

Delft University of Technology

Declarative Specification of Information System Data Models and Business Logic

Harkes, Daco

DOI
10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a
Publication date
2019
Document Version
Final published version
Citation (APA)
Harkes, D. (2019). Declarative Specification of Information System Data Models and Business Logic.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:5e9805ca-95d0-451e-
a8f0-55decb26c94a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a
https://doi.org/10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a
https://doi.org/10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a

Declara've	Specifica'on	of	Inform
a'on	System

	Data	M
odels	and	Business	Logic	

Daco	Harkes

Declara've	Specifica'on	of	Informa'on	
System	Data	Models	and	Business	Logic	

Daco	Harkes

Declarative Specification of
Information System

Data Models and Business Logic

DISSERTATION

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Tuesday 26 March 2019 at 15:00 o’clock

by

Daniël Corstiaan HARKES

Master of Science in Computer Science,
Delft University of Technology, the Netherlands

born in Waddinxveen, the Netherlands

This dissertation has been approved by the promotor.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. E. Visser Delft University of Technology, promotor

Independent members:

Prof. dr. A. van Deursen Delft University of Technology
Prof. dr. ir. G.J.P.M. Houben Delft University of Technology
Dr. ir. F.F.J. Hermans Leiden University
Prof. dr. G. Hedin Lund University
Prof. dr. F. Steimann FernUni Hagen
Prof. dr. G. Salvaneschi Technische Universität Darmstadt

The work in this thesis has been carried out at the Delft University of Technol-
ogy. This research was funded by the NWO VICI Language Designer’s Work-
bench project (639.023.206).

Copyright © 2019 Daco C. Harkes

Cover: Snow Cannon, Hans Braxmeier (pixabay.com/en/snow-cannon-snow-
snow-making-system-999285/) CC0 1.0 Universal (CC0 1.0) Public Domain
Dedication

Printed by ProefschriftMaken (www.proefschriftmaken.nl)

ISBN 978-94-6366-146-1

DOI 10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a

pixabay.com/en/snow-cannon-snow-snow-making-system-999285/
pixabay.com/en/snow-cannon-snow-snow-making-system-999285/
www.proefschriftmaken.nl
https://doi.org/10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a

Contents

Samenvatting ix

Summary xi

Preface xiii

1 Introduction 1
1.1 Information System Engineering 1
1.2 Research Context . 6
1.3 Contributions . 7

1.3.1 Native multiplicities and concise navigation of first-class
n-ary bidirectional relations 7

1.3.2 Path-based incremental and eventual computing 8
1.3.3 Derived bidirectional relations and strategy composition 9

1.4 Research Methodology . 10
1.4.1 Individual artifact methodologies 11

1.5 Origin of Chapters . 13

2 Relations Language
Unifying and generalizing relations in role-based data modeling and navigation 15
2.1 Introduction . 15
2.2 Native Multiplicities . 16

2.2.1 Multiplicity Annotations 16
2.2.2 Native Multiplicities . 17

2.3 Design Space for Role-Based Relations 18
2.3.1 Overview . 18
2.3.2 Detailed Description of Points in Design Space 19

2.4 A Relational Data Modeling Language 24
2.5 Type System . 26

2.5.1 Meta variables . 26
2.5.2 Types . 27
2.5.3 Multiplicities . 27
2.5.4 Well-formedness . 29

2.6 Dynamic Semantics . 30
2.6.1 Stores . 30
2.6.2 Store well-formedness . 32
2.6.3 Evaluation rules . 33

2.7 Related Work . 33
2.8 Conclusion . 35
Postscript . 37

iii

3 IceDust
Incremental and Eventual Computation of Derived Values in Persistent Object Graphs 39
3.1 Introduction . 39
3.2 Declarative Data Modeling with Derived Values 40

3.2.1 Bidirectional Relations . 40
3.2.2 Native Multiplicities . 41
3.2.3 Derived Value Attributes 42
3.2.4 Language Definition . 43

3.3 Dependency and Data Flow Analysis 45
3.3.1 Example . 45
3.3.2 Step 1: Dependencies . 46
3.3.3 Step 2: Data Flow . 48
3.3.4 Step 3: Data Flow Graph 49

3.4 Implementation Strategies . 50
3.4.1 Compiling to WebDSL . 50
3.4.2 Calculate on Read . 51
3.4.3 Calculate on Write . 52
3.4.4 Calculate Eventually . 56

3.5 Evaluation . 58
3.5.1 Benchmark Setup . 58
3.5.2 Benchmark Results . 59
3.5.3 Discussion . 60

3.6 Case Study . 61
3.7 Related Work . 63

3.7.1 Languages with Relations 63
3.7.2 Calculate on Read . 64
3.7.3 Calculate on Write (Incremental Computation) 65
3.7.4 Calculate Eventually . 66

3.8 Conclusion . 67

4 IceDust 2
Derived Bidirectional Relations and Calculation Strategy Composition 69
4.1 Introduction . 69
4.2 Declarative Data Modeling by Feature Selection 71

4.2.1 Running Example . 72
4.2.2 Orthogonality of Field Configurations in IceDust 73
4.2.3 Generalizing Data Modeling with IceDust 75

4.3 Run-Time Feature Interaction . 78
4.4 Operational Semantics . 80

4.4.1 Getter . 81
4.4.2 Setter . 82
4.4.3 Flag Dirty . 82
4.4.4 Update Cache . 84
4.4.5 Incremental Update Algorithm 84
4.4.6 Object Creation and Deletion 84
4.4.7 Multiplicity Lower Bounds 86

iv

4.4.8 Eventual Calculation Strategy 86
4.4.9 Discussion: Computation Cycles 86

4.5 Sound Composition of Calculation Strategies 87
4.5.1 Type Checking Strategy Composition 88
4.5.2 Example . 89

4.6 Implementations . 90
4.6.1 Compilation to Java . 90
4.6.2 Compilation to WebDSL 90

4.7 Case Studies . 93
4.7.1 Conference Management System 93
4.7.2 Learning Management System 93

4.8 Multiplicity Bounds for the Right-Hand Side of Derived Relations 96
4.9 Related Work . 97

4.9.1 Derived Bidirectional Relations 97
4.9.2 Incremental Computation without Bidirectional Relations 98
4.9.3 Eventual Calculation without Bidirectional Relations . . 99
4.9.4 Software Product Lines and Language Engineering . . . 100

4.10 Summary and Future Work . 100
Postscript . 101

5 PixieDust
Declarative Incremental User Interface Rendering through Static Dependency Track-
ing 103
5.1 Introduction . 103
5.2 Existing Approaches . 104

5.2.1 Linear Tree Diffing . 104
5.2.2 Identifying which parts of the DOM-tree need updating 105
5.2.3 Summary . 106

5.3 Static dependency tracking . 106
5.4 PixieDust . 107

5.4.1 Data Model . 108
5.4.2 View . 108
5.4.3 Example . 108

5.5 Dependency and Data-Flow Analysis 110
5.5.1 Dependencies between Fields in Data Model 110
5.5.2 Dependencies with Filter, Find, and OrderBy 111
5.5.3 Dependencies with Functions 113
5.5.4 Dependencies between Views 114

5.6 Operational Semantics . 114
5.7 evaluation . 117

5.7.1 Conciseness . 117
5.7.2 Performance . 118

5.8 Related Work . 120
5.9 Conclusion . 122

Contents v

6 WebLab Case Study
Migrating Business Logic to an Incremental Computing DSL: A Case Study 123
6.1 Introduction . 123
6.2 Background . 124

6.2.1 Web-based Information System Engineering 124
6.2.2 Incremental Computing Languages and IceDust 125
6.2.3 Language Engineering with Spoofax 125

6.3 Case Study Setup . 126
6.3.1 Research Questions . 126
6.3.2 Data Collected . 126

6.4 Case Study Context . 127
6.4.1 WebLab . 127
6.4.2 Software Architecture . 128
6.4.3 Server Setup . 128
6.4.4 Development Timeline . 129
6.4.5 Tools . 129
6.4.6 Organization and Team 129

6.5 The WebLab IceDust Implementation 129
6.5.1 Overall Structure and Migration 129
6.5.2 Size of the System . 130
6.5.3 Use of IceDust’s Features 131
6.5.4 IceDust Feature Requests 135

6.6 IceDust Evaluation . 135
6.6.1 RQ-Validatability . 135
6.6.2 RQ-Performance . 137
6.6.3 RQ-Effort . 140

6.7 Discussion . 141
6.7.1 Internal Validity . 141
6.7.2 Conclusion Validity . 141
6.7.3 Construct Validity . 142
6.7.4 External Validity . 143
6.7.5 Repeatability . 144
6.7.6 Research Implications . 144

6.8 Related Work . 144
6.8.1 Case Studies in Incremental Computing 144
6.8.2 Case Studies with DSLs 145
6.8.3 ICLs for Information Systems 146

6.9 Conclusion . 147

7 Conclusion 149
7.1 Information System Engineering Revisited 149
7.2 Summary of Contributions . 149
7.3 Reflection on Methodology . 150
7.4 Future Work . 151

Bibliography 155

vi

A Appendix: IceProof 171
A.1 Language Specification . 171

A.1.1 Type System . 172
A.1.2 Multiplicity System . 172
A.1.3 Dynamic Semantics . 173

A.2 Type Preservation Proof . 174
A.3 Termination Proof . 175
A.4 Multiplicity Preservation Proof 175
A.5 Future work . 176

A.5.1 Type- and Multiplicity-Safety 176
A.5.2 Preservation of bidirectionality 176
A.5.3 Correctness of incremental calculation strategies 176

Curriculum Vitae 179

List of Publications 181

Contents vii

viii

Samenvatting

Informatiesystemen zijn systemen voor het verzamelen, organiseren, opslaan
en communiceren van informatie. Deze systemen zijn gericht op het onder-
steunen van activiteiten, management en besluitvorming. Voor deze onders-
teuning, filteren en verwerken deze systemen gegevens, hetgeen resulteert in
nieuwe gegevens. Typisch bevatten deze informatiesystemen grote hoeveelhe-
den gegevens en worden deze gegevens frequent gewijzigd. In de loop van de
tijd veranderen de eisen voor informatiesystemen, van de verwerkingslogica
tot het aantal gebruikers dat met het systeem communiceert. Kortom, wan-
neer organisaties veranderen, moeten informatiesystemen mee veranderen.

Onze afhankelijkheid van informatiesystemen om beslissingen te nemen
en de steeds veranderende eisen creëren de volgende uitdagingen voor het
ontwikkelen van informatiesystemen. Valideerbaarheid: hoe gemakkelijk is het
voor ontwikkelaars van informatiesystemen om vast te stellen dat een sys-
teem ‘doet wat het moet doen’? Traceerbaarheid: kan de oorzaak van door het
systeem genomen beslissingen worden gecontroleerd? Betrouwbaarheid: kun-
nen we erop vertrouwen dat het systeem consequent beslissingen neemt en
onze gegevens niet verliest? Prestaties: kan het systeem prompt reageren op
gebruikers? Beschikbaarheid: kunnen we erop vertrouwen dat het systeem de
functionaliteit altijd uitvoert? En tot slot, veranderbaarheid: hoe gemakkelijk is
het om de systeemspecificatie te veranderen wanneer de eisen veranderen?

In dit proefschrift tonen we de haalbaarheid en het nut van declaratief pro-
grammeren voor informatiesystemen aan in het licht van deze uitdagingen.

Onze onderzoeksmethode is ontwerponderzoek. Deze iteratieve methode
heeft vier fasen: analyse, ontwerp, evaluatie en verspreiding. We analyseren
de uitdagingen van het ontwikkelen van informatiesystemen, ontwerpen een
nieuwe programmeertaal om deze uitdagingen aan te pakken, evalueren onze
nieuwe programmeertaal in de praktijk, en verspreiden onze kennis door het
publiceren van wetenschappelijke artikelen. Dit heeft geresulteerd in vier
nieuwe declaratieve talen: de Relaties taal, IceDust, IceDust2 en PixieDust.

Onze contributies kunnen worden samengevat door de nieuwe onderdelen
van deze talen. Taaleigen multipliciteiten, bidirectionele relaties en beknopte navi-
gatie verbeteren de valideerbaarheid en modificeerbaarheid van informatiesys-
temen ten opzichte van objectgeoriënteerde en relationele benaderingen. Af-
geleide attribuut waarden verbeteren de traceerbaarheid. Incrementele en uitein-
delijke berekeningen op basis van paden analyse en het omschakelen van bereken-
ingsstrategieën verbetert de modificeerbaarheid van informatiesystemen zon-
der in te boeten op prestaties en beschikbaarheid ten opzichte van object-
georiënteerde en relationele benaderingen. Compositie van berekeningsstrate-
gieën verbetert de valideerbaarheid, aanpasbaarheid en betrouwbaarheid ten
opzichte van reactieve programmeertechnieken. En ten slotte verbeteren af-

ix

geleide bidirectionele relaties de valideerbaarheid van informatiesystemen ten
opzichte van relationele benaderingen.

De resultaten van dit proefschrift kunnen in de praktijk worden toegepast.
We hebben IceDust2 toegepast op het e-learning informatiesysteem WebLab.
Dit heeft de valideerbaarheid, traceerbaarheid, betrouwbaarheid en modi-
ficeerbaarheid aanzienlijk verbeterd terwijl de prestaties en beschikbaarheid
behouden zijn gebleven. Bovendien suggereert het feit dat IceDust en Pix-
ieDust in verschillende domeinen gebruikt worden, verwerkingslogica en ge-
bruikersinterfaces respectievelijk, dat onze nieuwe taal onderdelen op meer
domeinen kunnen worden toegepast.

x

Summary

Information systems are systems for the collection, organization, storage, and
communication of information. Information systems aim to support opera-
tions, management and decision-making. In order to do this, these systems
filter and process data according to business logic to create new data. Typi-
cally these information systems contain large amounts of data and receive fre-
quent updates to this data. Over time requirements for information systems
change, from the decision making logic to the number of users interacting
with the system. As organizations evolve, so must their information systems.

Our reliance on information systems to make decisions and the ever chang-
ing requirements poses the following challenges for information system en-
gineering. Validatability: how easy is it for information system developers to
establish that a system ‘does the right thing’? Traceability: can the origin of
decisions made by the system be verified? Reliability: can we trust the sys-
tem to consistently make decisions and not lose our data? Performance: can
the system keep responding promptly to the load of its users? Availability:
can we trust that the system performs its functionality all of the time? And
finally, modifiability: how easy is it to change the system specification when
requirements change?

In this dissertation we show the feasibility and usefulness of declarative
programming for information systems in light of these challenges.

Our research method is design research. This iterative method repeats four
phases: analysis, design, evaluation, and diffusion. We analyze the challenges
of information system engineering, design a new programming language to
address these, evaluate our new programming language in practice, and diffuse
our knowledge through scholarly articles. This resulted in four new declara-
tive languages: the Relations language, IceDust, IceDust2, and PixieDust.

Our contributions can be summarized by the new features of these lan-
guages. Native multiplicities, bidirectional relations, and concise navigation im-
prove information system validatability and modifiability over object-oriented
and relational approaches. Derived attribute values improve traceability. Incre-
mental and eventual computing based on path analysis and calculation strategy
switching improve information system modifiability without sacrificing perfor-
mance and availability over object-oriented and relational approaches. Calcu-
lation strategy composition improves validatability, modifiability, and reliability
over reactive programming approaches. And finally, Bidirectional derived rela-
tions improve information system validatability over relational approaches.

The results of this dissertation can be applied in practice. We applied Ice-
Dust2 to the learning management information system WebLab. We found
that validatability, traceability, reliability, and modifiability were considerably
improved while retaining similar performance and availability. Moreover, the
fact that IceDust and PixieDust work in different domains, business logic and

xi

user interfaces respectively, suggests that our language features could be ap-
plied to more domains.

xii

Preface

When I started my PhD, I thought research was about adding knowledge
to the world. I wanted to explore and solve programming language issues
which fascinate me, kind of in the same way a Rubik’s cube fascinates me.
During my PhD, I quickly learned that research is about relevant knowledge,
and that this knowledge needs to be sold. Luckily, I turned out to be good at
communicating my research.

Dear reader, what you hold in your hands is a balance between that what
fascinates me, and that what can be pitched to the scientific community. I
hope that you enjoy it, and that you will be fascinated as well.

A C K N O W L E D G E M E N T S

It is the glory of God to conceal things, but the glory of kings is to search
things out.1 Rubik (maybe unintentionally) concealed many mathematical
properties in his cube, and people have come up with many algorithms,
invariants, and proofs for these properties. Likewise, God concealed many
mathematical properties in this universe, and I consider it an honor to figure
these out. In our scientific community it gives us glory (prestige) when we
figure things out, but I want to give glory to God for concealing these things
in the first place.

I would like to thank my promoter and adviser Eelco Visser. He gave me
the possibility to pursue a research direction which fascinates me. Moreover,
he tirelessly showed me how to write good scientific literature.

I would like to thank all my colleagues for all good conversations about
my research, their research, the process of research, and the emotions one has
to deal with during research. I want to thank a few colleagues in particular. I
would like to thank Guido Wachsmuth for getting me interested in compilers.
I would like to thank Danny Groenewegen for his help with targeting IceDust
to WebDSL, his help with setting up benchmarks for IceDust applications, and
his advice on the social aspects of the supervisor-student relation. I would like
to thank Gabriël Konat for keeping Spoofax running, especially for setting up
continuous integration for early feedback on regressions, which saved me a lot
of time. I would like to thank Hendrik van Antwerpen for being very helpful
with keeping the IceDust static analysis up to date while NaBL2 evolved,
the interesting discussions about incremental computing, and the discussions
about the social and political aspects of the scientific community. I would
like to thank Eduardo Souza for gradually improving the usability of the
IceDust editor by developing SDF3, and the many positive conversations. I
would like to thank Sebastian Erdweg for the discussions about incremental
computing in order to try to get to its essence. I would like to thank Robbert

1Proverbs 25:2, Bible

xiii

Krebbers for teaching me how to prove properties about my language in a
proof assistant. Finally, I would like to thank Elmer van Chastelet for his help
with the WebLab case study, and Nick ten Veen for his implementation of
PixieDust.

I would like to thank my brothers and sisters in church. I deeply value our
joint journey and our conversations about life, the universe, and everything.
Especially the elder people in our community, thank you for your wisdom
and kind words. Thank you for caring about me. Your advice helped me to
get through emotional hurdles that came as part of the PhD.

Also, I would like to thank my friends and family. Especially you helped
me to continue my research in the face of frustration and insecurity. I would
like to thank a few friends and my family in particular. Richard, thank you
for your kinds words and your always interesting industry view on program-
ming. Robin, thank you for our joint analysis of emotions and behavior, and
for all the Belgian beers we shared. Paul, thank you for your enthusiasm
about my research topic and your challenging questions. Gerben, thank you
for your enthusiasm and hours of discussion. Klaas, I always enjoy your joy,
and your perspectives on our society. Lianne, thank you for your listening
ear. Marijke, thank you for the small presents. Joel, thank you for being such
a joyful and sociable roommate. My brothers Joel and Theo, thank you for
all our conversations about computer science, and the countless hours spent
with video games. My sister Edith, thank you for being proud of me. And my
parents, thank you for the insightful conversations about life and supporting
me in the practical matters. Without you all, I would not have gotten a PhD.

Daco Harkes
May 14, 2018

Delft

xiv

1
Introduction

My thesis is that declarative specification of information system data models and
business logic is feasible and useful.

In this introductory chapter, we explain this thesis. We cover information
systems, and outline challenges in information system engineering. We de-
scribe the research context: declarative programming with domain-specific
languages and incremental computing. We summarize our contributions,
which show the feasibility and usefulness of declarative programming for in-
formation systems, and we finish with our research method, explaining why
our results can be trusted.

1.1 I N F O R M AT I O N S Y S T E M E N G I N E E R I N G

Information systems are systems for the collection, organization, storage, and
communication of information. Information systems aim to support opera-
tions, management and decision-making. In order to do this, these systems
filter and process data according to business logic to create new data: derived
data. Typically these information systems contain large amounts of data and
receive frequent updates to this data.

Information systems are sociotechnical in nature: they are comprised of
people, information and communications technology, organizational concepts
(structures, processes), and the interrelationships between them [Österle et al.,
2011]. As organizations evolve, so must their information systems. Thus, over
time, requirements for information systems change, from the decision making
logic to the number of users interacting with the system.

Our society’s reliance on information systems to make decisions and the
ever changing requirements poses several challenges for information system
engineering. The people and organizations involved in creating and using
information systems require a variety of properties of these systems. These
properties concern both the running system that users interact with, as well
as the specification that developers work on. Here we outline these concerns
and the challenges to attain them.

Validatability

The task of information system developers is to translate user requirements
to code. Bridging the gap between domain concepts and the encoding of
these concepts in a programming language is one of the core challenges of
software engineering [Visser, 2015]. We define the validatability of a program
as a measure of the size of this gap. If one can express intent with relatively
little encoding, it is straightforward to establish that a program ‘does the right

1

CREATE VIEW assignmentPassAll AS
SELECT assignmentId AS id, BIT_AND(pass) AS passAll
FROM answer GROUP BY assignmentId

UNION

SELECT id, TRUE AS passAll
FROM assignment WHERE NOT EXISTS(

SELECT NULL
FROM answer
WHERE answer.assignmentId = assignment.id

);

Figure 1.1 Bad validatability in SQL code due to a pattern for dealing with default
values in aggregations. The first three lines of code express the desired intent:
checking whether all answers to a question are correct. The remaining code deals
with the edge case: no answers yet to a question.

class Assignment {
def passAll(): Boolean = answers.forall(a => a.pass)

}

Figure 1.2 Better validatability in Scala code due to having a default value for forall.

thing’. If one needs to encode intent in patterns, then these patterns are an
obstacle to understanding of programs by human readers [Felleisen, 1990] and
make it harder to establish that a program does the right thing. Validatability
decreases with increasing encoding. Information system developers want to
assure the users that the system does the right thing, thus the information
system specification should have good validatability.

An example of bad validatability is the pattern in SQL for dealing with
default values for aggregations over empty lists (Figure 1.1). The source of
this pattern is the gap between the user domain, in which all assignments
should have a calculated passAll, and SQLs join and group by semantics,
which omits assignments when they do not have answers. The first three lines
of code in Figure 1.1 express the desired intent, and the rest has to deal with
the edge case. On the other hand, expressing the desired functionality in a
functional or object-oriented language does not have this issue (Figure 1.2).

Traceability

People make decisions based on information systems, or even let information
systems make decisions for them. Thus it is important that users have the
ability to verify the origin of decisions made by the system. This traceability
concerns both the business logic making decisions, as well as the data that is
used by this business logic. When details of specifications become scattered,
traceability tends to suffer [Walker and Viggers, 2004]. Only when users can
trust the decisions in the system, it is a useful tool in their organization.

An example of bad traceability is not being able to verify the origin of a
computed value in an object-oriented language. In object-oriented languages,
a field of an object might be assigned to from multiple locations in the code,

2

class Assignment {
private float grade;

public void someMethod(){
if(someCondition)

grade = someValue;
}

public void someOtherMethod(float parameter){
grade = parameter;

}
}

Figure 1.3 Bad traceability in Java code due to arbitrary state modifications. When
grade has a particular value, it is hard to verify how that value was computed. First,
grade can be assigned to from both methods. Second, an assignment might have
been executed or not based on someCondition, and finally, temporary state such
as method parameters might have contributed to the value.

and these locations might have been executed or not (Figure 1.3). Moreover,
temporary state might have contributed to the value (second method in Fig-
ure 1.3), making it even harder to reconstruct how a value was computed. On
the other hand, spreadsheet programs have good traceability, values are al-
ways computed by a single formula, and one can easily inspect this formula.
Likewise, many declarative languages have built-in support for traceability
[Jouault, 2005].

Reliability

Reliability concerns the risk of failure in information systems. An information
system should not lose or corrupt data, even in the case of power outage
or hardware failure [Hadzilacos, 1988]. Moreover, if an information system
makes decisions, these decisions should be consistent with the data [Bharati
and Chaudhury, 2004]. If the risk of failure is very small, users can trust the
information system, and it will be useful for them. Moreover, the developers
share this concern as they are responsible for the system. The challenge for
developers is to ensure that their code and the underlying technologies satisfy
these properties.

An example of bad reliability is manually trying to guarantee that user data
is preserved by arbitrary application code (Figure 1.4). A contract, such as
only allowing modification from user values from the user interface (by users),
cannot be enforced in a general purpose programming language. Thus, guar-
anteeing that user values are not corrupted by arbitrary code requires manual
code inspection. On the other hand, views in databases cannot corrupt the
data in other tables.

Performance

The amount of data in information systems and the amount of concurrent
users of these systems tends to grow over time. Moreover, the interaction
behavior of users might change over time. This raises performance concerns

Chapter 1. Introduction 3

class Person {
private String name;

public void setName(String n){
name = n;

}
}

class PersonUI {
private Person person;

private save(){
person.setName(userInterface.getName());

}
}

class RandomClass {
public randomMethod(Person p){

p.setName("Random Data");
}

}

Figure 1.4 It is hard to guarantee reliability in a general purpose language due to
not being able to enforce contracts. Java cannot enforce that Person.name is only
modified in the user interface and not in a randomMethod.

for information systems. If an information system is slow, its usefulness for
users diminishes. Thus it is important that it keeps performing as the amount
of data grows, the amount of users grows, and its workload changes. How-
ever, realizing a high performance implementation typically requires invasive
changes to a basic expression of intent. Avoiding errors in high performance
code is a daunting task for developers, especially if the information system
requirements change continuously.

An example of a bad performance solution is manually keeping caches up
to date for computed values (Figure 1.5). Developers have to make sure that
changes to all different pieces of data that influence a computed value update
the cache of that computed value. In Figure 1.5 this is both the relation be-
tween assignments and questions, and the progress on individual questions.
Moreover, this code is only correct if the bidirectional relation between as-
signments and questions is kept up to date on changes. On the other hand,
materialized relational views [Gupta and Mumick, 1995], and reactive pro-
gramming languages such as REScala [Salvaneschi et al., 2014] do not have
this issue. These technologies make cache updates error-free by construction.

Availability

Users expect information systems to be available and functioning at all times.
As people and organizations schedule their activities, they need to be able
to rely on the information system being available on the designated times.
The information should stay available, especially when many people use the
system at the same time, or when the system does internal tasks concurrently
to user activity. Only when information systems have high availability, people

4

public class Assignment {
private Double cachedAvgProgress;
public Double getAverageProgress() { return cachedAvgProgress; }
public Double calculateAverageProgress() {

Stream<Double> progresss =
questions.stream().map(q->q.getProgress()).filter(p -> p!=null);

OptionalDouble average = progresss.mapToDouble(p -> p).average();
return average.isPresent() ? average.getAsDouble() : null;

}
private Collection<Question> questions;
public Collection<Question> getQuestions(){ return questions; }
public void addQuestion(Question q) { q.setAssignment(this); }
public void removeQuestion(Question q) { q.setAssignment(null); }
protected void _addQ(Question q){

questions.add(q); updateAvgProgress();
}
protected void _remQ(Question q){

questions.remove(q); updateAvgProgress();
}
public void updateAvgProgress(){

cachedAvgProgress=calculateAverageProgress();
}

}
public class Question {

private Assignment assignment;
public Assignment getAssignment() { return assignment; }
public void setAssignment(Assignment a) {

if(assignment != null) { assignment._remQ(this); }
if(a != null) { a._addQ(this); }
assignment = a;

}
private Double progress;
public Double getProgress() { return progress; }
public void setProgress(Double p){

progress=p; assignment.updateAvgProgress();
}

}

Figure 1.5 Hard to guarantee error-free performance: is this code for caching
and cache invalidation of averageProgress correct? Developers have to make
sure that all changes that influence averageProgress also update its cache. This
includes both Assignment.questions and Question.progress. Moreover, this
code is only correct if Assignment.questions and Question.assignment are
kept consistent with each other.

and organizations can depend on them. As with realizing high performance
implementations, realizing high availability implementations is a daunting
task.

An example of where achieving high availability is hard is making Fig-
ure 1.5 more available by allowing it to be accessed and updated concurrently
by multiple threads. On the other hand, other technologies are designed with
concurrent interaction in mind, such as relational databases [Bernstein et al.,
1987].

Chapter 1. Introduction 5

Modifiability

Organizations change over time. So does their business logic, and the struc-
ture of their data. Software developers have dropped the traditional waterfall
development approach in favor of continuous delivery [Boehm, 1988; Humble
and Farley, 2010]. In order for developers to be able to change an information
system to accommodate new user requirements, the code should be easy to
modify [Oskarsson, 1982]. When information systems have good modifiabil-
ity, changing requirements can be implemented faster, and the information
system will be more useful for users.

An example of bad modifiability is boiler-plate code. The bidirectional
relation maintenance code in Figure 1.5 is repeated for every bidirectional re-
lation in object oriented languages. When such relations need to be changed,
developers have to do a lot of manual work. On the other hand, bidirectional
relations in relational databases are supported natively, so no boiler-plate code
is required there.

While these concerns are relatively easy to address in isolation, addressing
them all at the same time is non trivial. For example, performance and vali-
datability are at odds with each other, as making code more performant often
means obscuring its original intent in caching patterns. Our vision is to address
these concerns for developing information systems all at the same time, as it would
improve information system development and use tremendously.

1.2 R E S E A R C H C O N T E X T

Information systems can be built with a plethora of technologies, including
programming languages, libraries, frameworks, modeling tools, databases,
and combinations of these. It would be impossible to list all state-of-the-art
information system technologies in order to assess whether they address the
listed concerns. So instead, we examine combinations of concerns to narrow
down the list of viable technologies and define the scope of this dissertation.

First, let us examine the combination of performance and validatability.
Many information systems filter and process data to create new data: derived
data. Concurrent with this filtering and processing, users modify the original
data. For these situations it is beneficial to not recompute all derived data
from scratch after every small change, but to reuse previous results and only
compute the changes to the derived data: incremental computing. Often, this
results in orders of magnitude speedups. Programs can be made incremen-
tal manually, but this obfuscates the original intent of the business logic in
caching patterns (such as Figure 1.5). Instead, we look at technologies which
can make programs behave incrementally automatically. This limits the list
of viable technologies to automatic incrementalization such as in materialized
views, reactive programming, or incremental computing languages (ICLs).

Second, we examine the combination of reliability and modifiability. In or-
der for developers to guarantee certain properties that users rely on (such as
user data not being corrupted) developers need a tool to be able to give that
guarantee. General purpose languages can provide easy modifiability, but do

6

not provide a way to guarantee properties (Figure 1.4). On the other hand,
dependently typed languages [Xi and Pfenning, 1999] can encode some prop-
erties in which case a type checker can guarantee that these properties always
hold. However, modifying dependently typed programs is much harder be-
cause the property proof burden is on the programmer. Modifiability would
be much better if all programs written in a language would have the desired
property by construction. This means creating a language in which only a spe-
cific set of programs can be written, which all have the desired property. Such
a property is usually relevant for a specific domain, which makes the language
a domain-specific language (DSL) [Fowler, 2010]. And indeed, a recent Delphi
study1 with 143 information systems academics identified model-driven (or in
our case language-driven) generation of information system implementations
as one of the information system research challenges [Becker et al., 2015].

However, none of the existing incremental computing technologies admits
the type of calculations we want to express without boiler-plate code. More-
over, none of the existing information system DSLs supports incremental com-
puting. Thus, in this dissertation we explore creating incremental computing
DSLs for information systems. With these DSLs we try to address all the
raised concerns simultaneously. It might be possible to address the raised
concerns with other technologies, but in this dissertation we limit the scope to
incremental computing and domain-specific languages for information sys-
tems. As specifications in incremental computing DSLs only specify ‘what’
needs to be computed, and not ‘how’, we call these declarative. Our hypothesis
is that declarative specification of information system data models and business logic
is feasible and useful.

1.3 C O N T R I B U T I O N S

The main contributions in this dissertation are new (incremental computing)
DSLs for information systems: the Relations Language, IceDust, IceDust2,
and PixieDust. Or more precisely, the main contributions are the language
features of these DSLs. These language features improve either validatabil-
ity, traceability, reliability, performance, availability, or modifiability over the
state-of-the-art. For each of these language features we show their feasibility
and claim (if we can) their usefulness. Moreover, we provide proper evidence
for these claims. Our claims and corresponding evidence are summarized in
Table 1.1.

1.3.1 Native multiplicities and concise navigation of first-class n-ary bidirectional
relations

To specify an information system (or any other system) its data model and
business logic over this data model need to be specified. This raises the ques-
tion in what language these data models and business rules should be spec-

1The Delphi method is an iterative communication method relying on a panel of experts in
which the range of the answers decreases and the group can converge.

Chapter 1. Introduction 7

Claim Evidence Chapter
1 Native multiplicities are feasible Relations language formalization 2.4-2.6

Rel, Ice, and Pixie implementation 3.4, 4.6, GitHub
Multiplicity soundness mech. proof A.1-A.4,GitHub
Micro case studies 2.3

2 Native multiplicities are useful
for information systems Weblab case study (comparison) 6.5

3 Concise navigation for first-class Relations language formalization 2.4-2.6
n-ary relations is feasible Relations language implementation GitHub

4 Path-based incremental and IceDust and PixieDust formalization 3.3, 4.4, 5.5-5.6
eventual computing is feasible IceDust and PixieDust implementa. 3.4, GitHub

Incrementality pen and paper proof 4.4
Micro benchmarks 3.5, 5.7
Micro case studies 3.6, 5.7

5 Path-based eventual computing Weblab case study (comparison) 6.5
is useful for information systems Weblab application benchmarks 6.5

6 Path-based derived incremental IceDust2 formalization 4.3-4.4
bidirectional relations are feasible IceDust2 implementation 4.6, GitHub

Micro case studies 4.7
7 Strategy composition is feasible IceDust2 formalization 4.4-4.5

IceDust2 implementation 4.6, GitHub
Micro case studies 4.7

8 Strategy composition is useful
for information systems Weblab case study (comparison) 6.5

Table 1.1 The claims in this dissertation with their evidence

ified. Object-oriented programming languages support concise navigation of
relations represented by references. However, relations are not first-class cit-
izens and bidirectional navigation is not supported. The relational paradigm
provides first-class relations, but with bidirectional navigation through ver-
bose queries. Therefore, both object-oriented and relational code has encod-
ings and bad validatability, moreover the object-oriented code for bidirectional
relations also has bad modifiability.

In Chapter 2, we present a systematic analysis of approaches to modeling
and navigating relations. By unifying and generalizing the features of these
approaches, we developed the design of a data modeling language that fea-
tures first-class relations, n-ary relations, native multiplicities, bidirectional
relations and concise navigation. The data models expressed in this new data
modeling language have less encoding which improves their validatability.

These language features are summarized by claims 1 through 3 in Table 1.1.
Note that we only claim feasibility, and not usefulness, for concise navigation
of first-class n-ary relations. Because we have not used these first-class n-ary
relations in any real-life information system, we have not (yet) gathered any
evidence for their usefulness.

1.3.2 Path-based incremental and eventual computing

Business logic in information systems specifies derived values which are cal-
culated from base values. Derived can be expressed in object-oriented lan-
guages by means of getters calculating the derived value, and in relational
or logic databases by means of (materialized) views. However, switching to

8

a different calculation strategy (for example caching) in object-oriented pro-
gramming requires invasive code changes, and the databases limit expressive-
ness by disallowing recursive aggregation. Without enough expressiveness a
technology cannot be used to develop information systems, and invasive code
changes result in bad modifiability.

In Chapter 3, we present IceDust, a data modeling language for expressing
derived attribute values without committing to a calculation strategy. IceDust
provides three strategies for calculating derived values in persistent object
graphs: Calculate-on-Read, Calculate-on-Write, and Calculate-Eventually. We
have developed a path-based abstract interpretation that provides static de-
pendency analysis to generate code for these strategies. Benchmarks show
that different strategies perform better in different scenarios. In addition we
have conducted a case study that suggests that derived value calculations of
systems used in practice can be expressed in IceDust. Information systems ex-
pressed in IceDust can be performant without sacrificing modifiability. More-
over, the eventual computing strategy features good availability.

In Chapter 5, we present PixieDust, a declarative user-interface language
for browser-based applications. PixieDust uses the same static dependency
analysis to incrementally update a browser-DOM at runtime, without boil-
erplate code. We demonstrate that applications in PixieDust contain less
boilerplate code than state-of-the-art approaches, while achieving on-par per-
formance. Thus, user interfaces expressed in PixieDust can be performant
without sacrificing modifiability.

These language features are summarized by claims 4 and 5 in Table 1.1.
Note that we do not claim usefulness of incremental computing for informa-
tion systems. In our in-depth case study (Chapter 6) only eventual computing
could provide adequate availability. Moreover, we do not claim usefulness of
incremental computing for user-interfaces. We have not done any case study
(yet) supporting that claim.

1.3.3 Derived bidirectional relations and strategy composition

Derived values in information systems can be expressed with views in re-
lational databases, or with expressions in incremental or reactive program-
ming. However, relational views do not provide multiplicity bounds, and
incremental and reactive programming require significant boilerplate code in
order to encode bidirectional derived values. This means bad validatability
of relational views and bad modifiability and validatability for reactive pro-
gramming. Moreover, the composition of various strategies for calculating
derived values is either disallowed, or not checked for producing derived
values which will be consistent with the derived values they depend upon.
Non-checked composition of strategies means bad reliability as developers
have to manually ensure correct composition.

In Chapter 4, we present IceDust2, an extension of the declarative data
modeling language IceDust with derived bidirectional relations with multi-
plicity bounds and support for statically checked composition of calculation

Chapter 1. Introduction 9

strategies. Derived bidirectional relations, multiplicity bounds, and calcula-
tion strategies all influence runtime behavior of changes to data, leading to
hundreds of possible behavior definitions. IceDust2 uses a product-line based
code generator to avoid explicitly defining all possible combinations, making
it easier to reason about correctness. The type system allows only sound com-
position of strategies and guarantees multiplicity bounds. Finally, our case
studies validate the usability of IceDust2 in applications. Information systems
written in IceDust2 have good modifiability, validatability, and reliability.

These features are summarized by claims 6 through 8 in Table 1.1. Note that
we do not claim usefulness for derived incremental bidirectional relations. In
our in-depth case study (Chapter 6) path-based derived bidirectional relations
did not perform adequately, we had to use the relational engine from the
underlying database to get proper performance.

