg:	The	Predecessor	to	Kubernetes.”	Accessed	April	3,	2018.	https://kubernetes.io/blog/2015/04/borg-
predecessor-to-kubernetes.

[23]	Preston-Werner,	Tom.	“Semantic	Versioning	2.0.0.”	Semantic	Versioning.	Accessed	April	3,	2018.	https://semver.org/.

[24]	“As	Kubernetes	Hits	1.0,	Google	Donates	Technology	To	Newly	Formed	Cloud	Native	Computing	Foundation.”	TechCrunch
(blog),	July	21,	2015.	http://social.techcrunch.com/2015/07/21/as-kubernetes-hits-1-0-google-donates-technology-to-newly-formed-
cloud-native-computing-foundation-with-ibm-intel-twitter-and-others/.

[25]	“Kubernetes.”	Accessed	April	3,	2018.	http://blog.kubernetes.io/.

[26]	“Function-Level	Metrics.”	Accessed	April	5,	2018.	https://hub.codebeat.co/docs/software-quality-metrics.

[27]	“Dont	Repeat	Yourself.”	Accessed	April	5,	2018.	http://wiki.c2.com/?DontRepeatYourself.

[28]	Kubernetes	Testing	Guide.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/blob/master/contributors/devel/testing.md.

[29]	Kubernetes	Issues.	Go.	2014.	Reprint,	Kubernetes,	2018.	https://github.com/kubernetes/kubernetes/issues.

[30]	Kubernetes	Flaky	Tests.	Go.	2016.	Reprint,	Kubernetes,	2018.
https://github.com/kubernetes/community/blob/master/contributors/devel/flaky-tests.md.

[31]	Lanza,	Michelle,	and	Stéphane	Ducasse.	“Understanding	Software	Evolution	Using	a	Combination	of	Software	Visualization	and
Software	Metrics.”	L’objet	8,	no.	1–2	(June	30,	2002):	135–49.	https://doi.org/10.3166/objet.8.1-2.135-149.	re	Visualization	and
Software	Metrics.”	L’objet	8,	no.	1–2	(June	30,	2002):	135–49.	https://doi.org/10.3166/objet.8.1-2.135-149.

Kubernetes

143

https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes
https://semver.org/
http://social.techcrunch.com/2015/07/21/as-kubernetes-hits-1-0-google-donates-technology-to-newly-formed-cloud-native-computing-foundation-with-ibm-intel-twitter-and-others/
http://blog.kubernetes.io/
https://hub.codebeat.co/docs/software-quality-metrics
http://wiki.c2.com/?DontRepeatYourself
https://github.com/kubernetes/community/blob/master/contributors/devel/testing.md
https://github.com/kubernetes/kubernetes/issues
https://github.com/kubernetes/community/blob/master/contributors/devel/flaky-tests.md
https://doi.org/10.3166/objet.8.1-2.135-149
https://doi.org/10.3166/objet.8.1-2.135-149

Lighthouse
By	Kanav	Anand,	Nouri	Khalass,	Ernst	Mulders,	and	Michiel	van	Spaendocnk	from	TU	Delft

Table	of	Contents

1.	 Introduction
2.	 Stakeholders
3.	 Context	View
4.	 Development	View
5.	 Deployment	View
6.	 Technical	Debt
7.	 References

Introduction

Lighthouse	is	a	tool	that	allows	web	developers	to	evaluate	their	website	according	to	modern	standards.	It	analyzes	web	apps	and	web
pages	and	collects	performance	metrics	and	insights	on	developer	best	practices.	The	project	was	released	by	Google	as	an	open	source
initiative	to	improve	the	quality	of	websites.

Stakeholders

In	order	to	determine	the	stakeholders	of	the	Lighthouse	project,	we've	looked	at	the	contribution	history	on	Github	as	well	as	their
demo	video	of	the	Google	I/O	of	last	year.	The	most	important	group	of	people	are	the	so	called	Lighthouse	keepers.	These	are	the	top
contributors	of	the	project,	and	work	for	Google.

Rozanski	and	Woods	classifications

According	to	the	classification	scheme	by	Rozanski	and	Woods	the	Lighthouse	stakeholders	can	be	grouped	as	follows.

Lighthouse

144

https://github.com/anandkanav92
https://github.com/nourikhalass
https://github.com/ernstmul
https://github.com/mvanspaendonck

Acquirers:	Oversee	the	procurement	of	the	system	or	product
That	would	be	Google	as	owner	of	the	project.	Google	invests	the	money	that	pays	the	salaries	of	the	top	contributors	whom	work	for
Google.

Assessors:	Oversee	the	system's	conformance	to	standards	and	legal	regulation
Lighthouse	keepers,	although	they	quite	surely	have	a	legal	team	behind	them	from	Google.

Communicators:	Explains	the	system	to	other	stakeholders	via	its	documentation	and	training	materials
Eric	Bidelman	and	Brendan	Kenny	were	on	stage	on	the	I/O	conference	talking	about	and	explaining	Lighthouse.	If	we	look	at	the
readme.md	there	are	44	contributors.	Paul	Irish,	Patrick	Hulce,	and	Sam	Saccone	were	among	the	top	of	these	44.

Developers:	Construct	and	deploy	the	system	from	specifications	(or	lead	the	teams	that	do	this)
The	Lighthouse	keepers	as	well	as	outside	contributors.

Maintainers:	Manage	the	evolution	of	the	system	once	it	is	operational
The	Lighthouse	keepers,	and	in	particular	Paul	Irish.

Suppliers:	Build	and/or	supply	the	hardware,	software	or	infrastructure	on	which	the	system	will	run
This	is	everyone	that	uses	the	plugin	in	their	Chrome	browser,	or	clones	the	repository	and	runs	it	themselves.

Support	staff:	Provide	support	to	users	for	the	product	or	system	when	it	is	running
The	Lighthouse	keepers	are	keeping	track	of	many	of	the	open	issues,	and	helping	the	people	that	are	creating	them.	Also,	the
Lighthouse	keepers	are	easily	reached	through	Twitter.

System	administrators:	Run	the	system	once	it	has	been	deployed
Same	as	suppliers,	so	the	users	themselves.

Testers:	Test	the	system	to	ensure	that	it	is	suitable	for	use
The	users	and	the	Lighthouse	keepers.	Everybody	that	notices	a	problem	while	testing	the	tool	can	submit	a	bugreport.

Users:	Define	the	system's	functionality	and	ultimately	make	use	of	it
Webdevelopers.

Additional	stakeholders

The	classifications	or	Rozanski	and	Woods	nearly	cover	all	stakeholders.	But	there	are	more	to	come	up	with.	For	Lighthouse	we	could
identify	beneficials,	the	people	who	browse	the	web	and	enjoy	the	better	website	because	the	developers	used	Lighthouse.
Furthermore	we	could	identify	Investors,	these	are	the	people	(or	companies)	who	have	a	financial	interest.	For	Lighthouse	these
investors	would	be	Google	and	thereby	its	mother	company	Alphabet.

Integrators

Integrators	are	the	users	who	check	the	pull	request.	It's	their	task	to	keep	the	project	stable	and	on	track	for	the	future	roadmap.	With
lots	of	different	contributors	its	hard	to	keep	up	with	the	quality	standards.	As	described	in	How	do	project	owners	use	pull	requests
on	Github?	there	are	a	lot	of	different	evaluation	points	to	check	before	the	pull	request	is	merged	within	the	master	project.	Interesting
enough	Lighthouse	also	provides	a	commandline	based	version,	which	in	fact	helps	integrators	by	automatically	checking	if	their	web
project	is	still	up	to	the	set	quality	standards	after	pulling	the	request	branch.	So	the	team	is	helping	integrators	with	their	tasks	(at	least
for	web	based	projects).

In	order	to	find	the	integrators	we've	looked	at	the	commits	to	the	master	branch.	In	these	commits	we	see	the	original	author	of	the
code,	as	well	as	the	integrator.	It	is	easy	to	spot	the	people	we	identified	as	most	influential	(see	1.7	for	the	full	list).	Paul	Irish	and
Patrick	Hulce	arise	as	the	most	prominent	integrators.	Together	they've	done	all	pull	requests.

When	looking	at	the	pull	request	you	see	that	Paul	and	Patrick	often	discuss	the	impact	of	the	change	for	the	majority	of	the	users.	If	it
its	a	worthy	fix,	and	doesn't	break	the	usage	for	the	user	they'll	go	through	with	it.	In	some	cases,	you'll	see	that	they'll	even	accept	the
pull	request	whilst	knowing	it	will	brake	the	application	of	some,	such	as	in	this	pull	request.

Relevant	people

Lighthouse

145

http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html
https://github.com/GoogleChrome/lighthouse/commits/master
https://github.com/GoogleChrome/lighthouse/pull/4176

By	analyzing	the	online	community	around	Lighthouse	we	found	that	the	following	people	were	the	most	involved	in	the	project.

Name Twitter GitHub Role

Paul	Irish @paul_irish @paulirish Google,	Developer	Tooling

Eric	Bidelman @ebidel @ebidel Google,	Developer	Relations

Brendan	Kenny @brendankenny @brendankenny Google,	Developer	Relations

Patrick	Hulce @patrickhulce @patrickhulce Google,	Developer	Tooling

Paul	Lewis @aerotwist @paullewis Google,	Developer	Relations

Sam	Saccone @samccone @samccone Android

Rob	Dodson @rob_dodson @robdodson Google,	Developer	Relations

Context	View

The	context	view	of	the	system	describes	the	relationships,	dependencies,	and	interactions	between	the	system	and	its	environment	[1].
This	section	describes	the	system's	scope	and	responsibilities	as	well	as	relations	with	its	environment	consisting	of	users	and	external
entities.

System	Scope	and	Responsibilities

Google	created	Google	Lighthouse,	as	part	of	its	effort	to	support	progressive	web	apps,	to	establish	standards	for	today’s	web.	It	is	an
open-source	auditing	tool	that	helps	developers	improve	the	performance	and	accessibility	of	their	web	projects.	It	can	be	used	by
anyone	for	free	to	see	how	their	website	stacks	up	against	Google’s	high	standards.	The	main	responsibility	of	Google	Lighthouse	is	to
grade	websites	on	the	following	criteria	:

Security:	Is	it	being	served	from	a	secure	origin?
Accessibility:	Does	it	work	for	all	users?
Perceptual	Speed:	Do	users	perceive	it	as	fast?	How	your	content	loads	is	just	as	important	as	how	fast	it	loads.
Offline	Connectivity:	Will	it	load	offline	or	in	unreliable	network	conditions?

External	Entities

There	are	several	external	entities	surrounding	Lighthouse's	environment.	We	first	enlist	them	below	and	display	them	later	as	a	context
diagram.

The	organization	that	made	the	starting	efforts:	Google.
The	license	of	the	project:	Apache	Licence	2.0.
Programming	languages	used	in	the	project:	NodeJS.
Tools	used	for	code	quality	assurance:	JSDoc,	Closure	Compiler.
Tool	used	for	Development	and	Issue	tracking:	GitHub.
Tool	used	for	error	reporting	and	logging:	Sentry.js.
Testing	framework	and	coverage	tools:	Istanbul.js,	Mocha.js.
Tools	used	for	packaging	and	shipping	the	system:	YARN,	npm.
Tools	used	for	Continuous	Integration:	Travis	CI.
Users	of	the	system:	companies	or	individuals	that	build	web	applications	and	are	interested	in	improving	the	performance	and
accessibility	of	their	web	applications.
The	development	community:	open	source	community.

Lighthouse

146

Figure	1:	Context	View	for	Lighthouse

Using	Figure	1,	we	try	to	provide	a	brief	overview	of	the	environment	of	Lighthouse	and	how	it	interacts	with	these	entities.

Lighthouse	Lighthouse	is	a	tool	used	to	test	the	quality	of	web	applications.	It	was	started	by	Google	and	is	currently	licensed
under	Apache	Licence	2.0.	It	is	a	completely	automated	tool	and	requires	only	the	URL	of	a	web	application.

Programming	languages	Lighthouse	is	implemented	using	NodeJS	and	it	requires	the	version	to	be	Node	6	or	higher.Along	with
YARN,	npm	is	used	as	a	dependency	manager.

Quality	assurance	Lighthouse	puts	a	strong	emphasis	on	the	quality	of	the	product	as	it	is	used	for	the	sole	purpose	to	test	the
quality	of	other	web	applications.	Thus,	multiple	tools	are	used	in	order	cover	every	nook	and	corner	of	the	application.	It	depends
on	Istanbul.js	and	Mocha.js	as	its	main	testing	frameworks.	In	addition	to	above-mentioned	frameworks,	Lighthouse	also	uses
Sentry.js	for	reporting	unexpected	errors,	that	is,	runtime	exceptions.

Communication	and	Issue	tracking	All	the	communications	related	to	the	development	of	lighthouse	are	done	using	GitHub.	It
follows	a	simple	project	board	model	with	issues	categorized	under	different	projects.	Apart	from	development	communication,
Lighthouse	extensively	uses	Twitter	to	reach	a	wider	audience	for	announcing	the	new	release	and	other	promotional	events.

Continuous	Integration	TravisCI	is	responsible	for	continuous	integration	of	lighthouse.	It	is	one	of	the	key	dependency	of
Lighthouse	as	being	an	open	source	project,	it	is	very	difficult	to	review	every	contribution	effectively.	Thus,	TravisCI	runs	all	the
existing	tests	in	the	project	on	each	pull	request	raised	and	it	is	merged	only	if	it	is	backward	compatible.	It	is	necessary	to	ensure
the	stability	of	the	system.

Users	Lighthouse	is	extensively	used	by	companies	or	individuals	that	are	in	web	applications	development	business.	Many	users
include	Lighthouse	as	a	part	of	their	CI	to	constantly	monitor	the	changes	affecting	their	web	application	quality.

Community	Lighthouse	has	a	strong	open	source	community	consisting	of	active	contributors.	It	has	around	2687	forks	on
GitHub	and	with	around	1800	closed	issues.

Lighthouse

147

Development	View

The	development	view	of	a	project	describes	the	architecture	that	supports	the	software	development	process	[2].	This	section	will
address	what	modules	Lighthouse	is	composed	of,	what	kind	of	standardized	practices	take	place	and	how	the	project	is	structured.

Modules

Lighthouse	consists	of	multiple	modules	with	some	being	dependant	on	others.	A	small	list	of	all	modules	present	in	Lighthouse	will	be
given	after	which	the	module	structure	will	be	explained	more	in	depth.

Module	Name Description

	lighthouse-core	 Core	part	of	Lighthouse	which	performs	the	tests	and	comes	up	with	a	report	based	on	the	results.

	lighthouse-cli	
Command-line	front-end	for	Lighthouse	that	wraps		lighthouse-core		to	be	interfaceable	via	the
command	line.

	lighthouse-

extension	
Packages		lighthouse-core		to	be	usable	as	a	Google	Chrome	extension.

	lighthouse-logger	 Logger	module	used	for	information	reporting	to	the	console.

	lighthouse-viewer	 Application	that	visualizes	Lighthouse	reports.

The	main	part	of	Lighthouse	is		lighthouse-core	.	This	is	the	part	that	performs	the	different	audits	and	gives	a	score	based	on	the
success	of	those	audits.	Both		lighthouse-cli		and		lighthouse-extension		use	this	as	a	back-end.	They	wrap	their	input	to	allow	it	to
be	processed	by		lighthouse-core	.		lighthouse-core		comes	with	a		reporter		which	generates	a	report	based	on	the	result.	This	part
is	used	by		lighthouse-viewer		to	render	the	outcome	of	a	Lighthouse	evaluation	to	an	HTML	report.	Most	of	these	modules	rely	on
	lighthouse-logger		to	report	information	to	the	console.		lighthouse-logger		is	a	utility	module	that	allows	the	logging	of	values	in
pretty	colors	and	filter	messages	on	priority.

Figure	2:	Overview	of	the	module	system	in	Lighthouse.

To	further	explain	the	architecture	behind	Lighthouse	we	present	you	Figure	3	which	is	a	chart	that	is	also	used	by	the	Lighthouse	team
[4].	It	gives	a	high	level	overview	of	what	happens	during	an	evaluation.	The	'Lighthouse	Runner'	is	part	of		lighthouse-core	.	The
topics	gatherers	and	audits	will	be	discussed	in	section	about	standardized	practices.	The	website	is	evaluated	in	the	Google	Chrome
browser.	Lighthouse	uses	a		driver		which	interfaces	with	the		Chrome	Debugging	Protocol	.	This	allows	Lighthouse	to	gather	the

Lighthouse

148

required	information	to	perform	its	tests.	Communication	between	the	Chrome	instance	and	Lighthouse	happens	over	a		websocket	.
The		driver		sends	commands	to	the	browser	instance	which	allows	Lighthouse	to	inject	scripts	and	hooks	to	control	how	both	the
website	as	well	as	Chrome	behave.

Figure	3.	Overview	of	the	architecture	of	Lighthouse.

Standardized	Practices

Because	Lighthouse	is	a	project	of	significant	size	it	is	important	to	standardize	certain	practices.	This	in	order	guarantee	that	the	project
remains	consistent	throughout	the	development	process.	In	this	section	we	will	describe	what	parts	of	Lighthouse	are	standardized	and
why.

Audits	and	Gatherers

The	goal	of	Lighthouse	is	evaluate	a	website	and	calculate	a	performance	score.	Because	of	this	Lighthouse	has	numerous	audits	which
test	one	particular	aspect	of	a	site.	An	audit	might,	for	example,	be	a	test	which	evaluates	how	long	it	takes	to	load	the	website.	But,	it	is
also	possible	that	an	audit	tests	a	more	abstract	concept	like	if	a	site	is	optimized	for	search	engines.

To	execute	these	audits	requires	some	knowledge	about	a	website	and	how	it	behaves.	In	the	example	of	page	load	it	is	required	to	know
how	long	it	took	the	browser	to	load	the	page.	The	required	information	for	an	audit	is	gathered	by	gatherers.	These	gatherers	fetch
required	information	for	the	audits.

These	two	interfaces	play	a	major	role	in	the	extendability	of	Lighthouse.	Again,	Lighthouse	is	focused	on	evaluating	websites	in	a
variety	of	ways.	However,	it	might	be	the	case	that	a	developer	wants	to	evaluate	a	website	in	a	certain	way	which	might	not	be	relevant
for	other	developers.	As	such,	it	is	possible	to	create	your	own	audits	and	gatherers	[3].	This	gives	the	developer	the	ability	to	create
their	own	tests	and	evaluate	their	website	on	their	own	criteria.	An	added	benefit	is	that	because	of	the	fact	that	audits	and	gatherers	are
standardized	it	is	fairly	easy	to	import	the	specialized	tests	from	developers	should	the	need	arise.

Standardized	Design

Lighthouse

149

Lighthouse	is	open	for	contributions	from	external	sources.	However,	to	ensure	that	the	new	contributions	fall	in	line	with	the	project
there	are	some	rules	and	standards	that	apply.

To	ensure	that	all	(new)	code	has	a	style	that	is	consistent	with	the	existing	code	base	Lighthouse	uses	a	'linter'	to	validate	the	code.	The
lint	rules	state	what	indentation	type	is	used	and	what	sort	of	statements	are	allowed.	For	example,	it	is	not	allowed	to	use
	console.log		statements.	Instead,	developers	should	use		lighthouse-logger	.	These	rules	keep	the	code	base	consistent	and	clean.

To	further	streamline	the	contribution	process	Lighthouse	has	a		CONTRIBUTING.md		which	states	rules	that	contributors	must	follow	[5].
Lighthouse	uses	conventional	commit	for	commit	messages	and	pull	requests.	A	bot	is	then	used	to	assert	that	all	pull	requests	have	a
title	according	to	the	rules.	One	important	part	for	new	contributors	is	that	they	sign	the	Contributors	Licence	Agreement	(CLA).	If	new
contributors	do	not	sign	the	CLA	their	contributions	cannot	be	accepted	into	Lighthouse	because	of	legal	reasons.

Codeline	Organization

In	this	section	we	will	describe	how	Lighthouse	does	testing	and	what	its	build	process	looks	like.

Testing

Lighthouse	testing	is	highly	standardized	and	automated.	As	Lighthouse	can	be	integrated	with	the	client's	application	as	a	node	module,
testing	becomes	a	priority	to	prevent	the	breakdown	of	client's	application	due	to	unexpected	runtime	errors	in	the	Lighthouse	code.

The	testing	process	consists	of	two	major	components:

a)	Testing	framework:

Lighthouse	used	modular	programming	to	develop	the	testing	framework	i.e	each	file	contains	tests	related	to	the	specific	functionality
and	in	cases	where	two	or	more	functionalities	are	integrated,	a	new	file	is	used.	The	main	tool	used	for	developing	the	testing	framework
is		Mocha.js	.		Mocha.js		tests	run	serially,	allowing	for	flexible	and	accurate	reporting	while	mapping	uncaught	exceptions	to	the	correct
test	cases.

b)	Continuous	Integration:

Continuous	Integration	is	a	software	development	practice	where	members	of	a	team	integrate	their	work	frequently.	Each	integration	is
verified	by	an	automated	build	(including	test)	to	detect	integration	errors	as	quickly	as	possible.	Lighthouse	uses		Travis	CI	,	a	well-
known	service	used	to	build	and	test	software	projects	hosted	on	GitHub.

Lighthouse	team	makes	sure	that	every	line	of	code	is	covered	and	validated	using	automated	tests.	With	every	feature	introduced	to	the
system,	there	are	test	cases	added	as	well,	to	make	sure	that	all	parts	of	the	code	are	well	covered.	These	pull	requests	are	thoroughly
reviewed,	in	addition	to	the	automated	GitHub	checks(see	Figure	4	Example	GitHub	checks),	in	order	to	prevent	the	breakdown	of	the
system	(See	pull	request,	for	example).

Figure	4:	Example	of	GitHub	checks.

To	make	sure	the	new	functionalities	integrates	well	with	the	older	versions,	Lighthouse	team	uses	two	levels	of	continuous	integration.
	Travis	CI		runs	tests	on	the	commits	you	push	to	the	repository.	Each	pull	request	triggers	a	minified	and	development	build.	And,
	Yarn		is	used	to	run	all	the	test	modules	before	releasing/shipping	the	code.	It	is	done	for	every	release	to	ensure	that	the	vital	parts	of

Lighthouse

150

https://conventionalcommits.org/
https://github.com/GoogleChrome/lighthouse/pull/4144

the	systems	are	not	corrupted.

Figure	5:	Travis	using	Yarn	to	run	tests	on	each	PR.

Building

The	Lighthouse	team	usually	releases	a	new	version	every	month,	with	occasional	minor/patch	releases	if	warranted.	A	release	manager
is	appointed	who	is	responsible	for	the	release	process	shown	in	Figure	6.

Figure	6:	Release	procedure	used	by	Lighthouse.

The	building	process	is	done	using	two	deployment	scripts.	The	main	difference	between	the	two	scripts	is	the	visibility	of	the	release.
The	canary	release	is	done	by	slowly	rolling	out	the	change	to	a	small	subset	of	users	before	rolling	it	out	to	the	entire	infrastructure	and
making	it	available	to	everybody.	Both	the	scripts	use		Yarn		to	download	all	the	dependencies	and	running	the	test	modules	on	the
released	version.

Deployment	view

As	stated	in	Rozanski	and	Woods,	the	Deployment	view	focuses	on	aspects	of	the	system	that	are	important	after	the	system	has	been
tested	and	is	ready	to	go	into	live	operation	[2].	It	describes	the	physical	environment	in	which	the	system	is	intended	to	run.

To	run	Lighthouse	the	user	has	three	options:

Lighthouse

151

1.	 within	the	Chrome	DevTools
2.	 using	the	Chrome	extension
3.	 using	the	Node	CLI

All	three	options	rely	on	the	usage	of	(headless)	Chrome.	In	essence	Chrome	is	also	part	of	Google,	but	since	it	is	maintained	by	a
different	division	within	Google	it	would	still	be	described	as	third	party	software.

Chrome	DevTools

This	is	possibly	the	easiest	option	to	run	Lighthouse.	Since	Chrome	60	Lighthouse	is	accessible	from	the	DevTools.	In	the	audit	tab	you
will	find	a	button	to	perform	a	complete	scan	for	the	site	you	are	currently	visiting.	It	uses	the	current	website	view	to	perform	the
analysis.

Using	Lighthouse	by	from	Chrome	Devtools.

Chrome	extension

The	Lighthouse	team	also	released	a	Chrome	extension.	Installing	the	extension	requires	Chrome	(obviously).	After	installation
Lighthouse	is	directly	available	to	perform	tests	on	the	current	open	webview,	by	clicking	on	the	logo	to	the	right	of	the	URL	bar.

Lighthouse

152

Lighthouse	Chrome	Extension.

Node	CLI

The	third	option	is	the	most	advanced	option	and	requires	a	little	more	steps	to	get	it	running.	The	CLI	method	relies	on	Node	6	to	run,
and	can	be	installed	by	using	npm	(npm	install	-g	lighthouse)	or	yarn	(yarn	global	add	lighthouse).	Running	the	tool	is	easily	done
from	the	command	line:		lighthouse	<url>	.	There	are	many	different	options	to	set.	One	of	the	more	interesting	ones	is	the	possibility
to	use	the	headless	version	of	Chrome,	which	helps	to	use	Lighthouse	as	part	of	an	automated	testing	chain.

Technical	Debt

In	this	section,	we	will	discuss	technical	debt	and	how	it	affects	Lighthouse.	We	will	describe	how	Lighthouse	suffers	from	both
technical	debt	as	well	as	testing	debt.	In	addition	to	that,	we	will	address	how	these	two	topics	have	changed	over	time	and	how	the
team	communicates	about	these	topics.

Technical	Debt

The	technical	debt	analysis	has	been	performed	in	two	different	ways:	automatically	using	software	tools	and	by	manually	inspecting
files.	The	automatic	test	was	performed	through	the	scanning	tool	from	SonarQube.	We've	performed	two	checks.	The	first	consisted	of
the	entire	Lighthouse	repository.	This	resulted	in	300	bugs,	6	vulnerabilities,	351	code	smells	and	18.6%	duplications	found	in	the
project.	The	estimated	technical	debt	by	SonarQube	was	8	days.	However	many	of	the	issues	were	found	in	less	critical	parts	such	as
the	documentation.	So	for	comparison,	an	analysis	has	also	been	performed	on	just	the	lighthouse-core	part.

Lighthouse

153

Analysis	of	Lighthouse	using	SonarQube.

The	technical	debt	of	the	core	part	was	estimated	by	SonarQube	to	be	around	4	hours	(3h	on	major	items,	10min	on	critical	items	and
25min	on	minor	items).	However,	the	number	of	hours	in	itself	isn't	a	good	indicator	on	if	the	project	is	well	maintained.	The	ratio
between	the	technical	debt	and	the	time	it	takes	for	the	entire	code	base	to	be	built	gives	a	better	indication.	For	the	Lighthouse-core
part,	the	code	base	consists	of	over	30.000	lines	of	code,	and	hence	the	debt	ratio,	as	calculated	by	SonarQube,	is	0%.	Which	is
impressive.

For	the	manual	analysis,	we	checked	the	code	with	for	violations	of	the	SOLID	principles.	The	Single	responsibility	principle	is	met.	All
classes	are	dedicated	to	specific	functions,	with	a	clear	naming	structure.	In	the	case	Open/closed	principle	we	take		lighthouse-
core/audits/audit.js		as	an	example	file.	It	is	noticeable	that	the	class	can	easily	be	extended	with	new	functionality.	All	functions
within	the	class	are	well	defined	and	if	required	comments	are	made	to	clarify.	The	parameters	are	described	and	also	the	return	types	are
stated.	Hence	the	module	is	closed.	So	the	file	follows	the	Open/closed	principle.	This	is	true	for	all	manually	checked	files.	The	Liskov
substitution	principle	can	be	checked	by	looking,	for	example,	at	the		lighthouse-core/audits/audit.js		file.	This	file	is	the	parent	file	of
all	audits	in	the	folder.	Looking	at	its	subclasses,	we	can	conclude	that	none	of	them	violate	Liskov's	substitution	principle.	All
subclasses	compute	a	valid	override	of	the	parent	class.	The	separation	of	all	parent	classes	into	useful	parts	also	ensures	that	the	code
is	valid	according	to	the	interface	segregation	principle.	No	class	could	be	found	that	requires	unnecessary	other	classes.	Looking	at	the
way	the	abstractions	are	set	up,	no	violation	of	the	dependency	inversion	principle	could	be	found.

Testing	Debt

Code	coverage	is	a	measure	used	to	indicate	how	much	code	has	been	covered	by	a	test.	Low	coverage	implies	that	the	program	has	a
high	chance	of	containing	undetected	bugs.	High	coverage	does	not	necessarily	signify	all	actions	will	be	correctly	processed	by	the	code,
but	at	least	it	indicates	that	the	likelihood	of	correct	processing	is	good	[7].

Code	coverage	can	be	further	divided	based	on	the	criteria	explained	below	[8].

1.	 Function	coverage	–	Has	each	function	(or	subroutine)	in	the	program	been	called?
2.	 Statement	coverage	–	Has	each	statement	in	the	program	been	executed?
3.	 Branch	coverage	–	Has	each	branch	(also	called	DD-path)	of	each	control	structure	(such	as	in	if	and	case	statements)	been

executed?	For	example,	given	an	if	statement,	have	both	the	true	and	false	branches	been	executed?	Another	way	of	saying	this	is,
has	every	edge	in	the	program	been	executed?

4.	 Lines	coverage	–	Has	each	line	in	the	program	were	covered	by	the	tests?

Release	version Modules %	Stmts %	Branch %	Funcs %	Lines

2.9.1(latest) lighthouse-cli 63.5 55.95 50 64.25

lighthouse-core 97.89 93.18 100 97.78

lighthouse-extension 100 100 100 100

lighthouse-viewer 100 100 100 100

2.6.0 lighthouse-cli 33.78 9.88 11.11 33.96

lighthouse-core 74.55 56.92 84.21 74.53

lighthouse-extension 100 100 100 100

lighthouse-viewer 100 100 100 100

Testing	at	the	lighthouse	is	divided	into	four	major	modules	i.e	cli,	core,	lighthouse-extension	and	lighthouse-viewer.	The	result	table
presented	above	clearly	reflects	the	importance	given	to	testing	at	Lighthouse.	All	the	modules,	except	lighthouse-cli,	cover	almost	every
line	of	code	written	for	that	specific	module.	On	running	coverage	analysis	on	prior	releases,	we	found	out	the	testing	debt	in

Lighthouse

154

	lighthouse-cli		module	was	introduced	during	the	release	of	version		2.6.0	.	The	main	culprit	file	was	found	to	be		sentry-prompt.js	.
On	further	investigation,	we	found	that		sentry-prompt.js		replaced	the	file		shim-modules.ts	,	for	which	test	cases	still	exists.	Given
the	purpose	of		sentry-prompt.js		is	to	ask	user's	permission	to	send	runtime	error	report	to	Lighthouse,	it	seems	no	testing	other	than
manual	testing	was	done	for	this	file.

Apart	from	the	coverage,	Testing	time	is	another	source	of	technical	debt.	The	average	testing	time	taken	by	Lighthouse	to	run	all	the
tests	was	found	to	be	around	1	minutes	8	seconds.	It	seems	acceptable	as	a	total	of	937	tests	were	ran	during	that	time	covering	~91%	of
the	total	code.

Communication	about	Technical	Debt

In	this	section,	we	will	address	how	the	Lighthouse	developers	discuss	the	technical	debt.	As	will	be	seen,	communication	about
technical	debt	can	be	divided	up	into	two	parts.	First,	we	will	discuss	how	the	Lighthouse	team	uses	Github,	and	more	specifically
Github	Issues,	to	discuss	the	technical	debt.	After	that,	we	will	show	how	technical	debt	is	denoted	in	the	code	base.

Like	most	discussions	about	Lighthouse,	communication	about	technical	debt	happens	through	the	use	of	Github	Issues.	Technical	debt
is	never	mentioned	directly	but	some	of	the	issues	that	are	raised	are	a	direct	result	of	technical	debt.	Unfortunately,	the	Lighthouse	team
does	not	use	special	labels	to	denote	issues	related	to	technical	debt.	This	does	make	it	more	difficult	to	see	what	caused	the	technical
debt.	Searching	for	pull	requests	which	focus	on	solving	technical	debt	gives	more	results.	There	are	a	few	pull	requests	where	the	term
technical	debt	is	directly	mentioned.	However,	there	are	no	pull	requests	which	directly	mention	that	they	fix	the	technical	debt.

When	looking	using	broader	search	terms	like	refactor	and	maintenance	it	is	easier	to	find	discussions	about	(problems	caused	by)
technical	debt.	Also	searching	for	proposed	architecture	changes	gives	good	examples	of	technical	debt.	What	follows	is	that	while
technical	debt	is	not	mentioned	directly	the	problem	is	addressed	and	sometimes	solved.

To	denote	technical	debt	within	the	code	base	the	Lighthouse	team	uses	different	techniques.	Often	they	use		TODO	s	as	a	way	of
signifying	that	a	part	of	the	code	needs	revising.	There	are	28		TODO		markers	in	the	whole	code	base	of	Lighthouse	[9].	However,	it	is
not	clear	if	and	when	these		TODO	s	will	be	fixed.	There	is	also	no	indication	if	there	is	a	matching	Github	Issue.	Therefore	it	remains	to
be	seen	if	these		TODO	s	will	actually	be	solved.

Evolution	of	Technical	Debt

In	this	section,	we	will	describe	how	Lighthouse	has	dealt	with	technical	debt	over	time.	Technical	debt	usually	accumulates	over	a
period	of	time.	Sometimes	it	is	addressed	directly	and	fixed	intentionally.	It	is	also	possible	for	changes	to	be	made	to	the	code	base
which	results	in	technical	debt	being	paid	while	not	being	the	primary	goal.	We	will	try	to	give	a	brief	historic	overview	how	Lighthouse
has	changed	over	time	and	how	that	has	impacted	its	technical	debt.

The	first	version	of	Lighthouse	was	released	on	30-06-16	[10].	This	makes	Lighthouse	almost	two	years	old.	In	total	48	releases	were
made	with	the	most	recent	version	being	version	2.9.3.	Many	changes	were	made	during	the	two	year	period	and	we	are	going	to	look	at
some	of	them	to	see	how	they	impacted	Lighthouse.

To	look	at	how	the	Lighthouse	project	has	changed	over	time	we	are	going	to	analyze	previous	versions	using	SonarQube.	This	will	give
an	indication	how	the	number	of	bugs,	vulnerabilities	and	technical	debt	has	changed.	Unfortunately,	not	every	version	of	Lighthouse	can
be	analyzed	using	SonarQube.	We	will	analyze	releases	starting	from	version	2.0	which	was	released	on	30-06-17	[10].	As	before,	we
will	only	focus	on	the	core	part	of	Lighthouse	to	avoid	including	errors	in	unrelated	parts	of	the	code	base.

What	we	found	is	that	in	all	releases	the	amount	of	technical	debt	was	very	limited.	SonarQube	found	that	the	amount	of	technical	debt
was	only	a	few	hours.	This	is	a	relativity	low	number	with	respect	to	the	size	of	the	project.	But	the	number	of	hours	of	technical	debt
does	not	indicate	if	the	project	is	being	maintained	correctly.	As	has	been	mentioned	before,	The	ratio	between	the	technical	debt	and	the
time	it	takes	for	the	entire	code	base	to	be	built	gives	a	better	indication.	With	all	releases,	this	ratio	was	0%.

It	follows	that	the	amount	of	technical	debt	in	Lighthouse	is	fairly	limited.	While	there	are	definitely	instances	where	decisions	from	the
past	have	a	negative	impact	on	future	development	the	actual	extend	of	these	decisions	is	limited.	The	project	is	not	being	held	back	by	a
huge	amount	of	technical	debt.	New	additions	to	the	project	can	happen	organically	and	the	code	base	changes	over	time	to	meet	the
needs	of	the	developers.

Lighthouse

155

Evolution	perspective

One	of	the	great	benefits	of	software	is	its	ability	to	evolve	very	quickly.	For	Lighthouse	this	is	very	relevant,	since	web	techniques	are
highly	subjected	to	change.	Since	the	first	commit	by	Paul	Lewis	to	the	Lighthouse	project	in	January	2016,	Lighthouse	is	now	currently
at	version	2.9.3.

Timescale	and	Likelihood	of	Change

Thanks	to	the	rise	in	popularity	of	the	Progressive	WebApps	(PWA)	the	web	landscape	is	changing.	Web	users	expect	a	native	feeling	to
web	applications,	as	well	as	full	functionality.	Features	that	used	to	be	dedicated	to	native	smartphone	apps	(e.g.	notifications,	offline
capabilities,	hardware	acceleration,	etc.)	are	now	moving	to	the	web.	New	Javascript	and	CSS	capabilities	are	developed	to	keep	up	with
this	trend,	resulting	in	3	different	Chrome	versions	launched	in	March	2018	[11].	Being	an	automated	web	checking	tool,	Lighthouse
needs	to	evolve	continuously	to	stay	relevant.	However	not	all	changes	are	just	related	to	the	evolving	landscape	of	the	web,	new
features	are	continuously	added	to	make	the	tool	more	convenient	for	the	users.	The	focus	for	changes	resolves	around	the	four	main
audit	categories:

1.	 PWA	Checklist
2.	 Best	Practices
3.	 Performance
4.	 Accessibility

It	is	safe	to	say	that	the	timescale	for	changes	is	rather	short,	and	the	likelihood	of	changes	is	high.

v2.0.0	and	Operation	Yaquina	Bay

One	and	a	half	year	after	the	first	commit,	Lighthouse	v2.0.0	was	released.	A	lot	of	work	had	been	done.	The	first	most	visible	one	was
the	User	Interface	change.	Making	the	results	more	clear	by	adding	the	now	characteristic	gauges,	screenshots,	filmstrips,	sparklines,
accessibility	by	sections	and,	pass	and	failures	separation.	Version	2.0.0	also	contained	the	integration	with	the	Chrome	DevTools,
making	the	tool	easier	accessible	to	many	web	developers.

Another	important	part	of	the	2nd	version	of	Lighthouse	is	operation	Yaquina	Bay.	The	operation	is	named	after	the	Yaquina	Bay
lighthouse	which,	like	a	fast	webpage	that	you	can	see	it	load	quickly	from	start	to	finish,	is	short	enough	that	it	doesn't	take	long	to	see
the	whole	thing.

Lighthouse

156

https://github.com/GoogleChrome/lighthouse/commit/c09a442f057469bff6e9a15bb26e78e4f7dc0af5

Yaquina	Bay.

The	goal	was	to	speed	up	Lighthouse,	or	as	Paul	Irish	put	it:	"I	mean..	a	performance	tool	should	probably	be	performant.	ᚂ".	Nine
issues	were	fixed,	resulting	in	a	good	performance	boost:	a	full	run	for	cnn.com	went	from	169s	to	50s	(238%	faster),	and	theverge.com
went	from	92s	to	53s	(73%	faster).

The	rest	of	the	v2	update	consisted	of	many	fixed	issues	and	added	features.	A	short	summary:	Audits	(14	commits),	Metrics	&
Precision	(17	commits),	Plots	(4	commits),	CLI	(3	commits),	Testing	(6	commits),	Misc	(12	commits),	Docs	(9	commits)	and	Deps	(4
commits).

Future	evolution

Since	the	v2.0.0	release	in	August	2017	many	more	releases	have	been	made	bringing	the	current	version	to	2.9.3.	In	the	issue	tracker	the
3.0	label	is	visible,	and	used	by	the	team,	so	a	new	big	release	can	be	expected.

References

1.	 The	System	Context	Architectural	Viewpoint,	Eoin	Woods	and	Nick	Rozanski,
http://www.artechra.com/media/writing/WICSA2009-context-view-paper.pdf

2.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with	Stakeholders	using	Viewpoints	and	Perspectives.
Addison-Wesley,	2012.

3.	 Creating	custom	audits,	https://github.com/GoogleChrome/lighthouse/tree/master/docs/recipes/custom-audit
4.	 Lighthouse	architecture	description,	https://github.com/GoogleChrome/lighthouse/blob/master/docs/architecture.md
5.	 Lighthouse	rules	for	contributors,	https://github.com/GoogleChrome/lighthouse/blob/master/CONTRIBUTING.md
6.	 Lighthouse	release	process,	https://github.com/GoogleChrome/lighthouse/blob/master/docs/releasing.md
7.	 Brader,	Larry;	Hilliker,	Howie;	Wills,	Alan	(March	2,	2013).	"Chapter	2	Unit	Testing:	Testing	the	Inside".	Testing	for	Continuous

Delivery	with	Visual	Studio	2012
8.	 Code	coverage	on	Wikipedia,	https://en.wikipedia.org/wiki/Code_coverage
9.	 TODOs	in	Lighthouse,	https://github.com/GoogleChrome/lighthouse/search?utf8=%E2%9C%93&q=TODO&type=
10.	 Lighthouse	releases,	https://github.com/GoogleChrome/lighthouse/releases?after=1.1.2)
11.	 Google	Chrome	Version	History,	https://en.wikipedia.org/wiki/Google_Chrome_version_history

Lighthouse

157

http://www.artechra.com/media/writing/WICSA2009-context-view-paper.pdf
https://github.com/GoogleChrome/lighthouse/tree/master/docs/recipes/custom-audit
https://github.com/GoogleChrome/lighthouse/blob/master/docs/architecture.md
https://github.com/GoogleChrome/lighthouse/blob/master/CONTRIBUTING.md
https://github.com/GoogleChrome/lighthouse/blob/master/docs/releasing.md
https://en.wikipedia.org/wiki/Code_coverage
https://github.com/GoogleChrome/lighthouse/search?utf8=%E2%9C%93&q=TODO&type=
https://github.com/GoogleChrome/lighthouse/releases?after=1.1.2
https://en.wikipedia.org/wiki/Google_Chrome_version_history

LoopBack

Project	by	Yann	Rosema,	Claudio	Lazo,	Wesley	Quispel	and	Joost	Wooning.

Delft	University	of	Technology

Abstract
LoopBack	is	a	framework	which	allows	for	quickly	creating	APIs	on	existing	databases.	A	new	version	of	LoopBack	is	expected	soon,
the	development	started	in	January	of	2017	from	scratch.	Since	than	the	LoopBack	team	has	tried	to	keep	a	clean	and	understandable
codebase.	In	this	chapter	we	will	analyze	the	architecture	of	the	LoopBack	project.	This	also	includes	analyzing	older	versions	of
LoopBack	to	be	able	to	understand	why	the	LoopBack	team	has	chosen	to	rewrite	the	entire	project.

Table	Of	Contents
Introduction
Stakeholder	Analysis
Context	View
Development	View
Technical	Debt
Information	Viewpoint
Conclusion
References

Introduction
StrongLoop's	LoopBack	is	an	open-source	Node.js	framework	that	allows	developers	to	easily	build	connective	applications.	Through
the	command	line	interface,	within	minutes	a	skeleton	for	the	application	is	created.	The	program	generates	a	REST	API,	has	built	in
role-based	access	controls	and	automatically	creates	models	(classes)	and	relations	based	on	CLI	input	and	it	connects	easily	to	data
sources.

LoopBack	is	currently	in	the	development	state	for	version	4,	or	LoopBack4,	the	first	release	is	expected	June	2018.	LoopBack4	is
rewritten	from	scratch	therefore	it	gives	us	the	perfect	opportunity	to	find	out	why	the	StrongLoop	team	decided	for	this	rewrite.	We
will	try	to	get	a	good	insight	in	the	architecture	of	LoopBack,	for	this	we	use	the	methods	described	in	Rozanski	&	Woods	(2012).	Since
the	codebase	is	relatively	new	(the	development	started	in	January	of	2017)	we	expect	that	the	project	architecture	is	quite	good.

Stakeholder	Analysis

To	be	able	to	understand	the	role	of	the	stakeholders	architecture	in	the	development	of	LoopBack	is	fundamental.	In	order	to	have
insights	in	the	stakeholders	and	their	roles,	a	stakeholder	analysis	is	required.	This	is	done	according	to	the	11	stakeholder	types	of
Rozanski	&	Woods	(2012).

Stakeholder	types

Loopback

158

http://github.com/ChampiYann
http://github.com/cblazo
http://github.com/Quispie
http://github.com/jwooning

Rozanski	&	Woods	identify	eleven	stakeholder	types	and	for	LoopBack	we	also	identify	three	other	stakeholder	types.	An	overview	of
these	stakeholders	is	shown	in	table	1.

Type Stakeholder Description

Acquirers
IBM,	StrongLoop	management,
founding	developers	(such	as
Raymond	Feng)

The	procurement	of	LoopBack	was	overseen	by	the	developers
who	perceived	a	utility	in	its	existence.

Assessors IBM's	legal	department,	System
architects

IBM	is	responsible	for	legal	regulations	and	the	system
architects	for	adherence	to	software	standards.

Communicators Developers,	maintainers	via	GitHub
and	Jekyll

The	people	that	maintain	the	documentation	and	the	website	are
the	main	communicators.	This	is	most	often	done	by	the
maintainers.

Developers Raymond	Feng,	Miroslav	Bajtos	and
Ritchie	Martori

The	construction	of	the	system	from	specification	is	done	by	a
highly	active	team	followed	by	less	active	contributors,	further
deployment	is	completed	by	the	users	of	LoopBack.

Maintainers

Biniam	Admikew,	Diana	Lau,	Janny
Hou,	Simon	Ho,	Kyu	Shim,	Taranveer
Virk,	Yappa	Hage	and	open-source
contributors

Further	developers	that	maintain	LoopBack,	create	the
documentation	and	debug	it.

Production
Engineers - As	this	software	project	has	no	production	phase	but	only	a

development	phase,	there	are	no	production	engineers	involved.

Suppliers
OS	(Windows,	MacOS,	Linux),
Github,	Node.js,	NPM	amongst	many
other	dependencies

LoopBack	has	many	dependencies,	which	can	all	be	considered
suppliers.

Support	Staff Developers,	contributors,	IBM
Support	Portal

Support	can	be	formal	in	the	form	of	IBM's	support	or
contacting	the	development	team	or	more	informal	using	third-
party	sources	like	StackOverflow.

System
Administrators Users Since	the	users	will	be	responsible	for	deployment,	system

administration	will	fall	to	them.

Testers Developers,	Users
Issues	that	are	discovered	can	be	disclosed	on	the	repository.
This	means	both	users	and	developers	are	involved	in	testing.
LoopBack	also	uses	continuous	integration.

Users

API	builders	for	GoDaddy.com,
Symantec,	Sapient,	et	al.	Also	the	end-
users	that	use	applications	built	using
LoopBack

The	users	that	define	the	system's	functionality	and	ultimately
make	use	of	it.

End	users People	who	use	an	API	created	with
LoopBack

These	people	want	a	consistent	use	of	the	API,	which	is
conform	the	REST	specification.

Standardication
organizations OpenAPI

OpenAPI	is	an	industry	standard	for	the	design	of	REST	APIs.
loopback-next	integrates	the	OpenAPI	standard	using	multiple
packages	to	make	sure	the	rendered	API	complies	with	this
standard.

Tool	providers Visual	Studio	Code
The	loopback-next	team	plans	on	adding	new	tools	that	work
with	Visual	Studio	Code	 	making	this	software
a	stakeholder	of	the	project.

Table	1.	LoopBack	stakeholders	sorted	by	type

Power	Interest	Grid

The	power-interest	grid	in	figure	1	maps	certain	stakeholders	on	a	2D-plane	according	to	the	power	they	have	over	the	project	and	their
interest	in	the	project.	In	the	top	right	corner	we	see	the	developers	of	LoopBack	who	have	the	most	power	and	the	most	interest	in	the
success	of	the	project.

planned_features

Loopback

159

With	a	little	less	power	and	less	interest,	we	have	the	maintainers	who	work	on	the	software	but	need	reviewing	by	the	developers.	With
again	less	power	we	have	the	contributors	who	write	code	which	needs	to	be	reviewed	by	the	developers	or	the	maintainers.	IBM	and
its	legal	department	have	a	similar	level	of	power	but	less	interest	because	LoopBack	is	software	from	IBM	but	as	it	is	a	big	company,
they	have	less	interest	in	this	project.	The	suppliers	have	(close	to)	no	interest	in	the	project	as	they	do	not	play	an	active	role	in	it,
however	they	do	allow	the	project	to	keep	on	living	which	means	they	have	a	non-zero	amount	of	power	over	the	project.	The	users
have	a	high	interest	in	the	software	and	can,	as	a	community,	ask	for	changes,	but	as	long	as	they	do	not	become	contributors,	their
power	remains	low.	The	IBM	support	portal	has	a	similar	amount	of	power	to	the	user,	because	they	can	ask	for	changes	in	the
software.	However	because	they	are	part	of	IBM,	LoopBack	is	not	their	main	focus.	Lastly,	the	competitors	have	a	high	interest	in	the
software,	but	almost	no	power.

Figure	1.	Power	interest	grid	of	the	LoopBack	software.

Context	View
This	section	describes	all	external	entities	(systems,	people	and	organizations)	that	LoopBack	interacts	with.	The	goal	of	this	analysis	is
to	identify	dependencies	and	important	relationships	with	its	environment.	The	entities	are	shown	in	the	context	view	of	figure	2.

Scope	&	Responsibilities

Loopback

160

LoopBack	is	a	JavaScript	REST	API	framework;	its	scope	includes,	but	is	not	limited	to,	the	following	functions:

LoopBack	generates	a	REST	API	skeleton
LoopBack	allows	for	the	customization	of	the	REST	API	through	a	command	line	interface
LoopBack	has	an	API	explorer	(UI)
LoopBack	supports	multiple	JavaScript	packages
LoopBack	provides	role	based	access	control
LoopBack	is	compatible	with	multiple	databases
LoopBack	allows	HTTP	request	routing
LoopBack	generates	standard	models

In	order	to	narrow	the	scope	of	the	software,	the	following	functions	specify	what	the	software	does	do:

LoopBack	does	not	include	a	GUI
LoopBack	does	not	provide	frontend	services	(other	than	the	included	API	explorer)
LoopBack	does	not	limit	the	rate	of	accessibility

External	entities

Besides	the	identified	stakeholders,	many	other	entities	surround	LoopBack	and	can	be	of	influence.	They	are	divided	into	three
categories:	market,	development	and	technology.

1)	Market

Owner:	StrongLoop,	an	IBM-owned	company,	is	the	company	that	created	LoopBack.	See	the	stakeholder	'acquirers'	for	more
information.
Competition:	There	are	many	other	frameworks	for	the	creation	of	REST/SOAP	APIs,	like	Meteor,	Restify,	Dreamfactory,	Sails,
Hapi	and	many	more.	This	means	that	LoopBack	must	keep	innovating	in	order	to	stay	in	this	market.
Users:	The	users	can	be	any	person	or	organization,	for	example	GoDaddy,	Symantec	and	Bank	of	America.

2)	Development

Support:	There	are	many	open	source	support	channels	like	Gitter	chat,	GitHub,	Google	Groups	and	the	LoopBack	FAQ	&
Documentation.	For	enterprise	clients	(e.g.	using	API	Connect)	there's	a	professional	support	department.
Developers:	The	lead	developers	(Raymond	Feng,	et	al.)	are	in	charge	of	the	project.	They	decide	to	merge	pull	requests,	what	will
be	worked	on	next	and	what	stays	in	the	backlog.	The	GitHub	community	helps	with	maintenance	and	development.
Development	area:	The	project	uses	Git	as	a	versioning	system	and	GitHub	for	project	management	and	as	a	Git	controller.

3)	Technology

Platform:	LoopBack	is	written	in	TypeScript	and	runs	in	Node.js.	It	is	developed	in	accordance	to	OpenAPI,	a	standard	for	APIs.
Software	dependency:	It	is	dependent	of	the	Node.js	package	manager	NPM	for	installing	all	dependencies,	as	the	default	LoopBack
REST	API	already	uses	500+	packages.	As	an	API	connects	data	sources	to	the	web,	LoopBack	is	also	dependent	of	the	software
from	the	data	source	(MySQL,	Postgres,	MongoDB,	Cassandra,	etc.).	NPM	installs	connectors	for	these	data	sources.
User	validation:	LoopBack	has	a	default	access	control	functionality	which	can	be	expanded	with	OAuth2	for	using	a
Google/Facebook/GitHub	account	to	access	the	API.
Distribution:	A	LoopBack	server	can	be	deployed	on	Windows,	Linux,	OS	X,	Solaris	and	in	Docker
License:	LoopBack	has	been	given	an	MIT	license	for	Open	Source.

Loopback

161

Figure	2.	The	context	view	for	LoopBack

Development	View

The	goal	of	the	development	view	is	to	describe	the	architecture	that	supports	the	software	development	process	(Rozanski	&	Woods,
2012).	Large-scale	software	projects	benefit	from	ordered	codespace	and	standardized	processes,	providing	maintainability,	reliability
and	technical	cohesion.	The	development	view	consists	of	3	parts:

1.	 Module	structure
2.	 Common	design
3.	 Source	code	structure

Module	structure

The	loopback-next	repository	is	divided	into	packages.	These	packages	represent	the	different	modules	present	in	the	repository.	The
packages	are	managed	by	[Lerna] 	and	NPM	scripts	are	used	to	work	with	Lerna.

The	list	of	packages	from	[loopback-next/MONOREPO.md] 	is	used	as	the	modules	of	the	system.
This	list	can	be	separated	in	different	groups	of	modules.	We	identified	4	groups:

LoopBack4:	these	modules	are	used	to	build	and	test	the	code
API	development:	these	modules	are	used	to	create	the	API	for	which	LoopBack	is	the	framework
API	resources:	these	modules	are	used	as	resources	and	resource	management	for	the	build	of	the	API
UI:	these	modules	are	used	for	the	user	interface

How	the	modules	are	classified	in	these	groups	can	be	seen	in	figure	3.	This	figure	also	show	the	dependencies	of	the	modules	based	on
the	NPM	dependencies	in		package.json		located	in	every	package.

lerna

monorepo

Loopback

162

Figure	3.	Code	module	dependency	(all	openapi	packages	are	categorized	under	'openapi').

The	build	package	creates	the	LoopBack	software.	It	can	be	run	by	the	testlab	package	which	will	build	the	code	and	test	it	afterwards.
Once	the	software	has	been	built,	the	user	can	run	it	by	calling	it	from	the	command	line.	The	user	commands	refer	to	code	contained	in
the	API	development	packages	which,	in	its	turn,	refers	to	the	API	resources	to	customize	the	users	product.

Common	design	model

LoopBack4	is	being	designed	with	a	YAGNI	(You	Ain't	Gonna	Need	It)	mentality,	which	entails	that	you	design	and	build	for	what	is
needed	at	present	and	not	in	the	future.	Since	there	is	a	diverse	group	of	people	with	different	perspectives	on	API	creation,	focusing	on
the	MVP	(Minimal	Viable	Product)	allows	the	team	to	address	the	root	issues	and	build	the	absolutely	necessary	components	first,
before	creating	other	requested	features.

To	analyze	how	LoopBack4	tries	to	achieve	this	developmental	approach	we	use	a	common	design	model.	This	model	consists	of	three
parts	according	to	the	Rozanski	&	Woods,	namely:

Common	processing,	i.e.	identifying	tasks	that	benefit	greatly	from	using	a	standard	approach	across	all	system	elements.
Standard	design	approaches,	i.e.	identifying	how	to	deal	with	situations	where	implementations	of	a	certain	aspect	of	an	element
will	have	a	system-wide	impact.
Common	software,	i.e.	identifying	the	software	that	is	used	in	a	way	that	it	can	reduce	development	time	and	risk,	and	explaining
why.

Standard	design	approaches

Coding	standardization

Because	LoopBack4	is	developed	by	a	large	group	of	contributors,	but	a	small	group	of	developers	decides	which	code	makes	it	into	the
master	branch,	it	is	necessary	to	have	a	coding	style	to	maintain	code	standardization	and	legibility.

This	style	guide	is	provided	on	the	LoopBack	website.	Examples	of	guidelines	are	the	prescription	of	variable	declaration	(use	of
constant	variables),	the	use	of	arrow	functions,	using	syntax-sugar	for	class	declaration,	using	one	argument	per	line,	and	single	line
indentation	of	multiple-line	expressions	in	return,	if	statements,	or	multiline	arrays.

In	addition,	a	wiki	discussion	took	place	regarding	the	case	to	be	used	in	the	code.	The	conclusion	was	to	use	kebab-case	in	names	and
dots	to	separate	filenames	from	the	file	type	(e.g.	index.d.ts).	This	decision	was	discussed	in	pull	request	#290	and	should	resolve
problems	with	different	case	sensitive	operating	systems.

Loopback

163

http://loopback.io/doc/en/contrib/style-guide.html
https://github.com/strongloop/loopback-next/wiki/Coding-style-guide
https://github.com/strongloop/loopback-next/pull/290

Software	patterns

LoopBack4	is	built	using	the	Model-View-Controller	pattern,	"where	code	responsible	for	data	access	and	manipulation	is	separated
from	the	code	responsible	for	implementing	the	REST	API".

An	example	for	using	this	pattern	is	given,	where	the	facade	is	the	top-level	service	that	serves	the	account	summary	API,	which
depends	on	three	services	Account,	Customer,	and	Transaction.	The	facade	only	aggregates	these	three	services	and	is	independent	from
their	functionality.	Thus,	it	is	possible	to	define	APIs	in	the	way	that	is	required	by	the	deployer;	Data	access	and	manipulation	code	is
separated	from	code	responsible	for	client	side	APIs.	To	create	this,	decorators	or	controllers	are	used.

Source	code	structure

It	is	important	to	analyze	the	software	on	a	low	level	(the	source	code	and	development	processes),	as	mistakes	on	this	level	can	muddy
the	interactions/dependencies	between	modules	and	commonalities	of	the	design.

LoopBack	is	a	complex	piece	of	software,	containing	many	dependencies.	There	is	a	lot	of	code,	both	JavaScript	and	TypeScript,	and
the	source	code	doesn't	even	contain	the	required	npm	packages.	This	makes	it	important	to	structure	the	source	code	in	an	intuitive
way.

