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ABSTRACT:

This paper reports on the result of an on-going study using Space Filling Curves (SFCs) for indexing and clustering vessel movement
message data (obtained via the Automated Identification System, AIS) inside a geographical Database Management System (Geo-
DBMS). With AIS, vessels transmit their positions in intervals ranging from 2 seconds to 3 minutes. Every 6 minutes voyage related
information is broadcast.
Relevant AIS messages contain a position, timestamp and vessel identifier. This information can be stored in a DBMS as separate
columns with different types (as 2D point plus time plus identifier), or in an integrated column (as higher dimensional 4D point which
is encoded as the position on a space filling curve, that we will call the SFC-key). Subsequently, indexing based on this SFC-key
column can replace separate indexes (where this one integrated index will need less storage space than separate indexes). Moreover,
this integrated index allows a good clustering (physical ordering of the table). Also, in an approach with separate indexes for location,
time and object identifier the query optimizer inside a DBMS has to estimate which index is most selective for a given query. It is not
possible to use two indexes at the same time — e.g. in case of a space-time query. An approach with one multi-dimensional integrated
index does not have this problem. It results in faster query responses when specifying multiple selection criteria; i.e. both search
geometry and time interval.
We explain the steps needed to make this SFC approach available fully inside a DBMS (to avoid expensive data transfer to external
programs during use). The SFC approach makes it possible to better cluster the (spatio-temporal) data compared to an approach with
separate indexes. Moreover, we show experiments (with 723,853,597 AIS position report messages spanning 3 months, Sep–Dec 2016,
using data for Europe, both on-sea and inland water ways) to compare an approach based on one multi-dimensional integrated index
(using a SFC) with non-integrated approach. We analyze loading time (including SFC encoding) and storage requirements, together
with the speed of execution of queries and granularity of answers.
Conclusion is that time spend on query execution in case of space-time queries where both dimensions are selective using the integrated
SFC approach outperforms the non-integrated approach (typically a factor 2–6). Also, the SFC approach saves considerably on storage
space (less space needed for indexes). Lastly, we propose some future improvements to get some better query performance using the
SFC approach (e.g. IOT, range-glueing and nD-histogram).

1. INTRODUCTION

AIS stands for Automated Identification System. The AIS system
is mainly used for improving safety at sea and inland waters (en-
abling vessels to discover quickly how other vessels are behaving
to avoid collisions) and can also be used as input for traffic man-
agement.

Figure 1 illustrates that the system consists of different compo-
nents: Vessels equipped with Global Navigation Satellite System
(GNSS) receiver and AIS transponder, as well as base stations.
For seagoing vessels and inland vessels larger than a certain size
it is mandatory to carry an AIS transponder. These transponders
send up to date information via Very High Frequency (VHF) ra-
dio at certain intervals. Depending on the cruising speed of the
vessel or whether it is anchored or moored, a transponder broad-
casts its identity and position in intervals ranging from 2 seconds
to 3 minutes. In addition, every 6 minutes voyage related in-
formation is broadcast. Also other devices, e.g. man-over-board
devices, can broadcast their position to others nearby. Further-
more, in assigned mode, a base station can request more frequent

∗Corresponding author

Source: Japan Aerospace Exploration Agency

Figure 1. Using AIS equipment vessels automatically broadcast
ship specific information, such as their name and type, as well as

their position to nearby vessels or coastal stations. On oceans
Satellite-based AIS (S-AIS) can be used.
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updates, or can command AIS transponders to be more quiet. To-
gether with the (implicit) receiving time the AIS position reports
form a rather large spatial-temporal data set.

Rijkswaterstaat (RWS) is part of the Dutch Ministry of Infras-
tructure and the Environment and maintains the main waterway
network in The Netherlands. Within RWS Automated Identifi-
cation System (AIS) messages are received in real time with the
Dutch Inland AIS Monitoring Infrastructure (DIAMONIS) net-
work.