In conclusion, these language features improve either validatability, relia-
bility, performance, availability, or modifiability over the state-of-the-art. All
the DSLs have good traceability as well by means of derived value attributes
(explained in Chapter 2), but this is not a contribution in itself as previous
work already featured derived value attributes. The DSLs, and the use of
these DSLs, presented in this dissertation support our hypothesis that declar-
ative specification of information system data models and business logic is
feasible and useful.

1.4 R E S E A R C H M E T H O D O L O G Y

[Shaw, 2003] identified five types of software engineering research questions
based on the submissions to previous year International Conference on Soft-
ware Engineering (ICSE). The type of question we answer in this dissertation
is a “method or means of development”: what is a better way to develop in-
formation systems? Answering that question means designing a new method
or means of development. In 2011, Österle et al. published a memorandum
on design-oriented research in the European Journal of Information Systems
[Österle et al., 2011]. We follow the iterative research process described in
that memorandum. The first four core chapters of this dissertation are all
iterations of that research process, while the fifth is a partial iteration.

The iterative process consists of four phases: analysis, design, evaluation,
and diffusion. In the analysis phase we identify and describe information
system development problems. We survey and analyze state-of-the-art appro-
aches and outline possible improvements. All core chapters state the problems
with state-of-the-art approaches being tackled in that chapter.

In the design phase we design new DSLs (or DSL features). We justify our
design choices by design-space analyses and contrast our design to related
work. All core chapters justify our design choices and contrast our work with
existing solutions.

In the evaluation phase we evaluate our DSL design by applying it in prac-
tice and subjecting it to scrutiny. The practical evaluation consists of imple-
menting our designed DSLs, and building information systems with these

10

Evidence Methodology
Language formalizations I-MSOS, inference rules, grammars
Language implementations Continous integration & many tests
Mechanized proofs Coq
Informal arguments Standard logical constructs
Micro benchmarks Benchmark maximizing internal validity
Application benchmarks Benchmark maximizing external validity
Micro case study (examples) Case study maximizing internal validity
Case study (implementation comparison) Case study maximizing external validity

Table 1.2 The pieces of evidence in this dissertation with their methodology

DSLs (case studies). The DSLs are subjected to scrutiny by presenting them
in a comprehensible manner (grammar, static semantics, dynamic semantics)
and supplying them to peer review. This step pushes us to get to the essence
of our DSLs, and often leads to removing accidental complexity from our lan-
guage design. All core chapters contain a comprehensible presentation of our
DSLs and case studies detailing their use in practice.

In the diffusion phase we publish our findings at scientific conferences,
apply our research in real-life applications, and let others build new DSLs on
top of our DSLs. All core chapters are peer-reviewed in leading programming
language conferences. Chapter 6 details a real-life application, and Chapter 5
describes a DSL built on top of the DSLs in the preceding chapters.

1.4.1 Individual artifact methodologies

In this dissertation we introduce new notations (DSLs), new tools (DSL imple-
mentations), and some new techniques (which are embodied by these DSLs)
[Shaw, 2003]. To show the feasibility and usefulness of these, we produced a
variety of research artifacts (the evidence in Table 1.1). Each of these artifacts
was produced by adhering to a methodology specific to that type of artifact
(Table 1.2).

Language formalizations

The de facto standard to communicate a new programming language or DSL
to the scientific community is describing its grammar, static semantics (op-
tionally), and dynamic semantics. Dynamic semantics in this dissertation are
formalized in the I-MSOS style [Mosses and New, 2009]. Similarly, static se-
mantics are formalized using inference rules [Pierce, 2002]. Grammars are
formalized in production rules. Using these familiar notations, our languages
are properly understood and reviewed by peers.

Language implementations

To ensure our language implementations are correct we employ two tech-
niques. First, we write a rigorous test suite for our languages. We write
unit tests for syntax, static semantics, and dynamic semantics covering all
language features, and integration test which include full programs. Second,
we express our languages in DSLs closely resembling our language formal-
izations when possible. For this we use Spoofax [Kats and Visser, 2010], and

Chapter 1. Introduction 11

its DSLs for grammars [Visser, 1997; Vollebregt et al., 2012], static semantics
[Konat et al., 2012; van Antwerpen et al., 2016], transformations [Visser, 2002,
2003], and tests [Kats et al., 2011]. To ensure that our language implementa-
tions stay correct, we use continuous integration to rebuild and run all tests
after every commit to either our language or Spoofax implementation.

Proofs

The claimed properties of our languages are accompanied by informal argu-
ments or proofs. These properties are formalized in lemmas about the formal
semantics. The informal arguments are described in plain English, but one
proof is mechanized in Coq [Barras et al., 1997]. The informal arguments
have all been subjected to peer review.

Benchmarks

Benchmarks in our research serve two goals. They illustrate that our tech-
niques work at all, and show that our techniques are useful in real life. To
serve both goals we use two types of benchmarks as suggested by Vitek et
al. [Vitek and Kalibera, 2012]. First, we use micro-benchmarks to maximize
internal validity. Micro-benchmarks are effective at showing the effect of tech-
niques [Siegmund et al., 2015]. Second, we use application benchmarks to
maximize external validity. Application benchmarks are effective at establish-
ing that a technique works in a real-life scenario.

We avoid the deadly sins mentioned by Vitek et al. [Vitek and Kalibera,
2012]. Hardware and software assumptions are made explicit to prevent in-
nocuous aspects of experiments introducing a measurement bias. Our data is
open where possible such that experiments can be repeated. We report uncer-
tainty to ensure we do not report noise as improvement. We avoid meaning-
less measurements by changing various parameters and restarting the whole
technology stack in micro-benchmarks. We report baseline performance for
our benchmarks (either from manual implementations or from competitor
languages). Finally, we report on a variety of workloads [Boral and DeWitt,
1984] for micro-benchmarks, and base our workloads for application bench-
marks on real-life use of information systems.

Case Studies

Case studies in our research serve the same goals as benchmarks: illustrate
feasibility and usefulness. Illustrating feasibility of techniques is shown by
how techniques work on examples, while usefulness is shown by comparing
implementations of systems in actual use [Shaw, 2003]. Small examples, based
on larger systems, maximize internal validity. With these small examples, it
is clear that improvements on information systems can be attributed to a new
DSL. The large case studies maximize external validity by re-implementing a
complete information system in a new DSL. These large case studies estab-
lish that our DSLs are useful for implementing real-life information systems.
All case studies were performed within our university in collaboration with
a group of scientific programmers which build information systems for inter-

12

nal customers (within the university) or external scientific organizations. All
case studies were drawn from the real-life information systems maintained by
these scientific programmers.

1.5 O R I G I N O F C H A P T E R S

The core chapters (Chapter 2-6) in this dissertation are slight adaptations of
peer-reviewed papers at programming language and software engineering
conferences. Since these papers were published independently, they can also
be read independently of each other. Since all papers have their own, indi-
vidual contributions, there is some redundancy in the background material,
motivation, and examples. In addition, some chapters end with a postscript
section presenting our updated view on the chapter since its publication.

• Chapter 2 is an updated version of the SLE 2014 paper Unifying and
generalizing relations in role-based data modeling and navigation [Harkes and
Visser, 2014].

• Chapter 3 is an updated version of the ECOOP 2016 paper Icedust: In-
cremental and Eventual Computation of Derived Values in Persistent Object
Graphs [Harkes et al., 2016].

• Chapter 4 is an updated version of the ECOOP 2017 paper IceDust 2:
Derived Bidirectional Relations and Calculation Strategy Composition [Harkes
and Visser, 2017].

• Chapter 5 is an updated version of the WPDAI @ WWW 2018 paper
PixieDust: Declarative Incremental User Interface Rendering through Static
Dependency Tracking [ten Veen et al., 2018].

• Chapter 6 is an updated version of the SLE 2018 paper Migrating Business
Logic to an Incremental Computing DSL: A Case Study [Harkes et al., 2018].

Chapter 1. Introduction 13

14

2
Relations Language
Unifying and generalizing relations in role-based data modeling and navigation 1

Object-oriented programming languages support concise navigation of rela-
tions represented by references. However, relations are not first-class citizens
and bidirectional navigation is not supported. The relational paradigm pro-
vides first-class relations, but with bidirectional navigation through verbose
queries. We present a systematic analysis of approaches to modeling and
navigating relations. By unifying and generalizing the features of these ap-
proaches, we developed the design of a data modeling language that features
first-class relations, n-ary relations, native multiplicities, bidirectional rela-
tions and concise navigation.

2.1 I N T R O D U C T I O N

Object-oriented programming languages model data with object graphs. Nav-
igation through object graphs is simple; following references leads to related
objects. But references in object graphs are one-directional and cannot be
navigated backwards. Bidirectional navigation can be obtained by storing
references on both sides of relations between objects. But keeping such re-
dundant references consistent requires bookkeeping code. By contrast, rela-
tional databases support bidirectional navigation. Foreign keys can be used
in queries to navigate both ways. There is no need for redundant references.
Queries are however not as concise as navigation through references.

Proposals for object-oriented languages with first-class relations provide
bidirectional navigation [Balzer et al., 2007]. These languages remove the need
for manually keeping references consistent but navigation is done through
querying, which is still verbose. There are modeling techniques that are yet
different from object-oriented and relational modeling: Object-Role modeling
[Halpin, 2006], Entity-Relationship modeling [Chen, 1976], UML [Jacobson
et al., 1999] and undirected graphs.

In this chapter, we present a systematic analysis of the design space of
relations in data modeling and present a new data modeling language that
unifies and generalizes relations. In particular, our contributions are:

1This chapter has appeared as Harkes, D. C. and Visser, E. (2014). Unifying and generalizing
relations in role- based data modeling and navigation. In Combemale, B., Pearce, D. J., Barais,
O., and Vinju, J. J., editors, Software Language Engineering - 7th International Conference, SLE 2014,
Västeras, Sweden, September 15-16, 2014. Proceedings, volume 8706 of Lecture Notes in Computer
Science, pages 241–260. Springer

15

class Student { }

class Course {
@any(ArrayList.class) Student student;

void addStudent(@any(ArrayList.class) Student s){
this.student += s;

}
}

Figure 2.1 Multiplicity annotations in Java

• We extrapolate Steimann’s approach [Steimann, 2013] to model multi-
plicities using annotations in Java to native multiplicities that are inte-
grated into the type system (Section 2.2.2).

• A systematic analysis of approaches to modeling relations (Section 2.3).

• A new relational data modeling language featuring native multiplicities,
bidirectional navigation, n-ary relations, first-class relations, and concise
navigation expressions based on the analysis (Section 2.4).

• A formal definition of the type system (Section 2.5) and operational se-
mantics (Section 2.6) of this language.

2.2 N AT I V E M U LT I P L I C I T I E S

The first thing we need to fix to get relations right is the treatment of their
cardinality or multiplicity. Encoding of to-many relations as associations to
collections results in a discontinuity in programming style [Steimann, 2013]:

• Navigating one-to-one and many-to-one relations produces singleton val-
ues, while navigating through one-to-many and many-to-many relations
produces collections of values. Thus, the caller has to unwrap the result
before using it, for example by using an iterator.

• The caller has to deal with different sub-type substitution conditions.
Suppose Student extends Person. Assigning an Student to a Person
is fine (to-one), but trying to assign Set<Student> to Set<Person> will
trigger a type error (to-many).

• The call semantics is call-by-value for to-one and call-by-reference for
to-many. Collection objects are passed by reference, so that they can
be modified the callee. Call-by-value semantics for collections requires
immutable collections.

2.2.1 Multiplicity Annotations

To address these issues, Steimann proposes an extension of regular object-
oriented programming with multiplicities [Steimann, 2013]. He presents an

16

class Student {
String! name;
Course* courses;
int! numCourses(){ return count(this.courses); }

}
class Course {

Student* students;
void addStudent(Student+ s){ this.students += s; }
int? avgNumCourses(){ return avg(this.students.numCourses()); }

}

Figure 2.2 Native multiplicities in Java

extension of Java with multiplicity. Expressions of a singleton value type
can return an arbitrary number of objects of this type. Figure 2.1 illustrates
the approach with a small example in which a Course has an association to
Student. Through the @any annotation the association is declared to be to-
many instead of using a collection type.

2.2.2 Native Multiplicities

We have extrapolated Steimann’s annotations based approach and integrated
multiplicities into the type system to arrive at native multiplicities. Type ex-
pressions use one of the following four multiplicity operators (similar to reg-
ular expressions) to denote the possible range of values:

• t? is [0, 1] an optional value of type t
• t! is [1, 1] a required value of type t
• t* is [0, n) zero or more values of type t
• t+ is [1, n) one or more values of type t

The ! can be omitted as [1, 1] is the default multiplicity.
As a sketch, Figure 2.2 illustrates native multiplicities in an extension of

Java. We have not formalized an extension of Java, but rather integrated na-
tive multiplicities in our relational data modeling language. In Section 2.5 we
formalize a type system for that language including multiplicities. The type
system ensures that the actual number of values at run-time is always inside
the specified range. For example, assigning an optional string (a value of
type String?) to a student.name will trigger a type error: multiplicity error:
[1, 1] expected, [0, 1] given. Our language also supports expected multiplicities
for function arguments. The built-in function count handles any multiplicity
and any type and it returns exactly one integer with the number of values
passed. The built-in function avg also handles [0, n) values and the argument
type must be numeric. The return multiplicity of avg depends on its input
multiplicity. If a programmer supplies [0, n) as input the return multiplicity
will be [0, 1]. The average of no values does not exist, so no value will be
returned in that case. If the programmer supplies [1, n) as input the return
multiplicity is [1, 1]. With at least one value there is always an average com-
putable. We use this model of multiplicities, reasoning over ranges, in the
type system of our language.

Chapter 2. Relations Language 17

2.3 D E S I G N S PA C E F O R R O L E - B A S E D R E L AT I O N S

There are several proposals in the literature for extending data modeling to
better support data modeling with relations. This section presents a system-
atic analysis of the design space of relations in data modeling taking in into
account these proposals. Figures 2.3 and 2.4 summarize the complete design
space in tabular form emphasizing its regularities. From this analysis a new
data modeling language emerges which unifies and generalizes the various
approaches to modeling relations.

In all our examples we assume the language to have native multiplicities in-
stead of using collections that would be needed in a plain OO approach. The
running example data model defines Students who are enrolled in Courses,
sometimes via a first-class Enrollment relation. For the sake of the example,
students can be enrolled in zero or more courses (* multiplicity), and courses
should have at least one student (+ multiplicity). In the example expressions
we use Student ‘bob’ and Course ‘math’. For each point in the design space
we give a type graph diagram describing the data model, a textual specifi-
cation of the data model, and expressions for querying the model. For the
expressions we use => to express the result of evaluation.

2.3.1 Overview

Before discussing each point in the design space (Figures 2.3 and 2.4) indi-
vidually, we first introduce the categories represented by the columns and
rows.

Columns: Four Modeling Paradigms

The four columns in the design space represent four modeling paradigms.

Object-Oriented Relations between objects are defined through reference
valued attributes, which can be navigated in one direction only. The name
of the relation is the name of the attribute in the source class. The relation is
unknown to the target class. A relation can also be modeled by, redundantly,
maintaining a reference attribute on the other side of the relation, as well,
allowing bidirectional navigation. However, this requires code for keeping the
two sides of the relation consistent. We do not cover models with redundant
information in our design-space analysis, as this is an undesirable property.

Relational In a relational database schema references are expressed as for-
eign keys; an identifier corresponds to a memory address and a foreign key to
a reference into memory. An important difference is that these references can
be navigated in two directions through queries in a query language (SQL).
ER and UML diagrams are also located in this column, but they only provide
schema definitions, not queries. Because queries are verbose we introduce our
own notation for forward and backward navigation through references. For
forward navigation we use the the normal field access notation. For backward
navigation from an object o we need to find all the objects of type T that re-

18

fer to o through references r, which is expressed by o<-(T.r). For example,
to find the students enrolled in a course c we use the navigation expression
c<-(Student.courses).

Object-Role Modeling A distinguishing feature of ORM [Halpin, 2006] is that
associations between objects have a different name on both sides. This concep-
tually solves the problem of not being able to refer to a reference backwards.
Similarly, inverse properties in WebDSL [Visser, 2007] and bidirectional bind-
ings in JavaFX [url, 2019] tie two fields in different classes together as inverses.

Graph databases In contrast to the directed edges in the previous three
paradigms, graph databases feature undirected edges. In this model the edge
names are defined in both source and target namespaces. As with the ORM
paradigm there is always a name available in the namespace of participating
objects, but in this case this name is identical for both sides. There is one
disadvantage of this model: modeling asymmetric same type relations is non-
trivial. Consider a TreeNode with a parent and children. If a node p has a
parent edge to another node q, then q also has a parent edge to p. This can be
solved through indirection (J and K), but that is not particularly elegant.

Rows: Three Relation Models

The three rows in the design space correspond to three ways of modeling a
relation.

Edge The simplest way of representing a relation is through an edge between
two nodes (either directed or undirected). This is a concise way of specifying
a relation but it has the disadvantage that the relation is not a first-class citizen
(see below). Also it is not possible to declare ternary, or higher arity, relations
with edges.

Tuple (Ordered Roles) By lifting relations to objects they become first-class
citizens, i.e. relations can have attributes, and relations can be the subject in
other relations. A relation object modeled as a tuple has ordered roles. The
absence of role names requires the order (or position) of the roles to be used
for navigation. For binary relations this entails four predefined navigation
operators (see E). But for higher arity relations 2n operators are required,
which does not scale.

Object (Named Roles) Giving the roles in a relation names makes navigation
understandable and makes modeling n-ary relations feasible.

2.3.2 Detailed Description of Points in Design Space

We discuss each of the points A to K in the design space (Figures 2.3 and 2.4).

Object-Oriented (A, B and C) There are multiple patterns for modeling re-
lations in objected-oriented languages [Noble, 1997]. As mentioned before,
we replace collections by multiplicities and do not consider patterns with re-
dundant references for bidirectional navigation. Three basic patterns remain:
reference (A), relation tuple (B), and relation class (C), which we assume to

Chapter 2. Relations Language 19

Student Coursecourses

Student Course

Student Course

student course

(A) Object-Oriented Reference

class Student { }
class Course { }
class Enrollment extends
 Pair<Student, Course> { }

b_takes_m.first => bob
b_takes_m.second => math

(C) Object-Oriented Class

first (1) second (2)

(B) Object-Oriented Tuple

class Student { }
class Course { }

class Enrollment {
 Student student
 Course course
}

b_takes_m.student => bob
b_takes_m.course => math

class Student {
 Course* courses;
}
class Course { }

bob.courses => math

(D) Backwards Reference Navigation

entity Student {
 Course* courses +
}
entity Course { }

bob.courses => math
math<-(Student.courses) => bob

entity Student { }
entity Course { }
relation Enrollment <*Student, +Course>

bob.Enrollment => math
bob:Enrollment => b_takes_m
math:.Enrollment => bob
math::Enrollment => b_takes_m
b_takes_m.from => bob
b_takes_m.to => math

entity Student { }
entity Course { }

relation Enrollment {
 Student student *
 Course course +
}

bob<-(Enrollment.student).course => math
bob<-(Enrollment.student) => b_takes_m
math<-(Enrollment.course).student => bob
math<-(Enrollment.course) => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

(E) Relations as Tuples [RelJ]

(F) Relation Objects [Rumer, RelJ e.]

Student Coursecourses

Student Course

from (1) to (2)

lift relation
to object

give roles
names

Student Course

student course

Object-Oriented Relational / SQL, ER, UML

inverse
reference

lookup

Enrollment Enrollment

Enrollment Enrollment

Ed
ge

Tu
pl

e
(R

ol
es

 o
rd

er
ed

)
O

bj
ec

t (
Ro

le
s

na
m

ed
)

Edge name defined in Source Edge name defined in Source + Inverse lookup

Figure 2.3 Design space of relations in data modeling and navigation (part 1)

20

Student Courseenrollments

Student Course

Enrollment

Student Course

Enrollment

student course

Student Course
courses

Enrollment

student course

(I) Undirected Graph

(J) Intermediary Nodes

from (1) to (2)

(K) Undirected indirect graph

entity Student {
 Course* enrollments +
}
entity Course { }

bob.enrollments => math
math.enrollments => bob

entity Student { }
entity Course { }

relation Enrollment {
 Student student *
 Course course +
}

bob.student.course => math
bob.student => b_takes_m
math.course.student => bob
math.course => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

entity Student {
 Course* courses <- + students
}
entity Course { }

bob.courses => math
math.students => bob

(G) Inverse Properties [WebDSL]

It doesn’t make sense to define inverse reference
names without role names

students

enrollments enrollments

entity Student { }
entity Course { }

relation Enrollment {
 Student student <- * enrollments
 Course course <- + enrollments

 student.courses <-> course.students
}

bob.courses => math
bob.enrollments => b_takes_m
math.students => bob
math.enrollments => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

courses

students

(H) Relations with Concise Navigation

First-class

Bidirectional

N-ary

entity Student { }
entity Course { }
relation Enrollment <*Student, +Course>

bob.Enrollment => math
bob:Enrollment => b_takes_m
math:.Enrollment => bob
math::Enrollment => b_takes_m
b_takes_m.from => bob
b_takes_m.to => math

Object Role Modeling Graph Databases

inverse
reference

name

automatic
inverse
name

Edge defined in Source and Target w. different names Edge defined in Source and Target with same name

Student Course

Figure 2.4 Design space of relations in data modeling and navigation (part 2)

Chapter 2. Relations Language 21

class Student { }
class Course { }
relationship Enrollment (Student, Course) { int grade; }

bob.Enrollment // bob’s courses
bob:Enrollment // Enrollment-type relation objects
bob:Enrollment.grade
b_takes_m.from // bob
b_takes_m.to // math

Figure 2.5 First-class citizen tuple based relations in RelJ [Bierman and Wren,
2005].

class Student { }
class Course { }
relationship Enrollment participants (Student student, Course course){

int grade;
}
Enrollment.select(s_c: s_c.course == math).student;

Figure 2.6 First-class relations with named roles in Rumer [Balzer, 2011; Balzer
et al., 2007].

be familiar to the reader. It is noteworthy that a language extension is not
required for the representation of first-class relations. The term first-class is
sometimes used for having a dedicated language construct, but a dedicated
language construct is not required for adding attributes to relations or letting
relations participate in other relations. First-class relations based on tuples (B)
have been implemented as a Java library [Nelson et al., 2008].

Backwards reference navigation (D) If we extend an object-oriented language
with facilities for backwards reference lookup (o<-(T.r)) we can use a single
reference for bidirectional navigation. Note that in this case the object graph
is identical to the single reference pattern (A).

Relation as Tuples (E) The RelJ Java extension lifts relations to tuple objects
[Bierman and Wren, 2005]. In RelJ different operators are used to disam-
biguate between different navigation operations (Figure 2.5). RelJ provides no
facilities for bidirectional navigation. However, that is not a conceptual limita-
tion. Adding two operators (:. and ::) would allow backward navigation, as
suggested in (E). While this is theoretically extensible to relations with more
than two participants, it requires adding new operators for each participant.

Relation Objects (F) Naming roles allows usable extension to n-ary rela-
tions. This is the model used by Rumer [Balzer, 2011; Balzer et al., 2007]
as illustrated in Figure 2.6. While Rumer’s implementation does not sup-
port n-ary relations, it provides the ingredients needed for n-ary relations:
role names and first-class citizenship. A proposed extension for RelJ [Wren,
2007] adds names to roles, as illustrated in Figure 2.7, and is essentially
equivalent to Rumer’s syntax. As an alternative query syntax, we propose
math<-(Enrollment.course).student, which is closer to the usual naviga-
tion syntax: from an object (math) find all relations with that object in one of its

22

class Student { }
class Course { }
relationship Enrollment

extends Relation (Student student, Course course, Student tutor){
int grade;

}
Enrollment[course == math].student; // math students

Figure 2.7 Ternary relation extension proposal for RelJ [Wren, 2007]

entity Student { courses : Set<Course> }
entity Course { students : Set<Student> (inverse=Student.courses) }
math.students // math students
bob.courses // bobs courses

Figure 2.8 Inverse properties in WebDSL

roles (Enrollment.course), and produce objects in the other role (student).
All these notations are rather verbose, even if more concise than full blown
SQL queries. We would prefer a more concise notation for navigating n-ary
relations.

Inverse Properties (G) WebDSL [Visser, 2007] supports bidirectional naviga-
tion without a verbose syntax for inverse lookups by means of inverse properties
[Hemel et al., 2011] as illustrated in Figure 2.8. Explicit names on both sides of
an association simplifies navigation to just following named references. How-
ever, these names have to be defined in both the source and target class. In
(G) we have normalized this to a single property definition with two names;
the second name is used for the backwards reference from target to source.

Concise Relations (H) Combining the advantages of (F) and (G), we arrive at
our proposal for a unified and generalized approach to modeling relations
(H). Relations are first-class citizens: (1) relations can have attributes and
(2) relations can be the subject in other relations. In addition, relations can
have any number of roles (n-ary relations). By explicitly providing a name
for the navigation between each pair of participants in the relation we get
concise navigation expressions: (1) from relation to participant and back (b_-
takes_m.student and bob.enrollments), and (2) from participant to other
participant (bob.courses) and back (math.students). Instead of defining
these names in the source and target classes, as in (G), all names are intro-
duced in the relation. The declaration of a role T r <- m i introduces a
role r of type T with inverse i with multiplicity m. This provides naviga-
tion from relation to participant through r and navigation from participant
to relation through i. A declaration r1.n1 <-> r2.n2 introduces names for
navigation between participants: r1.n1 leads to r2 and r2.n2 leads to r1. In
contrast to (G), these declarations do not introduce attributes in the partic-
ipant classes, but rather shortcuts. For example, bob.courses is a shortcut
for bob.enrollments.course. This approach naturally extends to n-ary rela-
tions, as illustrated in Figure 2.9.

Chapter 2. Relations Language 23

entity Student { }
entity Course { }
relation Enrollment {

Student student <- * enrollments
Course course <- + enrollments
Student tutor <- * tutoring

student.courses <-> course.students
student.tutors <-> tutor.students
course.tutors <-> tutor.courses

}

Figure 2.9 Ternary relation with concise navigation (H) (our design)

Undirected Graphs (I, J, K) Graph databases also feature three relation pat-
terns. The simple edge (I), adding an intermediary node without role names
(J), and an intermediary node with role names (K). Since without edge names,
edge directionality does not matter (J) is equivalent to (E). So we will only
cover (I) and (K).

The simple edge (I) cannot be used to model asymmetric same type rela-
tions. Asymmetric relations of the different types can be disambiguated by the
type one starts navigating from, but if both participants have the same type
their role is ambiguous. Disambiguation can be done through indirection (I
or K). With indirection (K) navigation from participant to participant is nav-
igating two edges. With undirected edges role names cannot be reused with
different relations concerning the same entity. Consider adding another rela-
tion where Course also participates as course. math.course now becomes
ambiguous. The language could then be extended with the type of the node
navigating to, but this is equivalent to the backwards reference navigation:
naming the edge and the type on the other side. So that would bring us back
at (F).

It seems there is a fundamental trade-off between undirected and directed
graphs when considering reference names. The directed graph (column two)
requires an extra identifier (the target type) to navigate edges backwards. To
get rid of this extra identifier we can automatically define the edge name
on both sides. This is gets us to the undirected graph (column four). In
undirected graphs we have ambiguities. Adding an extra identifier (the target
type) to disambiguate brings us back at the directed graphs.

2.4 A R E L AT I O N A L D ATA M O D E L I N G L A N G U A G E

We have designed a language for data modeling featuring native multiplici-
ties, bidirectional navigation, n-ary relations, first-class relations, and concise
navigation expressions based on point (H) in the design space. In this section
we discuss two extensions of the basic idea of (H) and the grammar of the
language. In the next sections we give a formal definition of the type system
and operational semantics.

24

relation Enrollment { Student* Course+ }

expands to (lower case participant and relation type, add s for * and +)
relation Enrollment {

Student student <- * enrollments
Course course <- + enrollments

}

expands to (use role name, add s for * and +)
relation Enrollment {

Student student <- * enrollments
Course course <- + enrollments
student.courses <-> course.students

}

Figure 2.10 Expansion of concise relation definition

entity Student {
Int? avgGrade = avg(this.enrollments.grade)

}

Figure 2.11 Relations language with derivation

Concise Definition of Relations While navigation according to (H) is very con-
cise, the definition of a relation is somewhat verbose due to the introduction
of names for each of the arrows in the diagram. In many cases we can derive
these names from the types of the roles. Figure 2.10 illustrates how a defini-
tion with implicit names is expanded to a definition with explicit names. This
automatic expansion can of course lead to name collisions, for example if the
participant classes have an attribute with a name introduced by a relation. In
this case the programmer has to (partially) specify names explicitly.

Derived Attributes To express business logic in data models, we extend en-
tities and relations with derived attributes. The value of a derived attribute is
described in terms of the values of other attributes and relations as illustrated
in Figure 2.11. Thus, if one of the underlying values changes, the derived
attribute is updated.

Grammar The grammar of the relations language is given in Figure 2.12.
a, i, r and t are respectively attribute, inverse, role and entity-type names.
The roles, r, are the solid arrows in the design space diagram and the invers-
es/shortcuts, i, are the dashed and dotted arrows. a0, i0, r0, r00, and t0 refer
to these names. The lookup expression (t [a == e]) is only intended to
look up objects of a certain type with a certain attribute value in the heap. It
is not our intention to provide a full-fledged query language; our focus is on
navigation expressions.

Prototype We have implemented this language on the language designers
workbench Spoofax [Kats and Visser, 2010]. The prototype is publicly avail-
able.2 The type system and semantics described in the next sections matches

2https://github.com/metaborg/relations tag v0.2.0

Chapter 2. Relations Language 25

https://github.com/metaborg/relations

Program ::= model Entity * execute e
Entity ::= entity t { Attribute * }

| relation t { Attribute * Role * Shortcut * }
Attribute ::= p m a

| p m a = e

Role ::= t0 r <- m i

Shortcut ::= r0 . i <-> r00 . i
p 2 PrimitiveType ::= Boolean | Int | String

m 2 Multiplicity ::= ? | ! | * | +

e 2 Expr ::= f (e) | e1 � e2 | ! e | e1 ? e2 : e3

| e . a0 | e . i0 | e . r0

| true | false | literal Int | literalString
| this | t [a == e]

f 2 AggrOp ::= min | max | avg | sum | concat | count | conj | disj

� 2 BinOp ::= + | - | * | / | % | && | || | > | >= | < | <= | == | =! | <+ | ++

Figure 2.12 The grammar of the relations language

P 2 Program : EntityMap⇥ Expr
E 2 EntityMap : EntityName! AttributeMap⇥ InverseMap⇥ RoleMap

A 2 AttributeMap : AttrName! PrimitiveType⇥Multiplicity⇥ Expr
I 2 InverseMap : InverseName! EntityName⇥ RoleName⇥ RoleName
R 2 RoleMap : RoleName! EntityName⇥Multiplicity

Figure 2.13 Meta variables used in static and dynamic semantic rules

those of the prototype.

2.5 T Y P E S Y S T E M

Our language features static typing. Everything in the language has both a
type and a multiplicity. These are defined orthogonally.

2.5.1 Meta variables

In the the static and dynamic semantic rules we use meta variables for looking
up definitions on usage sites (Figure 2.13).

A program P is a tuple, (E , e), where E is a map from entity (and relation)
names to entity definitions and e is the main expression.

Entity definitions are triples (A, I ,R), where A is a map from attribute
names to attribute definitions, I is a map of inverse names to their origin and
R is a map from role names to role definitions. Both entities and relations
define entities. We refer to an entity t’s attribute, inverse and role map as At,
It and Rt respectively.

Attribute definitions are triples (p, m, e), where p is the primitive type, m
is the multiplicity and e is the optional derivation expression. If e has no

26

derivation expression it is equal to nil. Role definitions are tuples (t, m),
where t is an entity name and m is a multiplicity. Inverse (and shortcut)
definitions are triples (t, r1, r2) where r1 and r2 are roles in entity t. The
inverse map definition is best explained by example:

entity Enrollment {
Student student <- * enrollment
Course course <- + enrollment
student.courses <-> course.students

}

Is translated to the following:

IStudent : ’enrollment’ ! ’Enrollment’ ⇥ ’student’ ⇥ nil
’courses’ ! ’Enrollment’ ⇥ ’student’ ⇥ ’course’

ICourse : ’enrollment’ ! ’Enrollment’ ⇥ ’course’ ⇥ nil
’students’ ! ’Enrollment’ ⇥ ’course’ ⇥ ’students’

The inverses of roles are mapped back to the role in the relation they are the
inverse of. In this case r2 is nil. The shortcut is translated to two records,
one for both participant types. The inverse maps are used as the backwards
reference navigation mechanism.

Lastly, to simplify static and dynamic semantics we transform the shortcut
expressions to an inverse and a role expression by the transformation rule:

e : t1 It1(i1) = (t2, r1, r2) It1(i2) = (t2, r1, nil)
e . i1 ! e . i2 . r2

2.5.2 Types

There are two type sorts: p (primitive types) and t (entity types). All attributes
are primitive types. Entities and relations define entity types. Roles, inverses
and shortcuts in a relation are entity types.

Most typing rules are straightforward, so we only cover the rules that are
non-standard. The aggregation rule (Aggr) is interesting. Since multiplicities
are encoded orthogonally the aggregation functions are of type int! int. The
multiplicity operators choice and concatenate work with any type. They only
check whether both operands have the same type and propagate the type
(Mult).

With roles and inverses one can conceptually navigate over the type graph
defined by the entities and relations. The type of a navigation expression is
naturally the place where one ends up in the model after navigating. When
navigating from a relation to a participant the type is the participant’s type
(RoleNav). When navigating from a participant to a relation, by an inverse,
we find the type of the relation by looking up the inverse definition (InvNav).

2.5.3 Multiplicities

For multiplicities there are two notational conventions: single characters from
the concrete syntax and ranges. We use the ranges notation in the multiplicity
rules as it gives us access to the upper and lower bounds directly.

Chapter 2. Relations Language 27

Expression type q ` Expr : T

c 2 {true, false}

c : boolean
[Bool]

literal Int : int
[Int]

literalString : string
[Str]

q ` this : q
[This]

� 2 {+,�, ⇤, /, %}
e1 : int e2 : int

e1 � e2 : int
[Math]

e1 : string e2 : string

e1 + e2 : string
[Conc]

� 2 {&&, ||}
e1 : boolean e2 : boolean

e1 � e2 : boolean
[AndOr]

e : boolean

! e : boolean
[Not]

� 2 {>,>=,<,<=}
e1 : t e2 : t t 2 {int, string}

e1 � e2 : boolean
[Cmp]

e1 : t e2 : t � 2 {==, !=}

e1 � e2 : boolean
[Eq]

e1 : boolean e2 : t e3 : t

e1 ? e2 ":" e3 : t
[Cond]

e : int f 2 {avg, min, max, sum}

f (e) : int
[Aggr]

e : boolean f 2 {conj, disj}

f (e) : boolean
[Logic]

e : _

count(e) : int
[Count]

e1 : t e2 : t � 2 {<+,++}

e1 � e2 : t
[Mult]

e : t At(a) = (p, _._)

e . a : p
[Attr]

e : ta At(a) = (ta, _)

t [a == e] : t
[Lookup]

e : t Rt(r) = (tr , _)

e . r : tr

[RoleNav]

e1 : t1 It1(i) = (t2, _, nil)

e . i : t2
[InvNav]

Figure 2.14 Type rules

Binary operators mimic maybe-Monad behaviour for zero or one values: a
maybe value as input for the computation returns a maybe value as output.
Taking the Cartesian product between the bags of values and applying the
operation to each pair provides this behaviour. The multiplicity range is ex-
pressed as taking the minimum of both lower bounds and the maximum of the
upper bounds (BinOp). The division and modulo operators exhibit slightly
different behaviour (DivOp). Since dividing by zero has no result, at least one
value in both operands might still result in no answer. Instead of throwing a
division by zero exception zero answers are given for any denominator equal
to zero.

The Choice operator chooses at runtime the left expression if it has a re-
sult, and otherwise the right expression. The multiplicity is defined as the
maximum of both upper and lower bound, except if the left lower bound is

28

Expression multiplicity Expr ⇠ M

c 2 {this, true, false, Int, String}

c ⇠ [1, 1]
[Const]

� 2 {+,�, ⇤, &&, ||,>,
>=,<,<=,==, !=}

e1 ⇠ [l1, u1] e2 ⇠ [l2, u2]

e1 � e2 ⇠ [min(l1, l2), max(u1, u2)]
[BinOp]

� 2 {/, %}
e1 ⇠ [_, u1] e2 ⇠ [_, u2]

e1 � e2 ⇠ [0, max(u1, u2)]
[DivOp]

e1 ⇠ [l1, 1] e2 ⇠ [l2, u2]

e3 ⇠ [l3, u3]

m = [min(l1, l2, l3), max(u2, u3)]

e1 ? e2 ":" e3 ⇠ m
[Cond]

e ⇠ m

! e ⇠ m
[Not]

f 2 {avg, min, max, conj, disj}
e ⇠ [l, n)

f (e) ⇠ [l, 1]
[Aggr]

f 2 {sum, count}

f (e) ⇠ [1, 1]
[Aggr2]

e1 ⇠ [0, u1] e2 ⇠ [l2, u2]

e1 <+ e2 ⇠ [l2, max(u1, u2)]
[Choice]

e1 ⇠ [1, u1]

e1 <+ e2 ⇠ [1, u1]
[Choice2]

e1 ⇠ [l1, _] e2 ⇠ [l2, _]

e1 ++ e2 ⇠ [max(l1, l2), n)
[Concat]

e ⇠ [l1, u1] Ate (a) = (_, [l2, 1], _)

e . a ⇠ [min(l1, l2), u1]
[Attr]

t [a == e] ⇠ [0, n)
[Lookup]

e : t e ⇠ m Rt(r) = (_, _)

e . r ⇠ m
[RoleNav]

e1 : t1 It1(i) = (t2, r, nil)
Rt2(r) = (_, [l2, u2])

e . i ⇠ [min(l1, l2), max(u1, u2)]
[InvNav]

Figure 2.15 Multiplicity rules

one. Then we know that the left expression will always be chosen. Note that it
does not make sense to use the choice operator in that case, because the right
expression will be dead code. The Concat operator combines the results of
both expressions. This means that we might always have more than one value
at runtime; thus the upper bound is n. The lower bound is the maximum of
both.