Analysis

The	source	code	of	LoopBack	is	very	organized.	Clearly	the	developers	designed	this	top	down	by	creating	modules	(see	section
Module	structure)	and	sticking	to	it	during	development.	As	a	result,	the	packages	folder	gives	a	good	overview	of	the	separate	modules
and	their	responsibilities.	Figure	4	gives	an	overview	of	the	source	code.

Figure	4.	An	overview	of	the	source	code	structure.

The	packages	folder	contains	the	LoopBack	logic.	Most	packages	have	the	same	structure:	a	source	and	test	folder,	an	extensive
	README.md		file	and		index.ts/index.js		files.	Using	this	template	makes	it	easier	for	people	to	understand	the	commonalities	of	these
packages.

Discussion

By	having	tests	per	package	instead	of	one	giant	test	folder,	the	source	code	is	much	more	modular,	flexible	and	easier	to	maintain.
However,	this	gives	the	directory	a	higher	tree	depth,	reducing	understandability.

Loopback

164

https://loopback.io/doc/en/lb4/LoopBack-3.x.html
https://github.com/strongloop/loopback4-example-microservices
https://loopback.io/doc/en/lb4/Decorators.html
https://loopback.io/doc/en/lb4/Controllers.html

Issue	#836	brought	the	examples	into	the	monorepo	(/packages/examples).	However,	the	packages	folder	is	already	substantially	sized.
We	suggest	to	make	a	dedicated	examples	folder	in	the	main	project	folder,	as	these	have	nothing	to	do	with	the	actual	LoopBack	REST
API	logic	in	the	packages	folder,	but	just	show	how	to	get	started	or	work	with	LoopBack4.	(This	has	been	proposed	as	issue	#1218	,
the	developers	acknowledged	it	and	we	have	made	PR	#1231).

Development	process

Since	LoopBack4	is	still	in	a	development	state	(major	version	0)	there	are	many	changes	which	break	backwards	compatibility.	The
development	of	LoopBack4	started	in	January	2017,	the	target	for	the	first	release	is	June	2018.

Building

Because	of	the	monorepo	structure	LoopBack	uses,	it	is	preferred	to	be	able	to	test	and	build	all	packages	at	once.	For	this	exact
purpose	LoopBack	uses	[Lerna] 	this	is	a	tool	to	optimize	workflow	in	JavaScript	projects	with	multiple	packages.	When	building
all	the	individual	packages	many	first	need	to	compile	TypeScript	files	to	JavaScript.	After	this	the	building	script	detects	which
EcmaScript	version	it	has	to	build	to	and	transpiles	this	to	the	correct	version	if	needed.	Finally	the	NPM	builder	actually	builds	the
packages.

Testing

To	ensure	the	quality	of	code	before	committing	LoopBack	allows	for	testing	using	the	Mocha	testing	framework	and	while	it	is	not
required	to	do	test	driven	development,	for	all	pull	requests	it	is	required	to	also	add	tests	where	necessary.	To	measure	code	coverage
[Coveralls] 	is	used,	this	also	allows	for	a	overview	of	how	the	coverage	changes	over	time.

Guidelines	that	prescribe	standard	testing	guidelines	are	mentioned	in	the	testing	style	guide.	Some	of	the	guidelines	mentioned	in	this
guide	are:

Using	sandbox	directories
Email	examples	should	use	the		email@example.com		format
Correct	usage	of	hooks	with	for	example		before		and		after		statements
The	layout	of	test	files
Callback	function	next	line	prescription
Naming	of	files	and	functions

To	test	the	project	the		npm	test		command	is	called	which	will	build	and	then	test	the	implemented	functions.

Use	of	GitHub

StrongLoop	uses	GitHub	as	the	main	communication	channel.	For	a	structured	use	of	GitHub	they	use	the	conventions	listed	below.

Milestones

StrongLoop	uses	the	milestones	for	keeping	record	of	a	sprint	backlog.	They	used	to	work	with	sprints	of	a	week,	but	recently	changes
to	monthly	sprints.

Pull	Requests

Pull	requests	are	used	to	review	code	contributions,	this	happens	with	the	following	conventions.	First	of	all,	for	all	pull	requests	there
is	at	least	one	of	the	core	developers	which	reviewed	the	pull	request.	Secondly,	for	a	structured	check	for	pull	requests	they	have
provided	a	checklist	which	should	be	passed	for	each	pull	request.	The	checklist	consists	of	(copied	from	GitHub):

	npm	test		passes	on	your	machine
New	tests	added	or	existing	tests	modified	to	cover	all	changes
Code	conforms	with	the	style	guide
Related	API	documentation	was	updated
Affected	artifact	templates	in		packages/cli		were	updated

lerna

coveralls

Loopback

165

https://github.com/strongloop/loopback-next/issues/836
https://github.com/strongloop/loopback-next/issues/1218
https://github.com/strongloop/loopback-next/pull/1231
https://mochajs.org/
http://loopback.io/doc/en/contrib/style-guide.html#style-guidelines-for-tests
http://loopback.io/doc/en/contrib/style-guide.html

Affected	example	projects	in		packages/example-*		were	updated

Furthermore	there	are	continuous	integration	tools	implemented	which	run	on	every	pull	request	automatically	they	cover	the	tests,	the
code	linter	and	more,	some	of	these	are	required	to	merge	the	pull	request.

Releases

Because	of	the	monorepo	structure,	releases	are	separated	per	package.	However,	all	packages	are	released	at	the	same	time.	It	seems
from	the	release	timeline	that	there	is	no	defined	interval	in	which	everything	is	released	but	it	is	approximately	twice	a	week.	Since
LoopBack4	has	no	real	full	release	yet	we	can	only	look	at	LoopBack3	for	this,	but	it	seems	they	use	the	same	kind	of	release	cycle	once
the	package	is	no	longer	in	a	development	state.

Commit	messages

For	commit	messages	this	project	uses	[Conventional	Commits] 	in	combination	with	commitlint	to	enforce	these
conventions.	To	simplify	the	use	of	conventional	commits	the	use	of	[commitizen] 	is	encouraged.	The	point	of	this	style	of
commit	messages	is	that	it	is	easy	to	work	through	the	project	history	and	that	changelogs	can	be	automated.

Technical	debt

Technical	debt	is	a	metaphor	for	an	outstanding	debt	due	to	the	implementation	of	technical	solutions	that	are	not	maintainable	or
evolvable.	The	metaphorical	debt	consists	of	costs	that	have	to	be	made	to	refactor	the	code	in	order	to	realize	a	consistent	and
maintainable	solution	(Cunningham,	1992).

loopback-next	includes	a	linter,	namely	TSlint.	This	is	a	code	analyzer	that	looks	at	bugs,	formatting	and	programming	errors.	TSlint	is
highly	customizable	so	the	developers	added	their	own	rules	to	make	sure	the	code	follows	their	make	up	and	utilization	rules.
For	the	completeness	of	the	analysis,	another	tool	is	used	to	estimate	the	technical	debt.	The	analysis	done	by	SonarQube	reveals	what
was	already	expected:	the	code	has	very	little	technical	debt.

Figure	5.	Technical	debt	analysis	by	SonarQube.

conv_commits
commitizen

Loopback

166

https://www.sonarqube.org/

Figure	5	shows	the	result	of	the	SonarQube	analysis.	Each	circle	shows	a	code	smell	picked	up	by	the	analyzer.	As	can	be	seen	all	dots
are	green	meaning	the	code	smell's	impact	on	the	overall	code	is	very	small.	After	analyzing	7.7k	lines	of	code,	SonarQube	only	found	18
code	smells	with	a	total	of	1h14min	of	technical	debt	(SonarQube	measures	the	amount	of	technical	debt	in	the	estimated	time	it	takes	to
fix	it).	The	technical	debt	mostly	consists	of	unnecessary	cast	and	some	functions	with	a	different	name	but	the	exact	same	content.

While	trying	to	write	a	fix	for	a	tech	debt	issue	involving	moving	some	packages	out	of	the	monorepo,	we	came	across	some	potential
technical	debt.	Here	we	find	a	piece	of	code	download	the	whole	loopback-next	repository	from	github	again	in	order	to	have	an	up	to
date	version	of	the	examples.	This	code	feels	messy	and	not	finished,	as	the	comments	in	the	file	mention	assumptions	on	folder	and	file
names	which	-	if	they	fail	-	break	the	code's	functionality.	Also,	in	order	to	access	an	example	package,	the	code	downloads	all	packages
which	takes	a	long	time	and	is	not	needed.	This	piece	of	tech	debt	was	found	in	the	JavaScript	part	of	the	loopback-next	code	which	in
general	does	not	appear	to	be	as	well	written	and	commented	as	the	TypeScript	part	of	the	code.

Finally,	the	amount	of	technical	in	the	project	can	best	be	analyzed	with	the	help	of	the	issues	on	GitHub.	In	the	repository,	the	team
has	included	a	label		tech-debt		with	which	they	label	issue	they	consider	being	a	technical	debt.	The	team	also	uses	a	label	named
	refactor	.	Under	this	label,	the	developers	class	issues	that	involve	refactoring	but	are	not	considered	to	be	technical	debt.	This	is,	for
example,	the	renaming	of	file	to	match	a	company	wide	format	or	remove	node	modules	that	are	not	used	anymore	and	are	thus	dead
code.

Impact

Identified	technical	debt	is:	unnecessary	casts,	functions	with	a	different	name	but	the	exact	same	content	and	some	small	code	smells.
The	impact	of	this	identified	technical	debt	is	reduced	future	extensibility,	whereas	the	developers	want	to	create	a	highly	extensible
application.	However,	there	is	so	little	technical	debt	due	to	the	redesigning	of	LoopBack	with	technical	debt	in	mind,	that	the	impact	is
low.

As	mentioned	on	their	website,	one	of	the	reasons	for	rewriting	LoopBack4	from	scratch,	is	the	accumulation	of	technical	debt	in
LoopBack3.	This	manifested	itself	mostly	in	the	form	of	opposition	to	scalability.	LoopBack3	was	becoming	more	and	more	diverse	and
needed	to	account	for	a	lot	of	variability	which	resulted	in	backwards	compatibility	issues	and	multiple	pieces	of	code	with	the	same
action	making	it	more	complex	to	handle.

Testing	debt

In	this	section,	technical	debt	due	to	inadequate	testing	is	identified.	For	this	we	will	look	at	the	testing	coverage	provided	by
[Istanbul] .	We	will	also	make	some	recommendations	according	to	our	findings.

We	did	a	sample	test	to	check	the	quality	of	the	tests	and	it	seems	that	every	test	does	indeed	test	something	new.	However,	we	found
some	tests	were	it	has	some	TODOs	in	the	testing	code,	thus	the	tests	could	still	be	improved.

Testing	coverage

For	testing	the	coverage	LoopBack	uses	Istanbul,	this	works	in	combination	with	the	[Mocha] 	testing	framework.	Unfortunately
the	versions	for	both	Istanbul	and	Mocha	differ	for	LoopBack3	and	LoopBack4,	but	we	assume	the	results	can	be	compared	throughout
these	versions.	We	compared	the	testing	coverage	for	both	LoopBack3	and	LoopBack4,	see	table	2	for	the	results.	It	is	clear	that	the
coverage	for	LoopBack4	is	better	then	for	LoopBack3,	however	this	makes	sense	knowing	that	LoopBack4	has	a	much	shorter	lifespan.

Coverage LoopBack3 LoopBack4

Statements 88.4% 97.3%

Branches 80.3% 89.7%

Functions 88.0% 95.0%

Lines 90.1% 97.4%

Table	2.	Test	coverage	from	both	active	versions	of	LoopBack.

istanbul

mocha

Loopback

167

http://loopback.io/doc/en/lb4/Crafting-LoopBack-4.html#why-loopback-4

All	the	individual	packages	for	LoopBack4	also	contain	tests	which	can	be	individually	tested	with		npm	test	.	These	tests	for	the
packages	are	divided	into	three	different	kind	of	tests:	unit,	acceptance	and	integration.	However	not	all	packages	contain	all	kind	of
tests,	this	might	also	be	a	good	improvement	for	this	project.

Testing	Packages

Since	LoopBack4	has	a	clear	distinction	between	the	different	packages	we	can	also	compare	the	results	within	LoopBack4.

For	example,	the	test	coverage	of	the	small-sized		example-rpc-server		package	is	only	around	~62	percent,	while	the	similarly	sized
	repository-json-schema		package	is	fully	covered	by	testing.	The	most	crucial		core		package	is	covered	for	97	percent,	with	99%	of
the	statements,	95%	of	the	branches,	96.8%	of	the	functions	and	98.9%	of	the	lines	covered	by	testing.	Overall	Coveralls	reports	a	test
coverage	of	around	96%	for	the	entire	codebase.

There	are	two	packages	which	are	different	from	the	others	when	it	comes	to	testing,	these	are	the	cli	and	build	package.	The	cli	package
does	not	show	up	in	the	coverage	results	by	default,	the	tests	do	however	run.	What	can	be	seen	in	table	2	for	the	cli	package	is	what	we
found	out	ourself,	the	coverage	is	lower	then	other	packages,	but	still	pretty	high.	We	think	it	would	be	an	improvement	to	include	the
cli	package	in	the	testing	coverage	to	keep	track	of	the	coverage	for	the	package.

The	other	different	package	is	the	build	package,	the	tests	for	this	package	are	about	20	integration	tests.	However,	these	integration
tests	are	not	run	by		npm	test	,	therefor	these	are	not	tested	as	often	as	the	normal	tests.	We	think	these	tests	should	be	included	in	the
normal	testing	procedure,	since	we	could	not	think	of	a	reason	not	to.

Coverage	timeline

For	coverage	reporting	LoopBack	uses	[Coveralls] ,	on	the	Coveralls	website	you	can	find	the	report	for	loopback-next.	In	the
report	for	the	loopback-next	repository	you	can	see	a	bump	about	half	a	year	ago,	from	the	commit	message	for	that	particular	bump
you	can	see	that	the	testing	framework	dependencies	were	updated.	A	dip	somewhat	further	shows	a	commit	where	the	support	for
nodejs6	was	dropped.	It	seems	that	for	LoopBack4	the	coverage	has	always	been	quite	good,	thus	there	is	no	real	need	for	improving	the
coverage	by	adding	more	tests.

Evolution	of	technical	debt

coveralls

Loopback

168

https://coveralls.io/github/strongloop/loopback-next

Figure	6.	Overview	of	the		loopback-next		repository	at	the	latest	commit.

Scope	Definition

LoopBack4	has	only	been	in	development	relatively	shortly	as	a	rebuild	of	the	previous	LoopBack3,	this	is	since	9	January	2017.	As
such,	there	have	not	been	as	many	commits	or	files	as	other	more	mature	projects.	The	files	that	are	committed	the	most	are	the	package
files	which	maintains	the	version	numbers	for	dependencies	in	building	of	the	application.	However,	since	these	files	have	no	importance
on	the	code	quality	these	are	omitted	from	this	analysis.	Instead,	a	short	overview	of	the	20	most	committed	files	in		loopback-next		can
be	seen	along	with	the	amount	of	active	days	these	files	have	been	changed.	This	table	was	obtained	by	using	the		git	effort	
command.

Loopback

169

Class Amount	of	Commits Active	Days

packages/core/src/application.ts 37 33

packages/context/src/inject.ts 33 22

packages/context/src/resolver.ts 33 22

packages/core/src/index.ts 30 25

packages/context/src/binding.ts 30 22

packages/context/src/context.ts 28 22

packages/context/test/unit/resolver.test.ts 24 16

packages/context/src/index.ts 24 20

packages/context/test/unit/context.ts 23 20

packages/authentication/test/acceptance/basic-auth.ts 23 18

packages/repository/src/legacy-juggler-bridge.ts 19 17

packages/context/test/acceptance/class-level-bindings.ts 19 17

packages/context/test/unit/binding.ts 18 17

packages/rest/src/rest-server.ts 15 14

packages/repository/src/decorators/model.ts 15 13

packages/rest/test/acceptance/routing/routing.acceptance.ts 14 13

packages/metadata/src/decorator-factory.ts 13 12

packages/context/src/resolution-session.ts 13 7

packages/repository/test/unit/decorator/model-and-relation.ts 12 11

packages/core/src/server.ts 12 10

Table	3.	Comparison	of	activity	in	the	different	packages.

It	must	be	noted	that	the	most	commits	take	place	in	relatively	few	files,	where	only	~64%	(394/616)	of	all	files	have	had	more	than	one
commit	in		loopback-next	.	If	we	compare	this	statistic	to		loopback		we	have	~72%	(175/243)	of	all	files	that	have	seen	more	than	one
commit.

The	amount	of	commits	for	the		loopback-next		repository	for	the	last	year	can	be	seen	in	the	figure	below.	What	can	be	seen	is	that	the
density	of	commits	have	picked	up	since	January	2018.

Figure	7.	Last	year's	commits	to		loopback-next	

Loopback

170

Evolution	of	code

Since	LoopBack4	is	in	active	development,	the	analysis	of	the	quality	of	the	code	of	both	versions	3	and	4	may	be	of	interest.
As	such,	we	use	SonarQube	to	look	into	both	versions	to	see	how	both	versions	compare	to	each	other.	This	said,	since	LoopBack4	is	in
active	development	and	the	quality	of	code	may	not	be	indicative	of	the	final	releasable	product.

*Figure	8.	The	quality	of	the	code	of	LoopBack3.

*Figure	9.	The	quality	of	the	code	of	LoopBack4.

Since	LoopBack4	is	a	redesign	of	LoopBack3	there	are	changes	in	which	the	code	is	organized,	which	will	have	an	effect	on	the
comparison.	When	comparing	both	the	quantity	of	the	code	is	also	important	to	take	into	account	since	LoopBack3	contains	~23k	lines
of	code	while	LoopBack4	only	contains	~7.7k	lines	of	code	so	far.	What	can	be	seen	is	that	the	rating	of	the	code	smells	by	SonarQube	is
considered	good	(with	an	A-rating),	with	a	less	than	5	percent	as	the	ratio	of	the	technical	debt.

Information	viewpoint

The	main	point	of	LoopBack	is	to	provide	information	from	a	data	source	to	an	API.	Because	LoopBack	only	provides	a	way	to
distribute	information	it	can	delegate	many	information	distribution	problems	to	data	providers.	Issues	like	physical	database
separation,	large	data	volumes	and	backups	are	also	handled	by	the	data	source.	To	make	sure	LoopBack	will	not	block	on	any	requests
which	might	take	a	long	time	in	the	data	source,	LoopBack	uses	asynchronous	functions	and	promises	where	possible.

Information	structure	and	content

Because	the	data	for	LoopBack	is	very	dependent	on	the	application	it	is	hard	to	define	a	structure	for	the	information.	What	we	can	do
is	specify	some	edge	cases	for	which	LoopBack	should	still	be	able	to	handle	this	data.

LoopBack	must	be	able	to	handle	information	that	is:

Heavily	used
Changed	very	often
Distributed	across	several	data	sources

We	first	need	to	establish	what	is	considered	the	information	or	data	LoopBack4	is	handling.	This	is	were	we	run	into	our	first	problem;
LoopBack4	does	not	handle	a	lot	of	data	because	it	simply	provides	the	tools	for	the	user	to	build	the	REST	API	that	handle	the	data.
However,	as	LoopBack4	provides	examples	of	REST	APIs	and	as	the	tools	do	eventually	allow	the	user	to	handle	the	data	from	a
database,	we	will	analyze	the	information	flow	of	a	basic	REST	API	created	using	LoopBack4.

Information	flow

As	APIs	are	tools	to	make	information	stored	in	a	database	accessible	to	applications,	the	general	data	flow	is	set	between	an	application
and	a	database	in	both	directions	(read	and	write).	LoopBack4	provides	the	tools	to	create	the	translation	from	application	requests	to
the	database.	As	the	API	created	is	highly	customizable,	so	are	data	manipulations	the	LoopBack4	user	wants	to	put	in	place.	The
general	idea	however	is	to	format	the	data	coming	from	both	sides	(application	and	database)	and	transport	it	to	the	other	side.
In	order	to	perform	this	translation	LoopBack4	allows	the	user	to	create	a	connector,	this	piece	of	code	creates	TypeScript	functions
that	map	the	desired	behavior	to	the	database	language.	It	then	uses	a	3rd	party	package	to	connect	to	the	desired	database.	The
connector	is	part	of	a	DataSource	which	is	a	LoopBack	identifier	for	a	place	where	data	can	be	retrieved.	Multiple	data	sources	make	up
a	Repository,	it	is	eventually	from	this	repository	that	the	data	is	accessed	by	Controllers	which	manipulate	or	just	present	the	data	to

Loopback

171

the	application.

Data	is	converted	into	Models	when	traveling	through	the	API.	These	models	are	user	defined	and	translated	to	JSON	schemas.	At	the
end	the	JSON	is	shown	to	the	application	according	the	OpenAPI	specifications.	The	dataflow	is	shown	in	figure	10.

Figure	10.	Dataflow	of	database	information	from	and	to	the	application.

Data	quality

Similarly	to	what	has	been	established	before,	the	data	processed	by	LoopBack4	is	only	passed	through	to	the	application.	Furthermore,
all	functions	created	by	LoopBack4	are	designed	to	be	adapted	and	personalized	by	the	user,	therefore	the	data	quality	is	mainly
determined	by	the	user's	code.
However,	LoopBack4	provides	some	data	quality	assessment	in	the	form	of	promises.	The	code	contains	modules	that	that	work	with
promises	meaning	that	some	pieces	of	code	promise	a	certain	data	type	to	other	pieces	of	code.	This	way	the	code	does	not	misbehave
down	stream.

Conclusion
In	this	chapter	we	have	analyzed	the	architecture	of	the	open-source	project	LoopBack.	To	do	this	we	analyzed	the	project	from
different	viewpoints.	We	found	that	StrongLoop	is	a	company	with	experienced	developers	and	maintainers	who	learned	from	mistakes
that	were	made	in	LoopBack3.	With	this	new	version	of	LoopBack	decisions	about	package	structure	and	conventions	were	made
beforehand.	Because	all	these	structure	decisions	and	conventions	are	written	down,	they	can	be	enforced	by	CI	tools	and	integrators,
therefore	the		loopback-next		repository	is	very	organized	and	will	probably	stay	that	way.	We	also	found	that	because	the	structure
and	code	is	very	clean	the	amount	of	technical	debt	is	quite	low	for	such	a	large	project.

References
Rozanski,	N.,	&	Woods,	E.	(2012).	Software	systems	architecture:	working	with	stakeholders	using	viewpoints	and	perspectives.
Addison-Wesley.

Cunningham,	W.	(1992).	The	WyCash	portfolio	management	system.	ACM	SIGPLAN	OOPS	Messenger,	4(2),	29-30.

.	https://github.com/strongloop/loopback-next/blob/master/docs/DEVELOPING.md#commit-message-guidelines	↩

.	https://www.npmjs.com/package/commitizen	↩

.	https://lernajs.io/	↩

.	https://mochajs.org/	↩

.	https://github.com/strongloop/loopback-next/blob/master/MONOREPO.md	↩

.	https://istanbul.js.org/	↩

.	https://coveralls.io/	↩

.	https://strongloop.com/about/	↩

.	https://www-03.ibm.com/press/us/en/pressrelease/47577.wss	↩

.	http://loopback.io/doc/en/lb4/FAQ.html#what-features-are-planned-	↩

conv_commits

commitizen

lerna

mocha

monorepo

istanbul

coveralls

about

ibm_press

planned_features

Loopback

172

https://github.com/strongloop/loopback-next/blob/master/docs/DEVELOPING.md#commit-message-guidelines
https://www.npmjs.com/package/commitizen
https://lernajs.io/
https://mochajs.org/
https://github.com/strongloop/loopback-next/blob/master/MONOREPO.md
https://istanbul.js.org/
https://coveralls.io/
https://strongloop.com/about/
https://www-03.ibm.com/press/us/en/pressrelease/47577.wss
http://loopback.io/doc/en/lb4/FAQ.html#what-features-are-planned-

Abstract
Mattermost	is	an	open	source,	cloud-based	and	self-hosted	Slack	alternative.	The	company	came	to	realize	the	limitations	and
restrictions	of	Slack	when	they	adopted	it	as	their	messaging	service	in	2014.	This	is	when	they	decided	to	build	their	own	messaging
software,	Mattermost.	In	this	chapter	we	analyze	the	software	architecture	of	Mattermost	by	looking	at	the	stakeholders,	the	context
view,	development	view,	deployment	view,	security	perspective	and	technical	debt	as	defined	by	Rozanksi	and	Woods	[1].	We	find	out
that	Mattermost	has	a	well-organized	development	process	and	is	currently	in	the	process	of	repaying	technical	debt	by	moving	the	web
app	to	Redux.

Table	of	Contents
1.	 Introduction
2.	 Stakeholders
3.	 Context	View
4.	 Development	View

i.	 Module	Structure
ii.	 Release	Cycle

5.	 Technical	Debt
i.	 Identifying	Technical	Debt
ii.	 Code	Coverage

6.	 Evolution	of	Technical	Debt
7.	 Deployment	View
8.	 Security	Perspective
9.	 Conclusions
10.	 References

Introduction
The	world	of	team	collaboration	tools	and	messaging	services	has	long	been	dominated	by	Slack.	It	has	been	the	dominant	service	ever
since	its	start	in	2014,	but	the	service	is	set	back	by	limitations	due	to	its	proprietary	nature	and	it	only	available	as	a	Software	as	a
Service	(SaaS).

Mattermost

173

Enter	Mattermost,	an	open	source	self-hosted	Slack	alternative.	The	company	behind	Mattermost	came	to	realize	the	limitations	and
restrictions	of	Slack	when	they	adopted	it	as	their	messaging	service	in	2014.	This	is	when	they	decided	to	build	their	own	messaging
software.	Mattermost	entered	the	market	with	the	promise	of	being	free	from	the	shackles	of	privately	owned	Slack	servers.	The	open
source	nature	makes	it	accessible	for	the	community	to	contribute	and	makes	it	transparent	for	clients	and	the	public.

The	open	source	nature	of	the	project	has	given	us	the	opportunity	to	analyse	and	contribute	to	this	project.	In	this	chapter	we	give	our
analysis	of	the	Mattermost	software	by	look	at	views	and	perspectives	as	defined	by	Rozanksi	and	Woods	[1].	We	will	focus	on	the
webapp	portion	of	Mattermost	as	this	is	the	part	we	contributed	for.	We	will	look	at	the	stakeholders	involved,	followed	by	a	context
view	of	all	external	entities.	Next,	we	look	at	the	development	view	of	the	project,	which	looks	at	the	development	process	and	the
architecture	of	the	web	app.	We	look	into	the	technical	debt	of	the	project	and	how	it	has	evolved	throughout	the	development.	The	final
sections	take	a	closer	look	at	the	deployment	view	and	security	perspective	of	the	project.	We	conclude	our	analysis	in	the	final	section.

Stakeholders
Various	stakeholders	are	involved	in	the	development	of	a	project.	For	the	Mattermost	project	we	can	classify	several	different
stakeholders.	The	classification	scheme	is	defined	by	Rozanski	and	Woods	[1].

Stakeholder	Classes

Acquirers

The	interest	of	the	acquirers	is	rooted	in	the	value	of	money	the	product	provides	as	well	as	the	direction	of	the	company	and	product.
The	Mattermost	project	has	several	acquirers	in	the	form	of	investors,	which	include	the	following	organizations	and	people:	Y
Combinator,	Rick	Morrison,	Evan	Cheng	and	Spectrum28	[11].

Assessors

We	assume	Mattermost	Inc.,	the	company	who	started	the	Mattermost	project,	assesses	the	system's	conformance	to	standards	and
legal	regulations.

Communicators

Product	managers	communicate	a	large	portion	of	the	concerns	of	the	end	users	to	the	designers	and	engineers.	The	marketing	and	sales
team	communicates	with	clients	and	enterprises	and	are	the	ones	to	announce	new	releases	of	Mattermost.

Developers

Staff	developers	and	product	managers	from	the	Mattermost	core	team	are	responsible	for	the	bulk	of	the	development.

Maintainers

The	Mattermost	project	is	maintained	by	staff	from	Mattermost	Inc.	and	contributors	from	the	Mattermost	community.	The
localization	team	appoints	a	maintainer	for	each	language	translation,	the	full	list	of	maintainers	can	be	found	in	the	documentation.

Suppliers

The	client	is	responsible	for	providing	the	adequate	hardware	to	operate	the	system.	Mattermost	Inc.	provides	guidelines	for	hardware
requirements	and	setup.

Support	staff

Staff	from	Mattermost	Inc.	and	community	contributors	provide	support	for	Mattermost.	For	enterprise-grade	collaborations,
Mattermost	Inc.	provides	additional	commercial	support	in	the	form	of	Enterprise	Edition	Support.

Mattermost

174

https://about.mattermost.com/company/
http://www.ycombinator.com/
https://www.s28capital.com/
https://docs.mattermost.com/process/developer.html
https://docs.mattermost.com/developer/localization.html
https://docs.mattermost.com/install/requirements.html
https://about.mattermost.com/support/

System	Administrators

The	client	controls	the	operation	of	the	system,	they	are	the	system	administrators	of	their	own	deployed	system.	Mattermost	Inc.
provides	instructions	and	guides	for	users	who	are	responsible	for	running	the	system.

Testers

The	Mattermost	core	team	include	QA	testers	that	work	closely	with	staff	developers	[13].	Mattermost	community	members	can
participate	in	the	testing	of	development	branches.

Production	Engineers

The	Mattermost	team	does	not	have	designated	production	engineers,	instead	this	task	is	relegated	to	staff	developers.

Users

Users	are	concerned	about	the	functionality	and	scope	of	the	system	and	represent	the	majority	of	the	Mattermost	community	[14].
Users	also	include	companies	and	organizations	which	are	in	enterprise-grade	collaboration	with	Mattermost	[15].

Additional	Stakeholders

Contributors

Contributors	are	part	of	the	Mattermost	community	and	provide	contributions	for	the	Mattermost	project.	Several	individuals	have
been	recognized	as	core	committers,	a	group	of	trusted	individual	contributors.

Mattermost	Partners

Mattermost	provides	partner	programs	to	allow	third	parties	to	sell	the	Mattermost	system	or	services	related	to	Mattermost,	to
customers.	Three	different	partner	programs	are	offered,	based	on	the	type	of	service	the	third	party	provides	for	customers.

Mattermost	Authorized	Partner	Program,	for	one-time	resale	transactions	to	customers	via	a	fulfillment	partner
Mattermost	Value-Added	Reseller	Program,	for	on-going	resellers	who	provide	support	in	local	language	and	time	zone.	Examples
of	resellers	are	CounterTrade,	Adfinis	SyGroup	and	bytemine.
Mattermost	Deployment	Solutions	Partner	Program,	for	organizations	who	can	automate	the	deployment	and	maintenance	process
of	Mattermost	systems.	Examples	of	deployment	solution	partners	are	Bitnami,	GitLab	and	AppDome.

A	full	list	of	certified	Mattermost	partners	can	be	found	on	their	website.

Competitors

Mattermost	has	one	main	competitor,	Slack.	Slack	is	a	unique	stakeholder;	as	a	competitor	it	has	the	power	to	influence	changes	to
Mattermost,	but	they	can	also	be	an	inspiration	for	new	features	and	ideas.	Development	of	Slack	is	followed	closely	to	mimic	features
or	keep	the	quality	of	Mattermost	on	par.

Power	vs.	Interest	Grid

Mattermost

175

https://docs.mattermost.com/guides/administrator.html
https://about.mattermost.com/success-stories/
https://docs.mattermost.com/developer/contribution-guide.html
https://docs.mattermost.com/process/partner-programs.html
https://about.mattermost.com/partners/
https://slack.com/

	
Figure	1	-	Power	vs.	Interest	grid	for	Mattermost

Through	the	power	vs.	interest	grid	we	can	quantify	the	involvement	of	the	stakeholders.	Power	is	related	to	the	influence	the
stakeholder	has	on	the	decision	making	of	the	system.	Interest	is	related	to	the	interest	the	stakeholder	has	on	the	direction	of	the
system.	We	can	identify	how	the	various	stakeholders	are	involved	in	this	project,	by	putting	them	in	one	of	the	four	quadrants.

At	the	bottom	left	quadrant,	we	observe	stakeholders	that	monitor	the	system.	These	include	customers,	end	users	and	system
dependencies.	They	do	not	exert	much	power	over	the	system	and	only	expect	the	system	to	function	properly.

The	top	left	quadrant	contains	stakeholders	that	exert	a	high	amount	of	power.	Investors	are	necessary	for	the	funding	of	the	project	and
must	be	kept	satisfied	in	order	for	funding	to	continue.	They	usually	do	not	meddle	with	the	decision	making	for	the	system	and	thus
their	interests	are	low.	Partners	are	in	a	similar	position,	but	their	interests	are	higher	because	the	system	is	directly	involved	in	their	line
of	business,	thus	they	must	also	be	kept	informed	about	future	developments.

Looking	at	the	top	right	quadrant,	we	have	stakeholders	that	manage	the	system	closely.	This	quadrant	contains	stakeholders	that	are
involved	in	the	development	of	the	system,	such	as	contributors,	core	committers,	staff	developers	and	the	product	managers.	The
product	managers	have	the	highest	power	and	interest,	their	interest	in	the	system	is	to	improve	the	system;	they	have	the	final	word	on
every	decision	made	on	the	system.

Lastly,	we	identify	the	stakeholders	in	the	bottom	right	quadrant,	the	stakeholders	that	keep	themselves	informed	such	as	competitors
like	Slack.	Slack	keep	themselves	informed	about	the	development	of	Mattermost,	for	their	systems	must	be	kept	on	the	same	level	of
quality	for	them	to	compete.	They	do	not	have	direct	influence	on	the	decision	making	of	the	system,	their	power	is	low.

Context	View

System	Scope	and	Responsibilities

Mattermost

176

Mattermost	has	a	well-defined	scope	for	their	system.	During	the	design	process,	the	Mattermost	team	discusses	what	should	be	part
of	the	scope	for	the	new	version.	The	main	scope	for	Mattermost's	current	version	includes	the	following	capabilities:

Support	one-to-one	and	group	messaging,	file	sharing	and	unlimited	search	history
Provide	native	apps	for	iOS,	Android,	Windows,	Mac,	Linux
Support	threaded	messaging,	emoji	and	custom	emoji
Provide	highly	customizable	third-party	bots,	integrations	and	command	line	tools
Support	integration	via	webhooks,	APIs,	drivers	and	third-party	extensions
Easily	scalable	from	dozens	to	hundreds	of	users
New	improvements	released	every	two	months
Support	14	languages	include	U.S.	English,	Chinese	(Simplified	&	Traditional),	Dutch,	French,	German,	Italian,	Japanese,	Korean,
Polish,	Brazilian	Portuguese,	Russian,	Turkish,	and	Spanish

Context	Diagram

Figure	2	-	Context	View	for	Mattermost

External	Entities	and	Interfaces

The	software	is	offered	under	either	an	MIT	License	or	an	Apache	License	v2.0
Mattermost	is	used	by	high	profile	companies	and	institutions	[11]	such	as	Uber,	TU	Delft,	Symantec,	Samsung,	Wargaming.net
etc.
Mattermost	also	has	integrations	for	various	services	such	as	Bitbucket,	Jira,	and	Jenkins,	etc.
Mattermost	is	developed	by	community	contributors,	core	committers,	staff	developers	and	product	managers
Communication	is	done	through	their	own	Contributors	Mattermost	Channel,	forums,	GitHub	and	Jira
Docker	provides	a	virtual	machine	for	Mattermost	servers	to	run	and	test	on
Mattermost	is	mainly	developed	in	Go	and	ReactJS
Mattermost	client	software	includes	a	desktop	app,	web	app	and	native	mobile	app
Mattermost	has	an	email	service	that	uses	Gmail,	Outlook	etc.
Mattermost	uses	database	systems	such	as	MySQL	and	PostgreSQL
NGNIX	or	hardware	proxy	servers	can	be	configured	for	Mattermost	servers
Mattermost	supports	local	file	storage,	MAS	(Mobile	App	Services)	or	Amazon	S3
Mattermost	uses	testing	frameworks	like	Jest	and	Enzyme
Partners	like	Brightscout	and	Sourced	Group	provide	Mattermost	system	services
CounterTrade	and	Adfinis	SyGroup,	etc.	are	resellers	of	the	Mattermost	system

Mattermost

177

https://docs.mattermost.com/process/design-process.html
https://docs.mattermost.com/overview/product.html#mattermost-editions
https://www.mattermost.org/licensing/
https://www.mattermost.org/licensing/
https://about.mattermost.com/community-applications/
https://docs.mattermost.com/deployment/deployment.html#user-experience
https://docs.mattermost.com/deployment/deployment.html#email-client
https://docs.mattermost.com/deployment/deployment.html#data-stores
https://docs.mattermost.com/deployment/deployment.html#proxy
https://docs.mattermost.com/deployment/deployment.html#file-store
https://grundleborg.github.io/posts/react-component-testing-in-mattermost/

Mattermost	works	with	deployment	solution	partners	such	as	Bitnami,	GitLab	and	AppDome

Development	View

Module	Structure

For	the	module	structure	we	focus	our	attention	on	the	webapp	portion	of	Mattermost.	The	webapp	is	implemented	with	ReactJS.
React	is	an	architecture	and	an	UI	library	that	allows	construction	of	reusable	and	encapsulated	UI	components.	React	is	declarative,
meaning	that	components	can	be	built	without	touching	the	Document	Object	Model.	The	webapp	originates	from	a	legacy	application
that	was	written	in	JavaScript	and	HTML.	The	webapp	uses	a	react-router	library	to	allow	Mattermost	to	be	a	single-page	web
application	while	still	providing	the	navigation	and	appearance	of	a	regular	website.

The	webapp	architecture	contains	several	modules	which	are	listed	below	[6].

	components		are	React	Native	components	which	provide	the	bulk	of	the	content	for	the	webapp.	The	React	components	also
define	the	routes	for	the	React-Router.
Flux	uses	multiple		stores		to	contain	the	data	used	to	run	the	webapp.	Redux	only	uses	a	single		store	.
	utils		provides	general	utility	for	the	webapp,	similar	to		utils		in	the	server.
	actions		are	any	sort	of	logic	that	will	result	in	the	manipulation	of	a	store	state
	selectors		are	the	methods	used	to	retrieve	data	from	the	state	of	the	store
	dispatcher		is	used	to	broadcast	payloads	to	registered	callbacks.
	reducers		take	an	action	and	an	application	state	to	perform	state	transitions,	this	module	is	unique	to	Redux.

Flux	and	Redux

The	interaction	between	the	modules	is	designed	with	Flux,	a	pattern	that	defines	how	React	components	performs	actions	and	retrieve
data	in	a	one-directional	flow.	Flux	was	implemented	at	a	later	stage	of	development,	after	the	webapp	was	built	with	React.	The
interaction	between	the	modules	and	how	Flux	is	applied	is	illustrated	below	[2].

Redux	is	an	library	that	builds	on	the	Flux	pattern	which	will	Flux	in	its	entirety	in	the	near	future.	While	similar,	it	has	a	few	key
differences	such	as	the	use	of	a	single	store	to	maintain	a	single	source	of	truth,	and	the	use	of	reducers	to	purely	transition	between
states.	These	differences	are	also	the	greatest	benefits	of	Redux.	The	webapp	is	currently	being	transitioned	into	Redux,	but	most	of	the
webapp	components	such	as	server	interaction	and	storage	interaction	are	already	implemented.	The	Redux	flow	and	interaction
between	components	as	described	by	Mattermost	is	shown	below.

Mattermost

178

Release	Cycle

The	Mattermost	system	is	developed	in	an	iterative	way.	It	is	built,	tested	and	released	regularly.	On	the	16th	of	every	month,	a	new
compiled	version	is	released	under	a	MIT	license.	So	far	the	latest	released	version	is	v4.7.2.

Regarding	the	configuration	management,	Mattermost	is	mainly	managed	on	GitHub	and	the	releases	are	published	and	controlled	on
GitHub.	New	features	and	bug	fixes	are	tracked	and	added	through	Jira	tickets.	Tickets	are	prepared	for	every	release,	they're	put	in	the
pull	request	queue	and	are	merged	when	they	are	approved.

The	Mattermost	core	team	has	a	concrete	and	unique	development	process.	It	draws	ideas	from	Software	Development	Lifecycle
approaches,	such	as	Agile	and	Scrum.	The	whole	process	starts	15	work	days	prior	to	the	release	day	until	10	work	days	after	the
release	day.	During	the	whole	process,	there	are	multiple	parties	from	Mattermost	involved,	among	which	are	the	release	manager,
product	manager,	developers,	logistic	teams,	quality	assurance,	marketing	team,	build	team	and	project	leads.	Each	of	them	is	responsible
for	different	tasks	of	the	release.	The	following	list	shows	the	process	of	the	integrating,	testing	and	building	of	Mattermost.

Integration:	Mattermost	does	the	integration	at	the	beginning	of	release	process.	The	developers	prioritize	reviewing,	updating,
and	merging	of	pull	requests	for	major	features	15	days	prior	to	the	release	day	and	finish	merging	the	major	features	12	days	prior
to	the	release	date.	The	whole	team	will	hold	meetings	to	review	the	status	of	the	remaining	pull	requests	left	to	merge.

Test:	After	the	cut-off	of	integration,	Mattermost	executes	a	lot	of	tests	to	decide	which	major	features	will	be	included	in	the
release.	Tests	are	written	and	updated	in	the	Release	Testing	spreadsheet.	Tests	are	mainly	done	by	QA	(quality	assurance)	and	are
scheduled	on	11,	8,	7	and	2	days	prior	to	the	release	day.	These	tests	are	mainly	executed	in	Selenium	IDE	and	the	tests	results	are
recorded	in	the	Release	Testing	spreadsheet.

Build:	The	building	process	starts	8	days	prior	to	the	release	day,	when	the	Release	Candidate	is	cut.	The	master	branch	is	tagged
and	branched	and	"Release	Candidate	1"	is	cut	according	to	the	Release	Candidate	Checklist.	Pull	requests	for	bug	fixes	are	reviewed
and	merged	during	release	candidate	testing	and	new	candidate	builds	are	cut	accordingly.	The	CI	(Continuous	Integration)	servers
are	updated	to	release	branch	and	the	translation	server	is	locked	to	the	release	branch.	Two	days	prior	to	the	release	day,	they	tag	a
new	release	(e.g.	1.1.0)	and	run	an	official	build	which	should	be	essentially	identical	to	the	last	release	candidate.	The	release
candidates	are	deleted	after	the	final	version	is	shipped	and	the	release	branch	is	consequently	merged	into	master.	The	CI	and
translation	servers	are	updated	back	to	the	master.

Internationalization

The	release	cycle	for	internationalization	or	localization	is	different	from	the	rest	of	the	system.	Quality	levels	are	defined	for	each
language	[10]	to	ensure	that	the	final	release	is	of	high	quality:

Alpha	quality	level	translations	are	defined	as	translations	that	have	not	yet	reached	Beta	level.
For	the	Beta	quality	level,	90%	of	the	translations	must	be	verified	by	a	Mattermost	expert	and	a	target	language	expert.
The	Official	quality	level	has	all	of	the	translations	verified	by	a	Mattermost	expert	and	a	target	language	expert.	The	target
language	must	also	have	at	least	one	official	reviewer	assigned	by	the	Mattermost	team	who	maintains	the	target	language.	The
target	language	must	also	have	been	in	use	for	at	least	3	full	release	cycles.

Mattermost

179

https://docs.mattermost.com/administration/changelog.html?highlight=release#release-v4-7
https://docs.mattermost.com/developer/localization.html

Technical	Debt

Identifying	Technical	Debt

In	this	subsection	we	identify	the	technical	debt	in	the	Mattermost	project.	For	this	analysis	we	will	focus	on	the	webapp	portion	of
Mattermost.	We	will	apply	several	methods	to	analyze	the	technical	debt,	including	the	use	of	automated	analysis	tools	as	well	as
manually	looking	through	the	code.	Due	to	the	size	of	the	codebase	we	will	only	manually	look	at	the	code	for	specific	areas.	We	also
look	at	potential	design	debts	and	architectural	debts.

Code	Debt

Mattermost	uses	the	ESLint	linting	tool	to	enforce	standards	in	JavaScript	code	formatting.	The		.eslintrc.json		in	the	root	directory
contains	the	configuration	for	the	ESLint	tool.	We	run	ESLint	and	other	code	analysis	tools	through	the	WebStorm	IDE	by	Jetbrains.
After	running	a	code	inspection	using	WebStorm	IDE,	we	observe	ESLint	reporting	617	errors.	Taking	a	closer	look,	we	discover	several
code	smells.

Firstly,	there	are	issues	with	code	line	length.	The	maximum	amount	of	lines	is	set	to	450	lines,	and	files	such	as		utils.jsx	,
	sidebar.jsx	,		audit_table.jsx		and		user_settings_notifications.jsx		exceed	this	limitation.	For	example,	the		utils.jsx		file
contains	1329	lines	of	code,	which	we	can	clearly	identify	as	a	bloater.	Looking	through	the	files,	we	observe	either	too	many	functions
in	a	single	file,	or	functions	that	are	way	too	long.	For	example,	in		audit_table.jsx		there	is	a	function		formatAuditInfo		which	is	over
300	lines	long.	It	would	be	in	the	developer's	best	interest	to	split	up	the	existing	long	methods	into	smaller	ones	for	this	would	improve
clarity	and	scalability.

Next	up	we	observe	errors	in	regards	to	cyclomatic	complexity.	The	ESLint	configuration	file	sets	the	maximum	tolerable	complexity	to
10,	and	there	are	several	functions	that	violate	this	threshold.	Looking	at	the	violations,	we	observe	functions	with	a	cyclomatic
complexity	between	11	and	20.	These	are	harder	to	maintain,	but	should	not	be	an	immediate	priority	for	refactoring	or	redesign.
However,	a	refactor	can	definitely	make	the	code	more	clear	and	open	for	future	changes.

Most	of	the	rest	of	the	errors	are	about	the	liberal	use	of	magic	numbers.	This	is	a	code	smell	that	the	developers	are	not	bothered	with,
as	the	violations	are	very	numerous.	While	refactoring	the	magic	numbers	is	an	option	to	consider,	the	sheer	number	of	magic	number
violations	makes	it	not	a	straightforward	or	easy	process.	We	believe	that	any	work	put	into	refactoring	magic	numbers	does	not
necessarily	improve	the	productivity	for	future	changes.

Design	Debt	and	Impact

To	look	for	design	debt	we	look	for	design	smells.	These	arise	from	poor	design	decisions	that	make	the	design	fragile	and	difficult	to
maintain.	Looking	at	the	history	of	the	Mattermost	project,	we	see	several	periods	of	time	where	design	debt	could	have	built	up.	The
Mattermost	webapp	started	as	a	legacy	project	built	on	JavaScript	and	HTML.	They	first	adopted	React	and	later	down	the	line
adopted	Flux.	This	decision	has	caused	design	debt	that	is	now	in	the	process	of	being	repaid.

From	Flux	to	Redux

The	developers	are	currently	working	on	moving	from	Flux	to	Redux.	This	is	an	ongoing	effort	of	removing	old	code	and	switching	to
newer	code.	An	example	of	this	is	the	removal	of	the	old	Flux	stores	and	replacing	it	with	a	single	Redux	store.

Pure	React	components	that	use	Redux	get	their	dependencies	passed	in	through	the	props	attribute,	while	Flux	requires	them	to	be
imported.	Meaning	they	no	longer	have	extensive	dependency	chains,	or	direct	access	to	data	sources.	This	allows	for	easier	mocking,
making	unit	testing	a	component	in	isolation	a	trivial	task.	Our	contributions	to	Mattermost	included	migrating	a	component	to	be	pure
and	use	Redux.	Before	the	migration	the	component	was	not	covered	by	any	test,	afterwards	the	component	was	much	easier	to	test	is
covered	for	86%.

Future	Goals

Mattermost

180

https://eslint.org/
https://github.com/mattermost/mattermost-webapp/pull/989

The	developers	are	fully	aware	of	the	implications	of	technical	debt	and	are	careful	with	major	refactoring	of	code.	The	developers
maintain	a	list	of	future	improvements	some	of	which	are	related	to	reducing	the	technical	debt.	An	example	of	this	is	the	removal	of
JQuery,	since	it	doesn't	interact	well	with	React	and	the	API.	Their	main	goal	with	refactoring	is	to	make	code	easier	to	test,	which	in
turn	should	mean	less	bugs.

Code	Coverage	Analysis

So	far,	there	are	145	test	suites	composed	of	944	separate	tests,	targeting	on	145	elements,	and	accordingly	413	Jest	snapshots	as	the
standard	test	output.	A	simple	code	coverage	run	gives	us	the	following	table,	indicating	what	percentage	of	the	source	code	has	been
covered	with	the	provided	test	scheme.

Module	Coverage	Statistics

Modules Files	Covered Lines	Covered

	selectors	 5 54%

	reducers	 8 53%

	utils	 24 43%

	plugins	 3 30%

	stores	 17 27%

	client	 2 16%

	actions	 23 13%

	components	 N/A N/A

Redux		reducers		and		selectors		are	the	most	well-covered	modules	of	the	project.	They	are	well	tested	mainly	because	of	the
simplicity	of	Redux,	and	that	currently	the	team	is	going	through	the	process	of	moving	from	Flux	to	Redux,	thus	all	newly	wrote
components	having	corresponding	test	suites.

On	the	contrary,	the	other	modules	are	poorly	tested,	much	less	lines	covered,	because	they	are	either	rather	complicated	or	old,
comparing	with	newly	evolving	Redux	modules.	Take	the	module		actions		for	example,	it	holds	all	Flux	actions	where	the	majority	of
the	logic	of	the	webapp	takes	place.	The	same	goes	for		stores		which	holds	all	the	Flux	stores.	The	low	coverage	shows	that	there	is	a
large	debt	that	is	being	repaid	by	moving	to	Redux.

Component	Coverage

As	for	the		components		module,	it	should	be	broken	down	further	to	talk	about	the	statistics,	given	that	there	are	currently	hundreds	of
components.	About	half	of	the	components	are	fully	tested,	with	a	coverage	over	85%,	and	about	one	third	of	the	components	are	not
tested	at	all.	This	has	to	do	with	the	transition	to	Redux.

Evolution	of	Technical	Debt
Mattermost	is	concerned	with	technical	debt	and	has	shown	to	put	in	effort	to	repay	this	debt.	The	origin	of	Mattermost	has	a	play	in
how	the	technical	debt	build	up.	Mattermost	used	to	go	by	the	name	SpinPunch,	a	HTML5	game	studio.	The	first	version	was	not
designed	to	be	a	Slack	alternative	but	a	way	to	reach	gamers.	Due	to	internal	problems	with	proprietary	messaging	apps	they	planned	to
use	it	for	their	own	company	communications.

The	webapp	and	server	were	not	originally	designed	to	support	the	features	it	currently	has.	The	webapp	was	built	on	a	legacy
application	using	JavaScript	and	HTML.	In	addition,	the	webapp	and	the	server	were	initially	not	separated,	but	part	of	the	same
repository.	It	was	only	later	that	these	two	portions	were	separated.	This	in	turn	reduced	the	technical	debt	for	both	the	server	and	the

Mattermost

181

https://docs.google.com/spreadsheets/d/1f3oGV-8GnE3iVTlrliSMepf4C-7kIAoBn27s59hgPVM/edit?usp=sharing

webapp,	as	the	separation	made	both	aspects	easier	to	maintain.	This	also	meant	that	certain	parts	had	to	be	completely	rewritten	to
maintain	a	simple	and	effective	architecture.	In	2015	the	webapp	was	rewritten	using	the	Flux	pattern.	The	Flux	pattern	has	a	few
advantages,	namely:

A	clear	structure
A	clear	data	flow
Easy	to	add	new	components
Per	component	testing

This	was	a	step	in	the	right	direction,	however	to	further	simplify	the	webapp	a	different	method	could	be	used:	Redux.	The	main
difference	being	that	Redux	uses	one	store,	while	Flux	uses	multiple	stores.	Transitioning	has	started,	and	a	lot	of	components	are	now
pure	Redux	components.	This	transition	has	been	divided	into	smaller	tasks	to	receive	aid	from	the	community.	Smaller	tasks	have	the
additional	benefit	of	avoiding	big	code	changes	which	could	cause	problems	for	people	maintaining	a	fork.	This	prevents	technical	debt
from	building	up	and	allows	a	smoother	transition	from	Flux	to	Redux.

Deployment	View
The	deployment	view	provides	an	overview	on	aspects	of	the	system	after	the	system	is	ready	for	deployment.	It	defines	the	hardware
the	system	needs	to	operate,	as	well	as	the	network	requirements,	and	the	software	that	is	mapped	to	the	various	runtime	elements	[1].

Runtime	Platform	Model
The	runtime	platform	model	is	the	core	of	the	deployment	view.	We	provide	the	runtime	platform	model	for	the	team	edition	as	well	as
the	enterprise	edition.

Mattermost	Team	Edition

Mattermost

182

Note	that	the	optimal	configuration	for	the	Mattermost	Server	can	vary	by	the	amount	of	registered	users.	The	runtime	platform
displays	the	setup	for	1000	to	2000	users.	Other	set	ups	are	found	in	the	documentation.

Only	a	single	machine	is	needed	to	deploy	the	team	edition,	cutting	down	on	deployment	costs	and	complexity.

Mattermost	Enterprise	Edition

The	Enterprise	edition	has	its	hardware	set	up	for	high	availability	and	scalability.	The	hardware	needed	for	the	Enterprise	edition	is
beefy	and	provides	capacity	for	up	to	20000	registered	users	and	a	peak	of	up	to	4000	concurrent	users.

For	high	availability	mode,	additional	servers	can	be	added.	High	availability	mode	provides	better	concurrency	and	provides	more
options	for	back-up	and	recovery.

Technology	Dependency	Models

Mattermost

183

https://docs.mattermost.com/install/requirements.html

Security	Perspective
Security	is	a	top	concern	when	it	comes	to	a	messaging	service,	given	that	it	deals	with	tons	of	user	information.	It	is	even	more	so	for
team	messaging	services,	like	Mattermost,	handling	the	internal	communication	of	an	organization	or	a	company,	which	may	involve
commercial	secrets	worthy	of	millions.	Security	matters	at	Mattermost	and	we	decide	to	take	a	look	at	the	project	from	this	perspective.

Sensitive	Resources

Almost	everything	is	considered	as	sensitive,	from	information	like	login	details	to	operations	like	inviting	new	members.	Here	we	give	a
table	of	resources	we	think	important	and	the	reason	why.

Mattermost

184

There	is	much	more	to	be	listed,	like	the	using	habit	of	a	user	can	be	exploited	to	impersonate	him	or	invade	his	privacy.	The	interest	of
stakeholders	can	be	harmed	from	various	angles	by	compromising	sensitive	resources.

Security	Policy

Mattermost	secures	things	by	categorize	users	into	different	roles.	The	following	table	displays	what	these	roles	are	and	their
permission	levels.

Admins	can	set	the	channel/team	open	to	invitation,	otherwise	only	admins	can	invite	new	members.	Users	can	be	deleted	from	a
channel	or	a	team	but	not	from	the	server.	They	can	only	be	deactivated	to	prevent	compromising	the	integrity	of	message	archives	from
happening.	And	the	Admin	roles	are	specific	for	that	specific	Channel	or	Team,	meaning	that	one	Team	Admin	might	be	nobody	in
another	team.	The	actual	access	permission	model	is	more	complicated	than	the	table	because	System	Admin	can	manage	separate
permissions	from	anyone.	It	is	a	hierarchy	structure	with	roles	at	higher	positions	also	have	the	permission	of	lower	position	roles.

Security	Implementation
One	thing	worthy	of	mentioning	before	walking	down	the	security	implementation	of	Mattermost	is	that,	the	server	of	Mattermost	is
deployed	on	the	organization's	local	network,	behind	the	private	firewall.	So	a	large	part	of	the	responsibility	of	security	falls	onto	the
organization	itself.

Besides	the	shield	of	the	private	firewall,	Mattermost	also	performs	a	few	practices	to	ensure	the	security	of	the	service.	It	supports
TLS	encryption	using	AES-256	with	2048-bit	RSA	on	all	data	transmissions	between	Mattermost	client	applications	and	the
Mattermost	server	across	both	LAN	and	internet,	to	prevent	eavesdropping.	Encryption-at-rest	is	available	for	messages	via	hardware
and	software	disk	encryption	solutions	applied	to	the	Mattermost	database.	And	to	protect	against	brute	force	DDoS	attacks,	the
organization	can	set	rate	limiting	on	APIs,	varied	by	query	frequency,	memory	store	size,	remote	address	and	headers.	Session	length,
session	cache	and	idle	timeout	are	all	configurable	to	comply	with	the	internal	policies	of	the	organization.

As	for	recovery,	the	Mattermost	team	has	published	a	guideline	for	administrators	to	tackle	backup	and	disaster	recovery.	It	provides	a
	High	Availability	Mode		while	deploying	to	allow	fast	automated	recovery	from	a	component	failure.

Evaluation	from	the	Security	Perspective
Though	Mattermost	touts	its	concern	for	privacy	and	safety	as	a	selling	point	against	its	competitors,	there	are	a	few	things	of	the
project,	that	are	questionable.

For	example,	to	enable	end	user	search	and	compliance	reporting	of	message	histories,	Mattermost	does	not	offer	encryption	within	the
database.	Mattermost	also	stores	a	complete	history	of	messages,	including	edits	and	deletes,	along	with	all	files	uploaded.	Even	if	the
user	deletes	a	post	or	a	file,	it	only	disappears	from	the	interface	but	stays	in	the	database.	Though	it	is	understandable	from	the
perspective	of	protecting	integrity	and	non-deniability,	it	can	instead	be	a	problem	for	user	privacy.

Another	problem	of	Mattermost	is	that	it	depends	too	much	on	the	private	network.	For	example,	the	team	made	a	deliberate	decision
to	show	"Your	password	is	incorrect"	when	wrong	password	is	entered,	which	can	be	considered	as	a	information	leakage	and	can	be
exploited	by	the	attacker.	The	team	argued	that	if	security	was	of	top	concern,	then	the	service	should	be	deployed	on	a	private
network.

