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Abstract
This article provides an overview of the specifications of web-based computing platforms for urban data analytics and
computational urban planning practice. There are currently a variety of tools and platforms that can be used in urban
computing practices, including scientific computing languages, interactive web languages, data sharing platforms and still
many desktop computing environments, e.g., GIS software applications. We have reviewed a list of technologies consid-
ering their potential and applicability in urban planning and urban data analytics. This review is not only based on the
technical factors such as capabilities of the programming languages but also the ease of developing and sharing complex
data processing workflows. The arena of web-based computing platforms is currently under rapid development and is too
volatile to be predictable; therefore, in this article we focus on the specification of the requirements and potentials from
an urban planning point of view rather than speculating about the fate of computing platforms or programming languages.
The article presents a list of promising computing technologies, a technical specification of the essential data models and
operators for geo-spatial data processing, and mathematical models for an ideal urban computing platform.
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1. Introduction

In this article we focus on the applications of urban com-
puting in Smart Cities Planning practice (as proposed
by (Batty et al., 2012)). They suggest that there is a
need for a paradigm-shift in urban planning, from focus
on the built environment problems to social problems
such as deprivation, and their relations to space, spa-
tial distributions and spatial planning. Considering the
complexity of cities, they imply that there is a need to
develop “a new science of human [spatial] behaviour”.

This paradigm shift towards developing new [spatial] sci-
ences of cities can be facilitated by the so-called urban
computing practices, e.g., by facilitating access to large
datasets on human spatial behaviour. This article seeks
to illustrate what are the essential means of urban com-
puting practice from a methodological point of view, i.e.,
computational requirements for 1) developing scientific
knowledge in the form of validated analytic/simulation
models using spatial data and spatial relations; and 2) in-
forming planning actions using the insight gained from
analytic/simulation models on effectiveness of actions.
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1.1. What is Urban Computing?

It is difficult, and perhaps even futile, to provide a com-
prehensive definition of the emerging fields of Urban
Computing (e.g., as referred to in Kindberg, Chalmers,
& Paulos, 2007; Zheng, Capra, Wolfson, & Yang, 2014)
and the closely related field of Urban Informatics (e.g.,
as referred to in Foth, Choi, & Satchell, 2011). These
two are umbrella terms for describing diverse practices
involving geo-spatial data analysis related to cities and
citizens. While the former has a technical connotation
related to sensing, analysis and actuation technologies
(Kindberg et al., 2007), the latter is more focused on
the computational social sciences applied to analysis of
cities. Without attempting to provide a comprehensive
definition, we choose to use the term urban comput-
ing with a broader scope to refer to all data-intensive
‘computational workflows’ that can be used for improv-
ing urban planning and urban decision-making by pro-
viding the means of data acquisition, analysis and simu-
lation, e.g., to reduce traffic congestion or energy con-
sumption. From a technical point of view, urban com-
puting can involve acquisition, integration, and analysis
of (big) data generated by diverse sources such as sens-
ing technologies and large-scale computing infrastruc-
tures in the context of urban spaces. The volume, velocity
and variety of such data often requires the use of cloud
computing infrastructure and software services (Hashem
et al., 2015). Urban Computing is applicable in a variety
of fields, namely:

• environmental studies (e.g., Shang, Zheng, Tong,
Chang, & Yu, 2014; Zheng, Liu, & Hsieh, 2013);

• modelling energy use/generation (e.g., Simão,
Densham, & Haklay, 2009);

• transport modelling (e.g., Zheng, Liu, Yuan, & Xie,
2011);

• monitoring health (e.g., Varshney, 2007);
• epidemiology (e.g., Lopez, Gunasekaran,Murugan,

Kaur, & Abbas, 2015);
• social informatics (e.g., Foth, Forlano, Satchell,

Gibbs, & Donath, 2011; Pires & Crooks, 2017);
• criminology (e.g., Bogomolov et al., 2014); and
• participatory planning (e.g., Robinson & Johnson,

2016; Tenney & Sieber, 2016).

