

Delft University of Technology

Memory and Communication Profiling for Accelerator-Based Platforms

Ashraf, Imran; Khammassi, Nader; Taouil, Mottaqiallah; Bertels, Koen

DOI
10.1109/TC.2017.2785225
Publication date
2018
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Computers

Citation (APA)
Ashraf, I., Khammassi, N., Taouil, M., & Bertels, K. (2018). Memory and Communication Profiling for
Accelerator-Based Platforms. IEEE Transactions on Computers, 67(7), 934-948.
https://doi.org/10.1109/TC.2017.2785225

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TC.2017.2785225
https://doi.org/10.1109/TC.2017.2785225

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 1

Memory and Communication Profiling for
Accelerator-based Platforms

Imran Ashraf, Member, IEEE, Nader Khammassi, Member, IEEE, Mottaqiallah Taouil, Member, IEEE,
and Koen Bertels, Member, IEEE,

Abstract—The growing demand of processing power is being
satisfied mainly by an increase in the number of homogeneous
and heterogeneous computing cores in a system. Efficient utiliza-
tion of these architectures demands analysis of memory-access be-
haviour of applications and perform data-communication aware
mapping of applications on these architectures. Appropriate tools
are required to highlight memory-access patterns and provide
detailed intra- application data-communication information to
assist developers in porting existing sequential applications ef-
ficiently to these architectures. In this work, we present the
design of an open-source tool which provides such a detailed
profile for C/C++ applications. In contrast to prior work, our
tool not only reports detailed information, but also generates this
information with manageable overheads for realistic workloads.
Comparison with the state- of-the-art shows that the proposed
profiler has, on the average, an order of magnitude less overhead
as compared to the state-of-the-art data-communication profilers
for a wide range of benchmarks. The experimental results show
that our proposed tool generated profiling information for image
processing applications which assisted in achieving a speed-up
of 6.14× and 2.75× for heterogeneous multi-core platforms
containing an FPGA and a GPU as accelerators, respectively.

Index Terms—Memory Profiling, Data-communication Profil-
ing, Architecture-independent Profiling, Accelerator-based Com-
puting, Communication-aware Mapping, Shadow Memory.

I. INTRODUCTION

Although transistor scaling yields to more transistors per
chip, inherent physical limits prevent further cost-effective
down scaling due to multiple challenges such as increased
power consumption and complex fabrication process [1]. As a
result, designers have shifted the computational paradigm by
integrating more and more homogeneous and heterogeneous
processing cores in the architectures. A well known form of
heterogeneous computing utilizes accelerators to gain perfor-
mance. Example of such architectures exist in general purpose
[2], [3], embedded [4]–[6], and high-performance computing
platforms [7]–[10].

To exploit an accelerator in the architecture, applications
must be partitioned, where compute intensive parts are off-
loaded to the accelerator. This is a critical task as an im-
proper application partitioning may diminish the anticipated
performance improvements. The main identifiable reason for
such performance degradation is the huge data-communication
overhead [11] between CPU and accelerator. Moreover, ac-
celerators generally have a deep memory hierarchy, thus,

I. Ashraf, N. Khammassi, M. Taouil and K. Bertels are with the Department
of Quantum & Computer Engineering, Delft University of Technology,
2628 CD Delft, The Netherlands. E-mail: {i.ashraf, m.taouil, n.khammassi,
k.l.m.bertels}@tudelft.nl

improper mapping of data structures to the available memory
levels constitutes the second main reason for poor utilization
of accelerators. The performance degradation exacerbates due
to growing memory wall [12]. Hence, it is considered as the
major design challenge for multi-core architectures [13]. In
addition, it is a major source of energy consumption [14].
These problems could be alleviated by profiling the data-
communication and analysing memory-access patterns of the
data-structures to perform communication-aware application
partitioning and proper mapping of data-structures to memory
levels. With the growing application complexity, driven by
an increasing demand of processing, it is time-consuming,
tedious and error-prone to manually analyse these complex
applications. Hence, application analysis tools are required
to identify the hot-spots and/or bottlenecks pertaining to the
target platform.

Several existing tools provide data-communication informa-
tion for parallel applications where communication is either
implicit (such as Posix threads) [15]–[17] or explicit (such as
MPI) [18], [19]. However, these tools cannot profile the intra-
application data-communication inside sequential applications.
Other tools focus on architecture-dependent memory and
communication profiling [20]–[22]. However, these tools are
only useful in highlighting performance issues in applications
which are already ported to the target architectures. Hence, all
the above tools cannot be utilized for architecture-independent
profiling of a large base of sequential legacy code that has not
been parallelized and ported to accelerator-based platforms.

Architecture-independent data-communication profilers for
sequential applications based on static-analysis [23] can only
be used for regularly structured applications. Additionally,
pointer analysis and the dynamic nature of applications make
tracking the data-communication statically very hard. Hence,
dynamic methods are required. Few data-communication pro-
filers [24]–[27] based on dynamic analysis have been reported.
These profilers have a high execution-time and memory-usage
overheads as compared to the static ones. One of the reasons
for these high overheads stems from the fact that the dynamic
generation of the application’s representative profile requires
the use of the realistic workloads, which results in an increase
in overheads. Another reason for these high overheads is
an improper design of the shadow memory scheme in these
tools, which is critical to the performance. Apart from high
overheads, another problem with these profilers is the unclear
correlation between the generated information and the appli-
cation’s source-code. This information, though very useful for
developers, makes the design of such tools challenging and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 2

further increases their overheads.
In this work, we present an open-source, architecture-

independent memory-access and data-communication pro-
filer based on dynamic analysis which addresses these is-
sues. To demonstrate its applicability, we present two case-
studies where we analyse memory-access patterns and data-
communication bottlenecks of image processing applications.
The main contributions of this work can be summarized as
follows:
• The design of a hybrid shadow memory scheme, which is

the most important data-structure as it has a major effect
on the space and time overheads caused by such tools.

• The design and implementation of an open-source
memory-access and data-communication profiler which
utilizes the proposed hybrid scheme.

• Methodology based on the proposed profiler to port
existing sequential applications systematically onto an
accelerator based platform.

• The analysis of memory-accesses and data-
communication behaviour of two image processing
applications as case-studies demonstrating the utilization
of the methodology steps. The generated information is
utilized to port these applications onto systems using the
two widely used accelerators, namely, GPU and FPGA.

• An empirical comparison of our tool with the state-of-
the-art focusing on the two criteria: execution-time and
memory-usage overhead.

Experimental results show that in the case of FPGA, a
speedup of up-to 6.14× was achieved, compared to the base-
line FPGA implementation where these optimizations were
not applied. In the case of GPU, a speedup of up-to 2.75×
was achieved, compared to the baseline GPU implementation
where this information was not utilized. Furthermore, com-
parison with state-of-the-art shows that the proposed tool has,
on the average, an order of magnitude less execution-time and
memory-usage overheads.

The remainder of this paper is structured as follows. We pro-
vide the necessary background and related work in Section II.
The design of the proposed profiler is discussed in detail
in Section III. Section IV enumerates the steps involved in
mapping existing applications on accelerator based platforms.
The practical use of this methodology is presented in Section V
and Section VI, where the use of information generated by
the proposed profiler for image processing applications are
discussed as case-studies to efficiently map these applications
on accelerator-based platforms using FPGA and GPU as accel-
erators. An empirical comparison of the overheads is presented
in Section VII, followed by conclusions in Section VIII.

II. BACKGROUND

In this section, we define the basic terminology, provide
some design considerations and discuss the related work to
give reader the necessary background to understand the work
presented in the rest of this paper.

A. Terminology
Static-analysis refers to the analysis performed at compile-

time, whereas dynamic-analysis refers to the analysis per-

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900

P
e

rc
e

n
ta

g
e

 F
re

q
u

e
n

c
y

Size of chn in bytes

Fig. 1: Percentage Frequency Distribution of the Size of chn
object in a bwa-mem [29] Application.

formed at runtime. Commonly, dynamic-analysis relies on
registration of callback routines (analysis routines). These
routines are executed when an event of interest happens. The
process of routine registration is known as instrumentation,
which when performed at runtime, in the binary of the
application, is referred as dynamic binary instrumentation.

Memory profilers utilize instrumentation to monitor mem-
ory reads and writes to provide information about memory-
access, such as, memory-access pattern of functions. Cache
profilers are a subset of memory profilers and provide infor-
mation about cache utilization. This information is also utilized
by memory debuggers to detect memory-related bugs.

Memory-access information is also utilized by data-
communication profilers to record data-communication in an
application. Data-communication occurs when a part of an
application writes data into the memory which is later read
by another (or same) part of the application. At the fine-
granularity level, this data-communication can be reported at
instruction or basic block level. At the coarser-granularity,
data-communication can be reported between functions in
a sequential application or between threads in a parallel
application. Profilers that provide this data-communication
information are termed as data-communication profilers.

Data-communication profilers typically use some shadow
memory scheme to record meta-information about the actual
memory used by the application [28]. For instance, a bit in the
shadow memory may indicate weather a particular byte used
by an application is initialized or not.