Attributes are allowed to be either [0,1] or [1,1]. In the first case attribute
access decreases the lower bound to zero, as the attribute might not be set
(Attr). A role always has exactly one value, so role navigation leaves mul-
tiplicity intact (RoleNav). Navigation to relations entities participate in be-
haves like a SQL join between the input expression entities and the relation.
Like binary operators this means taking the lowest lower bound and the high-
est upper bound.

2.5.4 Well-formedness

Programs are well-formed if they satisfy the rules in Figure 2.16. Attributes
are only allowed to have a multiplicity of at most one, their type has to be
primitive (which is enforced by the syntax definition already) and if a deriva-

Chapter 2. Relations Language 29

Program well-formedness ` Attr|Role|Inv|Shortcut|Entity|Program

a = (_, [_, 1], nil)

` a
[AttrDec]

a = (p, [l1, 1], e) e : p e ⇠ [l2, 1] l1  l2

` a
[AttrDec2]

r = (t, m) E(t) = (_, _)

` r
[RoleDec]

i = (t, r1, nil) Rt(r1) = (_, _)

` i
[InvDec]

i = (t, r1, r2) Rt(r1) = (_, _) Rt(r2) = (_, _)

` i
[ShortcutDec]

q0 = t 8a 2 dom(At) : q0 ` a 8r 2 dom(Rt) : q0 ` r 8i 2 dom(It) : q0 ` i

` t
[EntityDec]

q0 = ? 8t 2 dom(E) : q0 ` t q0 ` e : _ q0 ` e ⇠ _

` (E , e)
[ProgramDec]

Figure 2.16 Attribute, role, inverse, shortcut, entity and program well-formedness

tion is specified, it should be of the correct type and its multiplicity should fit
inside the target range. Role declarations are well-formed if the entity playing
the role exists in the entity map. Inversions are well-formed if the role exists
in the entity of which they are the inverse and shortcuts are well-formed if
both roles exist in the entity. Entity definitions are well-formed if all their
attributes, inverses and roles are well-formed and a program is well-formed
if all its entities and the main expression are well-formed. We only consider
well-formed programs.

2.6 D Y N A M I C S E M A N T I C S

We specify evaluation rules for a big-step semantics. We use the I-MSOS
notational style, which implicitly propagates stores if they are not mentioned
[Mosses and New, 2009].

2.6.1 Stores

In order to evaluate a program an entity store S and relation store D must be
passed; our language is a data modeling and navigation language and does
not provide facilities to add, edit or remove data. Expressions in addition get
passed a this-reference q.

30

Entity store well-formedness ` S

8(re f ! astore) 2 S : ` (re f ! astore)

` S
[EntityStore]

re f : t
8(a! v) 2 astore : re f ` (a! v)
8(a! p, [1, 1], _) 2 At : astore(a) = _
8(r ! _, _) 2 Rt : D(t, re f , r) = _
8(i! t2, r2, nil) 2 Ir :�

|{v | D(t2, _, r2) = v}| = m Rt2(r2) = (_, [l, u]) l  m  u
�

` (re f ! astore)
[EntityRecord]

e : t At(a) = (ta, _, _) v : ta

e ` a! v
[AttrRecord]

Relation store well-formedness ` D

8(t v1 r ! v2) 2 D : ` (t v1 r ! v2)

` D
[RelationStore]

v1 : t S(v1) = _ Rt(r) = (t2, _) v2 : t2 S(v2) = _

` t v1 r ! v2

[RelationRecord]

This store well-formedness ` q

S(q) = _

` q
[ThisReference]

Figure 2.17 Store well-formedness

S, D ` p + v (Evaluation of program)

S, D, q ` e + v (Evaluation of expressions)

The entity store corresponds to the usual heap: a map from object refer-
ences to a map from attribute names to their values. The relation store is used
for storing all relations between entities. It is a map from relation name, rela-
tion object reference and role name to the reference of the object playing this
role. The this-reference is a single reference to an object.

S 2 EntityStore : Re f erence! AttributeStore
AttributeStore : AttrName! Value

D 2 RelationStore : EntityName⇥ Re f erence⇥ RoleName! Re f erence
q 2 ThisRe f erence : Re f erence

Chapter 2. Relations Language 31

Expression evaluation S, D, q ` Expr + {|Value|}

c is constant

c + {| c |}
[Const]

q ` this + {| q |}
[This]

� 2 {+,�, ⇤, &&, ||,>,>=,<,<=,==, !=}
e1 + V1 e2 + V2

V3 ={| v1�v2 | v1 2 V1, v2 2 V2 |}

e1 � e2 + V3

[BinOp]

e1 + V1 e2 + V2 � 2 {/, %}
V3={| v1�v2 | v2 !=0, v12V1, v22V2|}

e1 � e2 + V3

[Div]

e + V

! e + {| ¬ v | v 2 V |}
[Not]

e1 + V1 e2 + V2 e3 + V3

V4={|v1? v2: v3 |v12V1, v22V2, v32V3|}

e1 ? e2 : e3 + V4

[Cond]

f 2 {avg, min, max, conj, disj, sum}
e + V |V| � 1

f (e) + {| f (V) |}
[Aggr]

f 2 {avg, min, max, conj, disj}
e + ∆

f (e) + ∆
[Aggr2]

e + ∆

sum(e) + {| 0 |}
[Sum]

e + V

count(e) + {| |V| |}
[Count]

e1 + V1 e2 + V2

e1 <+ e2 + (V1 != ∆) ? V1 : V2

[Choice]

e1 + V1 e2 + V2

e1 ++ e2 + V1 [V2

[Concat]

e + V e : t At(a) = (_, _, nil)

S ` e . a + {| S(v)(a) | v 2 V |}
[Attr]

e + V e : t At(a) = (_, _, e2)

V2 = {| v2 | (q0 ` e2 + {v2}), q0 2V|}

e . a + V2

[At2]

e + V e : t

D ` e . r + {| D(t, v, r) | v 2 V |}
[RoleNav]

e + V e : t It(i) = (t, r, nil)
V2 ={| v2 | D(t, v2, r) = v, v2V|}

D ` e . i + V2

[InvNav]

Program evaluation S, D ` Expr + {|Value|}

p = (E , x) q0 = ? S, D, q0 ` x + v

S, D ` p + v
[Program]

Figure 2.18 Evaluation rules (Big Step SOS). "{| |}" is bag notation [Buneman et al.,
1994]. Stores are omitted if not used in rules.

2.6.2 Store well-formedness

Figure 2.17 describes what it means means for these stores to be well-formed.
The entity store is well-formed if all the entities in it are well-formed. An
entity is well-formed if (1) all records in its attribute store are well-formed,
(2) all its required, non-derived attributes have been set (3) all its roles have a
value and (4) the number of relation records, that point to it for a certain role
that he plays, is within the multiplicity range specified for that role.

An attribute record is well-formed if it has a value of the correct type.

32

The relation store is well-formed if all its records are well-formed. A rela-
tion record is well-formed if its references point to entities. Finally the this-
reference is well-formed if it points to an entity. We assume a well-formed
entity and relation stores for evaluation.

2.6.3 Evaluation rules

All the evaluation rules have a specific form: they operate on bags. Expres-
sions can return any number of values, modeling this with bags is a natural
choice. A nice example of this is the rule for binary operations (BinOp). The
left and right expressions evaluate to a bag of values, the Cartesian product
of these bags is taken and on each pair of values the operator is applied. For
single values a normal computation is performed, for maybe values a maybe
computation and for many values a Cartesian product computation. Most
evaluation rules follow this pattern.

Aggregation operations are defined for at least a single value (Aggr) and
for empty lists there is predefined behaviour (Aggr2 and Sum). Choice re-
turns the value of the left expression, if it has at least one value, otherwise
the value of the right expression. Concat combines all values, regardless of
how many there are. Attributes can either be normal or have a derivation
expression. For normal attributes a lookup is done in the attribute map of
each entity passed into the expression (Attr). The lookup of unset attributes
fails, but these are filtered out. Derivations behave like a method call with-
out arguments (At2). Navigation works differently for navigating through a
role or through an inverse. Navigating by role does a simple map lookup for
each value (RoleNav). Navigating by inverse does a reverse map lookup on
the role it is the inverse of (InvNav). Finally the program executes the main
expression with the stores.

2.7 R E L AT E D W O R K

Our work builds on research in different fields: language constructs for re-
lations, navigating and querying relations and multiplicities. Specific differ-
ences with our work are highlighted per article.

Languages with first-class relations The Rumer language by Balzer has first-
class relations [Balzer, 2011; Balzer et al., 2007]. It features first-class relations
with named roles and queries. Rumer provides reactive queries as well as
imperative code. It has cardinalities specified in constraints and implements
binary relationships. Our approach differs in the fact that our modeling lan-
guage does not support imperative code, multiplicities are part of the type
system and we implement relations of all degrees.

Classages is a language that also features relations [Liu and Smith, 2005].
Classages is targeted at modelling the interactions and interaction life span
between objects. It features static and dynamic relations, bidirectional rela-
tions and multiplicities. Our approach has in common that it has bidirectional
relations but we are focused on modeling data instead of interactions.

Chapter 2. Relations Language 33

Pearce and Noble extended Java with first-class relationships using aspects
[Pearce and Noble, 2006]. Relations are modeled as external tuples and objects
are agnostic to relations they are in. Their approach to behavioural changes of
objects based on their relations should be implemented by aspects, externally.
Our approach is the opposite, entities know what relations they participate
in. This allows specifying relation dependent behaviour in derivations.

RelJ is first-class relationship extension to Java by Biermann and Wren [Bier-
man and Wren, 2005; Wren, 2007]. In their approach they support relation-
ships as first-class citizens. The relations are also modeled as tuples, where
the roles have a position in the tuple but no name. In our approach the roles
are named and unordered; allowing navigation based on roles. Their rela-
tions are binary and one-directional. In the technical report they also sketch
an extension with named roles [Bierman and Wren, 2005]. In this sketched
extension relations can have any arity and support bidirectional navigation.

Nelson implemented first-class relationships in Java [Nelson et al., 2008].
This is a library and not a language extension. Mutable sets of tuples are
used as first-class constructs to model relations. Without specific language
constructs this approach does not supply additional semantics for relations
and thus cannot provide additional static type checking.

Languages with non first-class relations In 1987 Rumbaugh was the first to
add relations to a language [Rumbaugh, 1987]. His approach is pre-processor
based and dynamic. It does not have relations as first-class citizens.

In 1991 a relationship mechanism for a Strongly Typed Object-Oriented
Database Programming language introduced statically typed relations as part
of a language [Albano et al., 1991]. The paper explains the data model defini-
tion and transactions. It does however not explain in detail how querying or
navigation is done.

WebDSL introduced inverse properties which inspired the inverses [Visser,
2007]. Refer to Section 2.3 for details.

Queries of relations in object-oriented languages The Java Query Language (JQL)
adds queries to Java [Willis et al., 2006]. There is no additional support for
relations, so navigation uses value-based joins like in SQL. LINQ also uses
value-based joins [Meijer et al., 2006]. These approaches are in the left column
of the design space (Section 2.3). In contrast, our navigation is based on the
role names of relations.

Multiplicities in programming languages In Content over Container: Object-
Oriented Programming with multiplicities Steimann adds multiplicity anno-
tations to Java in order to remove the Collection containers [Steimann, 2013].
Refer to Section 2.2.2 for details.

Lerner et al. introduced a static type system for jQuery to track multi-
plicities of selector expressions and sums [Lerner et al., 2013]. We support
navigation expressions, operators, conditionals, and aggregation operations
(including sums). In their type system the types are nested in multiplicities
similar to monads. In contrast, our types and multiplicities are orthogonal.

34

In the array programming language Remora operations are automatically
lifted based on multiplicity [Slepak et al., 2014]. Our work is not aimed at
array programming, but uses the same automatic lifting for expressions over
primitive values.

Finally the ideas for this chapter were presented in the ACM Student Re-
search Competition [Harkes, 2014]. The design space analysis and formal
semantics of the language are new to this chapter. Also the syntax changed
as a result of the design-space analysis.

2.8 C O N C L U S I O N

Unification and generalization of relations led to a new data modeling and
navigation language. This goes hand in hand with native multiplicities. Both
the relations aspect and the native multiplicities aspect lead to more a more
concise definition and navigation of relationships; removing maintenance of
reference consistency, removing collection classes and providing single iden-
tifier navigation by inverses and shortcuts.

Future work We would like to add more aspects orthogonally to the type
system. Our first candidates are ordered/unordered and unique/duplicates.
It is worth exploring how well different aspects can be modelled orthogonally
in a type system.

Also we would like to extend our language to provide type-and-multipli-
city-safe operations on data. Adding or removing entities and relations might
invalidate the multiplicity constraints on relations. We would like to catch
these potential errors by static analysis and indicate to the programmer that
he should catch that situation. The goal is to make sure that multiplicity-safe
operations will never trigger runtime errors because a multiplicity constraint
for a relation is violated. We would like to explore if we can ensure correct
multiplicities at runtime statically.

Chapter 2. Relations Language 35

36

Postscript: Relations Language

The relations language introduced first-class, n-ary, and bidirectional rela-
tions; native multiplicities; and concise navigation. However, in practice first-
class, and n-ary relations have not seen a lot of use. Moreover, the multiplicity-
safe semantics presented in this chapter are read-only, leaving multiplicity
safety for update operations unspecified. In this postscript we discuss these
two issues.

F I R S T- C L A S S C I T I Z E N A N D N - A RY R E L AT I O N S

When this chapter was written, the runtime of the relations language was in-
memory. Soon after this chapter was written, we targeted WebDSL as backend
for the language (as described in the next chapter). This changed the run-
time to an Object-Relational Mapper (ORM) instead of plain in-memory ob-
jects. First-class citizen and n-ary relations require extra tables in a relational
database, which is undesirable. Moreover, existing WebDSL applications al-
ready modeled first-class or n-ary relations with ‘relation objects’ explicitly.
Migrating these existing data models also was undesirable. For these reasons
first-class citizen, and n-ary relations have not seen a lot of use in practice.

Later we did not evolve first-class citizen and n-ary relations like we did
with bidirectional relations. In Chapter 4 we introduce derived relations.
These derived relations are bidirectional, but not first-class citizen or n-ary.
First-class citizen or n-ary derived relations would mean deriving new objects
as derived values. This would make IceDust higher-order (similar to higher-
order attribute grammars) and Turing-complete. Higher-order attribute gram-
mars have bad incremental performance as their runtime involves deep equal-
ity checks of derived objects. Thus, we kept IceDust first-order which means
first-class citizen and n-ary cannot be derived like bidirectional relations.

M U LT I P L I C I T Y- S A F E U P D AT E O P E R AT I O N S

The multiplicity-safe semantics in this chapter are read-only. It seemed obvi-
ous to extend multiplicity-safety to update operations. This would be similar
to static multiplicity checks with the bounded model checking language Al-
loy [Jackson, 2006]. However, we could not express multiplicity-safety in a
simple type system and abandoned that research direction. In retrospect it
might not be possible to express multiplicity-safety of update operations in
a simple type-system at all: Alloy uses bounded model checking to guaran-
tee multiplicity-safety. Instead of statically guaranteeing multiplicity-safety
IceDust uses transactions to guarantee multiplicity-safety at runtime. These
semantics are described in Chapter 4.

37

38

3
IceDust
Incremental and Eventual Computation of Derived Values in Persistent Object Graphs 1

Derived values are values calculated from base values. They can be ex-
pressed in object-oriented languages by means of getters calculating the de-
rived value, and in relational or logic databases by means of (materialized)
views. However, switching to a different calculation strategy (for example
caching) in object-oriented programming requires invasive code changes, and
the databases limit expressiveness by disallowing recursive aggregation.

In this chapter, we present IceDust, a data modeling language for express-
ing derived attribute values without committing to a calculation strategy. Ice-
Dust provides three strategies for calculating derived values in persistent ob-
ject graphs: Calculate-on-Read, Calculate-on-Write, and Calculate-Eventually.
We have developed a path-based abstract interpretation that provides static
dependency analysis to generate code for these strategies. Benchmarks show
that different strategies perform better in different scenarios. In addition we
have conducted a case study that suggests that derived value calculations of
systems used in practice can be expressed in IceDust.

3.1 I N T R O D U C T I O N

Derived values are values calculated from base values (provided by users).
When a base value changes, the derived values depending on it should change
accordingly. Hence, the important events for interacting with derived values
are writes to base values and reads of derived values. This specification of
derived values leaves room for multiple strategies for calculating derived val-
ues. Derived values can be calculated when they are read or they can be
cached and updated when the underlying base values change. The perfor-
mance of these strategies depends on characteristics of the data model and
usage scenarios. When neither of these calculation strategies provides accept-
able performance, updates can be postponed, temporarily allowing reads to
return outdated derived values.

Object-oriented programming languages express derived values through
getters containing code that calculates a derived value, implying that the de-
rived value is recalculated each time it is read. Switching to calculating the
derived value when an underlying value changes, or switching to eventually
calculating the derived value, requires invasive code changes. By contrast,

1This chapter has appeared as Harkes, D. C., Groenewegen, D. M., and Visser, E. (2016).
Icedust: Incremental and eventual computation of derived values in persistent object graphs.
In Krishnamurthi, S. and Lerner, B. S., editors, 30th European Conference on Object-Oriented Pro-
gramming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

39

most relational databases allow easy switching between calculate-on-read and
calculate-on-write as they support both materialized and non-materialized
views for calculating derived values. However, relational databases only pro-
vide limited expressiveness for recursion, and do not support eventual calcu-
lation of derived values. Datalog provides more expressiveness than relational
database views, but also limits recursion, and does not support eventual cal-
culation of derived values.

This chapter presents the IceDust language, which supports definition of
attributes with derived values without committing to a calculation strategy.
The compiler provides three different implementation strategies for calculat-
ing derived values: (1) Calculate-on-Read, which calculates the derived value
every time it is read, (2) Calculate-on-Change, which maintains a cache in-
crementally by calculating the derived value every time an underlying value
is changed, and (3) Calculate-Eventually, which schedules calculations of de-
rived values, and thus sacrifices consistency temporarily. All these strategies
allow unrestricted recursion, but do not provide termination guarantees. In
particular, our contributions are:

• The IceDust language for data modeling with derived values (Section
3.2)

• A formal analysis of the dependencies in IceDust programs (Section 3.3)
• Three calculation strategies to satisfy different non-functional require-

ments (Section 3.4)
• Benchmarks showing the performance differences between the strate-

gies (Section 3.5)
• A case study of migrating a custom eventual calculation system to Ice-

Dust (Section 3.6)

3.2 D E C L A R AT I V E D ATA M O D E L I N G W I T H D E R I V E D
VA L U E S

This section discusses three issues of data modeling with derived values in
object-oriented programming languages and shows how data modeling in
IceDust addresses these issues and leads to concise specifications. As run-
ning example we use (an aspect of) a learning management system in which
students solve assignments. Figure 3.1 shows a Java implementation with
classes Assignment and Question, where assignment represents a collection
of questions and its progress is the average of the progress on the individual
questions.

3.2.1 Bidirectional Relations

Object-oriented languages model bidirectional relations as properties in the
classes on both sides of the relation. Keeping these properties consistent re-
quires code that has to be repeated for every bidirectional relation. Figure 3.1
includes five methods concerned with keeping relation Assignment-Question
consistent on updates: setAssignment, addQuestion, removeQuestion, _-

40

public class Assignment {
public Double getAverageProgress() {

return calculateAverageProgress();
}
public Double calculateAverageProgress() {

Stream<Double> progresss =
questions.stream().map(q->q.getProgress()).filter(p -> p!=null);

OptionalDouble average = progresss.mapToDouble(p -> p).average();
return average.isPresent() ? average.getAsDouble() : null;

}
private Collection<Question> questions;
public Collection<Question> getQuestions(){

return new HashSet<>(questions);
}
public void addQuestion(Question q) { q.setAssignment(this); }
public void removeQuestion(Question q) { q.setAssignment(null); }
protected void _addQ(Question q) { questions.add(q); }
protected void _remQ(Question q) { questions.remove(q); }

}
public class Question {

private Assignment assignment;
public Assignment getAssignment() { return assignment; }
public void setAssignment(Assignment a) {

if(assignment != null) { assignment._remQ(this); }
if(a != null) { a._addQ(this); }
assignment = a;

}
private Double progress;
public Double getProgress() { return progress; }
public void setProgress(Double p) { progress = p; }

}

Figure 3.1 Object-oriented assignment system (Calculate-on-Read implementa-
tion strategy).

addQ, and _remQ. This pattern is identical for all one-to-many relations, but
cannot be abstracted over in an object-oriented language. To avoid such boil-
erplate code, IceDust supports bidirectional relations as a language feature:

entity Assignment { }
entity Question { }
relation Assignment.questions * <-> 1 Question.assignment

These bidirectional relations are named on both sides of the relation, inspired
by Object-Role Modeling [Halpin, 2006]. The IceDust compiler keeps both
sides of the association consistent without additional boilerplate code.

3.2.2 Native Multiplicities

Explicit collections and possible null values in object-oriented languages lead
to boilerplate code to deal with the cardinalities of values returned by an
expression. Operators in object-oriented languages are defined for operands
with a cardinality of exactly one. Safely applying an operator to a nullable
operand, requires a null-check. Applying an operator to a collection of val-

Chapter 3. IceDust 41

ues, requires lifting it to a map. For example, accessing the progress of each
individual question in Figure 3.1 is encoded as

questions.stream().map(q -> q.getProgress()).filter(p -> p != null)

IceDust adopts native multiplicities [Harkes and Visser, 2014], delegating the
handling of the cardinality of values returned by an expression to the lan-
guage. For example, retrieving the progress for all questions is simply a pro-
jection:

questions.progress

Language constructs to get expressions of cardinality exactly one, such as
map, filter, and != null, are no longer required, as the type system knows
how many values an expression returns (multiplicity denoted by ~, where *
is [0,n), + is [1,n), ? is [0,1], and 1 is [1,1]):

mathAssignment // : Assignment ~ 1
mathAssignment.questions // : Question ~ *
mathAssignment.questions.progress // : Float ~ *
avg(mathAssignment.questions.progress) // : Float ~ ?

Sometimes it is still necessary to reflect explicitly on the cardinality of a value.
To that end one can use the count operator, for example, for counting the
number of questions:

count(questions)

Reflection on the cardinality of values is also often used to select an alternative
if no value is present. For specifying alternatives the choice operator (<+) can
be used:

input <+ myDefault //if (count(input) > 0) input else myDefault

3.2.3 Derived Value Attributes

Last but not least, object-oriented languages force early decisions on the im-
plementation strategy for calculating derived values. In an object-oriented
language, a derived value calculation can be expressed with a method that
computes the value. However, this encodes a Calculate-on-Read implementa-
tion strategy. For cheap calculations or calculations that are done infrequently
that may be fine. But for others, it may be necessary to cache the calculated
value. Such an alternative computation strategy requires an invasive redefi-
nition of the implementation. For example, Figure 3.2 implements a caching
strategy for the getAverageProgress computation of Figure 3.1. Instead of
computing the average on read, it is computed on writes of progress and
questions. For this example, the impact of the change was relatively minor
because in Figure 3.1 we had already factored calculateAverageProgress
into a separate method. However, in real code the impact is typically non-
trivial. In particular, because the introduction of a cached value requires tak-
ing into account all of its dependencies in order to trigger recomputation
on any change that affects it. For example, averageProgress depends on

42

//Take all Code from Calculate-on-Read and add/change the following:
public class Assignment {

private Double cachedAvgProgress;
public Double getAverageProgress() { return cachedAvgProgress; }
public void updateAvgProgress(){

cachedAvgProgress=calculateAverageProgress();
}
protected void _addQ(Question q){

questions.add(q); updateAvgProgress();
}
protected void _remQ(Question q){

questions.remove(q); updateAvgProgress();
}

}
public class Question {

public void setProgress(Double p){
progress=p; assignment.updateAvgProgress();

}
}

Figure 3.2 Object-oriented assignment system (Calculate-on-Write implementa-
tion strategy).

progress and questions. Thus, setProgress, _addQ, and _remQ all need to
trigger recalculation of averageProgress.

IceDust provides derived value attributes for declarative specification of the
value of attributes in terms of other attributes without committing to an im-
plementation strategy:

entity Assignment{ avgProgress : Float? = avg(question.progress) }

This separation of concerns enables focusing on specification of the logic of
the derived value. The derived value expression specifies what the value of
the attribute should be. Derived value attributes in IceDust support recur-
sive definitions, including recursive aggregation (which is not supported in
materialized views or stratified Datalog):

entity Assignment{ progress : Float? = avg(children.progress) }
relation Assignment.parent ? <-> * Assignment.children

3.2.4 Language Definition

We have combined the ideas for improving data modeling by means of bidi-
rectional relations, native multiplicities, and derived value attributes in the
design of the experimental IceDust language. In order to embed IceDust data
models in full fledged web applications the compiler generates code in the
WebDSL programming language [Visser, 2007].

The design of IceDust was heavily influenced by previous work on rela-
tions as a first-class language construct. From Rumer [Balzer, 2011] and RelJ
[Bierman and Wren, 2005] we adopt the restriction to binary, bidirectional re-
lations. From the Relations language [Harkes and Visser, 2014] we adopt the
syntax of declarations and property access, integrating multiplicities in rela-
tions. Multiplicities derive from the work of Steimann [Steimann, 2013, 2015],

Chapter 3. IceDust 43

Program ::= model Entity* Relation*
Entity ::= entity E { Attribute* }

Relation ::= relation E.r m <-> m E.r

Attribute ::= a : T m
| a : T m = e
| a : T m = e (default)

T 2 PrimitiveType ::= Boolean | Int | Float | Datetime | String
m 2 Multiplicity ::= ? | 1 | * | * (ordered) | + | + (ordered)

e 2 Expr ::= f (e) | e1 � e2 | ! e | e1 ? e2 : e3 | e.a | e.r | e as T | this | Literal
Literal ::= true | false | null | int | f loat | datetime | string

f 2 AggrOp ::= min | max | avg | sum | concat | count | conj | disj
� 2 BinOp ::= + | - | * | / | % | && | || | > | >= | < | <= | == | =! | <+ | ++

Figure 3.3 Syntax of the IceDust data modeling language

which extends an object-oriented language with multiplicity annotations to
support uniform treatment of values of different cardinality and avoids the
boilerplate code required to support different multiplicities. We adopt the
integration of such multiplicities in the type system (dubbed native multiplic-
ities) of the Relations language [Harkes and Visser, 2014].

Figure 3.3 defines the grammar of IceDust. E, a and r are entity, attribute
and relation names respectively. An IceDust program consists of entities and
relations. Entities contain three kinds of attributes: ‘normal’ attributes (a :
T m), derived value attributes (a : T m = e), and default value attributes (a
: T m = e (default)). Users can set the value of ‘normal’ attributes and
read the value later. Users cannot set the value of derived value attributes,
but they can read the value calculated with expression e. Finally, users can
set the value of default value attributes and read the value later, but they can
also set the value to null (or not set it all) and read the value calculated by
e. Attributes are limited to primitive types, as an entity type would create a
unidirectional relation (which would give problems in the dependency anal-
ysis). A relation defines a bidirectional relation with a name and multiplicity
on both sides. The domain of the expression language is primitive types
(Boolean, Int, Float, Datetime and String) and objects. The language covers
object graph navigation and calculations over the primitive types. Note the
aggregation operations over primitive types to deal with multiplicities * and
+. The expression language is expressive enough to specify derived values,
and simple enough to allow multiple implementation strategies.

The type system of IceDust is mostly concerned with native multiplicities.
A type in IceDust is a tuple of two lattice values (Figure 3.4). The primitive
types, the declared entities, the null and error type form a lattice. Multiplicity
and ordering form another lattice. During derived value calculation all values
are read-only in IceDust. A value which is lower or equal in both lattices can
be used in a place where a certain type, multiplicity, and ordering is expected.
For example, a Float? can be supplied where a Float* is expected.

44

* ordered

+ ordered

null

error

Int Float StringBoolean Datetime Entities

1

?

+

* unordered

unordered

Figure 3.4 IceDust’s type lattice (left), and multiplicity and ordering lattice (right)

3.3 D E P E N D E N C Y A N D D ATA F L O W A N A LY S I S

IceDust specifies the value of attributes in terms of other attributes. These
definitions are declarative in the sense that they abstract from the implemen-
tation strategy used to calculate the values. In the next section we define three
implementation strategies for the calculation of attribute values: Calculate-on-
Read, Calculate-on-Write, and Calculate-Eventually. The latter two strategies
require dependency and data flow information. In this section we define the
computation of dependencies between attributes by means of a path-based ab-
stract interpretation of expressions. Since IceDust does not have statements,
data flow coincides with control flow, and the data flow relation is the inverse
of the dependency relation. The static dependency and data flow analysis is
performed in three steps: (1) compute attribute dependencies by means of
path-based abstract interpretation, (2) reverse the dependencies to construct
the data flow relation, and (3) organize the data flow in a graph and extract
strongly connected components with a topological ordering.

3.3.1 Example

To illustrate the analysis we use a more complex version of the learning man-
agement system (Figure 3.5). This example features a tree of assignments,
and grade calculation logic for submissions by students to these assignments.
Assignments are structured in a tree through the relation parent-children.
A Submission represents the solution created for an assignment by a stu-
dent. Leaf submissions are graded by assigning a grade to the grade attribute
(overriding the default value), while the grades of non-leaf submissions de-
pend (indirectly) on the grades of their child submissions:

grade : Float? = if(childPass) childGrade else null (default)
pass : Boolean = grade >= (assignment.minimum<+0.0) <+ false
childGrade : Float? = avg(children.grade)
childPass : Boolean = conj(children.pass)

Note that students only receive a grade for a collection-submission if all of the
child submissions are pass, and a submission is only a pass when its grade
is above the minimum assignment grade and all its children pass. The minimum
for an assignment is optional, without minimum the grade should be higher
than or equal to 0.0, which is always true. Submissions are (one of) the best
of an assignment when their grade equals the highest grade. Finally, every

Chapter 3. IceDust 45

entity Assignment {
name : String
question : String
minimum : Float?
avgGrade : Float? = avg(submissions.grade)
passPerc : Float? = sum(submissions.passInt)*100/count(submissions)

}
entity Student {

name : String
}
entity Submission {

name : String = assignment.name + " " + student.name
answer : String?

grade : Float? = if(childPass) childGrade else null (default)
pass : Boolean = grade >= (assignment.minimum<+0.0) <+ false
childGrade: Float? = avg(children.grade)
childPass : Boolean = conj(children.pass)

passInt : Int = if(pass) 1 else 0
best : Boolean = grade == max(assignment.submissions.grade)

<+ false
}
relation Assignment.parent ? <-> * Assignment.children
relation Submission.parent ? <-> * Submission.children
relation Submission.student 1 <-> * Student.submissions
relation Submission.assignment 1 <-> * Assignment.submissions

Figure 3.5 Example program for dependency analysis

assignment has an average grade and pass percentage. This example is inter-
esting for dependency analysis as it features mutually recursive definitions of
grade, pass, childGrade and childPass through the parent-child relation
of Submission.

3.3.2 Step 1: Dependencies

The dependencies of an attribute are all the attributes and relations that are
needed to compute the derived value of that attribute. The dependencies
are reachable from the entity of the attribute via a path. A dependency is
denoted by (Ent.Attr p), where Ent.Attr is the attribute and p is the path
to an attribute or relation.

Computing the dependencies requires extracting paths from expressions
defining derived values. The path-based abstract interpretation relation (Fig-
ure 3.6) defines the dependency paths of an expression. We use the notation
Expr & {p}{r}, where Expr is the expression that is abstractly interpreted,
and {p} and {r} are the sets of paths defined by the abstract interpretation.
The paths in {p} are extensible, while the paths in {r} are not. All paths
start with this [This] or with object graph navigation [NavStart]. When nav-
igating the object graph by means of e.attrOrRel all dependency paths {p}
in e are extended with attrOrRel [Nav]. The if [If] only allows extension
of paths in the second and third operand, so P1 is passed to {r}. Operators

46

Path-based abstract interpretation Expr & {p}{r}

this & {this}{}
[This]

attrOrRel & {attrOrRel}{}
[NavStart]

e& P P

e . attrOrRel & {p . attrOrRel | p2P} P
[Nav]

�2BinOp e1 & P1 P1 e2 & P2 P2

e1 � e2 & P1 [P2 P1 [P2

[Op]

e1 & P1 P1 e2 & P2 P2 e3 & P3 P3

e1 ? e2 : e3 & P2 [P3 P1 [P1 [P2 [P3

[If]

e 2 Literal

e & {}{}
[Literal]

e& P P

! e & P P
[Not]

T 2 PrimitiveType e& P P

e as T & P P
[Cast]

f 2 AggrOp e& P P

f (e) & P P
[Aggr]

Dependencies Attr|Ent|Prog&& {(Ent.Attr p)}

e& P P E = entity-of(attr) P2 =
S {trans-pref(remove-this(p)) | p 2 P [P}

attr : T m {= e,= e (default)}&& {(E.attr p) | p 2 P2}
[Att]

entity t {a⇤}&& S {dep | a&& dep, a 2 a⇤}
[Ent]

model E⇤ R⇤ && S {dep | E&& dep, E 2 E⇤}
[Prog]

remove-this(this . p) = p
remove-this(attrOrRel . p) = attrOrRel . p
trans-pref(p . attrOrRel) = { p . attrOrRel } [trans-pref(p)
trans-pref(attrOrRel) = { attrOrRel }

Figure 3.6 Dependency analysis step 1: path-based abstract interpretation

Dependency inversion (Ent.Attr p)% (Ent.AttrOrRel ! p)

E2 = entity-of(attrOrRel)

(E . attr p . attrOrRel) % (E2 . attrOrRel ! inv-path(p) . attr)
[InvDep]

inv-path(p . attrOrRel) = attrOrRel�1 . inv-path(p)
inv-path(attrOrRel) = attrOrRel�1

inv-path(null) = null

Data flow Prog%% {(Ent.AttrOrRel ! p)}

model E⇤ R⇤ && Dep

model E⇤ R⇤ %% {d f | dep % d f , dep 2 Dep}
[Prog]

Figure 3.7 Dependency analysis step 2: data flow

Chapter 3. IceDust 47

Data flow graph Prog%%% ({AttrOrRel}, {(AttrOrRel, Attr)})

model E⇤ R⇤ %% DFlow
E={(x, y) | (Ent.x ! p.y) 2 DFlow} V={x | (x, y) 2 E} [{y | (x, y) 2 E}

model E⇤ R⇤ %%% (V, E)
[Prog]

Figure 3.8 Dependency analysis step 3: data flow graph

with multiple operands take the union of the paths of their operands [Op],
unary operators pass on paths [Not,Cast,Aggr], and literals do not contain
any paths at all [Literal]. Path-based abstract interpretation of the expression
defining pass

grade >= (assignment.minimum <+ 0.0) <+ false

produces a set containing the following paths:

grade
assignment.minimum

The dependencies relation (Figure 3.6) defines the dependencies of an at-
tribute, entity and program. We write Attr|Ent|Prog&& {(Ent.Attr p)},
where Attr|Ent|Prog is an attribute, entity or program, and {(Ent.Attr p)}
is a set of dependencies. When an attribute depends on a value at the end of
a path, it also depends on the relations en route. So, the rule for attributes
[Att] takes the transitive prefix of the paths of its expression. As paths are
concatenated later, and a this keyword in the middle would produce an in-
valid path, the this is removed from paths. As an example, the dependencies
of pass are:

(Submission.pass grade)
(Submission.pass assignment.minimum)
(Submission.pass assignment)

The dependencies in for the individual attributes together constitute the
dependencies for a full program [Ent,Prog].

3.3.3 Step 2: Data Flow

The data flow of an attribute or relation is the set of all the attributes that
depend on it to compute their derived value. The data flow relation is the
inverse of the dependency relation. We use the notation (Ent.AttrOrRel ! p)
to denote the data flow relation from the source, Ent.AttrOrRel, to the target,
the end of the path p.

The dependency inversion relation, (Ent.Attr p)% (Ent.AttrOrRel ! p),
in Figure 3.7 defines the inverse of a dependency. A dependency is inversed
by swapping source and target, and inverting the path p to get the path from
target to source. The function inv-path(p) inverts the names in on path,
and inverts their order. Name inversion is selecting the name on the opposing
side of a relation; all relations in IceDust are bidirectional, and have names on
both sides. All names in p can be inverted because they are relations. (p is

48

A.minimum S.assignment
A.submissions

A.nameA.parent
A.children

St.name

S.student
St.submissions

S.nameS.pass

S.childGradeS.childPass

A.avgGrade

S.passInt

A.passPerc S.best

S.parent
S.children

S.grade

7

43 51 2

8

96

66

13

11

12 14

6

A.question10

S.answer15

Figure 3.9 Step 3 example: strongly connected components and topological or-
dering in data flow.

the prefix of a full path, and only the last name of a path can be an attribute.)
If the dependencies of the attribute pass are inversed the resulting data flow
is:

(Submission.grade ! pass)
(Assignment.minimum ! submissions.pass)
(Submission.assignment ! pass)

3.3.4 Step 3: Data Flow Graph

The data flow graph relation Prog%%% (V, E) in Figure 3.8, defines a data
flow graph in terms of the data flow relation. The nodes in the graph are
attributes and relations in an IceDust program. The edges (x, y) in the graph
are (AttrOrRel, Attr) from the data flow relation (Ent.AttrOrRel ! p.Attr).
Using Tarjan’s algorithm [Tarjan, 1972] we find strongly connected compo-
nents and a topological ordering for the data flow. The strongly connected
components correspond to recursive dependencies.

The data flow graph for our example application is shown in Figure 3.9.
The attributes grade, pass, childGrade, and childPass mutually depend
on each other, a cycle in the graph (group 6). (The data flow is not cyclic:
data flows up the submission tree.) The minimum precedes group 6 in the
topological ordering, as pass in group 6 depends on it but minimum itself
depends on nothing. On the other hand, the passPerc, averageGrade, and
best depend on the results in group 6. The derived name for submissions is
disconnected from the grade calculation, as the name of the submission does
not have anything to do with the grade calculation. Relations only flow to
attributes, and not vice versa. In IceDust, relations cannot be derived. This
limits the expressiveness of IceDust, but also avoids ‘dynamic dependencies’,
dependencies that are discovered while computing derived values.

