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Abstract: In this paper, we deal with event-triggered feedback control for Lur’e systems
that consist of negative feedback interconnection of nominal linear dynamics and an unknown
static nonlinearity. The unknown nonlinearity is conventionally assumed to lie in a given sector
while the sector bounds are known. In the presence of event-triggered feedback mechanisms,
the control input is only computed and updated when a specific event occurs. In this sense,
control system resources (e.g. computation and communication capabilities) can be saved. A
sufficient condition for the existence of an event-triggering condition and the corresponding
even-triggered controller design are obtained by means of linear matrix inequality techniques.
In addition, the avoidance of Zeno behavior is guaranteed. Furthermore, a result on the event-
triggered emulation of a continuous-time feedback controller for Lur’e systems is presented.
Finally, numerical simulations are given to illustrate the theoretical results along with some
concluding remarks.

Keywords: Lur’e systems, absolute stabilization, event-triggered feedback, Zeno behavior,
linear matrix inequalities.

1. INTRODUCTION

Feedback controllers are usually implemented using digital
units, for example, digital signal processors {Kuo and
Morgan (1995)}. In this case, measurements are discrete
in nature and control signals are not smooth due to e.g.
zero-order hold mechanisms. In order to analyze and syn-
thesize digital control systems, sampled-data control has
been popular for a long time, which uses periodic sampled
information to compute and update control inputs {Chen
and Francis (1995)}. As such, sampled-data control is
indeed a time-triggered approach and the constant sam-
pling period is an important design parameter. However,
stability analysis and performance requirements typically
result in conservative choices of the sampling period (i.e.
small) and, therewith waste control system resources.

In contrast to constant sampling periods, adaptively up-
dating them seems more promising {Dorf et al. (1962)}.
We call such aperiodic sampled-data control approach,
event-triggered control {Tabuada (2007)}. In this case,
control inputs are only computed and updated whenever a
certain error becomes large with respect to the state norm.
These events determine the sequence of sampling times,
? This work was partially performed when the first author was work-
ing in the Department of Mechanical and Biomedical Engineering,
City University of Hong Kong, China, supported by grants from the
Research Grants Council of Hong Kong (No. CityU-11203714). He
was also supported by the National Natural Science Foundation of
China under Grants 61473297.

usually resulting in aperiodic sampling. This time sequence
is not a priori known, which is essentially different from
time-triggered control. This also raises a critical problem:
the time interval between any two events must be lower
bounded by a strictly positive constant. Otherwise, the
sensor may have to execute an infinite numbers of updates
over a finite time interval, that is, Zeno behavior occurs
{Goebel et al. (2009)}. Therefore, besides guaranteeing
stability, it is also required to prevent Zeno behavior for
event-triggered control systems.

We care to stress that in event-triggered control, the
sensor has to monitor the plant in real-time while time-
triggered control does not. Certainly, this requirement is
stringent in some sense. In order to remove this demand,
periodic event-triggered control was proposed, where the
event-triggering condition is only checked at each sampling
instant periodically {Heemels et al. (2013)}. Obviously,
Zeno behavior will not occur in that case. Another strategy
is to employ a variation of event-triggered control, named
self-triggered control, in which the next control updating
instant is pre-computed using previously received data and
knowledge of the plant dynamics {Mazo Jr. et al. (2010)}.
We just enumerate the above two methods here.

Due to the importance of handling energy, computation
and communication constraints especially in the context
of networked or wireless control systems, event-triggered
control has attracted a lot of attention, see {Heemels
et al. (2012)} and the references therein. Following the
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ISS arguments in {Tabuada (2007)}, subsequent works
mainly focused on stability analysis of event-triggered
control systems, see for example {Marchand et al. (2013);
Girard (2015)}. Other approaches based on small gain
and passivity for the stability analysis of event-triggered
control systems were also exploited {Yu and Antsaklis
(2013); Liu and Jiang (2015)}.
However, fewer results exist addressing event-triggered
controller design, in particular for uncertain nonlinear
systems. In {Behera and Bandyopadhyay (2016)}, event-
triggered sliding mode control of linear systems against
external disturbances was discussed, where the feasibility
of the adopted controller depends on the sliding manifold
and the control input matrix. A periodic event-triggered
observer was designed for Lipschitz systems in {Etienne
and Gennaro (2016)}. Although some continuous-time
feedback controllers can be redesigned as event-triggered
ones, more technical details will be involved and sometimes
make the design procedure difficult, see e.g. {Sahoo et al.
(2016)}. Hence we have to take care of event-triggered
controller design case by case.