B. Static vs Dynamic Analysis

Memory-access and data-communication profiling based
on static-analysis can only be used for regularly structured
applications [23]. Following are some of the reasons which
make static analysis infeasible to track memory-accesses and
intra-application data-communication:

1) Dynamic nature: Most of the real-world applications
and variety of benchmarks rely on information which is
not available statically at compile-time. For instance, run-
time allocation of an image based on an input argument.

2) Irregular behavior: Apart from being dynamic in nature,
applications also exhibit irregular behavior, making it

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 3

impossible for tools to statically perform analysis. Fig-
ure 1 demonstrates one example of this irregularity, where
the variation of allocation size of chn object in a bio-
informatics application (bwa-mem [29]) is depicted as a
percentage frequency plot.

3) Pointer arithmetic: Considerable amount of applications
are written in C/C++ which heavily utilize pointers. These
applications are hard to track statically, because it is not
always possible to de-reference pointers and pointers to
pointers statically. Furthermore, statically knowing if a
pointer even points to a valid pre-allocated or properly
initialized memory, is not always possible.

4) Global variables: The use of global variables makes it
hard to statically analyse memory reads and writes.

5) Shared library calls: Applications relying on shared
library calls cannot be statically analysed without re-
compiling the library.

C. Practical Design Considerations

In order to record the memory-access behaviour of an
application and generate an inter-function data-communication
profile, an important requirement is to know the producer-
consumer relationship among functions. The consumer of a
memory location is trivial to determine, as it is the currently
executing function. On the contrary, efficiently obtaining the
information about the producer is not trivial, as this requires
recording the producer of each memory location at a certain
granularity. The main reason for this difficulty is the huge
user space. For example, on a 64-bit system with 48-bit
virtual addressing, memory addresses can be anywhere in the
128TB memory-map in the user space. Hence, the problem
boils down to efficiently recording the producer of a memory
location, such that the profiling approach has a balanced
trade-off between execution-time and memory-usage overhead.
Furthermore, this mechanism should be flexible and portable,
thereby making almost no assumptions about the memory map
or other Operating System (OS) specific functionalities.

D. Related Work

Various open-source [30]–[32] and propriety [33], [34]
existing tools perform memory profiling. However, these tools
only provide the information about the cache misses and do
not report data-communication information in an application.
The reader is referred to [35] for a detailed survey of such
tools.

Though static-analysis tools [23] can be used to track
memory reads and writes and record data-communication,
a large number of tools utilize dynamic-analysis to collect
accurate information at runtime. Architecture simulation is
one of the dynamic analysis technique which has been used
to track the data-communication among threads in parallel
applications [24]; for example, by using a cycle-accurate ar-
chitecture simulator. However, such simulations are generally
computationally intensive which limits the use to small data
inputs. Furthermore, it requires the design and development of
a cycle-accurate simulator of these architectures.

A well-known dynamic-analysis technique used by large
number of tools is instrumentation, which is performed ei-
ther at compile-time [36] or at run-time [28], [37]. Var-
ious tools based on this technique are used for finding
memory-management [37] and threading bugs [36], [37].
However, few tools exist [25]–[27], which perform detailed
data-communication characterization, especially for sequential
applications.

Redux [25], a Valgrind-based tool, draws the detailed
Dynamic Data-Flow Graphs (DDFGs) of applications at the
instruction-level. This tool has very high overhead as it gener-
ates fine-grained DDFGs. Hence, it can only be used for very
small applications or parts of applications, as mentioned by
authors. In addition, the target of the tool is to represent the
computational history of an application and not to report its
communication behaviour, as explained by authors.

PINCOMM [26] reports the data-communication using Intel
Pin Dynamic Binary Instrumentation (DBI) framework [38].
PINCOMM uses a hash-map to record the producer of a
memory location. Due to this map, the tool has a high memory
overhead. Due to this overhead, PINCOMM stores the interme-
diate information to the disk and reads it later by a script to
generate the communication graph. This disk writing incurs a
high execution-time overhead. Furthermore, the authors have
mentioned the use of markers in the source-code to reduce
the overhead and manage the output complexity. However,
in complex applications inserting these markers manually is
time-consuming. In addition, this marking requires knowledge
of the application in order to understand what the important
parts of the application are, which is not trivial.

QUAD (Quantitative Usage Analysis of Data) [27], also
based on Pin [38], provides data-communication informa-
tion between functions by tracking memory access at byte-
granularity. The Trie data-structure is used to store producer-
consumer relationships and it does so with a low memory over-
head, as memory in the Trie is allocated on demand at the byte-
granularity. However, this approach has a high execution-time
overhead, mainly because of the access-time of the Trie and
the frequent memory allocations. Furthermore, the cumulative
information is reported at the application-level, which makes
it difficult to utilize. In addition, the information generated is
not really useful when the application has a different memory
access behaviour per call. Moreover, the provided information
has a limited relationship to the application source-code, which
makes its use tedious for developers.

The work presented in [39] removes the TLB miss overhead
for big-memory workloads. Though the focus of this work
is not on memory profiling and data-communication analysis,
however, the proposed scheme utilizes a combination of page-
tables and direct mapping, quite analogous to our work. The
authors propose the necessary hardware support as well as the
OS modifications to get benefit of this scheme. Our hybrid
scheme neither requires any architectural support nor any OS
modifications.

Summarizing, existing approaches generally have high
execution-time and memory-usage overhead, which limits their
use for realistic workloads. This may affect the quality of the
generated profile. Furthermore, the provided information lacks

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 4

Shadow
Memory

Unit

Memory Access
Tracer

Data
Collection
Engines

Engine 1

Engine 2

...

Engine N

Table
Lookup

Direct
Mapping

Communication Profile

Instrumentation APIs

VM

Pin

JIT Compiler Code
Cache

Emulation Unit

Instruction-Level
Instrumentation

Image-Level
Instrumentation

Routine-Level
Instrumentation

Call-stack

DOT
Comm.
Matrix XML

Symbol
Table

R/W
Access

Controller

Write Addr,
Write Size,
Producer

Read Addr,
Producer

Collected Information

Inter Func.
Comm. Matrix

Inter Thread
Comm. Matrix

...

Fig. 2: Internal organization of MCPROF.

necessary dynamic details and has limited correlation to the
source-code, making it hard to utilize this information.

III. MCPROF: MEMORY AND COMMUNICATION
PROFILER

In this section, we present the design of MCPROF 1 which
can conceptually be divided into the main blocks depicted
in Figure 2. Application (binary) to be profiled is given as
input to obtain data-communication profile in various formats
at the output. Shaded block in this figure is the Intel’s Pin DBI
framework. Rest of the parts are discussed in detail below.

A. Memory Access Tracer

The memory access tracer uses Intel’s Pin [38] DBI frame-
work to trace memory reads and writes performed by the
application. Pin provides instrumentation APIs to instrument
at various granularity levels, such as instructions, basic-blocks,
routines and image level. The instrumentation APIs allow the
user to register callback routines, known as analysis routines,
which are called when a certain event happen. For instance,
a registered instruction-level analysis routine will be triggered
on each executed instruction.

We utilize instruction-level instrumentation to track memory
reads and writes by each instruction. Furthermore, routine-
level instrumentation is utilized to keep track of the currently
executing function. These are tracked by maintaining a call-
stack of the functions executing in the application. Static
symbols are obtained by reading Executable and Linkable
Format (ELF) [40] header. To track the dynamic allocations,
image-level instrumentation is utilized to selectively instru-
ment library images for memory (re)allocation/free routines.

An important point worth mentioning here is that we
not only maintain call-stack, but also the call-site stack
to record source-code location of each call in the call-
stack. Source-code information can be obtained by using
PIN_GetSourceLocation Application Programming In-
terface (API) call available in Pin framework. Using this API

1https://bitbucket.org/imranashraf/mcprof/downloads

1 void B () { /∗ memory a l l o c a t i o n by m a l lo c / new ∗ / }
2 void A(){
3 B () ;
4 B () ;
5 }
6 i n t main (){ A () ; }

Fig. 3: Code snippet (file.c) showing some function calls.

call in the analysis routine results in high execution-time
overhead of the tool because of two reasons: 1) First, because,
analysis routine is executed large number of times as compared
to an instrumentation routine. 2) Secondly, according to Pin
documentation [38], when calling this API from analysis
routine, client lock must be obtained before the call to this
function and released afterwords.

In MCPROF, we call PIN_GetSourceLocation API in
the instrumentation routine to generate a unique location-ID
corresponding to the source-code location. This location-ID is
passed to the analysis-routine responsible for function call and
return, which only pushes and pops this integer number onto
the call-site stack. In this way, we can relate the generated
runtime information with the application source-code, without
requiring the need to call PIN_GetSourceLocation API
in the analysis routine, resulting in reduced execution-time
overhead of tool.