Topological ordering can be used to statically schedule the computation of
derived values. This is used in stratified Datalog, where a topological sort of

Chapter 3. IceDust 49

w rcalc

w calc r

w

calc

r

Calculate-on-Read

Calculate-on-Write

Calculate-Eventually

HTTP request
HTTP response
flag dirty

Legend:

w write base value
r read derived value
calc calculate derived value

Figure 3.10 Thread activation diagrams for code generated by different implemen-
tation strategies.

the dependencies between rules is used to determine the order of computa-
tion [Apt et al., 1986; Green et al., 2013]. We will elaborate on computation
scheduling, and on similarities with existing approaches, in later sections.

3.4 I M P L E M E N TAT I O N S T R AT E G I E S

The declarative specification of derived values in IceDust allows deferring the
decision about implementation strategy from implementation to compilation
time, and allows switching strategies to realize different non-functional re-
quirements without invasive code changes. In this section we present three
implementation strategies: Calculate-on-Read, Calculate-on-Write, and Calcu-
late-Eventually . For each of these we have a compilation scheme that specifies
what code to generate for IceDust’s concepts.

On a high level the difference between the generated code for the differ-
ent implementation strategies is the point in time at which derived values are
calculated. Figure 3.10 shows the differences by means of thread activation
diagrams in response to incoming HTTP requests. The code generated by
Calculate-on-Read calculates derived values when they are read. This means
that writes to base values, on which derived values can depend, will be fast,
but reads of derived values will be slow. The code generated by Calculate-
on-Write calculates the derived values that depend on changed base values
right away. Writes will be slow, but reads will be fast. The code generated
by Calculate-Eventually schedules calculation of derived values on a sepa-
rate thread. Writes and reads will be fast, but consistency is not guaranteed:
possibly outdated derived values might be read.

3.4.1 Compiling to WebDSL

IceDust is used to specify the data model and derived values for web appli-
cations. Our compiler compiles IceDust specifications to the WebDSL web
programming language [Visser, 2007], which is a high-level target language
for the implementation of data models. WebDSL persists its data in a rela-
tional database. This provides (1) data safety in case of a power outage, (2)
enables large data sets, and (3) enables concurrent data access for concur-

50

rent HTTP requests. WebDSL’s data modeling language is close to IceDust; it
features entities and attributes (including Calculate-on-Read derived values):

entity Assignment {
name : String
avgGrade: Float := avg([s.grade | s in subs where s.grade!=null])

}

Note the list comprehension syntax for applying a map to access the grade for
each submission and filter on null values. WebDSL does not have bidirectional
relations like IceDust, but it does have inverse properties:

entity Submission{ assignment : Assignment (inverse = submissions) }
entity Assignment{ submissions: Set<Submission> }

If a property is an inverse of another property, WebDSL keeps the values in
the properties consistent. Our compiler targets these inverse properties for
bidirectional relations, giving us the consistency of bidirectional relations for
free.

With WebDSL already providing data persistence, large data sets, concur-
rency, Calculate-on-Read derived values, and inverse property consistency,
our compilation schemes can focus on the essentials: default value behavior,
multiplicities, bidirectional relations, and the Calculate-on-Write and Calcu-
late-Eventually implementations for derived values.

The rest of this section describes the three implementation strategies in
detail, using MorphJ[Huang and Smaragdakis, 2008]-style code generation
templates for the compilation schemes. The templates use WebDSL (black
with purple keywords) as target language and template-level control state-
ments (blue italic) that iterate over entities, attributes, relations, and data
flow edges (orange italic). We explain WebDSL code along the way, using
callouts (for example: 1) to refer to specific parts of generated WebDSL code.

3.4.2 Calculate on Read

Figure 3.11 defines the Calculate-on-Read compilation scheme. To translate
IceDust with Calculate-on-Read to WebDSL we need to translate three IceDust
features: (1) multiplicities, (2) default value attributes, and (3) bidirectional
relations.

Multiplicities ? and 1 are translated to WebDSL primitives, while multiplic-
ities * or + are translated to lists. The getter for a normal attribute 2 (see
Figure 3.11) is static for null-safety, it might be called on a null value, for ex-
ample: Assignment.get_passPerc(null). The getter is lifted to deal with
a list of entities for which the attribute is referenced 10. Attributes can only
have multiplicity ? or 1, so there is no generation for multiplicity * or +. (List
typed attributes would create overhead in WebDSL’s mapping to the under-
lying database.)

Default value attributes are translated to two attributes 6,7 and one getter 9

in WebDSL. The first attribute 6 corresponds to the value possibly set by the
user. The second attribute 7 corresponds to the default value expression. The
getter 9 will return the user provided value, if any, and otherwise the default

Chapter 3. IceDust 51

value. When only 6 is used to write values, and only 9 is used to read values
the default value attribute will have IceDust’s semantics. WebDSL features no
private attributes and methods, so this behavior cannot be encapsulated.

Bidirectional relations are translated to properties and inverse properties
(which are kept consistent by WebDSL). The right-hand side of the relation
is translated to a normal WebDSL property 12,14,16, and the left-hand side is
translated to a property with an inverse 11,13,15. Unordered to-many rela-
tions are translated to sets, while the ordered relations are translated to lists.
It would suffice to translate them all to lists, but WebDSL’s relational database
mapping has more overhead for lists than for sets. Relation navigation is over-
loaded on multiplicity: navigate from single entity via a to-one relation 17, or
via a to-many relation 19, and navigate from multiple entities via a to-one
relation 18, or via a to-many relation 20.

Calculate on Read Properties

The compiled Calculate-on-Read programs have the following properties: (1)
derived value reads are consistent, (2) transactions might fail, and (3) cyclic
derived values cause a stack overflow exception at runtime.

Derived value consistency is based on database transactions. HTTP re-
quests see all changes to base data from previous requests, and no changes
to base data from concurrent requests. They compute the derived values, so
these are consistent. The database performs optimistic locking, consequently
transactions with concurrent edits to the same values are rejected. A cycle in
the static dependency graph, such as group 6 in Figure 3.9, can admit a cyclic
attribute value definition (for example a submission being a child of itself, and
its grade being the average of its child grades). Such a cyclic derived value
cannot be computed. The generated code will keep recursing into the getters
until stack space is exhausted.

3.4.3 Calculate on Write

Figure 3.12 defines the Calculate-on-Write compilation scheme. The Calculate-
on-Write compilation scheme builds on the Calculate-on-Read compilation
scheme, only mentioning the new or changed WebDSL code. The general
idea for Calculate-on-Write is caching all derived values, and incrementally
maintaining the cached values on writes (like materialized views [Gupta and
Mumick, 1995]). Updating a derived value can lead to having to update other
derived values. This behavior is realized by dirty flagging (and updating)
all dependent attributes on updating an attribute or relation (like push-based
reactive programming [Nilsson et al., 2002]). To avoid unnecessary recompu-
tation, updates are scheduled using the topological sort of the data flow graph
(like stratified Datalog [Apt et al., 1986; Green et al., 2013]). So, to translate
IceDust with Calculate-on-Write to WebDSL, we need to generate caches, dirty
flagging, and recalculation.

Derived value caches store the derived values 22,25. The properties contain-
ing the cached derived values are managed by code keeping track of dirty

52

for E in Entities
entity E {
for a : T m in E.attributes

a : T (default=null)1

static function get_a(e : E) : T { return if(e == null) null else e.a; }2

for a : T m = e1 in E.attributes
a : T := calculate_a()3

function calculate_a() : T { return e1; }4

static function get_a(e : E) : T { return if(e == null) null else e.a; }5

for a : T m = e1 (default) in E.attributes
a : T (default=null)6

a_default : T := calculate_a()7

function calculate_a() : T { return e1; }8

static function get_a(e : E) : T {
return if(e == null) null else if(e.a == null) e.a_default else e.a;

}9

for a : T m {, = e1, = e1 (default)} in E.attributes
static function get_a(entities : [E]) : [T] {
return [E.get_a(e) | e : E in entities where E.get_a(e) != null];

}10

for relation E.l {1,?} <-> m2 E2.r in Relations
l : E2 (inverse=r)11

for relation E2.r m2 <-> {1,?} E.l in Relations
l : E212

for relation E.l {*,+} (unordered) <-> m2 E2.r in Relations
l : {E2} (inverse=r)13

for relation E2.r m2 <-> {*,+} (unordered) E.l in Relations
l : {E2}14

for relation E.l {*,+} (ordered) <-> m2 E2.r in Relations
l : [E2] (inverse=r)15

for relation E2.r m2 <-> {*,+} (ordered) E2.r in Relations
l : [E2]16

for relation E.l {1,?} <-> m2 E2.r
and relation E2.r m2 <-> {1,?} E.l in Relations

static function get_l(e : E) : E2 { return if(e == null) null else e.l;}17

static function get_l(entities : [E]) : [E2]{
return [E.get_l(e) | e : E in entities where E.get_l(e) != null];

}18

for relation E.l {+,*} <-> m2 E2.r
and relation E2.r m2 <-> {+,*} E.l in Relations

static function get_l(e : E) : [E2]{
return if(e == null) null else [e2 | e2 : E2 in e.l];

}19

static function get_l(entities : [E]) : [E2]{
return [e2 | e : E in entities, e2 : E2 in e.l];

}20

}

Figure 3.11 Compilation scheme for Calculate-on-Read implementation strategy

Chapter 3. IceDust 53

values 29,30,36, and code for updating dirty values 27,28.
Dirty flagging of derived values happens when underlying values are up-

dated. WebDSL provides extend function hooks to intercept calls to setters.
When a setter is called, all dependent values are dirty flagged by traversing
the data flow paths 31-34. Attributes and relations with multiplicity ? and 1
only dirty flag when the value changes 31, while relations with multiplicity
* and + dirty flag on additions and removals 32,33. As relations have two
names, dirty flagging is done for both names. Moreover, updating a relation
can also implicitly remove another relation. For example, moving a submis-
sion to a different assignment

bobsSubmissionToMath.assignment := logicAssignment;

will trigger:
bobsSubmissionToMath.set_assignment(logicAssignment);
mathAssignment.remove_from_submissions(bobsSubmissionToMath);
logicAssignment.add_to_submissions(bobsSubmissionToMath);

Recalculation of derived values 35 is performed after user code is run, and before
the flush to database. The computation is scheduled statically by means of the
topological sort of the connected components in the data flow graph. Within
a connected component, a while continues computing derived values until
none of the derived values is dirty anymore.

Calculate on Write Properties

This compilation scheme yields programs with the following properties: (1)
the derived value reads are consistent, (2) transactions might fail, (3) cyclic
derived values can cause non-termination, (4) scheduling is optimal for acyclic
dependency graphs, and (5) scheduling is naive for connected components
inside the dependency graph.

Consistency of derived values is based on consistency of derived values
within a single HTTP request, and database concurrent transaction semantics.
For any changed attribute or relation, all the values that depend on it are dirty
flagged and recomputed. By induction, all values that depend transitively on
a changed value get dirty flagged and recomputed. Computation only stops if
all dirty flags are processed. As such, for a specific HTTP request, all derived
values in memory are up to date when computation terminates. Flushing
to the database only succeeds if previously read data remains unchanged,
guaranteeing consistency. Failing transactions occur more often in Calculate-
on-Write than in Calculate-on-Read, as both the updates to base values, and
the updates to derived value caches can cause conflicts.

Cyclic derived values, such as the average submission grade depending on
itself, can cause non-termination. If an updated value dirty flags itself (tran-
sitively), and its new value is different, the computation loops. A diverging
value causes non-termination, while a converging value is a fix point calcu-
lation. Incremental Datalog implementations guarantee termination by dis-
allowing recursive aggregation and negation: stratified negation [Apt et al.,
1986] and stratified aggregation [Mumick et al., 1990]. We allow recursive
aggregation, but do not guarantee termination.

54

//All code from Calculate-on-Read, except generated fields for attributes.
for E in Entities

entity E {
for a : T m in E.attributes

a : T (default=null)21

for a : T m = e1 in E.attributes
a : T (default=calculate_a())22

function update_a() { a := calculate_a(); }23

for a : T m = e1 (default) in E.attributes
a : T (default=null)24

a_default : T (default=calculate_a())25

function update_a() { a_default := calculate_a(); }26

for a : T m {= e1, = e1 (default)} in E.attributes
static function a_update_all() {
for(e in E.get_and_empty_a_dirty()){ e.update_a(); }

}27

static function get_and_empty_a_dirty() : {E} {
var values := E_a_dirty; E_a_dirty := Set<E>(); return values;

}28

static function a_has_dirty() : Bool { return E_a_dirty.length != 0; }29

static function a_flag_dirty(entities:{E}){ E_a_dirty.addAll(entities);}30

for E.a->path.a2 in DataFlow where a.multiplicity in {?,1} and E2=a2.entity
extend function set_a(newV : T){ if(a!=newV){ E2.a2_flag_dirty(path); }}31

for E.l->path.a2 in DataFlow where l.multiplicity in {*,+} and E2=a2.entity
extend function add_to_l (n:T){ if(l!=n){ E2.a2_flag_dirty(path); }}32

extend function remove_from_l(n:T){ if(l!=n){ E2.a2_flag_dirty(path); }}33

for E.a->path.a2 in DataFlow where a2 : T m = e1 (default) and E2=a2.entity
extend function set_a_default(newValue : T) {
if(a == null && a_default != newValue){ E2.a2_flag_dirty(path); }

}34

}

// update_derivations gets called before flush to database
function update_derivations(){

var not_empty : Bool;
for ConnectedComponent cc in DataFlowGraph topologically sorted
not_empty := true;
while(not_empty){

for a : T m {= e1, = e1 (default)} in cc where E = a.entity
E.a_update_all();

not_empty := false;
for a : T m {= e1, = e1 (default)} in cc where E = a.entity
not_empty := not_empty || E.a_has_dirty();

}
}35

for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity
request var E_a_dirty : {E} := Set<E>()36

Figure 3.12 Compilation scheme for Calculate-on-Write implementation strategy

Chapter 3. IceDust 55

Derived values should only be recomputed after all values they depend
upon are already updated. With acyclic data flow graphs, topological schedul-
ing completely removes unnecessary recomputation. With cyclic data flow
graphs, topological scheduling only partially removes unnecessary recompu-
tation: the connected components are statically scheduled, but the derived
values inside a connected component are updated without scheduling.

3.4.4 Calculate Eventually

Figure 3.13 defines the Calculate-Eventually compilation scheme. It builds
on the Calculate-on-Write compilation scheme, only stating additions and
changes. The idea is to take the dirty flags from Calculate-on-Write, but pass
these on to a separate, dedicated thread, allowing the HTTP request handlers
to finish early. The writes to base values will still be synchronous, but the
updates to derived values will be asynchronous. So, to translate to WebDSL
we need to generate code that (1) dirty flags cross-thread, and (2) updates
derived values in a separate thread.

Cross-thread dirty flagging communicates dirty flags from request handlers
to the updater thread. WebDSL abstracts over concurrent handling of requests
by running request handlers completely separated from each other. Commu-
nication between the threads handling HTTP requests, normally, is through
the database. However, the database cannot notify the updater thread, so in
memory communication is required. To communicate in memory between
threads in WebDSL we need native Java code. For each derived value at-
tribute we generate a ConcurrentLinkedQueue 45, and make this queue avail-
able in WebDSL by means of a static function in a native class 44. As
an HTTP request is handled, derived values get dirty flagged locally (as in
Calculate-on-Write). After the changes are flushed to database, the local dirty
flags are communicated cross-thread. Because an entity can be mapped from
the relational database to an object in memory multiple times (once per re-
quest handler), the cross-thread dirty flagging needs to communicate an en-
tity’s unique identifier (UUID) 39.

The derived value recalculation thread is started with WebDSL’s recurring
tasks mechanism 42. Every millisecond the thread is started, if not still run-
ning. The thread performs the same calculations as Calculate-on-Write, but
uses the cross-thread dirty flags 43. It loads entities with dirty flagged derived
values into memory 37, then updates derived values, and finally propagates
its own local dirty flags to the cross-thread dirty flags 39.

Calculate Eventually Properties

The Calculate-Eventually programs have the following properties: (1) derived
values will eventually be up to date, (2) derived value reads are not glitch-free,
(3) derived value calculation can starve under load, (4) after load subsides
only relevant updates are calculated, and (5) cyclic values can cause non-
termination.

56

//All code for Calculate-on-Write, except for update_derivations.
for E in Entities

entity E {
for a : T m {= e1, = e1 (default)} in E.attributes

static function get_and_empty_a_dirty_async() : {E} {
var queue := DirtyQueues.get_E_a_queue(); var vals : {E};
while(!queue.isEmpty()){
vals.add(loadEntity(E, UUIDFromString(queue.poll() as String)) as E);

}
return vals;

}37

static function a_has_dirty_async() : Bool {
return !DirtyCollections.get_E_a_queue().isEmpty();

}38

static function a_flag_dirty_async() {
var dirty := E.get_and_empty_a_dirty();
DirtyCollections.get_E_a_queue().addAll([v.id.toString() | v in dirty]);

}39

static function a_update_all_async() {
for(e in E.get_and_empty_a_dirty_async()){ e.update_a(); }

}40

}

//flag_dirty_async is called on every request after write to database
function flag_dirty_async() {

for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity
E.a_flag_dirty_async();

}41

invoke update_derivations() every 1 milliseconds42

function update_derivations(){
var not_empty : Bool;
for ConnectedComponent cc in DataFlowGraph topologically sorted
not_empty := true;
while(not_empty){

for a : T m {= e1, = e1 (default)} in cc where E = a.entity
E.a_update_all();

flagDirtyAsync();
not_empty := false;
for a : T m {= e1, = e1 (default)} in cc where E = a.entity
not_empty := not_empty || E.a_has_dirty();

}
}43

native class derivations.DirtyQueues as DirtyQueues {
for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity
static get_E_a_queue() : Queue44

}

// Not expressible in WebDSL: Java code
public class DirtyQueues {

for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity
private static Queue<String> E_a_queue =

new ConcurrentLinkedQueue<String>();45

public static Queue<String> get_E_a_queue(){ return E_a_queue; }46

}

Figure 3.13 Compilation scheme for Calculate-Eventually implementation strategy

Chapter 3. IceDust 57

Eventual calculation is guaranteed by the invariant that outdated derived
values are always accompanied by a dirty flag. Dirty flags are only sent by re-
quest handling threads after their changes are flushed to the database, ensur-
ing the updater thread never processes dirty flags without seeing the changes.
During updates (the same) derived values might be dirty flagged again. To
ensure new dirty flags are processed, the updater thread copies and empties
the dirty flag queues before processing flags. New flags will be processed
subsequently.

Glitch-freedom is not provided inside connected components, as there is
no topological ordering on the instance level. Also, derived value calculation
starvation happens when server load is high. However, successive changes to
the same base values will not create extra dirty flags. So when the system has
spare resources, it will just compute the derived values based on the latest
base values, and ignore all the intermediate base values. And finally, like
Calculate-on-Write, cyclic derived values can cause non-termination.

3.5 E VA L U AT I O N

The declarative specification of derived values in IceDust allows switching im-
plementation strategies to realize different non-functional requirements with-
out invasive code changes. In this section we benchmark different generated
implementations, to evaluate whether they are indeed able to satisfy differ-
ent non-functional requirements. The benchmarks differ in (1) the read/write
ratio, (2) the number of base values derived values depend upon, and (3)
the number of fully unrelated derived values. The measured non-functional
properties are (1) throughput of derived value reads and base value writes
per second, (2) the number of failing writes per second, and (3) the response
time for reading derived values and writing base values. In this section we
will discuss the benchmark setup and results.

3.5.1 Benchmark Setup

In the case study (Section 3.6) we encounter derived values that depend on
up to 60000 values transitively. The essence of the calculation is a tree-like
structure with aggregations on every level. For the benchmark evaluation of
the different implementation strategies we use a simplified model, a simple
tree with an average on each level:

entity Node{ avgValue : Float? = avg(children.avgValue) (default) }
relation Node.parent ? <-> * Node.children

The tree branches out with a factor of 10, up to 6 deep (size 1, 11, . . . , 111111).
The benchmarks consist of read and write requests. Read requests retrieve

the average at the top node of the tree. Write requests update a value at a
random leaf node of the tree. Benchmarks are warmed up for 10 seconds,
and then measured for 15 minutes. The Siege2 tool is used to execute the

2https://www.joedog.org/siege-home/

58

https://www.joedog.org/siege-home/

benchmark requests. It is configured to use 10 concurrent threads, which
initial benchmarks indicated to be a reasonable concurrency level. If the con-
currency level is too low, the computer is not using maximum resources; if
it is too high, too many requests will queue up increasing response times
but not improving throughput. The benchmarks were performed on an early
2013 Macbook Pro laptop with Intel Core i7 2,7Ghz, 4 cores (8 threads), and
16 GB memory. The Java servlet web application generated by WebDSL was
deployed on OS X 10.11, Java 1.8.0_60, MySQL 5.6.27, and Tomcat 7.0.40.

3.5.2 Benchmark Results

The first two benchmarks determine the behavior in extreme workloads with
only read or only write requests. Figure 3.14 shows that the performance for
a workload of 100% decreases as the tree gets deeper. Beyond depth 4 the
response takes longer than 0.1 second, and is noticeable for users. Calculate-
on-Read response times increase linearly with the number of read objects,
indicating that this is the limiting factor. The other implementation strategies
stay at a steady high throughput with low latency, because they only retrieve
a single node with a cached value on each request. The maximum throughput
is around 1900 transactions per second, indicating the general overhead of the
system.

The benchmark in Figure 3.15 shows the performance for write-only work-
loads. In addition to the throughput of successful requests, the failed requests
are indicated by the dashed lines. When a database transaction fails due to
conflicting writes, WebDSL retries it up to 3 times before failing the entire
request. This improves usability for typical scenarios where a single transac-
tion conflict may occur occasionally. Multiple subsequent failed transactions
only occur in extreme situations where many concurrent requests conflict. For
example, in this benchmark at tree depths 1 (1 object) and 2 (11 objects), all im-
plementation strategies have repeated transaction failures resulting in failed
requests. In general, the maximum throughput the system supports for con-
current edits on a single object is close to 300 edits per second (tree depth 1,
all implementation strategies). Calculate-on-Write has many request failures
(around 60%) at all tree depths, which makes the implementation unusable in
practice for this use case. Calculate-on-Read and Calculate-Eventually have
overall high throughput and low latency, except for the low tree depths where
transaction failures occur.

Figure 3.16 shows the trade-off between Calculate-on-Read and Calculate-
on-Write in mixed read/write ratio workloads. Calculate-on-Write suffers
from many transaction failures, except for 100% reads. So, it is unusable
if all base values aggregate into a single value, even with a small number
of concurrent writes. Calculate-on-Read improves when the workload shifts
from reads to writes. However, the average response time for anything ex-
cept 100% writes is unacceptebly high. Calculate-Eventually has stable high
throughput and low latency for all the different workload scenarios. If all
base values in a system aggregate transitively into a single derived value, the

Chapter 3. IceDust 59

Figure 3.14 Read-only workload benchmark throughput (left) and latency (right)

Figure 3.15 Write-only workload benchmark throughput (left) and latency (right)

only viable strategy is Calculate-Eventually.

In the final benchmark, shown in Figure 3.17, we investigate whether not
aggregating all base values into the same derived value makes the Calculate-
on-Write strategy viable. We compare the implementation strategies when
there are up to 256 separate trees of depth 4. Calculate-on-Write performs
better indeed in scenarios with more disconnected derived values. With 16
trees, the number of failed transactions drops below 0.5%. If consistency is
desired, and derived values depend on roughly 1000 base values, the trade-
off throughput-wise between Calculate-on-Read and Calculate-on-Write is at
2 separate trees. However, Calculate-on-Write still has many failing requests.
Only at around 16 trees the number of failing transactions falls below 0.5%,
and Calculate-on-Write becomes a viable option. When eventual calculation
is acceptable, it is always the most performant solution.

3.5.3 Discussion

We could perform many more benchmarks (for example with other data struc-
tures than trees, or with workloads with more structure than a read/write
ratio). However, the presented benchmarks show that each implementation
strategy is useful in specific cases.

60

Figure 3.16 Varying workload benchmark throughput (left) and latency (right) with
tree depth 5.

Figure 3.17 Separate trees benchmark throughput (left) and latency (right) with
50-50 workload.

The form of non-functional requirements determines the form of verifica-
tion required [Glinz, 2005]. The verification for quantitative requirements is
measurements, and for operational requirements is review, test or formal ver-
ification [Glinz, 2005]. Consistency and eventual calculation are operational
requirements. We tested whether our implementations satisfy consistency
and eventual calculation. In future work this can be improved with formal
verification.

3.6 C A S E S T U D Y

We applied IceDust to the grading policies in a learning management system
in which students can submit assignments that get graded semi-automatically.
The system contains complex derived value calculations, contains a lot of data
(hundreds of thousands of entities, with millions of derived values), and is
subject to intense workloads on a small subset of the data. The complex de-
rived value calculations were specified in IceDust’s declarative derived value
attributes, and the Calculate-Eventually strategy was used to generate an im-
plementation. In this section we (1) reflect on the expressiveness of IceDust,
based on the experiences from the case study, and (2) highlight parts of the

Chapter 3. IceDust 61

resulting declarative specification that are quite different from the original
imperative implementation.

First, let us introduce the learning management system in more detail. The
system is a much more complicated version of the one introduced in Section
3.3. It features semi-automatic grading, programming assignments with test
cases, and automatically graded multiple choice questions. Assignments are
structured in a tree, and students get a weighted average for each node in the
tree up to the top, which is their final grade for the course. The grading logic
also includes deadlines, deadline extensions, late penalties, minimum grades,
and alternative assignments. The courses, and their assignments, have statis-
tics such as the percentage of students with a passing grade. For the largest
course in the system, the statistics depend transitively on ± 60000 individual
submissions (± 250 students, with ± 15 assignments per week, running for 12
weeks, and exams with multiple questions in the end).

Explicit Not Yet Calculated Values Expressing the grading logic in IceDust
forced us to look at previously implicit things. Students which did not attempt
an assignment get a 0.0 on a scale of 1.0 to 10.0. The other students would get
a 1.0, as grading would be triggered:

// only call calculateGrade if submission is attempted
function calculateGrade() { grade := max(1.0, calculatedGrade); }

The grading logic states that grades cannot be lower than 1.0, but if grading
is not triggered the float default value is used. As the compiled code from
IceDust detects everything that should be calculated, these grades would be
changed from 0.0 to 1.0. To model assignments that are not attempted by
students, attempted should be explicitly mentioned:

grade : Float = if(not attempted) 0.0 else max(1.0, calculatedGrade)

Explicit Stateful Calculations The imperative code, also implicitly, kept old
grades when grades where published and a newly calculated grade was lower:

if(assignment.statsPublic()){ newgrade := max(oldgrade, newgrade); }

In the new specification this requires an explicit self-reference:

grade : Float = if(public) max(grade, calculatedGrade)
else calculatedGrade

Note that the IceDust specification only works for push-based implementa-
tions: Calculate-on-Write or Calculate-Eventually. Calculate-on-Read would
throw a stack overflow exception. The sentence ‘only update when grade is
higher’ implies push-based calculation: the previous calculated grade needs
to be cached for when a new grade becomes available. It is arguable whether
someone should express logic like this, as once grades are visible, it is not
traceable anymore how a grade was calculated. This is on the border of what
is expressible in IceDust.

Code Factorization Differences In IceDust the value of an attribute is defined in
a single place: the derived value expression. In imperative code, assignments

62

to attributes can happen in multiple places, which means assignments can be
distributed over ifs:

if(assignment.passOne){
passSub := disj([s.pass() | s:Submission in submissions]);
grade := max([s.grade() | s:Submission in submissions]);

} else{
passSub := conj([s.pass() | s:Submission in submissions]);
grade := avg([s.grade() | s:Submission in submissions]);

}

In IceDust ifs need to be distributed over derived value attributes:
grade : Float? = if(assignment.passOne) max(children.grade)

else avg(children.grade)

passSub : Boolean = if(assignment.passOne) disj(children.pass) //one
else conj(children.pass) //all

Whether the old or new specification is preferable is arguable. If the cases
would be more complex than a single if it would lead to repeated code in
IceDust.

Application Analysis Finally, we made a more analytic observation: even
though the data-flow graph of the specification in IceDust contains more than
100 nodes, it contains just a single connected component. Grades, weight-
edGrades (weighted averaging is used), pass, and child-pass are mutually
recursive (like Figure 3.9). All other dependencies are acyclic. This system
has derived value-wise just a single complex part: the grade calculation. In-
tuitively we already knew this, but now we can quantify this with properties
of the data-flow graph.

3.7 R E L AT E D W O R K

The related work is organized along language design and the three imple-
mentation techniques (Calculate-on-Read, Calculate-on-Write, and Calculate-
Eventually).

3.7.1 Languages with Relations

There are multiple languages that feature relations as a language construct.
We will cover closely related languages and highlight the differences.

Rumer [Balzer, 2011] features first-class citizen relations with queries for
navigation. IceDust relations are not first-class citizen, and navigation is
through member access instead of queries. In Rumer multiplicities can be
specified in constraints which are enforced at runtime, while in IceDust these
are part of the type system. Rumer does not support derived value attributes,
but queries can be used to specify Calculate-on-Read derived values. Finally,
Rumer is an imperative in-memory language, while IceDust is declarative and
persists its data.

RelJ [Bierman and Wren, 2005] also features first-class citizen relations. In
RelJ participants of relations do not have names, so navigation is positional

Chapter 3. IceDust 63

(using from and to). RelJ features only multiplicity upper bounds, no lower
bounds. These multiplicities are enforced at runtime: either by throwing ex-
ceptions, or by implicitly removing previous relations. RelJ does not feature
derived value attributes, and RelJ is an imperative in-memory language like
Rumer.

Relations [Harkes and Visser, 2014] features multiplicities as part of the
type system and derived value attributes like IceDust. Its derived values are,
however, only Calculate-on-Read. Relations is declarative, like IceDust, but
its data is only in memory, not persistent. Relations in this language are
first-class citizen like Rumer and RelJ, but feature navigation through mem-
ber access. IceDust relations are not first-class citizen, but feature the same
member access navigation.

Alloy [Jackson, 2002] is a language for bounded model checking which fea-
tures language constructs similar to IceDust: bidirectional relations, multiplic-
ities, and derived values. Alloy is more expressive than IceDust: it features
n-ary relations, and its derived values specify derived relations (as opposed
to derived attribute values). However, Alloy’s bounded model checker only
works on small data sets, and primitive values (only integers in Alloy) should
be avoided as they blow up the state space. IceDust, on the other hand, sup-
ports derived values over arbitrary primitive values (int, string, float, date-
time, and boolean), and admits efficient implementation strategies applied to
large data sets. To compute derived values in large data sets from an Al-
loy specification, Alloy would need an operational semantics not based on
bounded model checking or SAT solving. An approach for an operational
semantics for Alloy was proposed in [Giannakopoulos et al., 2009], but this
approach is not complete. As Alloy has much greater expressive power (first-
order logic), we also expect such an Alloy operational semantics to not be
efficient. Finally, another difference is that in IceDust the multiplicities are
checked in the type system, while in Alloy these are only checked during
bounded model checking.

3.7.2 Calculate on Read

We do not cover Calculate-on-Read extensively, as it is the default implemen-
tation for many formalisms. We cover only the object-oriented approaches.

Object-oriented languages lend themselves for various Calculate-on-Read
optimization techniques. Wiedermann and Cook take imperative code with
for loops and if statements and convert those to SQL queries [Wiedermann
and Cook, 2007]. Their approach is similar to our work in that it operates
on persistent objects by means of an object-relational mapper. Also their ap-
proach for analyzing dependencies is similar: path-based abstract interpreta-
tion. They optimize imperative code that can be expressed as queries. Our
approach, on the other hand, treats code that cannot be expressed as queries,
recursive aggregation. The Java Query Language (JQL) adds queries to Java
[Willis et al., 2006]. The rationale for queries is that these are more succinct to
write, and more efficient than nested for loops. JQL has been incrementalized,

64

we will cover this in the next subsection. This chapter adds over these appro-
aches the possibility to easily switch to an incremental or eventual calculation
implementation strategy.

3.7.3 Calculate on Write (Incremental Computation)

Incremental computation is present in many fields in computer science. We
relate our Calculate-on-Write implementation scheme to existing incremental
approaches.

Materialized views in relational databases can be incrementally maintained
[Gupta and Mumick, 1995]. Recursion and stratified aggregation can be sup-
ported [Gupta et al., 1993]. Stratified aggregation does not admit recursive
aggregation. (See next paragraph for relaxations of stratified aggregation in
logic databases.) Switching between implementation strategies in relational
database also do not require invasive code changes: the definitions for ma-
terialized and non-materialized views are identical. Relational databases do,
however, not support eventually-calculated views.

Logic Databases or Deductive Databases are a more expressive than rela-
tional databases. Logic Databases support stratified aggregation like rela-
tional databases [Mumick et al., 1990]. Since stratified aggregation does not
support recursive aggregation, more relaxed notions of aggregation have been
introduced, such as Monotone Aggregation [Ross and Sagiv, 1992]. Monotone
Aggregation has also been incrementalized [Ramakrishnan et al., 1994]. A re-
cent survey [Green et al., 2013] states that at present, the Datalog community
seems not to have converged on any of the proposed semantics for aggre-
gation through recursion. This means that in practice recursive aggregation
is often not supported. For example LogiQL [Green, 2015], the language of
LogicBlox, does not support recursive aggregation.

Functional reactive programming (FRP) [Elliott, 2009], for example REScala
[Salvaneschi et al., 2014], Scala.React [Maier and Odersky, 2013], or i3QL
[Mitschke et al., 2014], provides incremental computation. Calculate-on-Read
style code wrapped with FRP libraries behaves as Calculate-on-Write. FRP
abstractions provide single-threaded, in-memory derived values. In contrast,
IceDust provides concurrent, persistent derived values.

Spreadsheets provide incremental computation. The data structure in a
spreadsheet is a 2d grid. IceDust’s data structure is an object graph. Moreover
our object graph is typed, while spreadsheets are free form. Spreadsheets
do mostly have an implicit structure [Hermans et al., 2010]. IceDust with
Calculate-on-Write can be seen as a structured spreadsheet without a 2d grid.

Object-oriented programs can also be incrementalized. Incremental Updates
for Materialized OQL views [Gluche et al., 1997] proposes to generalize in-
cremental view maintenance from relational databases to support the Object
Query Language (OQL) as view definition language. MOVIE [Ali et al., 2003]
develops this work further. They also provide an overview of relational in-
cremental view maintenance implementations, with either a relational or an
object-oriented surface syntax. These approaches, even though some have an

Chapter 3. IceDust 65

object-oriented surface syntax, are part of the relational paradigm (with the
limitations previously mentioned for materialized views).

The Java Query Language is incrementalized [Willis et al., 2008]. Their
benchmarks show, like ours, that for different read-write ratio workloads the
incremental or calculate-on-read solution offers better performance. Demand-
Driven Incremental Object Queries [Liu et al., 2015] improves over JQL by us-
ing auxiliary indices for incrementality. Similar to [Wiedermann and Cook,
2007] they transform imperative code to a relational calculus. But instead of
performing relational queries like [Wiedermann and Cook, 2007] they use the
relational model to generate code that incrementally maintains the caches.
Our approach uses path-based abstract path interpretation instead of a rela-
tional calculus to generate maintenance code. Both of the above approaches
slightly differ in use cases from our approach: they target set membership of
objects e.g. whether an object belongs to a set specified by a query, while our
approach targets derived value attributes.

Graph queries can be incrementally evaluated in IncQuery [Szárnyas et al.,
2014]. IncQuery’s data structure is a graph, like ours, but its goal is to pattern
match. Our approach does not support pattern matching on graph structures,
rather it computes derived attribute values.

Attribute grammars feature a declarative style of specifying derived values.
Attribute grammars can also be incrementally computed [Demers et al., 1981].
As attribute grammars only support trees, one could look at reference at-
tribute grammars to support full blown graphs [Söderberg and Hedin, 2012].
Reference attribute grammars do support graph structures, but there is a clear
distinction between the tree, and the derived graph edges. In our approach the
graph is the basis. Fitting our data models onto attribute grammars would re-
quire extracting a spanning tree, and deriving the other edges. In this process
we would lose the correspondence to the data flow graph, and derived edges
would become dynamic dependencies, which would complicate scheduling.

Self-adjusting computation [Acar, 2009] does not cover a single program-
ming paradigm as it features multiple languages (including SLf, for func-
tional programming, and SLi, for imperative programming). Self-adjusting
computation automatically transforms a Calculate-on-Read style program to
a Calculate-on-Write style program. Our approach does not take Calculate-on-
Read as basis, but instead provides a declarative language to express derived
values.

3.7.4 Calculate Eventually

The code generated by the Calculate-Eventually implementation makes de-
rived values of attributes eventually consistent with base values. We cover
existing work on eventual (or asynchronous) computation of derived values
in this subsection.

Event and Actor programming, with for example Akka [Gupta, 2012] or RX
[Meijer, 2010], provide an asynchronous update mechanism for calculating
derived values. Updates to derived values are asynchronous, meaning that

66

there is no consistent view of base values and derived values at the same
time. As such, these do not provide consistency, like the code produced by
our Calculate-Eventually implementation strategy.

Eventual consistency for distributed data also features eventual calculation, but
is unrelated. As a recent survey on Eventual Consistency states: “shared data
is updated at different replicas, updates are transmitted asynchronously, and
conflicts are resolved consistently” [Burckhardt, 2014]. Our approach does
not have different replicas of data, there is a single database. Our approach
does not have asynchronous updates, the update is synchronous as a HTTP
response is only sent after the transaction in the database is completed. And
finally, our approach does not have conflicts during the calculation of derived
values, as the base values define unambiguously what the derived values of
attributes should be.

3.8 C O N C L U S I O N

Data modeling with declarative derived value attributes in IceDust allows
deferring the decision about implementation strategy from implementation
to compilation time, and allows switching strategies without invasive code
changes. We have demonstrated that these different strategies provide dif-
ferent non-functional properties, so that a specific strategy can be chosen to
realize certain non-functional requirements. Finally, a case study indicated
our approach is useful for expressing derived values of systems used in prac-
tice.

In future work, we would like to explore more implementation strategies,
such as transitive dirty flagging on writes with recalculation on reads, or even-
tually calculated with flags indicating whether the values are up to date or not.
We also would like to explore more flexibility in implementation strategies
by allowing composition of different strategies, and live switching between
strategies. A type system should restrict compositions to only sound ones:
consistent values cannot depend on eventually calculated values, and calcu-
late on write values cannot depend on calculate on read values. Finally, we
would like to guarantee termination by specifying non-circular relations and
runtime non-circularity checking.