The current architecture of this system is not suited for archiving
large amounts of historic AIS messages. As AIS messages are
received frequently for many vessels, the total data volume is sig-
nificant. Per week more than 80 million messages are received
by DIAMONIS (leading to over 1.5GB of raw message data per
week stored in flat text files, see Meijers et al. (2017)).

Compared to a flat text files based organization a Database Man-
agement System (DBMS) can offer concurrent user access, so
that many users can have access to the same data. It makes per-
mission management possible, which makes it possible to spec-
ify which user accounts are allowed to access which data (this
might be important given privacy concerns related to AIS mes-
sage data). Furthermore, the availability of a declarative query
language (SQL) allows the rapid development of applications.
Easier integration with other types of geographic data (e.g. raster
data – making heat maps of traffic intensity) is another advantage.

However, to make fast queries possible a DBMS should provide
Spatial Access Methods (SAM): Spatial indexing and clustering
techniques. Spatial indexing, which is necessary to guarantee fast
access to individual records, will also require storage space. In
this research we investigate how indexing and clusterting based
on a Space Filling Curve can be implemented in a DBMS for
space-time queries and how its performance compares to more
conventional indexing structures as B-tree (Bayer and McCreight,
1972) and R-tree (Guttman, 1984).

The remainder of this paper is structured as follows: Section 2
shows recent work using SFCs for indexing and clustering space-
time data, Section 3 describes the SFC approach in more detail,
Section 4 gives an overview of the experiments we carried out
together with analysis of the results and Section 5 concludes the
work and gives future work.

2. RELATED WORK

Van Oosterom et al. (2015) introduce the challenge to manage
massive point cloud data in a database, present a benchmark, and
propose to use a Space Filling Curve (SFC) for efficient 3D point
cloud data management with as test case the AHN2 data.

Psomadaki et al. (2016) and Psomadaki (2016) propose to use a
SFC for the management of dynamic point cloud data and analyse
organizations options: Ranging from 2D (just xy in SFC key)
to 4D (xyzt in SFC key) with test case coastal monitoring data.
The SFC computation was in both cases programmed outside the
Oracle database and implemented in Python (drawback: a lot of
data transfer between database and external SFC programs).

Guan et al. (2018) implemented the nD SFC Library1 in C++
(more efficient than Python) and tested up-to 5D by adding also

1http://sfclib.github.io/

the importance dimension to the SFC key (xyzti), but expen-
sive data transfer between database and external SFC software
remained.

In the above solutions the Oracle database with the Index Orga-
nized Table (IOT) was used. A IOT brings several performance
benefits: a. data is clustered (in order of index), b. table and index
are integrated in single structure, so more compact with less read-
ing needed, c. no combination of 2 structures needed (no ‘join’ of
index and table needed), which means less processing.

De Vreede (2016) implemented using Python the SFC key tech-
nique in combination with the MongoDB database and tested this
with moving ship trajectory data of the Automatic Identification
System (system). Also, functionality for computing SFC keys
was outside of database. As De Vreede (2016) observed in her
thesis that far fewer records needed to be retrieved, while using
an integrated multi-dimensional index based on the Morton SFC
for organizing AIS messages.

To summarize, for nD-points an organisation approach using
Space Filling Curves (SFC) has been proposed. However, this
approach has not been implemented fully inside a Geo-DBMS.
Up-to-now most relevant parts were programs running outside
of database server causing a lot of data transfer between DBMS
and SFC computation (one of main performance bottlenecks). In
this work we use the SFC approach for indexing and clustering
AIS points, while running fully inside the PostgreSQL DBMS.2

PostgreSQL is a mature database system, available under an open
source license. Furthermore, it has spatial capabilities by means
of an extension, called PostGIS. This extension allows to use spa-
tial data types, spatial indexing and offers spatial predicates (e.g.
to determine whether a point is inside a polygon). Although Post-
greSQL does not have equivalent of Oracle’s IOT, it allows to
cluster a table (sorting table along index order), so quite good
performance for data retrieval is to be expected.