It is also important to highlight the technique we use to
assign a unique object-ID to each allocated object. Instead of
using the current function at the top of call-stack, or even
the whole call-stack, we utilize the call-site stack to generate
a unique ID to identify allocated objects. We would like to
motivate the importance of our technique by using the code-
snippet listed in Figure 3 where memory allocation happens
in function B. Top of stack (B) will not be unique, if used to
generate IDs for these allocations. Moreover, the call-stack
to the two allocations (main → A → B) is also not
unique. However, the call-site stack to the two allocations is
unique (file.c : 6 → file.c : 3 → file.c : 1 6= file.c :
6 → file.c : 4 → file.c : 1). This pattern of allocations is
quite common, as applications usually have utility functions
to allocate objects. A limitation of this approach can be seen
in the situation when multiple calls to B() will be on the same
source-code line, however, this is not a common practice.

A final comment we would like to make is that although in
the current implementation we have used the Pin framework
to trace memory accesses, in the future, if desired, with minor
modifications, it is possible to use any other DBI framework
or any other technique to trace memory accesses.

B. Data Collection Engines

On each memory access traced by the Memory Access
Tracer, a specific callback function is triggered based on
the selected engine. In the case of a write, the producer of
the memory address is recorded in the shadow memory. On
a read access, the producer is retrieved from the shadow
memory, while the consumer of the memory access is the
function at the top of the call-stack. Furthermore, based on the
information required by each engine, extra information is also

https://bitbucket.org/imranashraf/mcprof/downloads

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 5

recorded such as the source-code line and file-names of the
allocated blocks as well as the allocation size, which is stored
in the symbol-table. The complexity of these engines varies
with the variation in the amount of details collected in the
profile, hence, command-line switches are provided to select
the desired engine. Switches are also provided to control the
granularity at which memory reads and writes are recorded.
This can be at the lower granularity of bytes or higher
granularity of 4-bytes to reduce further the execution-time
and memory-overhead of the tool. Finally, the modular design
of the tool helps in easily adding new engines by modifying
the existing engines to generate the desired information or
produce the output in the desired format. Currently we have
implemented the following three engines in MCPROF.

Engine-1: This engine reports the memory-intensive func-
tions and objects in an application. This information, com-
bined with the execution profile of an application, can be
automatically utilized, if desired, to reduce the overhead by
performing selective instrumentation to reduce the complexity
of generated profile. Another important output generated by
this engine is the callgraph in JSON format which is converted
to Graphviz DOT format using a python script 2. We would
like to mention here that this callgraph can also be generated
by existing tools like gprof [41] at the coarser granularity of
functions. However, MCPROF provides this information not
only at the granularity of functions but also at the loop-nest
level. Furthermore, users can also mark arbitrary regions of
interest in an application which are then detected by MCPROF
and results are reported against these marked regions.

Engine-2: This engine records inter-function/inter-thread
data-communication at the application level. The data-
communication information is stored in a data-communication
matrix, where indices of the matrix are the producer and
consumer function/threads. When object-tracking is enabled,
MCPROF reports data-communication to/from the objects in
the source-code.

Engine-3: This engine generates per-call data-
communication information, which is especially important for
applications with irregular memory access behaviour per-call.
Each call is also given a unique sequence number which also
helps in identifying the temporal information of each call.

An important metric that is reported by this engine is the
measure of spatial locality. This quantification of locality is
based on the work in [42], [43], where authors assign a score
(between 0 and 1) to the locality of access, based on the
reciprocal of the stride of the memory access. For example,
stride-1 access will get a score of 1 (1/1 is 1), stride-2 access
will get a score of 0.5 (1/0.5 is 2), stride-4 access will get a
score of 0.25 (1/0.25 is 4) and so on.

On each read/write memory-access, we calculate its stride
to maintain a histogram to record frequency of various strides.
Before a subroutine return, we calculate strides using this
histogram to assign locality score. Thanks to the careful design
of the shadow memory scheme (coming up in the following
sub-section), we can efficiently obtain the object-ID based on
the read/write address. In this way, we can report detailed

2https://github.com/jrfonseca/gprof2dot

TABLE I: Memory Access Frequency in Bottom (Mem0),
Top (Mem1) and Middle Memory Regions.

Application Memory Access Frequency (%)
Bottom Top Middle

canny 68.3 22.2 9.5
KLT 33.7 37.1 29.2
ocean-NC 13.1 86.9 0
fmm 32.9 67.1 0
raytrace 11.9 88.1 0
bwa-mem 11.7 87.8 0.5
Mean 28.6 64.9 6.5

results as we can relate the calculated locality score with each
object read/written for each individual call.

C. Shadow Memory

This block is responsible for recording the producer of
each byte. On each write access, the selected engine sends
the address, size, thread-ID and the function at the top of
the stack, which is the writer (producer) of this byte to the
shadow memory unit. When a function reads a byte, the reader
(consumer) is the function currently running, while the the
producer is retrieved from the shadow memory unit. These
reads and writes can happen anywhere in the 128TB user
address space, so keeping track of the producer efficiently,
is not trivial. Hence, the design of this shadow memory
block has a great impact on the execution-time and memory-
usage overheads of a profiler. Hence, we have combined the
following two techniques in the design of the shadow memory
unit.
• Direct Mapping in which an application’s address is

translated to a shadow memory address by using a Scale
and Offset. Given an address Addr, its shadow address
will be (Addr×Scale)+ offset. Although this address
translation is fast, it assumes a particular OS memory
layout and requires the reservation of a huge amount of
virtual memory at fixed addresses.

• Table-lookup in which multi-level tables are used to map
addresses in an application to their shadow addresses.
This is similar to the page look-up tables utilized in OSes.
This approach is more flexible as it neither requires a
fixed memory layout, nor an initial reservation of a huge
memory. This is because tables are allocated on demand.
The downside of this approach is that the multi-level table
look-up is slower than the address translation in direct
mapping.

The key motivation behind the design of our shadow mem-
ory scheme is based on the our analysis of the memory-
access frequency of various regions in the memory map.
Table I depicts the results of this analysis for applications from
various domains, namely; image-processing (canny [44], klt
[45]) domain, SPLASH-2 benchmarks [46] (ocean-NC, fmm,
raytrace) and a bio-informatics application (bwa-mem [47]).
These results show that the most frequently accessed memory
regions are the bottom (Mem0) and the top (Mem1) in the
memory map. From the empirical results we have found out
that for most of the applications, the size of these bottom
and top regions can be 2GB each. The memory accesses in

https://github.com/jrfonseca/gprof2dot

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 6

SM1H

Shadow Mem0 (8 GB)

Mem0 (2 GB)

Shadow Mem1 (8 GB)

Mem1 (2 GB)

128 TB - 20 GB

Level 1
Table

Level 2
Tables

Level 3
Tables

...
...

...

...

...
...

...

M0L

SM0L

SM0H

M0H

SM1L

M1L

M1H

Fig. 4: Hybrid Shadow Memory Scheme Utilized by
MCPROF. Most Frequently Accessed Regions of Memory
(Mem0 and Mem1) use Direct Mapping. Rest of the Memory
Map is Shadowed by 3-Level Table Lookup.

these regions correspond to heap and stack memory accesses,
respectively. This is because in the Windows/Linux OS, heap
grows from lower to higher addresses, while stack grows
from higher toward lower addresses. The shared libraries are
mapped by the OS somewhere between these bounds.

To make a well-informed trade-off between flexibility,
execution-time and memory-usage overheads, we utilized a
hybrid design of the shadow memory unit as shown in Fig-
ure 4. To make accesses to the Mem0 and Mem1 regions faster,
we reserve3 in advance two shadow memories corresponding
to these two memory regions, shown as Shadow Mem0 and
Shadow Mem1, respectively. This results in a simpler mapping
of addresses in these regions to the shadow addresses by
Equation (1), without requiring any lookup.

Addrsh =((Addr&M0H) << log2(SCALE))+

(Addr&(SM1L+ SM0L)) + SM0L
(1)

where, Addr is the address of the original byte, Addrsh is
the address of the corresponding shadow bytes, SCALE is
4, and M0H , SM1L and SM0L are constants as shown in
Figure 4.

A point worth mentioning here is that a simpler and faster
approach could have been to restrict the address mapping of
an application to the lower half and use the upper half for
the shadow memory. However, to the best of our knowledge,
there is currently no (portable) method to restrict the address
allocation in this manner. So, for the middle (128TB−20GB)
less frequently used region, we utilize a 3-level table-lookup
scheme as shown in Figure 4.

Initially, the level-1 table is created and all its entries are
marked as UNACCESSED. Tables in the remaining two levels
are created on demand when the address in that range is
touched for the first time. The address of the memory accessed
in this region is used to index these tables to reach level-
3 where 4 shadow bytes are written for each byte memory

3These regions are only reserved in the memory map, actual memory-usage
is 4B for each byte of memory used by the application.

accessed in the original application. One byte for the function-
ID, one byte for thread-ID and 2 bytes for the-ID of the object
this address belongs to. Therefore, we currently restrict the
number of function and thread-IDs to 256. In the future we
will investigate more applications, and if required, increase
the number of bytes to store the IDs, as it is simply a
parameter in the tool. Furthermore, the output of Engine-1
can also be utilized to automatically focus on the important
functions/objects in the application, to reduce overheads and
to get a clear view of the hot-spots in the applications, as will
be discussed later in the case-studies.