Mattermost

185

https://docs.mattermost.com/administration/backup.html
https://github.com/mattermost/docs/issues/885

Conclusions
Our	journey	with	the	Mattermost	team	is	extremely	pleasant	as	they	are	very	community	friendly.	Deeply	involved	with	the
community,	that's	how	they	maintain	the	momentum	and	prosperity	as	a	small	team,	and	on	the	other	hand,	that's	also	a	big	challenge.
Luckily	the	team	has	established	an	effective	way	of	developing	and	managing	the	project.	The	project	is	well	organized	as	they	have	a
clear	roadmap,	of	how	the	structure	of	the	project	is	supposed	to	be,	in	mind.	Though	some	debts	were	made	during	the	earlier	days	of
Mattermost,	they	are	acting	actively	to	repay	them	by	moving	from	Flux	to	Redux.	With	people's	growing	awareness	of	privacy
protection,	Mattermost	is	surely	going	to	earn	a	larger	part	of	the	pie	with	its	ability	to	deploy	the	server	locally.

References
[1]	N.	Rozanski	&	E.	Woods.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-
Wesley	Professional,	2012.
[2]	"facebook/flux:	Application	Architecture	for	Building	User	Interfaces."	Internet:	https://github.com/facebook/flux	[Mar.	5,	2018]
[3]	"Mattermost	Dev	Talk	-	Introduction	to	Codebase	&	Architecture."	Internet:	https://youtu.be/Q4MgnxbpZas	[Mar.	5,	2018]
[4]	"Mattermost	Dev	Talk	-	Server	Application	Layer."	Internet:	https://youtu.be/rU6-xSV6dTI	[Mar.	5,	2018]
[5]	"Mattermost	Dev	Talk	-	Localization."	Internet:	https://youtu.be/cVRmzXjpp7Y	[Mar.	5,	2018]
[6]	"Mattermost	Dev	Talk	-	ReactJS."	Internet:	https://youtu.be/8dB2_29TtNo)	[Mar.	5,	2018]
[7]	"Mattermost	Dev	Talk	-	Building	a	Webapp	Component."	Internet:	https://youtu.be/MRmGDhlMhNA	[Mar.	5,	2018]
[8]	"Mattermost	Dev	Talk	-	Adding	a	Config	Setting."	Internet:	https://youtu.be/hVLRVPnNeaw	[Mar.	5,	2018]
[9]	"Release	Process	—	Mattermost	4.7	documentation"	Internet:	https://docs.mattermost.com/process/release-process.html	[Mar.	5,
2018]
[10]	"Localization	—	Mattermost	4.7	documentation"	Internet:	https://docs.mattermost.com/developer/localization.html	[Mar.	9,	2018]
[11]	"Company	-	Mattermost."	Internet:	https://about.mattermost.com/company/
[12]	"Contributors	to	mattermost/docs."	Internet:	https://github.com/mattermost/docs/graphs/contributors
[13]	"Staff	Developers	—	Mattermost	4.8	documentation."	Internet:	https://docs.mattermost.com/process/developer.html
[14]	"Mattermost	Community	—	Mattermost	4.8	documentation."	Internet:	https://docs.mattermost.com/process/community-
overview.html
[15]	"Success	Stories	–	Mattermost."	Internet:	https://about.mattermost.com/success-stories/

Mattermost

186

https://github.com/facebook/flux
https://youtu.be/Q4MgnxbpZas
https://youtu.be/rU6-xSV6dTI
https://youtu.be/cVRmzXjpp7Y
https://youtu.be/8dB2_29TtNo
https://youtu.be/MRmGDhlMhNA
https://youtu.be/hVLRVPnNeaw
https://docs.mattermost.com/process/release-process.html
https://docs.mattermost.com/developer/localization.html
https://about.mattermost.com/company/
https://github.com/mattermost/docs/graphs/contributors
https://docs.mattermost.com/process/developer.html
https://docs.mattermost.com/process/community-overview.html
https://about.mattermost.com/success-stories/

Mbed	OS

By	Jasper	de	Winkel,	Arjan	Langerak,	Wanning	Yang	and	Kun	Jiang.

On	Github	jdewinkel,	alangerak,	yangwanning	and	jiangkun1994

Abstract
Mbed	OS	is	an	open-source	embedded	operating	system	designed	for	the	"things"	for	the	Internet	of	Things.	It	supports	a	lot	of	different
target	hardware	as	well	as	the	option	to	implement	support	for	other	hardware	without	altering	the	existing	libraries.	This	chapter
analyzes	Mbed	OS	by	starting	with	a	discussing	of	the	stakeholders	and	the	context	of	the	system.	After	that,	the	development	is	discussed
which	describes	the	architecture	of	the	code.	Furthermore,	the	deployment	of	Mbed	OS	to	different	target	hardware	is	discussed	.	Then,
the	evolution	of	the	system	and	the	technical	debt	of	the	system	is	discussed.	This	chapter	then	ends	with	a	conclusion	on	the	status	of	the
architecture.

Table	of	Contents
1.	 Introduction
2.	 Stakeholders

Power-Interest	Grid
3.	 Context	View
4.	 Development	View

Module	structure
Common	Design	Models
Codeline

5.	 Deployment	View
Hardware	Targets

6.	 Evolution	Perspective
7.	 Technical	Debt

Identification	of	Technical	Debt
Manual	Analysis
Testing	Debt
Evolution	of	Technical	Debt

8.	 Conclusion

Introduction
ARM	Mbed	is	a	fully	integrated	device	management	solution.	There	are	some	services	it	can	provide,	such	as	operating	system,
gateway,	device	management	services	and	partner	ecosystem	[1].	These	services	may	reduce	costly	development	and	deployment	time
of	IoT	solutions.	The	solution	is	divided	into	two	major	parts	Mbed	Cloud	and	Mbed	OS.	This	document	focuses	on	Mbed	OS
specifically.

Mbed	OS

Mbedos

187

https://github.com/jdewinkel
https://github.com/alangerak
https://github.com/yangwanning
https://github.com/jiangkun1994

ARM	Mbed	OS	is	a	free,	open-source	embedded	operating	system	designed	specifically	for	the	"things"	in	the	Internet	of	Things.	It
includes	all	the	features	needed	to	develop	a	connected	product	based	on	an	ARM	Cortex-M	microcontroller,	including	security,
connectivity,	a	RTOS	and	drivers	for	sensors	and	I/O	devices.[3].

The	RTOS	is	the	major	compoment	in	Mbed.	This	is	a	type	of	OS	that	is	intended	to	handle	tasks	that	are	defined	with	a	minimum	and
a	maximum	time	in	which	they	should	have	been	executed.	This	is	achieved	by	using	a	combination	of	threads	and	a	scheduler	that
determines	the	order	of	the	tasks.

Stakeholders

A	lot	of	different	stakeholders	have	interaction	with	Mbed	OS.	These	stakeholders	are	separated	into	different	categories	and	described
in	the	table	below.

Table	1.	The	different	stakeholders	of	Mbed	OS

Stakeholder Description

Acquirers

The	enterprise	ARM	takes	the	main	responsibility	of	developing	and	marketing	Mbed	operating
system	to	cooperative	partners.	These	partners	contribute	to	the	platform,	use	it	within	their	products
or	deliver	a	service	to	Mbed.	The	OS	directly	targets	ARM	processors	and	supports	different
microcontrollers	of	vendors	like	NXP	and	ST.	These	vendors	are	also	ARM	Partners	and	act	as
acquirers	because	they	actively	spend	resources	on	developing	support	for	MbedOS	to	get	their	boards
working	with	MbedOS.

Assessors Assessors	determine	if	the	legal	constraints	of	the	project	are	met.	In	the	case	of	Mbed,	this	is	the
responsibility	of	ARM	as	it	is	supporting	and	pushing	Mbed.

Communicators ARM	handles	communication	through	(paid)	support,	a	news	letter	and	by	support	forums.	From	the
releases	it	is	deduced	that	one	key	communicator	(ARM	employee)	is	@adbridge.

Developers In	the	case	of	Mbed,	the	most	active	developers	are	a	part	of	ARM	or	one	of	its	partners.	Key
developers	are:@bcostm,	@0xc0170,	@theotherjimmy,	@geky	and	@pan-

Support	staff
Support	of	MbedOS	is	given	in	two	ways.	Number	one	is	the	commercial	channel.	Since	it	is	a
commercial	product	owned	by	ARM,	support	can	be	provided	directly.	The	other	support	channels	are
through	the	forums	and	questions	can	be	answered	by	email.

Suppliers Key	suppliers	are	the	compilers	and	libraries.	Relevant	compilers	are	the	ARM	compiler	or	GNU
ARM	Embedded.	The	code	is	hosted	on	Github,	thus	Github	is	a	supplier	as	well.

Users

Since	MbedOS	targets	an	embedded	device	the	responsibility	of	deploying,	designing	the	hardware	and
software	environments	of	the	system	is	a	task	for	the	end	user.	In	this	case,	an	embedded	developer
working	at	a	company.	Maintenance	of	the	final	product	also	will	be	the	responsibility	of	the	embedded
developer.

Contributors Some	contributors	from	ARM	are	also	integrators	while	there	are	still	some	contributors	are	not	from
ARM.	@bridadan,	@emilmont	and	@stevew817	are	three	of	these	active	contributors.

Integrator	and
Maintainers

In	Mbed	OS	no	clear	distinction	is	made	between	integrators	and	maintainers.	The	integraters	take	on
both	roles.	The	main	integrators	at	the	moment	are	@0xc0170,	@geky,	@pan-,	@theotherjimmy	and
@cmonr.	Most	of	the	integrators	are	ARM	employees.

Competitors MbedOS	is	not	the	only	platform,	it	has	many	competitors.	Several	compatitores	are:	Arduino,	Tizen,
Predix	and	FreeRTOS

Founders/Originators The	Mbed	project	began	in	2005	when	the	two	founders	Chris	Styles	and	Simon	Ford	(ARM
employees)	met	to	discuss	some	projects	they	had	been	helping	out	with[17].

Power-Interest	Grid

The	grid	listed	below	shows	the	power	vs	Interest	of	each	stakeholder.	ARM	as	the	major	acquirerer	has	the	highest	power	and	is	the
most	invested	in	the	platform.	With	slightly	less	power	but	with	also	very	large	interest	are	the	Integrators/Maintainers	followed	by	the
developers.	The	development	of	Mbed	OS	is	closely	monitored	by	the	competition.	The	communicators	and	users	have	moderate

Mbedos

188

https://github.com/adbridge
https://github.com/bcostm
https://github.com/0xc0170
https://github.com/theotherjimmy
https://github.com/geky
https://github.com/pan-
https://github.com/bridadan
https://github.com/emilmont
https://github.com/stevew817
https://github.com/0xc0170
https://github.com/geky
https://github.com/pan-
https://github.com/theotherjimmy
https://github.com/cmonr

interest	in	the	platform	but	have	little	influence.	Suppliers	however	have	a	moderate	to	large	power	since	if	there	would	be	any	major
changes	or	a	stop	of	development	this	would	directly	effect	the	project.	However,	programming	languages	like	C	and	compilers	like
GNU	ARM	Embedded	are	very	unlikely	to	change	drastically.

Figure	1.	Stakeholder	power	vs	interest	grid

Context	View

To	create	this	large	ecosystem,	Mbed	depends	on	a	lot	of	different	parties	that	are	not	part	of	Mbed	(or	ARM,	the	parent	company).
These	parties	can	be	directly	involved	with	the	development	of	the	OS	while	others	provide	online	services	to	manage	IoT	devices	that
are	running	Mbed.	Below	are	some	major	interactions	and	dependencies	listed	and	visualized.	Not	all	the	companies	that	provides
software,hardware	or	services	are	listed	since	there	are	too	many	to	be	able	to	include.

Mbedos

189

Figure	2.	Context	View	of	Mbed	with	its	environment

Following	up	on	the	figure,	a	more	detailed	description	is	discussed	next.

Programming	Language:	The	bulk	of	the	software	is	written	in	C.	But	to	give	users	a	more	friendly	way	using	this,	a	small	C++	layer	is
added.	So,	the	C	code	can	be	seen	as	the	External	Entity	while	the	C++	fulfills	the	role	of	a	Service	Provider	for	the	External	Interface.

Version	Control	&	Continous	Integration:	Several	Github	repositories	are	used	for	Mbed,	one	of	which	is	specifically	for	Mbed	OS.	It	is
used	for	version	control	and	issue	tracking.	Besides	this,	they	also	have	a	repository	on	their	own	website[16]	for	sharing	community
project	and	example	projects.
On	all	Pull	Requests,	test	code	is	run	by	using	Continuous	Integration	tools.	In	order	to	integrate	Travis	CI	with	Mbed	and	Github,	an
External	Interface	exists	that	provides	an	API	to	achieve	this.	So,	this	is	a	Service	Provider.

IDE	support:	A	project	can	be	set	up	on	major	Embedded	Systems	IDEs	like	Keil	uVision5	but	Eclipse	is	also	supported.	This	tool	is	a
Data	Provider	because	it	created	to	necessary	data	to	be	able	to	use	the	IDE.

Hardware	Providers:	These	companies	provides	hardware	components	for	IoT	platforms.

Service	Providers:	These	offers	External	Interfaces	to	be	able	establish	a	connection	between	a	board	and	their	services.	These	interfaces
can	be	classified	as	Data	Providers	(data	storage),	Service	Provider	(security)	and	Event	Provider	(monitoring	services).

Software	Providers:	Tieto	provides	several	protocol	stacks	and	drivers.	Since	this	software	is	directly	included	into	Mbed,	there	is	no
External	Interface	needed.

Development	View
The	development	view	“describes	the	architecture	that	supports	the	software	development	process”	[4].	In	this	section,	the	structure	of
MbedOS	is	introduced	in	terms	of	the	architecture	of	the	source	code,	standardizations	and	the	structure	of	the	directories.

Module	structure

Mbedos

190

MbedOS	is	a	layered	architecture.	At	the	bottom,	the	specific	hardware	drivers	of	a	vendor	can	be	found.	Then,	each	layer	that	comes
after	this	adds	either	new	functionality	or	simplifies	the	usage	of	that	device	by	providing	a	common	API.

The	system	can	be	roughly	divided	into	three	sections:	the	Core	,	Storage	and	Connectivity.

The	Core	consists	out	of	modules	that	forms	the	Real	Time	Operating	System.	Also,	the	modules	for	interfacing	with	peripherals	and
for	creating	a	sandbox	environment	(uVisor)	are	part	of	the	Core.	The	reason	for	this	classification	is	that	these	modules	provides	the
functionality	to	run	code	on	a	hardware	board.	Therefore,	all	the	other	modules	have	dependencies	on	modules	that	are	part	of	the	Core.

The	different	modules	that	are	related	to	files	and	storage	are	grouped	into	the	Storage	section.	The	FileSystem	and	Storage	Managment
provides	APIs	for	interfacing	with	regular	files.	The	NVStore	provides	the	functionality	to	store	data	by	keys	in	internal	flash.

Lastly,	all	the	different	modules	that	are	related	to	connecting	devices	together	are	found	in	the	Connectivity.	Mbed	has	support	for	Wifi,
Bluetooth	and	also	Low-Rate	Wireless	Personal	Area	Networks	(LR-WPAN).	The	Thread	,	6LOWPAN	and	nanostack	are	modules	for
building	a	complete	network	between	different	devices.	In	particular,	6LOWPAN	provides	IPv6	functionality	and	Thread	provides
functionality	to	create	a	mesh	network.

The	categorized	modules	be	found	in	the	figure	below.

Figure	3.	Module	overview	of	the	most	important	components	of	the	system.

Mbedos

191

Common	Design	Models

Contributing	standardization

Open	source	projects	such	as	Mbed	OS	are	developed	by	both	employers	of	Mbed	as	well	as	community	members.	This	means	that
everyone	is	free	to	contribute	to	the	repository.	In	order	to	keep	maintainability,	reliability,	and	technical	cohesion	of	the	system,	the
core	developer	composed	a	contributing	and	publishing	guide	to	standardize	the	design	process.	It	provides	concrete	guidelines	in	terms
of	the	code,	naming	conventions,	documentations	and	compiler	settings	which	can	be	all	found	on	their	style	guide	page[5].

API	design	standardization

In	addition,	the	API	design	should	be	worth	mentioned	here	as	it	provides	an	environment	to	implement	groups	of	features	like	drivers,
connectivity	etc.	The	general	rule	is	that	a	C++	class-based	interface	is	implemented	for	MbedOS	users.	Another	one	is	the	use	of	a
porting	layer	which	handles	the	support	of	multiple	hardware	targets.	This	layer	is	implemented	with	a	C	compatible	interface.

This	API	design	is	splitting	into	the	drivers	directory	(C++	interface),	the	hal	(C	interface)	and	the	targets	(implementations)	directory.

Also,	this	API	uses	a	configuration	file	that	defines	what	kind	in	inputs/outputs	a	board	which	is	shown	below.

"LPC11C24":	{

								...

								"device_has":	["ANALOGIN",	"CAN",	"I2C",	"I2CSLAVE",	"INTERRUPTIN",	"PORTIN",	"PORTINOUT",	"PORTOUT",	"PWMOUT",	"SERIA

L",

								...

				},

By	using	if	and	endif,	the	corresponding	drivers	can	be	included	into	the	build	process.

Testing	standardization

Since	the	MbedOS	accepts	community	contributions	through	GitHub,	it	requires	some	form	of	automated	testing.	To	accomplish	this,
Mbed	uses	Travis	CI	(continuous	integration)	and	it	is	ran	on	all	pull	requests	and	all	commits	to	a	branch	to	verify	that	it	builds	and	it
passes	testing.	Regardless	of	which	type	of	CI	run	for	testing,	all	CI	jobs	must	pass	before	the	pull	request	is	merged	by	Mbed	OS
maintainers.

The	process	starts	at	the	.travis.yml	file	in	the	root	of	Mbed	OS	repository.	It	specifies	all	the	steps	for	building	a	test	environment.	The
build	lifecycle	is	made	up	of	two	steps,	one	is	install	which	installs	any	dependencies	required	and	the	other	one	is	script	which	runs
the	actual	tests.	In	script,	multiple	script	commands	are	specified.	If	one	of	the	build	commands	returns	a	non-zero	exit	code,	the	Travis
CI	build	runs	the	subsequent	commands	as	well,	and	accumulates	the	build	result.

Finally,	the	results	of	testing	are	passed	to	coveralls	which	reports	this	as	shown	below.

	 	 	

Since	Mbed	OS	is	mainly	working	for	different	kinds	of	boards,	it	should	have	a	standardization	testing	for	functionality	of	drivers.
Mbed	provides	the	Greentea	testing	tool	to	automate	the	process	of	flashing	Mbed	boards,	driving	the	tests	and	accumulating	test
results	into	test	reports.	Those	all	.cpp	files	in	'mbed-os/TESTS/mbed_drivers'	directory	indicate	that	which	certain	drivers	need	to	be
tested.	For	example,	flash	IAP,	low-power	Ticker,	Real-time	Clock,	etc.	Each	testing	file	will	include	a	corresponding	testing	process	to
guarantee	the	executable	driver	and	finally	can	meet	the	high	demand	of	real	time.

Generally,	there	are	some	common	parts	in	testing	files.	Firstly,	the	following	code	can	be	found	in	all	.cpp	files	which	introduces	the
used	testing	tools.

#include	"mbed.h"

#include	"greentea-client/test_env.h"

#include	"utest/utest.h"

#include	"unity/unity.h"

Mbedos

192

https://travis-ci.org/ARMmbed/mbed-os/branches
https://travis-ci.org/ARMmbed/mbed-os
https://coveralls.io/github/ARMmbed/mbed-os?branch=master
https://waffle.io/ARMmbed/mbed-os

And	there	is	also	a	list	of	specified	cases	in	each	file	for	testing	certain	functionality.	Here,	we	select	the	main.cpp	of	lp_ticker	as	an
example.	The	low	power	ticker,	mainly	working	on	setting	up	a	recurring	interrupt	and	calling	a	function	repeatedly	at	a	specified	rate.
Therefore,	the	test	will	include	measuring	the	callback	time	and	checking	whether	ticker	properly	execute	callback.	The	code	of	this	part
is	shown	as	following:

//	Test	cases

Case	cases[]	=	{

				Case("Test	attach	for	0.001s	and	time	measure",	test_attach_time<1000>),

				Case("Test	attach_us	for	1ms	and	time	measure",	test_attach_us_time<1000>),

				...

};

Greentea	also	presents	relevant	testing	requirements	in	order	to	match	the	standards.	For	example,	tests	should	be	organized	based	on
the	class,	roughly	one	test	file	per	class.[7]

Codeline

Figure	4.	The	top	level	directory	structure	of	the	code	[9]

The	figure	above	shows	the	top	level	directory	with	the	smaller	directories	already	expanded.	These	directories	will	be	explained	first.

The	cmsis	(vendor-independent	hardware	abstraction	layer)	contains	abstract	interfaces	of	the	various	hardware	components	found	in
CORTEX	microcontrollers.

The	driver	directory	contains	C++	interfaces	that	provides	abstractions	for	common	features	found	in	boards.	These	includes	interfaces
for	input/output	pins	and	other	common	hardware.

Mbedos

193

The	events	directory	includes	a	third	party	library	called	equeue	written	in	C	which	provides	event	scheduling	by	using	queues.	Mbed
has	encapsulated	this	library	with	C++	classes.

The	hal	(hardware	abstraction	layer)	includes	C	interfaces	that	defines	functions	for	interacting	with	hardware.	Some	of	these	interfaces
are	used	in	the	drivers	directory	that	provides	the	C++	encapsulation.

The	platform	directory	includes	C++	classes	that	implements	basic	functionality	that	are	commonly	found	on	different	boards	and
platforms.

Figure	5.	Directory	structures	of	features,TESTS,tools,targets	and	rtos.

The	features	directories	contains	all	the	different	libraries	for	using	wireless	communications.	Also,	libraries	for	storage	and	the	sandbox
(UVisor)	are	found	here.	The	common	structure	that	is	found	between	these	libraries	is	that	there	is	the	code	that	controls	the	hardware
is	separated	from	the	protocols	and	algorithm	code.	The	hardware	code	is	always	found	in	the	targets	directory.

All	the	tests	that	are	targeted	Mbed	are	found	in	the	TESTS	directory.	Each	module	has	its	own	directory	inside	the	TESTS	directory.
These	modules	also	have	their	own	directories	where	the	names	reflects	what	part	is	being	tested.	Then,	the	actual	testing	file	is	always
called	main.cpp.

The	tools	directory	contains	the	different	python	script	that	can	generate	IDE	config	files,	run	tests,	build	source	code	and	other	various
scripts	that	are	used	for	configuring,building	and	uploading	code	to	boards.

The	targets	directory	contains	the	files	that	implements	the	interfaces	found	in	the	hal	directory.	Also,	the	initialization	files	and
interfaces	from	the	rtos	directory	are	also	included.	The	structure	of	this	directory	is	that	the	boards	of	each	manufacturer	are	grouped
together.	The	manufacturer	then	has	defined	their	own	structure	of	how	to	seperate	different	boards.

Finally,	the	structure	of	the	rtos	directory	is	that	the	top	level	contains	basic	C++	classes	that	encapsulates	some	functionally	of	the
underlying	rtos	which	is	written	in	c.	The	TARGET_CORTEX	directory	contains	the	directories	where	the	actual	rtos	is	located,	Keil
RTX	rtos.	Also,	the	TARGET_CORTEX_M	contains	files	that	are	related	to	error	handling	on	the	Cortex	M	microcontrollers.

Deployment	View
With	the	large	amount	of	supported	targets	and	options,	Mbed	OS's	build	and	deployment	is	one	of	the	most	challenging	aspects	of	the
OS.	As	mentioned	in	previous	sections,	Mbed	has	its	own	python	builder	to	set	specific	flags	in	code	to	enable	certain	drivers/modules
depending	on	the	desired	features	and	the	hardware	target.	The	table	that	highlights	a	few	major	third	party	dependencies	for
deployment.

Table	2.	Third	party	dependencies	for	deployment

Mbedos

194

Category Third	party	library Mandatory Role	in	the	system

Building: GNU	Arm	Embedded
Toolchain Choose	one Compiler,	C/C++	libraries	etc.	to	build	the	OS

ARM	Compiler	and
Toolchain Choose	one Compiler,	C/C++	libraries	etc.	to	build	the	OS

Processor
abstraction: CMSIS Yes Cortex	Microcontroller	Software	Interface	Standard

OS
functionality: Keil	RTX Yes Real	Time	Operating	System	(RTOS)	that	manages	scheduling

of	tasks,	semaphores	etc.

Event	handling: Equeue Yes Provides	event	scheduling	by	using	queues

Networking: lwIP No Small	lightweight	TCP/IP	stack

LoRaWAN No Provides	support	for	LoRa

File	System Cfstore No Secure,	associative	key-value	(KV)	store	abstraction	layer

ChaN No FatFS	implementation

Security: MBed	TLS No Embedded	SSL/TLS	library

Testing: GreenTea No Mbed's	own	testing	platform

Utest No Embedded	Testing

Unity No Unit	Testing	for	C	(especially	Embedded	Software)

Mbed	OS	is	a	RTOS	thus	requires	a	user	program	to	tell	it	what	to	do	in	order	to	do	anything.	An	example	deployment	scenario	is
shown	below.	It	depicts	an	embedded	product	with	an	onboard	microcontroller	and	some	other	hardware	on	the	board	for
communication.	It	can	communicate	directly	to	other	devices	through	Mbed	by	using	simple	peripherals	or	even	by	using	the	on-board
ethernet	hardware	to	connect	to	servers.

Figure	6.	Example	deployment	scenario.

Hardware	Targets

As	previously	mentioned,	Mbed	supports	countless	hardware	targets.	Below	are	several	vendors	list	that	supply	microcontrollers	that
are	supported	by	MBed	OS.	Support	for	more	targets	keeps	growing.	Please	note	that	this	list	only	mentions	the	suppliers	and	one
vendor.	For	example,	ST	has	multiple	series	of	microcontrollers	and	each	series	contains	a	lot	of	MCU's.	Therefore,	providing	support

Mbedos

195

for	every	microcontroller	is	not	feasible.

NXP
ST	Microelectronics
Maxim	integrated
Nordic	Semiconductor
Nuvoton
Realtek
Renesas
Silicon	Labs

If	a	development	board	of	a	certain	microcontrollers	is	used	as	a	target,	a	programmer	is	usually	in	the	same	area	to	where	the	board	is.
This	board	is	connected	to	a	PC	with	an	USB	cable.	Therefore,	to	be	able	to	deploy	the	program	to	the	board,	the	only	additional
hardware	required	is	the	PC.

Feature	Support

With	the	large	number	of	supported	microcontrollers,	it	is	important	to	note	that	not	all	microcontrollers	support	all	of	the	Mbed	OS
functionality.	Especially	Ethernet,	LoRa,	USB,	Bluetooth	and	Wifi	are	only	supported	on	a	subset	of	the	supported	targets.

Evolution	Perspective
The	first	version	for	ARM	Mbed	OS	was	generated	on	14th	of	December	in	2014	and	it	is	called	Alpha	1,	however,	only	available	to
Mbed	Partners.	The	second	version	was	released	to	the	public	after	2	months	called	Alpha	2	but	it	was	still	heavily	in	development.
Finally,	version	3.0	was	released	officially	on	15th	of	October	in	2015.	The	Mbed	OS	Release	Schedule	can	be	seen	in	Figure	1,	which
was	shown	on	ARM	TechCon	2014.

Figure	7.	The	roadmap	of	Mbed	OS	before	2016.

On	5th	of	August	in	2016,	Mbed	OS	5	with	version	5.1	was	released.	This	release	has	a	lot	of	changes	and	enhancements	so	that	Mbed
OS	is	usable	for	many	Internet	of	Things	(IoT)	use	cases.	Also,	Mbed	OS	2	(“Classic”)	and	Mbed	OS	3	is	merged	together	such	that	the
ecosystem	of	Mbed	OS	3,	such	as	an	RTOS	and	tooling,	is	now	combined	with	the	ecosystem	of	Mbed	OS	2.	Lastly,	there	are	new
board	included	that	support	Mbed[10].	The	process	is	shown	in	Figure	2.

Mbedos

196

http://www.armtechcon.com/this-is-whats-new-at-arm-techcon-2014

Figure	8.	Mbed	OS	5	integrates	the	two	codelines	of	Mbed	2.0	(“Classic”)	and	Mbed	3.0	(“Eventing	OS”)	into	one	unified	platform.

Nowadays,	the	release	process	is	still	continuing	and	there	are	three	major	types	of	ARM	Mbed	OS	releases	which	are		major	,
	feature		and		patch	[8].

Major	releases	involve	changes	to	the	structure	of	the	OS.	These	releases	are	rare	since	it	changes	the	complete	structure	of	the	code.
The	only	major	releases	so	far	are	version	2,	3	and	5.

Feature	releases	are	created	every	quarter.	These	releases	add	new	functionalities	to	the	OS.

Finally,	there	are	the	patch	releases.	These	occur	every	two	weeks	and	include	bug	fixes,	new	target	boards	(or	components)	and
improvements	to	existing	functionalities.

From	analyzing	the	release	of	Github,	it	can	be	seen	that	they	follow	these	guidelines	very	closely.

Technical	Debt

In	this	chapter	the	the	technical	debt	of	Mbed	OS	is	discussed.	This	includes	the	identification	of	technical	debt,	including	testing	debt
through	various	methods	(tools	or	manual	analysis).	The	chapter	is	concluded	with	a	section	about	the	evolution	of	the	technical	debt	of
Mbed	OS	over	time.

Identification	of	Technical	Debt

In	order	to	identify	technical	debt	in	a	large	system	such	as	Mbed	OS,	tools	can	be	used	to	give	an	indication	of	the	amount	of	technical
debt.	Without	these	tools,	it	would	cost	a	lot	of	time	to	go	through	every	code.	These	tools	can	also	reveal	locations	and	tips	on	how	to
reduce	the	technical	debt.

Code	keywords	analysis

Another	way	to	check	for	technical	debt	is	to	look	for	certain	keywords/tags	that	are	commonly	used	to	indicate	that	something
probably	needs	to	be	changed.	These	keywords	are	also	used	for	communication	between	developers.	However,	for	identifying	technical
debt,	the	following	keywords	are	selected:

-TODO:	This	keyword	indicates	that	there	is	an	additional	feature	that	needs	to	be	implemented.	The	analysis	revealed	that	most	of	the
time,	these	issues	relate	to	either	upcoming	features	or	low	priority	issues.

-FIXME:	This	keyword	indicates	that	some	code	is	working	but	it	could	use	some	refactoring/rewriting.	Also,	it	can	indicate	that	some
code	is	currently	not	usable	and	that	it	only	can	be	used	if	it	is	fixed.	Usually,	these	issues	have	a	greater	impact	than	the	TODO	issues.

-HACK:	This	keyword	indicates	that	code	is	written	to	circumvent	a	bug/problem.	The	issues	found	in	the	code	which	is	marked	with
HACK	circumvents	certain	checks,	introduces	possibly	memory	leaks	and	introduces	mismatches	between	what	a	function	should	do
and	what	it	actually	does.

-XXX:	This	keyword	is	more	of	comment	to	developers	to	warn	about	possible	problematic	errors	or	misleading	code.	These	issues	can
arise	because	there	are	no	checks	or	the	naming	can	be	confusing	depending	on	the	domain	the	developer	is	used	to.

Mbedos

197

In	order	to	find	the	keyword,	the	following	bash	command	is	used:

	grep	-rohinHw	"\<keyword\>"	--include	*.h	--include	*.cpp	--include	*.c

This	command	only	includes	actual	source	files	and	it	skips	documentation	files	and	tools	that	are	written	in	Python.	The	reason	to
exclude	these	is	because	they	are	actually	developed	in	a	seperate	directory.

The	occurrences	of	each	keyword	is	seperated	per	module	as	listed	in	the	table	below.	Only	the	modules	that	have	a	high	occurrence	are
listed.

Table	3.	Overview	of	occurrences	of	different	keywords	in	the	modules.

Module TODO FIXME HACK XXX

feature_ble 58 18 0 0

feature_nanostack 153 0 15 6

feature_lwip 171 20 22 10

feature_uvisor 58 5 48 0

feature_storage 41 5 0 0

feature_unsupported 21 20 1 3

targets 255 56 6 0

An	example	of	a	TODO	is	found	in	the	BLE	module	in	the	file	'MemorySecurityDB.h':

virtual	void	get_whitelist(WhitelistDbCb_t	cb,	::Gap::Whitelist_t	*whitelist)	{

				/*TODO:	fill	whitelist*/

				cb(whitelist);

}

This	clearly	shows	that	there	is	functionality	missing	in	this	function.	At	the	moment,	it	only	uses	the	callback	with	the	supplied
whitelist	parameter	which	is	probably	an	empty	list	at	the	moment.

Overall,	these	keywords	indicate	there	is	technical	debt	that	the	original	author(s)	are	aware	of	but	could	not	fix	themselves.	For
instance,	an	obvious	conclusion	can	be	drawn	from	the	table	above,	the	module	regarding	lwip	has	a	large	number	of	keywords		TODO	,
	FIXME	,		HACK		and		XXX		in	its	code.	Therefore,	when	developers	want	to	deploy	the	module	lwip,	it	would	not	only	create	more
problems	involved	maintenance	but	also	operates	in	the	way	it	should	not	have	operated.	Thus,	the	large	amount	of	technical	debt	in	this
module	could	lead	to	that	developers	cannot	understand	this	module	correctly	which	leads	to	a	negative	impact	on	the	development.

Software	Analytics

Below,	several	interesting	analyzed	expects	are	discussed.

Code	Duplication

Figure	9.	SonarQube	code	duplication	results.

The	operating	system	has	a	lot	of	hardware	targets.	To	support	each	of	these	targets	(efficiently)	code	duplication	is	almost	unavoidable
and	is	very	common	for	this	scenario.	The	analysis	showed	most	duplication	occurs	in	the	C	files	to	support	all	of	the	different
hardware	targets	as	expected.

Mbedos

198

Cyclomatic	Complexity

Cyclomatic	complexity	is	a	metric	to	measure	the	complexity	of	a	program.	This	metric	measures	the	number	of	independent	paths
through	the	code.	In	the	case	of	MBed,	to	support	all	those	hardware	targets	a	lot	of	independent	paths	exist.	This	is	reflected	in	the
results,	Mbed	has	a	very	high	cyclomatic	complexity.	The	main	complexity	occurs	in	the	target	implementations.

Figure	10.	SonarQube	detected	cyclomatic	complexity.

Manual	Analysis

In	addition	to	searching	for	the	technical	debt	using	tools,	technical	debt	can	be	also	found	manually.

Bug	fixes

There	are	still	some	issues	found	in	GitHub	ARM	mbed	OS	which	are	labeled	as		bug	.	This	means	Mbed	OS	has	some	technical	debt
that	need	to	be	paid	off	and	some	of	these	bugs	are	even	dated	back	to	2014.	So	far,	there	are	345	open	issues	and	98	issues	of	them	are
belonging	to	the	type		bug		which	takes	up	28.4%	of	all	issues.	It	indicates	that	Mbed	OS	team	still	needs	to	make	much	more	effort	to
deal	with	the	technical	debt.

Refactoring

In	addition	to	the	type		bug	,	there	is	another	type	called		enhancement		in	open	issue	as	well.	The	goal	of	this	is	to	improve	or	refactor
some	unreasonable	code	structures,	code	smell	and	even	API	and	HAL	interface.

Most	of	them	have	been	reviewed	and	approved	by	developers	working	for	ARM	Mbed	and	they	improve	the	performance	of	Mbed
OS	significantly,	but	this	also	adds	to	the	technical	debt.	There	are	74	open	issues	about	enhancements	out	of	345	open	issues	so	far.

Testing	Debt

Testing	debt	is	caused	by	the	lack	of	testing	or	by	poor	testing	quality.	In	this	section,	the	detail	of	Mbed	OS’s	testing	debt	will	be
analyzed.

Mbed	OS	uses	the	service	coveralls	to	evaluate	the	code	coverage.	The	coverage	test	is	triggered	once	a	pull	request	is	submitted.	The
latest	code	coverage	in	Master	branch	only	got	33%	which	is	not	a	good	score.

Only	files	that	are	in	the	tools	are	covered.	However,	there	do	exist	many	other	testing	files	that	cover	the	actual	code	of	Mbed.	The
reason	that	these	tests	are	not	included	is	that	in	the	first	place,	there	are	no	coverage	files	created	for	the	C/C++	code	files	thus
coveralls	cannot	report	statistics	about	coverage.	The	reason	for	this	is	that	most	of	the	C/C++	tests	depends	on	the	greentea	testing
framework	which	can	only	run	on	an	actual	board.	From	Mbed	webpage	about	contributing[18]	,it	is	noted	that	they	test	a	proposal
against	the	Mbed	Enabled	development	boards.	The	greentea	framework	does	not	have	support	to	calculate	coverage	percentages	but	it
does	look	like	that	most	of	the	functionality	is	covered	by	tests.

Evolution	of	Technical	Debt

ARM	Mbed	OS	is	in	development	for	many	years	and	has	become	a	popular	platform	in	the	Internet	of	things	(IoT)	domain.	However,
the	development	comes	with	some	historical	technical	debt	which	are	needed	to	be	paid	off.	In	this	section,	two	types	of	technical	debt
are	described.

Technical	debt	of	version	division

Mbedos

199

https://github.com/ARMmbed/mbed-os/issues
https://coveralls.io/github/ARMmbed/mbed-os?branch=master

As	described	in	the	evolution	perspective,	Mbed	OS	needed	to	keep	two	version	due	to	radical	differences	between	version	2	and	3.
These	two	versions	were	split	into	separate	codebases	which	caused	a	rift	in	the	developer	community	to	some	extent	at	that	time.

For	now,	the	ARM’s	Mbed	team	has	been	working	on	the	combination	of	Mbed	2.0	and	Mbed	3.0	that	closes	the	gap	between
embedded	developers	and	programmers	working	at	the	service	layer.	This	version	is	known	as	5.0	(Mbed	2.0	+	Mbed	3.0).	This	means
that	the	Mbed	developers	have	been	struggling	to	pay	off	the	technical	debt	that	resulted	from	the	version	division.	The	latest	released
version	is	Mbed	OS	5.7.6	and	by	looking	through	the	latest	version	and	previous	version	from	the	released	page,	it	can	be	seen	that	the
Mbed	team	is	still	concentrating	on	the	compatibility,	fixes	and	changes	throughout	these	years.

Technical	debt	evolution	based	on	Github	repository

For	every	release	for	Mbed	OS,	there	are	new	features	added	into	the	new	version.	In	every	release,	a	main	developer	from	ARM	Mbed
will	make	an	introduction	to	the	new	release.	This	includes	a	summary	of	the	release	in	which	known	issues	of	critical	bugs	or	changes
and	which	ones	are	solved.	Also,	it	mentions	new	port	addition	the	ports	addition	which	are	compatible	with	Mbed	OS.

Using	the	information	given	in	GitHub	release[13],	two	figures	have	been	created.	Figure	11	shows	the	number	of	ports	for	upcoming
targets.	Figure	12	shows	the	number	of	fixes	and	changes	that	are	contributed	by	contributors	in	GitHub.

Figure	11.	The	number	of	ports	for	upcoming	targets	from	Mbed	OS	5.6.0	to	5.7.6.

Mbedos

200

https://github.com/ARMmbed/mbed-os/releases

Figure	12.	The	number	of	fixes	and	changes	from	Mbed	OS	5.6.0	to	5.7.6

Conclusion

At	the	beginning	of	this	chapter,	the	stakeholders	were	identified	that	are	involved	in	the	development	of	Mbed	OS	and	the	interaction
between	the	system	and	the	stakeholders	was	analyzed.	This	can	be	split	into	two	groups,	a	developer	group	which	are	employed	by
Mbed,	and	the	community	that	contribute	in	different	ways	such	as	fixing	problems	or	adding	new	boards.

Then,	in	order	to	understand	how	the	Mbed	OS	works,	the	different	layers	of	the	source	code,	common	design	models	as	well	as	the
structure	of	directories	was	analyzed.	It	was	found	that	the	code	was	made	modular	in	such	way	that	new	boards	can	be	included
relatively	easy	and	also	that	the	system	contains	the	most	necessary	functionalities	to	support	IoT	development.	Besides,	the
documentations	for	each	module	are	comprehensive	and	provide	good	descriptions	so	that	users	know	what	each	function	should	do.

Then,	the	technical	debt	was	analyzed	by	using	tools	and	doing	manual	analysis.	It	was	found	that	although	the	technical	debt	has
already	been	decreased	significantly,	there	is	still	a	lot	of	debt	left	which	is	mainly	caused	by	non-compatible	boards	but	also	that	a	lot	of
tests	don't	create	coverage	statistics.	This	could	give	the	wrong	impression	of	what	part	of	the	code	is	actually	tested.	There	is	also	a	lot
of	debt	that	was	identified	by	searching	for	common	keywords	such	as	TODO.	These	revealed	that	are	some	implementations	that	needs
to	be	rewritten	in	order	to	support	new	functionalities	or	to	improve	the	code	quality.

In	conclusion,	Mbed	OS	has	a	good	foundation	that	provides	the	basic	functionalities	to	create	IoT	devices.	It	is	also	structured	such
that	new	boards	(with	Cortex	M	processor)	can	be	added	and	integrated	into	Mbed	OS	without	changing	existing	libraries.	There	is
always	room	for	improving	the	platform	by	reducing	the	amount	of	technical	debt	but	the	current	debt	does	not	seem	to	slow	down	the
development	since	they	always	hit	their	intended	release	schedule.	All	in	all,	Mbed	OS	is	a	good	choice	for	starting	with	IoT
development	with	Cortex	M	processors.	This	is	also	reflected	by	the	number	of	Mbed	OS	users	which	is	still	growing	so	Mbed	OS
could	become	a	major	player	in	the	IoT	sector.

References

1.	 	ARM,	Mbed,	https://www.mbed.com/en/,	Retrieved	on	9-3-2018	
2.	 	ARM,	Mbed	Cloud,	https://cloud.mbed.com/,	Retrieved	on	9-3-2018	
3.	 	ARM,	Mbed	OS,	https://www.mbed.com/en/platform/mbed-os/,	Retrieved	on	9-3-2018
4.	 	Rozanski,	N.	Woods,	E.	,	2012,	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and	Perspectives.

Addison-Wesley.

Mbedos

201

https://www.mbed.com/en/
https://cloud.mbed.com/
https://www.mbed.com/en/platform/mbed-os/

5.	 	Mbed	OS	Style	guide,	https://docs.mbed.com/docs/mbed-os-handbook/en/latest/cont/code_style/,	Retrieved	on	23-2-2018
6.	 	Testing	in	mbed	OS	5,	https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/advanced/testing/,	Retrieved	on	24-2-2018
7.	 	ARM,	mbed	OS	Software	Design	Guide,	https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/cont/design_guidelines/,	Retrieved

on	8-3-2018
8.	 	ARM,	How	We	Release	Arm	Mbed	OS,	https://os.mbed.com/docs/v5.7/introduction/how-we-release-arm-mbed-os.html,	Retrieved

on	4-3-2018
9.	 	ARM	et	al,	Github:	ARMmbed	mbed-os,	https://github.com/ARMmbed/mbed-os,	Retrieved	on	2-3-2018
10.	 	ARM,	Introducing	mbed	OS	5,	https://os.mbed.com/blog/entry/Introducing-mbed-OS-5/,	Retrieved	on	15-3-2018
11.	 ARM	et	al,	Github:	PR	#6102,	https://github.com/ARMmbed/mbed-os/pull/6102,	Retrieved	on	3-4-2018
12.	 	ARM,	mbed	OS	forum,	https://os.mbed.com/forum/mbed/topic/28559/?page=1#comment-54245,	Retrieved	on	16-3-2018
13.	 ARM	et	al,	Github:	Release	page,	https://github.com/ARMmbed/mbed-os/releases,	Retrieved	on	16-3-2018
14.	 	SonarSource,	SonarQube,	https://www.sonarqube.org/,	Retrieved	on	16-3-2018
15.	 	SonarOpenCommunity	et	al,	Github:	SonarQube	C++	plugin	(Community),	https://github.com/SonarOpenCommunity/sonar-cxx,

Retrieved	on	15-3-2018
16.	 	ARM,	Mbed	OS	code	repository,	https://os.mbed.com/code/,	Retrieved	on	25-3-2018
17.	 	ARM,	Mbed	OS	handbook,	https://os.mbed.com/handbook/Founders-interview,	Retrieved	on	22-3-2018
18.	 	ARM,	Mbed	OS	contributing,	https://os.mbed.com/contributing/,	Retrieved	on	4-4-2018
19.	 	ARM	et	al,	Github:	Pull	request	number	6341,	https://github.com/ARMmbed/mbed-os/pull/6341,	Retrieved	on	4-4-2018
20.	 	ARM	et	al,	Amazon	CI	build	server:	build	number	5581	for	target	board	FF_LPC546XX,	http://mbed-os.s3-eu-west-

1.amazonaws.com/builds/5581/PASS/FF_LPC546XX/GCC_ARM/5dd46136ada7e3f03833fd8255ba6ffac85004e1_build_log_FF_
LPC546XX_GCC_ARM.txt,	Retrieved	on	4-4-2018

Mbedos

202

https://docs.mbed.com/docs/mbed-os-handbook/en/latest/cont/code_style/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/advanced/testing/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/cont/design_guidelines/
https://os.mbed.com/docs/v5.7/introduction/how-we-release-arm-mbed-os.html
https://github.com/ARMmbed/mbed-os
https://os.mbed.com/blog/entry/Introducing-mbed-OS-5/
https://github.com/ARMmbed/mbed-os/pull/6102
https://os.mbed.com/forum/mbed/topic/28559/?page=1#comment-54245
https://github.com/ARMmbed/mbed-os/releases
https://www.sonarqube.org/
https://github.com/SonarOpenCommunity/sonar-cxx
https://os.mbed.com/code/
https://os.mbed.com/handbook/Founders-interview
https://os.mbed.com/contributing/
https://github.com/ARMmbed/mbed-os/pull/6341
http://mbed-os.s3-eu-west-1.amazonaws.com/builds/5581/PASS/FF_LPC546XX/GCC_ARM/5dd46136ada7e3f03833fd8255ba6ffac85004e1_build_log_FF_LPC546XX_GCC_ARM.txt

osu!	-	a	fast-paced,	community-driven	rhythm	game	for	PC

From	top	left,	top	right,	bottom	left,	bottom	right:	Vincent	Bejach,	Jonathan	Levy,	Maiko	Goudriaan,	Pavel	Rapoport

Abstract

Osu!	is	an	open-source	free-to-play	community-driven	rhythm	game,	aiming	to	centralize	different	game	modes	from	arcade	or	console
competitors.	It	is	built	in	C#.	The	project	seems	well	structured,	and	present	a	manageable	amount	of	technical	debt,	although	the
documentation	has	been	found	to	be	lacking.	A	significant	issue	however	would	be	social	debt:	very	little	information	on	the	design
strategy	or	on	what	is	needed	is	communicated	to	the	developers,	which	could	make	contributing	to	the	project	harder.

Table	of	content

Introduction
Stakeholders
Context	view
Functional	view
Development	view
Usability	perspective
Technical	debt
Conclusion

Introduction

OSU

203

Rhythm	games	have	historically	been	mostly	developed	on	arcade	or	gaming	console.	However,	since	2007,	osu!	offers	a	pc	alternative,
gathering	game	features	from	many	arcade	and	console	competitors.	On	August	2016,	a	new	major	version	of	osu!	called	osu!lazer	has
been	made	available	as	open-source	software.	The	goal	was	to	make	osu!	available	on	more	platform	and	improve	transparency.

The	aim	of	this	chapter	is	to	analyze	the	architecture	of	this	project	and	to	present	an	overview	of	the	system.	To	analyze	it,	we	will
refer	to	the	conceptual	framework	provided	by	Rozanski	and	Woods.	We	will	first	cover	osu!'s	features	and	stakeholders,	then	we	will
discuss	the	architecture	itself	through	context,	functional	and	development	views.	Then,	we	will	discuss	osu!	from	a	usability
perspective.	Indeed,	as	a	rhythm	game,	osu!'s	interface	and	design	have	a	huge	impact	on	the	player's	performance.	Finally,	the	technical
and	social	debt	of	the	project	will	be	analyzed.

Stakeholder	analysis

Let's	describe	the	stakeholders	of	our	project.

As	a	disclaimer,	the	information	has	been	verified	on	22-02-2018	and	will	be	subject	to	changes.	This	stakeholders	analysis	is	providing
a	snapshot	of	the	state	of	osu!.

Summary	of	the	stakeholders

We	can	summarize	most	of	the	stackholders	in	following	picture:

OSU

204

	
Figure	1	-	Stakeholders	for	osu!

We	listed	them	with	the	following	categories.

OSU

205

Stakeholder Description

Users Passive	(playing),	active	(creating	content)

Acquirers same	as	users

Developers,	maintainers peppy,	smoogipoo,	community

Testers Developers	+	subset	of	users

Adminitrators users	(running	the	game),	nekodex	and	nanaya	(website)

Assessors Quality	Assurance	Team,	Global	Moderation	Team,	Language	Moderators

Communicators peppy,	various	forum	members

Sponsors osu!supporters	(through	merch	store)

Suppliers GitHub,	Microsoft,	ISP,	servers	owners

Competitors Beatmania,	Stepmania,	Guitar	Hero	...

Some	of	the	stakeholders	need	extra	attention,	we	will	review	them	specifically.

Users

osu!	players	can	be	active	at	various	degrees.	They	can:

enjoy	the	game
create	new	beatmaps
create	new	skins
help	people	on	the	forum
report	issues

Users	only	enjoying	the	game	are	called	"passive	users",	while	content	creators	are	called	"active	users".

Considering	all	of	this,	the	users	appear	in	several	categories	of	stakeholders.

Assessors

The	assessors	are	mainly	composed	of	three	teams	of	volunteers:

Quality	Assurance	Team	(QAT):	they	check	that	the	new	content	created	by	users	is	of	good	quality.
Moderation	Team:	they	operate	on	a	communication	level	to	ensure	rules	are	followed	on	the	in-game	chat,	the	forum,	the
comments	on	the	website...
Language	Moderators:	they	are	language-specific	moderators	for	subforums,	because	of	the	worldwide	community.

Sponsors

To	financially	support	the	game,	users	can	buy	a	supporter's	badge	on	the	website,	allowing	some	convenient	(but	non-crucial)	features,
like	in-game	content	downloading.	Additionally,	a	merchandise	store	lets	you	buy	several	goodies	to	help	supporting	the	development.
No	precise	information	about	the	goodies	manufacturers	could	be	found.

Developers

Some	developers	come	and	go,	others	proved	to	be	central	in	the	development	process.	The	following	informations	about	developers	are
acquired	from	the	github	repository	of	the	project.	osu!	was	open-sourced	in	September	2016,	so	it's	difficult	to	get	any	detailed
information	about	contributors	before	this	date.	As	far	as	we	know,	peppy	was	mostly	the	only	one	working	on	the	project	before	it	was
open-sourced.

OSU

206

https://github.com/ppy/osu/graphs/contributors

Contributor Commits LOC++ LOC-- Active	during

peppy 3039 153480 117840 09.2016	-	present	time

smoogipoo 1719 69818 45740 01.2017	-	present	time

DrabWeb 467 29023 15659 01.2017	-	09.2017

EVAST9919 344 10920 6422 12.2016	-	11.2017

huoyaoyuan 319 8109 5847 09.2016	-	10.2017

Tom94 239 6334 5755 09.2016	-	09.2017

SirCmpwn 220 13117 6898 09.2016	-	03.2017

UselessToucan 45 3954 2896 10.2017	-	present	time

As	this	table	shows,	peppy	is	concentrating	more	than	half	of	the	commits,	and	smoogipoo	a	fourth.	With	the	contribution	history,	we
conclude	that	peppy	(Dean	Herbert,	founder	of	osu!)	and	smoogipoo	(Dan	Balasescu)	are	the	only	persons	who	continuously	developed
this	project	from	the	moment	it	was	open-sourced	(or	for	a	very	long	time).	Other	developers	keep	coming	and	going.	Current	developer
team	roster	is	located	on	the	osu!	website.

We	can	summarize	the	contribution	of	previously	mentioned	contributors	with	a	timeline.

Figure	2	-	Timeline	describing	developers	implication

To	order	visualize	the	stakeholders,	we	present	them	in	a	Power-Interest	Grid.	Users	can	be	quite	different,	so	they	are	represented	as
an	area.

OSU

207

https://github.com/peppy
https://github.com/smoogipoo
https://osu.ppy.sh/groups/11

Figure	3	-	Power-Interest	grid	for	stakeholders.

Context	view

The	context	view	describes	the	relationships,	dependencies,	and	interactions	between	the	system	and	its	environment.

System	scope	and	responsibilities

Osu!	is	the	"bestest	free-to-win	rhythm	game" 	that	provides	entertainment	to	over	11	million	users	worldwide,	who	have	so	far	played
over	7.62	billion	ranked	games.	Osu!	can	either	be	played	unranked	or	in	a	competitive	ranking	system.

After	osu!	was	open-sourced,	it	became	possible	for	a	user	to	contribute	to	osu!	via	code.	Besides	that,	a	user	can	also	create	and	share
their	own	playable	content.	It	can	be	via	beatmaps	or	via	skins	applied	to	game	elements.

External	entities

In	this	section	we	show	and	briefly	explain	the	external	entities	related	to	osu!.	We	first	provide	an	overview	of	these	external	entities.

OSU

208

Figure	4	-	Entity	view	for	osu!

Technical	aspects

Osu!	is	written	in	C#	which	is	part	of	the	.NET	framework	created	by	Microsoft.	It	is	mainly	developed	in	Visual	Studio	(Windows	and
macOS)	or	MonoDevelop	(Linux).	Version	control	and	code	management	are	done	via	Git,	using	a	public	GitHub	repository.	For
continuous	integration	AppVeyor	is	used,	with	CodeFactor	for	automatic	code	review.	The	code	is	developed	under	the	MIT	License.

Developers

The	core	developers	of	osu!	are	Dean	Herbert	(peppy)	and	Dan	Balasescu	(Smoogipoo).	With	the	help	of	other	developers	from	the
GitHub	community,	osu!	is	being	maintained	and	extended.

Community

The	user	of	osu!	are	separated	in	two	groups:

Passive	users
Active	users

The	groups	are	categorized	by	the	same	attributes	as	explained	in	the	stakeholders	section,	thus	passive	users	mainly	play	osu!	for
entertainment	and	active	users	also	actively	contribute	to	it.

The	communication	between	developers	goes	through	GitHub	repository	or	Discord.	The	communication	between	users	and	developers
happens	through	the	website	and	forum.	The	communication	between	the	users	happens	mostly	through	the	forum	and	Reddit.

Competitors

OSU

209

https://github.com/ppy/osu
https://github.com/peppy
https://github.com/smoogipoo
https://github.com/ppy/osu
https://discordapp.com/invite/ppy
https://osu.ppy.sh/home
https://osu.ppy.sh/community/forums
https://osu.ppy.sh/community/forums
https://www.reddit.com/r/osugame/

The	same	competitors	as	in	the	stakeholder	section	are	used.	As	a	reminder,	a	large	part	of	the	competitors	only	exist	in	an	arcade
format,	or	on	game	consoles.	There	are	only	a	few	competitors	playing	on	the	same	platform,	namely	Stepmania,	Guitar	Hero	and
Opsu!.

External	Interfaces

Here	are	the	external	interfaces	used	by	osu!.	Interfaces	are	external	sources	of	code	which	contain	functionalities	that	can	be	used	in
osu!.	This	saves	the	developers	the	effort	of	creating	(complicated)	code.	First,	the	overview	is	illustrated	then	the	different	interfaces
are	explained.

Figure	5	-	Interfaces	around	osu!

The	following	table	describes	the	interfaces	used	by	osu!:

OSU

210

Library Functionality

Deepequal Extensible	deep	equality	comparison	library

DeltaCompressionDotNet Wrapper	around	Microsoft's	delta	compression	application	programming	interfaces

DotNetZip Manipulating	zip	files

Humanizer Manipulating	and	displaying	strings,	enums,	dates,	times,	timespans,	numbers	and	quantities

Newtonsoft.json JSON	framework	that	can	easily	transform	objects	into	JSON	and	vice	versa

NUnit Most	popular	unit	test	framework	for	.NET

OpenTK Wrapper	for	OpenGL	and	OpenAL,	libraries	for	creating	graphic	and	sound	interface	(game
engine)

Remotion.Linq Parsing	LINQ	expression	trees	and	generating	queries	in	SQL	or	other	languages

Sharpcompress Library	for	dealing	with	many	different	compression	formats

Splat Used	for	cross-platform	manipulations

SQLitePCLRaw Portable	Class	Library	for	low-level	access	to	SQLite

Squirrel Toolset	for	managing	installation	and	update	of	software	on	a	Windows	platform

Functional	view

According	to	Rozansky	and	Woods,	functional	view	"defines	the	architectural	elements	that	deliver	the	function	of	the	system	being
described".	This	means	its	purpose	is	to	demonstate	how	osu!	perform	these	functions.

Each	functional	element	is	responsible	for	a	certain	feature.	Responsibilities	of	functional	elements	may	be	fine-grained	(for	example,
"position	target	circle	at	specific	coordinates")	or	coarse-grained	(such	as	"creating	new	beatmap").	We	would	prefer	to	stay	on	a	higher
level	of	abstraction	to	keep	our	model	simple.

We	start	our	analysis	by	listing	the	most	important	features	and	aligning	them	to	a	functional	element,	responsible	for	performing	this
feature.

Functional	elements Features

User	information	system
Log-in
Ranking
Account	information

In-game	language	selector Internationalization

Beatmap	editor Creating	or	editing	beatmaps

Gameplay	core

Standard	mode
Taiko	mode
Catch	mode
Mania	mode

Multiplayer

Head	to	Head	mode
Tag	Coop	mode
Team	Vs	mode
Tag	Team	Vs	mode

Communication In-game	chat

In-game	Tweak	Tool Game	settings	modification

OSU

211

https://www.viewpoints-and-perspectives.info/home/viewpoints/functional-viewpoint/

So	from	features,	which	are	obviously	visible	to	users,	we	moved	to	functional	elements.	Now	it's	time	to	show	how	they	are	connected.