3. METHOD

3.1 Objective

In this on-going research, for making fast queries possible on a
large historic archive of AIS position message reports, we im-
plement an approach for indexing and clustering based on Space
Filling Curves (SFC) inside a Geo-DBMS. Examples of use cases
that need a large historic archive of AIS messages related to ves-
sel traffic management are counting passages, travel time analysis
between two lines, obtaining traffic densities and intensities, in-
vestigating how many tracks of vessels there are that cross each
other within a limited time frame (e. g. within 10 minutes), pre-
diction of use of fairway, etc. For these use cases two queries are
often a starting point:

1. Location query: Find the position of a set of vessels in a
specific time window.

2. Trajectory query: Give the historic positions of a vessel and
their corresponding timestamps. The trajectory can be given
as a ordered/unordered set of point locations or as set of line
segments.

2The Python and Rust code for enabling the SFC approach inside
PostgreSQL is available at https://bitbucket.org/bmmeijers/

sfc-rs and https://bitbucket.org/bmmeijers/sfc-rs-ffi.
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In this paper, we focus on the Location query. Moreover, we take
the following requirements into account:

1. Volume of storage has to be efficient and comparable to size
of raw AIS message data in text files (and loading times
should be reasonable)

2. Spatial-temporal queries can be answered (e. g. give all ves-
sels in geographic region B and inside time window T , . . . )

3. Queries can be executed reasonably efficient (i.e. the
database system should be able to give answers within rea-
sonable amount of time)

3.2 Space Filling Curves – Indexing and clustering in a
DBMS

Figure 2 illustrates that a Space Filling Curve (SFC) is a curve
that traverses linearly through a n-dimensional (nD) grid (hyper
cube) with a given resolution. Each cell is in the grid is visited
exactly once by the curve. An important property is that locality
from the n-D space is preserved in the location on the curve (Dai
and Su, 2003). Space Filling Curves, such as Gray-coded curves,
Hilbert curves, Peano curves and z-order curves (also known as
Morton curve) have been well investigated. In this paper, we only
consider the Morton and Hilbert curves. Both are so-called quad-
rant recursive curves.
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Figure 2. Space filling curves.

By means of the SFC, we can map a nD coordinate to a 1D or-
dinate (i.e. position on the curve). The main idea for using a
Space Filling Curve as organization structure is to get fast access
to selections of nD points as the records for the points can be
sorted along the curve and, because locality is preserved, records
close on the curve are also close in nD space (persistent mem-
ory), meaning that for retrieval less communication is needed.
In an approach with separate indexes for location, time and ob-
ject identifier, the query optimizer has to estimate which index is
most selective for a given query. Such an index is then used to
determine which records from the table fulfill the selection cri-
teria of the query. It is not possible to use two indexes at same
time, e. g. in case of a space-time query. Indexing based on a 1D
Space Filling Curve position (which we call the ‘SFC-key’) can
integrate separate indexes and thus allow clustering in a balanced
way (space and time at the same time).

For this to work, it is necessary to scale and translate each di-
mension of every input point to a nD hyper cube. Then we can
encode this nD position (of integers) to a 1D location value (inte-
ger) on the Space Filling Curve (the SFC-key, distance from the
start of the curve). For encoding (and decoding) we implemented
2 functions in the database:

• sfc encode, taking as input an array of integers (the nD-
coordinate), returning an integer, the SFC-key.

• sfc decode, taking as input an SFC-key (integer) and an
integer specifying the number of dimensions, returning an
array of integers (original nD-coordinate).

For the Morton curve the SFC-key can be obtained from the in-
teger coordinates of the nD point by interleaving the bits of the
coordinates. For the Hilbert curve, the process of producing a
SFC-key also involves rotating and mirroring the bit pattern at
subsequent levels in the tree (Guan et al., 2018).

After calculating the SFC-keys for all points (according to Hilbert
or Morton order) and storing the result in additional column in
the table, we can index this SFC-key column by using a B-tree
index. Note, it would also be possible to only store the SFC-keys,
this means that only the SFC-key is stored and not the related
attributes (which are already encoded in the key). To obtain the
attribute values, we can use the decode function, e. g. using this
function inside a database view.