IV. APPLICATION MAPPING METHODOLOGY FOR
ACCELERATOR BASED PLATFORMS

In this section, we describe the mapping methodology based
on MCPROF to efficiently map an existing sequential appli-
cation onto an accelerator based platform. This methodology
consists of the following four steps:

1) Hotspot analysis: locate the parts of an application
causing high execution-time and memory access, known
as hot-spots. Typical profilers provide information about
execution-time contribution at the granularity of functions
in the application. MCPROF provides this information
not only at function-level granularity but also at lower
granularity levels, such as loop-nest granularity. More-
over, MCPROF also provides the information the data-
structures responsible for most of the memory-access in
the application.

2) Granularity adjustment: analyse data and control de-
pendencies to to extract more parallelism by decomposing
functions to tasks at lower granularity, such as loop-nest
granularity.

3) Task mapping: map the tasks to the suitable execu-
tion units available in the architecture, which can be
Central Processing Unit (CPU) and accelerator. This is
an important step to optimize the data-communication
by completely avoiding or reducing data transfers be-
tween CPU and accelerator. Optimization of the data-
communication requires understanding of the data-flow in
the application. Understanding this data-communication
by analysing the source-code manually, is not trivial,
especially for complex applications Furthermore, pointer
arithmetic exacerbates this problem making it hard to
determine the actual producers and consumers of the data
to establish intra-application data-communication.

4) Memory mapping: map the data-structures to the suit-
able memory spaces available in the architecture based
on the access pattern and sizes of the data-structures in
the application.

V. CASE-STUDY 1: COMMUNICATION DRIVEN MAPPING OF
CANNY ON FPGA-BASED PLATFORM

The first case-study is on the FPGA-based acceleration of
an image processing application. The target architecture used
in this case-study is Zynq [5] System on Chip (SoC) on Zed-
board [48]. Zynq SoC has a dual core ARM processor tightly
coupled with a Field-Programmable Gate Array (FPGA). The

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 7

TABLE II: MCPROF flat profile showing the top functions
responsible for most of the execution in Canny application.

Function Name %Contribution
gaussian smooth 79.01
non max supp 8.65
apply hysteresis 4.3
magnitude x y 3.17
derrivative x y 2.81

TABLE III: MCPROF flat profile showing the top functions
responsible for most of memory-access in Canny application.

Function Reads Writes Reads/Writes %Total
gaussian smooth 6.7e+07 4.7e+06 14.2 61.9
derrivative x y 1.9e+07 3.1e+06 5.9 18.9
non max supp 1.2e+07 7.8e5 14.8 10.6
apply hysteresis 3.6e+06 1.7e+06 2.2 4.5
magnitude x y 3.1e+06 1.6e+06 2.0 4.1

FPGA can be used as a reconfigurable accelerator to efficiently
implement some functionality in hardware. The ARM side of
the SoC is known as Processing System (PS), whereas, the
FPGA side is termed as Programmable Logic (PL). When an
application is ported to Zynq SoC, it can run as a pure software
implementation on PS. In order to gain performance, compute-
bound parts of an application can be mapped as hardware
accelerators on PL.

Xilinx Software Defined System-On-a-Chip (SDSoC) is one
way of porting applications to Zynq-based SoC. Pragmas are
used to mark the functions which need to be synthesized
for PL. Use of SDSoC greatly reduces the development time
and effort as compared to describing hardware in Hardware
Description Language (HDL). However, this does not always
result in the generation of optimized hardware, and therefore,
may not always result in performance improvement. This is
mainly because of the improper inference of communication
infrastructure between PS and PL by SDSoC as well as the
poor selection of memory by SDSoC, resulting in reduced
anticipated performance improvement. These challenges can
be tackled by carefully analysing the application in hand to
guide SDSoC in the mapping process by virtue of SDSoC
pragmas. By utilizing these pragmas, developers have control
over the selection of communication infrastructure to be used
to pass data between PS and PL as well as the control of where
the allocated objects should be mapped in PL.

The image processing application used in this case-study
is based on Canny edge detection algorithm [44]. Canny is
a well-known edge detection algorithm, which outperforms
other edge detection methods. The algorithm first eliminates
any noise from the image. It then finds the image gradient to
highlight regions with high spatial derivatives. The next step
is to track along these regions and suppress any pixel that is
not at the maximum. The gradient array is further reduced by
hysteresis. We have used the implementation provided by the
CVL at the University of South Florida [49].

A. Hotspot analysis

In this step, the application is profiled using MCPROF to
highlight the computational hotspots, also known as kernels

 magnitude_x_y
3%, 1

 magnitude
1.5 MiB

1.5 MiB

 follow_edges
1%, 54730

105.3 KiB

 apply_hysteresis
4%, 1

272.4 KiB

 non_max_supp
9%, 1

7.4 MiB

 make_gaussian_kernel
0%, 1 364 B

 kernel
60 B

120 B

 gaussian_smooth1
41%, 1

44.8 MiB

 gaussian_smooth2
37%, 1

44.8 MiB

 edge
768.0 KiB

52.3 KiB427.6 KiB

2.2 MiB1.5 MiB

129.2 KiB

 nms
768.0 KiB

766.3 KiB

768.0 KiB

 image
768.0 KiB

11.2 MiB

 tempim
3.0 MiB

3.0 MiB

 smoothedim
1.5 MiB

1.5 MiB

44.8 MiB

 derrivative_x_y1
1%, 1

3.0 MiB

 derrivative_x_y2
1%, 1

3.0 MiB

 delta_x
1.5 MiB

1.5 MiB

 delta_y
1.5 MiB

1.5 MiB

1.5 MiB

1.5 MiB

1.5 MiB

2.2 MiB

Fig. 5: Data-flow graph of Canny application generated by
MCPROF.

in the application. Table II shows the flat profile generated
by MCPROF for the Canny application listing the functions
responsible for the bulk of execution in this application.
Unlike conventional tools, MCPROF also provides information
regarding the most memory intensive functions and objects in
the application. Table III depicts the top memory intensive
functions in the application and lists the read and write
accesses performed by these functions. It can be seen from
these tables that gaussian smooth function is responsible for
most of the execution-time and memory-accesses in Canny
application.

B. Granularity Adjustment

As shown in Table II, gaussian smooth contributes about
80% to the application execution. In order to extract paral-
lelism inside this function, we use the MCPROF feature of
splitting functions at loop level granularity. Figure 5 shows

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 8

TABLE IV: MCPROF flat profile showing the memory intensive objects in Canny application.

Object Reads Writes Reads/Writes Size Alloc. Path
kernel 6.7e+07 120 559241 60 B canny edge.c:527
tempim 4.7e+07 3.1e+06 15 3.0 MiB canny edge.c:448
image 1.2e+07 0 ∞∗ 768.0 KiB pgm io.c:72
smoothedim 6.3e+06 1.6e+06 4 1.5 MiB canny edge.c:454

* this is the input image which is read from a file. As it is not produced (written) by a function
inside this application, the Writes to this image are zero resulting in ∞ Reads/Writes ratio.

the simplified output graph generated by MCPROF where the
loops in gaussian smooth are split as separate nodes repre-
sented by gaussian smooth1 and gaussian smooth2. A similar
split of derivative x y is also shown as derivative x y1 and
derivative x y2. The nodes in this figure represent function,
loop-nest or any other region of interest marked by the user.
Each node contains its name, the percentage of dynamically
executed instructions by this function with respect to the whole
application, as well as the total number of calls to this function.
For instance, gaussian smooth1 is executed once and it covers
41% of the instructions executed by the whole application.
The communication is shown by edges, where the intensity
of communication is quantitatively shown by the number of
bytes on each edge. This intensity is also illustrated by the
colour of the edges from red (highest) to green (lowest). In
this way, programmer is able to visualize the computation and
communication intensive parts of an application, in a single
graph, without manual source-code inspection.

As depicted in the Figure 5, the gaussian smooth function
exposes dependencies between its two loop nests, thus they
cannot be executed concurrently. However, each of these loops
can be parallelized individually since they operate indepen-
dently on columns and rows of the image. On the other
hand, the two parts of the derivative x y do not expose
any dependency and therefore can be executed in parallel,
since these loops are using a common read-only input while
producing separate outputs. A similar analysis is performed
on the other functions.

C. Task mapping

In this step the data flow in the application is analysed to
perform function chaining. The idea is to map the functions
communicating heavily with the kernels in the application to
the accelerator to reduce the data communication between
CPU and accelerator. MCPROF highlights the data communi-
cation in the application which can guide this step. Figure 5
shows the communication graph generated by MCPROF for the
complete Canny application.

As can be seen from Figure 5, gaussian smooth1 takes
the image and kernel as input to generate tempim. As
gaussian smooth1 and gaussian smooth2 are communicating
heavily through tempim object, so it is obvious that they should
be chained together in the accelerator. Another important
point is that make_gaussian_kernel is also communi-
cating heavily with gaussian smooth1 and gaussian smooth2.
Though, make gaussian kernel is not computationally inten-
sive, still it should be chained together with gaussian smooth1
and gaussian smooth2 on the accelerator.