Chapter 3. IceDust 67

68

4
IceDust 2
Derived Bidirectional Relations and Calculation Strategy Composition 1

Derived values are values calculated from base values. They can be expressed
with views in relational databases, or with expressions in incremental or re-
active programming. However, relational views do not provide multiplicity
bounds, and incremental and reactive programming require significant boil-
erplate code in order to encode bidirectional derived values. Moreover, the
composition of various strategies for calculating derived values is either dis-
allowed, or not checked for producing derived values which will be consistent
with the derived values they depend upon.

In this chapter we present IceDust2, an extension of the declarative data
modeling language IceDust with derived bidirectional relations with multi-
plicity bounds and support for statically checked composition of calculation
strategies. Derived bidirectional relations, multiplicity bounds, and calcula-
tion strategies all influence runtime behavior of changes to data, leading to
hundreds of possible behavior definitions. IceDust2 uses a product-line based
code generator to avoid explicitly defining all possible combinations, making
it easier to reason about correctness. The type system allows only sound com-
position of strategies and guarantees multiplicity bounds. Finally, our case
studies validate the usability of IceDust2 in applications.

4.1 I N T R O D U C T I O N

Derived values are values computed from base values. Base values are prov-
ided by the users of an application. When base values change, derived values
should change accordingly. A key concern in implementing systems with de-
rived values is minimizing the computational effort that is spent to re-compute
derived values after updates to base values. A key concern in modeling sys-
tems with derived values is minimizing the programming effort to realize such
minimal computations. Ideally, one declaratively specifies how values are de-
rived from base values; from such a specification an efficient update strategy
is generated automatically. Declarative programming with derived values is
an old idea, going back at least to incremental computation of views in rela-
tional databases [Gupta et al., 1993]. More recently it has seen much attention
in new fields. Incremental programming [Hammer et al., 2015, 2014; Harkes
et al., 2016; Mitschke et al., 2014; Ujhelyi et al., 2015] uses previously calculated
values to efficiently compute new ones. In (functional) reactive programming

1This chapter has appeared as Harkes, D. C. and Visser, E. (2017). Icedust 2: Derived bidirec-
tional relations and calculation strategy composition. In Müller, P., editor, 31st European Confer-
ence on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74 of
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

69

field

directionality

unidirectional
(attribute)

bidirectional
(relation)

inverse
multiplicity ub

1 n

derivation
type

normal default derived

calculation
strategy

on-demand incremental eventual

expressionmultiplicity
upper bound

1 n

default implies unidirectional
unidirectional and not normal implies expression
normal implies no expression
normal implies incremental
incremental flow implies incremental
eventual flow implies incremental or eventual

or

mandatory

optional

multiplicity
lower bound

0 1

ordering

ordered unordered

ordering

ordered unordered

inverse
multiplicity lb

0 1

flows

alternative

calculation
strategy

on-demand
flow

incremental
flow

eventual
flow

Figure 4.1 Feature model for configuration of a field in IceDust and IceDust2

[Elliott, 2009; Maier and Odersky, 2013; Meijer, 2010; Salvaneschi et al., 2014]
base values are modeled as time-varying signals, and derived values are mod-
eled as signals that are automatically updated when the values of dependent
signals change.

These techniques vary in expressiveness and in static guarantees for con-
sistency. Derived bidirectional relations can be expressed directly in the rela-
tional paradigm, but the relational paradigm provides no guarantees on mul-
tiplicity bounds for derived values. On the other hand, multiplicity bounds
can be directly expressed with Option and Collection types in incremental
and reactive programming, but only unidirectional relations can be expressed
without encoding. Moreover, the composition of strategies for calculating de-
rived values is either disallowed [Harkes et al., 2016], or composition is not
statically checked to guarantee that derived values will be consistent with the
values they depend upon [Meijer, 2010; Salvaneschi et al., 2014]. For exam-
ple, the (accidental) dependency of incremental computations on on-demand
computations can lead to inconsistencies in incrementally computed values.

The IceDust data modeling language [Harkes et al., 2016] supports declar-
ative specification of derived value attributes through separation of concerns.
An IceDust data model definition consists of entities with attributes and bidi-
rectional relations between entities. Fields of entities comprise attributes and
the ends of bidirectional relations. IceDust fields vary independently in mul-
tiplicity lower-bound and upper-bound, directionality (unidirectional or bidi-
rectional), derivation type (user value, default value, or calculated value), and
calculation strategy. A bidirectional field also defines a multiplicity bound for
its inverse. This variability is captured by the feature model2 in Figure 4.1. Ice-
Dust is a configuration language for this feature model. Each field in a data
model is a selection of features complying with this feature model. However,
the language does not support full orthogonality of feature selection. First,
the choice of calculation strategy is global, i.e. the chosen calculation strategy

2A feature model is a compact representation of all the products of a software product line
(SPL)[Kang et al., 1990]. A product configuration is determined by a selection of features satisfy-
ing the constraints of the feature model.

70

applies to all fields in a data model; choosing different strategies for different
fields is not supported. Second, only attribute values can be derived; deriva-
tion of relation values is not supported.

In this chapter we present IceDust2, an extension of IceDust with fully
orthogonal configuration selection supporting the following features:

• In addition to derived value attributes, IceDust2 supports derived bidi-
rectional relations. Derived relations are computed incrementally or
eventually, which requires incremental maintenance of bidirectional re-
lations.

• Derived relations have multiplicity bounds. The type system statically
checks that derived relation computations are guaranteed to satisfy these
bounds.

• While IceDust only supports global selection of calculation strategies,
IceDust2 supports local selection or composition of calculation strategies,
which allows tuning the re-calculation behavior of individual fields.

• Not all combinations of strategies yield consistent re-calculation of de-
rived values. The IceDust2 type system checks that selected strategy
compositions are sound.

• While the selection of features in a data model specification is orthogo-
nal, each combination of features requires a specialized implementation in
order to produce consistent results. We address the combinatorial ex-
plosion of specializations using a product-line approach to reduce the
size of the compiler and make reasoning about its correctness feasible.

The chapter is structured as follows. In the next section we examine IceDust
and its limitations and introduce IceDust2 for specifying derived bidirectional
relations with multiplicity bounds and composition of calculation strategies.
In Section 4.3 we analyze the run-time interaction between derived values,
bidirectional relations, multiplicity bounds, and various calculation strategies.
In Section 4.4 we define the operational semantics covering all possible fea-
ture combinations. In Section 4.5 we describe the type system guaranteeing
sound composition of calculation strategies. In Section 4.6 we discuss two
implementations of IceDust2. In Section 3.6 we evaluate the expressiveness
of the language with case studies. In Section 4.8 we analyze the limitations
entailed by static multiplicity checks on derived relations. In Section 4.9 we
compare IceDust2 to other approaches to declarative data modeling.

4.2 D E C L A R AT I V E D ATA M O D E L I N G B Y F E AT U R E
S E L E C T I O N

In this section we summarize the features of the IceDust data modeling lan-
guage, analyze its variability limitations, and introduce IceDust2, an extension
of IceDust with orthogonal feature selection.

Chapter 4. IceDust 2 71

Student

name : String

Assignment

name
question
deadline
minimum
avgGrade
passPerc

Submission

name
answer
deadline
finished
onTime
grade
pass

parent ?

children *

submissions * assignment 1 student 1 submissions *

children *

parent ?

: String
: String
: Datetime?
: Float?
: Float?
: Float?

: String
: String?
: Datetime?
: Datetime?
: Boolean
: Float?
: Boolean

Figure 4.2 Running example class diagram. Bidirectional relations are denoted by
! , and dotted lines express derived relations.

alice : Student
name = “Alice”

bob : Student
name = “Bob”

math : Assign
name = “Math”
minimum = 6.0
deadline = 13-1-’17
avgGrade = …
passPerc = …

mathAlice : Sub
name = …
deadline = …
grade = …
pass = …

exam : Assign
name = “Exam”
question = “1+1=?”
minimum = 5.0
avgGrade = …
passPerc = …

lab : Assign
name = “Practical”
question = “1/0=?”
minimum = 5.0
avgGrade = …
passPerc = …

mathBob : Sub
name = …
deadline=1-2-’17
grade = …
pass = …

examAlice : Sub
name = …
answer = “Good”
deadline = …
finished = 7-1-’17
onTime = …
grade = 7.0
pass = …

labAlice : Sub
name = …
answer = “Great”
deadline = …
finished = 3-1-’17
onTime = …
grade = 8.0
pass = …

labBob : Sub
name = …
answer = “Perfect”
deadline = …
finished = 28-1-’17
onTime = …
grade = 10.0
pass = …

examBob : Sub
name = …
answer = “Bad”
deadline = …
finished=7-1-’17
onTime = …
grade = 3.0
pass = …

children

children children

submissions submissions

Figure 4.3 Running example data. References are denoted by !, bidirectional
relation values are denoted by ! , derived references are dotted arrows, and
derived attribute values are dots.

4.2.1 Running Example

To illustrate data modeling in IceDust and IceDust2, we use a simplified learn-
ing management system as running example (Figures 4.2-4.4). Assignments
are structured as a tree. For example, the math assignment consists of an exam
and a lab (Figure 4.3 center). Students submit Submissions to these assign-
ments. These submissions form trees as well, mirroring the assignment tree
(see Alice’s and Bob’s submission trees in Figure 4.3). The tree structure of
submissions is derived in order to avoid redundant data, which can lead to
inconsistencies.

Assignments have optional deadlines. Student submissions inherit their
deadline from the assignment or from their parent submission, unless the
deadline is overridden by the instructor to provide a personal deadline for
a student. For example, mathBob’s deadline in Figure 4.3 is supplied by the
instructor, while mathAlice’s deadline is the assignment deadline. Leaf sub-
missions are graded by assigning a grade to the grade attribute (overriding
the default value), while the grades of non-leaf submissions depend on the
grades of their child submissions. Note that students only receive a grade for
a collection-submission if all of the child submissions are pass, and a submis-

72

module example (incremental)
entity Assignment (eventual) {

name : String
question : String?
deadline : Datetime?
minimum : Float
avgGrade : Float? = avg(subs.grade)
passPerc : Float? = count(subs.filter(x=>x.pass)) / count(subs)

}
entity Student {

name : String
}
entity Submission {

name : String = assignm.name + " " + student.name (on-demand)
answer : String?
deadline : Datetime? = assignm.deadline <+ parent.deadline (default)
finished : Datetime?
onTime : Boolean = finished <= deadline <+ true
grade : Float? = if(conj(children.pass))

avg(children.grade) (default)
pass : Boolean = grade>=assignm.minimum && onTime <+ false

}
relation Submission.student 1 <-> * Student.subs
relation Submission.assignm 1 <-> * Assignment.subs
relation Assignment.parent ? <-> * Assignment.children
relation Submission.parent ? =

assignm.parent.subs.find(x => x.student == student)
<-> * Submission.children

Figure 4.4 Running example IceDust2 specification

sion is only a pass when its grade is above the minimum assignment grade
and all its children pass. Finally, every assignment has an average grade and
pass percentage.

Most derived values in this example are calculated incrementally, providing
fast performance for reads. The course statistics are calculated eventually,
providing better performance on writes to grades. Student grades need to be
up-to-date, but statistics can be (temporarily) outdated. The submission name
is calculated on-demand as it need not be cached. This example is interesting
as it has a derived bidirectional relation (Submission’s parent-children) with
a multiplicity bound on parent. Moreover, the derived relation is used in both
directions in other derived values: parent is used in inheriting deadlines and
children is used in calculating grades.

4.2.2 Orthogonality of Field Configurations in IceDust

An IceDust data model definition consists of entities with fields. Instantiations
of entities are objects that assign values to fields. A field declaration specifies
the type of values that can be assigned to the field and several other configu-
ration elements. We analyze IceDust’s configurability in terms of the feature
model of Figure 4.1.

Chapter 4. IceDust 2 73

Multiplicities A source of boilerplate code in regular programming lan-
guages are nullable values and explicit collections used to encode the cardi-
nality of values. Instead of encoding cardinalities in (collection) types, IceDust
supports the specification of multiplicities as a separate, orthogonal concern,
following the work of Steinmann [Steimann, 2013] and Harkes et al. [Harkes
and Visser, 2014]. Multiplicity modifiers on types express that a field has ex-
actly one value (1), zero or one value (?), zero or more values (*), or one or
more values (+). All operators are defined for all cardinalities of operands. For
example, an expression calculating average grades based on children (implicit
collection) and grade (implicitly nullable) is specified as:

mathAlice // : Submission ~ 1
mathAlice.children // : Submission ~ *
mathAlice.children.grade // : Float ~ *
mathAlice.children.grade.avg() // : Float ~ ?

Directionality There are two kinds of fields. Attributes such as grade refer
to a (collection of) primitive value(s). Reference fields refer to a (collection of)
object(s). In object-oriented languages bidirectional relations between entities
are modeled by a reference field on each side of the relation. Keeping such
a relation consistent requires work. That is, when assigning to a field on
one side of the relation, the other side should be made consistent with that
assignment (as we will discuss in more detail in the next section). To avoid the
associated boilerplate code, IceDust provides ‘native’ bidirectional relations
between entities. For example, the following relation defines a tree structure
for submissions:

entity Submission { }
relation Submission.children * <-> ? Submission.parent

IceDust guarantees that the reference fields that implement a relation are kept
consistent at run time. Thus, IceDust supports unidirectional primitive valued
attributes and bidirectional relations between entities. Note that multiplicities
apply equally to attributes and the endpoints of relations.

Derivation Type The values of normal attributes are directly assigned by (the
users of) an application. Similarly, normal relations are constructed by an
application. A derived value attribute specifies an expression that calculates
the attribute’s value from the values of other attributes and relations. For
example, the grade attribute is defined as the average of the grades of the
children’s grades:

entity Submission {
grade : Float? = children.grade.avg()

}
relation Submission.children * <-> ? Submission.parent

Derived and user-defined attributes can be combined in a default-valued
attribute. If a value is explicitly assigned to such an attribute, that value is
returned. Otherwise, the calculated (default) value is returned. For example,
a submission grade can be calculated from its children’s grades, but it can
also be set by the instructor:

grade : Float? = children.grade.avg() (default)

74

w rcalc

w calc r

w

calc

r

On-demand

Incremental

Eventual

call

return

flag dirty

w write base value

r read derived value

calc calculate derived value

Figure 4.5 Thread activation diagrams for different calculation strategies

Calculation Strategies In object-oriented languages, calculated values can be
specified with getter methods, encoding an on-demand calculation strategy;
the value is calculated each time it is read. Switching to a cached implemen-
tation strategy requires invasive code changes. Derived value attributes in
IceDust can be configured with different calculation strategies orthogonally
to the expression of the calculation. The difference between the different cal-
culation strategies is the point in time at which derived values are calculated.
Figure 4.5 shows the differences by means of thread activation diagrams in
response to incoming reads and writes. The on-demand strategy calculates
derived values when they are read. This means that writes to base values, on
which derived values can depend, will be fast, but reads of derived values
will be slow. The incremental strategy recalculates all derived values that
transitively depend on base value directly after an update to a base value.
Writes will be slow, but reads will be fast. Finally, the eventual strategy
schedules recalculating on a separate thread. Writes and reads will be fast,
but consistency is not guaranteed: possibly outdated derived values might be
read.

4.2.3 Generalizing Data Modeling with IceDust

IceDust limits the possible configurations of the feature model. First, only
unidirectional fields (attributes) can be derived, not bidirectional relations.
Second, all fields in an IceDust program are required to have the same cal-
culation strategy. In this chapter we relax these constraints to enable a more
general combination of features.

Derived Relations In the relational model, derived bidirectional relations can
be expressed directly in relational terms. For example, the derived relation in
Figure 4.2 is expressed in Datalog as follows:

submissionParent(?s1, ?s2) :-
submissionAssignment(?s1, ?a1),
submissionAssignment(?s2, ?a2),
assignmentParent (?a1, ?a2),
submissionStudent (?s1, ?st),
submissionStudent (?s2, ?st).

However, the relational paradigm specifies no multiplicity bounds: a sub-
mission can have [0, n) parents. (Which is a problem if a submission should

Chapter 4. IceDust 2 75

inherit its parent deadline, and there might be multiple parents.) On the other
hand, in reactive or incremental programming, for example with REScala [Sal-
vaneschi et al., 2014], a multiplicity bound of [0, 1] can be specified (the type
is Option[Submission]):

class Submission {
val parent: DependentSignal[Option[Submission]] = Signal {

assignment().flatMap(_.parent()).map(_.submissions())
.getOrElse(Nil).find(_.student() == student())

}
}

However, this only specifies a unidirectional relation. Making this relation
bidirectional in REScala requires defining a children signal, keeping track
of the previous parent, and updating the children signal on parent change
events:

val children : VarSynt[List[Submission]] = Var(Nil)
var oldParent : Option[Submission] = None
val parentChanged: Event[Option[Submission]] = parent.changed
parentChanged += ((newParent: Option[Submission]) => {

oldParent.foreach {
o => o.children() = o.children.get.filter(_ != this)

}
newParent.foreach {
n => n.children() = this :: n.children.get

}
oldParent = newParent

})

To avoid such boilerplate and provide multiplicity bounds we generalize Ice-
Dust’s derived values to apply to relations and attributes, rather than just
attributes. A derived relation is expressed in IceDust2 as

relation Entity1.field1 multiplicity = expr
<-> multiplicity Entity2.field2

where the expression defines how to compute the left-hand side of the re-
lation. The parent-child relation of submissions in our example can be ex-
pressed as follows:

relation Submission.parent ? =
assignment.parent.submissions.find(x => x.student == student)

<-> * Submission.children

Figures 4.2 and 4.3 show the model and some example data for this derived
relation respectively. The derived relation is specified on the left-hand side,
but can be used inversely, from the right-hand side, as well. For example,
using children in calculating the average grade:

entity Submission {
grade : Float? = children.grade.avg()

}

Sound Composition of Calculation Strategies We extend IceDust with compo-
sition of calculation strategies. Strategy composition enables using different
strategies for different parts of the program. For example, in our running

76

example, student grades are always required to be consistent, but course
statistics may be out of date (temporarily) for better performance. We can
express this by calculating student grades incrementally, while calculating
course statistics eventually:

entity Assignment {
avgGrade : Float? = submissions.grade.avg() (eventual)

}
entity Submission {

grade : Float? = children.grade.avg() (incremental)
}
relation Submission.children * <-> ? Submission.parent
relation Assignment.submissions * <-> 1 Submission.assignment

The calculation strategies can be specified on modules, entities, and individ-
ual fields. If a strategy is not specified, the field inherits it from its entity
or module. The default strategy is incremental, as all other strategies can
depend on it (see Section 4.5 for more details).

Constraints on Feature Composition IceDust2 allows almost all combinations
of features in Figure 4.1, but we impose three restrictions. First, we disal-
low unsound composition of calculation strategies as we will discuss in Sec-
tion 4.5.

Second, derived relations can only be used inversely if they are mate-
rialized (incremental and eventual calculation). Navigating inversely in
on-demand would require either materializing or coming up with an inverse
expression. Consider the following derived relation:

relation Submission.root 1 = parent.root <+ this
<-> * Submission.rootDescendants

It defines the root for each submission in the tree. Reading root in on-demand
is trivial: execute the expression parent.root <+ this (take your parent’s
root, or take yourself). The inverse for this relation is rootDescendants:
for the root, all its descendants, and for all non-root nodes, nothing. In
incremental and eventual we can use the materialized rootDescendants
for reads. But, in on-demand the compiler would need to come up with an
expression that computes exactly the inverse of root which is non-trivial:

relation Submission.descendants * =
this ++ children.descendants <-> * Submission.ancestors

relation Submission.rootDescendants * =
if(count(parent)==0) descendants else null <-> 1 Submission.root

In this example we need a helper relation to compute the transitive closure.
Third, we disallow default derived relations since their behavior is unex-

pected. Consider the following example:

entity Student { }
entity Committee { }
relation Committee.members * <-> * Student.committees
relation Committee.mailingList * = members (default)

<-> * Student.subscriptions

Chapter 4. IceDust 2 77

We have specified the mailingList of a Committee to be its members by de-
fault. Now, if a member is added, and there is no user-provided value, the
member will be added to the mailing list. But, if some student had also sub-
scribed, the user-provided value will be used, which will not be updated with
the new member. Better would be to get the desired behavior by combining
the committee members and the mailing list in a new derived value:

relation Committee.members * <-> * Student.committees
relation Committee.mailingList * <-> * Student.subscriptions
relation Committee.fullMailingList * = members ++ mailingList

<-> * Student.allSubscriptions

4.3 R U N - T I M E F E AT U R E I N T E R A C T I O N

In the previous section we generalized the configurability of fields in IceDust2
data models. As a result, features can be combined independently (up to se-
mantic soundness). While the selection of features in a data model specification
is orthogonal, each combination of multiplicity, directionality, derivation type,
and calculation strategy requires a specialized implementation to produce con-
sistent results. In this section we examine the nature of this run-time feature
interaction before addressing the resulting complexity in the next section.

Incrementality and Bidirectional Updates Maintaining bidirectionality and up-
dating incremental derived values happen on writes and are mutually recur-
sive. In Figure 4.3, consider executing lab.setParent(exam), moving the lab
from math to exam. Bidirectional maintenance will update math.children
and exam.children. This will trigger updates for Submission.children
fields, which will in turn update Submission.parent fields, which will trig-
ger updates for Submission.deadline fields, etcetera. Thus, it is not possible
to define incrementality behavior orthogonally to the bidirectional mainte-
nance behavior.

Multiplicities Guide Bidirectional Updates When maintaining bidirectional-
ity, multiplicity bounds have to be respected. Multiplicity upper bounds are
respected by implicitly removing old values if needed. For example, execut-
ing exam.addToChildren(lab) will implicitly remove math as parent from
lab. This is identical to executing lab.setParent(exam). Figure 4.6 shows
the result of writes to bidirectional relations while preserving bidirectional-
ity and respecting multiplicity upper bounds. Behavior 7 is executed on
lab.setParent(exam), and behavior 10 on exam.addToChildren(lab). Both
will implicitly remove the old parent of lab. The alternative to implicitly re-
moving old values would be to fail when calling exam.addToChildren(lab).
This is what the Booster language does [Davies et al., 2006]; it only up-
dates objects referenced explicitly in the update operation. But, it would be
verbose to have to call math.removeFromChildren(lab) first. Multiplicity
lower bounds are respected by failing the operation on a violation, as im-
plicitly adding relations with arbitrary objects is undesirable. For example,
on deleting exam, the multiplicity lower bounds of examAlice.assignment

78

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

A B1 1
b a

a1.setB(b2)

A B1 *
b as

a1.setB(b2)

A B* 1
bs a

a1.addToBs(b2)

A B* *
bs as

a1.addToBs(b2)

a1 b1

a2 b2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

dynamic
multiplicity

static
multiplicity

entity

object

reference

set / add

remove

Figure 4.6 Update a bidirectional relation and preserve both bidirectionality and
multiplicity upper bounds. Left column shows class diagram with multiplicity
bounds, the top row shows starting object graph, and 1-16 show the object graph
after update.

and examBob.assignment are violated. However, it is undesirable to set
examAlice.assignment to lab implicitly. The behavior of bidirectional main-
tenance varies with multiplicity bounds. Thus, it is not possible to define the
bidirectional maintenance behavior orthogonally to the behavior for respect-
ing multiplicity bounds.

Minimizing Setter Calls for Incrementality For incrementality it is important to
minimize the (internal) calls to setters, as duplicate setter calls will duplicate
dirty flagging of derived values that depend on it. If we look at Figure 4.6,
behavior 2, then we should not first call b2.setA(null) and subsequently
b2.setA(a1) during bidirectional maintenance. So, rather than first remov-
ing a2-><-b2 and subsequently adding a1-><-b2, the algorithm should up-
date a1.b, a2.b, and b2.a directly. The behavior maintaining bidirectionality
needs to trigger the minimal number of incremental updates.

Only Trigger Updates on Observable Changes An additional way to minimize
incremental update computation is updating only on observable changes. The
various derivation types influence this. If a normal attribute is assigned the
same value as it previously had, there is no need to trigger updates. Default
values have various scenarios in which updates are not observable. Suppose
we would ‘override’ the grade of mathAlice with a 7.5 in Figure 4.3. This
should not trigger any updates, as the default value was 7.5 already (the
average of 7.0 and 8.0). If we change the grade of examAlice to a 9.0 after that,
we trigger an update for mathAlice.grade. But we can stop propagating at
that point because the new average (8.5) is not visible; we overrode the grade

Chapter 4. IceDust 2 79

setget

val cache dirty

cacheSetflagDirty updateCache

field

method

call / read / write

Figure 4.7 General overview for the semantics of a single field in IceDust2

with 7.5. When writing to a field, an update should only be triggered when
the change is observable. Thus, the incremental update behavior cannot be
defined orthogonally to the derivation type behavior.

Only Trigger Updates for Incremental and Eventual Finally, updates need only
be triggered for derived value fields that are updated on writes (incremental
and eventual). Fields only referenced in on-demand derived value fields
do not need to send update triggers (for example Assignment.name in Fig-
ure 4.4). Note that if we would change Submission.name to incremental,
Assignment.name does need to send update triggers. Thus, the calculation
strategy behavior of a field can not be defined orthogonally to the calculation
strategy behaviors of the fields that reference it.

Summary In summary, derived values, bidirectional relations, multiplicity
bounds, and calculation strategies all interact with each other. These interac-
tions are hidden from the language users in the getters and setters of fields.
Because all these features interact, they cannot be implemented separately.
Creating different specialized getters and setters for all possible feature com-
binations is also not an option; the feature model has 384 valid configurations.
(The number of configurations, without any restrictions, and ignoring flow
calculation strategies, is 6 ⇤ 7 ⇤ 3 ⇤ 3 ⇤ 2 ⇤ 2 = 1512. With the implies restric-
tions it is 384.) With about 20 to 100 lines of code generated for getters and
setters, specifying all specialized getters and setters would be roughly 20000
lines of code. This amount of code would pose a serious maintenance prob-
lem, and would make it impossible to reason about correctness. Our solution
is to implement this as a compact product-line for each field. We discuss this
in the next section.

4.4 O P E R AT I O N A L S E M A N T I C S

An IceDust2 data model consists of entities with fields, representing attributes
and relations. The public API of such a data model consists of entity instan-
tiation, object deletion, reading the value of a field (get), and changing the
value of a field (set). The previous section showed that IceDust2’s features
are not compositional, leading to over 300 different configurations for fields
with as many getter/setter definitions. In this section we define the opera-
tional semantics for these getters and setters by factoring out variability into
mutually dependent auxiliary methods. Moreover, we argue that all these be-
haviors maintain bidirectionality, respect multiplicity bounds, and maintain
caches for incrementality.

80

S 2 Store : EntityRe f erence⇥ Field 7! (val 7! [Value], cache 7! [Value], dirty 7! Boolean)
Value : EntityRerence | PrimitiveValue

Figure 4.8 The store maps combinations of references and field names to tuples
of three: user value, cached value, and dirty flag.

Figure 4.7 gives an overview of the semantics of a single field. A field is
represented at runtime by at most three fields: a user value, a derived value
cache, and a dirty flag. The getter is responsible for returning the correct
value on a read. The setter is responsible for maintaining bidirectionality
and multiplicity bounds in the userValue. Moreover, it calls flagDirty on
observable changes. The cacheSetter does the same for cacheValues. The in-
cremental update algorithm (not shown in Figure 4.7, as it is global) reads the
dirtyFlags, and calls updateCache to maintain derived value caches. How
these fields and methods are implemented varies based on the configurations
in the feature model.

We specify the operational semantics of IceDust2 using big-step semantics.
The reduction rules modify a store. The store can contain a user value, a
cached value, and a dirty flag for every field in every object (Figure 4.8).
We omit the store in a rule when it is not directly used in the rule. When
we omit the store, it is implicitly threaded from left to right. Note that in
list comprehensions the store is threaded as well. For conciseness, all rules
operate on lists of values, even if fields have a multiplicity upper bound of 1.
In the rules, we use ‘2’ for testing whether a field has a certain configuration
in the feature model. For example, ‘ f 2 incremental’ is true if the field uses the
incremental calculation strategy. We use ‘.’ for accessing related information.
For example, ‘ f .expr’ denotes the expression of field f , and ‘ f .inverse’ denotes
the inverse field of a bidirectional relation.

4.4.1 Getter

Figure 4.9 defines the evaluation rules for getters. Method get behaves dif-
ferently depending on the derivation type. The rule for normal just reads the
user value of the field [Get1]. The rule for default reads the user value [Get2],
but if that is not present (empty list of values), the calculated value is returned
[Get3]. (It is not possible to override a calculated value with an absent user
value.) The rule for derived returns the calculated value [Get4]. Method get*
maps a getter over a collection of objects, which is used in the compilation of
expressions. The rules for getCalc call calculate for on-demand [GetCalc1],
but read the cached value for incremental [GetCalc2]. Finally, calculate
calculates a value using the expression of the field. Note that in expression
evaluation (o ` this + [o]) the o before the turnstyle binds this. We omit the
rules for expression evaluation as they are standard.

The on-demand and incremental calculation strategies should return the
same values on field reads. (Except for cyclic definitions, which we will dis-
cuss later.) When the getter is called, incremental (default or derived)

Chapter 4. IceDust 2 81

fields should have a cached value equal to re-evaluating the expression, and
there should be no dirty flags:

Invariant 1 (Incrementality)
8 E. f 2 incremental, 8 o 2 E, S[o, f , dirty]= f alse)
8 E. f 2 incremental, 8 o 2 E, o.calc(f) + S[o, f , cache]

If the cached value contains the exact value that calculate would compute
if executed, then the incremental getter will return the same value as the
on-demand getter. The setter and update algorithm should keep the cached
value up-to-date.

4.4.2 Setter

Figure 4.10 defines the evaluation rules for setters. Method set is responsible
for maintaining bidirectionality and multiplicity upper bounds. For attributes,
set does not have to maintain bidirectionality so it passes the call through to
setIncr [Set1]. For relations, set’s behavior varies depending on multiplic-
ity bounds [Set2]. References on V.(f .inverse) are removed by addIncr if
the multiplicity upper bound is 1 [AddIncr1]. The inverses of these refer-
ences are implicitly removed by remInv [RemInv2]. This realizes the behavior
visualized in Figure 4.6. Method setIncr is responsible for dirty flagging
on observable changes [SetIncr2]. Method cacheSet is identical to the set
method, updating cache values rather than user values.

For each object, for each field that is bidirectional, it should hold that if the
field refers to another object, the other object also refers back to this object
from the inverse field:

Invariant 2 (Bidirectionality)
8 E. f 2 bidir, 8 o1 : E, o22 o1. f1) o12 o2.(f .inverse)

Moreover, a read from a field should always return a list of values the size of
which is smaller than or equal to the multiplicity upper bound:

Invariant 3 (Multiplicity Upper Bound)
8 E. f ⇠ [_, u], 8 o : E, |o. f |  u

The rules for set satisfy these two properties by construction; they general-
ize Figure 4.6 to work on collections of values. The setter is also partially
responsible for Invariant 1. Whenever get of a field returns a different value,
setIncr will call dirtyFlows. If dirtyFlows sets all dependent values dirty,
and all dirty values are updated, Invariant 1 holds.

4.4.3 Flag Dirty

Whenever a value is observably changed, all incremental derived values
that depend on it are flagged dirty. Figure 4.11 defines the evaluation rules
for dirty flagging. Method dirtyFlows traverses the data-flow expressions,

82

Getter evaluation Statement/S + [Value]/S

f 2 normal

o.get(f)/S + S[o, f].val/S
[Get1]

f 2 default S[o, f].val = V , []

o.get(f)/S + V/S
[Get2]

f 2default S[o, f].val = []

o.getCalc(f) + V

o.get(f)/S + V/S
[Get3]

f 2 derived o.getCalc(f) + V

o.get(f) + V
[Get4]

V3 = [v|v2V2, o.get(f)+V2, o2V]

V.get*(f) + V3

[Get⇤]

f 2 on-demand o.calc(f) + V

o.getCalc(f) + V
[GetCalc1]

f 2 incremental
V2 = S[o, f].cache

o.getCalc(f)/S + V2/S
[GetCalc2]

o ` (f .expr) + V

o.calc(f) + V
[Calc]

Figure 4.9 Getter evaluation rules

Setter evaluation Statement/S + /S

f < bidir f ⇠ [_, u] |V|  u
o.setIncr(f , V) +

o.set(f , V) +
[Set1]

f 2 bidir f ⇠ [_, u] |V|  u
Vold = S[o, f].val
Vadd = V \ Vold
Vrem = Vold \ V
[vadd.remInv(f .inverse) + | vadd 2 Vadd]

o.setIncr(f , V) +
[vrem.remIncr(f , o) + | vrem 2 Vrem]

[vadd.addIncr(f , o) + | vadd 2 Vadd]

o.set(f , V) +
[Set2]

f ⇠ [_, 1] S[o, f].val = []

o.remInv(f)/S + /S
[RemInv1]

f ⇠ [_, 1] S[o, f].val = [v]
v.setIncr(f .inverse, [])/S + /S2

o.remInv(f)/S + /S2

[RemInv2]

f ⇠ [_, n)

o.remInv(f) +
[RemInv3]

f ⇠ [_, 1] o.setIncr(f , [v]) +

o.addIncr(f , v) +
[AddIncr1]

f ⇠ [_, n) V=S[o, f].val++[v]
o.setIncr(f , V)/S + /S2

o.addIncr(f , v)/S + /S2

[AddIncr2]

V=S[o, f].val \ [v]
o.setIncr(f , V)/S + /S2

o.remIncr(f , v)/S + /S2

[RemIncr]

f 2 incremental
o.get(f)/S + V2

S2=S[o, f ,val 7!V]

o.get(f)/S2 + V2

o.setIncr(f , V)/S + /S2

[SetIncr1]

f 2 incremental
o.get(f)/S + V2
S2=S[o, f ,val 7!V]
o.get(f)/S2 + V3 V2 , V3
o.dirtyFlows(f)/S2 + /S3

o.setIncr(f , V)/S + /S3
[SetIncr2]

Figure 4.10 Setter evaluation rules

Chapter 4. IceDust 2 83

and calls flagDirty to flag the appropriate field dirty. Note that dirtyFlows
only calls flagDirty for flows that end in a field that is incremental, as
on-demand does not require dirty flagging. The data flows are obtained by
path-based abstract interpretation. The basic idea is that all fields referenced
in an expression are dependencies, and that the inversion of these dependen-
cies determines the data flow. (For more details on data flow, see Chapter 3.)

The flagDirty method is also partially responsible for Invariant 1. Method
dirtyFlows flags all derived values dirty that depend on the changed value.
If the incremental update algorithm updates all cached values that are dirty,
Invariant 1 holds.

4.4.4 Update Cache

After changes, the caches have to maintained, so that reads return up-to-date
values. Figure 4.12 defines the evaluation rules for cache updates. Method
update is responsible for updating the cache of a single field for a single
object. Method updateCache* updates the field in all objects that have this
field dirty. Together with updateCache*, hasDirty is the API for the cache
maintenance algorithm.

These methods are partially responsible for Invariant 1 as well. Method
cacheUpdate ensures that Invariant 1 hold for a single field of a single object
after its execution. However, updating the cache of a field might invalidate the
cache of another. So, the incremental update algorithm calls updateCache*
until hasDirty* evaluates to false for all fields.

4.4.5 Incremental Update Algorithm

The update algorithm is responsible for cleaning all caches. The evaluation
rules for the update algorithm are defined in Figure 4.13. The data-flow analy-
sis provides a topological ordering which can be used for scheduling updates
[Harkes et al., 2016]. Method maintCache* invokes maintGroup* for each
connected component in topological order. Method maintGroup* invokes it-
self recursively while the group hasDirty*. Invariant 1 is now satisfied by the
fact that groups can only dirty flag fields in their own group or later groups,
and each group is updated until no more dirty flags remain.

Note that in this operational semantics, transactions are managed manu-
ally. First constructors, set and delete are invoked, then maintainCache*
has to be invoked, and only then get and get* are guaranteed to return
values that are up-to-date. Transactions can be made implicit by invoking
maintainCache* directly from set.

4.4.6 Object Creation and Deletion

On object creation all incremental fields of that object are dirty flagged. Be-
fore object deletion, all fields are set to null (or empty collections) to ensure
bidirectionality and incrementality are maintained for the fields of other ob-

84

Dirty flagging Statement/S + [Value]/S

[v.flagDirty(f2) + | v2V, o` expr+V, f22 incremental, expr. f22 f .flows]

o.dirtyFlows(f) +
[DirtyFlows]

S2 = S[o, f , dirty 7! true]

o.flagDirty(f)/S + /S2
[FlagDirty]

Figure 4.11 Flag dirty evaluation rules

Update caches Statement/S + [Value]/S

o.calc(f)+V o.cacheSet(f , V)+

o.update(f) +
[Update]

[o.update(f) + | o 2 V]

V.update*(f) +
[Update⇤]

V = [o | S[o, f , dirty]= true]
V.clean*(f)/S + /S2
V.update*(f)/S2 + /S3

updateCache*(f)/S +/S3
[UpdateCache⇤]

S2 = S[o, f , dirty 7! false]

v.clean(f)/S + /S2

[Clean]

[v.clean(f) + |v 2 V]

V.clean*(f) +
[Clean⇤]

Caches dirty Statement/S + Boolean/S

[o | S[o, f , dirty]= true] , []

hasDirty*(f)/S + true/S
[HasDirty⇤1]

[o | S[o, f , dirty]= true] = []

hasDirty*(f)/S + false/S
[HasDirty⇤2]

Figure 4.12 Update evaluation rules

Update algorithm Statement/S + [Value]/S

[maintGroup*(g)|g2 p.topo]

maintCache*(p) +
[MaintCache⇤]

[updateCache*(f) | f 2 g]
8 f 2 g, ¬hasDirty*(f)

maintGroup*(g) +
[MaintGroup⇤1]

[updateCache*(f)| f 2 g]
9 f 2 g, hasDirty*(f)
maintGroup*(g) +

maintGroup*(g) +
[MaintGroup⇤2]

Figure 4.13 Update algorithm evaluation rules

Chapter 4. IceDust 2 85

jects. Creation and deletion behavior do not vary based on different field
features.