In	the	center	of	diagram	we	position	the	Gameplay	core	element.	This	function	depends	on	the	In-game	language	selector	and	the
In-game	Tweak	Tool.	Both	of	this	tools	could	change	visualisation,	also	the	In-game	Tweak	tool	can	change	gameplay	options.
Optionally	it	depends	on	the	Beatmap	editor	as	you	can	either	create	your	own	beatmap	or	just	download	an	existing	one.	Also,	there
are	mutual	dependencies	with	the	User	information	system.	Depending	on	the	user	status,	osu!	client	can,	for	example,	enable
automatic	downloads	of	beatmaps	for	multiplayer.	On	the	other	hand,	the	User	information	system	needs	information	from	the
Gameplay	core	to	provide	proper	ranking.

Figure	6	-	Overview	of	the	features

As	we	said,	the	Gameplay	core	is	responsible	for	running	the	game.	This	is	quite	obvious	without	complex	analysis.	So	we	would	like
to	unfold	the	Gameplay	core	one	more	level.

First	we	jump	to	the	Game	project.	There	are	a	lot	of	most	derived	classes	that	contain	little	functionality.	However,	it	contains	a
calculation	logic	for	different	purposes:	result	calculation,	for	example,	used	in	processing	rankings,	hit	point	calculation	which	depends
on	the	user	settings	and	game	mode	etc.	This	logic	is	used	by	Ruleset.X	projects,	where	X	stands	for	a	game	mode.	These	projects
contain	rulesets	for	the	specific	game	modes.	Also	the	Game	project	is	responsible	for	arranging	menu	elements	and	different	screens	of
the	application,	while	Ruleset.X	projects	are	responsible	also	for	arranging	gameplay	screen	for	a	given	mode.

The	Resources	project,	as	its	name	suggests,	contains	various	resources	used	by	the	application,	such	as	fonts,	music,	sounds,	textures
etc.

Osu.Game	and	Osu.Game.Rulesets.X	projects	rely	heavily	on	the	Framework	project	which	is	the	framework,	developed	specifically
for	osu!.	This	project	is	even	put	in	separate	repository	on	GitHub.	So	it	would	be	interesting	to	make	a	step	into	Framework,	as	it	is	an
important	interface	for	osu!.

OSU

212

	
Figure	7	-	Detailed	view	of	the	modules	in	the	main	project

In	the	Framework	we	find	a	huge	tool	library.	All	modules	are	sorted	by	their	purpose.	Detailed	explanation	of	all	mechanisms	provided
by	this	framework	would	take	a	lot	of	time.	We	will	point	out	the	most	important	ones,	such	as	threading	system,	platform	interaction
and	input	processing.

Firstly,	Threading	section	contains	different	thread	types	and	a	Scheduler	class,	which	is	the	heart	of	the	threading	system.	Apparently,
osu!	requires	more	fine-grained	threading	management.	Standard	C#	tools	don't	offer	the	software	tools	required	to	keep	a	high	frame	rate
when	dozen	of	blinking	targets	appear	on	screen.	Also,	it	is	more	convinient	to	have	different	thread	types	for	different	purposes.
Therefore	the	special	threading	system	was	created	with	different	type	of	threads	and	the	scheduler,	which	is	responsible	for	managing
threads.

Next,	Platform	section	is	dedicated	to	interaction	with	the	Operating	System	(OS)	on	which	osu!	is	running.	It	would	be	nice	to	be	able
to	use	the	clipboard	between	in-game	chat	and	the	OS,	or	to	be	able	to	connect	to	the	server	in	order	to	show	your	skills	and	climb	up
the	wordwide	leaderboards.	Platform	section	provide	tools	for	osu!	to	interact	with	the	OS	and	use	some	of	its	functionality.

Finally,	if	the	user	would	want	to	interact	with	the	game	we	need	Input	processing	section.	It	uses	OpenTK	library	to	gather	raw	input
from	keyboard	and	mouse.	After	that	it	organizes	signals	in	a	convenient	manner	for	further	processing.	Also,	this	module	binds	key
combinations	to	a	certain	game	functions.

Also	we	should	just	mention	other	modules:	Allocation,	which	is	responsible	for	memory	management;	Audio,	for	processing	and
editing	in-game	music;	Graphics,	which	contains	everything	that	is	needed	to	create	in-game	visual	components	and	configure	their
behavior.

So,	now	we	can	answer	the	following	correlated	questions	about	these	projects	functionality	"What	does	THIS	thing	actually	do?"	and
"How	is	THIS	thing	working?".	osu!	menu	interface	and	game	modes,	implementing	features	of	this	game,	are	located	in	separate
projects.	This	projects	extensively	use	Framework	tools	for	internal	logic	and	visualization.

Development	View

Now,	we	will	cover	the	code	structure	and	development	process	of	osu!	to	understand	what	architecture	and	what	methods	of
standardization	are	used	in	it.

Module	Organization

The	project	is	distributed	across	three	repositories:

osu-framework,	acting	as	a	top	layer	processing	I/O,	with	which	the	user	interacts	to	play
osu-resources,	containing	the	assets	used	by	the	application
osu,	the	principal	game	module,	containing	the	game	logic

OSU

213

The	distinction	between		osu		and		framework		was	made	to	allow	Separation	of	Concerns,	and	focus		osu		on	game	logic	rather	than	on
I/O	processing.

The	architecture	of	the	modules	and	their	mutual	dependencies	are	shown	below:

Figure	8	-	Modules	architecture	(with	transitive	arrows)

Blue	arrows	represent	class	calls,	while	grey	ones	are	project	references.	Please	note	that	transitive	calls	are	simplified	here,	and	that
lower	game	modules	(Taiko,	Osu,	Mania,	Catch)	also	call	the	framework	directly.	Full	dependencies	are	shown	below:

Figure	8	-	Modules	architecture	(with	full	dependencies)

This	structure	is	very	concentric,	with	every	module	calling	the	framework.	This	was	expected,	as	the	framework	was	designed	to
centralize	I/O	and	all	modules	use	them.	Together	with	Game,	they	act	as	"core"	component	used	by	game	modes	as	"customizations".

Codeline	Organization

Code	storage	structure

Codeline	is	organized	in	the	following	structure:

OSU

214

Figure	9	-	Codeline	organization

The	root	directory	also	contains	both	osu-framework	and	osu-resources	modules.	The	following	table	summarizes	the	different	groups
of	folders:

OSU

215

Group Color Description

Support	code Red Code	and	files	on	which	the	game	code	relies

Application	code Green Code	and	files	used	by	desktop	application	on	which	the	game	is	played	(debug	&	release)

Rulesets Blue Code	defining	the	different	game	rules	and	objectives	of	osu!'s	four	game	mode

Game Yellow Source	code	of	the	game	itself

Miscellaneous / Rest	of	the	files	not	mentioned	(among	which	configuration	&	license	files)

As	seen	before,	Framework	is	big,	and	the	resources	section	contains	the	assets	used	by	the	game.	The	Ruleset	folders	all	contain	similar
files:	for	instance	files	defining	the	gamemode	beatmaps	specificities,	the	judgments	(game	won	or	not,	etc).

Although	designed	separately	from	Game,	Framework	would	hardly	be	usable	for	anything	else,	since	its	components	seem	to	be	built
for	dealing	with	osu!-specific	components.

The	codebase	is	managed	using	the	GitHub	workflow,	as	well	as	by	some	guidelines	strictly	enforced	by	the	integrators.

Building	and	release	method

Osu!	uses	continuous	integration	tool	Appveyor	to	build	its	successive	versions.	This	allows	to	get	immediate	info	on	the	state	of	the
code	at	every	merge.	When	finished,	the	application	will	be	released	as	standard	game	installer,	including	an	online	updater.	For	now,
there	are	regular	GitHub	milestones,	to	help	organize	the	development	team.

Common	Design	Models

We	noticed	some	common	processing	methods:

The	logging	is	done	consistently	throughout	the	project,	using	a	class	from	Framework.
Framework	itself,	as	it	is	called	everywhere,	constitutes	a	standard	processing	method	for	I/O.

Standardization	of	design

State	Pattern

This	state	pattern	is	used	to	handle	the	input	of	the	keyboard	and	mouse.	First,	the	current	state	of	the	input	device	is	captured,	then	it
is	further	processed.

Adapter	Pattern

There	are	many	beatmaps	in	the	osu!	community	and	multiple	game	modes.	To	overcome	the	problem	that	a	dedicated	beatmap	has	to
be	created	for	every	song,	gamemode	and	difficulty	combination,	the	application	uses	the	adapter	pattern.	It	uses	the
	BeatmapConverter<T>		as	base	class	to	convert	a	beatmap.	Below	is	a	part	of	the	adapter	class	for	the	osu!catch	game	mode.

Factory	and	Method	Factory	Patterns

We	noticed	several	instances	of	factory	classes	in	the	codebase.	Among	those,	we	noted	a	few	private	factory	inner	classes	in	the	project
and	four	factory	methods	in		CustomizableTextContainer	.	The	following	code	snippet	shows	one	of	them.

OSU

216

https://github.com/ppy/osu-framework/wiki/Development-and-Testing

Standardization	of	testing

Several	tests	modules	are	created	with	VisualTest,	a	Visual	Studio	feature.	It	allows	to	create	dedicated	views	to	test	classes	or	modules
in	separate	environments.	The	tests	are	validated	by	inspection	and	semi-automatic	execution:	a	user	still	has	to	initiate	the	testing,	it	is
not	part	of	CI	flow.

The	project	also	has	around	150	unit	tests,	checked	by	Appveyor.	This	is	unusually	few,	but	we'll	discuss	it	in	the	technical	debt
section.

Usability	Perspective

Usability	is	a	major	concern	with	software,	even	more	in	a	competitive	environment:	if	users	don't	interact	naturally	with	your	software,
they	won't	use	it	unless	forced	to.	Osu!'s	usability	is	all	the	more	important	considering	the	fact	that	a	rhythm	games	player	heavily
relies	on	their	muscular	and	visual	reflexes	when	playing.	Consequently,	a	clear,	readable	interface	with	adapted	peripherals	is	very
important.

For	this	part,	we	will	sometimes	compare	the	interfaces	of	the	current	software	and	its	legacy	version.	We	will	call	the	current	game	that
we	have	analyzed	so	far	"osu!lazer",	while	the	old	version	will	be	called	"legacy	osu!".

Touch	points

First,	let's	review	the	touch	points	of	osu!lazer,	ie	all	the	places	where	the	user	interacts	with	osu!lazer.	The	following	graph	shows	how
the	user	jumps	from	one	touch	point	to	another.	The	peripheral	used	for	each	is	mentioned.	The	term	"pointing	device"	is	grouping	both
mouse	and	drawing	tablet,	as	many	players	are	using	a	tablet	to	be	able	to	aim	the	targets	using	absolute	positioning.	Keyboard-oriented
interactions	are	in	blue,	while	pointing-oriented	interactions	are	in	pink.	Logically,	touch	points	relying	on	both	peripherals	are	in	violet.

OSU

217

Figure	10	-	Touch	points	in	osu!'s	interface

This	graph	shows	that	osu!	(both	osu!lazer	and	legacy	osu!)	can	be	played	with	usual	PC	peripherals.

Interface

"A	user	interface	is	like	a	joke.	If	you	have	to	explain	it,	it’s	not	good."	Following	that	motto,	osu!lazer's	interface	is	straightforward,
especially	considering	how	close	to	other	rhythm	games	interfaces	it	looks	like.

From	left	to	right,	top	to	bottom,	here	are	the	beatmap	selection	screens	for	each	of	the	following	games:	Hatsune	Miku	Project	Diva,
Beatmania,	Guitar	Hero,	and	the	current	in-development	osu!lazer.

Beatmania	being	an	arcade	game,	the	picture	comes	from	a	photograph.	We	couldn't	find	any	better	pictures	and	apologize	for	this.

OSU

218

Hatsune	Miku	Project	Diva	X	(Console) Guitar	Hero	Live	(Consoles)

Beatmania	IIDX	(Arcade) osu!lazer	(PC)

We	can	notice	several	similarities.

All	games	have	a	list	of	beatmaps	(although	the	term	"beatmap"	is	osu!-specific,	the	concept	is	the	same).
They	are	arranged	into	a	vertical	list.
The	difficulty	is	rated	with	a	number.	Most	games	are	using	a	star-counting	system.	Beatmania	is	an	exception	which	only	uses
numbers.
Some	art	about	the	current	highlighted	beatmap	is	shown	on	the	side.
Also	on	the	side,	the	current	high	scores	are	displayed.
All	games	have	a	sorting	function.	Still,	this	feature	is	more	developed	for	osu!	for	two	major	reasons:

First,	you	can	download	as	many	beatmaps	as	you	want,	unlike	the	other	games	who	have	a	limited	number	of	beatmaps,
Being	on	PC,	you	can	use	the	keyboard	to	search,	which	is	impossible	on	other	platforms.

All	these	common	points	allow	players	coming	from	any	rhythm	game	to	quickly	adapt	to	osu!lazer's	interface.

Adaptability	to	the	user

With	millions	of	players	all	around	the	world,	osu!	is	trying	to	satisfy	a	large	spectrum	of	different	users	that	have	their	own	habits	or
feelings.	To	do	so,	it	presents	several	levels	of	variability.

The	first	one,	as	mentioned	above,	is	the	pointing	device.	The	most	obvious	interaction	devices	to	play	osu!	are	the	keyboard	and
mouse.	But	both	legacy	osu!	and	osu!lazer	are	compatible	with	drawing	tablets,	and	experienced	players	tend	to	prefer	them	because	of
the	absolute	pointing	possibility.	Technically	speaking,	this	has	been	realized	by	implementing	raw	input	instead	of	relying	on	the	OS
mouse	input.	Another	advantage	of	raw	input	is	to	bypass	any	OS	artificial	acceleration	to	make	the	cursor	move	the	same	way	your
peripheral	moves,	enhancing	accuracy	and	natural	use.

The	second	level	of	adaptability	is	the	skin	engine.	Legacy	osu!'s	appearance	can	be	completely	changed	by	downloading	and	installing	a
skin.	Although	this	feature	has	been	implemented	on	osu!lazer	to	some	extent,	its	support	is	not	complete	yet.	Again,	most	experienced
players	recommend	using	a	skin	to	clarify	the	game	modes,	improve	readability	and	thus	reduce	reaction	time.	As	an	example,	this	is
how	osu!lazer	and	legacy	osu!	appear	without	skin,	and	legacy	osu!	with	a	custom	skin.

OSU

219

osu!lazer	with	default	skin Legacy	osu!	with	default	skin Legacy	osu!	with	custom	skin

A	dim	and	simple	skin	as	shown	on	the	right	is	a	huge	help	for	cleaning	up	the	interface	and	leaving	only	useful	visual	cues	for	the
gameplay.	For	example,	removing	the	background	video,	the	different	colours	of	the	targets,	and	having	a	thicker	white	border	helps
reading	the	beatmap.

Apart	from	these	two	major	variability	points	in	terms	of	usability,	both	osu!lazer	and	legacy	osu!	present	numerous	parameters	to
tailor	your	gaming	experience.	For	instance,	you	can	disable	the	parallax	settings	(that	can	make	some	people	dizzy),	or	you	can	adapt
the	frame	lag	to	match	the	response	time	of	your	screen.	These	settings	are	available	to	be	sure	the	player	can	experience	the	game	in	the
best	conditions.	Usability	has	been	thoroughly	studied	to	provide	both	quick	adaptation	and	high	configurability.

Technical	debt
Technical	debt	represents	the	amount	of	additional	work	required	in	order	to	improve	the	code	quality.	In	order	to	measure	that	of	the
osu!	application	we	used	four	tools	and	conducted	manual	analysis.	The	first	tool	is	CodeFactor,	which	is	also	used	by	the	developers
themselves,	by	being	integrated	in	the	repository.	The	additional	tools	are	SonarQube,	Visual	Studio	metrics	(VS	metrics)	and	ReSharper.

Evolution	of	Technical	debt

In	the	next	figure	we	illustrate	the	evolution	of	technical	debt.

Figure	11	-	Evolution	of	technical	debt	through	time

The	first	drop	can	be	explained	by	code	being	added	to	the	project.	After	that	the	technical	debt	stays	constant,	however	manual
inspection	indicated	that	new	files	barely	introduce	any	debt	while	modifications	tend	to	add	some.	In	October	2017	a	label	concerning
technical	debt	was	introduced	on	GitHub.	From	that	moment,	improvements	were	made	paying	technical	debt	(noticeable	in	December).
Furthermore,	recent	modifications	added	little	debt.

Tool	analysis

Overall	score

The	overall	scores	from	the	different	tools	are	good,	with	an	average	grade	A	from	SonarQube	(concerning	technical	debt)	and	CodeFacor.
VS	metrics	gives	72/100	points	for	code	maintainability	which	is	a	decent	score,	however	this	metric	is	a	rather	obsolete.	Therefore,	we
decided	to	overlook	its	value	and	looked	at	the	issues	found	and	used	manual	inspection	to	verify.	Unfortunately,	ReSharper	does	not
provide	a	total	score.

In	the	next	figure	the	distribution	of	the	technical	debt	calculated	by	SonarQube	is	displayed,	highlighting	a	few	outliers	containing	high
amount	of	technical	debt,	although	their	grade	is	still	reasonable.

OSU

220

https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

Figure	12	-	View	of	technical	debt	by	files,	in	estimated	number	of	hours	needed	to	fix	it

SonarQube	gives	two	additional	scores	for	bugs	(C)	and	vulnerabilities	(B).	It	is	worth	noting	that	a	large	part	of	the	grade	for	bugs	is	due
to	the	lack	of	asserts	in	test	cases.	The	next	figure	contains	part	of	the	dashboard	of	SonarQube	including	the	different	ratings.

Figure	12	-	Welcome	screen	of	SonarQube

Issues	found

Using	ReSharper,	96	ToDos	were	identified.	They	are	related	to	functionality,	code	quality	or	gameplay	issues.	Although	it	is	good	that
developers	are	aware	about	these	issues,	such	policy	makes	it	more	difficult	to	track	progress	in	fixing	these	issues.	These	kind	of	issues
should	be	managed	by	a	centralised	issue	tracker	(e.g.	GitHub	issues).	Furthermore,	it	complicates	comprehension	of	osu!	structure	and
development	strategy	by	new	contributors.	ToDos	can	be	used	as	a	short-term	solution,	when	a	developer	is	currently	working	on	that
specific	section.	However,	the	used	ToDos	should	be	removed	before	merging.	This	is	needed	to	prevent	ToDos	from	getting	lost	in	the
source	code	and	being	forgotten	about.	Moreover,	several	ToDos	are	rather	unclearly	described	and	open	for	discussion,	which	does	not
encourage	resolving	them.

Combining	the	four	analysis	of	the	tools,	the	most	common	issue	is	the	amount	of	duplicated	code.	Code	pieces	with	duplicated	code
occur	mostly	in	legacy	and	test	classes.	To	improve	code	quality	it	is	recommended	to	refactor	the	latter	classes.	A	solution	for	duplicate
code	is	to	extract	the	code	to	a	separate	method	and	call	that	method.	In	addition,	it	is	unlikely	that	legacy	code	will	be	refactored	if	it
does	not	contain	known	bugs.

Another	issue	found	is	the	cyclomatic	complexity	inside	several	classes	responsible	for	game	logic	with	extensive	switch	statements.
These	extensive	switch	statements	could	be	reduced	with	some	refactoring	by	introducing	a	strategy	or	state	design	pattern.

OSU

221

Other	remarkable	issues	are:	access	modifiers,	virtual	member	called	in	construction,	equality	comparison	of	floating	point	numbers	and
assignments	made	in	sub-expressions.	These	issues	will	most	likely	not	crash	the	program,	however	they	might	be	the	source	of
unexpected	behavior	or	decrease	the	ability	to	read	the	code.

Testing	debt

Among	the	various	tools	used	to	analyze	the	technical	debt,	none	of	them	could	report	any	test	coverage.	This	was	either	due	to	a	failure
or	C#	not	being	supported.

The	main	testing	strategy	of	osu!	relies	on	visual	tests	covering	most	of	the	visual	aspects	of	the	game.	By	going	through	parts	of	the
game	or	interface,	it	can	be	verified	that	the	behavior	is	executed	as	intended.	In	the	next	figure	we	illustrate	an	instance	of	visual	tests.

Figure	13	-	_View	of	visual	tests	(leftmost	column:	list	of	components,	second	column:	list	of	tests)

There	are	a	few	test	classes	in	other	packages	that	test	the	logic	of	the	game,	however	their	amount	is	limited	and	we	could	not	manage	to
run	them	in	Visual	Studio.	From	AppVeyor,	we	can	see	that	there	are	146	passing	tests.	We	can	extract	from	the	test	names	that	they
consist	mostly	of	constructor	tests.

For	each	project	there	exist	a	separate	test	package	containing	several	test	classes.	Some	of	these	tests	are	actual	unit	tests	and	some	are
helper	classes	for	the	visual	tests,	containing	no	asserts.	Remarkably,	in	a	recent	pull	request	(#2075),	they	prepare	the	code	for	more
testing.

With	the	current	testing	strategy,	the	game	logic	is	only	coarsely	tested,	and	mainly	by	visual	tests,	which	does	not	seem	enough.
Furthermore,	the	current	testing	strategy	might	explain	the	various	issues	detected	by	SonarQube	for	tests	without	any	assert.

Documentation	debt

Technical	debt	is	not	our	only	concern	about	this	project.	The	documentation	of	osu!	is	very	limited:	most	classes	even	lack	any
documentation.	New	contributors	will	find	themselves	struggling	to	answer	simple	questions:	what	should	or	can	I	do	and	where?
Furthermore,	no	global	development	strategy	is	provided	by	the	development	team.

Social	debt

The	first	thing	that	we	noticed	is	that	most	of	the	design	decisions,	as	well	as	the	direction	the	development	is	taking,	are	made	by
peppy.	Those	who	are	not,	are	then	often	made	by	smoogipoo.	While	it	is	understandable	peppy	should	lead	the	way	"his"	product
evolves,	this	also	leads	to	a	very	high	bus	factor:	remove	peppy	(and	perhaps	smoogipoo)	and	the	development	would	stop.

OSU

222

https://ci.appveyor.com/project/peppy/osu/build/master-7811/tests
https://github.com/ppy/osu/pull/2075

Furthermore,	the	design	and	development	decisions	are	very	scarcely	communicated	about:	be	it	on	GitHub	or	on	the	project's	Discord
channel,	we	could	not	find	much	regarding	these	aspects.	It	then	only	seems	logical	that	most	contributions	would	come	from	either
peppy	or	smoogipoo.

Recommendation

We	would	recommend	to	start	working	on	the	documentation	of	the	project.	This	includes	code	comments	but	also	how	other
developers	can	help	to	improve	and	extend	the	application.	This,	to	make	it	easier	for	new	developers	to	contribute	to	the	project	and
reduce	the	current	bus	factor.

Furthermore,	they	should	look	into	their	testing	code	and	strategy,	since	part	of	the	technical	debt	is	inside	these	classes.	Moreover,	the
project	contains	little	amount	of	unit	tests	for	the	game	logic,	although	the	visual	aspects	of	the	game	are	well	tested.	These	visual	tests
indirectly	also	covers	several	aspects	of	the	game	logic	but	minor	mistakes	can	easily	be	overseen.	Several	improvements	can	then	be
made	to	reduce	the	technical	debt.

Conclusion

With	this	chapter,	we	aimed	to	offer	an	all-around	view	on	our	open	source	project,	osu!.	First,	we've	seen	that	pure	development	is
mainly	driven	by	two	people,	while	users	and	assessors	of	content	are	widely	distributed	around	the	globe	for	this	worldwide	online
game.	A	tremendous	amount	of	game-related	content	creation	is	left	to	the	users:	beatmaps,	skins,	and	even	seasonal	backgrounds	to	add
eye-candy	at	the	game	start.

Then,	with	the	functional	and	development	view,	we	detailed	the	key	features	of	osu!,	and	how	they	are	integrated	in	harmony	as	code.
Three	main	projects	allow	a	good	separation	of	concerns:	the	framework	is	dealing	with	rendering	and	interaction,	the	resources	contains
the	assets	to	use,	and	the	main	game	implements	the	game	logic	and	features.

osu!	being	a	rhythm	game	where	precision,	readability	and	handiness	directly	affect	the	performance	when	playing,	we	took	a	closer
look	at	usability.	We	found	out	that	it	has	two	main	answers	to	that	concern:	first,	it	mimicks	as	much	as	possible	the	general	layout	of
other	rhythm	games,	to	ensure	a	quick	adaptation;	then,	it	allows	an	impressive	flexibility	with	many	settings	and	the	variability
introduced	by	being	able	to	apply	a	skin.	Anyone	can	tailor	the	interface	by	downloading	a	skin,	or	even	creating	a	new	one.

As	any	software,	osu!	has	technical	debt.	Although	from	our	analysis	it's	not	that	important	in	terms	of	code	smell,	the	lack	of	tests	is
more	concerning.	Moreover,	the	introduction	for	newcommers	to	participate	in	the	code	is	rather	lightweight,	when	not	frankly	sparse
(in	particular	considering	the	lack	of	in-code	documentation	for	some	classes).

All	of	this	make	osu!	an	fascinating	project	to	analyse,	and	we	hope	that	this	chapter	has	shown	how	rich	this	project	can	be.

We	would	like	to	thank:

peppy	for	his	feedback	on	our	contributions,
the	osu!	community	as	a	whole	to	have	answered	some	of	our	questions	and	participated	to	our	survey,
Gijs	Weterings,	Liam	Clark,	Romi	Kharisnawan	who	did	an	excellent	job	as	teaching	assistant,	providing	us	feedback	and	answering
our	questions,
professors	Arie	van	Deursen,	Maurício	Aniche,	Andy	Zaidman	for	setting	up	this	insightful	course.

References
1.	 Rozanski,	N.,	&	Woods,	E.	(2011).	Software	systems	architecture:	working	with	stakeholders	using	viewpoints	and	perspectives.

Addison-Wesley.

OSU

223

https://github.com/ppy

Phaser	-	A	Fun,	Free	and	Fast	2D	Game	Framework	for
HTML5	browser	games	supporting	Canvas	and	WebGL
rendering.
Gerard	van	Alphen,	Tom	Catshoek,	Tomas	Heinsohn	Huala,	and	Casper	van	Wezel.

Delft	University	of	Technology

Abstract
Phaser	is	a	2D	HTML5	game	framework	with	support	for	WebGL	and	Canvas.	It	currently	is	the	most	starred	Javascript	game	engine
on	Github	and	the	repository	is	completely	managed	by	the	creator	Richard	Davey.	In	this	chapter,	the	project	is	analyzed	by	looking	at
various	aspects	of	Phaser.	By	creating	a	number	of	views	and	analyzing	the	stakeholders,	(technical)	debt	and	evolution,	it	was
concluded	that	Phaser	is	a	well-managed	project	with	high	standards	for	code	quality.	However,	the	project	is	lacking	automated	testing
which	leaves	room	for	improvment.

Table	of	Contents
1.	 Introduction
2.	 Stakeholders	Analysis
3.	 Context	View
4.	 Development	View
5.	 Technical	Debt
6.	 Functional	View
7.	 Evolution	of	Phaser
8.	 Conclusions
9.	 References

Introduction
Phaser	is	an	open-source	JavaScript	game	framework.	It	is	licensed	using	the	MIT	License,	so	people	are	allowed	to	use	it	freely,	even
for	commercial	purposes.	The	framework	implements	both	WebGL	and	HTML5	Canvas	rendering,	so	it	can	be	used	in	any	browser
with	support	for	them.	On	top	of	that,	by	using	3rd	party	tools	it	is	possible	to	package	your	Phaser	apps	as	native	ones.

The	community	around	Phaser	mainly	consists	of	game	developers	who	use	the	platform,	either	for	hobby	or	commercial	purposes.
Phaser's	main	developer	and	integrator	is	Richard	Davey.	He	has	been	working	on	Phaser	since	2012,	and	it	has	grown	tremendously
since	then.	There	are	daily	commits	to	the	repository	and	every	week	a	whole	bunch	of	issues	are	created	and	closed.

Phaser

224

https://github.com/ger1995
https://github.com/TCatshoek
https://github.com/Tomas2h
https://github.com/12casper3

Just	a	few	months	before	writing	this	chapter,	Phaser	3	was	released.	This	new	version	improved	a	lot	of	all	the	problems	they	had	with
Phaser	2.

This	chapter	is	written	as	part	of	the	DESOSA	(Delft	Students	on	Software	Architecture)	book	which	summarizes	all	the	work	done	for
the	TU	Delft	course	on	Software	Architectures.	It	will	provide	an	analysis	of	many	different	aspects	of	the	Phaser	project.	This	of
course	includes	the	technical	perspective	based	on	the	code	but	also	the	business	aspects	are	looked	by	defining	the	stakeholders.

Stakeholders	Analysis

To	get	a	feeling	about	everyone	who	is	involved	in	the	Phaser	project,	all	the	stakeholders	will	be	listed	and	explained	below.	After	that
they	will	be	combined	into	a	Power-Interest	grid.

Donators

The	project	has	a	Patreon	page	via	which	supporters	can	pledge	a	monthly	contribution.	This	helps	the	funding	of	the	project	and	its
developers.	The	pledgers	get	some	small	rewards	in	return	(a	forum	badge	and	a	discount	on	new	Phaser	products).	At	the	time	of
writing	(22-02-2018)	the	Patreon	has	171	pledgers,	contributing	a	total	of	$1616	per	month.	There	is	also	the	possibility	to	do	a	one-off
donation,	for	the	people	who	do	not	like	to	commit	to	a	monthly	payment.	The	main	sponsors	of	Phaser	are	CrossInstall	and	Orange
Games	two	companies	which	use	Phaser	in	their	commercial	products.

Communicators

Richard	Davey,	the	creator	of	the	project,	is	mainly	responsible	for	the	communication.	However	there	is	a	large	community	which
contributes	training	material,	tutorials	and	knowledge	on	the	Phaser	forum	and	site.	Richard	is	owner	of	the	company	Photon	Storm	Ltd
which	runs	a	HTML5	game	development	service.

Developers

At	the	time	of	writing	(20-02-2018),	there	are	293	contributors	to	the	project.	The	contributor	top	5	(based	on	amount	of	commits)	is:

Contributors Notes

Richard	Davey Creator

Pavle	Goloskoković

Felipe	Alfonso Freelance	programmer	Photon	Storm

Michael	Hadley

pnstickne worked	on	first	Phaser	version	in	2015

So	the	main	incentive	of	the	two	main	developers	just	arises	from	of	their	paid	jobs.	When	looking	at	other	people	doing	commits	it	is
usually	because	they	are	a	game	developer	using	the	platform	themselves.

Maintainers

Richard	Davey	manages	all	pull	requests	and	issues	on	GitHub.	Therefore	he	is	responsible	for	what	reaches	the	production	version.

Production	engineers

Phaser	is	built	using	webpack,	it	uses	several	plugins	to	tailor	the	build	process.	Richard	Davey	and	Rafael	Barbosa	both	contributed	to
the	webpack	config.

Suppliers

Since	Phaser	is	a	framework	for	JavaScript	browser	games,	the	users	have	to	supply	a	website	where	a	browser	can	load	the	framework.

Phaser

225

https://www.patreon.com/photonstorm
https://web.crossinstall.com
http://orangegames.com/
https://github.com/photonstorm/
http://www.html5gamedevs.com/forum/14-phaser/
https://phaser.io
http://www.photonstorm.com/
https://github.com/photonstorm/
https://github.com/pavle-goloskokovic
https://github.com/bitnenfer
https://github.com/mikewesthad
https://github.com/pnstickne
https://github.com/photonstorm/
https://github.com/photonstorm/
https://github.com/rblopes

More	important	suppliers	however	are	the	dependencies	of	the	sofware.	Of	course	JavaScript	is	the	most	important	one	in	that.	All	the
rendering	is	handled	by	either	WebGL	or	an	HTML5	Canvas.

Node.js	is	the	supplier	of	the		webpack		build	system.

Support	Staff

Within	the	Phaser	community	there	is	not	really	a	separate	group	which	can	be	marked	as	support	staff.	When	a	game	developer	has
questions	about	the	framework,	the	developers	in	the	slack-channel	or	on	the	forum	will	usually	try	to	clarify	things.

Users

Of	course	the	main	incentive	for	Richard	to	start	developing	this	framework	is	to	use	it	for	his	own	company	Photon	Storm.	Besides,	it
is	used	by	several	other	HTML5	game	developers.

Competitors

With	over	20	000	stars	on	GitHub	Phaser	is	the	biggest	HTML5	game	framework,	but	Phaser	does	have	some	notable	competitors.	For
example	PixiJS	which	is	a	lightweight	library	mostly	used	for	the	rendering	part	of	game	creation.	In	fact,	Phaser	used	to	be	based	on
PixiJS,	but	in	the	meantime	it	has	been	heavily	modified	and	incorporated	in	the	system.	Other	interesting	Phaser	competitors	can	be
found	in	this	GitHub	collection.	Some	of	them	focus	on	3D	games	whereas	Phaser's	main	focus	is	2D	games	(although	it	has	some
support	for	3D).

Power-Interest	grid

We	analyzed	the	power	and	interest	of	Phaser's	stakeholders	and	visualized	this	in	a	power-interest	grid.

The	stakeholder	with	the	most	power	and	interest	is	obviously	Richard	with	his	company	Photon	Storm.	He	earns	his	money	with
Phaser	and	developing	Phaser	games	and	he	manages	the	entire	Phaser	project.

The	Phaser	developers	also	have	significant	influence	in	the	project,	but	Richard	will	always	have	the	final	say.

Suppliers	like	WebGL	have	no	immediate	involvement	with	the	project	but	Phaser	does	depend	on	them.	Therefor	they	have	high	power
but	low	interest.	When	for	example	WebGL	decides	to	overhaul	their	API,	this	will	require	Phaser	to	rewrite	the	corresponding	code.

The	game	developers	use	Phaser	for	their	games	so	they	have	interest	in	the	project,	but	not	as	much	power.	They	can	contact	Richard
for	feature	requests	or	bug	reports.	Donators	have	slightly	more	power	and	interest	as	they	are	willing	to	pay	for	the	project	on	a
monthly	basis	and	(as	stated	on	the	Patreon	page)	they	have	a	direct	say	on	new	features.

Competitors	have	relatively	low	power,	as	Phaser	is	by	far	the	most	popular	framework.	They	do	have	high	interest	though,	as	they
want	to	compete	with	Phaser.

The	gamers,	who	play	games	created	with	Phaser	have	low	power	and	low	interest.	For	the	gamer	it	does	not	matter	as	much	which
framework	was	used	to	create	the	game,	the	actual	gameplay	is	what	matters	for	them.

Phaser

226

https://github.com/pixijs/pixi.js
https://github.com/collections/JavaScript-game-engines

Context	View

In	this	section	the	relationships	of	Phaser	with	its	environment	will	be	described,	as	per	Rozanski	and	Woods.	We	will	determine	the
system	scope	and	responsibilities,	analyze	how	it	relates	to	the	external	entities	involved,	and	what	the	interfaces	between	the	system
and	those	entities	are.

System	scope	and	responsibilities

Phaser	is	a	JavaScript	game	framework	which	game	developers	can	use	to	handle:

Graphics	rendering	using	WebGL	and	Canvas,	mainly	2D	but	also	with	preliminary	3D	support
Animation,	tweens	and	interpolation
Sound	effects	and	music
Input	from	keyboard,	mouse,	touch,	and	gamepads
Asset	loading	from	URLs
Physics	using	Arcade	physics,	Matter.js,	and	in	the	future	P2	Physics	and	Box2D

For	the	sake	of	completeness,	there	are	also	things	Phaser	does	not	do:

Implement	game	logic

Phaser

227

At	the	time	of	writing,	implement	full	3D	graphics	support
Package	itself	for	environments	other	than	browsers
Host	game	assets

External	entities

Since	Phaser	is	a	framework,	it	certainly	does	not	operate	in	a	vacuum.	Several	of	its	relations	to	the	outside	world	are	described	below:

It	is	developed	using	JavaScript	and	HTML5
It	runs	in	most	modern	browsers,	like	Firefox	and	Chrome
Games	made	with	Phaser	can	be	packaged	for	Android,	iOS	and	as	a	native	app	using	3rd	party	tools	like	cordova	and	electron.
It	uses	a	custom	rendering	engine	which	supports	both	WebGL	and	HTML5	Canvas
Webpack	is	used	as	a	build	system
GitHub	is	used	as	a	version	control	system	and	issue	tracker
Development	of	Phaser	is	financed	by	its	Patreon,	Paypal	donations,	and	its	two	main	sponsors,	OrangeGames	and	CrossInstall.
It	is	available	under	the	MIT	license
Game	developers	build	their	games	on	Phaser
Gamers	of	all	ages	play	the	games	made	with	Phaser

External	interfaces

Here	we	will	describe	the	interfaces	between	Phaser	and	its	external	entities.

Entity Data Service Event

JavaScript both both provider

HTML5	/	Canvas consumer provider x

WebGL consumer provider x

Webpack x provider x

GitHub x provider x

Games x consumer x

Some	of	this	might	require	a	little	clarification.	We	see	JavaScript	as	both	a	data	provider	and	consumer	as	it	can	be	used	for	asset	loading
and	all	other	forms	of	data	input,	as	well	as	output	(e.g.	uploading	high	scores	or	save	files	to	an	external	server.	That	would	be	up	to	the
games	made	with	Phaser	to	implement	though,	but	the	option	is	there).	We	also	see	it	as	both	a	service	provider	and	consumer	as	it	is
obviously	used	to	call	the	Phaser	api,	but	Phaser	itself	is	written	in	JavaScript.	On	top	of	that,	we	also	see	it	as	an	event	provider,	as	it
passes	input	events	from	input	devices	to	Phaser	to	handle	later.

HTML5,	or	more	precisely	the	Canvas	element,	is	seen	as	a	data	consumer,	as	Phaser	passes	information	to	it	on	what	to	draw.	It	is	also
a	service	provider,	as	it	provides	drawing	functionality	to	Phaser.	The	same	goes	for	WebGL.

Webpack	provides	a	module	bundling	service	to	Phaser,	which	is	used	to	create	a	distributable,	and	possibly	minified	build	of	Phaser	to
use	in	production.

GitHub	provides	version	control	and	tools	for	collaboration.

Games	consume	the	services	provided	by	Phaser	by	calling	its	API	to	do	all	things	games	want	to	do.

Context	diagram

An	overview	of	Phaser	and	its	relations	to	the	external	entities	mentioned	above	can	be	seen	in	the	Figure	below.

Phaser

228

https://cordova.apache.org/
https://electronjs.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://www.w3schools.com/html/html5_canvas.asp
https://webpack.js.org/
https://www.patreon.com/photonstorm
https://phaser.io/community/donate
http://orangegames.com/
https://crossinstall.com/
https://opensource.org/licenses/MIT
https://phaser.io/games

Development	View

Since	software	development	environments	often	require	special	dependencies	or	configurations,	this	section	covers	important	details	of
the	Phaser	development	environment.	The	organization	and	structure	of	the	code	and	architecture	will	be	discussed,	as	well	as	the	testing
facilities.

Module	Organization

The	Phaser	project	consists	of	28	different	packages	and	some	configuration	files.	The	most	important	package	is	the		boot		package
which	initializes	the	game.	When	inspecting	the	project,	we	saw	that	all	these	packages	can	be	grouped	as	modules.	An	overview	of	the
modules	present	in	this	project	is	shown	in	the	Module	Structure	Model	below.

Phaser

229

At	the	first	layer	of	the	Phaser	project	we	saw	that	there	was	an	initialization	module.	This	module	contains	the		boot		and		scene	
packages.	The	main	package		boot		is	responsible	for	setting	up	the	game	including	external	resources.	The		boot		package	also	sets	up
the	scene	manager	which	is	located	in	the		scene		package.	This	package	is	responsible	for	handling	everything	that	is	related	to	the
visual	aspects	of	the	application.

Secondly,	we	have	the	graphics	layer	which	is	launched	by	the		scene		package.	This	layer	is	responsible	for	visualizing	the	graphical
content	in	Phaser.	The	main	package	here	is	the		renderer		package,	the	renderer	is	responsible	for	managing	all	visible	objects	on	screen.
More	on	the	renderer	is	explained	in	next	section.

The	third	and	final	layer	contains	five	modules,	they	are	mostly	helper	functions	for	the	rest	of	the	framework.	The		GameObject	
module	and		geometric	objects		module	handle	all	the	different	kind	of	objects	to	be	represented	in	the	game.	For	instance,	images	and
text	objects	are	GameObjects	here,	these	objects	can	be	adjusted	with	the	help	of	the		physics		and		actions		package.	The	data	module
is	responsible	for	handling	all	the	incoming	data	used	with	Phaser.	Furthermore,	the	external	device	module	is	responsible	for	managing
and	connecting	all	external	inputs	(software	and	hardware	wise).	Finally,	there	are	the	helper	packages	which	contain	the	basic	functions
needed	in	this	framework.	The	most	important	one	here	is	the		math		package	as	maths	are	used	a	lot	in	the	interaction	(rotation,
translation	etc.)	with	graphical	objects.

Common	Processing

Phaser

230

Because	our	framework	supports	multiple	platforms	there	are	some	interfaces	in	the	software	which	open	up	the	possibilities	for	using
different	implementation.	The	biggest	example	for	that	is	the	Renderer.	The	framework	has	a		Canvas		and		WebGL		Renderer	which	can
be	used	interchangeably	so	when	a	device/browser	does	not	support		WebGL		the	framework	automatically	falls	back	to	the		Canvas	
Renderer.	So	this	is	not	really	a	Common	Design	Model,	but	more	a	Common	Behaviour	Model	just	doing	Common	Processing.	This	is
useful	when	you	want	your	game	to	be	compatible	with	for	example	older	versions	of	Internet	Explorer	or	native	Android	browsers,	as
some	of	them	do	not	support	WebGL:

Source,	red	boxes	indicate	browser	versions	that	do	not	support	WebGL

You	can	specify	which	renderer	you	want	to	use	with	the		type		attribute	in	your	game	config.	The	options	are:

	type:	Phaser.AUTO	,	this	will	automatically	detect	which	renderer	is	supported	and	choose	the	best	option
	type:	Phaser.WEBGL	,	for	WebGL	rendering
	type:	Phaser.CANVAS	,	for	Canvas	rendering
	type:	Phaser.HEADLESS	,	for	no	rendering	at	all

The	big	advantage	of	this	design	is	that	the	implementation	is	the	same	for	each	renderer,	which	means	you	only	have	to	write	the	code
once	to	support	multiple	renderers/browsers.

Standardization	of	Design

The		GameObjects		module	contains	a	lot	of	different	classes	(e.g.		container	,		group	,		images	,		mesh	,		particle	emitter	,		sprites	,
	text	,		tilemap).	Each	of	these	classes	behave	similarly,	so	for	example	the	action		translate(x,y)		can	be	called	on	any	of	those
objects	in	order	to	translate	them.	This	is	standardized	by	having	all	individual	GameObjects	extend	the		GameObject		class.

Using	this	standardization,	all	of	these	GameObjects	can	then	be	created	in	a	Scene	and	be	manipulated	in	the	same	way.	Any	additional
functionality	can	be	implemented	in	each	individual		GameObject	.	This	makes	the	system	more	maintainable	and	easier	to	extend.
Whenever	a	new		GameObject		needs	to	be	added,	simply	create	a	class	which	extends		GameObject		and	implement	the	additional
functionality.

Instrumentation

The	framework	has	an		DebugHeader		to	provide	useful	feedback	to	the	developer	by	means	of	console	logs	and	statistics.

Codeline	Organization

The	codeline	organization	of	a	system	is	all	about	the	structure	of	the	code	base	itself	and	how	the	project	is	managed	in	terms	of
releases.	The	code	base	structure	of	the	project	is	not	very	special,	besides	the	regular	git	folders	and	required	configuration	files.	There
is	one		src		folder	containing	the	packages	as	already	showed	in	the	model	structure	model.

Phaser

231

https://caniuse.com/#feat=webgl

As	mentioned,	since	recently	the	project	has	a	working	CI	environment.	Every	commit	is	built	by	Travis	to	reduce	the	risk	of	releasing
failing	code.	Dependencies	are	managed	using	the	package	manager	from	Node.js	(npm).	The	code	itself	is	then	built	using		webpack	,
which	bundles	the	source	code	in	a	single	JavaScript	file	which	can	be	used	in	the	browser.

All	releases	of	Phaser	are	managed	on	GitHub.	Whenever	a	new	release	is	ready,	Richard	will	tag	a	commit	with	the	version	and	update
the	changelogs.	These	changelogs	contain	detailed	information	on	what	has	been	changed	and	by	who	this	has	been	changed.	The	time
between	these	releases	is	about	5	days	on	average

Technical	Debt

In	this	section	we	investigated	the	technical	debt	of	the	Phaser	repository.	Technical	debt	is	all	about	how	much	it	would	cost	extra	in
the	future	if	you	have	to	redevelop	a	solution	which	was	chosen	now,	instead	of	applying	a	better	solution	now	that	would	take	more
time.	So	technical	debt	concerns	the	code	quality	of	a	software	project	and	if	this	code	was	tested	properly.	To	analyze	the	technical
debt,	we	use	code	quality	tools	like	SonarQube	to	get	an	overview	of	the	source	code	quality	to	detect	pieces	of	software	that	could	be
improved.

Code	quality	tools	analysis	results

We	chose	to	use	two	different	online	code	quality	tools:	SonarQube	(we	used	SonarCloud	as	online	platform	for	it)	and	DeepScan.	They
both	gave	roughly	the	same	output,	the	results	of	both	scans	are	discussed	in	the	following	sections.

Scan	results

SonarQube	works	with	4	categories	to	measure	the	code	quality.	The	first	category	scans	the	project	for	bugs	and	vulnerabilities,	where
bugs	are	related	to	the	reliability	and	the	vulnerabilities	are	related	to	the	security	of	the	system.	The	initial	scan	resulted	in	the	following
amount	of	bugs/vulnerabilities:	

The	bug	scans	looks	for	parts	of	code	that	could	fail,	for	example	possible	null	references	or	syntax	errors.	It	identified	some	typo's,
some	cases	where	a	variable	could	be	null	or	undefined	when	it	is	used.	About	19	of	the	35	bugs	are	related	to	the	potential	unintended
use	of	bitwise	operator		&		instead	of	conditional		&&	.	This	bitwise	operator	appears	in	a	if-condition	usually	in	combination	with	a
mask	of	some	sort	resulting	in	a	number.	This	number	is	then	implicitly	compared	by	JavaScript	to	see	if	it	is	zero	(false)	or	something
else	(true).	For	readability	it	might	be	good	to	change	this	to	an	explicit	comparison	like		(a&b)	!=	0	,	but	this	depends	on	the	type	of
developer	and	their	experience	with	masks.

Furthermore,	the	three	vulnerabilities	it	found	were	all	of	the	same	kind,	namely:		Review	this	"Function"	call	and	make	sure	its
arguments	are	properly	validated.	.	We	were	unfamiliar	with	this	vulnerability,	but	fortunately	SonarQube	provides	an	explanation	for
each	scan	result	which	in	this	case	was:

In	addition	to	being	obtuse	from	a	syntax	perspective,	function	constructors	are	also	dangerous:	their	execution	evaluates	the
constructor's	string	arguments	similar	to	the	way		eval		works,	which	could	expose	your	program	to	random,	unintended	code
which	can	be	both	slow	and	a	security	risk.

In	general	it	is	better	to	avoid	it	altogether,	particularly	when	used	to	parse	JSON	data.	You	should	use	ECMAScript	5's	built-in
JSON	functions	or	a	dedicated	library.

So	as	these	function	constructors	work	similarly	to		eval	,	a	string	input	can	be	evaluated	to	JavaScript	code.	One	of	the	those	Function
constructors	in	Phaser's	code	is:

	new	Function('a',	'return	{minX:	a'	+	format[0]	+	',	minY:	a'	+	format[1]	+	',	maxX:	a'	+	format[2]	+	',	maxY:	a'	+	format[3]	+

Phaser

232

	new	Function('a',	'return	{minX:	a'	+	format[0]	+	',	minY:	a'	+	format[1]	+	',	maxX:	a'	+	format[2]	+	',	maxY:	a'	+	format[3]	+

'};');	

So	whenever	a	user	is	able	to	manipulate	the	contents	of	the	format	array	(for	example	through	input	in	the	game),	he	will	be	able	to
execute	arbitary	code.	It	is	unlikely	that	this	will	be	a	security	risk,	but	it	might	crash	the	game	or	be	exploited	to	cheat	the	game.
Therefor	it	is	better	to	avoid	them	altogether.

SonarQube	estimates	that	the	time	required	to	fix	the	bugs	is	around	4	hours	and	the	time	to	fix	the	vulnerabilities	is	about	15	minutes.
SonarQube	also	analyzes	the	technical	debt	and	code	smells:

This	is	a	very	positive	result,	a	technical	debt	of	only	two	days.	The	code	smells	include	redundant	and	unused	code,	confusing	code	and
more.	By	quickly	analyzing	these	code	smells	it	becomes	clear	that	most	of	these	are	related	to	useless	assignments	or	unused	variables,
so	fixing	these	code	smells	will	not	cost	much	effort.	The	most	of	the	other	code	smells	were	related	to	boolean	expressions	which
always	seem	to	evaluate	to	true.

Fixing	these	code	smells	will	improve	the	maintainability	of	the	system,	as	it	will	make	the	code	more	readable	and	clear	it	from
redundancies.	In	general	the	code	smells	are	not	bugs,	the	code	still	functions	with	the	smells	in	it.	However,	they	increase	the	risk	of
introducing	bugs	in	the	future	which	is	why	it	is	recommended	to	keep	the	code	free	of	smells.	For	example,	a	piece	of	unused	code
could	be	triggered	after	a	refactor	which	might	cause	all	sorts	of	issues.

Another	aspect	SonarQube	looks	at	is	test	coverage:

This	is	where	the	project	really	lacks	behind;	it	simply	does	not	have	any	tests.	More	on	this	can	be	found	in	the	Testing	debt	section.

The	final	aspect	SonarQube	check	is	code	duplication:

Obviously	code	duplication	is	generally	bad	practice	as	it	makes	the	system	more	difficult	to	maintain.	Fortunately	Phaser	has	very	low
code	duplication.	In	fact,	the	two	files	with	the	most	duplication	are	debug	classes,	which	are	not	part	of	the	actual	system.

The	other	tool	we	used	was	DeepScan,	a	code	analysis	tool	specifically	for	JavaScript.

DeepScan	was	able	to	find	a	total	of	48	issues:

Phaser

233

Based	on	the	amount	of	issues,	DeepScan	provides	a	code	quality	grade,	which	turned	out	to	be	"Good"	:	

The	grading	is	explained	in	DeepScan's	official	documentation.

Testing	debt

The	project	does	not	contain	any	automated	tests,	apart	from	Travis	CI	which	was	enabled	again	recently.	This	just	checks	if		webpack	
and		ESLint		do	not	return	any	errors.	And	it	has	to	be	noted	that		webpack		just	checks	for	JavaScript	syntax	errors,	so	it	is	still
possible	for	errors	like	typos	to	pass	the	CI.	The	extensive	example	repository	can	be	used	to	manually	check	each	part	of	the	system
using	small	pieces	of	example	code.

It	could	be	argued	that	it	is	hard	to	test	a	gaming	framework,	which	is	partly	true.	For	example,	how	would	you	test	that	for	example	a
certain	shape	is	drawn	on	the	screen	as	expected?	This	however,	is	not	an	excuse	to	not	have	any	tests	at	all.	Unit	tests	could	be	used	to
test	the	logic	of	the	code.	The	project	would	benefit	from	this,	as	it	could	assure	that	for	example	the	wide	variety	of	calculations	done
by	the	framework	are	correct.

A	good	example	of	a	bug,	which	could	have	been	spotted	earlier	with	these	tests,	is	a	matrix	rotation	function	which	rotated	the	matrix	in
the	opposite	direction	of	what	it	was	supposed	to,	see	this	commit.	Tomas	discovered	this	and	informed	Richard	about	it.	Richard	then
fixed	it	and	thanked	Tomas	for	the	find.

When	investigating	ways	to	test	a	JavaScript	game	engine	we	stumbled	upon	the	Crafty	game	library.	This	project	is	tested	with	a
JavaScript	unit	testing	framework	called	QUnit,	which	could	be	a	useful	addition	to	the	Phaser	project.

As	Phaser	makes	use	of	a	lot	of	helper	functions,	there	is	a	need	to	start	testing	these	functions	first.	For	instance,	the	Math	package
contains	helper	classes	for	performing	mathematical	operations	and	the	Utils	package	contains	additional	functionalities	for	the	objects
String,	Array	and	Object.	Furthermore,	it	would	also	be	beneficial	to	test	the	data	loading,	as	the	graphics	used	in	Phaser	projects	could
consist	of	external	files	like	images	or	gifs.	Another	part	which	could	use	some	testing	is	the	GameObjects	module	as	this	contains	a	lot
of	configurations	options,	as	well	as	a	wide	variety	of	actions	that	can	be	performed	on	these	objects.

Phaser

234

https://deepscan.io/docs/get-started/grades/
https://github.com/photonstorm/phaser3-examples
https://github.com/photonstorm/phaser/commit/46e9dbd05a4ea474f4f452a29a6e0debdb223261
https://github.com/craftyjs/Crafty
https://qunitjs.com/

The	extensive	collection	of	examples	for	the	project	serves	both	documentation	and	testing	purposes	of	course.	However,	setting	up	a
real	testing	framework	to	also	test	the	rendering	could	improve	the	quality	and	reliability	of	Phaser	as	a	framework.

The	lack	of	testing	was	also	mentioned	in	a	recently	created	issue	by	one	of	the	contributors(#3361).	Here	it	is	being	stated	that	the
phaser3-examples	should	and	could	be	used	for	regression	testing,	but	that	the	actual	implementation	of	this	is	still	to	be	reviewed	and
discussed.	We	contacted	Richard	on	Slack	to	ask	him	about	his	thoughts	on	testing,	to	which	he	answered:

I	guess	tests	could	be	made	for	the	non-visual	parts	of	the	API,	although	to	be	honest	those	are	usually	the	ones	that	break	the
least.

A	nice	way	to	test	the	visual	part	is	to	take	screenshots	of	the	examples	and	compare	them	with	a	reference	screenshot.	All	the	non-
deterministic	things	like	random	numbers	will	pose	a	problem	here	though.	So	to	really	hit	this	off,	a	deterministic	version	should	be
created.	And	since	most	of	the	Phaser	2	examples	are	not	working	with	Phaser	3	now,	it	would	have	been	wise	to	start	with	this	during
Phaser	2	already	so	it	would	be	easy	to	see	the	status	of	the	switch	to	Phaser	3.	This	wish	of	having	these	features	implemented	in	the
past	is	of	a	textbook	example	of	technical	debt!

Debt	evolution

As	we	have	seen	with	the	help	of	SonarQube,	there	were	a	lot	of	code	smells	related	to	useless	assignments	or	unused	variables.	When
looking	at	this	kind	of	code	smell	it	becomes	clear	that	almost	all	of	them	were	introduced	in	the	last	six	months.	This	is	probably	related
to	the	fact	that	the	last	two	years	were	all	about	going	from	Phaser	2	to	Phaser	3.	When	we	analyzed	the	technical	debt	of	an	earlier
version	of	Phaser	2,	we	saw	that	this	version	had	a	technical	debt	of	23	days.	Most	of	these	code	smells	were	related	to	empty
statements	and	the	reuse	of	variable	names	in	the	same	class.	Anyhow,	these	code	smells	were	not	similar	to	those	of	the	current
technical	debt.	This	is	due	to	the	fact	that	Phaser	had	been	refactored	before	Phaser	3	was	released	and	by	doing	this	they	introduced
new	code	smells.	As	a	lot	of	these	code	smells	were	about	unused	assignments,	it	is	possible	that	these	variables	were	actually	used	in
the	Phaser	2	code.

Technical	debt	discussion

At	the	time	of	writing	Phaser's	code	contains	24	TODO's	and	no	FIXME's.	The	TODO's	can	be	considered	as	a	means	to	communicate
technical	debt.	Debt	is	also	discussed	by	developers	on	the	Phaser	forum	and	in	GitHub	issues.	Developers	create	an	issue	when	they
find	a	bug,	or	ask	questions	about	the	system.	For	example	as	mentioned	earlier,	a	user	was	wondering	why	the	project	is	lacking
automated	test	and	opened	an	issue	about	it.	So	some	of	the	people	do	find	it	important,	but	before	any	progress	is	made	on	this	topic
the	owner	of	Phaser	still	has	to	decide	what	to	do	with	it.

Functional	View

In	this	chapter	we	will	look	at	Phaser	from	a	functional	point	of	view.	We	will	define	what	the	system	is	required	to	do	and	what
modules	are	used	to	achieve	this.	We	will	also	look	at	the	external	interfaces	Phaser	exposes	and	how	these	can	be	used.

Capabilities

What	follows	is	a	non-exhaustive	list	of	Phasers	top	level	modules	and	what	functionality	they	provide.	These	were	considered	the	most
relevant	to	users	of	Phaser.

Phaser

235

https://github.com/photonstorm/phaser/issues/3361
https://github.com/photonstorm/phaser/issues/3361

Module Functionality

Phaser.Actions Apply	actions	to	game	objects

Phaser.Animation Provide	animation	functionality	to	game	objects	that	support	it

Phaser.Cameras 2D	and	pseudo	3D	camera	functionality

Phaser.Curves Math	functions	related	to	curves	and	paths	(Cubic/Quadratic	Bezier,	Spline	etc.)