On the other hand derivative x y1 and derivative x y2
should not be mapped to accelerator with gaussian smooth1.
This is because, these functions are not computationally
intensive and mapping them to accelerator will double the
communication between CPU and accelerator as delta x and
delta y will need to be communicated back to CPU instead
of smoothedim.

D. Memory mapping

As discussed earlier, MCPROF detects statically and dynami-
cally allocated objects involved within flows. It provides infor-
mation about access to these object as flat profile (Table IV)
and communication graph (rectangles in Figure 5). It can be
seen from first row in Table IV that kernel has very high
Reads/Writes ratio indicating that these are some constant
values. As size of kernel is only 60 B, hence it should be
allocated as local memory on PL and split it to individual
elements. This corresponds to implementing an array as a
collection of registers rather than as a memory. This can be
achieved by the following pragma:

#pragma HLS array_partition variable=kernel \
dim=0 complete

Size of tempim is big and cannot fit in local Block RAM
(BRAM). Moreover, it can be seen from Figure 5 that it
is used internally to pass output of gaussian smooth1 to
gaussian smooth2. Hence, it should be used as shared memory
without caching. This is important as it will instruct SDSoC to
not cache it on PS side and save considerable time in flushing
the cache. This can be achieved by the following pragmas:

#pragma SDS data mem_attribute(tempim:NON_CACHEABLE)
#pragma SDS data zero_copy(tempim)

Another observation is that tempim is being reused large
number of times. It will incur a huge performance hit if
accessed directly from shared memory. Hence, caching a part
of tempim into a BRAM will provide two main performance
benefits:

1) tempim will be loaded once to BRAM and successive
access will be from BRAM rather than DDR.

2) DDR will be accessed in burst, resulting in higher per-
formance as compared to when accessed one element at
a time when required.

image is used as input to the gaussian smooth1 hence no
writes. Size of image is big (768.0 KiB) hence cannot fit
completely into BRAM. There is also a reuse of image values
resulting in 1.18e+07 total reads. Hence, it will be beneficial to
cache a part of image in to a local BRAM. Secondly, as image
is used as input, it will be possible to stream image into PL

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 9

0

0. 5

1

1. 5

2

2. 5

3

320X240 640X480 1,024X768

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Frame Size (Pixels)

SW
HW
HWopt

6.59x

Fig. 6: Speedup results for the Canny application on Zed-
board

if it is accessed sequentially. Output of Engine-3 reports that
the locality score of accessing image by gaussian smooth1 is
1, clearly reporting a spatial locality with a stride of 1. This
suggests that a single row can be buffered into BRAM using
streaming PL interface for image. This can be achieved by the
following pragma:

#pragma SDS data access_pattern(image:SEQUENTIAL)

smoothedim is used as output and it cannot fit into BRAM.
Furthermore, the accesses to smoothedim are not sequential as
reported by Engine-3, hence zero copy data mover should be
used for it by the following pragma:

#pragma SDS data zero_copy(smoothedim)

E. Experimental Results

Figure 6 provides performance comparison of various ver-
sions we implemented for this case-study. These results are the
normalized execution-times compared to the orignal software
implementation (y-axis) and are provided for various image
sizes (x-axis). SW represents the optimized software imple-
mentation. HW represents an implementation with top con-
tributing functions (kernels) implemented in hardware without
performing the memory and communication optimizations
mentioned in the case- study. HWopt represents an implemen-
tation with kernels implemented as optimized hardware based
on the memory and communication optimizations mentioned
earlier in the case-study.

It can be seen from Figure 6 that the HW implementation
without memory-accesses and data-communication optimiza-
tions actually results in performance degradation. Furthermore,
the HWopt version is about 6× faster than the one where these
optimizations are not applied.

VI. CASE-STUDY 2: COMMUNICATION DRIVEN MAPPING
OF KLT ON GPU-BASED PLATFORM

The focus of this case study is on the utilization of data-
communication information provided by MCPROF to map an
application onto the GPU, without performing algorithmic
modifications. The use case involves Kanade-Lucas-Tomasi
Feature Tracker (KLT) application [45]. This application de-
tects interesting features in a frame and tracks them in the
subsequent frames. We have used version 1.3.4, which is the
latest version of KLT [50]. This C implementation has 102
functions in 17 source-files making up 5033 lines of code.

TABLE V: gprof flat profile for the KLT application.

Function Name %Time
KLTSelectGoodFeatures 54.07
convolveImageVert 19.65
convolveImageHoriz 10.17
trackfeature 7.81
%Total Contribution 91.7

For the experiments performed in this case study, we used
64 bit, 2.5GHz Intel(R) Xeon(R) CPU with 32 GB RAM.
Nvidia GeForce GT 640 GPU, with 2 GB memory, is used
as an accelerator which is connected to the PCIe slot of the
CPU.

A. Hotspot analysis

In order to efficiently map an application onto an accel-
erator based platform, functions responsible for most of the
execution-time in an application, known as kernels, are off-
loaded to the accelerator. We used gprof [41] to identify
the kernels in the application as shown in Table V. For this
run, 30 frames have been used with frame size chosen as
1024 × 768, to accumulate enough number of samples to
generate representative profile of the application. The total
percentage contribution of these kernels 91.7%. Based on
Amdahl’s law, this gives a theoretical maximum application
speed-up of 12.04×.

As a first step in the mapping process, we mapped these
kernels to the GPU. Table VI provides the timing results of the
first mapping step. For these experiments, 1024 features were
tracked from frames of size 1024 × 768. Column 1 contains
the names of the kernel. Column 2 lists the execution-time
of these kernels on CPU (tcpu) in seconds. tgpucomp is the
time spent in performing the computation on GPU which is
shown in Column 3. The communication time tgpucomm

is
listed in Column 4 which is the time spent in transferring
data to GPU before computation and reading the results back,
after the computation is complete. The execution-time speed-
up is the ratio of the execution-time on CPU and GPU. We
have calculated various speed-ups to analyse the performance
gain/loss in terms of ratios of various execution-times. Total
kernel speed-up (SKtotal

) is reported in Column 5, which
is calculated as tcpu

tgpucomp+tgpucomm
. In order to highlight the

effect of data-communication, Column 6 lists the kernel speed-
up (SKcomp

) for only the computation, calculated as tcpu
tgpucomp

.
MCPROF provides the production-consumption information

in the form of a data-communication graph in various formats.
An overview of this information is shown as communication
matrix in top right corner of Figure 7 representing inter-
function communication intensity. MCPROF also generates the
detailed quantitative data-communication information in the
form of a directed graph. As there are large number of
functions in the KLT application, the complete graph is too
large to present here. Secondly, such large graphs are hard
to be utilized by the developers. Typically, the functions
contributing to most of the execution-time are selected for
analysis. MCPROF detects memory-intensive objects and the
functions communicating with these memory-intensive ob-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 10

TABLE VI: Execution Time (sec) and Speedup results for the initial KLT implementation.

Kernel tcpu tgpucomp tgpucomm SKtotal
SKcomp

KLTSelectGoodFeatures 13.53 1.17 0.36 8.8× 11.52×
convolveImageVert 3.93 0.14 0.76 4.35× 28.08×
convolveImageHoriz 1.77 0.18 0.76 1.87× 9.89×
trackFeature 1.96 1.49 0.52 0.96× 1.31×

TABLE VII: Memory Intensive Objects in KLT reported by
MCPROF.

Objects Reads Writes Reads/Writes Total %Total
tmpimgCS 3.8e8 5.1e7 7.4 4.3e8 26.6
pointlist 1.3e8 1.3e8 1 2.6e8 16.3
pyramidImg 1.3e8 3.5e7 3.8 1.7e8 10.3
grady 1.34e8 3.1e6 42.7 1.3e8 8.3
gradx 1.34e8 3.1e6 42.7 1.3e8 8.3
tmpimgTF 6.7e7 9.4e6 7.1 7.6e7 4.6
guassderiv kernel 6.7e7 4.7e3 14063.1 6.7e7 4.1
guass kernel 6.7e7 4.6e3 14500.6 6.7e7 4.1

%Total Contribution 82.6

jects. Table VII lists the memory-intensive objects of the KLT
application reported by MCPROF. Apart from mentioning the
reads and writes accesses, the percentage accesses are also
reported in the last column. The last row of the table shows
that memory accesses through these 9 objects correspond to
82.6% of the total application memory accesses.

B. Granularity Adjustment

From Column 5 in Table VI, it can be seen that speed-up has
been obtained for all the kernels except for trackFeature
kernel. Hence, this kernel should not be mapped to GPU. This
is because this kernel, in its current form, is not the type of
computation which can benefit from the GPU architecture. It
involves a large number of decision statements and variable
number of data-dependent loop iterations, which are not effi-
ciently handled by GPU Single Instruction Multiple Thread
(SIMT) architecture. In order to achieve performance gain
for this kernel, algorithmic level changes are required which
require the understanding of the application domain. Another
important result that can be deduced by comparing Column
5 to Column 6 is that the communication has significantly
reduced the achieved speed-up. In the next sub-section, we
will perform the optimization of this data-communication by
utilizing MCPROF.