In this paper, we study the design problem of event-
triggered feedback controllers for Lur’e systems, being a
class of uncertain nonlinear systems. Lur’e systems can
represent many physical plants, e.g. Chua’s circuits, flex-
ible joint robotic arms, drilling systems and variable-gain
control systems {Liao and Yu (2008); van de Wouw et al.
(2008); de Bruin et al. (2009)}. The research on absolute
stability and absolute stabilization of Lur’e systems has
greatly promoted the development of control theory, in
particular nonlinear robust control. In {Chen and Hao
(2012)}, event-triggered control for Lur’e systems is also
addressed. We relax the assumption on the Lur’e-type
nonlinearities in the present paper with respect to {Chen
and Hao (2012)}. Besides, Zeno behavior was not exclud-
ed in {Chen and Hao (2012)} while this paper gives a
strictly positive lower bound of inter-event times and its
explicit computation. Moreover, we also provide an event-
triggered emulation result for Lur’e systems. Also related
is the work in {Seifullaev and Fradkov (2016)}, in which
a switching approach has been studied to design event-
triggered controllers for Lur’e systems employing a time-
delayed system approach, which results in a larger number
of LMI conditions.

The main contribution of this paper is an LMI-based
approach for the co-design of a state feedback control law
and an event-triggering condition that guarantee abso-
lute stability of the event-triggered Lur’e control system.
Moreover, it is guaranteed that using our proposed de-
sign Zeno behavior cannot occur. Finally, a result on the
event-triggered emulation of a continuous-time feedback
controller for Lur’e systems is presented.

The remainder of this paper is organized as follows. Some
preliminaries and the problem formulation are given in
Section 2. The main results are presented in Section 3.
Section 4 validates the obtained theoretical results using
numerical simulations. Concluding remarks close the paper
in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

We first give some preliminaries needed in this paper.

2.1 Preliminaries

Let R and N be the fields of real numbers and nonnegative
integers, respectively. Here R+

0 denotes the field of nonneg-
ative real numbers. Rm×n denotes the space of m× n real
matrices. Matrices, if not explicitly stated, are assumed
to have compatible dimensions. The superscripts (·)T and
(·)−1 denote the transpose and respectively the inverse of
a real matrix. We denote by 0 and I the zero and the
identity matrices of compatible dimensions.

First, we review the so-called S-procedure in a basic form.

Lemma 1. {Scherer and Weiland (2000)} Let M1 and M2

be real symmetric matrices. Then, xTM1x < 0 for all
real vectors x 6= 0 satisfying xTM2x ≤ 0 if there exists
a positive real number τ such that M1 − τM2 < 0.

Besides the S-procedure, the Schur complement lemma is
also used throughout this paper.

Lemma 2. {Scherer and Weiland (2000)} Let M be a real

symmetric matrix partitioned into blocks M =
[
M1 M2

MT
2 M3

]
.

Assume that M3 is positive (negative) definite, namely
M3 > 0 (M3 < 0). Then the following statements are
equivalent:

• M is positive (negative) definite;
• The Schur complement of M3, defined as the matrix
M1 −M2M

−1
3 MT

2 , is positive (negative) definite.

A similar argument to M1 and its Schur complement also
holds.

2.2 Problem formulation

In this paper, we will study event-triggered control of Lur’e
systems. The Lur’e system consists of a nominal linear
dynamics with an unknown static nonlinearity around it
in a negative feedback loop, as described by

ẋ = Ax+Bu+ Ez

y = Cx

z = −φ(y)

, (1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rs are the state,
the control input and the output, respectively. A, B, C
and E are given constant matrices of compatible dimen-
sions. The equation z = −φ(y) represents a memoryless,
nonlinear negative feedback loop, see Fig. 1. The function
φ(·) : Rs → Rs is an unknown static nonlinearity. It is
however assumed to be sector bounded within a known
sector defined as follows.