Phaser.Game Phasers	main	module	responsible	for	setting	up	all	subsystems	and	running	the	game	loop

Phaser.GameObjects Provides	builders	for	all	game	objects

Phaser.Geom Functions	related	to	geometric	primitives

Phaser.Input Keyboard,	mouse,	gamepad	and	touch	input

Phaser.Loader Asset	Loading

Phaser.Math Math	utilities	and	functions

Phaser.Physics Arcade,	Impact	and	Matter.js	physics

Phaser.Renderer Canvas	and	WebGL	renderers

Phaser.Scene Game	"world"	containers,	can	be	seen	as	states

Phaser.Scenes Scene	manager,	plugins,	settings	and	systems

Phaser.Sound Sound	management	and	playback,	HTML5	and	webaudio	support

Phaser.Textures Texture	frames,	sources	and	management

Phaser.Tilemaps Creation	of	static	and	dynamic	tilemaps

Phaser.Time Time	related	functions	and	events

Phaser.Tweens Tween	building	and	management

Phaser.Utils Array,	Object	and	String	utility	functions

External	interfaces

All	modules	mentioned	above	are	exported	as	external	interfaces	and	can	be	accessed	in	any	project	which	uses	Phaser.	However,	in	a
typical	game	they	might	not	all	be	interacted	with	directly.	Since	Phaser	gives	you	a	lot	of	freedom	in	the	way	you	implement	your
game,	we	will	go	over	a	greatly	simplified	example	representing	a	typical	use	case.

To	initialize	the	game,	Phaser.Game	is	called	with	a	config	file	to	set	up	the	managers	and	the	game	loop
In	this	config	a	scene	is	defined,	which	has	preload,	create,	and	update	functions
Preload	runs,	loading	in	assets	from	URLs
Create	runs,	which	sets	up	contents	of	the	scene	and	creates	game	objects
Then,	every	game	loop	update	is	called	as	long	as	the	scene	is	active
Update	handles	input,	updates	game	objects,	handles	game	logic,	and	more.

So,	the	way	most	users	will	interact	with	Phaser	is	through	defining	scenes,	in	which	most	functionality	is	handled	by	Phasers
underlying	systems.	Of	course	users	still	need	to	implement	their	game	logic	themselves.	It	is	possible	to	have	multiple	scenes,	even
running	in	parallel.	For	example,	this	allows	you	to	keep	logic	for	an	inventory	management	screen	and	the	actual	game	separated.

Internal	structure

The	internal	elements	which	make	up	Phaser	largely	correspond	to	the	modules	above.	To	make	more	clear	how	they	relate	to	one
another,	please	see	the	diagram	below.

Phaser

236

Every	iteration	of	the	game	loop,	the	following	happens	under	the	hood:

the	scene	manager	is	told	to	update	all	the	scenes	it	contains
the	scene	manager	is	passed	the	games	renderer	and	told	to	render	all	scenes

Conceptually	this	is	pretty	simple,	but	code	wise	it	is	pretty	hard	to	follow.	Especially	since	the	documentation	of	Phaser	3	is	still
pretty	incomplete.

Evolution	of	Phaser

In	this	section	the	Evolution	of	Phaser	of	the	past	years	will	be	discussed.

Since	the	start	of	the	Phaser	framework	in	2013	a	lot	has	changed	of	course.	The	performance	of	both	mobile	and	desktop	platforms
have	improved	even	further	and	that	a	lot	of	new	possibilities	were	created	by	different	frameworks.	These	frameworks	allowed	the
growth	of	Phaser.	WebGL	is	a	good	example	of	this,	because	WebGL	provides	a	standard	rendering	API	which	works	across	most
browsers	these	days.	PixiJS	is	a	graphics	library	build	on	top	of	WebGL	which	allows	for	easy	rendering	of	certain	objects.	Another	nice
feature	about	PixiJS,	is	that	it	automatically	falls	back	to	HTML5	Canvas	rendering	if	WebGL	is	not	available.

However	because	Phaser	was	extended	more	and	more,	there	was	a	need	for	more	freedom	and	options	during	Phaser	2.	This	is	the
reason	why	PixiJS	was	incorporated	in	the	Phaser	project	itself	when	the	switch	to	Phaser	3	was	made.	So	the	whole	idea	of	PixiJS	is
now	fully	embedded	within	Phaser	itself.	Since	both	projects	make	use	of	the	MIT	License,	it	also	allowed	the	Phaser	3	developers	to
directly	copy	the	PixiJS	code	into	the	Phaser	codebase.

Since	the	changes	made	since	Phaser	2	are	so	drastic,	most	of	the	documentation	that	was	created	for	the	Phaser	2	API	is	not	valid
anymore.	Just	as	with	many	other	projects,	documentation	here	is	always	lagging	the	deployed	codebase.	There	is	a	separate	Phaser	3
Documentation	repository,	but	it	is	not	yet	hosted	on	the	Phaser	website	since	it	is	not	yet	complete	according	to	the	Richard.	Since	all

Phaser

237

https://github.com/photonstorm/phaser3-docs

documentation	is	automatically	anyway,	it	would	have	been	nice	to	just	publish	it	anyway	and	refresh	it	every	release	because	this
might	trigger	other	developers	or	users	into	updating	the	documentation	when	they	need	to.

Conclusions

In	this	chapter	we	analyzed	the	Phaser	HTML5	game	framework.	We	can	conclude	that	this	is	a	well-functioning	and	thought-out
project.

The	first	section	describes	the	stakeholders	involved	in	this	project.	The	creator	of	the	project,	Richard	Davey,	is	by	far	the	most
important	stakeholder.	He	manages	the	entire	project	on	his	own.	We	did	identify	several	other	stakeholders,	like	donators	and	the	game
developers/users.	Furthermore	we	analyzed	the	power	and	interest	of	those	stakeholders,	where	we	concluded	that	Richard	(with	his
company	Photon	Storm)	has	the	most	power	and	most	interest.	We	also	looked	at	issues	and	pull	requests	to	determine	the	influence	of
stakeholders	and	analyze	the	integrators.

In	the	context	view	section	we	analyzed	the	dependencies	of	the	project	and	visualized	this	in	a	context	diagram.	Here	it	became	clear
that	depends	on	a	wide	variety	of	external	entities,	like	browsers	and	suppliers.

Phaser	uses	common	processing	(for	example	the	renderer)	and	standardization	(for	example	the		GameObjects)	in	the	design	of	the
project.	In	the	Development	view	section	we	looked	into	the	structure	of	Phaser's	codebase.	We	also	concluded	that	there	was	no
automated	testing,	apart	from	the	linting	in	Travis	CI	and	the	provided	examples	which	can	be	run	manually.

The	technical	debt	turned	out	to	be	very	low,	only	two	days.	We	ran	automated	code	quality	analysis	tools	(SonarQube	and	DeepScan)
to	conclude	this.	Most	issues	were	minor	so	they	are	relatively	easy	to	fix.	However,	as	there	are	no	test,	the	testing	debt	was	very	high.

Phaser	keeps	evolving	with	releases	almost	every	week,	with	a	a	major	release	only	recently,	Phaser	3.	We	managed	to	make	some
contributions	which	helped	progress	the	project.	All	in	all,	Phaser	is	a	really	interesting	project	which	is	professionally	managed,	albeit
by	a	single	person.	We	enjoyed	working	on	the	project	and	will	follow	the	progress	it	will	make	over	time.

References

1.	 http://phaser.io/
2.	 Rozanski,	N.	Woods,	E.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-

Wesley,	2012.

Phaser

238

http://phaser.io/

Abstract
React	is	a	JavaScript	library	that	provides	a	declarative,	component-based	framework	for	developing	interactive	user	interfaces	that
update	in	real-time	without	requiring	page	refreshes.	We	analyze	the	React	project	from	several	angles.	First,	we	provide	an	overview	of
the	stakeholders	involved	and	their	relative	power	and	interest.	Next,	in	the	context	view,	we	look	at	all	the	external	tools	and	platform
that	React	makes	use	of	for	development,	testing,	deployment,	and	so	forth.	We	then	move	on	to	the	development	view,	where	we
describe	React's	internal	structure	as	well	as	some	of	its	standardized	development	practices.	Finally,	we	analyze	in	detail	the	technical
status	of	React:	We	identify	its	technical	debt,	including	how	it	evolved	and	which	associated	discussions	took	place.

Table	of	Contents
Introduction
Stakeholder	Analysis
Context	View
Development	View
Technical	Debt
Conclusion

1.	Introduction
The	React	framework,	sometimes	referred	to	as	ReactJS	or	ReactFB,	provides	a	declarative,	component-based	framework	for	the
development	of	interactive	and	real-time	user	interfaces.	Whereas	web	applications	commonly	require	refreshing	to	view	updated
information,	React	allows	for	the	manipulation	of	a	virtual	domain	object	model	that	interacts	with	the	real	domain	object	model	of	the
browser,	allowing	for	components	which	directly	update	when	data	is	changed.	As	a	result,	React	provides	a	web	application	user
interface	which	changes	in	real	time,	causing	greater	interaction	between	the	user	and	the	application.

React

239

To	assist	developers	and	in	an	attempt	to	contribute	to	the	project,	this	chapter	focuses	on	the	architectural	aspects	of	React.	These
include	a	stakeholder	analysis,	a	development	viewpoint	of	the	project,	contextual	analysis,	and	other	information.	Together	this
information	provides	an	insight	into	the	React	project,	possibly	leading	to	a	clearer	overview	of	the	project	for	new	developers	or	to
identify	areas	in	which	improvement	is	possible	to	ensure	a	greater	degree	of	maintainability	in	the	future.

2.	Stakeholders
The	stakeholders	section	aims	to	provide	an	overview	of	the	various	types	of	stakeholders	of	the	React	project,	alongside	analysis	of
their	power	and	interest	positions	and	their	roles,	as	defined	in	Rozanski	and	Woods’	‘Software	System	Architecture:	Second	Edition	[1].’
Furthermore,	a	power-interest	diagram	is	provided	to	indicate	relative	stakeholder	influence	regarding	their	control	over	the	React	project
and	their	level	of	interest.

2.1	Stakeholders	by	Category

2.1.1	Acquirer

Within	the	context	of	React,	the	acquirers	consist	of	Facebook,	Inc.,	and	all	its	subsidiary	companies,	including	Instagram	and	Atlas	[2].
Although	development	is	open	to	(and	relies	on)	open	source	developers,	all	contributors	must	agree	to	the	Facebook	contributor	license
agreement	(CLA)	[3].	Thus,	Facebook	continues	to	authorize	the	development	and	control	of	the	project.

2.1.2	Assessor

The	main	assessor	of	React	is	Facebook.	Although	the	project	is	maintained	and	assessed	by	Facebook,	it	heavily	relies	on	the	open
source	community	for	continued	development.	To	facilitate	this,	React	has	been	made	open	source	and	allows	for	implementation	of	the
project	as	a	dependency	solely	through	the	utilization	of	the	MIT	license	agreement	[4],	which	allows	both	private	and	commercial
utilization	of	the	React	software,	including	modification	and	distribution,	but	waives	liability	and	warranty	requirements	away	from
Facebook,	thus	ensuring	the	company	cannot	be	legally	held	accountable	for	damages	due	to	React	software.

To	further	ensure	compliance	with	legal	requirements,	all	dependencies	upon	which	React	depends	must	also	feature	similar	license	terms
to	ensure	waived	liabilities	and	allow	for	distribution	of	the	dependency	within	another	project	or	package.	Major	dependencies	within
the	React	repository	include	‘Babel’,	a	JavaScript	compiler;	‘ESlint’,	a	linting	utility	for	JavaScript;	and	Rollup,	a	module	bundler	for
JavaScript.	A	complete	list	of	dependencies	can	be	found	in	the	project	itself	[5].

2.1.3	Communicator

Based	on	the	repository	activity,	the	communicators	dealing	with	pull	request	discussions	and	oversight	are:

Dan	Abramov	(@gaearon	[7])

Brandon	Dail	(@aweary	[8])

Brian	Vaughn	(@bvaughn	[9])

These	three	communicators	account	for	a	majority	of	the	active	discussion	and	reviewing	of	pull	requests	and	the	technical
communication	of	the	React	architecture.

2.1.4	Competitor

Stakeholders	which	are	competitors	include:

VueJS	[14]
Angular	[15]
Elm	[16]
CycleJS	[17]
Preact	[43]

React

240

https://newsroom.fb.com/company-info/
https://github.com/facebook/react/blob/master/LICENSE
https://github.com/facebook/react/blob/master/package.json
https://github.com/gaearon
https://github.com/aweary
https://github.com/bvaughn
https://vuejs.org
https://angular.io/
https://elm-lang.org
https://cycle.js.org
https://preactjs.com/

2.1.5	Developer

When	analyzing	the	repository	in	the	current	state,	there	are	a	total	of	1,157	minor	developers,	and	the	following	ten	major	developers
based	on	their	contributions,	commits,	and	features	added:

Sophie	Alpert	(@sophiebits	[19])

Paul	O’Shannessy	(@zpao	[20])

Dan	Abramov	(@gaearon	[7])

Sebastian	Markbage	(@sebmarkbage	[21])

Andrew	Clark	(@acdlite	[22])

Pete	Hunt	(@petehunt	[23])

Brian	Vaughn	(@bvaughn	[9])

Cheng	Lou	(@chenglou	[24])

Christopher	Chedeau	[25])

"Jim,"	(@jimfb	[26])

These	are	the	main	developer	stakeholders.	Developers	that	are	bolded	are	moreover	organizational	developers.	Developers	also	hold
roles	related	to	providing	support	to	end	users,	maintaining	testing	and	engineering	requirements,	and	acting	as	testers	and	verifiers	for
implemented	behavior	and	changes.	The	developer	is	the	stakeholder	that,	although	not	necessarily	having	the	most	power	within	the
organization	structure,	performs	the	most	versatile	set	of	tasks.	All	developers	must	sign	the	Facebook	Contributor	License	Agreement
(CLA)	and	agree	to	the	terms	set	out	in	the	contribution	guide	for	React	[18].

2.1.6	Maintainer

A	maintainer	is	a	stakeholder	that	ensures	documentation	and	knowledge	is	preserved	over	time.	The	responsible	stakeholders	for	this
task	is	the	core	React	team	and	all	its	associated	engineers,	since	they	maintain	the	official	React	site	and	documentation.	This	core	team
published	a	subset	of	their	meeting	notes	within	a	separate	repository	(React-Notes)	for	documentation	purposes	[42].

2.1.7	Supplier

The	React	team	makes	use	of	Github	to	host	the	project	and	coordinate	with	other	developers,	and	the	project	package	is	hosted	on	and
distributed	via	npm's	package	registry,	npm-registry.

2.1.8	Tester

A	tester	is	a	stakeholder	that	ensures	that	React	works	correctly	by	performing	a	combination	of	unit	tests,	smoke	tests,	and	other
procedures	both	automated	and	manual	which	verify	correct	behavior.	The	role	of	testing	is	performed	in	two	segments.	Manual	testing
is	done	to	verify	behavior,	which	is	the	responsibility	of	all	developer	stakeholders	and	contributors	who	developed	within	the	React
repository.

The	second	type	of	testing	stakeholder	are	the	automated	testing	tools.	The	official	React	repository	relies	on	CircleCI	[27]	and
Coveralls	[28],	who	thus	become	two	testing	stakeholders.	These	stakeholders	ensure	that	the	automated	tests,	of	which	the	repository
boasts	90%	coverage,	pass	and	the	desired	functionality	is	maintained	throughout	development.

2.1.9	User

Some	high-profile	users,	which	consist	of	websites	that	utilize	the	React	Library	and	are	known	to	have	significant	traffic	or	awareness
in	both	technical	and	non-technical	communities,	include:

Netflix	[29]

Yahoo!	[30]

React

241

https://github.com/sophiebits
https://github.com/zpao
https://github.com/gaearon
https://github.com/sebmarkbag
https://github.com/acdlite
https://github.com/petehunt
https://github.com/bvaughn
https://github.com/chenglou
https://github.com/vjeux
https://github.com/jimfb
https://reactjs.org/docs/how-to-contribute.html
https://circleci.com/gh/facebook/react
https://coveralls.io/github/facebook/react

Airbnb	[31]

Discord	[32]

React	Native	[33]

Regarding	these	users,	it	should	be	mentioned	that	React	Native	is	an	implementation	that	allows	native	mobile	applications	to	be
developed.	This	means,	in	a	simplified	manner,	that	React	is	utilized	to	build	components	which	are	then	compiled	natively	as	opposed
to	being	active	on	a	server.	Facebook’s	subsidiaries,	such	as	Instagram	and	Oculus	VR,	are	also	excluded	from	this	category,	as	they	fall
under	the	greater	umbrella	of	React’s	main	developer	---	namely,	Facebook.	These	stakeholders	have	a	greater	stake	within	the	project
than	mere	utilization	of	React,	and	due	to	this	they	are	excluded	from	the	user	stakeholder	role	within	this	analysis.

2.2	Stakeholder	Influence

To	measure	stakeholder	influence	and	to	dictate	the	level	of	communication	a	stakeholder	must	receive	regarding	React,	a	power-interest
matrix	was	constructed.	This	matrix	indicates	stakeholders	of	increasing	interest	on	the	x-axis,	and	stakeholders	of	increasing	power
upon	the	y-axis.	A	stakeholder	that	is	high	power	and	low	interest	must	be	kept	satisfied	and	informed	only	when	necessary,	whereas	a
stakeholder	with	low	power	but	high	interest	should	be	informed	and	kept	up	to	date,	but	not	necessarily	catered	to.	Stakeholders	with
both	significant	interest	and	power	must	be	maintained	closely,	as	they	steer	the	project.	The	overview	in	figure	2.1	contains	the	most
active	contributors	and	most	influential	organizations.

	Figure	2.1:	a	diagram	showing	stakeholder
power	versus	stakeholder	interest.

3.	Context	View
The	context	viewpoint	describes	the	relationships,	dependencies,	and	interactions	between	the	system	and	its	environment.	This	section
identifies	and	discusses	concerns	regarding	the	system	scope	and	responsibilities,	external	entities	and	services,	and	data	used.	As	an
illustration	of	the	coherence	of	the	entities	a	context	diagram	is	also	provided.	The	context	view	also	includes	other	systems,
organizations,	or	people	that	are	involved	with,	or	interact	with,	React	in	some	manner.

React

242

3.1	System	Scope

The	system	scope	defines	the	main	responsibilities	that	React	provides,	which	consists	of	providing	a	JavaScript	library	for	the
development	and	utilization	of	user	interfaces	(UIs).	This	responsibility	can	be	divided	into	the	following	sub-responsibilities:

Allows	users	to	render	input	data	and	output	the	data	to	the	screen.
Allows	users	to	build	encapsulated	components	that	can	manage	their	own	state.
Provides	users	with	the	flexibility	to	interface	with	other	libraries	and	frameworks.

3.2	Context	Model
The	context	model,	as	shown	in	figure	3.1,	depicts	the	many	associated	external	dependencies	related	to	React.	They	have	been	grouped
where	possible	and	the	arrows	represent	what	kind	of	relationship	the	entity	has	with	React.	A	quick	summation	is	made	whereafter	the
external	entities	will	be	described	in	more	detail.

Figure	3.1:	an	overview	of	the	external	dependencies	related	to	React.

The	center	of	the	diagram	shows	React	itself	surrounded	by	the	many	different	external	entities.	The	left	side	shows	the	grouped	testing
tools	and	they	are	further	divided	into	two	main	testing	setups:	a	static	and	dynamic	testing	setup.	Next	to	the	testing	section	on	the	left
bottom	the	community	is	located	which	is	a	large	group	including	seven	entities.	The	right	of	the	community	shows	the	parties	that
integrate	with	React:	the	most	important	and	popular	entities	have	been	picked	and	grouped	here.	Moving	in	counter-clockwise	direction
the	renderers	along	with	the	browsers	above	them	which	implement	the	DOM	are	showed.	In	the	right	top	corner	the	most	popular	and
important	competitors	are	visualized.

Starting	in	the	left	top	corner	again	the	build	tools	that	React	uses	to	build	the	codebase	are	displayed.	The	distribution	tools	that	are
used	along	with	these	building	tools	are	on	in	the	right	top	corner	next	to	the	competitors.	React	has	a	lot	of	users	and	next	to	the
building	tools	the	most	popular	software	products	that	use	React	are	grouped.	Next	to	the	users	we	see	the	version	control	services	that
the	React	contributors	use	to	control	their	code.

3.3	External	Entities

3.3.1	Testing	tools

React

243

To	ensure	that	developers	can	test	React	properly,	a	testing	environment	exists	which	contains	static	and	dynamic	testing	tools.	With
Jest	the	JavaScript	code	is	dynamically	tested	in	the	form	of	test	suites.	Then,	through	the	utilization	of	Yarn,	all	the	Jest	test	suites	can
be	executed	by	the	developers.	Additionally,	Coveralls	will	provide	an	analysis	of	the	code	and	unit	coverage	that	these	tests	produce.
CircleCI	is	used	to	ensure	that	all	Jest	tests	pass,	which	is	done	through	the	means	of	continuous	integration	(CI).	This	process	ensures
that	development	can	be	automated,	which	in	turn	provides	an	automated	verification	of	correctness	before	code	is	deployed.

Besides	Jest	test	files,	the	CI	pipeline	also	runs	the	static	analysis	tools	Flow,	ESLint	and	Prettier.	Flow	is	a	static	type	checker	for
JavaScript	and	uses	type	inference	to	track	data	in	the	code	that	might	lead	to	a	bug.	ESLint	is	a	more	general	static	analysis	tool	and	is
an	open	source	project	with	the	goal	of	providing	a	pluggable	linting	utility	for	JavaScript.	ESLint	will	check	for	programming	errors,
bugs,	stylistic	errors,	and	other	miscellaneous	static	errors.	Finally,	Prettier	enforces	that	code	is	formatted	in	a	correct	and	'pretty'	way,
as	defined	by	the	style	guide	agreed	upon	by	the	React	developers.

3.3.2	Version	control	services

React	is	an	open	source	project	which	uses	Github	as	its	host.	On	Github	an	overview	of	the	React	codebase	is	shown.	Github	utilizes
Git	to	function	as	version	control	of	the	codebase.	Developers	can	employ	Git	to	clone	the	codebase	and	maintain	their	own	changes	and
those	from	others.	Whenever	a	developer	wishes	to	contribute,	one	must	create	a	pull	request	on	Github	which	will	present	the	changes
made	to	the	codebase	from	their	own	Git	branch	to	the	core	developers,	whom	can	review	and	suggest	necessary	changes	in	cases	of
disagreement.

3.3.3	Building	and	distribution	tools

JavaScript	The	library	is	implemented	in	the	JavaScript	language	and	should	therefore	be	interpreted	by	a	JavaScript	runtime.	In
addition,	various	scripts	related	to	building	and	testing	the	project	are	implemented	that	should	be	executed	in	the	NodeJS	JavaScript
runtime.

Babel	Relatively	new	syntactic	JavaScript	features	(ECMA	Script	2015+)	are	being	used	in	the	codebase	of	React.	Babel	is	employed	to
transpile	the	code	to	an	older	syntax	that	is	more	broadly	supported	by	adopted	web	browser	versions.	Babel	interfaces	with	the	project
via	a		.babelrc		configuration	file	in	JSON	format.

Rollup	The	React	codebase	consists	of	many	modules,	which	are	contained	in	separate	JavaScript	files.	For	JavaScript	modules	to	be
treated	in	a	uniform	way	(such	as	by	package	managers),	they	must	conform	to	a	module	format	such	as	the	CommonJS	or
Asynchronous	Module	Definitions.	However,	the	ECMAScript	6	(ES6)	revision	proposes	a	native	module	system	for	importing	and
exporting	functions	and	data	between	JavaScript	files.	Since	challenges	exist	involving	the	implementation	of	this	feature	in	JavaScript
runtimes,	Rollup	is	utilized	which	implements	the	functionality	in	the	form	of	a	package,	thus	allowing	ES6	modules	to	be	used.	In
addition,	this	allows	CommonJS	modules	to	be	imported	as	well,	ensuring	a	degree	of	backwards	compatibility.	The	modules	that
compose	the	React	codebase	are	managed	and	compiled	in	the	form	of	ES6	modules	by	Rollup.

NodeJS	Tasks	for	manipulating	the	React	codebase	are	run	in	NodeJS,	a	JavaScript	runtime	based	on	Google's	V8	Engine.

npm	npm	is	the	package	ecosystem	(registry,	manager,	and	other	features)	that	came	with	NodeJS.	With	over	350,000	packages	(2016)
npm	is	the	world’s	largest	open	source	software	package	ecosystem	[51].	Furthermore,	npm	has	had	a	negligible	downtime.	React	is
distributed	as	a	package	via	the	npm	registry.	It	adheres	to	the	CommonJS	module	format	and	manifests	this	by	means	of	the
	package.json		file.

Yarn	Instead	of	the	default	npm	package	manager	that	comes	bundled	with	NodeJS,	React	uses	the	Yarn	package	manager	which	is	-
coincidentally	-	a	project	operated	by	Facebook.	Dependency	JavaScript	packages	are	retrieved	from	Yarn’s	own	package	registry.	Yarn
interfaces	with	the	project	via	a	number	of	configuration	files	(package.json	,		.yarnrc	,		yarn.lock).	The	main	file	is	a	YAML	file
named		package.json	,	describing	React	as	a	package	itself	as	well	as	all	its	dependency	packages.

3.3.4	Render	Targets

React	supports	rendering	the	internally	constructed	UI	component	representation	to	different	target	formats	/	systems,	handled	by
dedicated	internal	packages	providing	an	interface	to	the	targets.	These	targets	consist	of	the	following	elements:

React

244

https://facebook.github.io/jest/
https://coveralls.io/
https://circleci.com/
https://flow.org/
https://eslint.org/
https://prettier.io/
https://github.com
https://git-scm.com/
https://nodejs.org/en/
https://reactjs.org/docs/codebase-overview.html#renderers

DOM	(Browser)	React	builds	a	virtual	document	object	model	(DOM)	internally	when	constructing	components.	It	then	allows	the
rendering	of	these	components	to	the	actual	DOM	in	a	differential	manner.	This	is	achieved	by	only	applying	changes	to	those
components	in	the	DOM	that	differ	from	the	corresponding	component	in	the	virtual	DOM.	This	allows	components	to	be	efficiently
rendered	on	web	pages	rendered	by	browsers.

React	Native	React	Native	is	Facebook’s	framework	for	mobile	application	development,	relying	on	React	for	UI	building.	React	contains
a	renderer	that	is	meant	as	an	interface	for	React	Native	specifically.	The	code	in	this	thin	layer,	which	provides	a	dedicated	interface	to
React	Native,	is	part	of	the	React	codebase	(as	opposed	to	the	one	of	React	Native)	due	to	its	high	coupling	with	the	React	core.

JSON	(Testing)	For	testing	purposes,	the	internal	component	representation	can	also	be	rendered	to	JavaScript	Object	Notation
(JSON).	This	is	utilized	by	the	Jest	testing	framework	for	snapshot	testing.

3.3.5	Integrating	libraries	and	frameworks

The	developers	at	Facebook	maintain	a	utility	library	named	FBJS ,	which	consists	of	various	in-house	JavaScript	packages,	both	to
share	these	and	to	prevent	duplication	of	code	and	effort.	This	library	is	a	dependency	for	React,	as	well	as	some	of	its	integrating
packages.

Various	libraries	and	frameworks	integrate	with	React,	and	are	often	found	to	be	used	in	combination.	An	example	of	this	is	the	Redux
state	container,	which	is	used	to	store	and	manipulate	the	state	of	an	application.	It	has	official	bindings	for	React,	such	as	smart
components,	which	may	listen	to	the	store's	state	changes	and	presentational	components	get	re-rendered	when	necessary.	In	addition,
Relay	is	a	framework	that	couples	React	and	GraphQL	-	a	query	language	and	server-side	runtime	for	evaluating	them.	This	allows	for	a
workflow	for	the	creation	of	data	driven	React	applications.	Similarly,	VulcanJS	is	an	example	of	a	full-stack	web	application	that
incorporates	React	for	the	UI	building	aspects.	Finally,	React	Router	is	a	set	of	navigational	components	allowing	routing	within	a	React
application	dynamically	(i.e.	as	opposed	to	conventionally	configuring	routes	up	front).

3.3.6	Competitors

VueJS	is	a	highly	similar	JavaScript	library	for	building	web	user	interfaces.	It	employs	similar	techniques	of	virtualizing	the	DOM.
React	and	VueJS	are	regarded	to	be	similar	to	such	an	extent	that	there	have	even	been	efforts	to	transpile	components	between	the	two
libraries,	such	as	with	the	Vueact	library.	Another	JavaScript	library	with	use	cases	similar	to	React	is	CycleJS,	which	attempts	to
distinguish	itself	by	putting	an	emphasis	on	including	the	human	user	more	in	the	loop	in	order	to	improve	the	human-computer
interaction	aspects	of	the	web	interface.	Contrary	to	these	libraries,	AngularJS	provides	an	entire	framework	for	building	front-end	web
applications.	Similarly	to	React	it	abstracts	away	from	DOM	manipulation	to	better	facilitate	the	development	of	interactive	web
interfaces.	Elm	is	a	functional	language	that	transpiles	to	JavaScript,	having	the	specific	purpose	of	programming	interactive	web
applications.

3.3.7	Utilizing	applications

Ultimately,	the	React	library	has	the	purpose	of	being	incorporated	into	web	applications	to	provide	for	and	interactive	front-end	web
interface.	Numerous	applications	have	done	so,	including	Netflix,	Dropbox,	Discord,	and	Facebook	Inc.'s	internally	developed
applications	such	as	Facebook,	WhatsApp,	and	Instagram.

3.3.8	Communication	channels

The	React	community	is	widespread	across	six	applications.	The	Facebook	page	and	the	Twitter	account	are	the	main	broadcasting
platforms	where	news	and	articles	related	to	React	can	be	found.

To	learn	more	about	problems	in	React	or	to	ask	personal	questions,	one	can	use	the	platform	Stack	Overflow	platform.	This	platform	is
known	for	providing	a	large	question-and-answer	base	for	a	large	amount	of	different	languages,	including	React.	The	major	developers	at
React	ask	to	post	code-level	question	on	Stack	Overflow	while	long-form	discussions	should	be	kept	on	the	React	Discussion	Forum.

For	a	small	question,	one	can	go	to	React’s	Discord	page,	which	is	called	Reactiflux,	to	quickly	find	developers	who	are	online.	In
addition,	some	of	the	developers	are	also	found	on	the	IRC	channel	#reactjs.

React	also	uses	Hashnode	as	a	question-and-answer	forum	for	discussions	among	developers.

React

245

https://github.com/facebook/react/tree/master/packages/react-dom
http://facebook.github.io/react-native/
https://github.com/facebook/react/tree/master/packages/react-test-renderer
https://redux.js.org/
https://github.com/reactjs/react-redux
https://facebook.github.io/relay/
http://graphql.org/
https://github.com/vueact
https://cycle.js.org/
https://angularjs.org/
https://www.facebook.com/react
https://twitter.com/reactjs
http://stackoverflow.com/questions/tagged/reactjs
https://discord.gg/0ZcbPKXt5bZjGY5n
https://webchat.freenode.net/?channels=reactjs
https://hashnode.com/n/reactjs

4.	Development	View
The	development	view	section	aims	to	outline	the	module	structure,	codeline	standards,	and	common	design	models	of	the	React	project.

4.1	Module	Structure
A	project's	module	structure	represents	the	structural	organization	of	the	project’s	source	code	into	various	inter-dependent	internal
modules.

4.1.1	Test	Fixtures

Test	fixtures	automatically	set	up	specific	environments	for	testing	purposes,	so	that	a	developer	may	quickly	check	in	what	ways,	if
any,	their	modifications	affect	some	of	React’s	basic	functionalities.	The	test	fixtures	for	React	consist	of:	art,	attribute-behavior,	dom,
expiration,	fiber-debugger,	fiber-triangle,	packaging,	and	ssr.

4.1.2	Scripts

Scripts	are	pieces	of	code	that	may	be	run	to	quickly	and	automatically	achieve	various	goals.	Developers	can	use	scripts	to	run
benchmarks,	build	and	publish	versions	of	React,	and	to	lint	files.	The	scripts	for	React	consist	of:	babel,	bench,	circleCI,	error-codes,
eslint-rules,	eslint,	facts-tracker,	flow,	git,	jest,	perf-counters,	prettier,	print-warnings,	release,	rollup,	shared,	and	tasks.

4.1.3	Core	packages

Core	packages	provide	the	main	functionalities	of	React.	The	core	packages	of	React	consist	of:	events,	react-art,	react-call-return,	react-
dom,	react-is,	react-native-renderer,	react-noop-renderer,	react-reconciler,	react-test-renderer,	react,	shared,	and	simple-cache-provider.

4.1.4	Module	Structure	Model

Figure	4.1	represents	the	organization	of	React,	and	displays	these	as	interdependent	modules.

React

246

Figure	4.1:	an	overview	of	all	the	modules	within	React.

4.2	Codeline	Model

The	codeline	model	describes	the	organization	of	React’s	codeline.	This	defines	the	structure,	code	control,	different	types	of	code,	how
the	code	should	be	maintained,	and	which	automated	tools	are	used	to	build,	deploy,	release,	and	test	the	code.

The	codebase	of	React	is	located	on	the	Github	platform	and	is	open	source.	This	allows	developers	to	clone	the	code	to	their	own
computer	in	an	efficient	and	quick	manner.	The	code	on	Github	can	be	automatically	built	and	tested	through	continuous	integration	(CI).
For	this,	CircleCI	is	used	which	is	a	free	tool	to	setup	a	CI	pipeline.	After	developers	make	a	push	to	the	code	base	in	a	PR,	their	code
will	automatically	be	built	and	tested	to	prevent	any	unwanted	errors,	bugs,	or	formatting	issues.

To	deploy	React’s	code,	one	must	be	an	npm-owner	to	upload	the	code	to	the	npm	registry.	A	few	scripts	have	been	setup	to	automate	a
large	part	of	the	process,	which	is	all	about	making	sure	that	the	latest	master	branch	build	succeeds	as	well	as	all	the	test	suites.	After
these	important	factors,	the	npm-owner	who	wishes	to	publish	will	also	have	to	do	some	sanity	checks	such	as	ensuring	that	users	will
get	the	right	version	of	dependencies	at	run	time.	It	is	also	advised	to	run	all	the		yarn		components:		yarn	test	,		yarn	lint	,	and		yarn
flow	.	When	all	process	steps	have	been	finished	by	the	npm-owner,	the	release	process	can	begin	by	running	the	build.js	and	publish.js
script.	The	publish	script	will	publish	all	build	artifacts	to	npm	and	push	it	to	GitHub.

React

247

https://github.com/facebook/react/blob/master/scripts/release/build.js
https://github.com/facebook/react/blob/master/scripts/release/publish.js

For	the	developers	to	work	concurrently	they	use	git	which	provides	version	control	for	the	codebase.	For	contributors	it	is	necessary
to	first	fork	React’s	repository	so	that	they	can	make	changes	in	any	form	they	want.	When	changes	are	made	to	the	fork	they	can	be
proposed	to	the	React	main	repository	by	means	of	a	pull	request.	Communicators	or	other	in-house	stakeholders	will	then	review	the
changes	made	and	accept	or	refuse	the	request.

Rollup	addresses	the	desired	structure	of	the	code.	Developers	achieve	this	by	installing	the	required	plugins	for	Rollup.	This	is	only
required	for	the	production	build	as	using	Rollup	in	the	development	build	will	also	remove	development	warnings.	The	source	code
should	be	structured	into	a	few	packages	as	described	in	the	figure	4.2.

Package Description

events React	implements	an	event	system	which	does	not	depend	on	the	renderers	and	work	with	React	DOM	and
React	Native.

react-art React-Art	is	used	for	drawing	vectors,	providing	declarative	and	reactive	bindings	to	sebmarkage's	art-library,
available	at:	https://github.com/sebmarkbage/art/

react-call-
return An	experimental	package	for	multi-pass	rendering	in	React.

react-dom This	is	all	about	the	React	DOM	renderer.	Can	be	used	as	a	standalone	browser	bundle.

react-is In	this	package	one	can	set	arbitrary	test	values	and	evaluate	different	objects	of	types	specific	to	React.

react-native-
renderer Renders	React-Native	components	to	native	views	used	in	mobile	applications.

react-
reconciler

The	different	render	packages	share	some	code	between	them.	This	(unstable)	package	solves	this	issue	of
having	duplicate	code.

react-test-
renderer Renders	React	components	to	JSON	trees.	Mainly	used	for	snapshot	testing	with	Jest.

react The	core	React	code	is	located	here.	It	includes	the	APIs	necessary	to	define	components.

shared (We	spent	some	time	researching	what	this	package	is	for,	but	were	unable	to	find	any	information	on	it.)

simple-cache-
provider Unstable	package	which	includes	a	cache	for	React	applications.

Figure	4.2:	Codeline	package	structure	and	relations.

4.2.1	Module	inter-relatedness

A	number	of	observations	of	the	dependencies	between	modules	may	be	gleamed	from	figure	4.1.

Given	that	'react'	contains	the	most	important	code	of	the	entire	React	project,	it	is	no	surprise	that	many	of	the	other	packages
depend	on	it.
There	are	no	other	dependencies	amongst	core	packages;	each	package	does	its	own	thing,	and	at	most	needs	only	the	'react'	core.
A	number	of	test	fixtures	depend	on	both	'react'	and	'react-dom',	which	is	"intended	to	be	paired	with	the	isomorphic	react"	[60].
Together,	they	may	provide	a	complete	core	environment	for	test	fixtures	to	build	upon.
The	test	fixture	'art'	depends	not	only	on	'react'	and	'react-dom',	but	furthermore	also	on	the	'art'	core	package.

4.3	Common	Design	Models
Common	design	models	describe	standardization	agreements	which	dictate	how	developers	and	contributors	must	contribute	to	ensure
that	the	React	project	remains	of	a	high	quality	and	well	tested	status.	The	major	segments	within	the	common	design	models	for	React
are	the	standardization	of	code	style,	dependencies,	and	testing.

4.3.1	Standardization	of	Code	Style

React

248

https://github.com/sebmarkbage/art/

To	ensure	that	all	submitted	code	looks	the	same	(identical	indentation,	variable	naming,	and	other	code	style	preferences),	there	are
agreements	regarding	code	style	that	must	be	followed	within	each	contribution	to	React.	Any	contribution	which	does	not	adhere	to	the
agreed	upon	code	style	standards	will	not	be	considered	for	implementation	into	the	core	release,	as	per	the	React	contribution	guide.
The	standardization	of	the	code	base	consists	of	the	following	requirements:

Code	must	be	automatically	formatted	through	the	utilization	of	Prettier	[52]	and	Yarn	[53].	When	running	'yarn	prettier',	all
changes	made	to	the	code	will	be	automatically	formatted	to	the	desired	and	agreed	upon	standards.	To	find	remaining	style	guide
issues	remaining,	a	developer	can	then	run	'yarn	lint'	to	run	the	linter	[61]	for	the	project.

All	cases	which	are	disputed	and	not	resolved	through	the	aforementioned	tools	will	result	in	a	default	to	match	the	AirBnB
Javascript	style	guide	[54].

As	described	in	the	codeline	model	section,	active	enforcement	of	code	style	standardization	takes	place	through,	CircleCI,	among
others.

4.3.2	Standardization	of	Dependencies

React	has	a	multitude	of	dependencies,	which	all	require	active	monitoring	to	ensure	the	project	remains	stable.	To	avert	this	issue,	all
dependencies	which	React	requires	to	function	have	become	part	of	the	Facebook	Inc.	body	of	repositories.	This	ensures	that	both	legal
and	code	stability	requires	are	entirely	covered	and	not	dependent	on	external	parties.

To	further	ensure	the	standardization	of	where	dependencies	are	found,	React	requires	the	utilization	of	a	package	manager.	React
employs	Yarn[53]	for	test	and	code	formatting	dependency	deployment,	and	npm[56]	for	other	dependency	managements.	By	ensuring
that	all	developers	obtain	their	dependencies	from	the	same	package	managers,	it	is	guaranteed	that	all	dependencies	are	identical,
meaning	compatibility	issues	don't	propagate.

5.	Technical	Debt
This	section	contains	all	information	regarding	the	technical	status	of	React,	the	identification	of	technical	debt,	its	evolution,	and	the
discussions	that	took	place	regarding	technical	debt.	A	consideration	is	given	to	both	the	implementation	itself,	and	also	to	technical	debt
related	to	testing.

5.1	Identification	of	Technical	Debt
The	identification	of	the	technical	debt	within	React	was	done	through	a	combination	of	automated	code	quality	analysis	with	the	use	of
tools,	and	a	manual	code	analysis	taking	into	consideration	the	SOLID	principles	[62]	for	software	design.

5.1.1	Automated	Code	Quality	Analysis

Automated	Code	Quality	Analysis	refers	to	the	utilization	of	tools	that	allow	automatic	validation	of	agreed	upon	static	and	dynamic
code	regulations.	The	static	analysis	refers	to	adherence	to	agreed	spacing	and	code	style	requirements,	whereas	dynamic	refers	to	code
execution	evaluation	and	the	coverage	provided	by	automated	tests.	These	metrics	provide	an	insight	into	the	technical	state	of	React	and
can	assist	in	finding	areas	within	the	project	that	contain	significant	technical	debt.	These	indebted	areas,	which	are	places	in	the	code
that	require	attention	to	fix	technical	issues,	can	then	be	selected	for	refactoring.

5.1.1.1	Static	Code	Analysis

The	static	code	analysis	aimed	to	identify	issues	within	React	that	are	related	to	code	quality	and	code	formatting.	React	relies	on
multiple	tools	to	perform	static	code	analysis,	two	of	which	are	Flow	[63]	and	TypeScript	[64].	Although	these	two	perform	a	similar
function	regarding	code	analysis,	React	implements	both	and	has	JSON	files	and	configurations	that	separately	perform	similar	analysis
over	similar	components.	This	is	a	form	of	technical	debt,	as	redundancy	usually	indicates	a	disagreement	or	refactoring	took	place,	and
there	was	no	decision	made	regarding	which	implementation	should	be	kept.

React

249

Beyond	this	duplication,	running	the	static	code	analysis	as	described	in	the	React	contribution	guide	[65],	no	static	code	errors	exist	in
the	master	branch	of	the	code.	This	is	due	to	the	requirements	outlined	in	the	contribution	guide,	which	dictate	that	any	pull	requests	or
submissions	to	the	codebase	with	these	errors	will	be	rejected	on	those	grounds,	ensuring	a	low	technical	debt	and	high	static	code
quality.

5.1.1.2	Dynamic	Code	Analysis

The	dynamic	code	analysis	was	performed	by	measuring	the	test	coverage	generated	by	the	latest	release	of	the	master	branch,	as
reported	by	the	in-house	Coveralls	coverage	tool	[66].	The	decision	was	made	to	only	analyze	the	core,	create-subscription,	dom,	and	*
folders	to	avoid	accidentally	considering	React	Native	or	testing	packages.	Packages	meant	for	distribution	or	non-functional	purposes,
such	as	files	aimed	at	the	npm*	package	manager,	are	also	ignored.	The	statistics	for	each	package	can	be	found	table	5.1.

Package File	/	Folder Coverage	%

Create-Subscription createSubscription.js 88.04%

Core React.js 86.21%

Core ReactBaseClasses.js 88.24%

Core ReactChildren.js 89.85%

Core ReactContext.js 86.36%

Core ReactCreateRef.js 85.71%

Core ReactCurrentOwner.js 100.00%

Core ReactDebugCurrentFrame.js 92.86%

Core ReactElement.js 85.93%

Core ReactElementValidator.js 90.91%

Core ReactNoopUpdateQueue.js 82.14%

Core forwardRef.js 83.33%

DOM client 94.79%

DOM events 88.56%

DOM server 95.61%

DOM shared 96.35%

DOM test-utils 86.67%

DOM unstable-dependencies 100.00%

noop-renderer ReactNoop 64.90%

TOTAL 89.92%

Table	5.1:	overview	of	packages/files,	and	their	associated	test	coverage	percentage	value.

As	the	table	shows,	the	overall	coverage	for	React	is	89.92%,	a	significant	coverage	metric,	indicating	good	code	quality.	However,	the
largest	discrepancies	in	coverage	results	are	found	in	the	reactCurrentOwner,	unstable-dependencies,	and	ReactNoop.	The
reactCurrentOwner	and	unstable-dependencies	sections	are	both	positive	outliers	due	to	their	perfect	test	coverage.	This	score	is
attributed	to	the	fact	that	these	classes	validate	that	certain	subclasses	or	dependencies	are	called	in	a	certain	order.	If	any	tests	invokes
any	part	of	these	sub-classes,	the	top	level	classes	receive	maximum	possible	coverage.	The	negative	case	is	the	ReactNoop	JavaScript
file,	which	is	a	renderer	aimed	at	allowing	for	the	testing	of	semantics	outside	of	the	actual	React	environment.	This	class	has	a	low
coverage,	mostly	due	to	the	fact	that	branches	are	barely	tested	and	error	handling	is	not	tested.	Since	this	class	aims	to	validate	semantic
behavior,	many	catch-throw	operations	take	place,	yielding	many	errors,	which	are	not	tested.

React

250

Due	to	the	finding	of	a	lack	of	error	catching	testing,	a	further	manual	analysis	was	done	based	on	the	code	coverage	report.	Analysis
shows	that	many	instances	of	test	coverage	decreases	can	be	attributed	to	a	lack	of	error	handling	testing.	Instances	in	which	code
equivalent	to	that	found	in	the	figure	below	is	located	are	rarely	tested,	significantly	decreasing	code	and	branch	coverage	for	React.

if	CONDITION	TO	TEST	<	SHOULD	NOT	OCCUR	{

		throw	new	Error('This	is	the	error	message	of	an	untested	error.');

}

Figure	5.2:	theoretical	example	of	untested	failure	cases.

Of	the	packages	that	have	less	than	80%	coverage,	react-call-return	and	simple-cache-provider	are	noted	in	their	respective	README’s
to	be	very	unstable	and	prone	to	changes,	which	explains	their	lower	test	coverage.	Furthermore,	react-noop-renderer	is	not	meant	for
direct	use.	React-art,	which	has	the	lowest	result	of	these	packages,	is	used	primarily	for	drawing.	It	is	speculated	that,	since	a	flaw	in
this	package	would	only	cause	cosmetic	errors,	thorough	testing	was	deemed	of	lesser	importance	for	this	particular	package,	but	this	is
mere	conjecture.

5.1.2	SOLID	Analysis

The	SOLID	principles	[62]	consist	of	ideas	that	a	project	must	adhere	to	with	regards	to	class	responsibilities	and	interaction	to	ensure
the	complexity	remains	at	an	acceptable	level	while	also	being	maintainable.	The	principles	are	closely	related	to	the	object-oriented
programming	(OOP)	principles.	SOLID	consists	of	the	Single	Responsibility	Principle,	Open-Closed	Principle,	Liskov
Substitution	Principle,	Interface	Segregation	Principle,	and	the	Dependency	Inversion	Principle.	React	was	analyzed	based	on
these	principles,	and	the	results	for	each	principle	can	be	found	below	in	the	respective	sub-category.	Class	identification	was	performed
in	part	based	on	the	findings	from	the	static	and	dynamic	code	analysis	sections.

5.1.2.1	Single	Responsibility	Principle

Although	React	does	a	good	job	attempting	to	organize	all	the	classes	and	packages	based	on	their	functionality	(DOM,	noop-renderer,
core),	there	are	still	classes	which	violate	this	principle.	The	clearest	violation	of	the	SRP	is	the	ReactDOM	class	[67],	found	in	the
DOM	package.	This	class,	clocking	in	at	1354	lines	of	code	(LOC),	is	not	only	responsible	for	the	updating	and	handling	of	the	DOM
elements,	but	also	for	managing	related	dependencies	such	as	batching	and	event	registration.	This	violation	of	the	SRP	is	so	abundant
that	even	the	developers	have	made	a	TODO	comment	regarding	this	behavior	to	fix	it.	This	comment,	including	the	importing	of
responsibility	classes,	is	shown	in	figure	5.3.

React

251

import	'../shared/checkReact';

import	'./ReactDOMClientInjection';

import	ReactFiberReconciler	from	'react-reconciler';

//	TODO:	direct	imports	like	some-package/src/*	are	bad.	Fix	me.

import	*	as	ReactPortal	from	'shared/ReactPortal';

import	ExecutionEnvironment	from	'fbjs/lib/ExecutionEnvironment';

import	*	as	ReactGenericBatching	from	'events/ReactGenericBatching';

import	*	as	ReactControlledComponent	from	'events/ReactControlledComponent';

import	*	as	EventPluginHub	from	'events/EventPluginHub';

import	*	as	EventPluginRegistry	from	'events/EventPluginRegistry';

import	*	as	EventPropagators	from	'events/EventPropagators';

import	*	as	ReactInstanceMap	from	'shared/ReactInstanceMap';

import	{enableCreateRoot}	from	'shared/ReactFeatureFlags';

import	ReactVersion	from	'shared/ReactVersion';

import	*	as	ReactDOMFrameScheduling	from	'shared/ReactDOMFrameScheduling';

import	{ReactCurrentOwner}	from	'shared/ReactGlobalSharedState';

import	getComponentName	from	'shared/getComponentName';

import	invariant	from	'fbjs/lib/invariant';

import	lowPriorityWarning	from	'shared/lowPriorityWarning';

import	warning	from	'fbjs/lib/warning';

import	*	as	ReactDOMComponentTree	from	'./ReactDOMComponentTree';

import	*	as	ReactDOMFiberComponent	from	'./ReactDOMFiberComponent';

import	*	as	ReactInputSelection	from	'./ReactInputSelection';

import	setTextContent	from	'./setTextContent';

import	validateDOMNesting	from	'./validateDOMNesting';

import	*	as	ReactBrowserEventEmitter	from	'../events/ReactBrowserEventEmitter';

import	*	as	ReactDOMEventListener	from	'../events/ReactDOMEventListener';

import	{getChildNamespace}	from	'../shared/DOMNamespaces';

Figure	5.3:	violation	of	the	SRP	in	react-DOM.

A	violation	of	the	SRP	commonly	indicates	that	too	many	responsibilities	were	added	as	development	continued	without	a	clear
managing	or	central	entity	which	manages	this.	This,	in	turn,	can	show	signs	of	a	lack	of	planning	or	refactoring,	and	thus	the
accumulation	of	technical	debt.	These	classes	could	be	refactored	through	central	discussions	of	lead	developers,	who	could	agree	on	a
new	standard	and	refactor	this.

5.1.2.2	Open-Closed	Principle

React	clearly	violates	this	principle	through	the	implementation	of	the	renderer.	React	utilizes	the	noop	renderer	to	validate	behavior	at	a
more	syntactical	and	abstract	level,	which	allows	for	easier	testing	of	implemented	logic.	The	noop	renderer	is	stored	in	a	separate
package	with	a	single	source	file	[69],	whereas	the	updater	hooks	for	noop	are	placed	in	the	ReactNoopUpdateQueue	class	in	the	root
package	[70].

If	React	were	to	adhere	to	the	OCP,	an	attempt	would	be	made	to	extend	the	update	queue	class	based	on	the	native	noop	update	queue,
or	the	noop	renderer	found	in	React	would	be	extended	to	only	re-implement	the	differentiated	features	of	the	native	noop	renderer.	This
behavior	and	violation	of	the	OCP	exists	in	multiple	other	locations	within	React,	and	commonly	indicates	a	lack	of	developer
willingness	to	utilize	the	native	source	dependencies	to	create	desired	functionality.	This,	in	turn,	means	that	the	tested	functionality
found	in	these	dependencies	can	possibly	be	broken.	This,	in	turn,	creates	additional	technical	debt	due	to	tests	that	can	start	failing	as	a
result	of	the	OCP	violating	extensions.

It	should	be	noted	that	React	itself	is	easily	extendable,	thereby	adhering	to	the	OCP.	Facebook	has	done	this	themselves	with	React-
DevTools	[72],	a	project	which	provides	developers	additional	insights	into	React	by	extending	the	core	of	the	project.

5.1.2.3	Liskov	Substitution	Principle

Within	React,	this	behavior	occurs	in	multiple	instances,	but	the	clearest	violation	is,	again,	the	noop	renderer.	When	attempting	to	utilize
the	renderer	as	an	extension	to	the	noop	class	in	the	source	package,	multiple	violations	will	occur.	This	principle	is	important	to	track,
since	violations	of	it	commonly	indicate	that	a	subclass	is	too	dependent	on	changing	behavior	of	its	associated	super	class,	meaning
single	change	in	this	super	class	can	break	the	subclass.	This	would	then	result	in	the	increase	of	errors,	and	hence,	the	overall	technical
debt.

React

252

5.1.2.4	Interface	Segregation	Principle

If	clients	were	too	dependent,	then	changing	hooks	would	result	in	the	required	updating	of	components	within	React	or	by	partners,
thus	decreasing	the	ease	of	implementation	and	thereby	increasing	technical	debt.	React	clearly	segments	its	packages,	as	shown	in	table
5.4.

Package Purpose

create-subscription Allows	subscriptions	to	external,	non-React	data.

events Ensures	changes	required	to	be	caught	can	be	caught,	separate	from	React	core.

react-ART Allows	for	creation	of	vector	graphics	in	React.

react-call-return Experimental	implementation	of	multi-pass	rendering.

react-dom React's	implementation	of	the	domain	object	model.

react-is Package	for	testing	of	values	to	see	if	they	are	a	React	type.

react-native-renderer The	renderer	used	for	the	JavaScript-less	version	of	React.

react-noop-renderer The	renderer	used	for	the	noop	purposes.

react-reconciler Allows	the	creation	of	custom	React	renderers.

react-test-renderer Renders	React	components	without	reliance	on	the	React	DOM.

react Core	folder,	provides	the	library.

shared Contains	classes	and	functionality	required	by	all	elements.

simple-cache-provider Basic	cache	for	React.

Table	5.4:	described	purposes	of	React	interfaces.

Due	to	the	segregation,	developers	can	clearly	see	which	elements	they	must	edit,	and	all	shared	responsibility	can	be	found	in	a	single
location.	Overall,	the	React	implementation	indicates	that	experimental	and	additional	library	functionality	is	separated	from	the	core
functionality.	This	decreases	overall	technical	debt,	as	specific	features	can	be	isolated	for	implementation,	and	shared	elements	are
tested	uniformly	and	reviewed	by	all	developers.

5.1.2.5	Dependency	Inversion	Principle

As	shown	in	the	interface	segregation	section,	React	segregates	based	on	functionality,	but	also	within	the	project	itself.	As	the	package
layout	shows,	an	effort	was	made	to	split	renderers	based	on	functionality,	and	dependencies	based	on	external	hook	requirements	(a
developer	implementing	React	desires	the	event	package,	but	not	the	core	package).	Due	to	this,	bugs	can	be	avoided,	as	changing
modules	does	not	cause	a	change	in	functionality	throughout	the	system	nor	its	implementing	modules.

5.3	Evolution	of	Technical	Debt
Originally,	React	was	developed	internally	at	Facebook	by	Jordan	Walke.	The	initial	public	version	was	released	in	May	2013.	Over	the
course	of	the	past	5	years,	React	went	through	numerous	architectural	changes.	This	section	describes	a	few	specific	cases	of	major
changes	to	the	design	and	architecture	of	React	that	had	a	major	impact	on	its	technical	debt.	We	first	analyze	the	re-implementation	of
the	core	algorithm	known	as	reconciliation	over	the	course	of	2016	and	2017	as	part	of	the	release	of	React	16.

The	evolutions	described	in	this	chapter	were	identified	by	elaborately	inspecting	the	React	documentation,	the	repository	revision
history,	GitHub	Issues	and	Pull-Requests,	meeting	notes	and	conference	talks.	In	a	later	iteration,	we	plan	to	identify	additional	cases	by
using	automated	tools	on	the	codebase	for	example	to	generate	and	analyze	an	Evolution	Matrix.	In	addition	we	aim	to	describe	a	number
of	other	smaller	evolutions	that	were	identified	in	the	documentation.

5.3.1	Reconciler	Re-implementation

React

253

https://github.com/facebook/react/commit/e9e6b9b9b7558f1bc972f5cfb7b396d396a5508f
https://github.com/facebook/react/releases/tag/v0.3.0

In	this	section,	we	explain	the	'reconciler',	which	is	considered	to	implement	the	core	algorithm	of	React.	We	then	describe	how	this
subsystem	has	evolved	over	time	by	addressing	a	major	re-implementation.	Finally	we	address	how	this	evolution	relates	to	technical
debt.

5.3.1.1	Purpose	of	the	Reconciler

React	provides	a	declarative	API	to	developers	for	declaring	components	of	a	user	interface	(UI).	This	means	that	determining	which
actions	to	perform	in	order	to	reflect	changes	in	the	state	of	the	UI	is	entirely	handled	by	the	library.	This	is	referred	to	as	a	pull
approach	as	opposed	to	push	approach.	The	naive	approach	to	implement	this	behavior	would	be	to	completely	rebuild	the	UI	on	each
state	change.	This	might	work	in	small	trivial	applications,	but	it	quickly	becomes	expensive	in	terms	of	performance	for	larger
applications.

To	solve	this	problem,	React	employs	an	algorithm	for	determining	a	minimal	amount	of	changes	to	the	UI	necessary	to	reflect	an
updated	state.	Initially,	a	representation	of	the	UI	is	rendered	in	the	form	of	a	tree	of	nodes,	which	is	internally	cached.	This	tree	is	then
flushed	to	the	render	target	(e.g.	the	DOM)	in	order	to	effectuate	it.	Any	subsequent	changes	to	the	state	will	result	in	the	tree	being	re-
rendered.	The	resulting	tree	is	then	compared	to	the	cached	tree	using	a	diffing	algorithm	to	determine	the	minimal	amount	of	changes
necessary	to	transform	the	cached	tree	into	the	new	tree.	Only	these	changes	are	then	flushed	to	the	render	target.	As	a	benefit,	the
reconciler	can	be	reused	in	combination	with	different	renderers,	since	the	changes	are	described	in	a	render-target-agnostic	way.