1.2. Why Is Urban Computing needed in Urban
Planning?

In Urban Planning, we are often interested in analysing
the so-calledwhat-if scenarios using simulations and pro-
jections (Batty & Torrens, 2001). Traditionally, the geo-
spatial analysis of intervention scenarios, urban plans,
and urban data is done by means of Geographic Infor-
mation Systems (GIS), Planning Support Systems (PSS;
see Batty, 2007; Harris & Batty, 1993) and Spatial Deci-
sion Support Systems (SDSS). The PSS and SDSS systems
are typically stand-alone desktop applications that have

a database, a library of computational methods for geo-
spatial data processing, and an interface. Despite the
technical similarities in using a spatial database, the two
categories are different in that the SDSS are geared to-
wards operational decision-making whereas the PSS are
geared towards strategic planning that often involves
land-use planning and thus requiring the consideration
of land-use transport interactions (the distinction be-
tween PSS and SDSS from Geertman & Stillwell, 2009).
In these systems, there exist some workflows for spa-
tial analysis of urban data, which do not require new
ground-breaking technology. However, the prospect of
urban computing is the potentials of theweb-based com-
puting platforms for developing a new generation of
shareable and editable geo-spatial data processing work-
flows for informing decisions in urban planning. From ur-
ban computing applications listed in Section 1.1, it can
be seen that so far urban computing technologies have
been mostly applied in the operational and managerial
contexts (based on the definition of urban planning ac-
tions; Couclelis, 2005). For a wider adoption of urban
computing practices in strategic urban planning, urban
computing platforms must provide the essential means
of analysis and simulation procedures needed in PSS.

Although most of the scholarly works in the area of
PSS are focused on land-use change, there are other as-
pects of urban dynamics that could be modelled com-
putationally; that is to say, the broader discussion is on
what changes can be explained, anticipated, and taken
into account when making strategic decisions on spatial
plans, this broader field of research and development
is called Urban Modelling (Batty, 2009). Considering the
nature of outcomes of planning processes, (e.g., land-
use plans) we can observe that the spatial relations be-
tween land-use distributions and a variety of phenom-
ena need to be considered while making strategic plan-
ning decisions: for instance, land-use and transport inter-
actions and their effects on energy use in transport (see
Keirstead, Jennings, & Sivakumar, 2012) and the effect of
land-use distribution on bio-diversity and the use of nat-
ural resources (especially water) should ideally be con-
sidered when proposing plans. From a pragmatic point
of view, however, the adoption of PSS in practice is not
high (Geertman & Stillwell, 2009):

It is disturbing, in fact, to observe the extent to which
new computer-based support systems are developed
by researchers to the point of adoption but are never
implemented in planning practice or policy making.
Similarly, there is evidence to indicate that systems
which are made operational are not extensively used,
after the initial novelty has passed, by those planning
organizations for which they have been developed in
the first instance. In terms of application, it is pos-
sible to point to more failures than successes, i.e.,
to more cases where systems have not been imple-
mented than examples where they are used routinely.
Moreover, many state-of-the-art systems appear to
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take a long time to reach the ‘market’ and this is often
a process requiring considerable financial resources.

We suggest that the research and development cul-
ture of Spatial Planning and Decision Support Systems
(SPDSS, terminology of Geertman & Stillwell, 2009) must
adopt open-source and agile development principles for
effective ‘market’ uptake and ensuring the viability of
the R&D products (Crowston & Howison, 2005; Hey
& Payne, 2015; Pressman & Roger, 2009; von Krogh,
2003). By adopting urban computing practices, utiliza-
tion of scientific knowledge in planning practice will be
eased; because web-based computing platforms facili-
tate rapid prototyping, development, release, sharing,
and test of SPDSS (incorporating a variety of Urban [Anal-
ysis/Simulation] Models).

1.3. Problem Statement

Although much can be said about the graphical user in-
terfaces of GIS applications, we do not focus on them;
because these interfaces are generally geared towards
manual operations. Instead our focus is on the essential

means for developing ‘geo-spatial computing workflows’.
Workflows can be as simple as routines of sequential ac-
tions ormore sophisticated procedureswith flow-control
mechanisms, which are better known as algorithms (see
Figures 1 and 2 for workflow examples). There are two
types of challenges in using the currently available GIS
desktop applications for innovative inter-disciplinary re-
search in Urban Computing applied in Urban Planning
(i.e., Design and Development of Web-Based SPDSS):

• Data-Related Challenges:

– Data-Availability: how easy is it to acquire a
relevant dataset?