4.4.7 Multiplicity Lower Bounds

So far we have ignored multiplicity lower bounds:

Invariant 4 (Multiplicity Lower Bound)
8 E. f ⇠ [l, _], 8 o : E, |o. f | � l

These are checked at the end of transactions. (We have omitted transactions
from the evaluation rules for conciseness.) If any of the multiplicity lower
bounds is violated, the whole transaction is reverted.

4.4.8 Eventual Calculation Strategy

We have also omitted the eventual calculation strategy in the semantics. The
eventual calculation strategy is implemented by taking the incremental update
algorithm, but running this in a separate thread, and updating a single field
of a single object at the time. To keep track of the dirty flags for eventual
calculation, a fourth element in the store tuples is required: dirtyEventual.
(In the implementation dirtyEventual flags are shared across all threads
while dirty flags are thread-local.) The dirty flags for eventual calculation do
not have to be cleaned before ending a transaction. But, when all dirty flags
are cleaned, then all eventually calculated values are up-to-date:

Invariant 5 (Eventuality)
8 E. f 2 incremental, 8 o 2 E, S[o, f , dirty]= f alse ^
8 E. f 2 eventual, 8 o 2 E, S[o, f , dirtyEventual]= f alse)
8 E. f 2 eventual, 8 o 2 E, o ` f .expr + S[o, f , cache]

4.4.9 Discussion: Computation Cycles

The on-demand and incremental calculation strategy produce the same val-
ues locally. But, in cyclic data flow their behavior is different. Consider the
following program:

entity Foo {
a : Int
b : Int = a <+ c // if(count(a) > 0) a else c
c : Int = b

}

If a is not set, and c is read, on-demand will not terminate, but incremental
will return null. If a is set, and c is read, both strategies will return the same
value. If after that, a is set to null and c is read again, incremental will still
return the previous value of c as it is cached in both b and c, while on-demand
will not terminate again.

86

The incremental calculation strategy satisfies Invariant 1, as all derived
values are consistent with each other. Invariant 1 is the same as the prop-
erty guaranteed by synchronous reactive programming [Maier and Odersky,
2013; Salvaneschi et al., 2014]. In incremental computing with Adapton, a
stronger property is guaranteed: incremental computation returns identical
results to from-scratch computation [Hammer et al., 2015, 2014]. Note that in
Adapton cyclic programs cannot be expressed, as cyclic computations cannot
be constructed. For acyclic data flows, IceDust2 satisfies the same property
as Adapton: incremental calculation returns the same value as on-demand
calculation.

4.5 S O U N D C O M P O S I T I O N O F C A L C U L AT I O N
S T R AT E G I E S

In this section we examine how different calculation strategies can be com-
posed. In composition the strategies need to evaluate to the right answers,
and do so within their time constraints. Moreover, we introduce a type sys-
tem that statically checks the safety of the composition of calculation strategies
in an IceDust2 program.

Some systems for computing derived values allow composing various cal-
culation strategies. However, the composition is not always checked for cor-
rectly calculating derived values. Derived values should be consistent with
the values they depend on. On-demand values are not aware of changes to
their dependencies, and they do not notify the derived values depending on
them of changes. For example, in REScala on-demand values can be acciden-
tally referenced in reactive values, causing reactive values not to be updated
on changes to their dependencies. Take the following example:

class Student {
val name :VarSynt[String]= Var("") //reactive
val city :VarSynt[String]= Var("") //reactive
val street :VarSynt[String]= Var("") //reactive
def address :String = street.get+" "+city.get //on-demand
val summary :DSignal[String]= Signal{name()+" "+address}//reactive

}

A change to name will trigger an update to summary, so summary will be
consistent with name. Accessing address will read the latest values from
city and street, so it will be consistent with its dependencies as well. But,
summary is not updated after a change to city or street, so summary is not
consistent with all its dependencies.

In IceDust, letting an incremental field depend on an on-demand field
would have the same problem. Changing the incremental strategy to reeval-
uate on-demand referenced fields would make reads of incremental fields
slower. (A cache read is O(1), reevaluating might be expensive.) We designed
IceDust2 to have predictable performance, so we chose to prevent the above
situation by a type system.

Chapter 4. IceDust 2 87

* ordered

+ ordered

null

error

Int Float StringBoolean Datetime Entities

1

?

+

* unordered

unordered

on-demand eventual

eventual

incremental

on-demand

base-value

Figure 4.14 IceDust2’s type lattice (left), multiplicity and ordering lattice (middle),
and composition of calculation strategies lattice (right).

4.5.1 Type Checking Strategy Composition

IceDust2 features three calculation strategies: on-demand, incremental, and
eventual (Figure 4.5). The first strategy is pull-based, while the latter two
strategies are push-based. Push-based derived values are recalculated on
changes to base values, while pull-based derived values are calculated when
they are read. Pull-based derived values can depend on push-based derived
values, but not the other way around, as pull-based values would not notify
the push-based values of changes. Within the push-based strategies, eventual
can depend on incremental, but not the other way around. An incremental
derived value depending on an eventual derived value would be eventually
calculated rather than be up-to-date. An on-demand derived value depend-
ing on an eventual derived value is not always up-to-date, so we create a
new strategy, on-demand eventual, to reflect this. Finally, any calculation
strategy can depend on values entered by users, so we also create a new strat-
egy base-value for that. We combine these five strategies in a lattice such
that strategies in the lattice can depend on strategies below them (Figure 4.14,
right).

This lattice is used to check the composition of calculation strategies in
IceDust2 programs. The general idea is to check what strategy is used for
each sub-expression of derived values, and whether these are lower in the
lattice than the definition of the derived value specifies. The reduction rules
for the strategy composition type system are defined in Figure 4.15. The
environment (G) maps variable names to strategies.

Constants [Const] and this [This] are base values. Field dereference on
this has the strategy of the field definition [NavStart]. If the field has deriva-
tion type normal, it is a base value. The strategy of a field dereference on
an object is the least-upper-bound of the strategy of the sub-expression and
strategy of the field definition [Nav]. Unary operators pass on their strategy
[UnOp], and both binary and ternary operators take the least-upper-bound of
their sub-expression strategies [BinOp, TenOp]. The filter stores the strat-
egy of the variable in the environment [Filter], and variables read their strat-
egy from the enviroment [Var]. A field is sound if its expression calculation
strategy is less than or equal to its defined calculation strategy [Field], and fi-
nally, a program is sound if all entity fields with expressions are sound [Prog].

88

Expression Strategy Composition G ` Expr * S

c is constant

c * base-value
[Const]

this * base-value
[This]

¬G(m) f .stratComp = s

G ` f * s
[NavStart]

e * s1 f .stratComp = s2

e . f * s1 t s2
[Nav]

� 2 UnOp e * s

� e * s
[UnOp]

� 2 BinOp e1 * s1 e2 * s2

e1 � e2 * s1 t s2

[BinOp]

e1 * s1 e2 * s2 e3 * s3

e1 ? e2 : e3 * s1 t s2 t s3

[TenOp]

G ` e1 * s1 G[x 7! s1] ` e2 * s2

G ` e1.filter(x => e2) * s1 t s2

[Filter]

G ` x * G(x)
[Var]

Field and Program Strategy Composition Field|Prog *

f .stratComp = sde f ∆ ` f .expr * sexpr sde f w sexpr

f 2 Field *
[Field]

8e2 p.entities, 8 f 2{ f | f .expr, f 2 e.fields}, f *

p 2 Prog *
[Prog]

Figure 4.15 Strategy composition rules

4.5.2 Example

Lets apply these rules to an example. We extend Submission with:
summary : String =

name + (if(pass) " pass" else " fail") +
" grade = " + (grade <+ "none") +
" (average = " + (assignment.avgGrade <+ "none") + ")"

Type checking sub-expressions yields the following:
name // on-demand
pass // incremental
" pass" // base-value (literal)
(if(pass) " pass" else " fail") // incremental
name + (if(pass) " pass" else " fail") // on-demand
grade // incremental
assignment // incremental
assignment.avgGrade // eventual
assignment.avgGrade <+ "none" // eventual
name + ... + (assignment.avgGrade <+ "none") // on-demand eventual

The sub-expression name is calculated on-demand, and the sub-expression
assignment.avgGrade is eventual. These two strategies are propagated
through the operators until they meet in a + operator. The + operator takes the
least-upper-bound of both strategies, which is on-demand eventual. So the
definition of summary needs to be annotated with (on-demand eventual).

Chapter 4. IceDust 2 89

It is possible to perform strategy inference instead of checking consistency
of annotations. However, it is not clear whether that would improve usability
or not. In our example, the programmer might not notice that the inferred
strategy is on-demand eventual, and assume that the summary would al-
ways be up-to-date. So, we require annotating derived value fields with their
calculation strategy, or inheriting the strategy from the entity or module.

4.6 I M P L E M E N TAT I O N S

We discuss two IceDust2 compilers. The first compiler closely matches the op-
erational semantics in Section 4.4. It compiles to single threaded, in-memory,
plain old Java objects. The second compiler serves a more complicated con-
text. It compiles to an object-relational mapper with transaction semantics.

4.6.1 Compilation to Java

The compilation to Java closely matches the semantics in Section 4.4. It does
not feature transactions (no multiplicity lower-bound runtime checks), and
does not feature eventual calculation (it is single threaded). The translation
from semantics to a code generator for Java code is straightforward. The
store (fields, caches, and dirty flags) are compiled to fields in classes, and the
arrows to methods. However, the compiler is not a literal translation of the op-
erational semantics: the compiler makes multiplicity, calculation strategy and
derivation-type choices at compile time, and leaves the remaining behavior to
run time. Moreover, the compiler specializes types for various multiplicities.

An example of this compile-time/run-time split is the code generation for
get (Figure 4.16). The semantics has two rules for the default-value behavior
[Get2, Get3], but the compiler defers this decision to run time by compil-
ing to an if statement. Another example is the code generator for the set
method. The compiler makes bidirectionality and multiplicity upper bound
choices, so it has six implementations. For these six implementations, it in-
lines rule [RemInv], or omits it if it has no effect. Figure 4.17 shows two of
the implementations. The first variation is specialized to multiplicities with
an upper bound of 1, so it has to deal with null values. The second variation
is a literal translation of [Set2] without the [RemInv] calls. (The multiplicity
upper-bounds of n never force implicit removals of references.)

The to-Java compiler supports specifying test data, and expressions for ex-
ecution. This enables us to use IceDust2 as a glorified spreadsheet, and to
write automated tests for IceDust2 specifications.

4.6.2 Compilation to WebDSL

The second compiler compiles IceDust2 to WebDSL, a domain-specific lan-
guage for building web applications [Visser, 2007]. The to-WebDSL com-
piler features all IceDust2 features, including multiplicity lower-bound run-
time checks, and the eventual calculation strategy. WebDSL differs from

90

fieldname-to-java-classbodydec: x_name -> get
x_get := $[get[<ucfirst>x_name]];
x_getCalculated := $[getCalculated[<ucfirst>x_name]];
t := <type-and-mult-to-java-type>x_name;
switch id

case is-normal: get := cbd|[
public ~type:t x_get(){ return x_name; }

]|
case is-default: get := cbd|[

public ~type:t x_get(){
if(x_name!=null && !x_name.equals(new HashSet<~type:t>())
return x_name;

return x_getCalculated();
}

]|
case is-derived: get := cbd|[

public ~type:type x_get(){ return x_getCalculated();}
]|

end

Figure 4.16 Java code generation for get(). The cbd|[]| parses a Java class
body declaration with meta-variables for types (⇠type:...) and identifiers (x_-
...). For normal fields, the getter returns the user value. For default fields, it
returns the user value if it is set, and the calculated value otherwise. For derived
fields, it always returns the calculated value.

case is-normal-default; is-bidirectional; is-to-one;inverse-is-to-one:
set:= |[

public void x_set(x_type other){
if(x_name != null) x_name.x_inverseSetIncr(null);
if(other != null){

x_inverseType v = other.x_inverseName;
if(v != null) v.x_setIncr(null);
other.x_inverseSetIncr(this);

}
this.x_setIncr(other);

}
]|

case is-normal-default;is-bidirectional;is-to-many;inverse-is-to-many:
set:= |[

public void x_set(Collection<x_type> others){
Collection<x_type> toAdd = new HashSet<x_type>();
toAdd.addAll(others); toAdd.removeAll(x_name);
Collection<x_type> toRem = new HashSet<x_type>();
toRem.addAll(x_name); toRem.removeAll(others);
for(x_type n : toRem) n.x_inverseRemoveIncr(this);
for(x_type n : toAdd) n.x_inverseAddIncr(this);
x_setIncr(others);

}
]|

Figure 4.17 Two cases from the set() Java code generation. The case for 1 to 1
relations removes previous references to both objects (this and other) and sets
the references of both objects to each other. The case for n to n relations removes
the references from previously related objects toRem to this, adds new references
from toAdd to this, and updates the references of this.

Chapter 4. IceDust 2 91

case (is-left; is-normal-default; is-zeroormore-unordered)
+ (is-left; is-default; is-oneormore-unordered): ebd_field*:= ebd*|[
x_name : Set<srt_type> (inverse=x_inverseEntityName.x_inverseName)

]|
case is-left; is-normal; is-oneormore-unordered: ebd_field* := ebd*|[

x_name : Set<srt_type> (inverse=x_inverseEntityName.x_inverseName,
validate(x_get().length != 0, "" + e_name + " is required."))

]|

Figure 4.18 Two of the twelve cases for userField WebDSL code generation.
Types are specialized for [_, 1] to single values, for [_, n) ordered to Lists, and
for [_, n) unordered to Sets. The left-hand side of relations specify inverses. A
validator checks the multiplicity lower-bound of 1 at runtime for normal-valued (not
default-valued) fields.

fieldname-to-webdsl-entitybodydeclarations: x_name -> ebd_setIncr*
x_set := $[set[<ucfirst>x_name]];
x_flagFlows := $[flagFlows[<ucfirst>x_name]];
srt_multType := <type-and-mult-to-webdsl-srt>x_name;
stat_flows* :=

<flows;filter(where(expr-last;is-incr-even);to-webdsl)>x_name;
switch id

case is-normal-default; where(not([] := stat_flows*)):
ebd_setIncr* := ebd*|[

extend function x_set(newValue : srt_multType){
if(x_name != newValue){ x_flagFlows(); }

}
]|

otherwise:
ebd_setIncr* := []

end

Figure 4.19 WebDSL setter-hook code generation. If the field has any data-flow
to an incremental or eventual field, generate a setter-hook that flags the cache
dirty if the value changed.

Java. WebDSL persists its data in a relational database and maps it to mem-
ory with an object relational mapper. The object-relational mapper provides
transaction semantics. WebDSL already has a language feature for bidirec-
tional relations, including the interaction with ‘multiplicities’ (single values
or lists). This means the to-WebDSL compiler need not generate any code for
that. However, this built-in support complicates the interaction with IceDust2
incrementality.

Figure 4.18 shows two cases of the code generator for fields. The Web-
DSL field code generation touches many IceDust2 features. Bidirectionality in
WebDSL is defined by inverse annotations, which should be specified on one
field of the relation. For a quality object-relational mapping, ordered fields are
compiled to Lists, unordered fields are compiled to Sets, and single values
to single values. Finally, the checks for multiplicity bounds should be speci-
fied on the field definitions as well. Together, three possible types, an optional
inverse, and an optional validator make twelve possible field definitions.

For incremental updates, the to-WebDSL compiler generates incremental

92

setters. To escape the bidirectionality abstraction, and get access to updates
on both sides of the relation, WebDSL provides setter hooks, similar to
aspect-oriented pointcuts [Kiczales et al., 1997]. Figure 4.19 shows the im-
plementation of the setter hook. These hooks only intercept calls, they do not
update the fields. Thus, it cannot test for observable changes (by calling get
before and after changing the field [SetIncr]). It approximates this by checking
whether the value changes.

The to-WebDSL compiler is used in web applications. It enables specify-
ing the business logic in derived values, and enables changing the calculation
strategy of fields without much effort to tune the performance of web appli-
cations.

4.7 C A S E S T U D I E S

We discuss the application of IceDust2 to two representative applications, a
conference management system, and an online learning management system
(the running example).

4.7.1 Conference Management System

Figure 4.20 shows a mini version of a conference website management system.
In this system multiple Conferences can be managed. A Person can be part
of multiple conferences, and has a Profile for each. The conference system
contains various derived values. For this chapter, the most interesting ones
are derived relations.

The mini system contains two derived relations. The first derived relation
is the root of a conference tree (Figure 4.20, line 7). Conferences can have
sub-conferences, and these can have sub-conferences again. For presentation
purposes it is important to display the context of a sub-conference: the root
conference. The inverse of the root field, rootDescendants, does not have
a practical use in the application specification. However, it is used by the
compiler to incrementally maintain rootName on name changes to the root
conference. It is possible to omit the name rootDescendants. The IceDust2
compiler will then invent a name for the field itself (rootInverse in this case).

The second derived relation is the committees a person is a member of in
a specific conference: Profile.committees (Figure 4.20, bottom). It is simi-
lar in structure to the submission parent-children relation in Figure 4.4. Both
navigate the object graph to a collection of objects, and subsequently filter this
collection. The committee membership derived relation is used bidirection-
ally: a committee page links to the profile pages of its members.

4.7.2 Learning Management System

Our running example (Figure 4.4) is a partial model of a learning management
system, which we have specified in IceDust2. The production system is much
more complicated. We will cover some interesting aspects of its specification.

Chapter 4. IceDust 2 93

entity Conference {
name : String
rootName : String = root.name
numComittees : Int = count(committees)

}
relation Conference.parent ? <-> * Conference.children
relation Conference.root 1 = parent.root <+ this

<-> * Conference.rootDescendants

entity Person {
name : String

}
entity Profile {

name : String = person.name + " in " + conference.name
numComittees : Int = count(committees)

}
relation Profile.conference 1 <-> * Conference.profiles
relation Profile.person 1 <-> * Person.profiles

entity Committee {
name : String
fullName : String = conference.name + " " + name

}
relation Committee.conference 1 <-> * Conference.committees
relation Committee.members * <-> * Person.committees
relation Profile.committees * =

person.committees.filter(x => x.conference == this.conference)
<-> * Committee.profiles

Figure 4.20 Mini conference management system IceDust2 specification. A
Conference can be a sub-conference of a parent conference. A Person has
a separate Profile for each conference (s)he participates in. A conference is
organized by multiple Committees. A person can be member of committees in
various conferences.

Figure 4.21 shows a part of the specification that deals with group submis-
sions. In some courses students get graded in groups. Moreover, in some
labs the groups change during the semester. To calculate correct grades for
individual students, their individual submissions are connected to the group
submissions (Submission.groupSubmission). The student grade for a single
assignment (Submission.grade) is the group grade, if it exists, and otherwise
the normal individual student grade.

Figure 4.22 revisits the submission parent-child relation. We use the order-
ing of children to define next and previous for submissions, which are used
for navigation in the user interface. Note that both of the derived bidirectional
relations in Figure 4.22 have a multiplicity bound [0, 1] on the right-hand side.
This is disallowed by the IceDust2 compiler, as these bounds cannot be stati-
cally guaranteed. We will discuss this in the next section.

In our running example (Figure 4.4) we have used composition of calcu-
lation strategies to get good performance on changes to data, while always
reading up-to-date student grades. In the full learning management system
we have used the same approach: incremental for individual student data,
and eventual for statistics. This approach works great with our to-WebDSL

94

entity Assignment { }
entity Submission {

grade : Float? =
groupSubmission.grade <+ children.grade.avg() (default)

}
entity Group { }
entity GroupSubmission {

grade : Float?
}
relation Group.members *<->* Student.groups
relation Submission.assignment 1<->* Assignment.submissions
relation GroupSubmission.assignment 1<->* Assignment.groupSubmissions
relation GroupSubmission.group 1<->* Group.submissions
relation Submission.groupSubmission ? =
assignment.groupSubmissions.find(x=>x.group.members.contains(student))

<-> * GroupSubmission.individualSubmissions

Figure 4.21 Learning management system specification for group submissions. If
a student is part of a group that has submitted to a certain assignment, his individ-
ual grade will be taken from the group grade by default. The individual grade of a
student can still be overridden by the instructor.

relation Submission.children * (ordered) =
assignment.children.submissions.filter(x => x.student == student)

<-> ? Submission.parent
relation Submission.next ? =

parent.children.elemAt(parent.children.indexOf(this) + 1)
<-> ? Submission.previous

Figure 4.22 Bidirectional relation next and previous is derived from the ordering
of children.

compiler. Often multiple students send changes to their submissions concur-
rently. These changes influence just their own grades. Incrementally updating
the grades for single students is fine, as the cache updates will not overlap.
However, course statistics cannot be updated incrementally in a concurrent
setting, as the aggregated values would get update conflicts when multiple
students concurrently get a new grade. In future work it might be worth
investigating whether the calculation strategies can be automatically deter-
mined based on the partitioning of data between application users (students
in this case).

In both case studies the orthogonal nature of the features for fields in Ice-
Dust2 turned out to be advantageous. Changing the derivation type, for ex-
ample from a user value to a derived value, only requires adding or removing
an expression. Changing the calculation strategy is a matter of changing a
single keyword, and if any changes of calculation strategies in other fields
are required for consistency, the type system will tell. Changing a multiplic-
ity, for example making a field optional (?), rather than required, is a matter
of changing a single character. Here as well, the type system will signal any
places where semantic changes are required (for example the read of that field
where a value with multiplicity of 1 is required). If these changes were to be
made to a program expressed in a general purpose language, they would re-

Chapter 4. IceDust 2 95

quire all kinds of boilerplate changes, on top of the semantic changes. This has
been argued before for multiplicities [Steimann, 2013], bidirectional relation
maintenance [Harkes and Visser, 2014], and calculation strategy switching
[Harkes et al., 2016] individually. But combined, it is certainly true as well.

4.8 M U LT I P L I C I T Y B O U N D S F O R T H E R I G H T- H A N D
S I D E O F D E R I V E D R E L AT I O N S

Derived bidirectional relations in IceDust2 specify multiplicity bounds both
for the left-hand and right-hand side. The multiplicity bound on the left-hand
side is checked by checking the multiplicity of the expression. The multiplicity
bound on the right-hand side is only allowed to be [0, n), as IceDust2 features
no static checks for the right-hand side multiplicity bound.

We can view a bidirectional relation as a function, where the left-hand side
is the domain and the right-hand side is the codomain. A derived relation
is a total function (the expression can be executed for all objects in the do-
main), and each element in the domain maps to zero or more elements in
the codomain (restricted to the multiplicity bound of the expression). To get
guarantees for the right-hand side multiplicity bound, this function needs to
satisfy certain properties. For a multiplicity upper-bound of 1, the function
needs to be injective: at most one element in the domain will refer to to each
element in the codomain. For a multiplicity lower-bound of 1, the function
needs to be surjective: at least one element in the domain will refer to each
element in the codomain. IceDust2’s type system does not include reasoning
about this. We can only safely assume the function is not injective and not
surjective, and give the right-hand side a multiplicity bound of [0, n).

However, our case studies revealed two useful derived bidirectional rela-
tions that would benefit from a more strict multiplicity bound on the right-
hand side. Figure 4.22 shows them. If the inverses are actually within the
specified multiplicity bound, the runtime works fine for these derived rela-
tions. Our type system rejects these derived relations, but the programmer
can disable the error if he is confident the inverse is within the multiplicity
bound.

Disabling the error is not sound, the programmer might be mistaken. If the
programmer makes an error, IceDust2 cannot statically guarantee one of the
following three properties: multiplicity bounds, bidirectionality, or derivation
semantics. Consider the following program:

entity Node { }
relation Node.down * <-> * Node.up
relation Node.children * = down <-> ? Node.parent

If some object refers to two other objects in up, it should have two parents as
well, violating the multiplicity bound (Invariant 3). To satisfy the multiplicity
bound, either bidirectionality (Invariant 2) or derivation semantics (Invari-
ant 1) has to be given up. Figure 4.23 shows the three solutions by giving
up one of the three invariants. This example implemented in REScala (in the
same way we implemented submission parent-children in Section 4.2) does

96

n1

object

reference

derived reference

n2

n3 n4

n1 n2

n3 n4

n1 n2

n3 n4

a b cNode

Node

* down

up* parent

children*

?

entity

Figure 4.23 Contradictory specification solutions: (a) give up multiplicity bounds,
(b) give up bidirectionality, or (3) give up derivation semantics.

not preserve bidirectionality (Figure 4.23b). The parents of n3 and n4 would
first be set to one of the objects n1 and n2, and then to the other. The IceDust2
implementation gives up derivation semantics in this situation (Figure 4.23c).
Either object n1 or n2 will not have any children, even though evaluating the
derivation expression would yield children. We do not argue one is better
than the other, both violate an invariant. In future work we will investigate
creating a type system that rejects the above example, but accepts Figure 4.22.

In conclusion, in our case studies we only encountered this one example
where a non-[0, n) multiplicity on the right-hand side of a relation was re-
quired. The rest of the case studies could all be specified in a way that guar-
antees Invariants 1-3. If the programmer correctly specifies a right-hand side
multiplicity, Invariants 1-3 are still guaranteed. Nonetheless, it is still worth
to move the responsibility of checking the right-hand side multiplicities for
derived relations from the programmer to the type system, in future work.

4.9 R E L AT E D W O R K

The related work is organized along the lines of the various language features.
We cover bidirectional relations, incremental and eventual computation, and
the use of product lines in language engineering.

4.9.1 Derived Bidirectional Relations

Various languages feature bidirectional relations as a language feature. Rumer
[Balzer, 2011], RelJ [Bierman and Wren, 2005], Relations [Harkes and Visser,
2014], and IceDust [Harkes et al., 2016] all feature bidirectional relations as
language feature, but do not support derived bidirectional relations. They
vary in multiplicity bound behavior: Rumer and RelJ enforce multiplicities at
runtime, while Relations and IceDust feature multiplicities in the type system.
IceDust2’s behavior for maintaining multiplicity upper bounds is similar to
RelJ’s: it implicitly removes references.

Derived bidirectional relations can be described as views in relational and
logic databases. They can be incrementalized by materializing the views
[Gupta and Mumick, 1995]. Traditional algorithms for materialized views
limit recursive aggregation [Gupta et al., 1993]. Some forms of recursive ag-
gregation can be incrementalized [Ramakrishnan et al., 1994; Ross and Sagiv,
1992], but until now the community has not converged to a recursive aggre-
gation technique [Green et al., 2013]. LogiQL [Green, 2015] has rudimentary

Chapter 4. IceDust 2 97

support for recursive aggregation (behind a compiler flag). Most databases
that feature materialized views also feature non-materialized views, enabling
composition of incremental and on-demand calculation strategies. Database
languages do not allow specification of multiplicity bounds, thus all derived
values have a multiplicity of [0, n). IceDust2 does feature multiplicity con-
straints, includes an eventual calculation strategy, and admits recursive ag-
gregation.

i3QL [Mitschke et al., 2014], Materialized Object Query Language (OQL)
[Gluche et al., 1997], and MOVIE [Ali et al., 2003] support materialized views
in object-oriented languages. The data is in memory, rather than persisted on
disk. Strategy composition can be done by using the framework for incremen-
tal derived values, and the host language for on-demand derived values. As
these systems are relational, they have the same limitations as databases: no
multiplicity bounds, no eventual calculation strategy, and limited support for
recursion (except for i3QL, it features fixpoint recursion).

IncQuery [Ujhelyi et al., 2015] features incremental graph queries. These
can be scheduled by a query planner, but provide no multiplicity bounds.
In IceDust2 derived relations are specified as expressions, which provides a
multiplicity bound for the left-hand side of the derived relation. For derived
primitive values IncQuery has an escape hatch to Java. This makes it Turing
complete, but only the dependencies and results are cached, not the internal
computation. On the other hand, IceDust2 is not Turing complete (its memory
footprint is bounded by the total number of fields of all objects), but the full
computation is incrementalized.

Alloy [Jackson, 2002] (with operational semantics Alchemy [Krishnamurthi
et al., 2008]) and Booster [Davies et al., 2006] feature bidirectional derived
relations as well. These systems use constraints for describing derived values
and multiplicity bounds. On changes to fields, other fields are updated to
maintain the constraints. In constraints, all field references can function as
inputs and outputs, so for predictability, only values mentioned in update
operations are updated. In contrast, IceDust2 can predictably update any
value, as it uses expressions for derived values, not constrains. The fields
referenced in an expression are input, the field the expression is for, is output.

4.9.2 Incremental Computation without Bidirectional Relations

Various programming styles and languages that can be used for incremental
computation do not support derived bidirectional relations. These can only
be used for derived unidirectional relations.

Functional reactive programming (FRP) [Elliott, 2009], with for example
REScala [Salvaneschi et al., 2014], or Scala.React [Maier and Odersky, 2013]
can be used for incremental computation. Wrapping expressions in signal
macros realizes incremental behavior, reevaluating the expression when one
of its dependencies is changed. FRP maintains dependencies at runtime, caus-
ing memory overhead. In contrast, IceDust2 uses static dependency informa-
tion. However, FRP frameworks do support any language feature as long as it

98

is pure, while IceDust2 restricts its expression language to be able to statically
analyze its dependencies. FRP allows strategy composition by modeling in-
cremental derived values in FRP, and using the host language for on-demand
derived values. However, the safety of compositions is not checked, and can
result in inconsistencies.

Self-adjusting computation [Acar, 2009] and Adapton [Hammer et al., 2014]
also use dependency tracking for incremental computation. Adapton features
a demand-driven incremental calculation strategy: dirty flag transitively on
writes, and recompute transitively on reads if dirty. IceDust2 features on-
demand, incremental, and eventual calculation strategies. We might add
Adapton’s calculation strategy to IceDust2 in future work, it would fit in the
general IceDust2 approach without requiring invasive changes to the archi-
tecture. Adapton works only on algebraic data types, but Nominal Adapton
[Hammer et al., 2015] is better suited for object graphs, it allows identifying
caches. In Nominal Adapton’s terms, the derived value caches in IceDust2’s
runtime can be identified ‘objectIdentifier+fieldName’. Adapton allows strat-
egy composition by modeling incremental derived values in Adapton, and
the on-demand derived values in the host language. The safetey of strategy
composition of is checked in Adapton. Adapton does not feature eventual
calculation, bidirectional relations, or data persistence.

Incremental Java Query Language (JQL) [Willis et al., 2008], and Demand-
Driven Incremental Object Queries (DDIOQ) [Liu et al., 2016] enable speci-
fying derived values as queries in Java. They transform imperative code to
a relational calculus, and use the relational model to generate code that in-
crementally maintains caches. In contrast, IceDust2 uses path-based abstract
interpretation instead of a relational calculus to generate maintenance code.

Attribute grammars (AGs) feature a declarative style of specifying derived
primitive values similar to IceDust. Attribute values can also be incremen-
tally computed [Demers et al., 1981]. Reference attribute grammars (RAGs)
support derived relations [Söderberg and Hedin, 2012]. RAGs only support
trees as input (graphs can only be derived values), while IceDust2 works with
graphs. As AGs and RAGs are designed for use in compilers they do not
feature an eventual calculation strategy.

4.9.3 Eventual Calculation without Bidirectional Relations

Reactive programming (RP), with for example RX [Meijer, 2010], features a
programming model similar to FRP. However, RP provides an eventual in-
stead of an incremental calculation strategy by asynchronously processing
updates. RP enables composition with eventual and on-demand calculation
strategies by using the host language for on-demand calculation. Note that
on-demand calculation is eventual on-demand if it depends on eventual cal-
culation, as in our approach (see Figure 4.14).

Chapter 4. IceDust 2 99

4.9.4 Software Product Lines and Language Engineering

Völter and Visser have investigated the combination of software product lines
(SPLs) and domain-specific languages (DSLs) [Völter and Visser, 2011]. In
their taxonomy, IceDust2 falls in the category ‘Variations in the Transforma-
tion or Execution’. The IceDust2 operational semantics vary in execution, and
the IceDust2 compilers vary in transformation based on the field properties.
Behavior is chosen based on presence conditions. IceDust2 falls in the sub
category ‘Negative Variablility via Removal’ by only retaining the behavior sat-
isfying the presence conditions out of all possible behaviors.

The Dana language [Porter et al., 2016] enables switching features at run
time. In order to be able to switch at run time, the various options for a
feature need to have the same public API, and they need to share a set of
transfer fields. Unfortunately, this is not possible with the IceDust2 runtime,
as the public API varies based on the features selected. We would like to
investigate switching calculation strategies at runtime in future work.

4.10 S U M M A RY A N D F U T U R E W O R K

In this chapter we have presented IceDust2, a declarative data modeling lan-
guage that supports composition of derivation calculation strategies and bidi-
rectional derived relations with multiplicity bounds. Because updating de-
rived values with various strategies, maintaining bidirectionality, and keeping
multiplicity bounds all interact, the IceDust2 semantics for individual fields is
structured as a product line, which can be instantiated in two compilers. One
that compiles to plain old Java objects, and one that compiles to an object-
relational mapper. Finally, our case studies validated the usability of IceDust2
in applications: derived values can be specified declaratively and concisely,
independent of their complex runtime.

This work also raises open research questions. First, is it possible to provide
static guarantees for multiplicity bounds for the right-hand side of derived
bidirectional relations? Second, what calculation strategies can be added to
IceDust2, and (more importantly) how can these strategies be composed in a
sound way? Finally, is it possible to automatically assign calculation strategies
to derived values based on high level directives, such as partitioning data
between application users?

100

Postscript: IceDust 2

IceDust2 introduces derived bidirectional relations with multiplicity bounds
and calculation strategy composition. Correctness for incrementality is guar-
anteed by the type system, including incremental updates of derived bidi-
rectional relations. However, performance bottlenecks are not prevented by
static checks in IceDust2. With the introduction of derived relations, a serious
performance caveat was introduced.

The caveat is the specific situation that a derived bidirectional relation with
multiple paths to the same object (such as Submission.parent in Figure 4.4)
is calculated eventually. In this situation the calculation of derived values
after a change to base data can take a long time. In IceDust derived value
calculation times are dominated by loading and saving data. In the WebLab
case study (Chapter 6) calculating a complete course incrementally (in a single
transaction) takes a minute, of which half of the time is loading from database
and a quarter of the time is saving back to the database. When such a derived
relation is calculated eventually, every individual derived value is calculated
in a separate transaction. These individual derived values use the same objects
during the calculation, causing objects to be loaded into memory many times.

In Chapter 6 we work around this performance bottleneck by using a rela-
tional HQL query instead of an IceDust expression for calculating the derived
value. This avoids loading objects into memory altogether. However, these
HQL queries do not provide multiplicity guarantees. So, in future work it
might be interesting to explore automatically transforming queries into ex-
pressions and vice versa to obtain both good performance and multiplicity
bounds.

101

102

5
PixieDust
Declarative Incremental User Interface Rendering through Static Dependency Tracking 1

Modern web applications are interactive. Reactive programming languages
and libraries are the state-of-the-art approach for declaratively specifying such
interactive applications. However, programs written with these approaches
contain error-prone boilerplate code for efficiency reasons.

In this paper we present PixieDust, a declarative user-interface language
for browser-based applications. PixieDust uses static dependency analysis to
incrementally update a browser-DOM at runtime, without boilerplate code.
We demonstrate that applications in PixieDust contain less boilerplate code
than state-of-the-art approaches, while achieving on-par performance.

5.1 I N T R O D U C T I O N

Modern web applications are interactive. Data edits do not trigger page
reloads, but in-place DOM updates. These DOM updates could be written
by hand, but this is a tedious and error-prone exercise. A declarative, but
naive, solution would be to rebuild the entire DOM from a declarative render
function on each edit. However, DOM operations are slow, so this approach
leads to unresponsive interfaces for large applications. Furthermore DOM
elements would lose their local state (such as focus and event handlers). Cur-
rent state-of-the art declarative solutions maintain a virtual DOM, and patch
the browser DOM based on the diffs between virtual DOM renders. When
data is edited, these solutions compare the view before and after the data
edit and apply DOM updates to patch the difference. Since calculating the
minimal difference between two trees is O(n3) [Demaine et al., 2009], these
solutions use O(n) non-minimal tree-diffing algorithms. Possible scalability
issues with non-minimal tree diffing can be mitigated by identifying which
sub-trees need to be updated on a change. However, the programmer is re-
sponsible for correctly identifying these sub-trees, which leads to boilerplate
code.

In this paper we present PixieDust, a web programming language that en-
ables concise declarative definition of user interfaces by automatic derivation
of code to compute incremental view updates based on compile-time static
dependency analysis. The contributions of this paper are:

1This chapter has appeared as ten Veen, N., Harkes, D. C., and Visser, E. (2018). Pixiedust:
Declarative incremental user interface rendering through static dependency tracking. In Compan-
ion of the The Web Conference 2018 on The Web Conference 2018, pages 721–729. International World
Wide Web Conferences Steering Committee.

103

state 1 state 2
div

h1 p

div

h1 pdiv

Figure 5.1 By default, the diffing algorithm of existing frameworks compare chil-
dren in order. Adding a child node at the front causes all children to be completely
rerendered. This issue can be fixed by manually adding identities to children.

• The design of the PixieDust language supporting concise and declarative
definition of data model and view.

• A static dependency analysis of the impact of model updates to views.

• A mapping of PixieDust programs to an implementation in JavaScript
of incremental view updates using the React framework as basis.

• An evaluation showing that the performance of the approach is on-par
with state-of-the-art approaches, with a factor 2 reduction in code size.

We proceed as follows. In the next section we analyze the state-of-the-art
solutions, to see where error-prone boilerplate code is introduced. In Sec-
tion 5.3 we propose an approach for static dependency tracking to identify
sub-trees for rerendering. In Section 5.4 we present the PixieDust language for
specifying data models and declarative views which incorporates this static
dependency tracking. In Section 5.5 we formally define the dependency anal-
ysis for PixieDust. In Section 5.6 we formally define the operational semantics
of PixieDust, detailing its interaction with the browser. In Section 5.7 we eval-
uate our language design, and in Section 5.8 we compare related work to
PixieDust.

5.2 E X I S T I N G A P P R O A C H E S

In this section we analyze techniques for efficient DOM updates used by state-
of-the-art approaches and we identify problems with these techniques.

5.2.1 Linear Tree Diffing

All state-of-the-art approaches use linear tree diffing (for example React [url,
2017b]). Linear tree diffing algorithms compare old and new virtual DOM
trees recursively per level. If the tag of a node is equal to the previous version,
the browser DOM node remains intact. The attributes of intact nodes are
compared, and any differences are patched in the DOM. The children of these
nodes are traversed in the next level. If the tags are different, the entire node
with its children are removed from the DOM and is rebuilt from scratch.