The	problem	of	comparing	trees	this	way	in	general	can	be	solved	using	an	O(n)	algorithm,	but	this	is	not	fast	enough	in	practice.	React
implements	a	diffing	algorithm	named	'reconciliation'	that	uses	two	main	heuristics	to	improve	performance	as	listed	in	the
Reconciliation	documentation:

Two	elements	of	different	types	will	produce	different	trees.
The	developer	can	hint	at	which	child	elements	may	be	stable	across	different	renders	with	a	key	prop.

5.3.1.2	Evolution	process

After	a	couple	of	years	of	research	on	the	initial	Stack	Reconciler,	the	React	team	decided	to	completely	overhaul	the	core	reconciliation
algorithm.	Right	after	the	release	of	React	15,	the	target	of	re-implementation	of	the	reconciler	was	set	for	the	next	milestone	of	the	React
16	release,	as	documented	in	the	meeting	notes	of	April	4th,	2016.	Sebastian	Markbåge	(@sebmarkbage)	appears	to	be	the	lead
developer	of	this	new	reconciler.	Initially,	the	new	reconciler	is	referred	to	as	the	incremental	reconciler,	although	later	it	would	be	named
the	Fiber	Reconciler.	In	the	notes	of	April	21th	some	first	concerns	with	regards	to	the	re-implementation	are	referred	to,	as	expressed
and	discussed	upon	earlier	in	Issue	6170	(March	2nd).	The	first	commit	for	the	new	reconciler	was	merged	as	part	of	PR	6690.	Later
meetings	of	June	9th,	June	23rd,	August	4th,	October	13th,	October	20th,	November	3rd	and	December	1st	each	record	updates	on	the
development	of	Fiber.	In	order	to	allow	other	developers	to	start	contributing	to	the	Fiber	Reconciler,	Sebastian	published	the	principles
behind	the	new	reconciler	in	Issue	7942	on	October	11th.	The	last	recorded	core	team	meeting	notes	of	December	8th	record	that	Fiber
has	been	successfully	employed	in	various	example	applications,	and	that	is	set	to	rollout	early	2017.	The	completion	status	of	Fiber	-
which	had	gained	quite	some	public	attention	being	a	major	new	feature	-	was	tracked	publicly	on	a	dedicated	website.	There	were	some
concerns	about	backwards	compatibility	as	discussed	in	Issue	9463	starting	from	April	20th,	2017,	but	the	core	developers	guaranteed	it
would	work	out	of	the	box	due	to	their	focus	on	feature	parity.	The	release	of	v16.0.0	on	September	16,	2017	-	later	than	anticipated	-
was	the	first	version	to	include	the	new	Fiber	reconciler,	as	reported	in	the	corresponding	blog	post.

5.3.1.3	Paying	the	Technical	Debt

The	re-implementation	had	the	general	purpose	of	paying	technical	debt	in	numerous	ways.	The	re-implementation	allowed	the	team	to
solve	various	long	standing	issues	like	readability	and	anti-patterns	in	what	seems	to	be	the	most	complex	part	of	the	codebase	in	one
fell	swoop.	This	is	for	example	expressed	in	the	meeting	notes	of	October	13th,	2016:

It	seems	like	Fiber	is	our	best	shot	at	fixing	many	long-standing	issues	with	React,	and	we	are	going	to	place	all	our	effort	into
either	replacing	existing	reconciler	with	Fiber,	or	failing	spectacularly	with	it	(and	learning	from	that).

However,	these	opportunities	seemed	to	be	side	issues,	as	the	re-implementation	was	mainly	motivated	by	the	problem	that	the
synchronous	uninterruptible	rendering	process	often	impacted	user	experience	in	large	applications.	As	a	solution,	work	like	diffing	and
rendering	would	have	to	be	scheduled	and	prioritized.	This	would	allow	for	example	rendering	of	animations	to	be	prioritized	over

3

React

254

https://reactjs.org/docs/reconciliation.html
https://github.com/reactjs/core-notes/blob/master/2016-04/april-07.md
https://github.com/reactjs/core-notes/blob/master/2016-04/april-21.md
https://github.com/facebook/react/issues/6170
https://github.com/facebook/react/pull/6690
https://github.com/reactjs/core-notes/blob/master/2016-06/june-09.md
https://github.com/reactjs/core-notes/blob/master/2016-06/june-23.md#update-on-fiber
https://github.com/reactjs/core-notes/blob/master/2016-08/august-04.md
https://github.com/reactjs/core-notes/blob/master/2016-10/october-13.md
https://github.com/reactjs/core-notes/blob/master/2016-10/october-20.md
https://github.com/reactjs/core-notes/blob/master/2016-11/november-03.md
https://github.com/reactjs/core-notes/blob/master/2016-12/december-01.md
https://github.com/facebook/react/issues/7942
https://github.com/reactjs/core-notes/blob/master/2016-12/december-08.md
http://isfiberreadyyet.com/
https://github.com/facebook/react/issues/9463
https://github.com/facebook/react/releases/tag/v16.0.0
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://github.com/reactjs/core-notes/blob/master/2016-10/october-13.md

fetching	data	from	external	sources.	In	addition,	concurrency	plays	an	important	role:	if	the	rendering	/	diffing	process	were	to	be	split
up	into	different	interruptible	units	of	work,	low	priority	work	could	be	paused	for	a	higher	priority	workload,	and	resumed	afterwards.

The	old	implementation	of	the	reconciliation	algorithm	did	not	allow	for	these	critical	improvements,	which	can	be	identified	as	a	large
expansion	of	technical	debt.	Fiber	paid	this	debt	by	implementing	scheduling	and	concurrency	as	described	above.	More	specifically,	it
implements	a	virtual	call	stack	specific	to	the	domain	of	building	user	interfaces.	Each	virtual	stack	frame	(i.e.,	a	unit	of	work)	is	referred
to	as	a	"fiber",	hence	the	name	of	the	reconciler.	An	analogy	between	Fiber	and	the	more	general	concept	of	the	call	stack	can	be	made	as
shown	in	table	5.5.

Call	Stack Fiber

Subroutine Component	Type

Body	(Nested	subroutine	invocations) Children

Return	Address Parent	Component

Arguments Props

Return	Value Tree	Nodes	(render	target	specific	output)

The	high-level	architectural	changes	brought	about	by	the	introduction	of	Fiber	are	further	elaborated	upon	by	Andrew	Clark	(@acdlite)
in	his	Fiber	Architecture	description	and	his	Talk	at	ReactNext	2016	on	Fiber.

6.	Conclusion
Despite	React	being	a	large	project	with	many	contributors	and	large	packages,	it	manages	to	maintain	a	high	level	of	test	coverage	and	an
overall	well	organized	codebase.	Their	codeline	model	and	requirements	for	developers	are	clear	and	organized	in	a	good	fashion.	Hence,
we	conclude	that	React	is	a	project	which	is	acting	at	potential	and	spending	time	at	taking	care	of	technical	debt	and	issue	within	the
project.	This	could	be	seen	through	their	reconciler	re-implementation.	A	significant	effort	is	also	put	into	keeping	the	codebase
segregated	based	on	features,	thereby	also	making	it	easier	to	have	an	overview	of	the	project	and	all	possible	permutation	regarding
renderers	and	other	options.

Future	focuses	for	React,	based	on	this	research,	should	consist	of	managing	their	documentation	and	continuing	the	current	trend
regarding	code	quality	and	organization.

Please	note	that	a	more	extended	version	of	this	chapter,	including	additional	information,	is	available	at	our	chapter	repository.

References,	Footnotes,	&	Works	Cited
[1]	Nick	Rozanski	and	Eoin	Woods.	2012.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and
Perspectives.	Chapter	9,	pages	135-138.	Addison-Wesley.

[2]	Facebook	Inc.	Our	History.	Accessed	at	https://newsroom.fb.com/company-info/	on	22	February	2018.

[3]	ReactJS,	2018.	How	to	Contribute.	Accessed	at	https://reactjs.org/docs/how-to-contribute.html	on	22	February	2018.

[4]	Github.	React/License.	Accessed	at	https://github.com/facebook/react/blob/master/LICENSE	on	22	February	2018.

[5]	Github.	React/package.json.	Accessed	at	https://github.com/facebook/react/blob/master/package.json	on	23	February	2018.

[6]	Nick	Rozanski	and	Eoin	Woods.	2012.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and
Perspectives.	Chapter	9,	page	135,	Communicators.	Addison-Wesley.

[7]	https://github.com/gaearon

[8]	https://github.com/aweary

[9]	https://github.com/bvaughn

Table	5.5:	analogy	between	the	call	stack	and	Fiber.

React

255

https://github.com/acdlite/react-fiber-architecture
https://www.youtube.com/watch?v=aV1271hd9ew
https://github.com/delftswa2018/team-react
https://newsroom.fb.com/company-info/
https://reactjs.org/docs/how-to-contribute.html
https://github.com/facebook/react/blob/master/LICENSE
https://github.com/facebook/react/blob/master/package.json
https://github.com/gaearon
https://github.com/aweary
https://github.com/bvaughn

[10]	https://stackoverflow.com/questions/tagged/reactjs

[11]	https://discuss.reactjs.org

[12]	https://twitter.com/reactjs

[13]	https://facebook.com/react

[14]	https://vuejs.org

[15]	https://angular.io/

[16]	https://elm-lang.org

[17]	https://cycle.js.org

[18]	ReactJS,	2018.	How	to	Contribute.	Accessed	at	https://reactjs.org/docs/how-to-contribute.html	on	2	March	2018.

[19]	https://github.com/sophiebits

[20]	https://github.com/zpao

[21]	https://github.com/sebmarkbag

[22]	https://github.com/acdlite

[23]	https://github.com/petehunt

[24]	https://github.com/chenglou

[25]	https://github.com/vjeux

[26]	https://github.com/jimfb

[27]	https://circleci.com/gh/facebook/react

[28]	https://coveralls.io/github/facebook/react

[29]	https://medium.com/netflix-techblog/netflix-likes-react-509675426db

[30]	https://yahooeng.tumblr.com/post/101682875656/evolving-yahoo-mail

[31]	https://www.youtube.com/watch?v=tUfgQtmG3R0

[32]	https://blog.discordapp.com/using-react-native-one-year-later-91fd5e949933

[33]	https://facebook.github.io/react-native/

[34]	Wolf,	Adam.	Explaining	React's	license.	Facebook.	Accessed	at	https://code.facebook.com/posts/112130496157735/explaining-
react-s-license/	on	13	March	2018.

[35]	https://opensource.org/licenses/BSD-3-Clause

[36]	https://code.facebook.com/pages/850928938376556

[37]	https://www.apache.org/legal/resolved.html#category-x

[38]	Mullenweg,	Matt.	On	React	and	WordPress.	Accessed	at	https://ma.tt/2017/09/on-react-and-wordpress/	on	13	March	2018.

[39]	https://twitter.com/reactjs/status/911347634069168128

[40]	Mullenweg,	Matt.	Facebook	Dropping	Patent	Clause.	Accessed	at	https://ma.tt/2017/09/facebook-dropping-patent-clause/	on	13
March	2018.

[41]	https://github.com/facebook/react/commit/b765fb25ebc6e53bb8de2496d2828d9d01c2774b

[42]	https://github.com/reactjs/core-notes

[43]	https://preactjs.com/

React

256

https://stackoverflow.com/questions/tagged/reactjs
https://discuss.reactjs.org
https://twitter.com/reactjs
https://facebook.com/react
https://vuejs.org
https://angular.io/
https://elm-lang.org
https://cycle.js.org
https://reactjs.org/docs/how-to-contribute.html
https://github.com/sophiebits
https://github.com/zpao
https://github.com/sebmarkbag
https://github.com/acdlite
https://github.com/petehunt
https://github.com/chenglou
https://github.com/vjeux
https://github.com/jimfb
https://circleci.com/gh/facebook/react
https://coveralls.io/github/facebook/react
https://medium.com/netflix-techblog/netflix-likes-react-509675426db
https://yahooeng.tumblr.com/post/101682875656/evolving-yahoo-mail
https://www.youtube.com/watch?v=tUfgQtmG3R0
https://blog.discordapp.com/using-react-native-one-year-later-91fd5e949933
https://facebook.github.io/react-native/
https://code.facebook.com/posts/112130496157735/explaining-react-s-license/
https://opensource.org/licenses/BSD-3-Clause
https://code.facebook.com/pages/850928938376556
https://www.apache.org/legal/resolved.html#category-x
https://ma.tt/2017/09/on-react-and-wordpress/
https://twitter.com/reactjs/status/911347634069168128
https://ma.tt/2017/09/facebook-dropping-patent-clause/
https://github.com/facebook/react/commit/b765fb25ebc6e53bb8de2496d2828d9d01c2774b
https://github.com/reactjs/core-notes
https://preactjs.com/

[44]	https://github.com/reactjs/core-notes

[45]	https://stackoverflow.com/questions/tagged/reactjs

[46]	https://discuss.reactjs.org/

[47]	https://discord.gg/0ZcbPKXt5bZjGY5n

[48]	http://irc.lc/freenode/reactjs

[49]	https://github.com/markerikson/react-redux-links

[50]	https://www.reactiflux.com/learning/

[51]	https://www.linux.com/news/event/Nodejs/2016/state-union-npm

[52]	-	https://prettier.io

[53]	-	https://yarnpkg.com

[54]	-	https://github.com/airbnb/javascript

[55]	-	ReactJS,	2018.	How	to	Contribute.	Style	Guide.	Accessed	at	https://reactjs.org/docs/how-to-contribute.html	on	2	March	2018.

[56]	-	https://www.npmjs.com/

[57]	-	https://facebook.github.io/jest/

[58]	-	ReactJS,	2018.	How	to	Contribute.	Sending	a	Pull	Request.	Accessed	at	https://reactjs.org/docs/how-to-contribute.html	on	6
March	2018.

[59]	-	https://flow.org/

[60]	-	https://github.com/facebook/react/tree/master/packages/react-dom

[61]	-	https://eslint.org/

[62]	Ramirez,	Cristian.	S.O.L.I.D	The	first	5	principles	of	Object	Oriented	Design	with	JavaScript.	Accessed	at
https://medium.com/@cramirez92/s-o-l-i-d-the-first-5-priciples-of-object-oriented-design-with-javascript-790f6ac9b9fa	on	13	March
2018.

[63]	https://flow.org/

[64]	https://www.typescriptlang.org/

[65]	ReactJS,	2018.	How	to	Contribute.	Accessed	at	https://reactjs.org/docs/how-to-contribute.html	on	15	March	2018.

[66]	https://coveralls.io/builds/15992318

[67]	https://github.com/facebook/react/blob/master/packages/react-dom/src/client/ReactDOM.js

[68]	Meyer,	Bertrand	(1988).	Object-Oriented	Software	Construction.	Prentice	Hall.

[69]	https://github.com/facebook/react/blob/master/packages/react-noop-renderer/src/ReactNoop.js

[70]	https://github.com/facebook/react/blob/master/packages/react/src/ReactNoopUpdateQueue.js

[71]	Martin,	Robert	(2002).	Agile	Software	Development:	Principles,	Patterns	and	Practices.	Pearson	Education.

[72]	https://github.com/facebook/react-devtools

[73]	https://github.com/markerikson/react-redux-links

[74]	https://www.fullstackreact.com/30-days-of-react/day-22/

[75]	https://www.robinwieruch.de/tips-to-learn-react-redux/#react-test-often

[76]	http://reactkungfu.com/2015/07/approaches-to-testing-react-components-an-overview/

React

257

https://github.com/reactjs/core-notes
https://stackoverflow.com/questions/tagged/reactjs
https://discuss.reactjs.org/
https://discord.gg/0ZcbPKXt5bZjGY5n
http://irc.lc/freenode/reactjs
https://github.com/markerikson/react-redux-links
https://www.reactiflux.com/learning/
https://www.linux.com/news/event/Nodejs/2016/state-union-npm
https://prettier.io
https://yarnpkg.com
https://github.com/airbnb/javascript
https://reactjs.org/docs/how-to-contribute.html
https://www.npmjs.com/
https://facebook.github.io/jest/
https://reactjs.org/docs/how-to-contribute.html
https://flow.org/
https://github.com/facebook/react/tree/master/packages/react-dom
https://eslint.org/
https://medium.com/@cramirez92/s-o-l-i-d-the-first-5-priciples-of-object-oriented-design-with-javascript-790f6ac9b9fa
https://flow.org/
https://www.typescriptlang.org/
https://reactjs.org/docs/how-to-contribute.html
https://coveralls.io/builds/15992318
https://github.com/facebook/react/blob/master/packages/react-dom/src/client/ReactDOM.js
https://github.com/facebook/react/blob/master/packages/react-noop-renderer/src/ReactNoop.js
https://github.com/facebook/react/blob/master/packages/react/src/ReactNoopUpdateQueue.js
https://github.com/facebook/react-devtools
https://github.com/markerikson/react-redux-links
https://www.fullstackreact.com/30-days-of-react/day-22/
https://www.robinwieruch.de/tips-to-learn-react-redux/#react-test-often
http://reactkungfu.com/2015/07/approaches-to-testing-react-components-an-overview/

Apache	Spark

By	Chia-Lun	Yeh,	Hiram	Rayo	Torres	Rodríguez,	Valérie	Pourquié,	and	Riaas	Mokiem.

Abstract

Apache	Spark	is	a	fast	and	general	engine	for	large-scale	data	processing.	Developed	originally	at	the	University	of	California,	Berkeley's
AMPlab	by	Matei	Zaharia,	and	later	donated	to	the	Apache	Software	Foundation,	which	has	maintained	it	since.	Spark	was	designed
specifically	to	increase	performance	on	specific	use-cases	like	machine	learning	where	Hadoop's	MapReduce	performed	poorly.

This	chapter	provides	an	insight	of	the	Spark	Core	architecture	by	following	the	viewpoints	and	perspectives	architectural	description
suggested	by	Nick	Rozanski	and	Eoin	Woods	in	their	book.	We	give	a	description	of	the	stakeholders	and	an	insight	of	the	context	in
which	Spark	is	developed.	Then,	we	proceed	to	describe	the	Functional	view,	the	Performance	perspective,	and	the	Development	view,
to	show	how	Spark	was	designed	in	order	to	meet	its	original	requirements	and	how	it	is	implemented.	Also,	an	analysis	of	technical
debt	on	the	system	is	made,	and	finally,	we	conclude	by	giving	our	opinion	on	the	previously	mentioned	aspects.

Introduction
Apache	Spark	is	an	open-source	framework	for	processing	large	amounts	of	data.	It	is	described	as	"a	fast	and	general	engine	for	large-
scale	data	processing"	[1],	providing	up	to	100x	faster	performance	than	Hadoop	MapReduce	when	the	data	can	be	read	from	memory
and	up	to	10x	faster	performance	when	the	data	has	to	be	read	from	disk.	It	is	a	Top-Level	Project	of	the	Apache	Software	Foundation
[2]	and	is	one	of	the	most	active	projects	in	the	Apache	Software	Foundation	[3].

Apache	Spark	was	created	after	specific	use-cases,	like	machine	learning,	were	shown	to	perform	poorly	using	Hadoop	MapReduce.
Alleviating	these	problems	provided	the	motivation	for	creating	Spark	[4].

Spark

258

https://github.com/chialun-yeh
https://github.com/Hrayo712
https://github.com/vpourquie
https://github.com/arucard21
https://spark.apache.org/
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces50
https://projects.apache.org/statistics.html
https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf

After	some	analysis	of	the	Apache	Spark	project,	it	became	apparent	that	it	actually	contains	many	distinct	products.	The	prominent
ones	that	are	singled	out	on	the	website	are	Spark	SQL,	Spark	Streaming,	MLib,	and	GraphX.	These	products	provide	specialized
functionality	on	top	of	the	main	Spark	product,	Spark	Core.

Given	the	complexity	of	the	Apache	Spark	project	and	our	time	constraints,	we	decided	to	focus	on	the	main	product	of	the	Apache
Spark	project,	Spark	Core.	It	provides	the	essential	functionality	used	in	Spark	since	all	other	Spark	products	are	built	around	it.

In	this	chapter,	we	try	to	provide	some	insight	into	the	architecture	of	Spark	Core.	We	first	describe	who	the	stakeholders	are	in	the
Stakeholders	Analysis,	and	how	Spark	Core	fits	into	the	world	around	it,	in	the	Context	view.	We	then	describe	the	Functional	view,	the
Performance	perspective	and	the	Development	view,	which	should	provide	insight	into	what	Spark	Core	does,	how	it	was	designed	to
meet	its	performance	requirements	and	how	it	was	implemented.	We	also	show	how	technical	debt	is	dealt	with	Spark	Core	and
conclude	with	our	opinion	on	the	architecture	of	Spark	Core.

Stakeholders

Apache	Spark	Stakeholders

For	the	Apache	Spark	project,	we	have	identified	the	following	stakeholders	[6]:

1.	 Third-party	projects
Being	an	open-source	project,	Apache	Spark	makes	use	of	other	open-source	projects	which	can	then	be	considered	their
suppliers.	These	include	the	libraries	that	they	use	to	build	the	product,	like	Scala	or	Netty.

2.	 The	open-source	community
The	open-source	community	is	a	common	term	used	for	the	people	that	are	gathered	around	a	piece	of	open-source	software,
in	this	case,	Apache	Spark.	The	community	consists	of	a	variety	of	people,	ranging	from	non-technical	to	technical,	each	of
which	can	perform	a	range	of	tasks.
There	are	2	specialized	groups	within	the	community.

Contributors:	These	people	modify	the	source	code	of	Apache	Spark	and	submit	Pull	Requests	to	get	these	modifications
into	the	main	codebase.	They	are	Developers.
Committers:	These	people	also	modify	the	source	code	of	Apache	Spark,	so	they	are	also	Developers.	They	do	many

Spark

259

https://spark.apache.org/community.html

other	things	as	well,	performing	as	different	stakeholders.	As	Integrators	they	accept	and	merge	Pull	Requests	but	they
also	safeguard	the	codebase	as	Assessors.

The	remainder	of	the	community	consists	of	companies,	people	in	the	community	or	educational	users.	These	community
members	don't	just	use	the	software,	they	also	contribute	by	providing	feedback	and	supporting	others.	As	stakeholders,	this
makes	them	Users,	Testers,	Support	Staff,	and	Communicators.
A	subset	of	the	standard	Users,	called	Commercial	Users,	use	the	product	as	part	of	their	core	business.	They	would	benefit
from	having	power	over	Apache	Spark	so	some	measures	are	taken	so	they	can't	get	too	much	power.	For	example,	the	ASF
has	a	policy	of	only	allowing	participation	of	individuals	and	tries	to	ensure	that	a	PMC	does	not	consist	of	too	many
individuals	from	a	single	company	[8].

3.	 The	Apache	Software	Foundation	(ASF)
As	Acquirer,	the	ASF	handles	financial	contributions	and	distributes	it	to	their	associated	projects.
As	Assessor,	the	ASF	ensures	the	proper	licensing	of	the	project	and	creates	and	enforces	several	policies.
As	Facilitator,	the	ASF	provides	and	supports	processes	used	by	Apache	Spark.	They	can	use	the	funding	provided	as
Acquirer	more	effectively	by	pooling	the	resources	of	multiple	projects	to	facilitate	these	processes.

4.	 Hadoop	MapReduce	can	be	considered	the	main	Competitor	of	Apache	Spark.	There	are	other	Competitors	like	Apache	Heron	and
Apache	Storm	though	these	are	intended	for	stream	processing.

Power	and	Interest

To	change	a	system,	a	stakeholder	needs	to	be	interested	in	changing	it	and	have	the	power	to	do	so.	We	can	map	power	and	interest	for
each	stakeholder	to	see	how	influential	they	can	be,	as	shown	in	Figure	2.

Spark

260

http://community.apache.org/projectIndependence

We	can	see	that	for	most	stakeholders,	interest	and	power	increase	together,	though	power	more	slowly.	The	Committers	are	high	in
both	interest	and	power	since	they	are	the	ones	that	maintain	and	shape	Apache	Spark.	They	decide	what	gets	included	and	what
doesn't.	Contributors	have	less	power	since	they	can	create	code	but	it's	up	to	the	Committers	to	incorporate	this	in	the	system.
Commercial	Users	have	a	similar	degree	of	power	since	they	can	provide	manpower	and	funding.	This,	indirectly,	gives	them	quite	a	bit
of	power.	This	is	useful	to	them	due	to	their	commercial	use	of	the	system,	which	gives	them	the	highest	interest	of	all	stakeholders.	The
rest	of	the	community	can	provide	feedback	and	support	which	gives	them	less	power,	but	they	are	just	as	interested	as	the
stakeholders	mentioned	so	far.

We	then	have	some	stakeholders	with	low	interest	and	power.	Competitors	will	likely	have	low	interest	in	influencing	the	system	as	well
and	won't	have	much	power	to	do	so.	Third-party	projects	that	use	Apache	Spark	will	have	a	slightly	higher	amount	of	interest	but
won't	have	much	power	either.

A	clear	outlier	in	this	figure	is	the	ASF.	Being	both	an	Acquirer	and	Facilitator	gives	the	most	power	to	influence	development.	But	its
interest	in	doing	so	is	very	low.	As	Facilitator,	its	interest	is	just	to	support	the	project.	It	might	have	had	more	interest	as	Acquirer	but
the	project	is	open-source	and	the	ASF	is	a	charitable	organization	so	there's	low	interest	financially.	So	while	having	the	most	power,
the	ASF	has	very	low	interest	and	is	unlikely	to	influence	the	development	of	the	system.

Context	View
The	Context	view	describes	the	relationships,	dependencies,	and	interactions	of	a	system	with	its	environment	as	well	as	its	scope	and
high-level	requirements	or	responsibilities	[5].	In	this	part	of	the	chapter,	we	will	discuss	the	context	of	Spark	Core	by	explaining	the
system	scope	and	analyzing	the	relationships	of	the	system	with	all	its	external	entities	and	interfaces.

System	Scope	and	Responsibilities

Apache	Spark	began	in	2009	as	a	research	project	at	UC	Berkeley	AMPlab.	At	that	time,	Hadoop	MapReduce	was	the	dominant
parallel	programming	engine	for	clusters,	but	it	had	big	latencies	because	data	was	read	and	written	serially	for	each	job.	Spark	was	thus
initiated	with	the	objective	to	perform	in-memory	cluster	computing.

The	responsibilities	of	Spark	Core	is	to	provide	distributed	task	dispatching,	scheduling,	and	basic	I/O	functionalities.	It	loads	data	from
a	distributed	storage	system	and	takes	instructions	from	an	application	to	decide	how	the	data	should	be	processed.	It	works	with	the
cluster	manager	to	distribute	the	data	across	the	cluster	so	that	data	can	be	processed	in	parallel.	Note	that	Spark	does	not	provide
permanent	data	storage,	instead	it	makes	use	of	already	existing	storage	systems.

As	stated	in	the	first	implementation	of	Spark	[9],	the	system	achieves	the	following:

1.	 It	supports	batch,	interactive,	iterative	and	streaming	computations	in	the	same	runtime,	enabling	rich	applications	that
combine	these	modes	and	offering	significantly	higher	performance	for	these	combined	applications	than	disparate	systems.

2.	 It	provides	fault	and	straggler	tolerance	across	these	computation	modes	at	a	very	low	cost.
3.	 It	achieves	performance	that	is	often	100×	better	than	MapReduce,	and	comparable	with	specialized	systems	in	individual

application	domains.
4.	 It	allows	applications	to	scale	up	and	down	elastically	and	share	resources	in	a	responsive	fashion.

External	Entities	and	Interfaces

The	environment	in	the	Context	view	is	defined	as	the	external	entities	such	as	service	providers,	users,	and	competitors,	as	well	as	the
interfaces	to	those	entities.	To	better	understand	the	system	scope	and	analyze	the	external	entities	with	which	it	interacts,	we	provide
the	context	model	of	Spark	as	shown	in	Figure	3.	Since	we	are	only	looking	at	Spark	Core	in	this	analysis,	the	additional	libraries	of	the
Spark	project	(Spark	SQL,	MLib,	etc.)	are	considered	external	entities.

Spark

261

http://www.viewpoints-and-perspectives.info/
https://amplab.cs.berkeley.edu/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-12.html

In	the	following	we	explain	the	context	model	in	more	detail:

Cluster	Manager:	Spark	can	use	different	cluster	managers	and	usually	a	third-party	cluster	manager	will	be	used	in	production
environments.	Spark	also	contains	a	built-in	cluster	manager	that	works	locally	and	non-distributed,	but	this	is	mostly	intended	for
development	and	debugging	purposes.	Using	a	distributed	cluster	manager,	all	applications	are	run	as	independent	processes	on	a
cluster,	all	coordinated	by	a	central	manager	that	acts	as	the	service	provider.

The	external	interface	for	the	cluster	manager	is	provided	through	the	use	of	interfaces	in	the	code,	most	notably	the
ExternalClusterManager	interface.	These	interfaces	have	to	be	implemented	for	each	cluster	manager.	Currently,	the	following
implementations	are	available:	Apache	Mesos,	Hadoop	YARN,	and	Kubernetes.

Storage	System:	Spark	requires	a	storage	system	that	stores	data	permanently.	To	handle	the	big	amount	of	data	that	a	given
application	may	require,	Spark	can	interface	with	a	wide	variety	of	file	systems,	such	as	Hadoop	Distributed	File	System	(HDFS),

Spark

262

Apache	HBase,	Amazon	S3,	Cassandra	and	many	others.	These	storage	systems	are	the	data	provider	to	Spark	and	the	expected
data	size	can	be	up	to	petabyte	level.	Spark	also	supports	a	local	mode,	mostly	for	development	and	debugging	purposes,	where
distributed	storage	is	not	required	and	the	local	file	system	can	be	used	instead.

The	external	interface	for	these	external	entities	is	the	configuration	of	Spark.	Spark	allows	highly	customized
configurations	so	these	file	systems	usually	support	Apache	Spark	by	providing	custom	code	that	configures	Spark	correctly
for	their	file	system.

User:	Spark	is	used	by	various	user	applications	from	individual	users	to	large-scale	companies	such	as	eBay,	Amazon,	IBM,	Netflix,
etc.	These	external	entities	make	use	of	Spark	through	the	Spark	APIs,	such	as	the	RDD	API	which	is	for	Scala.	Spark	also
provides	additional	APIs	for	Java,	R,	and	Python.	These	APIs	provide	the	external	interface	to	the	users	and	can	be	considered
service	consumers.	Like	Spark	itself,	these	service	consumers	are	required	to	be	scalable,	fault-tolerant,	and	efficient.
Communication:	The	main	communication	channel	for	the	development	of	Spark	is	through	GitHub	pull	requests,	JIRA	and
developers	mailing	lists.	Support	for	the	users	is	provided	through	StackOverflow	and	a	user	mailing	list.	There	is	also	a	chatroom
and	there	are	frequent	meetups.
Development	Tools:	The	project	currently	uses	GitHub	to	develop	and	manage	source	code	where	pull	requests	are	used	to	handle
code	reviews	and	merge	code	changes.	JIRA	is	used	as	issue	tracker	where	each	issue	is	linked	with	Pull	Requests	on	GitHub	to
ensure	traceability.
Build	Tool:	Apache	Maven	is	used	as	a	project	management	and	comprehension	tool	in	which	the	project	is	built	and
documentation	is	also	handled.	Support	for	sbt	(Simple	Build	Tool)	is	also	provided.

Functional	View

A	functional	view	describes	the	system’s	runtime	functional	elements	and	their	responsibilities,	interfaces,	and	primary	interactions	[5].
The	functional	requirements	of	Spark	Core	are	identified	as

The	main	functionality	for	Spark	Core	is	to	provide	an	engine	that	is	optimized	for	running	parallel	operations	on	distributed
data.	Additionally,	Spark	Core	allows	these	operations	to	be	defined	in	multiple	programming	languages	and	their	status	to	be
monitored.

The	functional	elements	and	interactions	that	are	identified	are	illustrated	in	Figure	4.

Spark

263

https://github.com/apache/spark/pulls
https://issues.apache.org/jira/projects/SPARK/summary
http://apache-spark-developers-list.1001551.n3.nabble.com/
https://stackoverflow.com/questions/tagged/apache-spark
http://apache-spark-user-list.1001560.n3.nabble.com/
https://gitter.im/spark-scala/Lobby
https://github.com/apache/spark
https://issues.apache.org/jira/projects/SPARK/summary
http://www.viewpoints-and-perspectives.info/

When	a	user	application	starts,	a	Spark	driver	creates	a	SparkContext,	with	the	Java	API	or	Scala	API	as	the	interface.	In	the	case	where
Python	is	used,	PySpark	is	launched	as	the	driver.	SparkContext	is	the	entry	point	of	all	the	functionalities	provided	by	Spark	Core.	It
creates	a	DAG	Scheduler	and	a	Task	Scheduler	when	it	starts.	Resilient	Distributed	Datasets	(RDDs)	are	created	by	user's	code	on	the
data	that	the	user	wants	to	process.	When	an	action	is	taken	upon	an	RDD,	sparkContext	submits	jobs	to	the	DAG	Scheduler.

An	RDD	contains	data	that	is	stored	using	Distributed	Storage	in	a	way	that	allows	tasks	to	access	it	in	parallel.	Since	RDDs	implement
lazy	operations,	an	operation	is	executed	only	when	an	action	is	called.	When	this	is	the	case,	the	DAG	Scheduler	finds	a	minimal
schedule	to	run	jobs,	which	is	done	by	computing	a	directed	acyclic	graph	(DAG)	of	parallel	tasks	called	stages.	It	then	submits	the
stages	to	the	Task	Scheduler.	The	Task	Scheduler	is	responsible	for	submitting	the	tasks	for	execution	to	the	Cluster	Manager.	The
Cluster	Manager	then	assigns	Executors	to	run	the	tasks	using	the	data	in	Distributed	Storage.	The	Executors	periodically	send	metrics
of	the	running	tasks	back	to	the	driver,	which	can	then	be	accessed	by	the	user	through	SparkUI.	This	way,	the	user	can	monitor	his
application.

To	connect	external	elements,	connectors	are	required.	For	the	Cluster	Manager	and	Distributed	Storage,	these	correspond	to	the
external	interfaces	identified	in	the	Context	view.

Performance	and	Scalability	perspective

In	this	chapter,	we	provide	insight	into	two	related	quality	properties	of	Apache	Spark:	performance	and	scalability.	These	qualities	are
especially	important	as	Apache	Spark	was	created	to	provide	better	performance	than	Hadoop	MapReduce	[4].

Requirements

Given	that	Apache	Spark	is	a	framework	for	processing	data,	it	behaves	differently	in	response	to	heavy	workloads	than	other	systems.
When	there	are	fewer	resources	available,	the	response	time	and	throughput	will	simply	be	lower	for	each	processing	task.	The	total
response	time	and	throughput	for	the	system	will	still	be	as	high	as	possible,	which	is	acceptable	for	a	data	processing	system	like	this.

Spark

264

https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf

In	other	systems	where	users	might	be	waiting	on	individual	tasks	to	complete,	this	might	be	unacceptable,	as	mentioned	in	the	book	by
Rozanski	and	Woods	[5].	This	is	an	important	aspect	of	Apache	Spark	as	it	heavily	influences	the	requirements	for	performance	and
scalability.	There	are	three	aspects	for	which	we	quantify	the	requirements:

1.	 Response	Time:	The	qualitative	requirement	is	that	the	system	should	respond	much	faster	than	Hadoop	MapReduce	in	use-cases
like	machine	learning.	Given	the	fundamental	differences	between	Apache	Spark	and	Hadoop	MapReduce,	we	would	quantify	this
as	requiring	a	10x	improvement	in	response	time	over	Hadoop	MapReduce,	given	the	same	processing	work	and	a	sufficient
amount	of	available	worker	nodes.	This	should	indicate	that	Spark	is	intended	to	provide	a	significant	performance	improvement
over	Hadoop	MapReduce.

2.	 Throughput:	The	throughput	is	difficult	to	specify	since	the	type	of	work	that	can	be	done	in	Spark	is	highly	variable	as	it	is
determined	by	the	code	provided	by	the	user.	Of	course,	in	order	to	achieve	the	required	improvements	on	the	response	time,	the
throughput	will	need	to	be	significantly	improved.

3.	 Scalability:	While	not	explicitly	mentioned,	it's	safe	to	assume	that	the	scalability	requirement	for	Apache	Spark	is	to	at	least	scale
as	well	as	Hadoop	MapReduce.

Performance

The	performance	of	the	system	is	typically	determined	by	the	response	time	and	throughput	characteristics.	We	only	have	a	qualitative
requirement	on	response	time.	In	order	to	address	this,	Apache	Spark	was	designed	to	use	RDDs.	An	RDD	is	a	collection	of	objects
which	are	partitioned	across	machines.	The	next	part	shows	how	it	improves	both	the	throughput	and	response	time	of	a	single	task
being	executed	by	Spark.

An	RDD	allows	the	data	it	contains	to	be	accessed	multiple	times.	This	allows	a	significant	improvement	over	Hadoop	MapReduce
which	only	allowed	the	data	to	be	accessed	once	for	every	time	it	is	loaded	from	disk.	This	improved	the	throughput	of	the	system	as	a
task	can	simply	revisit	data	as	needed,	allowing	more	work	to	be	done	within	a	given	time	period.

By	allowing	the	RDD	to	be	cached	in	memory,	the	response	time	is	significantly	reduced	as	the	data	is	available	much	more	quickly.
This	characteristic	combines	especially	well	with	the	improvement	to	the	throughput.	This	causes	the	total	response	time	to	be
improved	even	more.

When	Spark	was	created,	this	performance	was	benchmarked	using	a	logistic	regression	that	was	run	with	different	amounts	of	iterations
(Figure	5).	It	shows	that	the	response	time	for	the	initial	implementation	of	Apache	Spark	had	already	achieved	a	10x	improvement,
which	is	especially	noticeable	with	the	higher	amounts	of	iterations.	In	the	latest	version	of	Apache	Spark,	this	improvement	was	up	to
100x,	according	to	their	website	[1].

In	addition,	RDDs	achieve	fault	tolerance	through	a	notion	of	lineage	by	having	the	ability	to	rebuild	RDDs	even	if	a	node	is	lost	during
operation.	This	means	that	even	when	nodes	fail	entirely,	the	task	can	be	completed.	This	was	measured	as	causing	only	a	21%	decrease
in	response	time	[1].

Spark

265

http://www.viewpoints-and-perspectives.info/
https://spark.apache.org/
https://spark.apache.org/

In	general,	we	have	noticed	that	several	of	the	tactics	proposed	by	Rozanski	and	Woods	[5]	have	been	applied	in	Apache	Spark.	Most
notably,	they	have	minimized	the	use	of	shared	resourced	by	only	allowing	non-exclusive	access	to	the	data.	Being	a	distributed	system,
they	allow	scaling	out	to	improve	performance.	And	since	it	is	a	distributed	system,	they	also	partition	and	parallelize	the	work	by
splitting	them	into	tasks	which	can	be	run	on	separate	nodes.

Scalability

Scalability	is	the	ability	of	a	system	to	handle	an	increased	workload.	It	determines	whether	Spark	Core	is	still	functional	and	fast	when
it	has	to	process	larger	amounts	of	data.	Nowadays,	Spark	has	been	shown	to	work	well	with	up	to	petabytes	of	data	[12].	It	does	this
by	allowing	more	nodes	to	be	added	to	the	cluster	to	process	this	data.	This	has	been	shown	to	work	well	with	up	to	8000	nodes	[12].
This	indicates	that	the	amount	of	efficiently	participating	nodes	is	an	important	metric	for	scalability.

As	mentioned	earlier,	the	scalability	requirement	for	Spark	Core	is	to	at	least	scale	as	well	as	Hadoop	MapReduce.	In	order	to	achieve
this,	Apache	Spark	was	created	to	use	the	same	components	as	Hadoop	for	its	cluster	management	and	distributed	storage.	This	means
nodes	are	managed	in	the	same	way	as	with	Hadoop	MapReduce,	just	as	the	data	storage.	With	both	the	nodes	and	data	being	managed
by	the	same	components,	this	should	provide	Apache	Spark	with	a	similar	level	of	scalability	as	Hadoop	MapReduce.

Development	View

This	section	discusses	the	development	view	of	the	Spark	Core.	It	provides	an	overview	of	the	architecture	that	supports	the	software
development	process.	This	is	largely	based	on	the	code	of	Spark	Core	in	GitHub	but	also	on	the	documentation	[10]	and	website	of
Spark	[1].

Module	Structure	Model

To	facilitate	the	understanding	of	Spark	Core,	we	provide	a	structural	model	that	depicts	the	overall	organization	and	distribution	of
modules	within	the	system.	While	we	were	able	to	identify	some	layers	based	on	the	interaction	between	modules	and	the	abstraction
level	of	the	modules,	they	do	not	seem	to	be	created	by	design.	This	is	why	they	don't	have	any	name,	though	you	may	consider	them
as	the	Top,	Middle,	and	Bottom	layer.	There	do	not	seem	to	be	any	layering	rules	designed	for	these	layers.	This	is	not	strange	since	the
layers	weren't	created	by	design	but	emerged	gradually.

Spark	Core	is	organized	as	a	set	of	modules,	each	providing	specific	functionalities.	The	diagram	in	Figure	6	shows	these	modules,	their
submodules	and	the	dependencies	between	them.	Here	we	describe	each	of	the	modules	in	a	bit	more	detail:

Developer	Application	Interfaces:	This	module	provides	the	access	to	the	functionalities	available	to	users	in	Spark	Core,	most
of	which	is	contained	in	this	module.	In	addition,	the	API	submodule	provides	programming	interfaces	for	other	programming
languages.	This	allows	Spark	Core	to	be	used	natively	in	multiple	programming	languages.	It	interacts	with	the	Scheduler	to
schedule	the	tasks	that	need	to	be	executed.
Deployment:	This	module	handles	the	Spark	deployment,	also	known	as	run	modes.	It	provides	the	required	functionalities	to

Spark

266

http://www.viewpoints-and-perspectives.info/
https://www.slideshare.net/databricks/large-scalesparktalk
https://www.slideshare.net/databricks/large-scalesparktalk
https://spark.apache.org/docs/latest/
https://spark.apache.org/

support	a	local	or	clustered	application.	In	addition,	the	launcher	submodule	is	provided	as	an	interface	to	launch	Spark

applications	programmatically.	It	interacts	with	the	Developer	Application	Interfaces	to	access	the	Spark	functionalities.
Scheduler:	This	module	takes	care	of	delivering	and	scheduling	tasks	among	workers	in	a	cluster.	It	interacts	with	the	RPC
environment	to	send	messages	to	where	they	need	to	go.
Metrics:	Spark	uses	the	Metrics	3.1.0	Java	library	to	provide	insight	into	Spark	instances	such	as	the	Scheduler	and	Executor.
These	metrics	are	only	available	when	using	Spark	as	a	clustered	application.	It	is	automatically	turned	off	in	applications	that	only
run	locally.
RPC	Environment:	This	module	facilitates	an	environment	to	process	messages.	It	provides	functionalities	such	as	routing
incoming	messages,	stopping	messages	and	registering	endpoints.	It	interacts	with	Data	Management	to	process	the	messages.
Data	Management:	This	module	handles	most	of	the	lower-level	functionalities	related	to	data.	These	are	the	functionalities	that
are	required	to	make	RDDs	work.	In	addition	to	this,	this	module	also	includes	serialization	functionalities	to	increase	efficiency	on
data	transmission.	It	interacts	with	Security	to	ensure	that	the	data	is	secured	correctly.	It	also	interacts	with	Memory	Management
to	handle	any	data	that	needs	to	be	in	memory,	like	caching	RDDs.
Security:	The	security	module	provides	IO	encryption	and	decryption	streams	to	secure	the	data.
Memory	Management:	This	module	handles	the	functionalities	that	Spark	requires	when	working	with	memory.

Common	Processing	Model

Isolating	common	processing	across	elements	into	separate	code	units	contributes	to	the	overall	coherence	of	the	system	and	reduces
duplication.	We	identified	2	elements	that	fit	this	description.

Common	data	structures:	Apache	Spark	is	built	around	a	single	common	data	structure,	the	RDD	[4].	As	the	name	implies,	it	is	a
read-only	dataset	that	is	distributed	across	multiple	machines	and	can	be	rebuilt	if	part	of	it	is	lost.	This	data	structure	is	what
provides	the	increased	performance	of	Apache	Spark	when	compared	to	a	MapReduce	engine	like	Apache	Hadoop	in	certain	cases.
As	such,	it	is	clear	that	this	is	a	common	design	element	that	is	fundamental	to	the	architecture	of	Apache	Spark,	which	has	been
designed	around	it.	The	entire	Spark	Core	module	is	created	in	order	to	provide	the	common	software	that	allows	RDDs	to	be	used
consistently.

Use	of	third-party	libraries:	Apache	Spark	is	designed	to	use	third-party	libraries	whenever	possible,	which	we	consider	a
standard	design	approach.	Specifically,	we	can	see	that	the	cluster	manager	and	distributed	storage	system	have	been	created	in	a
way	that	allows	them	to	reuse	components	from	the	Apache	Hadoop	project,	namely	YARN	and	HDFS.	But	the	cluster	has	been
designed	in	a	way	that	allows	other	third-party	libraries	to	be	used	as	well,	like	Apache	Mesos	instead	of	YARN	or	Hive	instead	of

Spark

267

https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf

HDFS.	So	some	common	processing	is	provided	to	abstract	away	the	actual	libraries.

Technical	Debt

Technical	debt	is	what	occurs	when	developers	have	to	make	a	compromise	between	making	the	code	work	perfectly	and	making	it	work
at	all.	The	latter	can	usually	be	done	with	fewer	resources	and	in	less	time	but	may	cost	more	time	down	the	road.	This	is	the	debt	that
can	incur	when	the	resources	or	time	that	is	needed	cannot	be	spent	right	away.

In	this	chapter,	we	analyze	and	discuss	how	debt	is	handled	by	the	community.

Handling	Technical	Debt

We've	looked	into	how	the	Apache	Spark	developers	deal	with	technical	debt.	For	the	most	part,	they	try	to	keep	technical	debt	as	low
as	possible	when	they	accept	new	code.	They	do	this	by	using	a	code	analysis	tool	to	check	the	code	from	a	Pull	Request	before	they
merge	it.	Specifically,	they	use	Scalastyle	as	code	analysis	tool	on	Jenkins	which	they've	integrated	with	Github.	This	allows	them	to
verify	several	things	automatically	and	ensures	that	any	merged	code	is	of	sufficient	quality.	Of	course,	this	doesn't	remove	technical
debt	altogether.	For	one	thing,	the	developers	sometimes	disable	certain	rules	because	it's	simply	too	costly	to	fix	all	the	identified
problems.	However,	they	keep	this	in	mind	and	try	to	work	towards	enabling	these	rules	again.	There	is	no	clear	process	for	this	though,
it's	just	something	they	keep	in	mind.

They	also	handle	technical	debt	through	their	normal	development	procedure.	If	they	identify	technical	debt	that	needs	to	be	fixed,	they
will	create	an	issue	in	JIRA	to	register	this.	After	this,	it	can	be	fixed	if	someone	has	the	time	and	expertise	to	do	so.	This	means	that	it
can	remain	open	for	quite	a	while	like	in	SPARK-2296.	However,	this	isn't	always	the	case.	Looking	at	SPARK-3453,	we	see	that	the
issue	was	created	in	September	2014	and	the	corresponding	Pull	Request	was	actually	already	merged	in	October	2014.	This	shows	that
technical	debt	can	be	solved	quite	quickly	too.

The	developers	do	think	of	quality,	so	it	is	common	to	observe	discussions	regarding	how	to	correctly	implement	things	in	Pull	Requests
and	issues.	But	all	discussions	related	to	technical	debt	seem	to	be	done	through	the	mailing	list.	As	an	example,	we	found	a	discussion
on	the	mailing	list	about	the	future	of	Python	2	support	within	Spark.	This	discussion	was	motivated	by	the	fact	that	Python	2's	end-
of-life	has	been	scheduled	so	Python	3	must	be	supported	before	then.	The	support	of	both	Python	2	and	3	could	introduce	a	large
amount	of	technical	debt.

One	area	where	we	have	noticed	that	they	are	still	lacking	though	is	that	they	don't	seem	to	actively	try	to	identify	areas	with	technical
debt.	Most	of	the	technical	debt	we've	seen	they	discuss	has	been	found	incidentally	or	has	been	triggered	by	outside	influences	like
platforms	or	libraries.	This	means	that	they	may	have	technical	debt	they	are	unaware	of.

Conclusion
Apache	Spark	was	created	to	achieve	high	performance	on	large-scale	data,	and	this	has	been	reflected	in	the	whole	architecture	of	Spark
Core,	which	builds	around	RDD.	Throughout	our	analysis,	we	found	that	Spark	Core	has	well-designed	interfaces	that	allow	APIs	and
functionalities	to	be	added.	The	fact	that	it	reuses	existing	libraries	and	projects	also	allows	it	to	achieve	good	scalability	right	away.
Moreover,	we	found	that	developers	of	Spark	are	very	careful	about	introducing	technical	debt.	This	results	in	a	clean	codebase.	Due	to
the	open-source	nature	of	the	project,	developers	from	various	companies,	carrying	out	various	use	cases,	contribute	directly	to	the
project.	These	factors	make	the	development	of	new	features	in	Spark	fast.

Throughout	each	release	of	Spark,	continuous	efforts	in	supporting	modern	cluster	managers	and	complex	data	sources,	as	well	as
further	optimizing	performance	and	stability,	are	observed.	We	believe	that	the	architecture	and	the	way	of	working	in	Apache	Spark
would	allow	it	to	meet	the	needs	of	future	big	data	applications.

Reference

[1]	Apache	Spark	Homepage.	https://spark.apache.org/

[2]	The	Apache	Software	Foundation	Blog.	https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces50

Spark

268

https://issues.apache.org/jira/browse/SPARK-2296
https://issues.apache.org/jira/browse/SPARK-3453
http://apache-spark-developers-list.1001551.n3.nabble.com/Future-of-the-Python-2-support-td20094.html
https://spark.apache.org/
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces50

[3]	The	Apache	Software	Foundation	Project	Statistics.	https://projects.apache.org/statistics.html

[4]	Matei	Zaharia,	Mosharaf	Chowdhury,	Michael	J.	Franklin,	Scott	Shenker,	and	Ion	Stoica.	2010.	Spark:	cluster	computing	with
working	sets

[5]	Nick	Rozanski	and	Eoin	Woods.	2012.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and
Perspectives,	2nd	edition.

[6]	Apache	Spark	Community.	https://spark.apache.org/community.html

[7]	Gigaom	on	Spark	and	Hadoop.	https://gigaom.com/2014/06/28/4-reasons-why-spark-could-jolt-hadoop-into-hyperdrive/

[8]	Apache	Software	Foundation	page	about	Project	Independence.	http://community.apache.org/projectIndependence

[9]	Matei	Zaharia.	2014.	An	Architecture	for	Fast	and	General	Data	Processing	on	Large	Clusters	(Ph.D.	Thesis)

[10]	Apache	Spark	Documentation.	https://spark.apache.org/docs/latest/

[11]	The	Apache	Software	Foundation.	http://apache.org/

[12]	Reynold	Xin,	https://www.slideshare.net/databricks/large-scalesparktalk.

[13]	Apache	Spark	@Scale:	A	60	TB+	production	use	case	https://code.facebook.com/posts/1671373793181703/apache-spark-scale-a-
60-tb-production-use-case/.

[14]	Renan	Souza,	Vítor	Silva	Sousa,	Pedro	Miranda,	Alexandre	A.	B.	Lima,	Patrick	Valduriez,	Marta	Mattoso.	2017.	Spark	Scalability
Analysis	in	a	Scientific	Workflow

Spark

269

https://projects.apache.org/statistics.html
https://spark.apache.org/community.html
https://gigaom.com/2014/06/28/4-reasons-why-spark-could-jolt-hadoop-into-hyperdrive/
http://community.apache.org/projectIndependence
https://spark.apache.org/docs/latest/
http://apache.org/
https://www.slideshare.net/databricks/large-scalesparktalk
https://code.facebook.com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/

TypeScript:	typed	JavaScript
By	Taico	Aerts,	Chiel	Bruin,	Maarten	Sijm	and	Robin	van	der	Wal	
Delft	University	of	Technology

Official	TypeScript	Logo	(on	GitHub	[1])

Abstract

TypeScript	is	a	programming	language	that	brings	types	to	JavaScript.	TypeScript,	in	contrast	to	JavaScript,	gives	developers	a	lot	of
feedback	on	their	code	and	detects	bugs	well	before	the	code	is	deployed.	It	is	a	language	that	focusses	on	usability,	which	is	reflected	in
the	language	design,	the	IDE	integration	but	especially	in	its	popularity.	Currently	ranked	as	the	third	most	loved	programming	language,
TypeScript	is	well	on	its	way	to	overtake	JavaScript	as	the	web	language	of	choice.

In	this	chapter,	we	present	a	detailed	analysis	of	the	architecture	of	TypeScript	from	various	viewpoints.	Furthermore,	we	provide	a
perspective	on	the	usability	of	the	language.	Finally,	we	close	with	an	analysis	of	technical	debt.	We	conclude	that	TypeScript	has	a
well-designed	architecture	and	has	very	little	technical	debt.

Table	of	Contents
1.	Stakeholder	Analysis

1.1	Issue	and	Pull	Request	Analysis
1.2	Analysis	of	External	Websites
1.3	Stakeholders	of	TypeScript
1.4	Power-Interest	Grid

2.	Context	View
2.1	People:	Developers	and	Users
2.2	Communication	Channels
2.3	Quality	Ensurance
2.4	Competitors
2.5	Suppliers

3.	Functional	View
3.1	Capabilities
3.2	External	Interfaces

4.	Development	View
4.1	Module	Structure
4.2	Common	Design

5.	Usability	Perspective
5.1	Usability	Aspects	in	TypeScript
5.2	The	TypeScript	Ecosystem

TypeScript

270

https://github.com/Taeir
https://github.com/ChielBruin
https://github.com/mpsijm
https://github.com/Diocruel

6.	Technical	Debt	View
6.1	Static	Tool	Analysis
6.2	Todo	Comments
6.3	Testing	Debt
6.4	Evolution	of	Technical	Debt

7.	Conclusion

Introduction

In	this	chapter,	the	architecture	of	the	software	system	TypeScript	is	examined	and	evaluated.	But	before	we	start,	we	will	state	the
purpose,	capabilities	and	history	of	TypeScript.	To	quote	their	website	[2]:

TypeScript	is	a	typed	superset	of	JavaScript	that	compiles	to	plain	JavaScript.	Any	browser.	Any	Host.	Any	OS.	Open	Source.

The	main	functionality	is,	in	other	words,	to	provide	an	extension	of	the	JavaScript	language	to	support	types.	While	typing	can	make	a
language	feel	more	restrictive,	it	also	has	many	advantages,	for	example	in	terms	of	maintainability	and	readability	of	the	code.	Typing
also	enables	more	powerful	static	analyses,	which	allows	for	the	detection	of	mistakes	at	compile	time	instead	of	at	runtime	and
decreases	debug	time	[3].

TypeScript	compiles	to	regular	JavaScript,	which	means	that	it	works	on	most	browsers	and	operating	systems.	It	offers	support	for
the	latest	ECMAScript	standards	and	is	supported	by	multiple	IDEs.	An	added	bonus	is	that	it	is	open	source	and	free	to	use.
TypeScript	is	thus	suitable	for	developing	large	scale	web	applications	and	is	used	in	many	existing	applications	[4].

TypeScript	started	as	an	internal	Microsoft	project	in	2010.	After	two	years,	the	basic	functionality	was	completed	and	the	project	was
made	open	source	[5].	TypeScript	was	praised	for	its	typing	functionality	back	then	but	missed	support	from	any	IDE.	This	was
followed	up	by	adding	IDE	support	and	editor	support	in	2013	[6].	In	2016,	TypeScript	version	2.0	added	more	type	functionality,
such	as	more	control	over	null	types	[7].	Currently,	TypeScript	is	still	in	active	development	on	its	GitHub	repository,	where	hundreds
of	contributors	have	contributed	to	the	project	[8].

Section	1	analyses	all	stakeholders	of	TypeScript	to	determine	which	people	are	most	important	for	its	development.	Next,	Section	2
provides	a	context	view	of	TypeScript.	In	Section	3,	a	functional	view	of	TypeScript	is	given	which	is	complemented	by	a	development
view	in	Section	4.	Section	5	follows	up	with	an	analysis	of	TypeScript	from	a	usability	perspective	and	technical	debt	is	examined	in
Section	6.	Finally,	Section	7	gives	an	overall	conclusion	on	the	architecture	of	TypeScript.

1.	Stakeholder	Analysis

In	order	to	identify	the	relevant	stakeholders,	we	started	by	analyzing	different	sources	related	to	the	system.	In	Section	1.1,	we
investigate	the	use	of	issues	and	pull	requests	on	GitHub	and	in	Section	1.2,	we	investigate	external	websites.	This	gave	us	a	clear
overview	of	the	people	who	have	interest	in	the	system.	This	overview	is	shown	in	Section	1.3,	followed	by	an	overview	of	the	power
and	interest	of	these	stakeholders	in	Section	1.4.

1.1	Issue	and	Pull	Request	Analysis

The	first	source	we	analysed	is	the	official	GitHub	repository	[8].	From	issues	and	pull	requests	on	this	repository	we	were	able	to
identify	the	key	developers,	their	workflow	and	other	stakeholders	with	interest	in	the	system.

We	found	that	the	main	development	is	done	by	a	core	group	of	Microsoft	employees.	They	make	many	changes	to	the	code	and	review
the	contributions	made	to	the	project	via	pull	requests.	In	addition	to	this,	they	maintain	the	roadmap	of	the	project	in	two	ways:	they
manage	the	issues	and	milestones	of	the	project,	and	they	publish	notes	of	team	meetings	as	issues	on	GitHub.
A	last	role	for	the	development	team	is	helping	users	that	have	opened	an	issue	with	problems	they	encountered.	Sometimes	a	pointer	to
the	documentation	helps	to	resolve	the	problem,	but	often	these	issues	unveil	an	actual	problem	with	(a	newer	version	of)	the
implementation.

We	were	also	able	to	identify	other	stakeholders	like	the	continuous	integration	providers	that	build	TypeScript,	JavaScript	frameworks
that	use	TypeScript	in	their	development	and	IDEs	that	integrate	with	the	language.