C. Task mapping

Figure 7 shows the data-communication graph of KLT
application generated by MCPROF while tracking 256 features
in 3 frames of size 1024 × 768. The ovals represent the
functions in the application whereas the objects are represented
by rectangles. The numbers inside the rectangles are the
allocation sizes of these objects. The kernels in the application
are shown as Grey ovals. The amount of communication in
bytes is represented by directed edges, where the colour of
the edges represent the intensity of the communication. To
simplify the discussion, the dotted lines are used to mark
the functions in the main stages of applications. Due to the

detection of objects and associating communication with these
objects, the flow of data between functions in various stages
can be clearly visualized.
tmpimgSF and tmpimgTF are generated by

KLTToFloatImage on CPU and transferred to GPU as an
input to convolveImageHoriz. KLTToFloatImage,
though not compute-intensive, still mapping it to GPU will
be better as it will make tmpimgSF and tmpimgTF internal
to GPU and reduce CPU-GPU communication.
guassderiv_kernel and guass_kernel are gener-

ated by computeKernels on the CPU and consumed by
convolveImageHoriz and convolveImageVert on
GPU. However, mapping computeKernels to GPU is not
required as guassderiv_kernel and guass_kernel
are consumed heavily but produced very infrequently.

Based on the preliminary results in Table VI, it was con-
cluded that trackFeature should not be mapped to GPU
because of slow-down. Even if this kernel is not so efficient on
the GPU, we should still port it to the GPU to avoid the bulk of
data-communication regarding the transfer of pyramidImg
between GPU and CPU. This is clearly shown by the commu-
nication edges to the computeIntensityDifference
and computeGradientSum function in the Feature Track-
ing stage.

D. Memory mapping

guassderiv_kernel and guass_kernel objects are
consumed heavily but produced very infrequently as evident
from the very high Reads/Write ratio (Table VII) implying
very less production and a lot of consumption of data from
these objects. Furthermore, these objects are very small in size
(284 Bytes), hence can be easily mapped to GPU’s constant
memory.
gradx and grady objects are generated in the Convolution

Stage which are consumed in the Feature Selection stage by
KLTSelectGoodFeatures. Hence, these objects can be
kept on the GPU for utilization in these stages. Furthermore,
these objects should be mapped to GPU’s shared memory.
This is because of high Reads/Writes ratio depicted in Ta-
ble VII, suggesting high re-use of these objects. This will result
in performance improvement as shared memory has higher
bandwidth as compared to global memory. In this way, data
read from the global memory will be stored in to the shared
memory. Therefore, multiple reads of this data will be from the
faster shared memory, rather than the slower global memory,
resulting in performance improvement.

On the contrary, pointlist has Reads/Writes ratio of
1 depicted in Table VII, which suggests no reuse, hence it
should be kept in the global memory. Mapping pointlist
to shared memory will only increase the overhead of the data

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 11

pgmRead

img1
768 KB

786432 Bytes

img2
768 KB

786432 Bytes

KLTToFloatImage

1.57286e+06 Bytes 786432 Bytes

tmpimgSF
3 MB

3.14574e+06 Bytes

tmpimgTF
3 MB

6.29147e+06 Bytes

convolveImageHoriz

1.67772e+07 Bytes 1.67772e+07 Bytes

tmpimgCS
3 MB

3.14573e+06 Bytes

tmpimgCS
3 MB

3.14573e+06 Bytes

tmpimgCS
3 MB

3.14573e+06 Bytes

convolveImageVert

gradx
3 MB

3.14573e+06 Bytes

grady
3 MB

3.14573e+06 Bytes

pyramidImg
768K B

1.57286e+07 Bytes

1.67772e+07 Bytes 1.67772e+07 Bytes

...

1.67772e+07 Bytes

computeKernels 3792 Bytes

gauss_kernel
284 B

3560 Bytes

gaussderiv_kernel
284 B

3672 Bytes

1.67772e+07 Bytes

1.67772e+07 Bytes

5200 Bytes

1.67772e+07 Bytes

1.67772e+07 Bytes

2500 Bytes

KLTSelectGoodFeatures

1.67772e+07 Bytes1.67772e+07 Bytes

pointlist
9 MB

8.43264e+06 Bytes

pointlist
9 MB

8.43264e+06 Bytes

computeGradientSum

gradxTF
900 B

1.6011e+06 Bytes

gradyTF
900 B

1.6011e+06 Bytes

computeIntensityDifference

imgdiff
900 B

2.0619e+06 Bytes

trackFeature

2.0619e+06 Bytes 3.2022e+06 Bytes 3.2022e+06 Bytes

8.16786e+06 Bytes

1.67772e+07 Bytes

1.67772e+07 Bytes 1.67772e+07 Bytes1.67772e+07 Bytes

IMAGE INPUT

CONVOLUTION

KERNEL COMPUTATION

FEATURE SELECTION

FEATURE TRACKING

KLT
Sele

ctG
oo

dF
ea

tur
es

co
nv

olv
eIm

ag
eH

ori
z

co
nv

olv
eIm

ag
eV

ert

so
rtP

oin
tLi

st

co
mpu

teG
rad

ien
tSum

co
mpu

teI
nte

ns
ityD

iff
KLTSelectGoodFeatures

convolveImageHoriz

convolveImageVert

sortPointList

computeGradientSum

computeIntensityDiff

10

100

1e+03

1e+06

1e+07

1e+08

1e+05

1e+04

tra
ckf

ea
tur

e

trackfeature

Data-communication Matrix
Producers on Y-Axis
Consumer on X-Axis

Fig. 7: KLT Communication Matrix (top right) and communication graph generated by MCPROF. Functions (ovals), compute-
intensive functions (Grey ovals) and the objects(rectangles) involved in the communication are also shown.

transfer between global memory and shared memory without
being reused.

Another optimization which can be performed in the con-
volution stage is the allocation and de-allocation of large
number of tmpimgCS objects for each frame. Allocating a
single object in the start and re-using it in the subsequent
frames instead of re-allocating it will reduce the execution-
time. Similar optimization can be performed for pointlist
in the Feature Selection stage.

E. Experimental Results

In this section, we provide the performance results for the
implementations discussed in the case study. The frame sizes
have been selected corresponding to the frame dimensions
used in various video standards [51]. The affect of varying
the number of tracked features on the achieved application
speed-up is also discussed.

After applying these optimizations to the initial GPU imple-
mentation (gpu), we obtained a data-communication optimized
version of the GPU implementation (gpuopt). Figure 8 shows
the normalized Frames Per Seconds (fps) achieved by both
the implementations for various frame sizes ranging from

0

 1

 2

 3

 4

 5

 6

 7

 8

320x240 640x480 800x600 1,024x768

N
or

m
al

iz
ed

 F
ra

m
es

/S
ec

on
d

Frame Size (Pixels)

gpu
gpuOpt

2.75x

2.41x

2.08x

1.43x

Fig. 8: Normalized Frames per seconds achieved by the GPU
and data-communication optimized GPU implementation.

320 × 240 to 1024 × 768 while the number of tracked
features is set to 1024. Increasing the frame size, results
in an increase in the amount of computation performed on
the GPU. Increased computation results in better utilization
of the available resources of the GPU, resulting in higher
speed-up as can be observed from Figure 8. On the other
hand, increasing the frame size also increases the amount of
frame data transferred to the GPU for processing and getting

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 12

1

 10

 100

 1,000

 10,000

canny KLT ocean−NC fmm raytrace bwa−mem Mean

E
xe

cu
ti

on
−

ti
m

e
O

ve
rh

ea
d

(l
og

 s
ca

le
)

Applications

35
30

 x
18

55
 x

54
 x 83

 x

Pincomm
QUAD
MCPROF
MCPROFx

Fig. 9: Comparison of execution-time overhead.

1

 10

 100

 1,000

 10,000

canny KLT ocean−NC fmm raytrace bwa−mem Mean

M
em

or
y−

us
ag

e
O

ve
rh

ea
d

(l
og

 s
ca

le
)

Applications

10
2

x
57

5
x

4.
7

x
5.

3
x

Pincomm
QUAD
MCPROF
MCPROFx

Fig. 10: Comparison of Memory-usage overhead.

results back. This data-communication has been optimized
in the case of gpuopt based on the information provided by
MCPROF. Hence, gpuopt implementation achieves up-to 2.75×
higher speed-up as compared to gpu implementation where
this communication is not optimized.

VII. OVERHEAD COMPARISON WITH EXISTING PROFILERS

In this section, we present the overhead comparison of
MCPROF with other state-of-the-art data-communication pro-
filers QUAD and PINCOMM as these are particularly designed
to report data-communication. To make a fair comparison,
these tools are configured in such a manner that all the
profilers generate as much similar information as possible
while running on the same platform. For these experiments,
we used Pin v2.13 on the machine used in case-study. Fig-
ure 9 depicts the execution-time and memory-usage overhead
of PINCOMM, QUAD and MCPROF for applications from
various domains, namely; image-processing (canny [44], klt
[45]) domain, SPLASH-2 benchmarks [46] (ocean-NC, fmm,
raytrace) and a bio-informatics application (bwa-mem [47]).
Each bar represents the ratios of the application execution-
time with and without profiling for each profiler. Similarly,
Figure 10 reports the ratios of application memory-usage with
and without profiling.