A custom query procedure with filter and refine steps is imple-
mented to make efficient use of the SFC-key (cf. Psomadaki
(2016), §4.4). Space-time queries (nD hyper box) need to be
translated to ranges of SFC-key values, that then are joined to the
original data table (where the B-tree index is used to make this
join fast). The query procedure uses the relationship that exists
between quadrant recursive SFC-keys and 2n-trees: A SFC-key
gives location in an nD grid. The total number of cells in the grid
is determined by the amount of bits that are used (per dimension).
Furthermore, a linear order of visiting the grid cells is defined
by all SFC-keys. As also noted by Van Oosterom and Vijlbrief
(1996) and Baert et al. (2013), a 2n-tree has a relationship with
this linear order. The leaf nodes in the corresponding tree (which
in 2D is a quadtree and in 3D is an octree) are encountered in this
order, when the tree is traversed depth-first, post-order. Every n
bits, starting at the most significant bits of the SFC-key describe
which nD cell at that level overlaps with the SFC-key: A cell its
index at a higher level in the tree thus corresponds to a coarser
version of the highest resolution nD grid. Hence, a full resolu-
tion SFC-key gives a full path from the root to the leaf nodes (a
highest resolution cell) in the tree. For range searching, we take
the tree as starting point: With a given query geometry, descend
the 2n tree and perform geometric overlap tests of the cells of the
tree, remember the traversed path. If you stop the traversal of the
tree at interior node of the tree, this means that the start of the
SFC range is known and the depth gives also the length of the
range (so the end of the range can be determined).

3.3 Experiment setup

We used 723,853,597 AIS position messages, with their coordi-
nates (φ, λ) only in the positive quadrant ([0◦, 90◦], [0◦, 180◦]).
The messages are spanning 3 months of time, Sep–Dec 2016.

SFC approach Appendix B gives full details for the steps to
setup the SFC table and related B-tree index. Loading data
using the SFC approach means performing the following
few steps:

1. Load the AIS message data in a staging table (unpack
its 2D point and MMSI from the NMEA message, see
Appendix A on AIS messages for more details), to-
gether with their timestamp
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2. Make SFC-key per record (scale and translate coor-
dinates of point and timestamp plus cast to integer,
as SFC-key needs to be computed based on integers),
using the sfc encode function.

3. Make B-tree index on SFC-key column
4. Cluster the table on the B-tree index (sort the records

of the table in the order of their position on the SFC)
5. Vacuum the table (reclaim storage space cluster/ sort-

ing step)

Result is a table with 4 columns: AIS point, timestamp, ob-
ject identifier (MMSI number), and also the added column
to hold the SFC-key value. We created 2 variants, using the
Morton SFC-key and Hilbert SFC-key. We scaled and trans-
lated the data for each dimension to use at maximum 21 bits
(to be able to fit SFC-key for 3 dimensions in 64 bit num-
ber), finest space resolution: ± 2 cm and finest resolution
for time: ± 3 seconds.

Reference approach To compare the SFC approach to, we have
also created a regular table with 3 columns: AIS point,
timestamp and object identifier (MMSI number). For the
regular table we created 4 variants:

a. A table with 2 indexes on space and time column,
clustered on space (variant 2S)

b. A table with 2 indexes on space and time column,
clustered on time (variant 2T)

c. A table with 1 index on space column, clustered on
space index (variant 1S)

d. A table with 1 index on time column, clustered on
time index (variant 1T)

For the space index we used the available R-tree of Post-
GIS, and for the time index we used the available B-tree of
PostgreSQL.

4. RESULTS

For the tests described in this document we have used a server
with the following details: HP DL380p Gen8 server with 2×
8-core Intel Xeon processors, E5-2690 at 2.9 GHz, 128 GB of
main memory, and a RHEL 6 operating system. The disk storage,
which is directly attached, consists of a 400 GB SSD, 5 TB SAS
15K rpm in RAID-5 configuration (internal), and 41 TB SATA
7,200 rpm in RAID-5 configuration (in a Yotta disk cabinet). The
PostgreSQL version used is 10.1 and the version of PostGIS is
2.4.2.