TypeScript

271

1.2	Analysis	of	External	Websites

Besides	the	pull	requests	and	issues	on	the	official	GitHub	repository	[8],	we	also	investigated	external	sources	in	order	to	identify	the
stakeholders.	Guided	by	the	sources	that	are	mentioned	on	the	TypeScript	website	[2],	we	looked	at	StackOverflow	[9],	Twitter	[10],
the	Microsoft	Developer	Network	(MSDN)	Channel	9	[11],	the	TypeScript	blog	[12]	and	a	list	of	languages	that	compile	to	JavaScript
on	the	CoffeeScript	GitHub	[13].

From	these	sources,	we	found	that	part	of	the	core	development	team	actively	engages	with	the	community	by	answering	questions	on
StackOverflow	and	by	writing	blog	posts	detailing	new	features	of	each	release.	These	releases	are	announced	via	both	the	official
TypeScript	Twitter	account	and	the	GitHub	repository.	Lastly,	we	identified	other	people	on	StackOverflow	that	actively	helped
people	with	their	problems,	despite	not	being	affiliated	with	Microsoft.	Some	of	these	people	have	even	written	books	on	how	to	use
TypeScript.

1.3	Stakeholders	of	TypeScript

Rozanski	and	Woods	[14]	identify	ten	types	of	stakeholders.	In	our	classification	of	the	identified	stakeholders,	we	mostly	followed	this
classification,	only	making	some	small	changes	to	better	fit	the	project.	The	stakeholder	types	that	are	the	most	relevant	to	TypeScript
are	shown	in	Table	1.1.

Type Relevant	actors

Acquirers Oversee	the	procurement	of	the	system.	Hold	the	final	rights	to	the	project

Developers Construct,	test	and	deploy	the	system	from	the	specifications

Maintainers Manage	the	evolution	of	the	system	over	time

Assessors Oversee	the	system	conformance	to	standards	(code,	documentation	and	specifications)	and	legal	regulation.
Can	be	seen	as	integrators	in	this	project

Communicators Explain	the	system	to	other	stakeholders	via	its	documentation	and	training	materials,	also	keeps	other
stakeholders	up	to	date	to	system	changes	and	releases

Suppliers Build	and/or	supply	hardware,	software,	or	infrastructure	on	which	the	system	will	run	and	deploy

Support	staff Provide	users	support	for	the	system	when	it	is	running

Users Define	the	system's	functionality	and	ultimately	make	use	of	it

Competitors Aim	to	put	a	similar,	competing	system	on	the	market

Table	1.1	-	Relevant	stakeholder	types	for	TypeScript	and	their	roles.

Many	stakeholders	have	multiple	roles	in	the	project,	making	them	part	of	multiple	of	the	different	types.	Therefore	we	created	an	Euler
diagram	that	shows	all	the	relevant	stakeholder	types	and	the	actors	they	contain	(Figure	1.1).

TypeScript

272

Figure	1.1	-	An	overview	of	the	stakeholders	of	TypeScript	and	their	roles.

1.4	Power-Interest	Grid

Another	way	in	which	we	classified	the	stakeholders	is	by	looking	at	their	power	in	changing	the	system	and	the	interest	they	have	in
the	system.	Figure	1.2	shows	this	relation	in	a	grid	with	the	relative	power	and	interest	the	different	stakeholders	have	in	TypeScript.

TypeScript

273

Figure	1.2	-	The	power-interest	grid	showing	the	different	stakeholders.

1.4.1	Microsoft	Development	Team

As	the	owner	of	the	project,	Microsoft	has	the	most	power	and	interest	in	the	system.	The	development	team	employed	by	Microsoft
to	work	on	TypeScript	have	slightly	less	power	and	interest	than	their	employer,	but	they	guide	the	main	development	of	the	system.

1.4.2	Communicators

The	communicators	are	a	group	of	stakeholders	that	have	high	interest	in	the	system,	but	who	lack	the	capability	to	steer	the	direction
of	the	project.	This	group	includes	the	writers	of	books	on	TypeScript,	the	StackOverflow	users	and	the	official	announcement
channels.	In	order	to	fulfil	their	roles	as	communicators,	they	need	to	be	up	to	date	with	the	state	of	the	system.	This	gives	them	a	great
interest	in	the	system	but	does	not	give	them	any	power	over	it.

1.4.3	Competitors

Competitors	have	a	reasonably	high	interest	in	the	system.	This	is	because	they	want	to	have	a	better	system	themselves	to	gain	a
competitive	advantage	over	TypeScript.	To	achieve	this,	they	need	to	closely	watch	the	development	of	any	new	features	that	might
give	TypeScript	this	advantage.	Following	this,	competitors	have	a	small	amount	of	power	in	the	development	of	TypeScript	with	the
features	they	introduce.

1.4.4	Users

TypeScript

274

Users	generally	have	little	power	over	the	project,	but	since	TypeScript	is	an	open	source	project,	users	can	submit	issues	and	make
contributions.	As	such,	we	have	divided	users	into	two	different	groups:	those	who	make	contributions	and	those	who	do	not.
Generally,	a	contributing	user	has	a	larger	interest	in	TypeScript	than	a	user	that	does	not.

1.4.5	Tooling

The	last	two	groups	in	the	power-interest	grid	are	the	build	tools	and	IDEs.	These	have	relatively	low	power	and	interest	in	the	system
as	they	do	not	directly	depend	on	TypeScript.	The	IDEs	are	a	little	more	dependent	on	it	as	their	integration	with	the	language	can	be	a
reason	to	use	this	IDE	over	another.	They	also	have	more	power	as	many	users	will	use	TypeScript	via	one	of	these	IDEs	and	are
therefore	an	important	factor	in	the	adoption	of	the	language.

2.	Context	View

The	context	model	in	Figure	2.1	provides	an	overview	of	the	external	entities	related	to	TypeScript.	The	following	sections	will	explain
each	of	the	external	entities	in	clockwise	order,	starting	from	the	left.

Figure	2.1:	An	overview	of	the	external	entities	related	to	TypeScript.

2.1	People:	Developers	and	Users

On	the	left	in	Figure	2.1,	the	active	developers	of	TypeScript	are	shown.	They	are	employed	by	Microsoft,	the	owner	of	TypeScript.
They	are	not	the	only	developers,	however:	there	are	GitHub	users	from	all	over	the	world	that	contribute	to	the	project,	mostly	by
submitting	pull	requests	to	the	repository.	These	GitHub	users	also	form	a	part	of	the	group	of	entities	that	use	TypeScript,	among
companies	and	general	other	users.

2.2	Communication	Channels

The	top	of	the	context	model	shows	the	four	primary	communication	channels	for	TypeScript.

The	most	important	communication	channel	is	GitHub.	This	is	where	the	issue	tracking	is	done,	pull	requests	are	reviewed,
meetings	are	documented,	etcetera.

TypeScript

275

The	TypeScript	blog	and	Twitter	are	used	to	broadcast	news	about	TypeScript	such	as	newly	published	releases	and	other
important	events.
StackOverflow	is	used	by	users	to	ask	questions	about	TypeScript,	which	are	often	answered	by	members	of	the	development
team.

2.3	Quality	Ensurance

On	the	right	in	Figure	2.1,	two	tools	are	shown	that	TypeScript	uses	to	assess	the	submitted	pull	requests.

TypeScript	uses	a	Continuous	Integration	bot	that	checks	whether	the	user	that	submitted	the	pull	request	has	signed	the	CLA	of
Microsoft.
Travis	CI	is	used	to	execute	all	tests	in	the	repository,	to	make	sure	that	the	submitted	pull	request	does	not	break	any	existing
functionality.

2.4	Competitors

At	the	bottom	right	of	the	Context	Model,	the	competitors	of	TypeScript	are	shown,	that	were	discussed	in	Section	1.4.3.	These
competitors	include	the	Elm	language,	Dart,	CoffeeScript,	and	JavaScript.

2.5	Suppliers

The	remaining	external	entities	correspond	to	the	Supplier	stakeholder	type,	as	was	discussed	in	Section	1.3.	The	following	entities	are
shown	in	Figure	2.1:

Build	tools:	Travis	CI,	Gradle,	Grunt,	and	CircleCI
Frameworks:	Angular,	NodeJS,	React,	Vue.js
IDEs:	Sublime	Text,	Visual	Studio	Code,	Atom,	WebStorm

3.	Functional	View
Every	software	system	has	some	functionalities	that	are	exposed	to	the	user.	These	functionalities	can	be	modelled	as	part	of	the
architecture	of	TypeScript.	To	this	end,	this	section	shows	a	Functional	View	as	described	in	Rozanski	and	Woods,	Chapter	17	[14].
Section	3.1	describes	the	capabilities	of	TypeScript,	while	Section	3.2	shows	the	external	interfaces	of	TypeScript	that	are	exposed	to
the	user.

3.1	Capabilities

TypeScript	has	two	main	capabilities.

1.	 Compile	TypeScript	files	to	plain	JavaScript	files	[2].
This	capability	of	TypeScript	is	fully	described	in	the	language	specification	on	GitHub	[15].	This	language	specification	is	an
exhaustive	document	that	describes	all	possible	constructs	in	the	TypeScript	language.

2.	 Provide	editor-like	functionalities	[16].
This	consists	of	many	small	capabilities,	including	code	completions,	code	formatting,	refactoring,	debugging,	incremental
compilation,	etcetera.	It	is	also	possible	to	write	custom	language	service	plugins	[17].

3.2	External	Interfaces

Both	capabilities	defined	in	Section	3.1	have	their	own	external	interfaces.	In	the	following	two	sub-sections,	we	describe	these
interfaces	and	their	responsibilities.

3.2.1	TypeScript	Compiler

The	first	capability	is	provided	by	a	standalone	compiler.	It	compiles	TypeScript	source	files	to	JavaScript	files,	in	such	a	way	that	the
emitted	JavaScript	files	resemble	the	TypeScript	input,	as	described	in	the	introduction	of	the	language	specification	[15].

TypeScript

276

The	compiler	is	a	command-line	tool	that	has	many	options	[18].	All	of	these	options	can	also	be	provided	in		tsconfig.json		files	in
any	directory	that	contains	TypeScript	files.	Using	a	configuration	file	makes	it	easy	to	use	compiler	options	consistently	in	a	project.
With	a	valid	configuration	present,	the	TypeScript	compiler	can	be	invoked	without	arguments	and	it	will	use	the		tsconfig.json		file	in
the	current	directory	[19].

3.2.2	TypeScript	Server:	Editor	Functionality

The	editor-like	functionalities	are	provided	by	a	standalone	server.	This	server	is	a	wrapper	for	many	capabilities	related	to	editor
functionality,	as	listed	in	Section	3.1.

The	TypeScript	server	communicates	using	JSON	messages	[20].	However,	typical	users	of	TypeScript	will	not	directly	interface	with
the	server.	Most	IDEs	include	the	standalone	server	and	use	it	to	provide	static	code	checks,	possible	refactorings	and	other	things	in	a
user-friendly	way.

4.	Development	View

In	this	chapter,	we	will	present	a	part	of	the	Development	View	as	described	in	Rozanski	and	Woods,	chapter	20	[14].	Section	4.1
provides	a	module	structure	model	of	TypeScript.	Section	4.2	continues	by	describing	to	what	extent	the	commonality	of	design
between	modules,	code	and	organisation	is	achieved	throughout	the	project.	We	have	also	analysed	the	codeline	models	of	TypeScript,
but	those	have	been	left	out	as	they	do	not	provide	important	additional	information	on	the	architecture	of	TypeScript.

4.1	Module	Structure

In	this	section,	we	provide	a	module	structure	model	of	TypeScript.	A	module	structure	model	shows	how	the	system	is	organized	into
modules	and	what	the	dependencies	between	these	modules	are.

We	have	identified	the	main	TypeScript	modules	and	organized	them	into	four	layers,	as	shown	in	Figure	4.1.	These	layers	are:

Compiler	layer:	The	compiler	layer	is	responsible	for	compiling	TypeScript	programs	into	JavaScript.
Language	Service	layer:	The	language	service	module	wraps	the	compiler	layer	and	provides	editor-like	services	like	formatting,
refactoring,	code	completion	and	debugging.
Server	layer:	The	server	exposes	the	language	services	and	compiler	features	to	users	through	a	JSON	protocol.	Editors	and	IDEs
can	interface	with	the	server	to	use	the	language	services	and	to	compile	code.
Test	Harness	layer:	The	test	harness	contains	various	test	runners	to	execute	different	types	of	tests.	It	also	contains	test
transformers	which	change	the	code	in	test	files	to	help	the	test	runners.

TypeScript

277

Figure	4.1	-	Module	Structure	Model	of	TypeScript,	showing	the	different	layers	and	the	dependencies	between	them.

In	this	overview,	each	module	represents	one	or	multiple	source	files	which	together	perform	a	similar	role	in	the	system.	Please	note
that	we	have	grouped	together	some	modules	to	prevent	the	image	from	becoming	too	detailed.	The	purple-coloured	modules	are
modules	that	a	user	of	TypeScript	can	interact	with.	All	modules	that	are	not	purple	are	internal	to	TypeScript.

We	can	see	from	the	module	structure	that	the	different	capabilities,	as	defined	above	in	the	Functional	View	(Section	3),	reside	in
separate	layers	in	the	repository.	The	editor	functionality	is	even	split	into	two	layers:	one	layer	that	contains	the	editor	services	and
one	separate	layer	for	the	server,	which	wraps	the	compiler	and	language	service	layers.

4.1.1	As-designed	versus	As-implemented

TypeScript	provides	a	layer	overview	[16]	on	their	wiki.	We	have	included	this	layer	overview	as	Figure	4.2.	While	this	image	isn't
exactly	the	same	as	a	module	structure	model,	it	does	describe	similar	layers	to	our	module	structure	model.

One	big	difference	is	that	the	test	harness	is	not	shown	in	the	architectural	overview.	While	the	test	harness	did	exist	whenever	the	image
was	created,	it	was	probably	left	out	since	it	is	not	involved	in	the	compilation/static	analysis	pipeline.

Another	difference	is	that	"VS	Shim"	is	mentioned	on	the	layer	with	the	server.	In	the	code,	the	"shims"	are	in	the	Language	Service
directory	and	seem	to	offer	functionality	similar	to	other	language	services.	For	this	reason,	we	decided	to	leave	it	out	to	keep	our
module	structure	simple.

Besides	the	layer	overview,	TypeScript	also	provides	an	overview	of	the	common	data	structures	that	are	used	to	communicate	between
layers.	The	most	important	one	of	them	is	the	Abstract	Syntax	Tree	(AST).	Looking	at	the	code	in	the	different	layers,	it	looks	like	the
interface	for	an	AST	node	is	defined	in	multiple	ways,	in	this	way	exposing	different	functionalities	of	nodes	to	different	layers.

TypeScript

278

Figure	4.2	-	Layer	overview	from	the	TypeScript	wiki.	[16]

4.2	Common	Design

In	our	analysis	of	TypeScript,	we	have	found	some	common	elements	in	the	design	of	TypeScript.	For	the	brevity	of	the	chapter,	we
have	left	out	the	complete	analysis	in	our	chapter.	The	most	important	findings	of	common	design	elements	are:

Internationalization,	logging,	debugging	and	performance	metrics	are	standardized	across	the	project.
TypeScript	has	a	clear	standardized	design	methodology	and	testing	procedure	when	it	comes	to	contributions	and	changes.
Standard	code	solutions	like	design	patterns	are	used	sparingly.	It	seems	that	TypeScript	avoids	common	design	patterns	because
of	a	focus	on	performance.	This	is	detrimental	to	the	readability	of	the	code	as	different	pieces	of	code	performing	a	similar	task	can
look	very	different.	It	can	also	make	it	more	difficult	for	someone	to	contribute	to	the	project	because	the	developers	might	want	to
see	particular	code	patterns,	but	these	patterns	are	not	communicated	to	contributors.

We	can	see	that	TypeScript	uses	common	design	of	elements	wherever	this	applicable,	in	order	to	prevent	code	duplication	as	much	as
possible.

5.	Usability	Perspective
In	this	section,	we	analyze	TypeScript	from	a	usability	perspective.	For	TypeScript,	usability	means	something	completely	different
than	for	other	software	systems.	Its	usability	is	not	decided	by	the	user	interface	of	the	software.	Rather,	the	usability	of	TypeScript	is
determined	by	the	usability	of	the	language	and	by	the	ecosystem	around	TypeScript.	This	concerns	architectural	elements	like	the
expressiveness	of	the	language	and	the	understandability	of	compiler	output,	but	also	elements	like	tutorials,	support	with	questions	and
integration	with	IDEs.	To	analyse	this,	we	first	look	at	different	usability	aspects	in	TypeScript	itself.	Then,	we	take	a	look	at	the
ecosystem	around	TypeScript.

5.1	Usability	Aspects	in	TypeScript

5.1.1	Internationalization

Internationalization	is	used	for	the	different	error	messages	that	can	be	generated	by	the	compiler.	To	change	the	language,	users	have	to
set	the		--locale		flag	to	the	language	of	their	choice,	e.g.		--locale	de		for	German.	The	locale	can	also	be	configured	globally	with	a
	tsconfig.json		file.	TypeScript	currently	supports	14	different	languages,	covering	the	most	used	languages	on	the	planet.	Usually,	it	is
difficult	for	a	project	to	keep	the	translations	up	to	date	when	messages	are	added	or	changed.	However,	TypeScript	is	localized	by	the
Microsoft	localization	team	which	updates	the	localizations	periodically.	For	TypeScript	this	means	that	localizations	are	almost	always
up	to	date.	As	TypeScript	also	supports	UTF-8	and	UTF-16	in	its	parser	and	compiler,	users	can	easily	use	TypeScript	in	the	language
of	their	choice.

TypeScript

279

5.1.2	Conformance	Testing

TypeScript	is	a	superset	of	JavaScript.	As	such,	they	want	to	support	all	JavaScript	functionality.	New	JavaScript	functionality	is
added	from	time	to	time	in	the	form	of	new	ECMAScript	standards.	TypeScript	also	wants	to	conform	to	these	standards,	both	in	the
original	TypeScript	code	as	in	the	JavaScript	code	it	compiles	to.	To	ensure	this	conformance,	TypeScript	has	multiple	tests	for	the
ECMAScript	functionality.	Any	change	that	would	break	this	conformance	is	detected	and	will	be	modified.	By	supporting	all	this
functionality,	users	can	continue	to	use	the	features	from	JavaScript	that	they	are	familiar	with	and	will	probably	have	an	easier	time	to
switch	to	TypeScript.

5.1.3	IDE	Integration

TypeScript	is	supported	by	multiple	IDEs	and	editors,	including	Visual	Studio,	Eclipse	and	WebStorm,	but	also	Sublime,	Atom,	Emacs
and	Vim.	Users	thus	have	a	wide	variety	of	choice	in	which	editor	they	use.	TypeScript	provides	the	IDE	functionality	with	the
TypeScript	server,	which	is	then	used	by	the	IDE	or	editor.	For	users,	this	means	that	the	experience	is	consistent	across	the	different
supported	editors.

5.2	The	TypeScript	Ecosystem

5.2.1	Documentation	and	Support

TypeScript	offers	extensive	documentation	on	its	website.	There	are	tutorials	for	people	who	are	new	to	TypeScript,	giving	quick	and
simple	explanations	on	how	to	get	started.	There	is	also	a	handbook	which	contains	much	more	detailed	explanations	of	the	different
features.	A	formal	language	specification	can	be	found	on	GitHub.	For	further	questions,	users	are	referred	to	StackOverflow,	where
questions	are	answered	by	an	active	community	and	sometimes	also	by	the	developers	of	TypeScript.

We	do	see	that	the	handbook	is	not	up	to	date	with	the	latest	functionality.	There	is	a	section	"What's	New"	that	discusses	new	language
features	in	detail,	but	these	features	should	also	be	added	into	the	handbook,	e.g.	with	a	note	in	which	version	they	have	been	added.

5.2.2	User	Satisfaction

The	best	way	to	determine	usability	is	by	asking	the	users	themselves.	Every	year,	StackOverflow	has	a	survey	amongst	its	users,	with
questions	regarding	popular	technologies	and	languages	[21].	With	responses	from	over	64.000	developers	from	all	over	the	world,	it	is
the	largest	survey	in	the	field.	In	last	year's	survey,	TypeScript	was	the	9th	most	popular	language	across	all	categories	and	the	7th	most
popular	language	according	to	web	developers.	In	addition,	it	ranked	3rd	on	the	list	of	most	loved	programming	languages.	These	results
suggest	that	users	are	pretty	satisfied	with	TypeScript.

6.	Technical	Debt	View

Software	developers	can	sometimes	decide	to	implement	something	the	"quick	and	dirty"	way.	Such	a	solution	can	be	justified	for	many
reasons	like	time	pressure	but	is	often	not	the	best	solution	when	looking	at	code	quality.	In	such	a	case,	the	developers	deliberately
introduce	so-called	technical	debt.	This	debt	can	accumulate	over	time	and	can	be	decremental	to	the	maintainability	of	a	system.
Therefore,	developers	need	to	pay	attention	to	their	technical	debt	every	once	in	a	while,	in	order	to	raise	the	quality	of	the	code	again.

In	this	section,	we	will	investigate	the	technical	debt	that	is	present	in	the	code	of	TypeScript.	We	will	start	with	a	static	tool	analysis	of
the	repository,	then	we	analyze	the	"todo"	comments	left	in	the	code	base	followed	by	analysis	on	the	testing	debt.	Finally,	we	look	at
the	evolution	of	technical	debt.

6.1	Static	Tool	Analysis

TypeScript	is	a	project	of	135k	lines	of	code.	This	is	too	much	to	go	over	manually.	Instead,	a	static	tool	analysis	was	done	on	the
project	using	SonarQube	[22]	with	the	SonarTS	plug-in	[23].	The	overview	of	this	analysis	can	be	seen	in	Figure	6.1.	Note	that	for
testing	we	run	a	different	tool,	this	can	be	found	in	Section	6.3.

TypeScript

280

Figure	6.1	-	Overview	of	SonarQube	after	running	the	tool	on	the	TypeScript	project.

According	to	SonarQube,	TypeScript	has	a	low	score	for	bugs	and	vulnerabilities.	However,	most	bugs	and	vulnerabilities	are	false
positives	since	TypeScript	is	a	compiler,	which	requires	some	workarounds	in	the	code.	The	most	common	bug	is	useless	self-
assignment,	which	could	easily	be	fixed.

Next,	the	code	duplication	is	small	and	the	code	smells	are	not	severe.	Most	duplications	take	place	in	non-critical	parts	of	the
repository,	such	as	the	testing	harness	or	the	server	hosting	classes,	there	is	no	code	duplication	in	the	compiler.	The	major	code	smells
are	mostly	about	to	conditions	that	always	evaluate	to	true,	empty	code	blocks	and	useless	assignments.	The	minor	smells	are	almost	all
about	unnecessary	casts	and	usage	of	line	continuation.	These	code	smells	could	be	refactored.

Lastly,	the	most	significant	source	of	technical	debt	according	to	SonarQube	is	the	cyclomatic	complexity.	The	most	complex	file	is	the
type	checker:	checker.ts.	This	file	has	a	cyclomatic	complexity	of	just	over	nine	thousand,	making	the	file	very	unreadable.	However,
this	file	is	well	tested	and	the	developers	do	mention	in	their	coding	guidelines	that	they	don't	want	to	split	up	any	classes	[24].	This
adheres	to	the	Single	Responsibility	principle	from	the	SOLID	design	principles.	However,	it	could	still	be	argued	that	this	class	could
be	split	up	since	there	are	different	stages	of	type	checking.	This	would	increase	the	readability	of	the	type	checker	of	the	compiler.

6.2	Todo	Comments

Next,	we	analyzed	signs	of	technical	debt	in	todo	comments.	Todo	comments	a	good	indicator	for	technical	debt	as	they	are	easily
searched	for	and	provide	clear	information	if	they	are	written	well.	Furthermore,	todo	comments	are	written	by	developers	for
developers,	to	indicate	what	still	has	to	be	changed	in	further	versions	to	improve	the	product.

In	the	source	code	of	TypeScript,	there	are	116		TODO		comments	(measured	on	March	14,	2018).	In	Figure	6.2	the	division	of	todo
comments	across	the	different	layers	(as	discussed	in	Section	4.1)	can	be	seen.

Figure	6.2	-	The	image	on	the	left	shows	the	number	of	todo	comments	in	each	layer.	The	image	on	the	right	shows	the	number	of	todo
comments	per	1000	lines	of	code	for	each	of	the	different	layers.

From	Figure	6.2,	we	can	make	two	remarks	on	the	todo	comments	on	the	code.	First,	the	layer	with	the	most	comments	is	the	services
layer.	This	is	not	surprising	as	this	layer	offers	functionalities	such	as	formatting,	code	fixes	and	debugging,	which	all	have	edge	cases
that	only	a	few	users	stumble	into.	This	lowers	the	priority	of	fixing	these	todo	comments.

Secondly,	while	it	would	seem	that	the	compiler	layer	has	quite	a	few	todo	comments,	it	actually	has	the	lowest	density	amongst	the
different	layers.	This	is	probably	because	the	compiler	layer	is	the	core	of	the	TypeScript	project	and	thus	it	is	important	to	keep	this
part	clear	of	any	technical	debt.

For	a	large	project	like	TypeScript,	the	number	of	todo	comments	is	relatively	low.	There	is	less	than	one	todo	comment	for	every	1100
lines	of	code.	Furthermore,	many	todo	comments	are	still	relevant.	However,	since	TypeScript	heavily	uses	the	issue	system	of	GitHub,
many	todo	comments	can	be	converted	into	GitHub	issues	and	then	be	removed	from	the	code.	This	would	probably	provide	a	better

TypeScript

281

overview	than	hiding	them	in	the	code.

6.3	Testing	Debt

TypeScript	uses	Istanbul	[25]	to	measure	code	coverage.	We	have	generated	two	coverage	reports	for	TypeScript,	which	are	shown	in
Figures	6.3	and	6.4.

In	both	reports,	any	module	in		src/harness		can	be	ignored,	since	this	module	contains	the	testing	harness	as	explained	in	Section	4.1.

Figure	6.3	-	Coverage	overview	as	generated	by	Istanbul	[25].

In	Figure	6.3,	for	every	module	in	the	source	code,	the	statement	coverage,	branch	coverage,	function	coverage,	and	line	coverage	is
shown.

Figure	6.4	-	Coverage	overview	as	generated	by	SonarQube	[22]	from	the	remapped	report.

TypeScript

282

Figure	6.4	shows	the	coverage	proportional	to	the	number	of	lines	of	code	in	a	module.	The	size	of	each	block	is	proportional	to	the
number	of	lines	of	code,	while	the	colour	of	each	block	indicates	the	test	coverage	(an	average	of	line	and	branch	coverage).

From	both	Figure	6.3	and	6.4,	we	can	see	that	in	general,	the	modules	that	are	relatively	small	have	low	coverage	and	vice	versa.	Also,
TypeScript	has	a	rule	that	states	that	all	changed	code	in	pull	requests	must	be	100%	covered	[26].	From	this,	we	can	conclude	that
testing	debt	is	almost	absent	in	TypeScript.

6.4	Evolution	of	Technical	Debt

Besides	the	technical	debt	that	is	currently	present	in	TypeScript,	we	also	looked	at	the	evolution	of	the	system.	For	this	we	created
evolution	matrices	[27]	for	the	three	main	modules,	using	Matplotlib	[28]	and	Gitcovery	[29].	These	matrices	show	different	metrics	for
each	file	over	time,	therefore	allowing	us	to	distinguish	patterns	in	the	evolution	of	TypeScript.	In	this	section,	we	will	highlight	a	few
interesting	observations.

6.4.1	Red	Giants

Red	giants	are	components	that	are	very	large	and	maintain	this	size	over	many	versions.	The	most	obvious	component	in	TypeScript
that	qualifies	is	the	type-checker,	with	over	27,000	lines	of	code	and	steadily	growing	over	time,	as	can	be	seen	in	the	bottom	row	of
Figure	6.5.	Another	component	that	acted	as	a	red	giant	was	the	emitter,	with	around	8,000	lines	of	code,	shown	in	the	top	row	of
Figure	6.5.	This	component	is	also	a	case	where	we	can	see	a	successful	refactoring	(in	version	2.1).	Here,	its	size	was	more	than	halved,
making	it	more	maintainable.

Figure	6.5	-	A	subsection	of	the	full	evolution	matrix,	showing	the	emitter	and	the	type-checker	in	more	detail.	The	width	and	height	of	the
rectangles	show	the	number	of	functions	and	number	of	lines	per	function	respectively	(as	a	metric	of	file	size).	A	black	outline	is	added
when	a	file	is	changed.	We	also	normalized	the	sizes	of	the	rectangles	to	the	maximum	values	encountered	for	a	component,	to	make	the
figure	more	readable.

6.4.2	System	Growth

During	the	lifespan	of	TypeScript,	there	have	been	multiple	phases	in	where	the	number	of	components	grew	significantly.	A	good
example	is	the	server	module,	which	doubled	in	size	from	version	2.0.3	to	2.0.5	(Figure	6.6a).	According	to	the	release	notes,	this	is	due
to	the	integration	of	TypeScript	with	Visual	Studio	[30].
Another	instance	where	the	evolution	of	the	system	is	shown	clearly	is	in	the	early	days	of	the	services	module.	At	this	moment	the
module	saw	significant	changes	with	the	removal	and	addition	of	most	components	(Figure	6.6b).	These	were	likely	only	design	changes
as	they	are	not	mentioned	in	the	release	notes.

TypeScript

283

a)	-	Growth	phase	of	the	server	module 	b)	-	Growth	phase	of	the	services	module
Figure	6.6	-	Subsection	of	the	full	evolution	matrices,	showing	phases	of	growth.	The	width	and	height	of	the	rectangles	show	the	number
of	functions	and	number	of	lines	per	function	respectively	(as	a	metric	of	file	size).	The	colour	shows	the	number	of	todo	comments	per
1000	lines	of	code,	where	green	is	0	and	red	is	5	or	more.	A	black	outline	is	added	when	a	file	is	changed.	We	also	normalized	the	sizes
of	the	rectangles	to	the	maximum	values	encountered	for	a	component,	to	make	the	figure	more	readable.

7.	Conclusion

TypeScript	is	a	well-designed	system	that	has	matured	a	lot	since	its	1.0	release.	The	design	of	the	system	is	well-thought	through	and	is
very	close	to	the	architecture	as	it	is	currently	implemented.	Despite	its	growth,	it	has	been	able	to	maintain	a	good	architecture	that
does	not	violate	the	SOLID	principles.	However,	one	thing	we	noticed	is	that	it	is	very	difficult	to	familiarize	with	the	TypeScript	code,
simply	because	of	the	complexity	of	the	project.

For	a	large	system	like	TypeScript,	it	has	very	little	technical	debt.	There	are	many	unit	tests	and	integration	tests	that	together	give	a
high	coverage	and	automated	tools	find	very	few	code	problems.	There	are	a	few	todo	comments	that	indicate	technical	debt,	but	all
things	considered,	TypeScript	is	very	much	on	top	of	technical	debt.

In	terms	of	usability,	TypeScript	is	doing	a	great	job,	both	in	the	system	itself	as	in	the	ecosystem	around	it.	IDE	support	is	good,	there
is	a	strong	community	and	developers	seem	to	like	the	language.

However,	the	real	struggle	that	TypeScript	has	does	not	lie	in	its	architecture,	but	rather	on	GitHub.	The	development	team	struggles	to
keep	up	with	the	number	of	issues	and	pull	requests	that	are	created	every	day.	The	initial	response	is	quick,	but	the	follow-up	can	take
a	long	time,	which	can	discourage	users	and	can	make	integration	of	pull	requests	more	difficult.

All	things	considered,	we	think	that	the	TypeScript	team	is	doing	a	great	job.	We	are	confident	that	TypeScript	will	be	able	to	overcome
the	challenges	ahead	if	they	continue	as	they	do	now.

References

TypeScript

284

1 Microsoft,	TypeScript	Logo,	Microsoft,	2017.

2 Microsoft,	TypeScript	Website,	Microsoft,	2018.

3 Kleinschmager,	Sebastian	et	al.,	Do	static	type	systems	improve	the	maintainability	of	software	systems?	An	empirical
study,	Program	Comprehension	(ICPC),	2012	IEEE	20th	International	Conference	on,	2012.

4 Microsoft,	Friends	of	TypeScript,	Microsoft,	2018.

5 Turner,	Jonathan,	Announcing	TypeScript	1.0,	Microsoft,	2014.

6 Shen,	Tom,	TypeScript	Eclipse	plug-in,	Eclipse,	2013.

7 Bright,	Peter,	TypeScript,	Microsoft's	JavaScript	for	big	applications,	reaches	version	2.0,	Ars	Technica,	2016.

8 Microsoft,	TypeScript	GitHub,	GitHub,	2018.

9 StackOverflow,	Questions	tagged	Typescript	on	StackOverflow,	StackOverflow,	2018.

10 Microsoft,	TypeScript	Official	Twitter,	Twitter,	2018.

11 Microsoft,	Microsoft	Channel	9,	Microsoft,	2018.

12 Microsoft,	TypeScript	Blog,	Microsoft,	2018.

13 CoffeeScript,	CoffeeScript:	List	of	Languages	that	Compile	to	JavaScript,	CoffeeScript,	2018.

14 Rozanski,	N.,	&	Woods,	E.,	Software	systems	architecture:	working	with	stakeholders	using	viewpoints	and	perspectives,
Addison-Wesley,	2014.

15 Microsoft,	TypeScript	language	specification,	Microsoft,	2016.

16 Microsoft,	TypeScript	Wiki:	Architectural	Overview,	Microsoft,	2017.

17 Microsoft,	TypeScript	Wiki:	Writing	a	Language	Service	Plugin,	Microsoft,	2017.

18 Microsoft,	TypeScript:	Compiler	Options,	Microsoft,	2018.

19 Microsoft,	TypeScript:	tsconfig.json,	Microsoft,	2018.

20 Microsoft,	TypeScript	Wiki:	Standalone	Server	(tsserver),	Microsoft,	2017.

21 Stack	Overflow,	Stack	Overflow	Developer	Survey	2017,	Stack	Overflow,	2017.

22 SonarQube,	SonarQube	main	website,	SonarQube,	2018.

23 SonarQube,	SonarTS	GitHub	repository,	SonarQube,	2018.

24 Microsoft,	TypeScript	Wiki:	Coding	Guidelines,	Microsoft,	2018.

25 Krishnan	Anantheswaran,	Istanbul	GitHub	repository,	Krishnan	Anantheswaran,	2018.

26 Microsoft,	TypeScript	contributing.md,	Microsoft,	2018.

27 Lanza,	Michele,	The	evolution	matrix:	Recovering	software	evolution	using	software	visualization	techniques,	Proceedings
of	the	4th	international	workshop	on	principles	of	software	evolution,	2001.

28 Matplotlib,	Matplotlib	website,	Matplotlib,	2018.

29 Chiel	Bruin,	Gitcovery	GitHub	repository,	Chiel	Bruin,	2018.

30 Microsoft,	TypeScript	2.0.5	release	notes,	Microsoft,	2016.

TypeScript

285

https://github.com/Microsoft/TypeScript/blob/master/doc/logo.svg
https://www.typescriptlang.org/
https://www.typescriptlang.org/community/friends.html
https://blogs.msdn.microsoft.com/typescript/2014/04/02/announcing-typescript-1-0/
http://marketplace.eclipse.org/content/typescript#.VAmSNvm1bYg
https://arstechnica.com/information-technology/2016/09/typescript-microsofts-javascript-for-big-applications-reaches-version-2-0/
https://github.com/Microsoft/TypeScript
https://stackoverflow.com/questions/tagged/typescript
https://twitter.com/typescriptlang
https://channel9.msdn.com/
https://blogs.msdn.microsoft.com/typescript/
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/wiki/Architectural-Overview
https://github.com/Microsoft/TypeScript/wiki/Writing-a-Language-Service-Plugin
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://github.com/Microsoft/TypeScript/wiki/Standalone-Server-%28tsserver%29
https://insights.stackoverflow.com/survey/2017
https://www.sonarqube.org
https://github.com/SonarSource/SonarTS
https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines
https://github.com/gotwarlost/istanbul
https://github.com/Microsoft/TypeScript/blob/master/CONTRIBUTING.md
https://matplotlib.org
https://github.com/ChielBruin/Gitcovery
https://github.com/Microsoft/TypeScript/releases/tag/v2.0.5

Vue.js	-	The	Progressive	JavaScript	Framework

Arthur	Guijt 	 Philippe	Louchtch 	 Tim	Speelman 	 Lars	Stegman

Introduction

Web	applications	have	evolved	to	the	point	where	DOM	manipulation	via	javascript	is	exceedingly	common,	however	most
implementations	doing	so	are	slow.	Entire	lists	have	their	representation	recomputed	while	only	a	single	item	has	changed.	Or	the	data
model	and	visual	representation	are	out	of	sync	due	to	not	recomputing	enough.	In	the	meantime	there	is	a	ton	of	code	performing	string
interpolation	to	generate	the	interface	elements.

Vue.js	is	a	library/framework	for	Javascript	and	TypeScript	that	uses	templates	or	render	functions,	in	combination	with	data	binding	to
make	building	user	interfaces	easy	and	clean.	It	can	be	used	for	a	small	part	of	the	website	as	a	library,	up	to	full	single	page	applications
utilizing	Vue	as	a	framework.	Applications	can	also	be	adopt	Vue	incrementally,	allowing	developers	to	slowly	introduce	it	in	your
project.	Vue	won't	break	out	of	nowhere.	It	is	well	tested:	with	a	suite	of	over	1000	unit	tests,	practical	e2e	tests,	and	it	boasts	of	100%
line	coverage.

Vue	bears	many	similarities	to	other	javascript	libraries/frameworks	related	to	DOM	manipulation,	most	notably	React	-	as	they	both
use	a	virtual	DOM	-	but	also	other	frameworks	like	Angular.	For	an	in	depth	comparison	we	would	like	to	refer	you	to	this	comparison,
while	it	is	not	independent	it	gives	a	good	overview	of	the	differences	between	projects.

In	short,	quoting	the	first	page	of	the	Vue.js	guide:

Vue	(...)	is	a	progressive	framework	for	building	user	interfaces.	(...)	Vue	is	designed	from	the	ground	up	to	be	incrementally
adoptable.	(...)	(Vue)	is	easy	to	pick	up	and	integrate	with	other	libraries	or	existing	projects.	(...)	Vue	is	also	perfectly	capable	of
powering	sophisticated	Single-Page	Applications	(...).

This	introductory	quote	neatly	outlines	the	scope	of	Vue.js:	handling	the	view	layer,	mainly	by	DOM	manipulation	and	event	binding.
In	contrast	with	jQuery,	which	provides	an	alternative	API	to	DOM	manipulation,	Vue	takes	the	entire	DOM	manipulation	away,
letting	the	user	focus	on	writing	logic.

Stakeholder	Analysis

Core	and	Ecosystem	Distinction

Vue.js	is	more	than	the	"core"	Vue	library	itself.	We	have	identified	a	strong	interplay	between	the	core	Vue	library	and	the	various
components	and	extensions.	The	development	of	one	guides	the	development	of	the	other.

Therefore	we	have	split	the	developers	and	maintainers	into	"core"	and	"ecosystem"	camps.	We	concern	ourselves	with	the	analysis	of
the	"core"	part.	However,	the	ecosystem	cannot	be	ignored,	hence	we	included	it	in	our	developer	and	maintainer	stakeholder	analysis.

Users	and	End-Users	Distinction

The	Vue.js	project	is	not	a	product	directly	usable	in	the	traditional	sense.	It	is	a	library,	middleware	making	it	easy	to	build	web-based
client-side	applications.	We	make	a	distinction	between	two	classes	of	user	stakeholders:

End-users
This	is	a	virtual	class	of	stakeholders	of	users	who	end	up	using	the	product	(the	end-product)	built	by	the	'Users'	but	are	not

Vue.js

286

https://github.com/8uurg
https://github.com/PhilipeLouchtch
https://github.com/TimSpeelman
https://github.com/LarsStegman
https://github.com/vuejs/vue
https://vuejs.org/v2/guide/comparison.html
https://vuejs.org/v2/guide/index.html

exposed	to	the	Vue.js	project	directly.	They	are	concerned	with	having	a	compatible,	fast	and	solid	end-product	and	as	a	whole	are
uncaring	about	the	specific	middleware	used.
Users
These	are	the	direct	users	of	the	Vue.js	project.	They're	concerned	with	having	happy	end-users	and	thus	share	their	concerns.	On
top	of	that,	they	are	the	stakeholder	who	pick	the	middleware	and	thus	care	about	technical	aspects	such	as:	strong	community
support,	tooling,	features,	and	clean	and	easy	to	use	APIs.

Vue.js	Community

The	community	is	a	virtual	group	of	people	participating	in	Vue.js	development	and	maintenance,	as	well	as	Vue.js	related	discussions
on	GitHub	&	Vue.js	forum,	Vue.js	discord	server,	Vue.js	StackOverflow	topic,	Vue.js	related	conferences,	etc.	This	community	is	mostly
comprised,	but	not	exclusive	to,	the	Vue.js	developers,	maintainers,	users	and	stakeholders	whose	businesses	depend	on	the	continued
success	of	Vue.js.	Please	note	that	participation	in	the	community	is	completely	voluntary.

The	Stakeholders

Acquirers

Evan	You	is	the	main	and	most	important	acquirer	of	the	system.	He	set	out	to	build	something	new	and	to	prove	its	viability.	The
success	of	the	project	attracted	sponsors,	recurring	and	one-time	donations.	The	whole	body	of	the	sponsors	can	also	be	considered,	to	a
lesser	extent,	as	an	acquirer	or	a	virtual	entity	with	interest	in	the	continued	existence	of	the	system.

It	is	unknown	to	us	if	there	are	hidden	sponsors	involved,	i.e.	companies	whose	products	are	built	on	top	of	Vue.js	and	have	a	direct	line
of	communication	with	the	development	team.

Communicators

Evan	You	is	the	face	of	the	project	and	is	the	most	prolific	member	of	the	team.	Being	the	face,	he	promotes	and	communicates.
Furthermore,	there	are	commercial	trainers	and	an	organization	that	organizes	Vue.js	conferences.	Every	member	of	the	core	team,	some
more	than	others,	represents	the	product	through	their	interaction	with	the	community,	whilst	also	writing	documentation.

Core-Developers

Just	like	the	1.0	version	was	a	large	rewrite	over	the	0.xx	series,	the	current	2.x	series	is	a	large	rewrite	over	the	1.x	series.	The	developers
of	the	2.0	release	were	the	people	that	were	members	of	the	"core"	team	at	that	time	source.	An	overview	of	the	(current)	core	members
can	be	found	here

Core-Maintainers

The	maintainers	of	the	Vue.js	core	library	are	the	members	of	the	Vue.js	GitHub	organization,	which	is	a	super-set	of	the	core	developer
group.	The	actual	maintainers	are	the	active	and	willing	members	of	the	Vue.js	GitHub	organization.

Any	member	of	the	organization	has	the	ability	to	approve	or	decline	a	pull-request.	Evan	You,	however,	is	the	only	person	making	the
final	merges	and	releases.

The	Integrator

Evan	You	is	the	man,	the	face	and	the	brains	behind	the	Vue.js	project.	It	is	both	his	reputation	and	source	of	income.	Evan	is	directly
dependent	on	the	success	of	the	project,	therefore	he	is	concerned	with	keeping	the	relevant	stakeholders	happy.	These	include:	the
users	(and	indirectly	the	end-users),	developers	and	maintainers,	and	sponsors.	Furthermore,	the	community	size	and	richness	of	the
ecosystem	is	a	strong	indicator	of	interest,	therefore	his	interest	lies	in	keeping	stakeholders	happy	whilst	growing	the	community	and
the	ecosystem.

Vue.js

287

https://www.patreon.com/evanyou
https://vuejs.org/support-vuejs/#One-time-Donations
https://vuejs.org/v2/guide/team.html
https://github.com/orgs/vuejs/people
https://vuejs.org/v2/guide/team.html

This	is	a	special	kind	of	stakeholder,	much	like	Linus	Torvalds	of	the	Linux	Kernel	fame,	whose	success	is	directly	related	to	the	success
of	his	most	renowned	project.	Hence,	in	a	respectful,	tongue-in-cheek	kind	of	way,	we	originally	referred	to	this	stakeholder	as	"The
Linus".	Another	interesting	aspect	of	this	kind	of	stakeholder	is	the	"Benevolent	Dictator"	development/Git-branching	model	where
only	the	integration-manager	(or	"the	dictator")	has	direct	commit	privileges	to	the	"blessed	repository".

Ecosystem-Developers	&	Maintainers

Some	members	of	the	core-team	are	also	ecosystem	developers.	However,	the	ecosystem	is	not	a	specific	project	or	a	repository.	There
are	both	"official"	and	community	ecosystem	contributions.	The	official	Vue.js	components	live	directly	in	the	Vue.js	GitHub
organization,	while	the	community	components	start	their	life	outside	of	it.

Users

The	direct	users	of	the	Vue.js	project.	These	are	the	developers	or	companies	making	use	of	Vue.js	to	build	their	own	products.

One	very	important	user	of	Vue.js	is	the	Alibaba	Group.	Not	only	have	they	built	some	of	their	websites	with	Vue.js,	they	decided	to
help	integrate	Vue.js	with	Weex	in	persuit	of	their	goal	to	use	only	one	front-end	framework	across	their	applications,	both	web	and
mobile.	source

End-users

The	users	of	the	final	product	made	by	the	"Vue.js	users".	This	group	does	not	participate	in	the	development	of	Vue.js	but	their
concerns	are	extremely	important	for	the	evolution	of	the	Vue.js	project.	Their	wishes	and	demands	may	propagate	up	to	the	Vue.js
ecosystem	or	even	the	core	project.

Support	Staff

Some	communicators	also	fulfil	this	role	by	participating	in	stack-overflow	and	forum	questions	&	.discussions

Power-Interest

This	power	interest	diagram	shows	the	most	important	stakeholders,	below	is	an	explanation	for	each	of	them.

Evan	You	is	by	far	the	most	important	person	in	the	system,	and	is	the	one	who	makes	the	decisions.	Due	to	Evan	being	the	final
decision	maker	and	the	integrator,	the	core	developers	have	less	power.	Furthermore,	their	interest	is	rated	lower	as	their	income	and
reputation	does	not	depend	as	much	on	the	success	of	the	project	as	Evan	does.

Vue.js

288

https://git-scm.com/about/distributed

The	top-tier	sponsors	contribute	significant	amounts	of	funding	to	the	project.	Such	funding	always	buys	some	level	of	power,	even	if
subconscious,	in	the	case	of	Vue	we	argue	this	also	being	true,	albeit	limited	to	some	extent.	Not	all	sponsors	are	directly	dependent	on
the	success	of	the	Vue.js	project,	these	score	lower	on	the	interest	graph.	Others	like	VueSchool,	do	and	therefore	are	rated	having	higher
interest	in	the	success	of	the	project.

Hanks10100	is	an	example	GitHub	user	who	is	not	part	of	the	development	team.	We	consider	him	to	be	part	of	"the	Vue.js
community".

Finally	we	have	two	major	competitors,	React	and	Angular.	While	they	do	not	hold	much	power,	as	competing	products	they	have	to
pay	attention	to	each	other.	Case-in-point:	some	of	the	people	involved	with	React	joined	the	discussion	in	the	comparison.

Context	view

horizontal	axis:	production	line,	vertical	axis:	development	line

A	few	external	entities	can	immediately	be	identified:	Vue	can	be	extended	through	components	and	plugins,	consumed	by	web
applications	or	individual	UI	components.	Together	these	form	the	interface	towards	the	end	user,	who	uses	a	browser	to	run	it	all.
This	is	what	we	call	the	'production	line'.

Vue.js

289

https://vuejs.org/v2/guide/comparison.html

Conversely,	different	people	and	projects	are	involved	during	development	which	are	not	seen	during	production	itself.	The	Vue
developers,	the	users	that	create	their	applications,	the	competitors	that	can	alternatively	be	chosen	from.	But	also	the	development
tools	themselves:	npm	for	package	management,	rollup	and	webpack	for	bundling,	and	the	testing	tools	further	described	in
Standardization	of	Testing.	This	is	what	we	call	the	'development	line',	visualized	vertically	in	the	diagram.

The	part	of	Vue	that	we	are	looking	at	-	Vue	'core'	-	is	the	base	library	on	which	the	rest	of	the	Vue	ecosystem	is	built.	The	ecosystem
consists	of	libraries,	some	of	which	where	important	enough	to	be	maintained	by	Vue	core	developers:	the	Vue	core	libraries.	Examples
of	this	are	Vue	Router	and	VueX.

Vue	is	based	around	reusable	components,	some	of	which	will	be	local	to	their	own	projects	-	but	some	are	reusable	enough	that	they	can
be	used	across	projects.	The	community	provides	a	large	amount	of	these	reusables,	and	many	of	those	are	shared	as	open	source,	for
example	those	listed	on	awesome-vue.

Functional	Architecture
It's	in	the	name.	Vue	offers	a	convenient	way	to	manage	the	view	layer.	This	entails	two	ways	of	communication:	the	data	from	the
application	is	presented	to	the	end-user,	and	the	end-user	input	is	communicated	back	to	the	application.	These	two	are	essentially	the
main	'visible'	functionalities	Vue	offers.

Furthermore,	Vue	offers	its	users,	i.e.	web	developers,	two	more	non-functional	functionalities:	component-based	design	and	reusability
management.

In	this	section	we	first	discuss	what	responsibilities	Vue	has	and	how	it	works	internally.	After	that	we	explain	how	Vue	communicates
with	its	environment.

In	the	figure	below	an	overview	is	given	of	the	APIs	Vue	provides	and	what	the	internal	components	send	to	each	other.

The	Internal	Architecture	and	the	Functionalities	It	Offers

Vue.js

290

https://router.vuejs.org/en/
https://vuex.vuejs.org/en/
https://github.com/vuejs/awesome-vue

Everything	the	end-user	can	interact	with,	is	the	product	of	applying	a	format	to	the	application	data	and	sending	changes	back	to	this
data	when	the	end-user	changes	something.

Formatting

The	recommended	way	of	specifying	a	format	in	Vue	is	using	the	Vue	template	syntax:	HTML	with	three	sugars,	namely	custom	tags,
custom	attributes	and	interpolation	(e.g.		{{text}}).

In	short,	a	Vue	app	defines	a	set	of	templates	and	passes	these	to	Vue	along	with	the	data	it	wishes	to	display.	Vue's	parser	then	parses
the	provided	template,	turning	this	entire	sugared	custom	HTML	string	into	a	JavaScript	render	function;	a	function	that	takes	data	and
outputs	a	Virtual	DOM	Node	(or	VNode),	ready	to	be	injected	into	the	real	DOM	tree.	This	process	is	displayed	in	the	diagram	above.

Reactivity

This	is	definitely	not	enough:	for	a	one-off	render	one	might	as	well	use	PHP.	Instead,	whenever	the	data	changes,	Vue	will	update	the
view	accordingly	using	its	reactivity	system.	To	monitor	changes,	the	system	attaches	itself	to	the	application	data	object.	As	a	full	re-
render	on	every	data	change	would	be	too	costly,	Vue	pulls	a	few	tricks	to	make	efficient	changes	to	the	DOM	tree.	The	backbone	of
this	is	the	dependency	tracking	system.	It	only	updates	those	parts	of	the	tree	that	depend	on	changed	data	(e.g.		{{text}}		only	re-
renders	when	the	value	of		text		changes).

Input	handling

Every	interaction	the	end-user	has	with	the	application	is	a	product	of	the	application	methods	(API)	and	some	bound	UI	elements.	In
the	view	template	it	is	possible	to	connect	events	of	view	elements	to	methods.	This	is	mainly	handled	by	the		v-on		directive,	a	custom
html	attribute	provided	by	Vue.	Similar	to	the	data	formatting,	Vue	parses	the	template	and	binds	the	provided	method	to	the	actual
event.	On	top	of	that,	it	will	destroy	this	'listener'	when	the	component	is	removed	from	the	DOM.

Component	Re-use

Vue	is	entirely	component	based.	Any	use	of	Vue	requires	instantiating	it	using		new	Vue(options)	,	which	creates	a	Vue	instance.	The
instance	takes	a	template	as	mentioned	above,	some	data	and	some	methods	and	Vue	handles	the	rest.	Larger	apps	will	want	to	separate
and	re-use	logic	instead	of	writing	one	big	component.	For	this,	one	can	define	a	Vue	component	using		Vue.component('my-comp',
options)		and	subsequently	use	it	in	Vue	templates	as		<my-comp	/>	.	This	facilitates	separation	of	concerns	and	code	re-use.	Vue's	third
main	functionality	is	offering	a	way	to	define	components	and	subsequently	handling	their	entire:	from	its	creation,	through	several
updates	of	its	state,	to	it	finally	being	destroyed.	Larger	applications,	extensively	using	Vue,	will	have	to	shape	their	architecture
towards	it.	So	in	return,	Vue	must	consider	how	it	can	best	facilitate	architectural	best	practices	to	these	applications.

Interactions	With	The	Environment

Vue	provides	a	diverse	set	of	external	interfaces,	from	lifecycle	hooks	to	complete	plugins.	This	section	describes	each	external	interface
and	how	they	can	be	used	by	users	to	extend	Vue's	behavior	and	functionality.	First,	the	lifecycle	hooks	are	explained.	Second,	the	use	of
components,	directives,	and	filter,	i.e.	assets.	The	concept	of	mixins	is	then	discussed,	and	finally,	plugins	that	can	be	used	to
encapsulate	logical	modules.

Lifecycle	Hooks

Vue	allows	users	to	observe	the	lifecycles	of	Vue	instances	by	implementing	functions	that	are	lifecycle	hooks.	Users	can	use	these
hooks	to	perform	certain	tasks	at	certain	points	in	time	during	the	instance's	lifecycle,	e.g.	start	fetching	some	data	from	an	external
server.	For	a	detailed	explanation	of	all	existing	lifecycle	hooks	please	see	Vue's	user	documentation.

Assets

In	addition	to	adding	custom	behavior	to	Vue	instances,	users	can	also	add	custom	assets	to	Vue.	These	assets	can	be	used	in	templates
to	build	a	DOM.

Vue.js

291

https://vuejs.org/v2/guide/instance.html#Instance-Lifecycle-Hooks

Component

Components	are	the	building	blocks	of	the	(virtual)	DOM.	They	have	their	own	internal	logic,	data	structures	and	reactive	components.
Components	are	identified	by	their	names,	for	instance		counting-button	,	would	be	a	fitting	name	for	a	button	that	counts	the	number
of	times	it	has	been	clicked.

Directives

Directives	are	dynamic	properties	that	add	behavior	to	components.	Directives	are	defined	using	the		Vue.directive		method.	An
example	of	a	directive	is	the	default	directive		v-show		which	toggles	the	visibility	of	a	component	in	the	DOM	depending	on	the
arguments	passed	to	the	directive.

It	is	also	possible	to	create	custom	directives	that	add	behavior	to	the	elements	they	are	added	to.	Examples	can	be	found	in	Vue's
documentation.	The	most	interesting	example	is	the	custom	directive		focus	,	which	automatically	focusses	elements	when	they	are
inserted	in	the	DOM.

Directives	can	respond	to	various	events	from	the	elements	they	are	applied	to.	A	complete	list	of	the	events	can	be	found	here.

Filters

The	final	asset	type	that	is	discussed	are	filters.	Filters	can	be	used	to	format	data,	for	example	transforming	a	Unix	epoch	to	a	human
readable	timestamp.	Filters	are	defined	using	the		Vue.filter		method.

Mixins

Mixins	allow	users	to	add	custom	properties	and	functions	to	Vue	instances.

For	example,	Vue	Router	adds	the	properties		$route		and		$router		to	Vue	instances,	which	respectively	represent	the	current	route
the	end	user	is	at	and	the	router	object	the	user	can	use	to	control	routing.

Vue	Router	also	uses	mixins	to	implement	the	lifecycle	hooks		beforeCreate		and		destroyed		to	be	able	to	dynamically	update	the
current	route	the	end	user	is	at.

Plugins

Adding	custom	behavior	in	an	encapsulated	manner	is	also	possible	with	Vue.	Completely	separate	plugins	can	be	created	and	then
plugged	into	Vue	through	their		install		functions.	This	function	is	used	by	Vue	to	instantiate	the	plugin	and	allows	the	plugin	to	add
custom	behavior	to	the	Vue	instance.

Usually,	plugins	use	the	mixin	and	asset	concepts	described	above	to	add	their	behavior	to	Vue	instances.	For	examples	of	this	we
recommend	looking	at	the		install		functions	of	Vue	Router	and	VueX.

Development	View

Module	Organization

Vue.js

292

https://vuejs.org/v2/guide/custom-directive.html
https://vuejs.org/v2/guide/custom-directive.html#Hook-Functions
https://router.vuejs.org/en/
https://github.com/vuejs/vue-router/blob/dev/src/install.js
https://github.com/vuejs/vuex/blob/dev/src/store.js

Vue	consists	of	a	few	modules:	The	shared	module	contains	common	utilities	that	are	not	included	in	the	standard	javascript	library.	The
core	on	the	other	hand	contains	logic	specifically	related	to	Vue.	This	logic	is	split	up	in	submodules,	some	of	which	are:

	vdom		--	virtual	DOM	manipulation	module
	observer		--	provides	internal	functionality	to	make	certain	constructs	observable,	a	design	pattern.	To	allow	Vue.js	to	react	to
model	and/or	state	changes	in	a	relatively	(to	their	competitors)	performance	efficient	way.
	global-api		--	the	general	global	api	that	is	provided	to	the	users.
	instance		--	Lifecycle	management,	events	and	state	of	Vue	are	located	here.	This	module	is	required	to	run	in	environments	which
does	and	does	not	have	the	web	APIs	related	to	manipulating	webpages.