ẋ = Ax+Bu+ Ez
y = Cx

φ(y)

y

⊗
−
z
u

Fig. 1. Lur’e systems



Definition 3. Let S1, S2 ∈ Rs×s be real symmetric ma-
trices such that S1 is positive semi-definite and S2 − S1

is positive definite, i.e. 0 ≤ S1 < S2. Then φ(·) is called
sector bounded within the sector [S1, S2] if it satisfies

(φ(y)− S1y)T (φ(y)− S2y) ≤ 0 (2)

for all y ∈ Rs.

The problems of absolute stability and absolute stabiliza-
tion are recalled below.

Definition 4. The Lur’e system (1) is said to be absolutely
stabilized by a feedback controller if the corresponding
closed-loop control system is absolutely stable, that is,
it is globally asymptotically stable subject to all sector
bounded φ(·)’s within the given sector [S1, S2].

Here, the control input u is governed by a state feedback
law and only computed and updated when needed, and
is held constant by a zero-order hold until the next event
occurs. Then, the considered event-triggered controller is
given by

u(t) = Fx(tk), t ∈ [tk, tk+1), (3)

where the feedback gain matrix F ∈ Rm×n is to be
determined. The time sequence tk, k ∈ N, is determined
by the following event-triggering condition:

tk+1 = inf{t ≥ tk|eT (t)e(t) = αxT (t)x(t)}, (4)

where e(t) , x(tk)− x(t) and the positive real constant α
is the second control parameter to be designed. Obviously,
e(tk) = 0, ∀ k ∈ N, and thus e(t) is right-continuous.
Without loss of generality, let t0 ≡ 0. Under the above
event-triggering mechanism, we will always have that

eT (t)e(t) ≤ αxT (t)x(t), ∀ t ∈ R+
0 . (5)

By interconnecting (1) and (3), the event-triggered closed-
loop Lur’e control system is derived as

ẋ(t)=(A+BF )x(t)+BFe(t)−Eφ(Cx(t)), t∈ [tk, tk+1). (6)

The problem we are interested in is to co-design the
feedback gain matrix F and the event-triggering parameter
α > 0 such that the closed-loop control system (6) is
absolutely stable for all sector bounded φ(·)’s within the
given sector [S1, S2].

3. MAIN RESULTS

In this section, we will present the co-design of the event-
triggered controller (3) as well as the event-triggering
condition (4), namely F and α > 0. Moreover, the
feasibility of the proposed sufficient absolute stabilization
condition is discussed further by revealing its relations
with the one for the continuous-time feedback case.

First, the constructive design of F and α > 0 is given in
the following theorem.

Theorem 5. For a given positive real constant a, if there
exists a symmetric positive definite matrix X ∈ Rn×n, a
matrix Y ∈ Rm×n and positive real constants c, β such
that the linear matrix inequality



ĀX+BY +XĀT

+Y TBT+
c

2
EET

XCT X BY

CX −2c(S2−S1)−2 0 0

X 0 −βa I 0

Y TBT 0 0 a(I−2X)


<0 (7)

holds, where Ā , A − 1
2E(S1 + S2)C, then the system

(6) with F = Y X−1 is absolutely stable for all sector
bounded φ(·)’s within the sector [S1, S2] under the event-
triggering condition (4) with a suitable event-triggering
parameter α > 0 given by α = 1/β. Furthermore, a strictly
positive lower bound of the inter-event times is given by√

α
lx(1+

√
α)

when lx = le, or by 1
lx−le ln lx+lx

√
α

lx+le
√
α

when lx 6= le,

where lx , ‖A+BF‖+1
2‖E‖[‖(S1+S2)C‖+‖(S2−S1)C‖] and

le , ‖BF‖. Thus, Zeno behavior is avoided.

Proof. (Part I: Stability Analysis) In order to find out F
and α > 0 such that the system (6) is absolutely stable, we
consider the Lyapunov function candidate V (x) = xTPx
with P = X−1, where X > 0 together with Y , c > 0 and
β > 0 satisfying (7). Obviously, V (x) is positive definite
and radially unbounded. The time derivative of V (x) along
the trajectories of the system (6) is given by

V̇ (x)=2xTP [(A+BF )x+BFe− Eφ(Cx)] (8)

=xT
[
P (A+BF ) + (A+BF )TP

]
x

+ 2xTPBFe− 2xTPEφ(Cx)

≤xT
[
P (A+BF ) + (A+BF )TP

]
x

+
1

a
xTPBFFTBTPx+ aeT e− 2xTPEφ(Cx)