4.1 Load times

Figure 3 gives an overview of the data, and also indicates the re-
gions we used for the queries. Table 1 shows how much time it
takes to load, index, cluster and vacuum all 723,853,597 records.
As can be seen from Table 1, it is slightly more work to compute
SFC-keys according to the Hilbert curve compared to the Morton
curve (0.4 hour more). As comparison we also loaded the same
records in a regular table and created relevant indexes. It is inter-
esting to see that clustering is quite an expensive step when R-tree
is available, but is very fast when only the B-tree is present. Note,
that the absence of an index could result in long query times, in
case a spatial or temporal selection is required. In this sense, it
is unrealistic that both variant 1S and 1T will perform well for a
variety of queries.

Figure 3. A visualization of the AIS position reports that we
used as test data. The regions we used for queries are indicated

by the yellow rectangles. Map projection: ETRS89 / LAEA
Europe.

4.2 Data size

Table 2 shows that the integrated SFC approach (data plus B-tree)
saves storage space. The table with added SFC-key needs more
storage space (5GB extra in our case), due to the addition of the
SFC-key column. However, we only need one B-tree index on the
SFC-key column, which is leaner than R-tree on geometry and B-
tree on timestamp columns together for regular table. In total it is
approximately 30% cheaper to store the SFC approach with inte-
grated space-time index, compared to regular table with separate
indexes for space and time. Note, in case of SFC-key only stor-
age the AIS point and timestamp column could be removed from
the table, resulting in additional gains in space.

4.3 Query times

For the area in the south overlapping with The Netherlands/ Bel-
gium (3% of the total records lie in the query region), we used
a time window of 3 hours (accounting for a 0.1% of the total
number of records). For the region in the north overlapping with
Denmark/ Sweden (1% of total records within box), we used a
time window of 24 hours (selection on this time window results
in 1% of total records). As Table 3 indicates, the SFC approach,
in our case with space-time query, outperforms an approach with
separate R-tree and B-tree indexes with a factor 2 to 6, even with
more records retrieved for the answer (as the SFC approach ap-
proximates the query geometry).

Figure 4 show the results of the two queries we performed with
the SFC approach to analyze in more detail what happens. The
bar chart at the top shows how much time the complete query
procedure takes in seconds, where each green bar refers to a SFC-
key based on the Hilbert curve and each blue bar is based on the
Morton curve. The x-axis indicates at what level the traversal of
the 2n tree was stopped to generate SFC ranges. The bar chart
below the main graph shows whether time is spent on the SFC
range generation step, or on the join of the ranges to the table
with SFC-key column.
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SFC Regular
Morton Hilbert 2S 2T 1S 1T

Table 4.8 5.2 0.2 0.2 0.2 0.2

Index · SFC-key 0.1 0.1
· point 4.1 4.0 4.1
· timestamp 0.1 0.1 0.1

Cluster on · SFC-key 0.3 0.3
· point 3.8 7.2
· timestamp 6.3 0.2

Vacuum 0.7 0.7 0.8 0.8 0.7 0.7

Total time 5.2 5.6 8.8 11.1 12.2 1.2

Table 1. Loading 723,853,597 records, time in hours
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(a) The Netherlands / Belgium. 3 hour time window. Fastest
result (with: 61,290 resulting records) is obtained at depth 12,

taking 54 milliseconds for the complete query process.
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(b) Denmark. 24 hour time window. Fastest result is obtained at
depth 11 (generating 149,188 records), taking 115 milliseconds.

Figure 4. Query results using the SFC approach.

SFC Regular ∆ SFC - Regular

Table 57 52 +5
Index · sfc 15 -36

· geo 36
· ts 15

Total 72 102 -31

Table 2. Size comparison (in GB), comparing the SFC approach
against the regular indexed tables

The line chart at the top shows how much records were retrieved
by the query (note, logarithmic scale on the right of the chart).
Again, the SFC approach approximates the query geometry, so
query result will contain more points than the ‘exact’ answer.
From the graphs it is clear, that the result starts to approach the
exact query answer (as obtained by regular approach) better with
a higher depth value.