104

{ this.props.todos.map(todo =>

<li key={todo.id}>
<TodoView todo={todo}/>

}

Figure 5.2 Identities (keys) on children increase performance, but add boilerplate
code in MobX. This applies to all state-of-the-art solutions.

enum TodoActionKeys{ TOGGLE_TODO = "TOGGLE_TODO"}
interface ToggleTodoAction{

type: TodoActionKeys.TOGGLE_TODO,
todoId: string

}
type TodoAction = ToggleTodoAction

function toggleTodo(todoId: string) {
return {

type: TodoActionKeys.TOGGLE_TODO,
todoId: todoId

}
}
function reducer(todos:Todo[],action:TodoAction){

switch(action.type){
case TodoActionKeys.TOGGLE_TODO:

return todos.map(todo =>
todo.id == action.todoId
? {finished: !todo.finished, ...}
: todo

);
}

}

Figure 5.3 Boilerplate code needed to dispatch a state update in Redux. The
action is encoded as a plain javascript object which gets passed to a pure function
by the runtime that processes all possible actions.

When children of a node are reordered, a linear diff algorithm cannot de-
termine the new position of children. This means that instead of reordering
the children, the children are replaced by each other. This can be very inef-
ficient, for example when a child is added as first child (Figure 5.1). Adding
identities to children enables reordering in linear time (Figure 5.2). However,
it is the responsibility of the programmer to find suitable identities for the
data structures that are being used and bind them to their sub-trees.

5.2.2 Identifying which parts of the DOM-tree need updating

It is unnecessary to diff the entire tree structure when entire parts of the tree
do not depend on the changes that were made. If a sub-tree is parameterized
by the set of values it depends on, that information can be used to only diff
when these values changed. There are multiple approaches to achieve this.

Chapter 5. PixieDust 105

The first approach is to use immutable data. Elm [Czaplicki and Chong,
2013] and Redux [url, 2017c] use this approach. With immutable data struc-
tures and pure view functions, reference equality can be used to determine
whether a sub-tree needs to be rerendered. When a value changes, only the
node where that value is displayed, and the spine to the root of the tree are
recalculated. Since immutable data structures cannot contain cycles, program-
mers need to use a tree structured data model. Since immutable data cannot
be updated in place, solutions with immutable data use message passing to
encode updates. These messages are dispatched to a pure function calculat-
ing the new state based on the previous state. This optimization does come
with a lot of boilerplate: each action needs to be encoded in a data structure,
and when these actions are decoded, the relevant part of the state needs to be
looked up and modified (Figure 5.3).

An alternative approach to localize DOM diffing is to construct a depen-
dency graph for views. That way views can observe writes that are made to
their dependencies to trigger a rerender. Hence, calls to setters on data are
automatically reflected in the user interface. MobX [url, 2017a] is a frame-
work that constructs the dependency graph dynamically while rendering. To
achieve this at runtime, MobX relies on wrapping get and set operations of
data. However, this can lead to subtle bugs where a child component is passed
a value instead of the getter for that value.

5.2.3 Summary

In conclusion, state-of-the-art solutions induce error-prone boilerplate code.
All solutions require identity annotations on lists. The immutable data so-
lutions (Elm and Redux) require encoding of data modifications into action
objects, and the mutable data solution (MobX) traps getters and setters (which
can accidentally be circumvented in JavaScript).

5.3 S TAT I C D E P E N D E N C Y T R A C K I N G

State-of-the-art client-side application frameworks induce error-prone boiler-
plate code and their assumptions can be accidentally violated leading to sub-
tle bugs. We propose to use static dependency tracking as a solution to these
issues. Static dependency tracking does not trap getters and setters at runtime
(such as MobX), but instead (over)approximates the dependency structure at
compile-time. View definitions reference parts of the data model. These ref-
erences can be statically determined, and this can be used to decide which
views should be rerendered after a data modification.

To illustrate how to statically derive dependencies, we consider a miniature
ToDo application (Figure 5.4). A TodoList holds zero or more Todos. A Todo
has a description and a finished flag. The view for a TodoList is a div
containing a ul with a li for every item. Every Todo is rendered as a checkbox
for the finished status and a span for the description.

106

model
entity TodoList {

todos : Todo* (inverse = Todo.list)
}
entity Todo {

description : String
finished : Boolean

}

view
TodoList.view = div { ul { todos.itemView } }

Todo.itemView = li {
input[type="checkbox", value=finished]
span { description }

}

Figure 5.4 Miniature ToDo application data model and view

By analyzing the body of the views, we can collect all referenced paths. The
itemView references both fields of the Todo. The TodoList.view references
the itemView of its todos. This means that this view needs to be updated
both when a referenced itemView changes and when the todos list changes
itself. Together, the application contains the following dependencies:

Todo.itemView <- finished
Todo.itemView <- description
TodoList.view <- todos
TodoList.view <- todos.itemView

These dependencies can be inverted to get the data flow of the application.
To be able to invert dependencies that reference todos, we need an inverse.
Figure 5.4 defines the inverse of todos as Todo.list. When we invert depen-
dencies we obtain the following data flow:

Todo.finished -> itemView
Todo.description -> itemView
TodoList.todos -> view
Todo.itemView -> list.view

This data flow can be used to trigger rerendering of views on data modifica-
tions. Moreover, since views are parameterized by an entity, we can automat-
ically assign keys to collections, without unnecessary boilerplate code.

We have designed and implemented PixieDust, a new language for declar-
ative definition of user interfaces in the browser based on this dependency
analysis. We will formalize this dependency analysis in Section 5.5, but first
we will discuss the design of PixieDust.

5.4 P I X I E D U S T

PixieDust is a language for specifying data models and browser-based user
interfaces that separates the concerns of model and view, literally by keywords
(for example Figure 5.4). Everything defined in the data model is visible in
the view, but not vice versa.

Chapter 5. PixieDust 107

5.4.1 Data Model

For the data model we use the IceDust data modeling language [Harkes et al.,
2016; Harkes and Visser, 2017]. In IceDust, a data model consists of entities
with fields. All fields have a type and a multiplicity. The multiplicities in
IceDust are 1, ?, ⇤, and + (similar to regular expressions and highlighted in
red in examples). If multiplicities are omitted, they default to 1. Fields with
an entity-type have an inverse. Whenever an object refers from such a field
to another object, the other object refers back from its inverse field. Lastly,
IceDust features derived value fields: fields for which the value is calculated.
For example, we can extend the TodoList in Figure 5.4 with a field indicating
whether all todos are finished and how many are left:

entity TodoList {
allFinished : Boolean = conj(todos.finished)
todosLeft : Int = countFalse(todos.finished)

}

5.4.2 View

In PixieDust we define views in the context of an entity (Figure 5.5). The View
type is a (virtual) DOM node. Inside a view, the fields of the context entity
can be concisely accessed by referring to them. Other views of the same entity
also can be referenced directly, and views of other entities can be referenced
by member access. This makes for concise definitions of views in PixieDust.

The view of a model might contain state. In our example we have the state
of the input field for adding new todos. To separate the concerns of data
model and view, we do not add this state to the data model, but introduce
view state. View state fields can be of any type and are scoped by a context
entity (Figure 5.6). View state supports the same kind of derived values as the
data model. For example we derive the visible todos collection in Figure 5.6.

User interfaces should support user interaction with the application. In
PixieDust, actions declaratively describe data modification (Figure 5.7). Ac-
tions are also scoped by an entity, this makes for concise definitions. Both
the data model and view state can be accessed within actions. Moreover, new
objects can be created (see addTodo) and old objects can be left for garbage
collection (see deleteTodo).

Often an input element reads and writes to a specific field of an entity.
One could program an action for each field, but that is tedious. For concise
UI specifications, a language should support bidirectional mappings between
user interface and data model. PixieDust provides built-in bidirectional map-
pings for primitive data types (BooleanInput and StringInput in Figure 5.5).
In future work we would like to explore user-defined bidirectional mappings.

5.4.3 Example

Figures 5.4-5.7 contain an almost complete specification of a full ToDo appli-
cation in PixieDust. The only thing missing is the definition of two functions

108

view
TodoList {

view : View = div {
header
ul { visibleTodos.itemView }
footer

}

header : View = div {
h1 { "Todos" }
input[type="checkbox", value = allFinished,

onClick = toggleAll]
StringInput[onClick = addTodo](input)

}

footer : View = div {
todosLeft "items left"
ul{

visibilityButton(this, "All")
visibilityButton(this, "Finished")
visibilityButton(this, "Not finished")

}
if(count(finishedTodos) > 0)

button[onClick = clearFinished]
}

}
Todo {

itemView : View = li { div {
BooleanInput(finished)
span { task }
button[onClick=deleteTodo] { "X" }

}}
}

Figure 5.5 TodoList views: the TodoList view has a header with an input field for
adding new todos; a list of all todos; and a footer with the number of todos left, a
filter for which todos to show, and a button for removing finished todos.

view
TodoList {

input : String = (init = "")
show : String = (init = "All")

finishedTodos : Todo* =
todos.filter(todo => todo.finished)
(inverse = Todo.inverseFinishedTodos?)

visibleTodos : Todo* =
switch {

case show == "All" => todos
case show == "Finished" => finishedTodos
default => todos \ finishedTodos

}
(inverse = Todo.inverseVisibleTodos?)

}

Figure 5.6 TodoList view state: the view state contains fields for storing the input
(to add a new item), filtering visible items, and computing visible items.

Chapter 5. PixieDust 109

view
Todo {

actions {
toggleTodo: finished := !finished
deleteTodo: list := null

}
}
TodoList {

actions {
addTodo:

todos += {description = input
finished = false}

input := ""

toggleAll: todos.finished := !allFinished
clearFinished: todos -= finishedTodos
setVisibility(to: String): show := to

}
}

Figure 5.7 ToDo application actions: items can be toggled, deleted and added;
and for a list all items can be toggled, all finished items can be deleted, and the
filter can be changed.

functions
visibilityButton(l:TodoList, to:String):View =

li[onClick = l.setVisibility(to)] { to }

countFalse(bs : Boolean*) : Int =
count(bs.filter(b => !b))

Figure 5.8 Functions in ToDo application facilitate reuse

(Figure 5.8). Together, these figures form a concise specification of a complete
ToDo application. Moreover, this application is incremental: derived values
are only recalculated and views are only rerendered when needed.

5.5 D E P E N D E N C Y A N D D ATA - F L O W A N A LY S I S

In Section 5.3 we introduced static dependency tracking as a way to get rid of
error-prone dynamic dependency boilerplate code. In this section we formal-
ize this static dependency analysis. The analysis is based on the dependency
analysis of IceDust [Harkes et al., 2016]. In this paper we extend it with anal-
ysis for functions and views.

5.5.1 Dependencies between Fields in Data Model

First, we recap the analysis of dependencies between fields from IceDust. To
illustrate the analysis we extend Figure 5.4 with allFinished which is the
conjunction of the finished fields:

allFinished : Boolean = conj(todos.finished)

110

The dependencies of a field are all fields which are needed to compute the
derived value of that field. The dependencies are reachable from the entity
containing the field via a path. A dependency is denoted by (Ent.Field p),
where Ent.Field is a field and p is the path to a field.

Computing the dependencies requires extracting paths from expressions
defining field values. The path-based abstract interpretation relation (Figure 5.9)
defines the dependency paths of an expression. We use the notation (Expr &
{p}{r}), where Expr is the expression that is abstractly interpreted, and {p}
and {r} are the sets of paths defined by the abstract interpretation. The paths
in {p} are extended by surrounding expressions, while the paths in {r} are
not. The if only extends paths in the second and third operand, so P1 is
passed to {r}. All paths start with this [This] or with navigation [NavStart].
When navigating by means of e.m all dependency paths in {p} are extended
with .m [Nav]. Operators just pass on all paths [UnOp, BinOp], and literals
do not contain any paths [Literal]. Path-based abstract interpretation of the
expression defining allFinished produces a set with a single path:

{ todos.finished }

The dependencies relation (Figure 5.9) defines the dependencies of a field and
a full program. We use the notation Field|Prog&& {(Ent.Field p)} where
Field|Prog is a field or full program, and {(Ent.Field p)} is a set of de-
pendencies. When a field depends on the value at the end of a path, it also
depends on the relations en route. So the rule for fields [Field] takes the tran-
sitive prefix of the paths of its expression. As paths are concatenated later, the
this is removed from paths. The paths for our example are:

(TodoList.allFinished todos.finished)
(TodoList.allFinished todos)

The data flow from a field is the set of all fields that depend on it to compute
their value. The data flow relation is the inverse of the dependency relation.
We use (Ent.Field ! p) to denote the data flow relation from the source,
Ent.Field, to the target, the end of the path p.

The dependency inversion relation, (Ent.Field p) % (Ent .Field ! p), in
Figure 5.10 defines the inverse of a dependency. A dependency is inversed
by swapping source and target, and inverting the path p to get the path from
target to source. The function inv-path(p) inverts the names on the path,
and inverts their order. Name inversion is selecting the name on the opposing
side of a bidirectional relation. The resulting data flow in our example is:

(TodoList.todos ! allFinished)
(Todo.finished ! list.allFinished)

5.5.2 Dependencies with Filter, Find, and OrderBy

Note that IceDust 2 [Harkes and Visser, 2017] introduced filter, find, and
orderBy, but did not document the dependency analysis for these. To illus-
trate the analysis of these, consider adding the following to TodoList:

numLeft:Int = count(todos.filter(x=>!x.finished))

Chapter 5. PixieDust 111

Path-based abstract interpretation Expr & {p}{r}

m& {m}{}
[NavStart]

e& P P

e . m& {p . m | p 2 P} P
[Nav]

this & {this}{}
[This]

e 2 Literal

e & {}{}
[Literal]

� 2 UnOp e& P P

� e & P P
[UnOp]

� 2 BinOp e1 & P1 P1 e2 & P2 P2

e1 � e2 & P1 [P2 P1 [P2

[BinOp]

e1 & P1 P1 e2 & P2 P2 e3 & P3 P3

e1 ? e2 : e3 & P2 [P3 P1 [P1 [P2 [P3

[If]

� 2 {filter, find, orderBy} e1 & P1 P1 e2 & P2 P2

P02 = replace-id*(P2, x, P1) P02 = replace-id*(P2, x, P1)

e1.� (x => e2) & P1 P02 [P1 [P02
[Col]

f .expr& P f P f ei & Pi Pi

Pe =
S

i=1..n Pi Pnamed
e = {(f .args[i], Pi) | i 2 1..n}

P0f = replace-ids(P f , Pnamed
e) P0f = replace-ids(P f , Pnamed

e)

f (e1, . . . , en) & P0f P0f [Pe

[Fun]

replace-id(x.p, x, p2) = p2.p
replace-id(p, x, p2) = p
replace-id*(P1, x, P2) = {replace-id(p1, x, p2) | p12P1, p22P2}
replace-ids(P1, []) = P1
replace-ids(P1, [(x, P2)|t]) = replace-ids(replace-id*(P1, x, P2), t)

Dependencies Field|Prog&& {(Ent.Field p)}

m.expr& P P e = m.entity P2 =
S {trans-pref(remove-this(p)) | p 2 P [P}

m 2 Field&& {(e.m p) | p 2 P2}
[Field]

P =
S {dep | m&& dep, m 2 e.fields, e 2 p.entities}

p 2 Prog&& P
[Prog]

remove-this(this . p) = p
remove-this(m . p) = m . p
trans-pref(p . m) = {p . m} [trans-pref(p)
trans-pref(m) = {m}

Figure 5.9 Dependency relation by path extraction

112

Dependency inversion (Ent.Field p)% (Ent.Field! p)

e2 = m.entity

(e1 . m1 p . m2) % (e2 . m2 ! inv-path(p) . m1)
[InvDep]

inv-path(p . m) = m�1 . inv-path(p)
inv-path(m) = m�1

inv-path(null) = null

Data flow Prog%% {(Ent.Field! p)}

p && Dep

p 2 Prog %% {d f | dep % d f , dep 2 Dep}
[Prog]

Figure 5.10 Data flow relation by inverting dependencies

The rule [Col] (Figure 5.9) covers these expressions containing a lambda. The
occurrence of the parameter x in the paths of the body of the lambda are
replaced with the paths of the argument. For our example replacing the x in
x.finished with {todos} yields:

{ todos.finished }

5.5.3 Dependencies with Functions

In this paper we extend the dependency analysis with support for functions.
As an example for functions we use our specification of todosLeft by using
a function for counting the number of elements equal to false:

todosLeft : Int = countFalse(todos.finished)

function countFalse(bs : Boolean*) : Int =
count(bs.filter(b => !b))

Rule [Fun] in Figure 5.9 covers user-defined functions. The dependency paths
of a function call are defined as the dependency paths of the function def-
inition expression, with all occurrences of argument names replaced by the
paths of the arguments at the call site. Note that these are all sets of paths,
so functions replace-id* and replace-ids operate on sets. If we apply the
analysis to our example, the paths of the function body are:

{ bs }

The call from numLeft has the following named paths:
(bs => { todos.finished })

Applying replacement yields the dependencies for numLeft:
{ todos.finished }

Note that this is identical to our original definition of numLeft.
PixieDust does not support direct recursive functions. In order to provide

incremental behavior each recursive step should be cached. So recursion is

Chapter 5. PixieDust 113

S 2 Entity : EntityRe f ⇥ Field 7!
(val 7! [Value], cache 7! [Value], dirty 7!Boolean, subs 7! [ComponentRe f])

C 2 Component : ComponentRe f 7! (o 7! EntityRe f , f 7! Field, mounted 7! Boolean)

Q 2 Queue : {ComponentRe f }
F 2 Frame : ObjectRe f

Value : EntityRe f | PrimitiveValue | VirtualDOMElem

Figure 5.11 The PixieDust runtime has four stores. The entity store (S) maps
object fields to user value, cached value, dirty flag, and subscribed components.
The component store (C) maps components to object fields and a mounted flag.
The queue (Q) is a global list of elements that need to be rerendered, and the frame
(F) is a reference to a requested animation frame.

supported through materializing the intermediate results in a field. For ex-
ample,

entity Node {
children : Node* (inverse = Node.parent?)
cnt : Int = count_descendants(this)

}

function count_descendants(n : Node) : Int =
count(n.children) + sum(n.children.cnt)

5.5.4 Dependencies between Views

In Section 5.4 we introduced view state and Views as a new data type for
fields in the view state. The dependency analysis treats view state fields equal
to data model fields. However, views (fields of type View) that are related
through containment, do not depend on each other. Views are updated in
place inside the DOM, so ’parent’ views do not have to be notified of change.
We will cover this in more detail in the next section.

5.6 O P E R AT I O N A L S E M A N T I C S

In this section we describe the dynamic semantics of rendering PixieDust ap-
plications. Our compiler (PixieDust-to-JavaScript) uses the React rendering
framework. Analogously, our semantics use semantic functions which cor-
respond to the React and browser APIs calls and callbacks at runtime. Our
semantics extend the IceDust 2 semantics for incremental calculation [Harkes
and Visser, 2017]. (Semantic functions are typeset in bold, and IceDust 2 calls
are typeset in italic.)

We specify the operational semantics of PixieDust using big-step semantics.
The reduction rules modify four stores (Figure 5.11). The first store (S) is
the IceDust data store. We extend this store to include a list of components
which should be notified of change per field: subscriptions. Note that we
also store view state and rendered virtual DOMs in this store. The second
store (C) contains meta data for React Components: which view-state field

114

Data modifications Statement/S, C, Q, F + /S, C, Q, F

S2 = S[o, f , dirty 7! true] [schedule(c) + | c 2 S[o, f].subs]

o.flagDirty(f)/S + /S2

[FlagDirty]

Q2 = Q[{c} subscribe() +

schedule(c)/Q + /Q2

[Schedule]

F = null F2 = requestAnimationFrame(s))

subscribe()/F + /F2

[SubFrame1]

F , null

subscribe() +
[SubFrame2]

Figure 5.12 Evaluation rules for modifications to data

Rendering Statement/S, C, Q, F + /S, C, Q, F

[c.forceUpdate() + | c 2 Q, C[c, mounted]= true] Q2 = ∆ unsubscribe() +

onAnimationFrame(s)/Q + /Q2

[Render]

F,null cancelAnimationFrame(F) F2 =null

unsubscribe()/F + /F2

[UnsubFrame1]

F = null

unsubscribe() +
[UnsubFrame2]

Figure 5.13 Evaluation rules for render

contains the rendered virtual DOM, and whether the component is currently
mounted. The third store (Q) is a queue of views scheduled for rerendering,
and the fourth store (F) refers to the next requested animation frame. In our
rules we omit stores if they are not modified. When a store is omitted, it is
implicitly threaded from left to right.

The evaluation rules are designed such that we only rerender views when
needed, and only rerender them at most once per data modification. The
rules in Figure 5.12 define what to do on data modifications. We override
IceDust’s [FlagDirty] rule to schedule renders on all subscriptions as soon as
a field is marked as dirty. This does not rerender those views directly, but
schedules them in the queue [Schedule]. Moreover, if this was the first view
to be scheduled for rerender, we schedule a browser rerender with request-
AnimationFrame. This method tells the browser that we want to perform an
action before the next frame will be painted. In this way we can batch all
effects of data modifications on the UI, avoiding double rerendering.

The rules in Figure 5.13 define what to do on a render. When the browser
wants to display the next frame, it will call onAnimationFrame. On this call,
the PixieDust runtime forces all mounted React components to be rerendered

Chapter 5. PixieDust 115

Component life cycle Statement/S, C, Q, F + /S, C, Q, F

C2 = C[c, mounted 7! true] c.o.subDirty(c. f , c) +

c.componentDidMount()/C + /C2

[Mount]

C2 = C[c, mounted 7! false] c.o.unsubDirty(c. f , c) +

c.componentWillUnmount()/C + /C2

[Unmt]

c.o , o2 c.o.unsubDirty(c. f , c) + C2 = C[c, o 7! o2] o2.subDirty(c. f , c) +

c.componentWillReceiveProps(o2)/C + /C2

[Props1]

c.o = o2

c.componentWillReceiveProps(o2) +
[Props2]

[v.addSubscriber(f2, c) + |v 2 V, o ` expr + V,
expr. f2 2 f .depends,¬isView(f2)]

o.subDirty(f , c) +
[Subscribe]

S2 = S[o, f , subs 7! S[o, f].subs[[c]]

o.addSubscriber(f , c)/S + /S2

[AddSub]

[v.removeSubscriber(f2, c) + |v 2 V, o ` expr + V,
expr. f2 2 f .depends,¬isView(f2)]

o.unsubDirty(f , c) +
[UnSub]

S2 = S[o, f , subs 7! S[o, f].subs \ [c]]

o.removeSubscriber(f , c)/S + /S2

[RemoveSub]

V = c.o.get(c. f)

c.render() + V
[Render]

Figure 5.14 Evaluation rules for component life cycle

with forceUpdate [Render]. React then updates the browser DOM with the
diffs from the virtual DOM, before the next frame is rendered.

In this process, React will call various life cycle callbacks on components.
Figure 5.14 defines what happens on various life cycle callbacks. The goal of
these rules is to maintain a precise list of which data from the entity store
is visible through views. First, rules [Mount, Unmt] keep track of whether
components are currently mounted in the browser-DOM. Non-mounted com-
ponents are not forced to update on a render [Render]. Second, the rules in
Figure 5.14 maintain the subs fields in the entity store. The subs fields only
contain components which depend on the field, and which are mounted. Note
that we never have subscribers for view-typed fields [AddSub], since views
are updated in place in the DOM (as discussed in Section 5.5). This way, only
the minimal number of components is scheduled for rerendering when data
is modified.

116

PixieDust MobX/React React React/Redux Elm
LOC 74 193 259 276 300

Table 5.1 Lines of code for different todo list implementations. Implementations
are stripped of features that are not shared between other implementations.

Finally, when React wants to update a view it calls render. This call is
forwarded to IceDust’s incremental evaluation for derived values which com-
putes the virtual DOM for that view [Render].

Together, these evaluation rules minimize the amount of rerendering. In
the next section we will evaluate the performance of our implementation. In
this semantics we did not cover how actions work. However, the execution
of actions is fairly straightforward, and we want to focus this paper on incre-
mental rendering.

5.7 E VA L U AT I O N

We evaluate PixieDust with respect to two criteria: (1) reduction of error-
prone boilerplate code, and (2) performance relative to state-of-the-art appro-
aches. Our running example in this paper has been a ToDo application. More
precisely, it is exactly the application from todomvc.com. TodoMVC compares
frameworks through implementations of this ToDo application. We use this
application to compare conciseness and performance.

5.7.1 Conciseness

The goal of PixieDust is to remove error-prone boilerplate code. To asses this,
we look at the number of lines of code of the todo application in different
approaches. We have taken the reference implementations for TodoMVC of
MobX and vanilla React from todomvc.com, the implementation for Redux
from their repository2, and the implementation for Elm from the author of
Elm3. Since not all implementations have the same features, we stripped off
features that are not shared between all todo implementations. We used cloc
for counting the lines of code, except for PixieDust which we had to count by
hand.

The results are compiled in Table 5.1. Indeed, the PixieDust programs
are more concise than the same programs in the state-of-the-art approaches.
This is expected, as PixieDust is a domain-specific language with tailored
syntax, while the state-of-the-art approaches are JavaScript libraries or general
purpose languages.

2https://github.com/reactjs/redux/tree/master/examples/todomvc
3https://github.com/evancz/elm-todomvc

Chapter 5. PixieDust 117

todomvc.com
todomvc.com
https://github.com/reactjs/redux/tree/master/examples/todomvc
https://github.com/evancz/elm-todomvc

Figure 5.15 TodoMVC online performance benchmark shows PixieDust performs
comparable.

5.7.2 Performance

The todomvc performance benchmarks is an existing online benchmark suite for
TodoMVC4. This benchmark adds 50 tasks to a single todo list, marks all of
them completed one by one and deletes them afterwards. We added an entry
for a PixieDust implementation of the Todo application. The results of this
benchmark can be seen in Figure 5.15. PixieDust has on-par performance
according to this benchmark.

Unfortunately, the TodoMVC benchmark does not benchmark all features.
Moreover, the implementations of the various state-of-the-art systems have
not been kept up to date (last commit November 2015). So, we created a
new benchmark that considers more features5. To make the benchmark more
representative for larger applications we extended the ToDo application to
support todo items which are lists themselves. A list is finished if all child
lists and items are finished:

entity TodoList {
children : TodoList*(inverse=TodoList.parent?)
allFinished : Boolean =
conj(children.allFinished) and
conj(todos.finished)

}

None of the TodoMVC entries featured nested todo lists. Since MobX is clos-
est in conciseness and also based on mutable data structures, we’ve extended
its implementation with nested lists to compare against. Our test can be pa-

4https://github.com/featurist/todomvc-perf-comparison
5https://github.com/besuikerd/rendering-options

118

https://github.com/featurist/todomvc-perf-comparison
https://github.com/besuikerd/rendering-options

Framework Depth Children Todos #Actions
Balanced 4 3 5 1120
Deep 10 1 5 280
Deeper 25 1 5 700
Wide 2 100 2 1414
Leaves 1 1 100 475

Table 5.2 Test properties for benchmarking (depth, degree, and number of leaves
of nested ToDo tree) and total number of user interactions performed during exe-
cution trace.

rameterized by several properties that influences the size and shape of the
nested todo list:

• Depth defines the depth of nested todo lists from the root.

• Children defines how many child lists are added per list.

• Todos defines how many todos are added per list.

We run the benchmark on five data sets (Table 5.2). A test trace executes the
following steps. The input field of the root list is selected. For each todo that
needs to be added, three alphabetic characters are entered and the enter key
is pressed to add it to the list. Next, the toggle all button is pressed twice
to select and deselect all todos of the list and its children. After that, half of
the todos of the list are finished one by one, and then one third of the todos
are deleted individually. After this, all the filters are selected once, and the
"Clear finished todos" button is pressed. Finally, if we have not yet reached
the required depth, the specified amount of child lists is added to the list and
this procedure is recursively repeated for each child.

To ensure that no renders are skipped, each action awaits the next ani-
mation frame before executing. The timings are recorded with the Chrome
runtime performance recorder which reports scripting (executing JavaScript),
rendering (the browser painting), and other (not categorized). During a test,
the number of times a specific view component is rendered is counted. The
todo list application has four components: Header, Footer, List, and Todo.
The benchmarks were performed on a 2017 Macbook Pro laptop with Intel
Core i7 2,6Ghz, 4 cores (8 threads), and 16 GB memory.

The results of the benchmark are compiled in Figures 5.16 and 5.17. In
general, most tests have the same total execution time between frameworks,
but the rerenders counts vary.

First, MobX renders the Todo view significantly more often than PixieDust.
Whenever a new task is added to a list, all todo items are rendered again.
This is caused by the fact that while rendering the list header, the derived
value allFinished is calculated, which calls the getter on the finished field
of each todo through the finishedTodos derived value. In the ’Leaves’ test,
MobX also spends significantly more time processing JavaScript, presumably
for this very reason.

Chapter 5. PixieDust 119

Figure 5.16 Average time per action on tests from Table 5.2. Solid bars are Pix-
ieDust, striped bars are MobX/React.

Figure 5.17 Total number of renders on tests from Table 5.2. Solid bars are Pix-
ieDust, striped bars are MobX/React.

Second, PixieDust renders the header component significantly more often
when the depth is larger. This is caused by dirty flagging allFinished tran-
sitively along the spine of the tree whenever a modification is done in a todos
list. Even when the value stays the same, a render is triggered. This is a
limitation of lazy incrementality. In future work we might explore eager in-
cremental evaluation which can detect if a dirty flagged value stays the same.

In conclusion, PixieDust outperforms MobX in some situations, and is out-
performed by MobX in other situations. In general, PixieDust’s performance
is on-par with MobX while reducing lines of code.

5.8 R E L AT E D W O R K

The related work is organized in two groups: reactive user-interface languages
and incremental computing. The first group we divided in functional (im-
mutable data) and declarative approaches.

120

Functional Reactive UIs Elm is a functional reactive language for graphical
user interfaces [Czaplicki and Chong, 2013]. Newer versions of Elm dropped
the support for signals in favor of a simpler model. An application is split up
in three parts: The model, the view and the update logic. The update logic
takes events that might be triggered by the view or other sources and recom-
pute the next state. While this model gives a clear separation of concerns, it
does involve boilerplate code to achieve this.

Redux [url, 2017c] embraces the same pattern but integrates it in React and
Javascript as a library. It has the same advantages and disadvantages as Elm.
We covered the issues with these approaches in detail in Section 5.2.

Flapjax is a Javascript library for defining web applications using behav-
iors and event streams [Meyerovich et al., 2009]. In Flapjax data flow can be
manually constructed by combining event sources and piping these to sinks.
This model enables reactive programming, but hooking up reactive values to
the DOM is still manual. Furthermore, the programmer is responsible for
identifying where to hook up reactive values, which is error prone.

Reynders et.al. implemented a FRP library in Scala [Reynders et al., 2017].
They analyze different design trade-offs for FRP libraries that interact with the
DOM. Based on these trade-offs, they implement a DOM UI library that uses
push-pull FRP. Our approach also uses push-pull, push for marking things
dirty, and pull for calculating by need. However, in our approach this behav-
ior is hidden behind a declarative language.

UI.Next [Fowler et al., 2015] is a UI library in F#. It connects data sources
to views by creating a dynamic data flow graph. The monoidal structure
of its DOM elements enables composition of views. It requires higher-order
functions to compose, which makes the code less declarative.

Declarative Reactive UIs MobX [url, 2017a] is a state management library. By
annotating the variables in a data structure which change over time, MobX
can construct a dependency graph at runtime. In contrast, our approach does
static runtime dependency tracking. We covered MobX extensively in Sec-
tion 5.2.

Reactive variables [Schuster and Flanagan, 2016] aim to reduce the boil-
erplate in programming with signals by adding syntactic sugar for reactive
variables. These reactive variables are similar to our approach in the sense
that they hide the fact that these variables have a Signal<T> type. Their ap-
proach is also compiled to JavaScript, but they do not detail how to interact
with the DOM.

Mobl [Hemel and Visser, 2011] is a language to declaratively construct in-
teractive mobile applications. The data model defines entities and bidirec-
tional relations between entities, similar to the data model we use. Views can
be parameterized by these entities which can be modified via input events.
However, their interface language is geared toward phone screens, while ours
is focused on browser-DOMs.

Incremental Computing IceDust [Harkes et al., 2016; Harkes and Visser, 2017]
is a declarative data modeling language with derived values and bidirectional

Chapter 5. PixieDust 121

relations. It features incremental calculation for derived values. However, it
does not have any support for views. In this paper we have extended their
approach for incremental computing to cover views in the browser.

Functional Reactive programming can be used for incremental computing.
In FRP implementations, like REScala [Salvaneschi et al., 2014], signals propa-
gate through their dependencies. That means that when a value changes, only
relevant parts of the data flow are recalculated. However, this approach does
not suffice for browser-based views. Because the DOM is a tree structure,
composed views will propagate their signals up the spine of the tree, which
triggers unnecessary rerenders.

5.9 C O N C L U S I O N

In this paper we have presented PixieDust, a declarative user-interface lan-
guage for browser-based applications. PixieDust uses static dependency anal-
ysis to incrementally update a browser-DOM at runtime. We have demon-
strated that applications in PixieDust contain less boilerplate code than state-
of-the-art approaches, while achieving on-par performance.

Our research also raises new research questions. First, can we refine our ap-
proach so it will perform better? Will eager incremental calculation of views,
with the ability to short-circuit updates if values stay the same, perform bet-
ter? And second, what would be a good language design for user-defined
bidirectional mappings between data model and user interface?

122

6
WebLab Case Study
Migrating Business Logic to an Incremental Computing DSL: A Case Study 1

To provide empirical evidence to what extent migration of business logic to
an incremental computing language (ICL) is useful, we report on a case study
on a learning management system. Our contribution is to analyze a real-life
project, how migrating business logic to an ICL affects information system
validatability, performance, and development effort.

We find that the migrated code has better validatability; it is straightfor-
ward to establish that a program ‘does the right thing’. Moreover, the perfor-
mance is better than the previous hand-written incremental computing solu-
tion. The effort spent on modeling business logic is reduced, but integrating
that logic in the application and tuning performance takes considerable effort.
Thus, the ICL separates the concerns of business logic and performance, but
does not reduce total effort. Our case study relies on IceDust. IceDust builds
on WebDSL and the Spoofax language workbench.

6.1 I N T R O D U C T I O N

Information systems are systems for the collection, organization, storage, and
communication of information. Information systems aim to support opera-
tions, management, and decision-making. In order to do this, the data in
information systems is filtered and processed to create new data: derived
data. Often these information systems contain large amounts of data and
receive frequent updates to this data. The derived data should be updated
as base data is updated, and that should happen fast. However, realizing a
high performance implementation typically requires invasive changes to the
basic business logic in the form of cache and cache invalidation code. Unfor-
tunately, this obfuscates the original intent of the business logic in an abun-
dance of caching patterns. These programming patterns are an obstacle to
understanding of programs by human readers [Felleisen, 1990], and thus re-
duce validatability. In other words, it is less straightforward to establish that
a program ‘does the right thing’.

Incremental computing languages (ICLs) aim to address this tension be-
tween performance and validatability by automatically incrementalizing non-
incremental specifications. Since none of the existing ICLs could express busi-
ness logic of our information systems concisely, we created IceDust, an ICL

1This chapter has appeared as Harkes, D. C., van Chastelet, E., and Visser, E. (2018). Migrat-
ing business logic to an incremental computing DSL: a case study. In Pearce, D. J., Mayerhofer, T.
and Steimann F., editors, Proceedings of the 11th ACM SIGPLAN International Conference on Software
Language Engineering.

123

with support for recursive aggregation and composition of multiple incre-
mental computing strategies.

Contribution To provide empirical evidence to what extent migration of busi-
ness logic to an ICL is useful, we report on a case study on a learning manage-
ment system: WebLab. Our contribution is to analyze a real-life project, how
migrating business logic to an ICL affects validatability and performance, and
how much effort migration takes.

Audience We target language engineering researchers (interested in empiri-
cal data justifying their work or looking for new problems to solve) and infor-
mation system developers (seeking to understand how ICLs can help them in
practice).

Structure We organize this chapter according to the structure proposed for
case studies by Runeson et al. [Runeson et al., 2012] and Yin [Yin, 2013], simi-
lar to a recent case study by Voelter et al. [Völter et al., 2015]. We start with the
background on information systems, language engineering, and incremental
computing languages in Section 6.2. Section 6.3 introduces our research ques-
tions and collected data. Section 6.4 describes the relevant context of the case
study, including the architecture, the development timeline, and team com-
position as suggested by Dyba et al. [Dybå et al., 2012]. Section 6.5 provides
an overview of the IceDust-based implementation of WebLab. Section 6.6
answers the research questions. Section 6.7 discusses validity. Section 6.8
contrasts our work to related work, and we conclude in Section 6.9.

6.2 B A C K G R O U N D

In this section we cover the background information for this case study: infor-
mation system engineering, language engineering, and incremental comput-
ing.

6.2.1 Web-based Information System Engineering

Nowadays, many applications — including information systems — are web
applications, as these are easily accessible. This is illustrated by the fact that
the most widely used programming, scripting, and markup languages by
Stack Overflow users in 2018 were JavaScript, HTML, and CSS [url, 2018].

Many organizations have unique requirements for their information sys-
tems. Organizations differ on the exact structure of their data, who gets
access to what data, what derived data is computed, and how many users
concurrently use the system. Consequently, many organizations use custom-
built information systems. Most of these organizations do not require a large-
scale infrastructure for their web-based information system, usually a single-
shard web-server suffices. While new storage technologies are on the rise, the
predominant technology used for storage of data for information systems is
relational databases. The code interacting with databases is usually object-

124

oriented, as illustrated by the Correlated Technologies in the same developers
survey [url, 2018].

Developing information systems poses challenges. One of these challenges
is bridging the gap between domain concepts and the encoding of these con-
cepts in a programming language [Jackson, 2006; Felleisen, 1990; Visser, 2015].
The validatability of a program is a measure of the size of this gap. Better
validatability, a smaller gap between intent and encoding, makes it straight-
forward to establish that a program ‘does the right thing’. Another challenge
is performance [Zeng et al., 2016; Green, 2015]. Realizing a high performance
implementation typically requires invasive changes to a basic expression of
intent, reducing validatability. The last challenge is reducing the effort spend
on engineering information systems, as budget overruns and delays are a con-
stant problem for information system engineering [Yeo, 2002].