≤xT
[
P (A+BF ) + (A+BF )TP

]
x by (5)

+
1

a
xTPBFFTBTPx+ aαxTx− 2xTPEφ(Cx)

=
[ x
φ(Cx)

]T

P (A+BF )+(A+BF )TP

+
1

a
PBFFTBTP + aαI

−PE

−ETP 0

[ x
φ(Cx)

]
,

where we use the fact that 2xTPBFe≤ 1
ax

TPBFFTBTPx

+aeT e for any positive real constant a to derive the first
inequality above. However, a has to be fixed due to the
product of a and X in the block (4,4) of (7). We note that
the property of sector boundedness (2) is equivalent to[ x
φ(Cx)

]T 1
2C

T(S1S2+S2S1)C − 1
2C

T(S1+S2)

− 1
2 (S1 + S2)C I

[ x
φ(Cx)

]
≤0.

Then, using the S-procedure, see Lemma 1, V̇ (x) in (8) is
negative definite for all sector bounded φ(·)’s within the
sector [S1, S2] if there exists a b > 0 such that

P (A+BF )+(A+BF )TP

+
1

a
PBFFTBTP + aαI

−bCT (S1S2 + S2S1)C

−PE+
bCT(S1+S2)

−ETP + b(S1 + S2)C −2bI

<0 (9)

or, by the Schur complement lemma, see Lemma 2, equiv-
alently



P
(
Ā+BF

)
+
(
Ā+BF

)T
P +

1

a
PBFFTBTP

+ aαI +
1

2b
PEETP +

b

2
CT (S2 − S1)2C < 0 (10)

holds.

On the other hand, from (7) and β = 1/α, we have that

ĀX+BY +XĀT

+Y TBT+
c

2
EET

XCT X BY

CX −2c(S2−S1)−2 0 0

X 0 − 1
aαI 0

Y TBT 0 0 −aX2


<0

due to the fact that −X2 ≤ I − 2X since (I −X)2 = I −
2X + X2 ≥ 0. The above matrix inequality is equivalent
to

ĀX+BY +XĀT+Y TBT

+
c

2
EET+

1

a
BY X−2Y TBT

XCT X

CX −2c(S2−S1)−2 0

X 0 − 1
aαI

<0,

⇔


ĀX+BY +XĀT+ Y TBT+

c

2
EET+

1

a
BY X−2Y TBT+aαX2 XCT

CX −2c(S2−S1)−2

<0,

⇔ĀX +BY +XĀT + Y TBT + aαX2 +
c

2
EET

+
1

2c
XCT (S2 − S1)2CX +

1

a
BY X−2Y TBT < 0,

⇔


ĀX+BY +XĀT+Y TBT +aαX2

+
1

2c
XCT(S2−S1)2CX+

c

2
EET

BY

Y TBT −aX2

<0,

⇔


ĀX+BY +XĀT+Y TBT+

aαX2+
1

2c
XCT(S2−S1)2CX

BY E

Y TBT −aX2 0

ET 0 − 2
c I

<0.

Here we applied repeatedly the Schur complement lemma.
By premultiplying and postmultiplying the last matrix
inequality with diag(P, P, I), along with F = Y P , we get

P
(
Ā+BF

)
+
(
Ā+BF

)T
P

+aαI+
1

2c
CT(S2−S1)2C

PBF PE

FTBTP −aI 0

ETP 0 − 2
c I

<0,

⇔


P
(
Ā+BF

)
+
(
Ā+BF

)T
P+aαI

+
c

2
PEETP+

1

2c
CT(S2−S1)2C

PBF

FTBTP −aI

<0,

⇔P
(
Ā+BF

)
+
(
Ā+BF

)T
P +

1

a
PBFFTBTP

+ aαI +
c

2
PEETP +

1

2c
CT (S2 − S1)2C < 0.

Therefore, (9) as well as (10) hold by taking b = 1/c, which

implies that V̇ (x) is negative definite. Thus the system (6)
is absolutely stable.