Denmark The Netherlands
Variant depth records time depth records time

Morton 11 149,188 0.115 12 61,290 0.053
Hilbert 11 149,188 0.114 12 61,290 0.054

1S 137,658 3.35 44,924 6.20
1T 137,658 2.57 44,924 0.357
2S 137,658 3.06 44,924 3.06
2T 137,658 2.51 44,924 0.362

Table 3. Query time comparison. Time in seconds. Fastest time
per approach in bold. The amount of records that is retrieved by
the regular approach is the ‘exact’ answer. As the SFC approach

approximates the query geometry, more records are retrieved
(8% more for Denmark query, 38% more for The Netherlands

query).
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Some more observations can be made:

• Descending too little or too much: Both is not good. Too
little: the join step is extremely expensive as too coarse
ranges, this leads to many points to be retrieved (for both
queries time is completely dominated by join step for level
7). Too much: SFC range generation becomes expensive
(nearly 75% of time is caused by generating ranges for level
16) and this refinement does not contribute to more exact
answer (roughly same amount of records will be retrieved).

• The ‘correct’ depth seems to be the level where the reduc-
tion of selected records does not go down drastically any
more (you might possibly know this point by having a nD
histogram at hand).

• Although there is one depth that clearly gives fastest query
result, there exists a range of depths where query is reason-
ably fast (e. g. depth 9, 10, 11, 12, 13 all produce answer
within 0.5 second).

• Currently, there does not exist a notable difference between
Hilbert and Morton (although Hilbert potentially is a bit
more expensive to compute, as was also apparent from load-
ing time, cf. Table 1).

• SFC approach gives approximate answer: Exact answer plus
some additional records. Second filter step (which performs
a point in polygon test) should have been applied to gener-
ate answer with same number of points as exact outcome.
However, we did not yet test this.

• For the fastest query (at level 11, 12), currently most time
(more than 90%) is spent in join phase. This could allow
for speeding up the query. We can join consecutive ranges
(cf. Psomadaki (2016), §4.4.3) making the join step faster.
Expectation is that Hilbert would benefit more from this op-
timization compared to Morton, as Hilbert curve is more
compact (less big jumps in curve, better locality property).

In short, tuning the granularity of SFC ranges is required for
querying with the SFC approach. An optimal exists between
generating not so many, but long SFC ranges (easy to generate
the ranges, yet quite some work for data join) and generating
shorter, but many more SFC ranges (which is more work to gen-
erate the ranges, but at same time can be more selective for data
join step). Furthermore, there is some room for further improve-
ment by joining consecutive ranges.

5. CONCLUSION AND FUTURE WORK

We have implemented for the first time the SFC approach fully
inside the database and have shown that it is possible to imple-
ment the whole approach inside the database server. The SFC
approach saves on storage space compared to regular table to-
gether with multiple indexes approach. Tight integration within
the database server has clearly advantages: No data transfer be-
tween external program, leading to efficient load and performant
queries, that are faster than using conventional/regular approach
for storing space-time data (with separate indexes).

To make the SFC approach work, we have implemented SFC en-
code, SFC decode and SFC range generation functions. More-
over, we have used the B-tree, cluster and join functionalities, al-
ready supplied by the DBMS. Also, per dataset we have to scale
and translate the coordinates and round to integer grid.

Although the SFC approach is very promising, we have a list of
points to address in the future:

• Investigate SFC-key-only storage, plus additional database
view for decode (and its impact on data storage and perfor-
mance).

• In 4D (and higher) size of SFC key gets too big to be rep-
resented by 64-bit integer. Other key encodings need to be
used (e. g. raw bytes, varchar).