– Data-Interoperability: how easy is it to
read/write datasets from/to file formats?

– Data-Mergeability: how easy is it to overlay
multiple datasets?

• Workflow-Related Challenges:

– Workflow Comprehensibility: to what extent
is the whole workflow understandable?

Figure 1. Two examples of geo-spatial data processing workflows from QGIS Processing Modeller1 (top) and ArcGIS Model
Builder2 (bottom), respectively made for calculating area of water within 25 metres of urban roads (tutorial), and finding
suitable locations for urban parks (tutorial).

1 http://gracilis.carleton.ca/CUOSGwiki/index.php/Automating_Vector_and_Raster_Workflows_using_the_Graphical_Modeler_in_QGIS#Introductions
2 http://resources.esri.com/help/9.3/ArcGISengine/java/doc/bab90fcc-320b-4b33-902d-a00afd18cfcb.htm
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– Workflow Editability: how easy is it to modify
the workflow explicitly?

– Workflow Repeatability: how easy is to re-
peat a certain data processing workflow?

– Workflow Shareability: how easy is it to share
a workflow from one system to another?

– Workflow Scalability: how easy is to process
large datasets with a workflow?

– Workflow Sustainability: to what extent is
the workflow modular and recyclable?

A rather neglected matter about SPDSS is the very so-
cial/human process of developing them. These systems
can be developed by Research Software Engineers.3

A typical research software developer is not necessar-
ily a software engineer, but usually a domain-specific
researcher who can develop software or computational
workflows. A typical research software engineer, often
does not have themeans of a software vendor to develop
a large application with a custom-made GUI. The core of
the work of research software development is on devel-
oping analytic workflows.4

2. What Do We Need for Urban Computing?

We argue that there are three determining factors to
consider with regards to ‘the suitability of a computing
technology for urban computing’, i.e., the availability and
quality of:

1. Visual Data Flow Programming
2. Spatial Computing Libraries
3. Internet of Things (IoT) APIs5

2.1. Visual Dataflow Programming

It is well known that the time spent on research and
development is often much more valuable than the
computation time. Therefore, we need to consider hu-
man interface requirements with regards to the ease of
ideation-development-test cycles (prototyping). We pro-
pose that using a dataflow programming platform, the
user can interact with the platform knowing only a com-
mon programming language to edit the nodes (blocks
of code) and only a handful of UI manoeuvres to get
started; without the problem of learning a sophisticated
UI. In processing big data, there are two generic ap-
proaches, namely: batch processing and real-time pro-
cessing (Hashem et al., 2015). Considering the real-time
data processing requirement, especially in dealing with
managerial and operational planning actions, we can
conclude that the Dataflow Programming6 is an appro-
priate paradigm for setting up an R&D/prototyping envi-
ronment (Blackstock & Lea, 2014; Szydlo, Brzoza-Woch,

Sendorek,Windak, &Gniady, 2017). Considering that the
sustainability and the repeatability of the workflow, it is
practical to adopt a modularization and standardization
approach to workflow development. Standardization is
important for reusability. Specifically, the code-blocks
(alias nodes, blocks, or subsystems) of a workflow must
input and output data in formats readable for one an-
other. Of course, having a visual overview of the work-
flow is of high added value, as it makes the workflow as
intuitive as a flowchart. The idea of a visual dataflow pro-
gramming language is to represent the high-level logic
of a program/workflow as a graph of nodes, which are
blocks of (reusable/shareable) code. The representation
of the high-level logic as a graph makes it easy to fo-
cus on the complex big-picture for a group of developers
working on aworkflow. Instead of developing a complete
software application with a graphical user interface, a re-
search software engineer can focus on the core of the
workflow, model the workflow, test it, share it, and re-
lease it as a functional prototype.