(Part II: Zeno Freeness) The event-triggering condition

(4) determines the inter-event time intervals Tk+1 , tk+1−
tk, k ∈ N. In order to prevent an infinite number of
samplings over a finite time interval, i.e. the so-called
Zeno behavior, Tk+1 is required to be lower bounded by
a strictly positive constant for all k ∈ N. Since Tk+1 is
the time it takes ‖e(t)‖ to grow from 0 to

√
α‖x(t)‖,

t ∈ [tk, tk+1), we can follow the analysis carried out in
{Tabuada (2007)}.
Before moving on, we reformulate the Lur’e-type nonlin-
earity φ(·) using a Lipschitz-type property instead. Note
that

‖φ(Cx)‖2 − ‖(S1 + S2)Cx‖‖φ(Cx)‖+ xTCTS1S2Cx

≤φ(Cx)Tφ(Cx)− φ(Cx)T (S1 + S2)Cx+ xTCTS1S2Cx

=(φ(y)− S1y)T (φ(y)− S2y) ≤ 0. by (2)

Then, by solving the above quadratic inequality in one
variable as ‖φ(Cx)‖, we obtain that

‖φ(Cx)‖≤1

2
[‖(S1 + S2)Cx‖+√
‖(S1 + S2)Cx‖2 − 4xTCTS1S2Cx

]
=

1

2

[
‖(S1 + S2)Cx‖+

√
xTCT (S1 + S2)2Cx

−2xTCTS1S2Cx− 2xTCTS2S1Cx
]

=
1

2

[
‖(S1 + S2)Cx‖+

√
xTCT (S2 − S1)2Cx

]
=

1

2
[‖(S1 + S2)Cx‖+ ‖(S2 − S1)Cx‖]

≤1

2
[‖(S1 + S2)C‖+ ‖(S2 − S1)C‖] ‖x‖.

Consequently, using the dynamics (6), we have that

‖ẋ(t)‖≤‖A+BF‖‖x(t)‖+‖BF‖‖e(t)‖+‖E‖‖φ(Cx(t))‖
≤‖A+BF‖‖x(t)‖+‖BF‖‖e(t)‖+

1

2
‖E‖ [‖(S1+S2)C‖+‖(S2−S1)C‖] ‖x(t)‖

=lx‖x(t)‖+le‖e(t)‖.
It is easily checked that lx > 0 and le > 0.

Next, we lower bound Tk+1 by studying the dynamics of
‖e‖/‖x‖:
d

dt

‖e‖
‖x‖ ≤

(
1 +
‖e‖
‖x‖

) ‖ẋ‖
‖x‖ from (11) in {Tabuada (2007)}



=lx + (lx + le)
‖e‖
‖x‖ + le

( ‖e‖
‖x‖

)2

.

Therefore, Tk+1, ∀ k ∈ N, is lower bounded by the time
interval T satisfying f(T, 0) =

√
α, where f(t, f0) is the

solution to ḟ = lx + (lx + le)f + lef
2 with f(0, f0) = f0.

Case 1: lx = le, T =
√
α

lx(1+
√
α)

> 0; Case 2: lx 6= le,

T = 1
lx−le ln lx+lx

√
α

lx+le
√
α
> 0. This completes the proof. �

Remark 6. The proof of Theorem 5 also shows that the
event-triggering condition (4) with 0 < α < 1/β still work-
s. As such, Theorem 5 also expresses an event-triggered
emulation result guaranteeing absolute stability under a
sufficiently stringent event-triggering condition (see below
for more details). However, a smaller α will reduce the low-
er bound T for Tk+1 since T is a strictly increasing function
of α, see Part II in the above proof. In this case, more
actions of control computation and command updating
might be involved. The maximization of α depends on the
selection of a. Additionally the choice of a might influence
the feasibility of (7). In order to find an optimal/feasible
value of a one could simply employ a line-search algorithm.

Below we will discuss the feasibility of the LMI (7) in
Theorem 5 by exploring relations between Theorem 5 and
its counterpart regarding the continuous-time feedback
case. In the case of continuous-time static state feedback,
the controller for the Lur’e system (1) is given by

u(t) = Fx(t), t ∈ R+
0 , (11)

where F ∈ Rm×n is the feedback gain matrix, and the
corresponding closed-loop control system is derived as

ẋ = (A+BF )x− Eφ(Cx). (12)

Lemma 7. {Zhang et al. (2014)} If there exists a symmet-
ric positive definite matrix P ∈ Rn×n, a matrix F and a
positive real constant b such that

P
(
Ā+BF

)
+
(
Ā+BF

)T
P +

1

2b
PEETP

+
b

2
CT (S2 − S1)2C < 0 (13)

holds, then the system (12) is absolutely stable for all
sector bounded φ(·)’s within the sector [S1, S2].