We have reported MCPROF results with two different settings
depicted as MCPROF and MCPROFx in these figures. Results
with MCPROF legend are overheads while providing the
common basic information which PINCOMM and QUAD can
also generate. Whereas, MCPROFx report overheads of com-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

120x80 320x240 640x480 1,024x768

E
x
ec

u
ti

o
n
−

ti
m

e
(s

ec
)

Image Size

Trie
Hash map
Hybrid

Fig. 11: Execution-time Comparison of Data-structure access
only.

 0

 100

 200

 300

 400

 500

 600

 700

 800

120x80 320x240 640x480 1,024x768
M

em
o
ry

−
u
sa

g
e

(M
B

)
Image Size

Trie
Hash map
Hybrid

Fig. 12: Memory-usage Comparison of Data-structure access
only.

plex engine while generating the detailed data-communication
information with stack recording and object detection. Mean
overhead results are also depicted in these figures. These
results show that MCPROF has, on the average, an order of
magnitude less execution-time and memory-usage overheads.
Main reason for this reduction in overhead is the well-thought-
out design of the shadow memory scheme utilized by MCPROF.
Due to the design, we were able to shift most of the processing
from analysis-phase to instrumentation-phase. Moreover, the
access-time and memory-usage overhead of the hybrid shadow
memory scheme is significantly less as compared to Trie or
Hash map utilized by QUAD and PINCOMM, respectively. In
order to clearly illustrate this, we have plotted the execution-
time and memory-usage of accessing only the data-structures
of the three tools in Figure 11 and Figure 12, for the canny
application for various image sizes.

Another important source of overhead in such kind of tools
is the amount of work done at analysis-time as compared to
instrumentation-time. This is important because the functional-
ity in the instrumentation routine will only be executed once at
the time of instrumentation. Whereas, the analysis-routine will
be executed on each execution of the target instruction/routine.
By careful design of the tool, we have managed to shift as
much work as possible from analysis-time to instrumentation-
time to reduce execution-time overhead.

A specific example in this regard is the way source-code
information is obtained and related to the generated run-time
information. PINCOMM uses this API call in the analysis
routine, resulting in high execution-time overhead of the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1−byte 2−byte 4−byte

E
x
ec

u
ti

o
n
−

ti
m

e
(s

ec
)

No. of Bytes Used for Encoding

Trie
Hash map
Hybrid

Fig. 13: Execution-time Comparison of three Data-structures
with Varying Number of Encoding Bytes.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1−byte 2−byte 4−byte

M
em

o
ry

−
u
sa

g
e

(M
B

)

No. of Bytes Used for Encoding

Trie
Hash map
Hybrid

Fig. 14: Memory-usage Comparison of three Data-structures
with Varying Number of Encoding Bytes.

tool, as detailed earlier in Section III-A. In MCPROF, we
call PIN_GetSourceLocation API in the instrumentation
routine, without requiring the need to call this API in the
analysis routine.

Another important observation from Figure 9 is that
MCPROF has an average memory-usage overhead of 4.7 −
5.3×, which is mainly because 4 shadow bytes are allocated
for each byte used in the original application, plus some
additional memory for storing extra information.

Finally, to study the effect of varying number of bytes used
for encoding functions, objects and threads, we performed
experiments to measure execution-time and memory-usage
overheads with 1, 2 and 4-bytes encoding for the three data-
structures used by MCPROF, PINCOMM and QUAD as depicted
in Figure 13 and Figure 14, respectively. These results are for
canny application with input image of size 1024× 768. It can
be seen from Figure 13 that there is no significant impact
on execution-time but there is a slight increase in memory-
overhead with increasing number of bytes used for encoding
as shown by Figure 14.

VIII. CONCLUSION

Both the memory wall and the growing trend of accelerator-
based computing demand detailed memory-access and data-
communication profiling of an application. In this work, we
presented MCPROF, a memory-access and data- communica-
tion profiler. We presented a methodology based on MCPROF
to port existing applications to accelerator based platforms.
We demonstrated the applicability of this methodology by

accelerating image processing applications on platforms with
FPGA and Graphical Processing Unit (GPU) as accelerators;
we obtained a speed-up of 6.14× and 2.75×, respectively, over
the implementations where these optimizations are not applied.
The unique design of the proposed profiler has resulted in
significantly reduced execution-time and memory-usage over-
heads as compared to the state-of-the-art, making the profiler
useful for applications with realistic workloads. Moreover, the
reduced overheads allowed us to generate detailed memory-
access and data- communication information which is not
provided by existing tools.

Utilization of Pin to track memory-accesses makes our
tool micro-architecture independent but not ISA-independent.
Therefore, it is interesting to utilize LLVM-Tracer [52] to gen-
erate the required information for MCPROF and hence, obtain
an ISA-independent memory-access and data-communication
profile of the application.

Our future work also involves relating the data-
communication information generated by MCPROF with per-
formance estimates generated by the profiling tools provided
by Xilinx and Nvidia. This will assist programmers reason
about the data-movement in comparison with the performance
tradeoffs in a systematic way. Another interesting work re-
volves around the utilization of the currently generated in-
formation by MCPROF to automatically generate SDSoC and
OpenACC [53] pragmas for FPGA- and GPU-based accelera-
tors, respectively.

REFERENCES

[1] M. Horowitz and W. Dally, “How Scaling Will change Processor
Architecture,” in ISSCC, vol. 1, 2004, pp. 132–133.

[2] AMD, “AMD A10-7850K APU,” http://www.amd.com/us/products/
desktop/processors/a-series/Pages.

[3] D. Pham et al., “The Design and Implementation of a First-generation
CELL Processor,” in ISSCC, Feb 2005, pp. 184–592 Vol. 1.

[4] Texas Instruments, “OMAP3530 Application Processors,” http://www.ti.
com/product/omap3530.

[5] Xilinx, “Zynq-7000 All Programmable SoC,” http://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.

[6] S. Vassiliadis and et al., “The MOLEN Polymorphic Processor,” IEEE
Transactions on Computers, vol. 53, no. 11, pp. 1363–1375, 2004.

[7] “Hybrid Core Computer by Micron,” http://www.conveycomputer.com,
2012.

[8] J. Stuecheli, “Next Generation POWER Microprocessor,” in HotChips
2013, August 2013.

[9] Nvidia, “GeForce GT 640 Specifications,” http://www.geforce.com/
hardware/desktop-gpus/geforce-gt640/specifications, April 2012.

[10] O. Pell and O. Mencer, “Surviving the End of Frequency Scaling with
Reconfigurable Dataflow Computing,” SIGARCH Comput. Archit. News,
vol. 39, no. 4, pp. 60–65, Dec. 2011.

[11] J. Duato, “Beyond the Power and Memory Walls: The Role of Hyper-
Transport in Future System Architectures,” in WHTRA, February 2009.

[12] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications
of the Obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp.
20–24, Mar. 1995.

[13] G. Martin, “Overview of the MPSoC design challenge,” in 43rd
ACM/IEEE DAC, 2006, pp. 274–279.

[14] S. Borkar and A. A. Chien, “The Future of Microprocessors,” Commun.
ACM, vol. 54, no. 5, pp. 67–77, May 2011. [Online]. Available:
http://doi.acm.org/10.1145/1941487.1941507

[15] A. Knpfer et al., “The Vampir Performance Analysis Tool-Set,” in Tools
for High Performance Computing, 2008, pp. 139–155.

[16] S. H. Hung et al., “Trace-based performance analysis framework for
heterogeneous multicore systems,” ser. ASPDAC ’10, pp. 19–24.

[17] M. Bach et al., “Analyzing Parallel Programs with Pin,” Computer,
vol. 43, pp. 34 –41, Mar. 2010.

http://www.amd.com/us/products/desktop/processors/a-series/Pages
http://www.amd.com/us/products/desktop/processors/a-series/Pages
http://www.ti.com/product/omap3530
http://www.ti.com/product/omap3530
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000
http://www.conveycomputer.com
http://www.geforce.com/hardware/desktop-gpus/geforce-gt640/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gt640/specifications
http://doi.acm.org/10.1145/1941487.1941507

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2017 14

[18] I.-H. Chung, R. Walkup, H.-F. Wen, and H. Yu, “MPI Performance
Analysis Tools on Blue Gene/L,” in SC, Nov 2006.

[19] H. Brunst and B. Mohr, “Performance Analysis of Large-Scale OpenMP
and Hybrid MPI/OpenMP Applications with Vampir NG,” in OpenMP
Shared Memory Parallel Programming, 2008, vol. 4315.

[20] Nvidia, “NVPROF and NVVP, Nvidia Command-line and Visual Pro-
filers,” http://docs.nvidia.com/cuda/profiler-users-guide.