If the workflow description language is a (de facto)
standard, the intended user does not need to learn a new
interface to interact with the workflow. In other words,
instead of focusing on optimizing a new software appli-
cation in terms of its interface and the computational ef-
ficiency, more attention can be paid to the effectiveness
of the workflow itself. In addition, if the workflow is also
cloud-based, then it will be easier to share them and col-
laborate on-line in real-time.

In short, adopting a visual cloud-based dataflow pro-
cessing language (and ecosystem) brings about a few
advantages:

• Automation of repetitive tasks for data cleansing,
validation, etc.;

• Informal and yet sustainable standardization
based on common-practices and bottom-up emer-
gence of workflow patterns7;

• Sharing workflow pattern solutions instead of re-
inventing the wheel;

• The possibility of interdisciplinary collaboration;
• Ultimate modularization of workflows based on

sharing nodes/blocks of code;
• Agile development-test-release cycles;
• Promotion of Open-Source development practices

and therefore rapid progress;
• Ensuring re-usability and repeatability of

workflow-based practices such as spatial analyses;
• Saving time by significantly reducing the time and

effort in re-inventing interfaces;
• Raising the level of comprehensibility of analytic

workflows by providing a glass-box view of the pro-
cess (as opposed to black-box SPDSS); and

• The possibility of public participation in planning
3 http://rse.ac.uk/who/
4 http://www.commonwl.org/
5 Application Programming Interfaces.
6 https://stackoverflow.com/questions/461796/dataflow-programming-languages/2035582
7 http://www.workflowpatterns.com/
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Figure 2. Data processing workflow examples, respectively from top left, clockwise, node-RED, editable by JavaScript (pic-
ture from Boyd, 2015), QGIS Graphical Modeller8, Anaconda Orange39, and ArcGIS Model Builder10, all of which offer
Python APIs. The GIS dataflow programming environments make it easy to automate routines, share them, and use stan-
dard modules; however, the installation procedures, their domain specific nature and their UI make them much less ac-
cessible than the two all-purpose data-flow programming environments shown.

processes by means of rapid development and in-
tegration of apps (e.g., using Node-RED11, a visual
data-flow programming tool for wiring together
hardware devices, APIs and online services, see
Figure 2).

2.2. Spatial Computing Libraries

Here we provide an overview of the requirements of
a software application for urban computing; and focus
on the specific functionalities that deal with geo-spatial
data. Geo-spatial data can be analysed in at least five spa-
tial forms from the most concrete to the most abstract:

• Geographical Data Models: geographically posi-
tioned points, lines, polygons, and polyhedrons;

• Geometrical Data Models: points, lines, polygons,
and polyhedrons (in local coordinate systems);

• Topological Data Models: vertices, edges, faces,
and bodies (algebraic\combinatorial topology);

• Graphical Data Models: objects and links (Graph
Theory); and

• Spectral Data Models: eigenvectors and eigenval-
ues.

The use of the last category of data models is rela-
tively newer than the other types of the models and is
used for modelling the dynamics of diffusion flows and
Markov Processes in networks (Nourian, 2016; Nourian,
Rezvani, Sariyildiz, & van der Hoeven, 2016; Volchenkov
& Blanchard, 2007; Wei & Yao, 2014). Performing spec-
tral analyses requires using a computational linear alge-
bra library such as NumPy12. Generally, considering the
inter-disciplinary nature of urban computing, evident in
the breadth and variety of practices mentioned in Sec-
tion 1.1, we propose that scientific and numerical com-

8 https://docs.qgis.org/2.8/en/docs/user_manual/processing/modeler.html?highlight=workflow
9 https://orange.biolab.si/screenshots/
10 http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
11 https://nodered.org
12 http://www.numpy.org/
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puting libraries must be available in an ideal platform for
urban computing.

In Table 1, we have shown the computational mod-
ules required to make spatial analysis and spatial simu-
lation models, which are, in other words, the essential
data-models and operations in geo-spatial data process-
ing for urban computing. Central to this schema are the
three distinct ways of modelling space as:

• Manifolds13 (often approximated as simplicial
complexes);

• Grids (a.k.a. 2D/3D raster data models, see Zla-
tanova, Nourian, Gonçalves, & Vo, 2016);

• Networks (a.k.a. [directed/weighted] graphs).