Remark 8. Note that (13) is not an LMI. A necessary and
sufficient condition for the feasibility of (13) in the form
of an LMI can be found in {Zhang et al. (2014)}, see (15)
therein.

Now, we can formulate the following result on the event-
triggered emulation of a continuous-time controller for
Lur’e systems.

Proposition 9. There exists a solution pair (P, F ) to (10)
if and only if there exists a solution pair (P, F ) to (13).

Proof. For the ‘only if’ part: when (10) holds, obviously
(13) holds as well due to the fact that 1

aPBFF
TBTP+aαI

is always positive semi-definite. For the ‘if’ part: when (13)
holds, (10) can also hold if a > 0 takes a sufficiently large
value and α > 0 takes a sufficiently small one. More pre-

cisely, let Σ , P
(
Ā+BF

)
+
(
Ā+BF

)T
P+ 1

2bPEE
TP+

b
2C

T (S2 − S1)2C < 0. By the Schur complement lemma,
(10) becomes an LMI:[

ρPBFBTFTP + Σ %I
%I −ρI

]
< 0, (14)

M

x2

x1

K x3

x4

mg

Fig. 2. Flexible joint robotic arms

where ρ , 1
a and % ,

√
α. In this way, suitable a and α

can be computed. The proof is complete. �

Remark 10. It follows from Proposition 9 that, besides
solving the LMI (7), there is an alternative (emulation-
based) way to design an event-triggered controller of the
form (3) and (4) that absolutely stabilizes the Lur’e system
(1) by first solving the matrix inequality (13) using e.g. the
techniques in {Zhang et al. (2014)} to compute feasible
matrices P > 0, F and a constant b > 0, and then solving
the LMI (14) to obtain a suitable α as α = %2. The related
technical details are omitted here for the sake of brevity.

Remark 11. Whereas Lemma 7 only provides a sufficient
absolute stability condition for the Lur’e system (1) with
the continuous-time feedback controller (11), it is com-
monly used in the presence of the Lur’e problem. In addi-
tion, there are no necessary and sufficient conditions on the
absolute stability of the closed-loop Lur’e control system
(12). In some sense, by Proposition 9, the existence of an
event-triggered feedback controller (3) is equivalent to that
of a continuous-time feedback controller (11) for the Lur’e
system (1).

4. A SIMULATION EXAMPLE

In this section, we take a flexible joint robotic arm model
as an application example of Lur’e systems and show the
effectiveness of Theorem 5 obtained above.

A type of flexible joint robotic arms, see Fig. 2, can be
modeled by the Lur’e system (1) {Zhang et al. (2016)},
where x = [x1, x2, x3, x4]T ,

A =

[
0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −16.17 0

]
,

B = [0 21.6 0 0]
T

, C = [0 0 1 0] and E = [0 0 0 3.33]
T

.
Its Lur’e-type nonlinearity is described by φ(x3) = x3 +
sinx3, which satisfies the sector boundedness condition
φ(x3)(φ(x3)− 2x3) ≤ 0 with S1 = 0 and S2 = 2.

Let a = 4. By solving (7) in Theorem 5 using the
Matlab LMI Control Toolbox, we can compute F and
α to be F = [−0.3706 −0.2943 −0.5274 −0.2650] and
α = 0.0211, respectively. Then the lower bound of inter-
event time intervals is easily computed to be T = 0.0017s.
Ignoring the physical quantities and units, with the initial
state x(0) = [1 2 3 4]T , the state trajectories of the system
(6) are shown in Fig. 3 together with the corresponding
control input. Clearly, the designed even-triggered con-
troller (3)-(4) works well. The transient performance is
also satisfactory. Meanwhile, Fig. 4 shows the inter-event
times. It turns out that the actions of the control updating
are indeed performed aperiodically and Zeno behavior does
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input
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not occur. Moreover, it follows from Theorem 5 that these
time intervals are not smaller than 0.0017s.

5. CONCLUSIONS

A co-design approach for a state feedback control law and
a triggering condition has been proposed for the event-
triggered control of Lur’e systems. The obtained design
condition has been formulated as an LMI. A strictly
positive lower bound of the inter-event times has been
provided along with its computation. In addition, an event-
triggered emulation result for Lur’e systems has been
presented.
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