[21] “PGPROF by The Portland Group (PGI) ,” https://www.pgroup.com/
products/pgprof.htm.

[22] “CodeXL by AMD,” http://developer.amd.com/tools-and-sdks/
opencl-zone/codexl.

[23] M. D. Ernst, “Static and Dynamic Analysis: Synergy and Duality,” in
WODA 2003: Workshop on Dynamic Analysis, Portland, Oregon, May
9, 2003, pp. 24–27.

[24] N. Barrow-Williams, C. Fensch, and S. Moore, “A Communication
Characterisation of Splash-2 and Parsec,” in Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, 2009, pp. 86–97.

[25] N. Nethercote and A. Mycroft, “Redux: A Dynamic Dataflow Tracer,”
Electronic Notes in Theoretical Computer Science, vol. 89, no. 2, pp.
149–170, Oct. 2003. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1571066104810478

[26] W. Heirman et al., “PinComm: Characterizing Intra-application Com-
munication for the Many-Core Era,” in ICPADS 2010, Dec. 2010.

[27] S. Ostadzadeh, “Quantitative Application Data Flow Characterization
for Heterogeneous Multicore Architectures,” Ph.D. dissertation, Delft
University of Technology, Delft, Netherlands, December 2012.

[28] N. Nethercote and J. Seward, “How to Shadow Every Byte of
Memory Used by a Program,” in Proceedings of the 3rd International
Conference on Virtual Execution Environments, ser. VEE ’07. New
York, NY, USA: ACM, 2007, pp. 65–74. [Online]. Available:
http://doi.acm.org/10.1145/1254810.1254820

[29] “An Implementation of BWA Sequence Alignment Algorithm.” https:
//github.com/lh3/bwa.

[30] W. Cohen, “Multiple Architecture Characterization of the Build Process
with OProfile,” 2003. [Online]. Available: http://oprofile.sourceforge.net

[31] N. Nethercote, “Dynamic Binary Analysis and Instrumentation,” Ph.D.
dissertation, University of Cambridge, UK, Nov 2004.

[32] A. Pesterev et al., “Locating Cache Performance Bottlenecks Using Data
Profiling,” ser. EuroSys, 2010, pp. 335–348.

[33] “vTune by Intel,” http://software.intel.com/en-us/intel-vtune.
[34] “Purify by IBM,” http://www-03.ibm.com/software/products/us/en/

rational-purify-family.
[35] I. Ashraf et al., “Memory profiling for intra-application data-

communication quantification: A survey,” in IDT 2015, Dec 2015.
[36] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data Race De-

tection in Practice,” in WBIA 2009.
[37] J. Seward and N. Nethercote, “Using Valgrind to Detect Undefined

Value Errors with Bit-precision,” in Proceedings of the annual
conference on USENIX Annual Technical Conference, ser. ATEC ’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 2–2. [Online].
Available: http://dl.acm.org/citation.cfm?id=1247360.1247362

[38] C. Luk and et al., “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” in PLDI ’05. New York, NY, USA:
ACM, 2005, pp. 190–200.

[39] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: ACM, 2013, pp. 237–248.

[40] Committee, T.I.S., “Tool Interface Standard (TIS) Executable and Link-
ing Format (ELF) Specification Version 1.2,” May 1995.

[41] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call Graph
Execution Profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, 1982.

[42] R. B. Bunt and J. M. Murphy, “The measurement of locality and the
behaviour of programs,” Comput. J., vol. 27, no. 3, pp. 238–253, Aug.
1984. [Online]. Available: http://dx.doi.org/10.1093/comjnl/27.3.238

[43] J. Weinberg et al., “Quantifying locality in the memory access patterns
of hpc applications,” in SC 2005.

[44] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, pp. 679–698, November 1986.

[45] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision,” 1981, pp. 674–679.

[46] J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford
Parallel Applications for Shared-memory,” SIGARCH Comput. Archit.
News, vol. 20, no. 1, pp. 5–44, Mar. 1992. [Online]. Available:
http://doi.acm.org/10.1145/130823.130824

[47] H. Li, “Aligning Sequence Reads, Clone Sequences and Assembly
Contigs with BWA-MEM.” http://arxiv.org/abs/1303.3997, 2013.

[48] Z. TM, “Zedboard,” http://zedboard.org/product/zedboard.
[49] “Canny Edge Detector, Image Analysis Research Lab., USF,” http://

marathon.csee.usf.edu/edge/edge detection.html.
[50] “KLT: An Implementation of the Kanade-Lucas-Tomasi Feature

Tracker,” http://www.ces.clemson.edu/∼stb/klt/installation.html.
[51] R. L. Myers, Display Interfaces : Fundamentals and Standards. New

York ; Chichester : Wiley, 2002.
[52] Y. S. Shao and D. Brooks, “ISA-independent workload characterization

and its implications for specialized architectures,” in ISPASS, April 2013.
[53] “OpenACC,” https://www.openacc.org/.

Imran Ashraf is a Postdoctoral researcher at Delft
University of Technology. He received his Ph.D. in
Computer Engineering from Delft University of
Technology, The Netherlands in 2016. The focus
of his research was advanced profiling, code par-
allelization, communication driven mapping of ap-
plications on multicore platforms. Currently, Imran
is working as Post-Doctoral Researcher at Quantum
Computing Lab, QuTech, TU Delft. His recent re-
search also focuses on compilation techniques for
quantum computing.

Nader Khammassi did his PhD at the National
Engineering School of Advanced Technology (EN-
STA) in Brittany, the focus of his research was
on High Performance Computing (HPC) and more
specifically on parallel programming for multicore
architectures. During his PhD, Nader worked as a
research engineer in Thales Airborne Systems on
several high performance signal processing applica-
tions in the Electronic Warfare domain and obtained
his doctorate in 2014. In 2015, he joined the Quan-
tum Computing Lab of QuTech at Delft University

of Technology in the Netherlands. The current topic of Nader’s research
is the design of a scalable quantum computer architecture, in particular he
is focusing on designing high performance simulation tools for quantum
computers and the compilation of quantum algorithms for different quantum
computing devices.

Mottaqiallah Taouil received the M.Sc. and Ph.D.
degrees (both with Hons.) in computer engineering
from the Delft University of Technology, Delft,
the Netherlands. He is currently a Post-Doctoral
Researcher with the Dependable Nano-Computing
Group, Delft University of Technology. His current
research interests include reconfigurable computing,
embedded systems, very large scale integration de-
sign and test, built-in-self-test, and 3-D stacked in-
tegrated circuits, architectures, design for testability,
yield analysis, and memory test structures.

Koen Bertels is Professor and Head of the Com-
puter Engineering Laboratory at Delft University of
Technology. His research focuses on heterogeneous
multicore computing, investigating topics ranging
from compiler technology, runtime support and ar-
chitecture. He recently started working on quantum
computing as a principal investigator in the Qutech
research centre. He served as general and program
chair for various conferences such as FPL, RAW,
ARC. He co-authored more than 30 journal papers
and more than 150 conference papers.

http://docs.nvidia.com/cuda/profiler-users-guide
https://www.pgroup.com/products/pgprof.htm
https://www.pgroup.com/products/pgprof.htm
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl
http://www.sciencedirect.com/science/article/pii/S1571066104810478
http://www.sciencedirect.com/science/article/pii/S1571066104810478
http://doi.acm.org/10.1145/1254810.1254820
https://github.com/lh3/bwa
https://github.com/lh3/bwa
http://oprofile.sourceforge.net
http://software.intel.com/en-us/intel-vtune
http://www-03.ibm.com/software/products/us/en/rational-purify-family
http://www-03.ibm.com/software/products/us/en/rational-purify-family
http://dl.acm.org/citation.cfm?id=1247360.1247362
http://dx.doi.org/10.1093/comjnl/27.3.238
http://doi.acm.org/10.1145/130823.130824
http://arxiv.org/abs/1303.3997
http://zedboard.org/product/zedboard
http://marathon.csee.usf.edu/edge/edge_detection.html
http://marathon.csee.usf.edu/edge/edge_detection.html
http://www.ces.clemson.edu/~stb/klt/installation.html
https://www.openacc.org/

	Introduction
	Background
	Terminology
	Static vs Dynamic Analysis
	Practical Design Considerations
	Related Work

	MCPROF: Memory and Communication PROFiler
	Memory Access Tracer
	Data Collection Engines
	Shadow Memory

	Application mapping methodology for accelerator based platforms
	Case-study 1: Communication driven mapping of Canny on FPGA-based platform
	Hotspot analysis
	Granularity Adjustment
	Task mapping
	Memory mapping
	Experimental Results

	Case-study 2: Communication driven mapping of KLT on GPU-based platform
	Hotspot analysis
	Granularity Adjustment
	Task mapping
	Memory mapping
	Experimental Results

	Overhead Comparison with Existing Profilers
	Conclusion
	References
	Biographies
	Imran Ashraf
	Nader Khammassi
	Mottaqiallah Taouil
	Koen Bertels