In Figure 3, we have categorized the specifically required
functionalities for spatial computing as to the previ-
ously introduced fields of application of urban comput-
ing. There we have shown an overview of exemplary
types of analysis or simulation models for planning sup-
port workflows, their typical goals and required data
models related to the previously listed areas of applica-
tions of urban computing.

2.3. IoT APIs

IoT for smart environment is defined by (Gubbi, Buyya,
Marusic, & Palaniswami, 2013) as follows:

Table 1. A list of typical goals, required spatial data types, and analytic (mathematical) or simulation (computational) mod-
elling approaches of urban computing.

Goal Typically Required 3D? Exemplary/Potentially
Spatial Data Models Applicable Modelling

Methodologies

[Land-Use &] understanding road network lines, possibly Discrete-Choice Modelling,
Transport potentials land-polygons, beneficial Gravity Models, Agent-Based
Modelling (accessibility) and cellular phone Modelling (ABM), Cellular

predicting the network data, GPS Automata (CA), Markov Chains,
dynamics of mobility trajectories, etc. Operations Research
[& land-use change]

Sociometrics & understanding demographic data probably Markov Chains, Markov Chain
Econometrics potentials, and attributed to building, unnecessary Monte Carlo (MCMC), Network

dynamics of social block, district, city, or Centrality, Artificial Intelligence,
and economic region polygons, Statistical Modelling, Predictive
interactions crowd-sourced geo- Analytics

tagged data points, etc.

Criminology & understanding road-networks, possibly Statistical Modelling, Predictive
Crime potentials, and demographics beneficial Analytics, Agent-Based
Prevention dynamics of crime attributed to building, Modelling (ABM), Cellular

in cities & city polygons, geo- Automata (CA), Markov Chains,
tagged (positioned) Monte Carlo Simulation
spatial crime data, etc.

Energy understanding 3D polyhedral models necessary Solar Irradiance Simulation
Modelling potentials, and of buildings, point (requiring geometric

dynamics of clouds intersections), Computational
energy use and Fluid Dynamics (CFD, requiring
[renewable] energy raster and vector fields and
generation differential operators), Monte

Carlo Methods

Environmental understanding aerial photos, point necessary Analytic Models and Simulation
Modelling potentials, and clouds, vector maps, Models (e.g., CA and ABM),

dynamics of raster maps Complex System Dynamics,
environmental Hydrology, Complex Adaptive
threats & Systems
opportunities (air
pollution, noise,
vegetation, etc.)

13 http://mathworld.wolfram.com/Manifold.html
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Figure 3. Essential mapping operations and data models required for geo-spatial computing.

Interconnection of sensing and actuating devices pro-
viding the ability to share information across plat-
forms through a unified framework, developing a
common operating picture for enabling innovative ap-
plications. This is achieved by seamless large scale
sensing, data analytics and information representa-
tion using cutting edge ubiquitous sensing and cloud
computing.

IoT applications can be used for acquisition of data from
sensors. They can also be used to directly control some
dynamics of cities such as traffic lights. The devices
needed for enabling control of physical things are called
actuators or actuating devices. The electronic devices
that can connect sensors and actuators to internet could
be micro-controllers or micro-computers, some of which
are open devices popular among amateur enthusiasts
such as Arduino14 and Raspberry Pi15. The capabilities of
a computing technology for interactingwith such devices
can be a key factor inmaking itmore pervasive among en-
thusiast makers and academic software developers, due
to the accessibility of such devices in terms of low prices
and ease of learning.

Operational planning actions can especially benefit
from actuators and sensors in urban environments. For
instance, traffic lights can be actuated (controlled) by a
controller systemconnected tomanyof both sensors and
actuators in real-times (thus having a real-time overview
of a city) continuously analysing the data coming from
sensors sensing the volume of traffic. In other words,
IoT devices can facilitate (real-time) operational plan-
ning actions. With regards to the IoT potentials for Ur-
ban Computing, it is logical to assume that Web-based
GIS services (alias webmapping) are necessary for urban
computing. In addition, moving all workflows from desk-
top applications to web-based platforms makes it eas-

ier to share (standardized) workflows and collaborate on
them. In the next section we focus on the potentials of
four programming languages for setting up web-based
computational workflows for geo-spatial data analytics
and simulations.