• To make the encoding / decoding work, we apply scaling
and translation (offset) to all dimensions (xyt) of the 3D in-
put points. Although these are simple numerical operations,
it is important that the scaling and translation that is applied
at load time, is the same when querying the data. Storing
these values inside a metadata table in the database, and let
the encode / decode / ranges functions use this metadata will
make the approach more robust (less chance of inputting
wrong values by end user) and more user friendly.

• Using the non-obvious dimension ‘object identifier’ inside
SFC-key (leading to a 4D point). Will the resulting cluster-
ing be good for performing queries?

• As was shown, chosing correct depth in 2n-tree is crucial
for querying in a successful and efficient way with SFC ap-
proach. This tuning of SFC query approach has been man-
ual. In future, this should be more automated / transparent
for end user: A histogram on the data distribution for vari-
ous levels in the 2n-tree can help. Implement and test this
idea.

• The queries we used are space-time queries with both the
space and time dimension reasonably selective. In case
space is given, but not time for making the query (com-
plete time window present in data set to be considered for
answer), we also want to generate an answer reasonably fast
(although might result in many records, so expensive to gen-
erate anyway). Test what happens in such a worst case.

• A second filter step (point-in-polygon-test) was not applied
in this work. It should be tested how much work the point-
in-polygon-test entails. Note that the SFC ranges can be an-
notated with whether they are fully inside query geometry or
on boundary (as query geometry is approximated by them).
Only the SFC ranges that are overlapping with the boundary
of query geometry need to be evaluated against second filter.

• As mentioned before, consecutive SFC ranges can be glued
together. This will reduce the amount of work for the join
step (as the join step needs to consider less ranges). Hy-
pothesis: Hilbert will perform better than Morton, due to
better locality. Note that also, non-consecutive ranges (with
small gap between them) can be glued together. However,
this will increase false positives for query result (and these
records need to be removed by a second filter step).

• Test the SFC-approach with an Indexed Organized Table
(IOT). This type of structure with integrated index and ta-
ble is not supported in PostgreSQL at the moment, but this
could be tested with Oracle DBMS.
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APPENDIX A – AIS MESSAGES

The International Telecommunication Union (2014) defines 27
different top level AIS message types. These messages can be
classified in 6 different main groups: 1. position messages, 2.
meta data messages, 3. acknowledgment messages, 4. defined slot
binary messages, 5. addressed messages and 6. broadcast mes-
sages. Note that not all message types are received as frequent
as others. The National Marine Electronics Association (2012)
defines an ASCII encoding, such that AIS messages can be sent
over a serial link to other equipment. In NMEA terms, an AIS
message is a group of sentences.

!ABVDM,1,1,1,A,13an?n002APDdH0Mb85;8‘sn06sd,0*76

Origin End of 
data /
Checksum

6-bit ASCII Encoded AIS data

AIS channel

Total number of messages / 
Sequence number

Figure 5. NMEA sentence containing AIS position report

Figure 5 shows that such a sentence contains the origin type
(which codes the origin of the sentence, in this case ‘AB’ in ‘!AB-
VDM’ stands for base station), the number of sentences a mes-
sage consists of (a message can span multiple NMEA sentences),
the AIS channel that was used to broadcast the message, the raw
AIS data and a check sum to check the integrity of the raw mes-
sage. Which parameters are contained in a raw message depends
on the message type.

A base station can add this time stamp to the NMEA sentence
upon reception of an AIS message. Many of the AIS message
types contain a geographical location (latitude, longitude) and an
object identifier of the sender, the MMSI number. MMSI stands
for Maritime Mobile Service Identity.

-- Database function:

-- Get the MMSI number as integer

CREATE OR REPLACE FUNCTION

ais_mmsi(payload bit varying)

RETURNS integer AS

$$

BEGIN

RETURN

substring(payload from 9 for 30)::integer;

END;

$$ LANGUAGE plpgsql

IMMUTABLE;

Figure 6. Example of function within PostgreSQL database to
decode MMSI number from bit vector data type.