In	order	to	make	things	fast	certain	parts	of	the	user-provided	templates	can	be	parsed,	optimized	and	compiled	beforehand	by	the
compiler.	The	entry	points	are	located	in	three	modules.	The	Weex	module	is	for	identically	named	framework	developed	by	Alibaba,
web	is	for	running	in	a	webbrowser	related	context,	while	server	is	meant	for	server	side	rendering.	These	points	contain	the	platform
specific	code	to	let	Vue	run	and	work	within	their	respective	environments.

Isolated	from	the	rest	of	the	codebase	is	the	module	that	contains	the	parsing	logic	for	single	file	components	-	a	feature	that	allows	Vue
to	be	used	as	a	framework.	This	part	is	used	by	plugins	for	build	tools	-	for	example	webpack	and	rollup	-	to	deal	with	single	file
components	-	without	having	to	re-implement	the	parser.

Standardization	of	Design

In	order	to	streamline	contributions	from	the	community,	Vue	provides	a	contribution	guideline	document.	The	document	explains	how
to	set	up	Vue	for	development,	report	issues,	creating	PRs,	and	an	explanation	on	the	project	folder	structure,	among	other	things.

Surprisingly,	the	project	structure	is	the	only	specification	of	design	choices	made	for	the	Vue	core	package.	Moreover,	it	is	the	only	real
source	of	documentation	on	Vue	source	code.	The	lack	of	comments	in	the	source	code	is	noticeable,	and	gives	developers	a	hard	time
understanding	its	workings	and	motivations	behind	it.

In	sharp	contrast	to	the	core	package	itself,	Vue	docs	offer	an	extensive	developer	style	guide	for	its	users.	This	gives	developers	who
use	Vue	strong	advice	in	terms	of	naming,	code	style,	use	of	particular	Vue	constructs	(such	as	using	a		key		prop	when	using	the		v-
for		directive)	and	handling	of	data.	As	these	guidelines	do	not	apply	to	the	core,	it	is	beyond	the	scope	of	this	text.

Standardization	of	Testing

Vue.js

293

https://en.wikipedia.org/wiki/Observer_pattern
https://github.com/vuejs/vue/blob/dev/.github/CONTRIBUTING.md
https://vuejs.org/v2/style-guide/

The	Vue.js	tests	are	located	in	the		/test/		directory.	This	directory	contains	various	types	of	tests	for	the	core	Vue.js	library.	Because
the	core	Vue.js	library	also	contains	platform	specific	code,	tests	for	those	platforms	are	also	included.	Two	of	the	platforms	are	quite
specific	and	have	their	own	unit-tests:	Server-Side	Rendering	(SSR)	and	Weex.	The	other,	generic,	browser	platform	is	tested	through	the
end-to-end	tests	using	Selenium.	These	tests	are	located	in	the		/test/e2e		directory	and	are	used	to	test	the	correctness	of	Vue.js
behavior	on	the	currently	most	dominant	browsers.

Core	Vue.js	Tests

Located	in	the		/test/unit		directory	and	can	be	further	categorized	into	unit	and	integration	tests.	Structurally,	these	are	split	into
	module		and		feature		types.

The		/test/unit/feature		Tests

Tests	to	ensure	the	correct	operation	of	user-facing	Vue.js	features	and	global	API.	These	are,	for	the	most	part,	integration	tests.

The		/test/unit/modules	

Tests	to	ensure	the	correct	operation	of	the	underlying	building	blocks	of	core	Vue.js	library	itself.	Namely	the		vdom	,		compiler		and
	observer		submodules.

Platform-specific	Tests

The	rest	of	the	directories	(except	for		helpers/)	deal	with	testing	the	various	platform-specific	code	that	is	part	of	the	core	Vue.js
library.	There	are	three	logical	platforms:

Server-Side	Rendering	(SSR)
Weex
Web

The	SSR	and	Weex	platforms	are	special	kinds	of	platforms.	These	are	platforms	which	are	used	in	non-standard	environments.	SSR
renders	templates	into	HTML	by	running	the	client-side	code	on	the	server	before	serving.	Weex	is	a	platform	for	shipping	Vue.js-
powered	(amongst	others)	applications	as	mobile,	native	applications.

Both	Weex	and	SSR	have	their	own	unit	tests	that	deal	with	platform	specific	features,	behavior,	and	past	quirks	and	bugs.

The	web	platform	is	the	default	Vue.js	platform,	namely	the	major	browsers.	These	cannot	be	tested	with	JavaScript	unit	tests	and
therefore	are	tested	with	end-to-end	tests	and	interaction	scenarios.	Interesting	is	that	the	test-data	used	for	the	End-to-End	tests	are	the
live-examples	of	Vue.js,	although	some	specific	test-data	is	also	present	amongst	the	Selenium	test	scenario	definitions	in	the
	/test/unit/e2e/specs		directory.

Technology	Used

All	JavaScript	tests	are	written	using	the	Jasmine	JavaScript	unit	testing	library	and	Karma	JavaScript	test	runner.

The	end-to-end	testing	is	done	with	Nightwatch.js	which	uses	the	Java-based	Selenium	internally	to	simulate	user	interaction.
Nightwatch.js	simplifies	writing	technical	end-to-end	tests	for	Selenium	and	is	script-able	with	JavaScript.

Testing	Pipeline

Due	to	the	distributed	and	parallel	development	nature	of	the	project,	where	any	person	can	propose	a	contribution,	keeping	the	code
quality	high	requires	some	work	from	the	core	team.

This	quality	control	is	partially	implemented	in	the	form	of	an	automated	testing	pipeline.	The	pipeline	is	implemented	as	an	npm	script
and	consists	of	the	following	steps:

1.	 ESLint
2.	 Type-check	with	Flow
3.	 Unit	tests	with	coverage

Vue.js

294

4.	 End-to-end	tests

source

This	testing	pipeline	is	also	executed	by	the	project's	cloud	based	CI-tool	on	each	commit.	A	failing	pull-request	will	not	be	approved.

Approaches

With	regard	to	testing	approaches,	there	is	no	guideline	other	than	a	brief	mention	in	the	contributor	guide	of	new	changes	needing	to
have	"appropriate	test	coverage	if	applicable".

There	is	some	standardization	of	some	common	actions	in	the		/test/helpers		directory.	These	deal	with	either	setting	up	some	test
case	or	with	helping	the	developer	to	do	some	common	assertion.

Technical	Debt

As	most	applications,	Vue	has	some	technical	debt.	This	section	analyzes	how	serious	Vue's	technical	debt	is	and	where	it	is	located.

Code	Smells

A	good	indicator	of	places	where	technical	debt	might	be	located	is	the	presence	of	code	smells.

Lack	of	Documentation

One	of	the	first	code	smells	we	noticed	was	the	lack	of	documentation;	a	very	consistent	lack	of	documentation.	Especially	complex
pieces	of	the	code,	such	as	the		compiler	,	would	benefit	from	adding	documentation.	This	has	two	benefits:	obviously,	others	can
understand	what	is	going	on,	but	maybe	more	importantly,	explicit	mentions	of	the	reasoning	can	prevent	bugs	when	refactoring	or
otherwise	modifying	the	code	later.

SOLID	Principles

Another	way	of	identifying	technical	debt	is	by	looking	for	violation	of	the	SOLID	principles.	However,	Vue	is	written	in	JavaScript,
object-oriented	programming	is	not	enforced	and	barely	used	within	Vue.	The	SOLID	principles	are	harder	to	apply,	but	may	still	be
useful.

The	Single	Responsibility	Principle	(SRP)	seems	to	be	well	respected.	Most	code	is	split	up	into	well-named	files	and	functions,	clearly
identifying	their	single	responsibility.	One	exception	to	this	is	a	number	of		utils		files,	spread	across	packages.	While	sometimes
justified,	these	files	are	a	magnet	to	technical	debt.

The	Open-Closed	(OCP)	principle	may	loosely	translate	to	the	frequency	with	which	files	are	changed.	The	more	frequent	a	file	is
changed,	the	more	likely	it	is	that	its	functionality	is	changed	instead	of	extended	through	subclassing,	and	thus	that	OCP	is	violated.

The	other	SOLID	principles	are	less	applicable	to	Vue.

Other	Smells

There	were	two	other	code	smells	that	stood	out.

The	high	cyclomatic	complexity	in	some	files.	The	violations	of	this	were		server/render.js	(108),		compiler/codegen/index.js		(125)
and		compiler/parser/index.js		(138).	Which	makes	this	even	worse	is	there	was	almost	no	documentation	in	these	files,	making	it	even
harder	to	understand	how	the	code	works.

The	second	smell	that	stood	out	was	the	method	length.	There	were	methods	that	were	hundreds	of	lines	long.	This	smell	mainly	occurs
in	high	performance	code,	which	makes	it	more	justifiable,	but	this	should	be	kept	under	control.	One	of	the	worst	violators	of	this	was
the	filter	parser.	We	have	made	a	contribution	to	fix	this	problem	to	reduce	complexity	and	method	length.

Vue.js

295

https://github.com/vuejs/vue/blob/dev/.github/CONTRIBUTING.md#commonly-used-npm-scripts

Even	though	Vue	has	ESLint	configured,	it	is	not	used	to	its	full	potential.	The	issues	of	long	methods	was	not	detected	by	it	and	other
syntactic	issues	that	we	found,	we	also	not	detected.

Testing

Vue.js	has	an	extensive	test	suite	and	has	a	whopping	100%	line	coverage	according	to	the	continuous	integration.	This	was	surprising	as
hardly	any	project	can	achieve	100%	coverage,	which	is	why	we	looked	deeper	into	the	testing	practices	of	the	Vue.js	project.

Continuous	Integration

Vue	has	CI	enabled	on	all	pull	requests	and	branches	on	GitHub.	This	encourages	contributors	to	properly	test	their	code	before
submitting	it,	as	nobody	wants	to	break	the	build.

The	Vue	tests	are	written	using	Jasmine.	This	framework	allows	testers	to	test	asynchronous	code	with	assertions	and	spies.	Vue	has
multiple	kinds	of	tests:	unit,	end-to-end,	Weex,	SSR,	type,	and	Sauce.	The	Sauce	tests	are	equal	to	the	unit	tests	with	the	exception	of
the	execution	environment.	Aside	from	Sauce,	all	tests	are	executed	on	the	CI	server.

Coverage

In	addition	to	running	the	tests	on	every	pull	request,	the	CI	also	measures	coverage.	According	to	CI	the	coverage	of	Vue	is	100%,	but
after	analyzing	the	codebase,	we	found	annotations	that	disable	coverage	for	certain	parts	of	the	code.	After	we	removed	these
annotations	we	saw	that	coverage	actually	95.34%.	The	majority	of	uncovered	code	is	present	in	the	HTML	parser,	which	is	actually	an
essential	component	of	Vue.	It	is	however	not	custom	written	code,	and	a	clone	and	own	strategy	has	been	applied	to	it.

Testing	Practices

The	tests	for	Vue	are	written	using	Jasmine.	Jasmine	allows	developers	to	test	asynchronous	code	using	assertions	and	spies.	The	tests
for	Vue	are	written	quite	well	and	are	often	easy	to	understand.

They	could	be	improved	even	more	by	making	sure	that	tests	do	not	test	more	than	one	functionality	at	the	same	time.	A	couple	of	tests
test	more	than	one	thing,	which	makes	it	harder	to	pin	down	what	goes	wrong	when	the	test	fails.

Another	thing	that	could	improved	is	the	"unitness"	of	the	tests.	When	we	worked	on	our	contribution	and	broke	one	component,	over
70%	of	all	tests	began	to	fail.

Testing	Environment

The	end-to-end	tests	for	Vue	are	currently	being	executed	using	PhantomJS,	however	PhantomJS	has	some	problems.	The	main
developer	has	quit	and	the	last	minor	release	-	as	of	writing	-	is	from	January	2016	which,	given	the	velocity	regarding	WebAPIs	and	the
JavaScript	language,	can	be	problematic.

We	recommend	the	Vue	team	to	replace	PhantomJS	with	Chrome	Headless.	We	have	created	a	pull	request	in	the	Vue	repository	to
remove	some	barriers	that	exist	to	adopt	Chrome	Headless.

Development	History

Over	the	course	of	its	existence,	Vue	has	had	multiple	rewrites.	We	have	analyzed	the	codebase	over	its	releases	and	in	this	section	we
discuss	the	results.

From	the	analysis	we	were	able	to	see	that	there	is	a	positive	correlation	between	the	amount	of	changes	between	releases	and	the
cyclomatic	complexity	in	the	files.	This	was	not	entirely	unexpected	as	the	files	with	the	highest	complexity	are	the	parser	and	the
virtual	DOM	files.	These	files	are	likely	to	change	between	releases,	as	they	need	to	support	new	features.

These	files	are	also	the	least	readable	files	in	the	project,	which	might	indicate	technical	debt.	It	could,	however,	also	be	caused	by
handwritten	optimizations	as	these	files	are	performance	critical.

Conclusion

Vue.js

296

https://codecov.io/github/vuejs/vue?branch=dev
https://groups.google.com/forum/#!topic/phantomjs/9aI5d-LDuNE
http://phantomjs.org/releases.html

Vue	has	some	technical	debt,	however	at	the	moment	it	seems	to	be	manageable	and	managed.	The	main	points	that	should	be	kept	under
control	are	the	parsers	and	the	virtual	DOM	patching.	One	point	that	should	definitely	be	improved	to	encourage	contributions	would
be	to	improve	the	developer	documentation,	as	it	is	nearly	non-existent.

Vue.js

297

XMage:	Magic	Another	Game	Engine
By	Christiaan	van	Orle,	Siyu	Chen,	Danny	Plenge	and	Marc	Zwart

Abstract
XMage	is	an	open	source	Magic	the	Gathering	client	and	game	engine	that	allows	you	to	play	Magic	the	Gathering	games	online	against
human	or	computer	players	with	full	rules	enforcement.	The	core	developers	get	help	from	many	contributors	to	keep	the	engine	up	to
date	with	new	card	set	releases.	XMage's	architecture	is	analyzed	from	multiple	perspectives	and	viewpoints.	An	overview	of	the
architecture	is	provided,	as	well	as	an	analysis	of	the	technical	debt	present	in	the	system.

Table	of	Contents
Introduction
Stakeholders

Power	vs	Interest	Grid
Context	View

External	Entities
Development	View

Module	Organization
Codeline	Organization

Technical	Debt	Analysis
Internal	Dependencies
Code	Metric	Analysis
Code	Quality
Testing	Debt
Discussions	about	Technical	Debt
Evolution	of	Technical	Debt

Deployment	View
Third-party	Software	Requirements
System	Requirements
Server	Networking	Requirements
Runtime

Regulation	Perspective
Open	Source	License

Usability	Perspective
Users	and	Capabilities

Xmage

298

https://github.com/chrvanorle
https://github.com/sylviachsy
https://github.com/Dahny
https://github.com/Arcademode

Server	Administrator	Interaction
Player	Interaction

Conclusion
Bibliography

Introduction
XMage	[5]	is	a	project	which	started	development	in	early	2010.	Its	goal	is	to	make	a	free,	open-source,	online	playable	computer	game
version	of	the	original	Magic	the	Gathering	card	game	with	actual	rule	enforcement,	something	which	competitors	do	not	have.	The
project	is	written	in	Java	and	was	initially	developed	by	BetaSteward,	who	still	moderates	the	online	forums	of	the	XMage	project.
Nowadays,	it	is	in	the	hands	of	LevelX2.

The	chapter	starts	with	performing	a	stakeholder	analysis	and	a	context	view	of	XMage.	After	that,	the	module	organization	and	the
codeline	organization	are	presented	in	the	development	view	section.	The	technical	debt	is	analyzed	from	different	points	of	view,
followed	by	the	deployment	view,	where	the	requirements	to	run	the	system	are	demonstrated.	Additionally,	the	project	is	discussed
separately	from	regulation	perspective	and	usability	perspective.	Finally,	a	conclusion	ends	the	whole	chapter.

Stakeholders
This	section	presents	an	overview	of	the	types	of	stakeholders	found	in	the	XMage	project.	Besides	the	Stakeholders	as	defined	by
Rozanski	and	Woods	[1]	we	have	also	Identified	Competitors	and	Non-sourcecode	Contributors.	We	could	not	identify	other
stakeholder	types	than	the	mentioned	ones.	This	diagram	is	a	general	overview	of	all	the	important	stakeholder	categories	in	the	project.
Per	stakeholder	category,	including	the	additional	stakeholder	categories	we	found	ourselves,	it	shows	all	the	relevant	stakeholders.
Figure	1	below	is	a	more	detailed	description	of	all	the	stakeholder	categories.	Next,	the	Power/Interest	grid	and	the	Context	view	based
on	the	stakeholder	analysis	will	be	presented.

Xmage

299

https://github.com/BetaSteward
https://github.com/LevelX2

Figure	1:	Stakeholder	Overview

Power	vs	Interest	Grid

This	section	introduces	a	power/interest	grid	based	on	the	stakeholder	types	we	have	found	and	analyzed,	as	shown	in	Figure	2,	each
stakeholder	type	is	represented	by	a	MTG	card	[2].	The	power	and	interest	of	each	type	of	stakeholder	is	based	on	the	pull	request
analysis,	issue	analysis	and	the	analysis	of	the	forum,	Gitter	and	Reddit.

Xmage

300

Figure	2:	Power	vs.	Interest	Grid

Context	View
The	Context	View	contains	the	relationships,	dependencies	and	interactions	of	the	system	with	the	environment,	as	shown	in	Figure	3.
It	shows	the	communications	channels	used	in	order	to	communicate,	the	most	important	stakeholders,	the	dependencies	of	the	system
and	the	operating	systems	the	system	supports.

Xmage

301

Figure	3:	Context	View	Diagram

External	Entities

This	section	touches	the	external	entities	of	the	XMage	project,	we	will	elaborate	on	the	different	dependencies	and	the	communication
platform	the	community	uses.	As	the	project	is	written	in	Java,	all	Operating	Systems	can	run	the	XMage	game.

Community

The	XMage	project	largely	lives	around	its	community,	the	users,	developers,	communicators	etc.	communicate	with	each	other	via
several	different	platforms.	Users	among	each	other	tend	to	use	the	Reddit	pages,	users	may	also	post	help	requests	on	either	the	Reddit
or	Forum	to	find	communicators	that	can	help	them	resolve	their	issue.	Developers	communicate	with	each	other	via	the	Gitters	and
Github.	The	Discord	channel	is	used	for	finding	other	users	and	is	even	used	for	tournament	communication.

Dependencies

The	XMage	project	has	several	dependencies	of	different	types.	The	entire	project	is	a	Maven	project	written	in	Java	which	consists
out	of	different	Java	projects.	The	project	can	be	build	using	any	Java	supporting	IDE,	however	at	the	moment	there	is	only	support	for
the	Netbeans	and	IntelliJ	IDEs.	The	continuous	integration	is	done	by	Travis	which	uses	JUnit	for	testing.	The	client	server
communication	is	handled	by	JBoss	Remoting	2.	In	order	to	provide	quick	access	to	card	data	a	H2	database	is	used	for	the	client,	server
and	test	project.	The	project	also	has	some	utility	scripts	written	in	Perl	which	can	help	the	developer	generate	code	or	build	certain
projects.

Development	View
In	this	section	we	will	start	by	looking	at	the	XMage	project	[3]	at	module	level,	identifying	module	organization	and	design	patterns.
Some	light	will	also	be	shed	on	the	codeline	organization,	further	discussing	source	code	organization	and	the	build	approach.

Module	Organization

Xmage

302

In	this	section	we	will	look	at	the	organization	of	the	XMage	project	from	a	Module	perspective.	The	XMage	project	is	separated	into
two	major	parts,	the	client	and	the	server.	Besides	this	a	validation	step	is	included	in	the	build	process	which	forms	a	relevant	part	of
the	project.

Client-Server	Architecture

Here	we	will	discuss	the	client-server	architecture	used	in	the	system,	as	well	as	what	modules	are	used	in	which	component.

Figure	4:	A	High	Level	Overview	Architecture	in	the	XMage	Project

Structure

In	XMage,	both	client	and	server	are	running	as	separate	instances	of	the	game.	Each	instance	communicates	with	the	other	via	sockets,
this	communication	layer	for	both	client	and	server	is	implemented	in	the	Mage.Common	module.	The	server	manages	the	game's	state
and	updates	the	clients,	where	clients	send	their	respective	actions	to	the	server.	Both	the	client	and	the	server	implement	the	core	game
logic	by	depending	on	the	Mage	module.	A	high-level	overview	of	the	main	(runtime)	components	of	the	software	is	shown	in	Figure	4.

The	overview	in	Figure	5	shows	the	modules	present	in	the	system.	Some	modules	live	in	both	client	and	server	programs,	such	as	the
Mage	module.	The	validity	assessment	program	is	not	present	on	either	server	or	client,	it	is	not	used	on	production	systems	at	all.	The
Mage.Server	and	Mage.Client	modules	are	responsible	for	running	the	client	and	server	programs.	They	load	the	required	resources,	such
as	the	cards	and	game	logic	(plugins).

Xmage

303

Figure	5:	A	Detailed	Overview	of	the	Module	Organization	in	the	XMage	Project

Server	Plugins

The	server	supports	plugins	and	plenty	of	them	are	available	by	default	from	the	XMage	project.	The	Mage	module	can	load	different
types	of	plugins,	each	of	whose	interfaces	are	exposed	from	this	module.	The	supported	types	of	plugins	are	listed	as	shown	below	in
Table	6.

Plugin
Type Description

Player Allow	implementation	of	player	types,	examples	are	the	Human	player	(controller	by	keyboard/mouse)	and	the
AI	(controlled	by	java	code)

Deck Allow	definition	of	different	deck	types,	examples	are	a	predefined	deck	(used	in	some	tests)	and	a	limited	deck
(ensures	a	minimum	amount	of	cards)

Tournament Allow	the	definition	of	tournament	types,	comprising	of	various	tournament	steps	and	rules

Game	mode Allow	the	implementation	of	game	types,	from	simple	two	player	duel's	to	more	complex	game	modes	like
Commander	free	for	all

Table	6:	The	Supported	Types	of	Plugins	in	the	Server

The	Mage	module	dynamically	loads	all	available	plugins,	however	this	only	happens	on	the	server,	as	the	client	gets	updated	by	the
server	it	does	not	need	to	load	the	plugins	itself.	It	may	be	clear	that	this,	lower	level,	architecture	implemented	is	a	plugin-architecture.

The	module	organization	of	plugins	is	shown	in	Figure	5.

Validity	Assessment

A	third	interesting	part	of	the	system	is	the	validity	assessment	which	happens	during	the	build,	verifies	all	implemented	cards	and	runs
all	the	tests.	Cards	are	extensively	validated	to	ensure	that	no	duplicate	or	invalid	card-names/-numbers/-types	etc.	exist.	This	allows	the
developers	to	assess	that	the	thousands	of	cards	are	in	a	valid	state	before	releasing	a	new	version	of	the	game.

Pattern	Usage

Xmage

304

Several	different	design	patterns	that	have	been	used	throughout	the	XMage	project	to	aid	in	making	the	system	extendable	and
maintainable.	First	and	most	easy	to	spot	are	the	huge	amount	of	Singletons	[6]	used	for	object	for	which	only	a	single	instance	is
required.	For	several	types	a	serialization-safe	implementation	for	these	has	been	used	as	they	all	are	enums	instead	of	classes	to	prevent
singleton	duplication	after	deserialization.	A	lot	of	Ability	classes	throughout	the	project	are	singletons	too.
We	also	see	a	variety	of	Factories	[7]	implemented,	loading	or	creating	various	objects.	The	most	notable	ones	are	the	factories	that
create	the	respective	objects	for	each	type	of	plugin.	For	example	there	is	a	PlayerFactory	which	loads	the	Player	type	plugins	and
exposes	methods	for	constructing	Player	objects	based	on	these	Player	types.	A	second	example	is	the	GameFactory	for	loading	Game
types	and	exposing	methods	for	constructing	Match	objects	based	on	these	Game	types.

Codeline	Organization

In	this	section,	we	will	look	into	the	code	level	organization	of	the	XMage	project.	First,	we	will	present	the	structure	of	source	code,
and	then	the	build	will	be	discussed.

Source	Code	Structure

Both	files	and	folders	are	found	in	the	repository	[3].	In	Table	7,	the	files	under	the	root	directory	are	listed	with	descriptions.

File Description

read.md A	documentation	including	general	information	of	the	project,	the	installation	and	developer's	instructions

pom.xml Configuration	file	for	the	project

clean_dbs.sh A	script	to	clean	cards.h2*	from	Server,	Client	and	Test	modules

.travis.yml Configuration	file	for	setting	up	Travis	CI

.gitignore Configuration	file	for	git	describing	which	files	should	not	be	sent	to	the	remote	repository

Table	7:	All	the	Files	under	the	Root	Directory

The	repository	of	XMage	is	organized	based	on	the	modules,	as	shown	in	Table	8.	Except	for	the	last	folder	'Utils',	each	folder
represents	a	component	in	the	system.	This	codeline	model	was	chosen	based	on	the	fact	that	the	system	contains	multiple
components.	It	ensures	that	the	project	will	be	developed	in	a	clean	and	well-organized	way.	It	also	provides	clear	clues	for	the
developers	where	to	check	problems	or	develop	a	new	feature.	Some	of	the	source	code	folders	in	the	modules	also	contains	testing	code
besides	the	main	code.	All	the	folders	are	described	in	the	following	table.

Xmage

305

Folder Description

Mage The	logic	of	the	game

Mage.Client The	client	side	with	Swing	UI,	which	displays	game	states	and	sends	player	events	to	the	server

Mage.Common The	communication	of	the	elements	shared	between	the	client	and	the	server

Mage.Plugins A	counter	plugin	to	display	the	number	of	how	many	games	were	played

Mage.Server RMI	server	which	maintains	tables	and	games,	sends	updates	to	clients	and	receives	client	events

Mage.Server.Console The	console	of	the	server

Mage.Server.Plugins All	the	plugins	of	the	server

Mage.Sets All	the	card	sets	and	cards

Mage.Stats The	stats	of	the	server

Mage.Tests Automatic	tests	for	XMage

Mage.Updater Updating	the	system	based	on	metadata	from	remote	server

Mage.Verify Asserting	correctness	of	card	definitions	in	Mage.Sets

Utils Perl	scripts	for	developing	and	updating	cards	and	card	sets

Table	8:	All	the	Folders	under	the	Root	Directory

The	Build	Approach

In	general,	XMage	is	built	on	five	main	modules,	including	the	game	logic,	the	cards	and	the	card	sets,	the	server,	the	client	and	the
communication	between	the	server	and	the	client	[8].	The	system	was	extended	by	applying	more	plugins	for	the	server	and	adding	more
modules	with	different	purposes.	The	build	standard	for	contributing	by	adding	new	cards	and	new	sets	is	described	in	details	on
Developer	HOWTO	Guides	[4]	page.	Travis	CI,	a	continuous	integration	platform,	is	used	in	building	the	whole	project.	Every	time
when	there	is	a	new	commit	or	a	pull	request,	Travis	CI	will	build	it	and	then	deploy	to	Heroku	or	update	the	PR.	Travis	CI	ensures	the
quality	of	the	source	code,	and	also	helps	implement	the	system	quickly	and	detect	errors	easily.

Technical	Debt	Analysis
This	section	discusses	some	technical	debt	analysis	from	different	points	of	view.	We	will	start	high	level	by	looking	at	the
responsibility	separation	between	modules,	then	go	more	in	depth	by	analyzing	the	code	metrics	we	have	found	from	a	SonarQube	scan.
Finally,	we	will	discuss	some	of	the	code	we	have	seen	in	the	project	during	manual	analysis.

Internal	Dependencies

In	the	mage	project	we	found	a	rather	clean	separation	of	responsibilities	of	modules.	Especially	the	separation	of	state	(Mage.Server),
logic	(Mage.Framework)	and	view	logic	(Mage.Client)	is	a	nice	design	for	the	game.	Separating	the	Client/Server	communication	into	a
separate	module	(Mage.Common)	and	defining	the	Card	sets	and	Cards	into	a	separate	module	while	depending	on	the	Framework
containing	the	abilities/spells	etc.	also	contributes	to	a	solid	design.
A	poorer	design	choice	we	have	found	in	the	Mage.Server	are	the	dependencies	on	each	plugin.	Because	of	this,	the	Server	cannot
compile	without	these	dependencies,	analyzing	the	actual	implementation	this	does	not	seem	like	a	necessary	dependency.	Each	plugin
can	dynamically	get	loaded	by	the	server	through	a	jar	file	(which	can	be	referenced	from	a	config	file)	therefore	making	the	dependency
redundant.

Xmage

306

Xmage

307

Figure	9:	A	Dependency	Graph	of	all	Mage	Modules

Code	Metric	Analysis

From	our	SonarQube	scan	we	have	analyzed	some	of	the	metrics	of	the	project.	While	the	project	consists	of	over	a	million	lines	of	code
as	of	the	latest	release	(1.4.28)	we	see	that	80%	of	that	belongs	to	the	Mage.Sets	module,	second	being	the	Mage.Framework	making	up
about	12%	of	the	project	in	lines	of	code.	The	Mage.Sets	module	is	by	far	the	biggest	module	in	the	project	and	this	reflects	in	other	size
metrics	as	well	like	Lines	of	Code	(LOC),	amount	of	Statements	[13],	amount	of	Functions	or	Classes.

Metric Total Mage.Sets Mage.Client Mage.Server Mage.Framework

LOC 1,000,000 800,000 50,000 10,000 125,000

Statements 400,000 275,000 25,000 5,000 50,000

Functions 100,000 80,000 3,000 800 15,000

Classes 26,000 23,000 400 80 2,500

Code	Smells 14,000 7,000 2,500 300 2.500

Cyclomatic	Complexity 150.000 100,000 10,000 2,000 25.000

Bugs 300 20 180 25 35

Vulnerabilities 400 30 175 5 50

Duplication 2.4% 2.2% 3.5% 1.1% 2.8%

Table	10:	Various	Metrics	for	the	Main	Modules	of	XMage	(Rounded	for	Clarity)

Although	the	Mage.Sets	module	is,	as	seen	in	Table	10,	the	largest	module,	surprisingly	enough	it	does	not	contain	most	bugs	and
vulnerabilities	found	by	SonarQube.	We	see	high	amount	of	Bugs	and	Vulnerabilities	found	in	the	Mage.Client	project,	indicating	poorer
code	quality	than	in	the	rest	of	the	project.	The	very	low	amount	of	Bugs	and	Vulnerabilities	in	other	modules	indicate	a	good	code
quality.	Seeing	a	total	of	700	Bugs	and	Vulnerabilities	together	on	a	million	lines	of	code	project	seems	rather	good.	The	project	contains
low	amounts	duplication,	again	given	its	size	this	is	a	good	indication.	From	this	analysis	we	conclude	that	the	overall	quality	of	the	code
is	good,	the	amount	of	bugs	is	reasonable	given	the	size	of	the	project.	Regarding	improvements	we	think	the	Mage.Client	module	needs
the	most	work,	ridding	it	of	the	bugs	that	were	found	and	decreasing	the	complexity	of	the	overall	code.	This	last	point	also	considers
the	Mage.Server	and	Mage.Framework	modules,	as	their	complexity	with	respect	to	their	size	in	LOC	is	roughly	the	same.

Code	Quality
The	static	code	analysis	indicated	good	overall	code	quality,	but	we	still	found	some	bad	practices	in	the	implementation	of	XMage.
Throughout	the	code	we	see	large	numbers	of	nested	control	flow	statements,	some	with	depths	that	make	the	code	near	impossible	to
understand.	We	consider	improving	these	blocks	for	better	understandability	of	the	code.

Furthermore,	we	have	noticed	a	violation	of	a	SOLID	principle,	namely	the	Dependency	inversion	principle.	We	have	depicted	a	part	of
the	XMage	project's	class	hierarchy	in	Figure	11.	Here	we	see	a	good	example	of	the	Dependency	inversion	principle,	namely	the
CardImpl	abstract	class	with	children	implementing	this	abstract	class.	Throughout	the	code	CardImpl	is	used	to	depend	on	any
implementation	of	CardImpl,	as	the	Dependency	inversion	principle	dictates.	Now	we	also	see	the	Token	class,	which	is	a	concrete	class
and	is	used	throughout	the	code	for	both	itself	and	its	children.	This	results	in	a	dependency	on	a	concrete	type	which	we	would	rather
see	implemented	like	the	Cards.	The	impact	of	this	is	that	extending	the	Token	class	may	cause	confusion	for	developers,	causing
misusage	of	the	Token	class	or	not	using	references	to	the	correct	token	class.

Our	suggestion	to	fix	this	is	to	make	Token	an	abstract	class	and	rename	it	to	TokenImpl	in	order	match	the	naming	conventions	in	the
XMage	project.	Then	replacing	any	concrete	usages	of	Token	by	a	suitable	implementation	of	TokenImpl,	while	leaving	all	dependencies
on	TokenImpl.	This	would	result	in	the	same	situation	that	is	present	for	the	CardImpl.	Besides	resulting	in	fixing	the	SOLID	violation
this	will	also	yield	higher	consistency	in	the	project.

Xmage

308

Figure	11:	A	Part	of	the	Mage	Class	Hierarchy

Testing	Debt

This	section	discusses	the	testing	debt	of	the	XMage	project.	This	includes	the	test	structure,	the	test	coverage,	how	manually	testing
works	and	the	test	procedures	of	the	XMage	project.

The	Test	Structure

The	XMage	project	exists	out	of	many	modules.	Some	of	these	modules	are	only	made	for	testing	the	project	like	the	Mage.Tests	and
the	Mage.Verify	modules.	The	Mage.Tests	module	consists	of	tests	which	cover	multiple	parts	of	the	project	like	the	server,	client	and
AI	but	most	of	all	the	Mage	Framework.	These	tests	are	there	to	make	sure	that	the	current	functionality	of	the	program	does	not
change	by	any	code	changes.	The	Mage	Verify	module	is	more	focused	on	testing	the	implementation	of	new	cards.	It	checks	all	kinds	of
conditions	like	whether	there	are	no	duplicate	cards	or	whether	the	card	class	names	are	correctly	written.

Testing	Procedures

In	the	XMage	project	it	is	not	required	to	add	tests	for	each	new	implemented	card.	However,	if	you	make	any	changes	in	the
Mage.Framework	module	it	is	required	to	properly	test	your	code.	Especially	if	you	make	any	additions	it	is	required	to	add	the
necessary	tests	to	make	sure	your	implementation	doesn't	break	anything.	This	is	why	the	Mage	Framework	is	tested	mostly	by	unit
tests,	where	all	the	cards	are	mostly	tested	manually.	When	you	do	add	a	test,	it	is	important	that	you	add	your	test	in	the	Mage.Tests
module,	that	it	is	a	JUnit	test	and	that	it	properly	builds	in	the	Maven	project.

Discussions	about	Technical	Debt

Xmage

309

In	this	section,	we	dive	into	the	XMage	Github	to	search	for	the	discussion	between	the	developers	on	the	technical	debt.	First,	the
open	issues	are	analyzed	in	terms	of	technical	debt,	and	then	we	discuss	the	search	results	of	TODO's	[16]	and	FIXME's	[17].

The	developers	of	the	XMage	project	did	discuss	some	of	their	technical	debt	in	Github	issues	[14].	Most	of	the	issues	related	to	the
technical	debt	were	raised	2	to	3	years	ago,	which	are	about	the	programming	logic	between	some	objects,	the	game	logic,	the	cards
management	and	the	source	code	organization.	However,	some	of	developers	who	discovered	the	issues	or	joined	the	discussions	are	no
longer	active	in	the	project,	and	the	others	decided	to	keep	the	current	solutions.	Recently,	they	have	discussed	about	not	implementing
the	illegal	cards	to	prevent	technical	debt,	since	the	illegal	cards	ask	for	the	abilities	that	the	system	does	not	support	[15].

Based	on	the	fact	that	there	are	numerous	outdated	TODO's	and	FIXME's,	it	is	highly	suggested	that	an	issue	should	be	raised	to
discuss	them.	For	example,	for	the	ones	which	are	still	valid	a	schedule	should	be	arranged	and	related	developers	should	be	assigned	to
solve	them,	the	ones	which	do	not	affect	the	system	anymore	should	be	removed.	Additionally,	another	issue	should	be	created	to
schedule	all	the	recently-added	TODO's	and	FIXME's.

Evolution	of	Technical	Debt
This	section	discusses	the	evolution	of	the	technical	debt	in	the	system.	First,	the	code	base	will	be	discussed,	then	the	use	of	TODOs
and	finally	the	impact	of	the	technical	debt	will	be	shortly	described.

Code	Base

The	system	has	evolved	a	lot	over	the	past	8	years.	At	the	start	of	the	project,	there	were	around	30000	lines	of	code.	At	the	end	of
2017,	there	were	over	a	million	lines	of	code	in	the	system.	It	appears	the	code	base	has	increased	very	consistently	over	the	years.	The
SonarQube	analysis	shows	that	in	the	past	year	the	number	of	lines	of	code,	files	and	classes	coincide	with	the	increase	in	technical	debt.

TODO	Analysis

The	number	of	TODOs	increase	steadily	over	time.	As	can	be	seen	in	Figure	12,	the	growth	in	the	number	of	TODO's	coincides	with
the	growth	in	lines	of	code.

Figure	12:	A	Graph	Showing	TODOs	versus	Lines	of	Code	over	Time

It	may	seem	like	the	number	of	TODOs	increase	as	more	code	is	written,	and	the	TODO/lines-of-code	has	been	decreasing	over	time.
Further	analysis	shows	however,	that	most	of	the	time,	TODOs	are	actually	ignored.	As	can	be	seen	in	Figure	13,	there	are	TODOs	that
have	existed	for	over	7	years.

Xmage

310

Figure	13:	A	TODO	in	a	piece	of	code,	which	was	created	7	years	ago.

Looking	at	the	TODO	message,	it	appears	no	one	ever	looked	back	at	this	piece	of	code.	A	large	number	of	very	old	(5	years	or	older)
TODOs	are	found	in	the	classes	related	to	Artificial	Intelligence	(AI).	It	appears	the	difficulty	of	making	the	AI	better	was	too	high,	and
efforts	to	improve	it	were	abandoned.

Impact	of	Technical	Debt	over	Time

As	can	be	seen	in	Figure	14,	the	technical	debt	appears	to	have	an	impact	on	the	number	of	bugs	in	the	system.

Figure	14:	A	Graph	Showing	the	Technical	Debt	versus	the	Number	of	Bugs

As	the	technical	debt	increases,	so	does	the	number	of	bugs	find	in	the	system	by	the	SonarQube	analysis.

Deployment	View
This	section	discusses	the	hardware,	networking	and	third-party	requirements.	Even	though	there	are	not	that	many	requirements	to	run
XMage,	there	are	still	some	important	requirements	to	meet.	The	overview	of	deployment	view	in	the	XMage	project	is	shown	in
Figure15.

Xmage

311

Figure	15:	The	Overview	of	Deployment	View	in	the	XMage	Project

Third-party	Software	Requirements

Both	the	client	and	server	require	Java	1.8.x	to	be	installed.

System	Requirements

As	both	client	and	server	run	on	Java,	XMage	can	run	on	many	operating	systems.	XMage	has	been	tested	to	work	on	Windows,	Linux
and	Mac.

Client

The	client	requires	about	200MB	of	disk	space	to	run.	Optionally,	card	images	can	be	downloaded,	requiring	10GB	of	disk	space.
512MB	of	memory	is	required	to	run	the	client.

Server

Xmage

312

The	popularity	of	the	server	determines	the	memory	requirements.	For	the	most	popular	server	from	a	few	years	ago	[9],	this	was	about
3GB	of	memory	for	the	server,	resulting	in	about	1GB	per	100	users,	excluding	operating	system	memory	usage.	The	server	will	require
about	150MB	of	disk	space	to	run.	The	CPU	usage	is	not	very	high,	so	any	CPU	should	be	enough	to	serve	a	large	number	of	players.

Server	Networking	Requirements

Networking	may	be	difficult.	There	are	a	few	things	that	have	to	be	considered.

Network	Setup

The	server	has	to	be	accessible	by	the	intended	users.	For	public	servers,	this	means	allowing	access	to	ports	17171	and	17172.	If	the
server	is	behind	a	NAT	router,	these	ports	will	have	to	be	forwarded	to	the	server.

Network	Capacity

The	average	upload	speed	required	is	about	10	Mbit/s	for	250	users,	while	the	download	speed	is	about	10%	of	the	required	upload
speed,	as	can	be	seen	in	Figure	16.

Figure	16:	The	Bandwidth	of	Network	in	the	XMage	Project

Runtime
Java	has	to	be	downloaded	to	run	the	launcher,	but	the	launcher	will	then	download	a	specific	version	of	Java	to	ensure	all	users	run	the
game	using	the	same	version.

Regulation	Perspective
The	XMage	project	is	mainly	affected	by	the	copyright	surrounding	the	Magic	The	Gathering	game.	In	order	to	circumvent	the	legal
issues	coming	with	adding	the	images	and	packing	them	with	the	game,	they	were	left	out	of	the	XMage	project.	Instead	a	download
feature	was	implemented	from	which	the	images	could	be	downloaded	from	an	external	source,	leaving	XMage	out	of	the	way	of	any

Xmage

313

potential	copyright	infringement.	Solutions	less	pressing	on	the	players	of	the	game	were	suggested	and	discussed	but	like	all
discussions	[10]	they	came	down	to	the	copyright	infringement	problem.

Open	Source	License

When	going	through	the	project	a	lot	of	the	files	contain	the:	"Copyright	2011	BetaSteward_at_googlemail.com.	All	rights	reserved."
license	in	the	comments,	where	also	a	lot	of	the	files	have	no	license	reference.	BetaSteward	has	not	worked	on	the	project	for	years,
where	the	current	active	team	of	the	XMage	project	does	not	deal	with	any	licenses.	In	our	perspective	a	license,	even	for	open-source
projects,	is	an	important	part	of	a	project.	A	license	should	be	added	to	the	project	in	order	to	grant	new	collaborates	the	permission	to
use	and	change	and	improve	the	code	any	way	they	want,	without	anyone	being	able	to	claim	ownership	nor	make	any	author	liable	for
any	damage	his	work	may	have	done.	Setting	up	an	license	is	free	and	should	not	event	take	that	much	time.

Usability	Perspective
In	this	section	explains	how	the	users	interact	with	the	system	and	which	user	interacts	with	which	part	of	the	system.	Then	we	go	into
the	depth	of	the	different	kind	of	user	capabilities.

Users	and	Capabilities

We	identify	two	main	types	of	users	in	the	XMage	program,	the	players	and	the	server	administrators.	The	players	use	the	game
through	the	game's	Graphical	User	Interface	(GUI),	its	interaction	we	will	describe	in	a	followup	section.	From	this	we	can	already	see
that	there	are	no	strong	technical	capabilities	required	of	the	players,	since	their	entire	interaction	with	the	game	happens	through	a	GUI.
It	is	however	expected	that	they	know	the	MTG	game,	as	there	is	no	explanation	regarding	the	rules	of	the	card	game	embedded	in	the
computer	game.	The	server	administrator	have	to	do	some	more	low	level	interactions	[12]	like	manually	editing	xml	config	files,	setting
up	cron	jobs	[11]	and	creating	script	files.	They	can	manage	which	games	are	going	on	on	the	server	and	which	players	are	present	via	a
special	console.	It	may	be	clear	that	there	are	more	significant	technical	capabilities	required	of	the	server	administrators.

Figure	17	The	main	menu	of	XMage,	with	the	image	download	menu	opened.

Server	Administrator	Interaction

Xmage

314

The	server	administrator	first	has	to	set	up	the	server,	this	is	done	by	following	the	procedure	described	in	[12].	In	this	procedure	the
server	will	be	configured	by	various	options	and	the	available	plugins	can	also	be	defined.	The	logger	is	configured	and	cron	jobs	are
defined	to	regularly	restart	the	server.	So	far	all	interaction	happens	via	terminals	and	file	editors.	Once	the	server	is	running	there	is	of
course	the	option	to	shut	it	down/restart	it	via	the	terminal,	but	besides	that	there	is	only	one	way	to	interact	with	the	running	server
instance,	via	the	Mage	Server	Console.	Via	this	console	an	Admin	can	see	which	players	are	connected	to	the	server,	which	games	are
currently	being	played	and	by	whom.	Players	can	be	send	messages	to,	they	can	also	be	disconnected	or	banned	via	this	window.

Player	Interaction

In	order	to	make	use	of	the	XMage	project	the	user	has	to	start	up	the	XMage	client	to	interact	with	the	user	interface.	If	the	user	wants
to	participate	in	magic	the	gathering	games	he	has	to	join	a	XMage	server.	At	the	moment	XMage	provides	several	servers	which	any
user	can	join	after	creating	an	account.	When	the	user	has	logged	into	the	server	he/she	is	able	to	start	a	MTG	game	or	tournament	and
the	user	will	also	be	able	to	configure	any	relevant	properties.	From	this	screen	the	user	is	also	able	to	chat	with	the	other	users	on	the
server.
The	user	interface	also	provides	several	other	options	like	the	preference	menu	where	the	user	can	change	all	kind	of	properties	of	the
interface	of	the	XMage	client.	The	user	can	also	interact	with	the	system	by	creating	or	modifying	his/her	MTG	decks	by	clicking	on	the
deck	editor	tab	and	in	order	to	view	the	actual	cards	themselves	the	user	can	click	on	the	Viewer	tab.	Because	of	regulation	issues	the
client	does	not	provide	the	image	and	symbol	resources	from	the	start,	however	the	user	can	download	these	resources	themselves	by
using	the	symbols	and	images	tabs	in	the	user	interface.
These	are	the	most	common	ways	the	default	user	interacts	with	the	system	in	order	to	make	use	of	the	XMage	project.

Conclusion
XMage	is	an	open-source	project	which	has	been	worked	on	for	the	past	8	years.	During	these	8	years	it	has	grown	from	a	project	with
30000	lines	of	code	to	a	project	with	over	a	million	lines	of	code.	Because	the	project	has	had	many	contributors	over	the	years,	the	code
base	has	grown	into	a	complex	structure	with	many	modules	and	dependencies.	In	this	chapter,	we	have	analyzed	the	architecture	of	the
XMage	project	by	presenting	the	Server-Client	structure	and	explain	about	the	many	plugins	it	uses.	We	analyzed	the	test	structure	of
the	code	including	the	test	module	and	the	validity	assessment.	We	analyzed	the	many	stakeholders	the	project	consists	of	and	discussed
the	technical	debt	of	the	project	including	the	testing	debt,	code	quality	and	code	metrics.	XMage	has	proven	to	be	a	strong	competitor
in	the	Magic	the	gathering	scene.	It	has	become	a	very	interesting	free	alternative	for	online	magic	the	gathering	and	has	lots	of	potential
to	keep	on	growing.	We	do	recommend	adding	an	open-source	license	to	the	project	and	improve	their	merging	strategy	to	make	XMage
more	suitable	for	the	future.

Bibliography
[1]	Rozanski,	N.	Woods,	E.	Software	Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-
Wesley,	2012.	https://www.viewpoints-and-perspectives.info.

[2]	MTG	Card	Maker.	https://www.mtgcardmaker.com/.

[3]	The	XMage	project.	Magic	Another	Game	Engine.	https://github.com/magefree/mage.

[4]	The	XMage	project.	Developer	HOWTO	Guides.	https://github.com/magefree/mage/wiki/Developer-HOWTO-Guides

[5]	XMage.	http://xmage.de

[6]	McDonough,	J.	E.	(2017).	Singleton	Design	Pattern.	In	Object-Oriented	Design	with	ABAP	(pp.	137-145).	Apress,	Berkeley,	CA.

[7]	Hannemann,	J.,	&	Kiczales,	G.	(2002,	November).	Design	pattern	implementation	in	Java	and	AspectJ.	In	ACM	Sigplan	Notices
(Vol.	37,	No.	11,	pp.	161-173).	ACM.

[8]	The	XMage	project.	Developer	Notes.	https://github.com/magefree/mage/wiki/Developer-Notes.

Xmage

315

https://www.viewpoints-and-perspectives.info
https://www.mtgcardmaker.com/
https://github.com/magefree/mage
https://github.com/magefree/mage/wiki/Developer-HOWTO-Guides
http://xmage.de
https://github.com/magefree/mage/wiki/Developer-Notes

[9]	The	XMage	Project.	Server	load	/	user	disconnects	-	what	does	cause	the	problems	#662.
https://github.com/magefree/mage/issues/662#issuecomment-68996043

[10]	The	XMage	Project.	Card	images	not	bundled?	#2698.	https://github.com/magefree/mage/issues/2698

[11]	The	Open	Group	Base	Specifications	Issue	7,	2018	edition.
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html

[12]	Collectible	Card	Games	Headquarters.	How	to	set	up	a	(public)	XMage	server.
https://www.slightlymagic.net/forum/viewtopic.php?f=70&t=15898

[13]	SonarQube.	Metrics	-	Statements.	https://docs.sonarqube.org/display/SONAR/Metrics+-+Statements

[14]	The	XMage	Project.	Issues.	https://github.com/magefree/mage/issues

[15]	The	XMage	Project.	Issues.	UST	-	Card	Implementation	Tracker	(Tracking	issue	for	Unstable)	#4233
https://github.com/magefree/mage/issues/4233

[16]	The	XMage	Project.	Search:	todo.	https://github.com/magefree/mage/search?p=14&q=todo&type=Code&utf8=%E2%9C%93

[17]	The	XMage	Project.	Search:	fixme.	https://github.com/magefree/mage/search?utf8=%E2%9C%93&q=fixme&type=Code

Xmage

316

https://github.com/magefree/mage/issues/662#issuecomment-68996043
https://github.com/magefree/mage/issues/2698
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
https://www.slightlymagic.net/forum/viewtopic.php?f=70&t=15898
https://docs.sonarqube.org/display/SONAR/Metrics+-+Statements
https://github.com/magefree/mage/issues
https://github.com/magefree/mage/issues/4233
https://github.com/magefree/mage/search?p=14&q=todo&type=Code&utf8=%E2%9C%93
https://github.com/magefree/mage/search?utf8=%E2%9C%93&q=fixme&type=Code

Contributions
All	teams	put	substantial	effort	in	contributing	to	the	projects	under	study.	Not	in	all	cases	the	proposed	changes	were	actually	merged.
Many	teams	started	with	simple	documentation	changes	to	get	used	to	the	change	process,	and	then	proceeded	with	more	ambitious
changes.

This	chapter	lists	the	changes	that	were	approved	or	merged	into	the	projects	under	study.

Akka

Merged	pull	request	24655:	Add	log()	method	to	typed	Logging	API,	fixing	issue	24648.

Merged	pull	request	24850:	Add	tests	for	BoundedBlockingQueue.

Merged	pull	request	25025:	Fix	BoundedBlockingQueueSpec	against	spurious	wakeups	fixingfailing	test	in	24991

Angular

Merged	commit	7c45db3	for	pull	request	22285:	docs:	correct	grammar	mistakes	in	CONTRIBUTING.md

Docker

Merged	pull	request	2537:	Fix	possible	data	race	in	manager/state/store/memory_test.go

Merged	pull	request	2589:	Add	company	and	date	to	license

Under	review:	Pull	request	2595:	Upgrade	containerd	version	and	update	containerd	executor

Reported	issue	2563:	Make	script	fails	on	go	version	go1.10	darwin/amd64

Eden
Merged	pull	request	1480:	Update	Arabic	and	Korean	translations.

ElasticSearch
Merged	pull	request	29255:	Updates	documentation	on	generating	test	coverage	reports

Merged	pull	request	28905:	Add	a	usage	example	of	the	JLH	score

Merged	pull	request	29348:	Fix	some	code	smells	in	equals	methods

Electron

Merged	pul	request	1170:	Update	CONTRIBUTING.md

Merged	pull	request	295:	feat:	parse	tutorial	sidebar	nav	content

Godot
Merged	pull	request	17243:	Fix	being	able	to	create	folder	name	with	ending	'.'	on	Windows

Open	source	contributions

317

https://github.com/akka/akka/pull/24655
https://github.com/akka/akka/issues/24648
https://github.com/akka/akka/pull/24850
https://github.com/akka/akka/pull/25025
https://github.com/akka/akka/issues/24991
https://github.com/angular/angular/commit/7c45db3a195bfbf505e2070e36c1f0ef91365cb9
https://github.com/angular/angular/pull/22285
https://github.com/docker/swarmkit/pull/2537
https://github.com/docker/swarmkit/pull/2589
https://github.com/docker/swarmkit/pull/2595
https://github.com/docker/swarmkit/issues/2563
https://github.com/sahana/eden/pull/1480
https://github.com/elastic/elasticsearch/pull/29255
https://github.com/elastic/elasticsearch/pull/28905
https://github.com/elastic/elasticsearch/pull/29348
https://github.com/electron/electronjs.org/pull/1170
https://github.com/electron/i18n/pull/295
https://github.com/godotengine/godot/pull/17243

Merged	pull	request	17865:	Ctrl+Clicking	a	enum	now	scrolls	down	to	it	in	the	docs.

Kubernetes

Merged	pull	request	1887:	nidorano	sig	cli	contribution	ptr	in	CONTRIBUTING.md

Merged	pull	request	1883:	Correcting	an	outdated	URL	in	contributor	cheatsheet

Lighthouse

Merged	commit	bfb9bb5:	docs(contributing):	fix	link	for	closure	annotations

Merged	pull	request	4680:	docs(contributing):	fix	link	for	closure	annotations

Merged	pull	request	4912:	cli(output):	Add	ability	to	export	results	to	CSV

LoopBack

Merged	pull	request	1151:	refactor(CLI	Templates):	move	start	error	catch	to	application.main

Merged	pull	request	1231:	refactor:	move	example	packages	to	examples	folder

Mattermost
Merged	pull	request	893:	PLT-5270	Bold,	italic	and	striked	links	should	show	link	preview	when	available

Merged	pull	request	895:	Remove	a	duplicate	max-nested-callbacks	key	in	the	.eslintrc.json	file

Merged	pull	request	989:	Migrate	delete_post_modal.jsx	to	be	pure	and	use	Redux

Mbedos
Merged	pull	request	6286:	Small	typo	fixes	in	readme.md	files

OSU
Merged	pull	request	2184:	Removing	"mouse	wheel	disabled"	checkbox	from	visual	settings	in	gameplay

Phaser
Merged	pull	request	3358:	Added	rotation,	scaling	and	flipping	to	TileSpriteCanvasRenderer

Merged	pull	request	3357:	Fixed	object	based	atlas	loading

Merged	pull	request	3445:	Fix	changing	alpha	in	RenderTextureWebGLRenderer

Merged	pull	request	3509:	Line.PointA&B	fix

Merged	pull	request	32	in	examples	repo:	Pointerlock	example	fix

Spark

Open	source	contributions

318

https://github.com/godotengine/godot/pull/17865
https://github.com/kubernetes/community/pull/1887
https://github.com/kubernetes/community/pull/1883
https://github.com/GoogleChrome/lighthouse/commit/bfb9bb513f25a12cf67303c9a193e78dda2030fd
https://github.com/GoogleChrome/lighthouse/pull/4680
https://github.com/GoogleChrome/lighthouse/pull/4912
https://github.com/strongloop/loopback-next/pull/1151
https://github.com/strongloop/loopback-next/pull/1231
https://github.com/mattermost/mattermost-webapp/pull/893
https://github.com/mattermost/mattermost-webapp/pull/895
https://github.com/mattermost/mattermost-webapp/pull/989
https://github.com/ARMmbed/mbed-os/pull/6286
https://github.com/ppy/osu/pull/2184
https://github.com/photonstorm/phaser/pull/3358
https://github.com/photonstorm/phaser/pull/3357
https://github.com/photonstorm/phaser/pull/3445
https://github.com/photonstorm/phaser/pull/3509
https://github.com/photonstorm/phaser3-examples/pull/32/files

Merged	commit	6ac4fba	for	pull	request	20880:	[SPARK-23769]:	[Core]	Remove	comments	that	unnecessarily	disable	Scalastyle
check

TypeScript

Merged	pull	request	22275:	Fix	21617:	Give	detailed	message	on		for-of		of	iterators	without	downlevelIteration

Vue.js

Merged	pull	request	7739:	docs:	fix	grammar	mistake

Approved	fix	(not	yet	merged)	in	pull	request	7938:	fix(e2e-todomvc-test):	trigger	click	on	.new-todo	instead	of	footer,	fix	7937

Xmage

Merged	pull	request	4573:	Implemented	Uphill	Battle

Merged	pull	request	4584:	Typo	in	classname

Merged	pull	request	4617:	Fire		PLAY_LAND		event	only	after	replace	check

Merged	pull	request	4648:	Blocker	and	Critical	level	bugfixes	throughout	the	project

Merged	pull	request	4680:	Improved	XMage	startup	time

Merged	pull	request	4681:	Clickable	message	of	the	day

Merged	pull	request	4682:	Resolving	unaccepted	changes

Merged	pull	request	4683:	Fix	readme.md	card	count

Merged	pull	request	4707:	SOLID	violation	fix	in	token	classes

Merged	pull	request	4709:	Fixed	test	errors	caused	by	Elvish	Impersonator

Open	source	contributions

319

https://github.com/apache/spark/commit/6ac4fba69290e1c7de2c0a5863f224981dedb919
https://github.com/apache/spark/pull/20880
https://github.com/Microsoft/TypeScript/pull/22275
https://github.com/vuejs/vue/pull/7739
https://github.com/vuejs/vue/pull/7938
https://github.com/magefree/mage/pull/4573
https://github.com/magefree/mage/pull/4584
https://github.com/magefree/mage/pull/4617
https://github.com/magefree/mage/pull/4648
https://github.com/magefree/mage/pull/4680
https://github.com/magefree/mage/pull/4681
https://github.com/magefree/mage/pull/4682
https://github.com/magefree/mage/pull/4683
https://github.com/magefree/mage/pull/4707
https://github.com/magefree/mage/pull/4709

	Introduction
	Akka
	Angular
	Docker
	Eden
	ElasticSearch
	Electron
	Godot
	Jenkins
	Kubernetes
	Lighthouse
	Loopback
	Mattermost
	Mbedos
	OSU
	Phaser
	React
	Spark
	TypeScript
	Vue.js
	Xmage
	Open source contributions