3. Promising Technologies for Urban Computing

We have identified a few promising technologies for ur-
ban computing, based on Python, Java, JavaScript and
R-Spatial languages. From a practical perspective, we
consider their potential in terms of ease of prototyping,
geo-spatial mapping, 3D visualization, handling big data,
and numerical computing (computational linear algebra).
From amathematical/computational point of view, all re-
quiredmodels mentioned in Figure 3 can be rather easily
developed on top of a robust computational linear alge-
bra library. Apart from numerical capabilities, we argue
that for a research software engineer, the visualization
and mapping capabilities are essential to consider while
making technical choices.

3.1. Python

This programming language is used for example in the
Geoda-Web16, that is the web-based version of CAST17

with its spatial analysis library PySal18 seems to be a
promising open-source project. Python is the de facto
language of open-source development in the field of Geo
information science, e.g., in QGIS, Rasterio19 and Fiona20.
Python provides a wide range of libraries for numerical
and scientific computing such as NumPy, SciPy and Pan-
das, which facilitates development. Interactive develop-
ment environments such as IPython (Interactive Python)
(Perez & Granger, 2007) and web-based Jupyter note-
books (Shen, 2014) seems to be a promising technology

14 https://www.arduino.cc/
15 https://www.raspberrypi.org
16 http://spatial.uchicago.edu/geoda-web
17 https://geodacenter.github.io/CAST/
18 http://pysal.readthedocs.io/en/latest/users/tutorials/dynamics.html
19 https://github.com/mapbox/rasterio
20 https://github.com/Toblerity/Fiona
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for prototyping and interactive computing. Some univer-
sities have started facilitating the use of Jupyter inter-
active documents as a common means of exchanging
reproducible research products, e.g., on JupyterHub21,
NBViewer22, or SURF-sara (Templon & Bot, 2016) pro-
vide hosting and viewing services for sharing Jupyter
notebooks. A few options which stand out for simple
3D visualization in Python are: MatPlotLib23, Mayavi24 or
VisPy25, while more high-performance applications can
be built in OpenGL using PyOpenGL26. Web mapping in
Python is possible by means of GeoDjango27.

3.2. Java

This programming language is used for example in a
web-GIS for environmental analyses by (Zavala-Romero
et al., 2014). The FIWARE platform (Zahariadis et al.,
2014) offers an “Application MashUp Generic Enabler”,
i.e., the WireCloud28 for visual programming and proto-
typing web applications. Another flow-based program-
ming environment for Java development supported by
Apache Hadoop29 is NiFi30. Java can also provide for
interactivity and 3D visualization. The OpenGeoSpatial
foundation (aka OSGeo31) also provides an open source
GIS toolkit for Java called GeoTools32. Considering the
might of Hadoop for big data analytics and the support
of OSGeo Java seems to be a fertile language for ur-
ban computing. One option for 3D visualization in Java
is JogAmp33, while a more advanced option is JOGL34.

3.3. JavaScript

This programming language is used for example in Open-
Layers35 and Carto36 SaaS (Software as a Service, for-

merly known as CartoDB37) to provide user-friendlyWeb-
GIS tools, which can moreover be deployed as desk-
top applications with tools like Electron38. However, nei-
ther of them supports explicit workflow development.
The other promising JavaScript platform for spatial anal-
ysis is MapBox39, which offers access to the Turf li-
brary40. Node-RED (Blackstock & Lea, 2014), based on
IBM BlueMix (a.k.a. IBM Cloud)41, seems to be a promis-
ing technology in terms of visual programming and the
ease of prototyping IoT applications. Node-RED is dis-
tributed as part of an open-source software ecosystem
called node package manager or NPM42, that is man-
aged by the Node.js43 foundation. Interactive visualiza-
tion in web-browsers is well supported in JavaScript,
and arguably more advanced than comparable libraries
in Python, thanks to the D3.js library, by Mike Bo-
stock44 (Bostock, Ogievetsky, & Heer, 2011). In addition
to D3 for interactive graphics, there is three.js45 for We-
bGL rendering in the browser. Other JavaScript libraries
which should not go unnoticed for urban computing are
Leaflet46 (mobile-friendly interactive maps providing ac-
cess to OSM47) and Cesium48, the latter providing for
quality 3D visualization.