In earlier work, to store AIS messages inside PostgreSQL, we
decided to use the bit vector data type (Meijers et al., 2016).
The bit vector type allows direct access to arbitrary long sub-
sets of bits (which is useful to decode the parts of the AIS mes-
sage). We defined a set of database functions to access the parts
of the AIS messages. The online document http://catb.org/
gpsd/AIVDM.html was of great help interpreting the raw AIS
data (Raymond, 2016). We made the following decoding func-
tions in our database: MMSI number, Message type, Easting and
northing of a geographic location (and a function to map east-
ing and northing to the point type, provided by PostGIS), 6-bit
ASCII encoded strings, Call sign, Name of a vessel and Destina-
tion. Figure 6 shows an example function for decoding the MMSI
number from the stored bit vector.
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APPENDIX B – SFC IN POSTGRESQL DATABASE

Table definition:

=# \d isprs_sfc

Table "isprs_sfc"

Column | Type

-----------+--------------------------

sfc_key | bigint

ts | timestamp with time zone

ais_point | geometry(Point,4326)

ais_mmsi | integer

Indexes:

"i__isprs_sfc__sfc_key" B-tree

(sfc_key) CLUSTER

To create this table:

create table isprs_sfc as select * from

(

-- transform points + timestamps to 3D cube

with transform_params as

(

select

sfc_transform_scale(

-180, 180,

0, pow(2,21)::numeric) as scale_east,

sfc_transform_scale(

-90, 90,

0, pow(2,21)::numeric) as scale_north,

sfc_transform_scale(

extract(epoch from

’2016-09-30 23:59:59+02’::timestamp

with time zone)::int,

extract(epoch from

’2016-12-31 23:59:59+02’::timestamp

with time zone)::int,

0,

pow(2,21)::numeric) as scale_time,

180::numeric as translate_east,

90::numeric as translate_north,

-extract(epoch from

’2016-09-30 23:59:59+02’::timestamp

with time zone)::numeric

as translate_time

)

select

-- compute SFC-key

sfc_hencode(

array[

-- X-dimension (space)

sfc_transform_dim(e,

(select translate_east

from transform_params),

(select scale_east

from transform_params))::int,

-- Y-dimension (space)

sfc_transform_dim(n,

(select translate_north

from transform_params),

(select scale_north

from transform_params))::int,

-- T-dimension (time)

sfc_transform_dim(t,

(select translate_time

from transform_params),

(select scale_time

from transform_params))::int

]) as sfc_key,

ts,

ais_point, ais_mmsi

from (

select

extract(epoch from ts)::numeric as t,

st_x(ais_point)::numeric as e,

st_y(ais_point)::numeric as n,

ts, ais_point, ais_mmsi

from ais_staging where

st_x(ais_point) between 0 and 180

and

st_y(ais_point) between 0 and 90

) as staging

) as data

Index, cluster, vacuum:

create index i__isprs_sfc__sfc_key on

isprs_sfc (sfc_key);

cluster isprs_sfc using

i__isprs_sfc__sfc_key;

vacuum analyze isprs_sfc;

Making table for ranges:

create temp table sfc_ranges as

select * from (

with transform_params as

(

select

... -- same as at load

)

select r.* from sfc_hquery(

-- use offset and scale from transform_params

-- same as in load step

array[

floor(sfc_transform_dim(9.8, ..., ...))::int,

floor(sfc_transform_dim(56.0, ..., ...))::int,

floor(sfc_transform_dim(

extract(epoch from

’2016-10-15 00:00:00+02’

::timestamp

with time zone)::int,

..., ...))::int

],

array[

ceil(sfc_transform_dim(12.3, ..., ...))::int,

ceil(sfc_transform_dim(58.5, ..., ...))::int,

ceil(sfc_transform_dim(

extract(epoch from

’2016-10-15 23:59:59+02’

::timestamp

with time zone)::int,

..., ...))::int

],

11 -- how deep to descend 2^n-tree

) as r)

ranges;

Join ranges to data:

create unlogged table sfc_query_result as select

d.*

from

sfc_ranges r, isprs_sfc d

where

d.sfc_key >= r.lower and d.sfc_key < r.upper;
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