3.4. R Spatial

R is a programming language that is part of the R Project
for Statistical Computing49, which includes a complete
set of vector algebra operations and functions to cre-
ate graphics such as plots. The statistical functions in R
are much more complete than those available in other
languages (e.g., Python). The R Spatial50 functionality
includes the more relevant parts for urban computing,
such as representations for raster and vector data, deal-

21 https://github.com/jupyterhub
22 https://nbviewer.jupyter.org
23 https://matplotlib.org/index.html
24 http://docs.enthought.com/mayavi/mayavi
25 http://vispy.org/index.html
26 http://pyopengl.sourceforge.net
27 https://docs.djangoproject.com/en/dev/ref/contrib/gis/
28 https://catalogue.fiware.org/enablers/application-mashup-wirecloud
29 http://hadoop.apache.org
30 https://hortonworks.com/apache/nifi
31 http://www.osgeo.org
32 http://www.geotools.org
33 http://jogamp.org
34 http://jogamp.org
35 http://openlayers.org
36 https://carto.com/blog/how-to-use-spatial-analysis-in-your-site-planning-process
37 https://cartodb.github.io/training/intermediate/columbia-sipa.html
38 https://electronjs.org
39 https://www.mapbox.com/help/how-analysis-works
40 http://turfjs.org
41 https://www.ibm.com/cloud
42 https://www.npmjs.com
43 https://nodejs.org/en
44 https://bl.ocks.org/mbostock
45 https://threejs.org
46 http://leafletjs.com
47 http://www.openstreetmap.org
48 https://cesiumjs.org
49 https://www.r-project.org
50 http://www.rspatial.org
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ing with coordinate systems and creating 2D maps. Spa-
tial.ly51 shows several examples of the more advances vi-
sualisation functions in R, including 3D visualisation and
animated globes. Shiny52 is a tool to build web apps with
R. There are also other ways in which web sessions of
R can be deployed, such as with Rweb53 and rApache54.
Similar to Python, Jupyter notebooks can also be used
thanks to the IRkernel55.

4. Conclusion

In response to this question: “What are the essential
means for urban computing?”, we have provided an
overview of specific data models and functionalities re-
quired in dealing with geo-spatial data processing (spa-
tial analysis and spatial simulation), referred to as spatial
computing in Figure 3 and Table 1, which we deem as
the essential means for urban computing. We have con-
sidered four programming languages and their promis-
ing aspects for urban computing. They all come with
their own advantages and shortcomings. It is difficult
(and perhaps futile) to point to one of these languages
as the most promising language for urban computing.
We stress that these technologies are not mutually ex-
clusive, but they can (in some cases) be used in combi-
nation with each other. For example, a web-based GIS
system could use a Python backend with Flask56 and a
JavaScript frontendwith a 3D visualiser based on Cesium,
or a processing pipeline could use Python to fetch data
from the web using a tool like BeautifulSoup57, use Java
to parse and process the data, use R to do statistical anal-
ysis on it, and then visualize the results in a browser us-
ing JavaScript. However, it can be said that each of them
is stronger in a certain direction, respectively: Java in
server-side tools, R Spatial in statistical and mathemati-
cal operations, Python in the availability of GIS tools, and
JavaScript in IoT and web visualisation. Their respective
strengths can be combined by using the best language
for each task.

In addition, it is perhaps noteworthy to mention
that in the related field of computer-aided design (CAD),
there is an active movement towards development of
visual programming languages and connecting them to-
gether by means of a cloud platform, e.g., Flux58, initially
sponsored by Google59. Considering the attractiveness
of aligning urban design and urban planning actions, it
would be ideal to work in an environment where plan-
ners, designers, and research software engineers could

all work and share their workflows, for example, a 3D
city modelling SaaS such as Möbius60 (Janssen, Li, & Mo-
hanty, 2016), Tygron61 or CityZenith62 could potentially
become such a shared development environment.
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