6.2.2 Incremental Computing Languages and IceDust

Incremental computing is a software feature which, when a piece of data
changes, attempts to save time by reusing previous results to compute new re-
sults [Carlsson, 2002; Acar, 2005; Demetrescu et al., 2011]. This can be orders
of magnitude faster than computing new results from scratch. A program-
ming language is an incremental computing language if all programs written
in it use incremental computing. ICLs can be general purpose, for example
self-adjusting computation [Acar, 2005] and Adapton [Hammer et al., 2014];
or domain-specific, such as type system languages [Szabó et al., 2016], array
computation languages [McSherry et al., 2013; Zhao et al., 2017], and SQL
materialized views [Gupta and Mumick, 1995; Koch et al., 2014].

IceDust [Harkes et al., 2016; Harkes and Visser, 2017] is a domain-specific
ICL for the domain of information systems. It targets small to medium-sized
information systems of small organizations that run on a single shard server
and are programmed with a relational database and an object-oriented lan-
guage. In IceDust, a data model and derived values can be specified. These
derived values can be calculated by a variety of incremental calculation strate-
gies [Harkes et al., 2016]. Moreover, these calculation strategies can also be
composed [Harkes and Visser, 2017]. IceDust uses static dependency tracking
so that for each page request only the relevant data needs to be loaded in
memory (dynamic approaches require all data in memory or persistence of
the dynamic dependency graph).

6.2.3 Language Engineering with Spoofax

Language engineering refers to building, extending and composing general-
purpose and domain-specific languages [Völter et al., 2013]. Language work-
benches [Fowler, 2005; Erdweg et al., 2013] are tools for efficiently imple-
menting languages and their integrated development environments (IDEs).
Spoofax is a language workbench for developing textual (domain-specific)
programming languages [Kats and Visser, 2010]. Spoofax provides meta-

Chapter 6. WebLab Case Study 125

languages for high-level declarative language definition. It provides an in-
teractive environment for developing languages using these meta-languages.
Moreover, it produces parsers, type checkers, compilers, interpreters, and
other tools from these language definitions.

6.3 C A S E S T U D Y S E T U P

Our goal is to find out the degree to which ICLs are useful for developing
information systems. We adopt the case study method to investigate the use
of IceDust in a mission critical project, as we believe that the true risks and
benefits of DSLs can be observed only in such projects. Focusing on a single
case allows us to provide significant details about that case.

To structure the case study, we introduce three specific research questions
in Section 6.3.1. They are aligned with the general challenges for informa-
tion systems discussed in Section 6.2.1. The data collected to evaluate these
research questions is introduced in Section 6.3.2.

6.3.1 Research Questions

Encoding of domain concepts in programming language constructs makes it
hard to validate that a program behaves as intended. To this end the domain-
specific language and modeling communities aim to eliminate the gap be-
tween domain concepts and language constructs. IceDust is such an attempt,
thus the first research question is as follows:

RQ-Validatability: Are the language features provided by IceDust beneficial for
establishing that an information system ‘does the right thing’?

Performance for information systems is important as the amount of informa-
tion and the amount of users tends to grow over time, and the filtering and
processing to create new data can depend on a lot of data. We capture this in
question two:

RQ-Performance: Do IceDust-based information systems perform well with
real-world data and workloads?

Independent of how useful an approach is in terms of the first two research
questions, it must not require significant additional effort. Hence, our last
research question is:

RQ-Effort: How much effort is required for developing information systems
with IceDust?

6.3.2 Data Collected

Below we list the data collected to answer the research questions. As this is
a real project, with real users, some data is not available (see discussion in
Section 6.7.5).

126

RQ-Validatability We look at the source code of the derived value calcula-
tions in the vanilla system (without IceDust), and the system with IceDust.
We qualitatively asses their impact on the amount of encoding. Moreover, we
quantitively asses their impact on the amount of encoding by looking at lines
of code, where we assume fewer lines of code means less accidental complex-
ity. (WebDSL and IceDust feature similar syntax and both organize code in
entities.) The business logic in IceDust, and in vanilla, we can make available
as artifact.

RQ-Performance We measure the original and migrated system performance
under a variety of simulated workloads with real-world data sets, and analyze
the achieved performance. In addition we measure when and how perfor-
mance degrades under increasing workloads. The raw performance numbers
we can make available as artifact. The private user data we benchmarked on,
we cannot make available.

RQ-Effort We measure and discuss the effort required for migrating WebLab
to IceDust, distinguishing expressing business logic, embedding it in the rest
of the application, performance engineering, and benchmarking. Moreover,
we measure and discuss the effort spent on the IceDust compiler triggered by
the WebLab case study.

6.4 C A S E S T U D Y C O N T E X T

In order to better contextualize our case study, we describe the context as
proposed by Dyba et al [Dybå et al., 2012].

6.4.1 WebLab

WebLab is a learning management system in which students can submit as-
signments that get graded semi-automatically. Students can submit answers
to programming, essay, and multiple choice questions. Individual program-
ming submissions are graded automatically based on (hidden) unit tests. Mul-
tiple choice questions also are graded automatically, and all types of submis-
sions can be graded on checklists by teaching assistants. Moreover, WebLab
provides many features for calculating the final grades of students: weighted
averaging, pass-n-out-of-m assignments, deadlines with late penalties, per-
sonal deadline overrides, personal grade overrides, bonus assignments, op-
tional assignments, minimum grade to pass, and calculation traces to explain
the final grades. Finally, these grades are used in all kinds of statistics about
the assignments and courses in WebLab.

The primary success criterion for WebLab is whether the system is reliable
enough to use for course labs and exams. This reliability has two aspects.
First, its availability should be high. During exams, or labs with deadlines,
WebLab should not succumb to the peak loads, as this would invalidate exams
or labs. This is reflected in RQ-Performance. Second, the computed final grades
of students should respect all features which interact with grade calculation,

Chapter 6. WebLab Case Study 127

Database (MySQL)

Transaction

Transaction

Web Server (Tomcat)

Request Handler

Object Model
Client

Client

HTTP
request

response

Object-
relational-
mapper

(Hibernate)

Scheduled tasks

Object Model

Object Model

Transaction

Transaction

Request Handler

Object Model

Figure 6.1 WebLab uses a standard stateless architecture for web servers. HTTP
requests are serviced in isolation by a request handler. A request handler loads
(saves) the data from (to) the database by means of an object-relational mapper.
Request handlers interact concurrently with the database through transactions.
The scheduled task executor handles periodic or asynchronous tasks.

otherwise the final grades are not reliable, and teachers will have to resort
to spreadsheets again. WebLab has so many features interacting with grade
calculation that this proved to be a non-trivial task the past few years while
WebLab was evolving. This is reflected in RQ-Validatability.

6.4.2 Software Architecture

WebLab is a web-based information system that runs on a single shard server.
WebLab uses a standard web architecture (Figure 6.1): a relational database
for data persistence and transactions, a HTTP request handler which handles
each request in isolation, and an object-relational mapper for loading and
storing data every request. Its technology stack is the Tomcat web server, the
Hibernate object-relational mapper [Neil, 2008], and MySQL. WebLab is built
in the domain-specific language WebDSL [Groenewegen et al., 2008], which
provides a typed integration between a Java-like object-oriented language, a
SQL-like language (HQL), a custom UI templating language, AJAX interac-
tions, and access control rules. While WebDSL is a domain-specific language,
the code for grade and statistics calculation (which we migrate to IceDust) is
written in the Java-like language of WebDSL. So for the purpose of this case
study, we can regard this code as non-domain-specific.

6.4.3 Server Setup

WebLab runs on a large, but relatively old web server. It has 4 12-core 1.7
GHz AMD Opteron processors, 96 GB memory, and 4 500 GB conventional
hard disks in RAID 10 configuration. In order to scale under a large parallel

128

workloads, the Tomcat server is configured to use up to 5 GB of memory. The
disk bottleneck is mitigated by giving MySQL an InnoDB buffer pool size of
30 GB.

Our development machines, which we use both for development and for
benchmarking before continuing to the acceptance stage, are mid-2014 Mac-
Book Pro’s. These feature 2.8 GHz Intel Core-i7 processors, 16 GB memory,
and a fast PCI-e solid state drive. As memory is limited on these machines,
both Tomcat and MySQL only get 2 GB of ram.

6.4.4 Development Timeline

Migration to IceDust started in September 2015, but stalled in October 2015
after 15 person days (PD) due to lack of expressiveness of IceDust. The mi-
gration restarted in September 2017. As of July 2018, WebLab-IceDust is in
acceptance stage. Since the restart, 80 PDs have been spent. Full-time work
was not feasible due to other pressing projects.

6.4.5 Tools

IceDust is available as a standalone Eclipse plugin. However, we used the
language workbench Spoofax (also integrated in Eclipse) as IDE, as WebLab-
IceDust used the nightly version of IceDust during development. WebDSL is
also available as an Eclipse plugin.

6.4.6 Organization and Team

The developers working on WebLab are a team of two scientific program-
mers within a university. The projects built by these scientific programmers
are funded by internal customers (within the university) or external scientific
organizations. As such, decisions made about these projects are based on
limited resources and potential sources of funding.

The team working on the WebLab migration was this team of scientific
programmers plus the IceDust developer. These scientific programmers were
not familiar with IceDust before, but were already familiar with Spoofax. As
the scientific programmers are housed at the same floor as the IceDust devel-
oper, a lot of informal knowledge transfer happened ‘at the coffee machine’
[Donaldson and Siegel, 2001].

6.5 T H E W E B L A B I C E D U S T I M P L E M E N TAT I O N

This section provides an overview of WebLab-IceDust and illustrates its use
of IceDust’s features.

6.5.1 Overall Structure and Migration

The WebLab code is organized in components as detailed in Figure 6.2. In
WebLab-IceDust we migrated the data model partially from WebDSL to Ice-

Chapter 6. WebLab Case Study 129

AC (WebDSL)

Model

UI (WebDSL)

Data Model
(WebDSL)

Pages /
Templates ActionAccess Control

Rules

OO GPL (WebDSL)

Methods Global
Functions

Request
Variables

Session
Variables

Data Model /
Derived Values

(IceDust)

Figure 6.2 The WebLab code is organized in the following components. The base
component is the data model which is partially defined in IceDust, and partially in
WebDSL. The data model can be manipulated by the Java-like GPL base language
of WebDSL. WebDSLs request variables are global per HTTP request, and its
session variables are global per browser session. The user-interface is defined
in two parts: actions which manipulate data by means of the GPL, and pages
and templates which render information from the data model or GPL and define a
navigation structure. Finally, the access control component provides or prevents
access to pages and actions based on calls to the model or GPL.

Language Files LOC Language Files LOC
IceDust 1 542 SQL (migration) 1 153
WebDSL 109 35696 CSS (mostly libs) 18 8513
Java 10 1688 JS (mostly libs) 1321 29055

Table 6.1 Number of files and lines of code in various languages in the WebLab-
IceDust implementation.

Dust. Moreover, we migrated the calculation of derived values from object-
oriented GPL code (methods and global functions) to IceDust derived value
expressions. Finally, we refactored the rest of the code to use these derived
values rather than the GPL methods.

6.5.2 Size of the System

The WebLab implementation consists of code written in multiple languages.
Table 6.1 shows the size of the code; it is ca. 40,000 lines of code (LOC)
when not counting external libraries. WebLab is a medium sized application
with 61 different interactive pages using 549 UI-templates and displaying and
modifying 98 different object-types through 4013 methods and functions.

Table 6.2 shows the number of instances of language concepts in IceDust.
The business logic specified in IceDust is 542 LOC, where the hand-written in-

130

Concept Count Concept Count
Attribute 172 Entity 22

abstract 3 base 14
user 27 sub type 8
derived 132 Relation 23

incremental 2 user 22
base 2 derived 1

eventual 32 Function 17
base 19
overridden 13

on-dem. eventual 11
base 11

inline 87

Table 6.2 Number of instances of language concepts in the WebLab IceDust
model.

progress : Float = if(pass) 1.0 else 0.0
progressPercent : Float = round1(progress*100.0)
progressWeighted: Float = progress * weight

Figure 6.3 Business logic is expressed in IceDust through derived value expres-
sions. These expressions in this example calculate the progress of students on
assignments.

cremental calculation is over 800 LOC.2 The generated WebDSL code from this
IceDust code is over 20,000 LOC. This demonstrates that IceDust significantly
cuts down on boilerplate for fine-grained incremental calculation strategies.
In fact, it would be infeasible to write this by hand, let alone keep it correct
while the model is evolving. Note that the hand-written solution provided
only coarse-grained incrementality (checking a whole course for changes af-
ter a single change), while IceDust recomputes only derived values which are
influenced by changes.

6.5.3 Use of IceDust’s Features

Table 6.2 shows that WebLab makes use of many IceDust features, indicating
their relevance for business logic in information systems. The rest of this
subsection introduces these IceDust features and their use in WebLab in more
detail.

Derived Values IceDust structures business logic into derived values. De-
rived values are calculated from base values or other derived values by means
of derived value expressions. Figure 6.3 shows an example of derived value
use in WebLab. These derived value expressions ensure that the definition of a
derived value always is in one place, like a formula in a spreadsheet cell. This
is good for traceability: the ability to verify why implemented business logic

2Line count obtained by manually listing the methods and fields which contribute to calcu-
lation of grades and statistics.

Chapter 6. WebLab Case Study 131

made certain decisions. When specifications are scattered, traceability tends
to suffer [Walker and Viggers, 2004]. Moreover, these derived value expres-
sions lend themselves well to incrementalization. WebLab-IceDust uses 133
derived value expressions, 132 for attributes and 1 for a bidirectional relation.

Incremental Computing Derived values can be computed incrementally by
IceDust. Figure 6.4 shows an example of an incrementally computed derived
value in WebLab. Computed values are read from cache, and when under-
lying values change only the cached values depending on these changes are
recomputed. With these incremental derived values, information systems can
provide fast reads. However, in the WebLab specification we only use two
incremental derived values, as we mostly use eventual computing.

Eventual Computing Although incremental computing improves read per-
formance, it makes writes to base values slower, as the writes to base values
include recalculating all changed derived values. Eventual computing speeds
up writes to base values by sacrificing consistency between base values and
derived values. The updates to derived values are postponed, temporarily
allowing reads to return outdated derived values (Figure 6.5). Many derived
values in the WebLab specification are eventually calculated. With eventual
calculation, WebLab can reliably service many concurrent users who interact
with the same data.

On-demand Computing On-demand computing in IceDust means no caching
at all. The on-demand calculation strategy is used when performance gains
of caching do not outweigh the space cost. When an on-demand expression
refers to an eventually calculated value, the on-demand value is also poten-
tially outdated when read. We indicate this by calling this calculation strategy
on-demand eventual. Figure 6.6 shows examples of on-demand computed
derived values in WebLab.

Computing Strategy Composition In IceDust, the mentioned calculation strate-
gies can be composed within a single specification (Figure 6.6). To safeguard
against erroneous compositions, IceDust employs a static check (Figure 6.7).
In WebLab-IceDust all derived value compositions are checked. These checks
alert the developer when overlooking the impact of changing the calculation
strategy of a derived value.

Inline Inline derived values enable breaking up a big expression into a set
of smaller expressions, much like a let expression in functional programming
languages (Figure 6.8). Toggling between inline and a calculation strategy
controls the granularity of incremental computing. The majority of derived
values in the WebLab specification are inline, favoring a somewhat larger
granularity and smaller cache size.

Functions Functions enable reuse and abstraction in IceDust. Figure 6.9
shows examples of functions in the WebLab specification. The WebLab speci-
fication has 17 functions, 5 of these are reusable abstractions (such as the first
function in Figure 6.9) while the rest is used to group together the markdown
reporting scattered in the system.

132

deadline : Datetime?
deadlineComp : Datetime? =

deadline <+ parent.deadlineComp (incremental)

Figure 6.4 Derived value expressions can be calculated incrementally in IceDust.
In this example snippet assignment deadlines are inherited from ancestors if not
provided. When a deadline is set, IceDust automatically updates deadlineComp
for that assignment on all its descendants. (The <+ operator takes the left value if
it is present, otherwise the right value.)

w rcalc

w calc r

w

calc

r

On-demand

Incremental

Eventual

call

return

flag dirty

w write base value

r read derived value

calc calculate derived value

Figure 6.5 Thread activation diagrams for different calculation strategies in Ice-
Dust.

numAttempted : Int = countTrue(subsInEval.attemptedComp) (eventual)
numCompleted : Int = countTrue(subsInEval.completedComp) (eventual)
numPassed : Int = countTrue(subsInEval.pass) (eventual)
completedPerc : Int = numCompleted * 100 /. numAttempted <+ 0

(on-demand eventual)
passPerc : Int = numPassed * 100 /. numAttempted <+ 0

(on-demand eventual)

Figure 6.6 Derived values can be calculated eventually and on-demand in Ice-
Dust. On-demand values are not cached, they are recalculated on every read. In
this example snippet the raw statistics of assignments are cached and eventually
updated, while the percentages for presentation purposes are not cached.

on-demand eventual

eventual

incremental

on-demand

base-value

Figure 6.7 Calculation strategies guarantee their properties iff the derivation ex-
pressions refer to derived values with the same strategy or stronger strategies
(lower in the lattice).

Chapter 6. WebLab Case Study 133

gradeWeighted: Float =
if(weightCustom > 0.0) totalGrade / weightCustom <+ 0.0
else totalGrade (inline)

gradeRounded : Float =
max(gradeWeighted - (sub.penalty <+ 0.0) ++ 1.0).round1() (inline)

gradeOnTime : Float =
if(sub.onTime <+ false) gradeRounded else 0.0 (inline)

maxNotPassed : Float =
max(0.0 ++ assignment.minimumToPass - 0.5).round1() (inline)

passSub : Boolean =
sub.filter(:AssignmentCollectionSubmission).passSub <+ true (inline)

maxNotPass : Float =
if(passSub) gradeOnTime else min(gradeOnTime++maxNotPassed) (inline)

grade : Float = min(maxNotPass ++ scheme.maxGrade) (eventual)

Figure 6.8 Derived values in IceDust can be inlined on use site, this controls the
granularity of incremental and eventual calculation. Here a submission grade is
calculated based on various parameters, but only the final grade is cached.

hasF(d : Float*) : Boolean = count(d) > 0

gradeTracePassFail(s:BasicSubmission) : String =
"Pass or Fail assignment, result: " +
if(s.pass) "**PASS**" else "**FAIL**"

Figure 6.9 Functions in IceDust enable abstraction. Incremental and eventual
computing inlines functions on use-sites.

entity CollectionSubmission extends Submission {
progress : Float =

if(pass)
1.0

else if(!isPassN)
sum(subsForGrade.progressW) / totalWeight

else
sum(subsForGradeN.progressW)/ totalWeightN

<+
0.0

}

Figure 6.10 Inheritance with overriding enables modeling variation in Ice-
Dust. Progress in collection submissions takes the progress of the children
(subsForGrade) into account. It overrides progress of Submission defined in
Figure 6.3.

Inheritance and Overriding Inheritance and overriding enables the modeling
of variation in IceDust. Figure 6.10 shows an example of this. The WebLab
specification uses 13 derived value attribute overrides.

Native Multiplicities All derived value expressions make use of native mul-
tiplicities: the cardinality of values is part of the type system, and operators
and functions are automatically lifted [Harkes et al., 2016]. The multiplicity

134

type system prevents null-pointer errors, and the automatic lifting prevents
boiler-plate code dealing with collections and optional values.

6.5.4 IceDust Feature Requests

Apart from using the existing IceDust features, the WebLab implementation
required features not previously supported in IceDust. For WebLab, two Ice-
Dust extensions have been developed; below we introduce these extensions
and the specific rationales for developing them.

Multi-Threaded Eventual Calculation WebLab has high peak workloads con-
centrated on a small subset of all data: online exams with hundreds of stu-
dents. Moreover, the derived values depend on many values and influence
many other derived values. For example, the deadline in Figure 6.4 flows
to all descendant assignments, and influences the grade calculation for all
student submissions to these assignments. This can create a performance
problem when students are submitting answers an exam while concurrently
a teacher tries to change the deadline of that exam. Eventual calculation min-
imizes the number of transaction conflicts, such that these interactions can all
succeed concurrently.

However, if availability is not important (for example recalculating all de-
rived values in a course, after a migration), incremental computing is much
faster than eventual computing. To mitigate this issue we made eventual cal-
culation multi-threaded, and the number of threads configurable at runtime.
This enables us to allocate more resources during migration such that it takes
hours instead of days.

Manual override During development of WebLab-IceDust, a performance
caveat was discovered. With some derived bidirectional relations, IceDust
fails to capture the dependencies precisely with its path-analysis. This leads
to a slowdown for the single derived relation in Table 6.2. The relational
calculus captures the dependencies more precisely. This prompted a feature
request for IceDust to ignore incremental updates for a specific derived value.
Instead, we use the underlying relational database to manually incrementalize
this relation.

6.6 I C E D U S T E VA L U AT I O N

Many IceDust features are used to achieve a performant implementation with
a validatable specification. However, achieving this also required work on the
IceDust compiler. In this section we investigate these observations in more
detail by evaluating the research questions introduced earlier.

6.6.1 RQ-Validatability

Migrating the business logic from WebDSL to IceDust reduced the line count
by 32% (from 800+ to 542). As this is a real-world system, not a toy example

Chapter 6. WebLab Case Study 135

designed to showcase the DSL, we believe this result to be significant. It
indicates that WebLab-IceDust contains less accidental complexity. We assess
IceDust’s effect on validatability qualitatively below.

Improved Traceability using Derived Value Attributes Derived value attributes
have been used extensively, as illustrated by Table 6.2 and all code figures
in Section 6.5. The derived value attributes make sure that derived values
have one unique definition: the derivation expression. This helps traceability,
developers never have to doubt whether a derived value in the system comes
from a specific piece of code. This in turn simplifies reasoning about the code.

Figuring out where a derived value came from was complicated in WebLab-
vanilla. When debugging, more time was spent making sure that the derived
value did not originate from another piece of code, rather than trying to un-
derstand why a specific piece of code could have produced a specific value.
Expressing the business logic in IceDust shifted the debugging conversation
from tracing implementation details to domain discussions about the business
logic.

Improved Readability with Native Multiplicities The WebLab-vanilla imple-
mentation in WebDSL suffered from the billion dollar mistake: null-pointers
[Hoare, 2009]. The code-base is littered with non-null checks. Modern lan-
guages often adopt the Option Monad, with accompanying boiler-plate code
containing maps and flatMaps or do notation. Native multiplicities solve the
billion dollar mistake without introducing boiler-plate code. The business
logic written in IceDust only mentions multiplicities when needed. This im-
proves the readability of WebLab’s business logic significantly.

Simpler Performance Engineering with Calculation Strategies In WebLab-vanilla
it was very hard to validate that caching of derived values was correct. In fact,
during migration we discovered inconsistencies in the data set from the live
system. A grading parameter had been changed in a course, but the cached
final student grades were never updated. With IceDust, cache invalidation
is correct by construction. Moreover, multiple calculation strategies can only
be soundly composed in IceDust. This means developers can stop worrying
about the correctness of incremental computing and end users get correct
out-of-date indicators for eventual calculation.

Another benefit of IceDust is that it is easy to see which calculation strate-
gies are used. This makes it easier to understand and discuss performance
trade-offs.

Separation of Concerns IceDust’s design forces a separation of concerns be-
tween business logic and performance. Both can be edited separately in Ice-
Dust. Since we adopted IceDust, we noticed that business modeling and per-
formance engineering have become two separate activities. The business logic
specification is stable during performance engineering.

Remaining Intrinsic Complexity While IceDust reduces the accidental com-
plexity of WebLab’s business logic considerably, the business logic can still
be complicated to understand. For example, Figure 6.8 takes some effort to

136

understand, as many variables contribute to the grade of a student (the full
specification is even longer). Note that in WebLab-vanilla it was not even pos-
sible to see that the business logic is inherently complicated. In future work
we might explore how to better organize the remaining intrinsic complexity.
We summarize as follows regarding RQ-Validatability:

Derived value expressions, as a single source of computation, give developers
confidence that they understand what the business logic specification means.

During performance engineering developers can reason about what the system
is going to do based on calculation strategies, without worrying about inconsis-
tencies.

6.6.2 RQ-Performance

To assess whether WebLab-IceDust performs well with real-world data sets
and real-world workloads, we asked the main WebLab developer to describe
all scenarios that could be performance bottlenecks. We identified three cat-
egories of interactions. Lightweight actions that hundreds of actors do con-
currently. For example, students submitting new answers. Mediumweight
actions have a larger effect and are performed by a single actor, while concur-
rently lightweight actions are performed. For example, a teacher postponing
the deadline of the exam by 10 minutes, during the exam. And finally, heavy-
weight actions with a huge effect, performed by a single actor. For example,
an administrator recalculating all derived values in a course after a migration.

For all these examples we used real-world data from the live database.
(Which we cannot make available for privacy reasons.) Unfortunately, We-
bLab does not save all HTTP requests, so we could not replay real-world
workloads. Fortunately, WebLab saves the history of programming submis-
sions, so we could estimate the workload based on that.

We report on our final configuration of calculation strategies: mainly even-
tual computing. We experimented with other configurations, but none prov-
ided adequate availability under concurrent workloads. We vary the number
of eventual computing threads to assess WebLab-IceDust’s scalability. We re-
port both the performance on a MacBook (our development machine) and the
web server. Our baseline performance is the WebLab-vanilla implementation.

We identified three lightweight actions: random submission reads (brows-
ing), random submission creations (first-time browsing), and random submis-
sion edits (working). Many students perform these actions concurrently. For
these actions we are interested in the maximum workload WebLab can han-
dle. Moreover, we also want to know under what workload derived value
calculation starts to lag behind. If the workload is below that threshold, a
teacher can see live statistics of exam progression during the exam. During a
representative exam which lasted 3 hours and 30 minutes, we had 31836 code
edits by 278 students. This is on average 3 edits per second. Peak load was 15
edits per second, and the 99th percentile is 8 edits per second.

Chapter 6. WebLab Case Study 137

We identified two mediumweight actions: change deadline and change
checklist weight. The checklist is a grading tool for teaching assistants, and
the checklist weight determines the ratio between other means of (automated)
grading and the checklist. These two actions are performed by teachers, possi-
bly while students are submitting answers. For these actions we are interested
in how long it takes for all derived values depending on the change to be com-
puted. Changing a deadline changes all deadlines lower in the assignment
tree, but only influences grades if submissions are late. On the other hand,
checklist weights are sure to influence the grades, but only of the assignment
and its ancestors.

We identified only one heavyweight action: recalculate a course. This ac-
tion is performed by administrators after a migration. For this action we are
also interested in how long it takes to compute all derived values.

Results Table 6.3 shows the results of our benchmarks. IceDust enables live
statistics during exams (create, edit, and read submissions), which was not
possible with vanilla due to availability issues. Moreover, it can provide live
statistics for well above 3 edits per second. IceDust speeds up the medium
actions (change deadline and checklist weight) significantly, as IceDust’s fine-
grained incrementality does not have to visit the whole course. Also, with
enough worker-threads, IceDust improves the recalculation speed of whole
courses.

However, WebLab-IceDust can handle less peak load. With more Ice-
Dust worker-threads running, less processing power is available for request-
handler threads. Moreover, object creation (in create submission) is more
costly with IceDust. All relations in IceDust are bidirectional, opposed to
many unidirectional relations in vanilla. Unfortunately, WebDSL and the
ORM unnecessarily load objects in memory for keeping relations bidirection-
ally consistent, even when the other side of the relation is never used. We
tried fixing this, but after 4 person days we concluded that it was not worth
the effort. Thus, IceDust provides up-to-date statistics at the cost of slower
object creation in this case study.

In terms of scalability, more parallelizable workloads benefit more from
more worker threads. Recalculate course scales better than the mediumweight
actions (change deadline and checklist weight). And the mediumweight ac-
tions performed on larger courses benefit more from extra threads than the
same actions performed on smaller courses. Surprisingly, 2 threads for re-
calculating courses on the laptop consistently takes less than half the time of
1 thread. We cannot explain this, but we think it might be due to the CPU
speed-step algorithm. Also, scalability on the laptop is hampered by throttling
(up to 4ghz for single thread down to 2.6ghz for 4+ threads). The server does
not have throttling, so it scales better. However, the server has slower CPUs
in general, so it needs more threads to achieve live statistics. As the server
has many more CPUs, its throughput (req/sec) is higher; but as the CPUs are
slower the latency is also slightly higher (sec/req). In terms of performance,
we summarize:

138

M
ac

hi
ne

M
ac

Bo
ok

Se
rv

er
Im

pl
.

Va
ni

lla
Ic

eD
us

t
Va

ni
lla

Ic
eD

us
t

T
hr

ea
ds

0
1

0
1

2
3

4
5

6
0

1
0

2
4

6
8

10
12

14
16

A
ct

io
n

U
ni

t
C

ou
rs

e
re

ad
re

q/
se

c
Sm

al
l

90
.9

9
-

84
.7

6
80

.6
7

76
.1

5
72

.3
7

69
.7

7
65

.9
0

62
.3

7
13

6.
04

-
12

9.
65

11
2.

53
10

9.
58

10
3.

11
92

.6
8

84
.3

9
74

.6
6

67
.2

9
61

.1
8

su
bm

is
si

on
M

ed
iu

m
89

.6
8

-
90

.8
5

84
.6

5
80

.8
6

77
.4

9
73

.8
3

71
.0

0
68

.0
1

15
2.

95
-

14
5.

04
12

5.
37

11
9.

33
11

2.
02

10
4.

82
93

.8
8

88
.2

6
80

.1
4

71
.6

6
La

rg
e

95
.9

6
-

94
.5

6
89

.4
2

84
.6

0
80

.7
0

77
.0

4
74

.0
1

70
.6

4
13

2.
45

-
11

9.
62

14
1.

99
13

0.
21

11
5.

44
10

5.
22

97
.4

9
96

.0
7

95
.9

8
96

.1
9

ed
it

re
q/

se
c

Sm
al

l
34

.1
7

-
84

.4
1

79
.2

1
75

.4
0

71
.7

7
68

.2
7

64
.4

2
61

.0
7

31
.0

6
-

12
0.

49
11

5.
52

11
5.

42
11

4.
88

11
4.

48
11

4.
18

11
4.

18
11

3.
55

11
3.

25
su

bm
is

si
on

M
ed

iu
m

63
.6

5
-

75
.5

3
64

.2
4

61
.8

7
59

.4
0

57
.0

3
54

.3
6

52
.2

4
11

1.
91

-
96

.1
3

90
.9

2
87

.0
8

82
.0

2
69

.7
4

64
.7

3
62

.3
0

63
.1

8
58

.9
6

La
rg

e
60

.2
8

-
75

.9
4

71
.5

7
68

.3
7

65
.1

1
62

.2
8

59
.4

6
57

.2
4

10
4.

17
-

10
7.

84
10

3.
64

96
.3

0
89

.5
6

80
.0

8
75

.6
8

71
.3

0
66

.6
3

62
.6

3
cr

ea
te

re
q/

se
c

Sm
al

l
75

.7
2

-
55

.7
2

50
.0

4
44

.7
1

40
.2

5
37

.2
5

34
.4

7
32

.2
8

10
0.

72
-

67
.7

0
64

.3
9

61
.9

5
60

.5
8

57
.3

1
54

.4
9

51
.9

1
48

.9
4

46
.8

5
su

bm
is

si
on

M
ed

iu
m

10
1.

18
-

56
.6

1
50

.1
7

43
.7

1
40

.9
5

37
.3

7
34

.9
6

32
.2

4
13

7.
07

-
67

.9
1

64
.4

5
65

.5
5

62
.1

2
58

.3
7

58
.1

7
55

.6
5

55
.8

0
49

.0
3

La
rg

e
10

1.
12

-
30

.6
0

25
.8

5
22

.9
9

21
.4

5
19

.5
8

18
.1

5
16

.6
1

13
9.

34
-

35
.9

3
35

.7
3

34
.0

2
33

.5
8

32
.5

2
31

.7
3

31
.4

0
29

.4
7

28
.7

9
ed

it
re

q/
se

c
Sm

al
l

-
-

-
22

.5
2

34
.4

6
40

.0
7

42
.3

2
44

.1
6

45
.1

6
-

-
-

11
7.

45
11

4.
38

11
3.

85
11

3.
31

11
2.

85
11

2.
41

11
1.

61
11

3.
68

su
bm

is
si

on
M

ed
iu

m
-

-
-

6.
94

13
.1

2
15

.7
8

16
.8

6
19

.6
0

19
.8

7
-

-
-

6.
59

11
.2

9
16

.4
9

20
.9

3
23

.9
5

26
.7

5
29

.1
5

30
.7

2
(li

ve
st

at
s)

La
rg

e
-

-
-

7.
94

15
.0

1
17

.8
8

19
.6

2
20

.9
5

22
.2

6
-

-
-

6.
12

12
.4

7
16

.6
2

19
.6

9
20

.8
6

21
.6

8
25

.3
24

.6
6

cr
ea

te
re

q/
se

c
Sm

al
l

-
-

-
9.

74
16

.2
5

18
.9

5
20

.3
4

21
.2

7
21

.4
8

-
-

-
9.

02
15

.7
3

20
.5

6
22

.8
6

24
.9

2
26

.8
5

27
.8

3
29

.3
0

su
bm

is
si

on
M

ed
iu

m
-

-
-

4.
73

8.
34

10
.5

5
11

.3
8

12
.4

1
13

.1
8

-
-

-
4.

49
8.

31
11

.2
6

13
.4

0
14

.8
2

15
.7

7
16

.4
5

17
.3

0
(li

ve
st

at
s)

La
rg

e
-

-
-

3.
95

6.
86

8.
20

8.
68

8.
99

9.
20

-
-

-
3.

60
6.

26
8.

29
9.

54
10

.5
4

11
.8

1
12

.3
5

12
.6

8
ch

an
ge

se
c/

Sm
al

l
-

12
0

-
14

5
79

63
58

51
45

-
30

3
-

19
5

11
0

78
64

56
51

48
47

de
ad

lin
e

10
re

qs
M

ed
iu

m
-

21
0

-
18

6
96

75
70

62
55

-
57

1
-

25
2

14
0

10
6

79
68

62
59

57
La

rg
e

-
77

7
-

29
6

15
6

12
2

11
5

10
3

92
-

23
24

-
40

8
23

2
17

2
14

3
12

8
12

0
11

7
10

2
ch

an
ge

se
c/

Sm
al

l
-

60
0

-
24

18
17

16
16

14
-

12
20

-
21

15
14

12
12

11
11

12
ch

ec
kl

is
tw

.
10

0
re

qs
La

rg
e

-
64

30
-

10
6

64
54

50
46

43
-

19
13

0
-

12
3

71
55

46
41

39
41

45
re

ca
lc

ul
at

e
se

c/
re

q
Sm

al
l

-
21

-
12

5
57

44
34

40
30

-
49

-
14

7
76

53
42

36
32

30
28

co
ur

se
M

ed
iu

m
-

53
0

-
12

95
59

8
47

2
42

5
37

3
32

7
-

17
18

-
15

57
79

5
54

9
43

4
37

3
33

3
31

8
30

2
La

rg
e

-
55

08
-

10
36

8
47

86
36

70
32

44
29

10
26

53
-

18
49

4
-

12
62

4
68

33
50

78
43

65
40

49
38

21
37

97
37

48

Ta
bl

e
6.

3
B

en
ch

m
ar

k
re

su
lts

.
Th

e
fir

st
th

re
e

be
nc

hm
ar

ks
ar

e
m

ax
im

um
sy

st
em

th
ro

ug
hp

ut
un

de
r

co
nc

ur
re

nt
st

ud
en

ta
ct

io
ns

.
W

e
re

po
rt

th
e

av
er

ag
e

re
qu

es
ts

pe
rs

ec
on

d
ov

er
30

se
co

nd
ru

ns
,h

ig
he

ri
s

be
tte

r.
M

or
e

Ic
eD

us
tt

hr
ea

ds
de

cr
ea

se
pe

rfo
rm

an
ce

,a
s

le
ss

pr
oc

es
si

ng
po

w
er

is
av

ai
la

bl
e

fo
r

re
qu

es
ts

.
(V

an
ill

a
ca

lc
ul

at
io

n
ca

nn
ot

ru
n

co
nc

ur
re

nt
ly

w
ith

lo
ad

,h
en

ce
no

m
ea

su
re

m
en

ts
fo

r
on

e
th

re
ad

.)
Th

e
ne

xt
tw

o
be

nc
hm

ar
ks

ar
e

th
e

sy
st

em
th

ro
ug

hp
ut

un
de

rw
hi

ch
liv

e
st

at
is

tic
s

ca
n

be
m

ai
nt

ai
ne

d
by

Ic
eD

us
t.

A
ls

o
th

es
e

w
e

ru
n

fo
r3

0
se

co
nd

s.
M

or
e

Ic
eD

us
tt

hr
ea

ds
in

cr
ea

se
pe

rfo
rm

an
ce

,a
s

de
riv

ed
va

lu
es

ar
e

ca
lc

ul
at

ed
fa

st
er

.T
he

fin
al

th
re

e
be

nc
hm

ar
ks

ar
e

th
e

m
ed

iu
m

-a
nd

he
av

yw
ei

gh
tt

ea
ch

er
an

d
ad

m
in

is
tra

tiv
e

ac
tio

ns
.

Fo
rt

he
se

w
e

m
ea

su
re

tim
e

to
co

m
pl

et
io

n
in

se
co

nd
s,

lo
w

er
is

be
tte

r.
M

or
e

Ic
eD

us
tt

hr
ea

ds
in

cr
ea

se
pe

rfo
rm

an
ce

,a
s

de
riv

ed
va

lu
es

ar
e

ca
lc

ul
at

ed
fa

st
er

.
A

ll
be

nc
hm

ar
ks

ha
ve

be
en

pe
rfo

rm
ed

th
re

e
tim

es
.W

e
re

po
rt

th
e

m
ed

ia
n.

A
ll

m
ea

su
re

m
en

ts
lie

w
ith

in
±

10
%

of
th

e
m

ed
ia

n.

Chapter 6. WebLab Case Study 139

Development Task Effort % Total
Modeling 9 PD 11%
Integration / Migration 24 PD 30%
IceDust Compiler 11 PD 14%
Benchmarking / Performance Engineering 36 PD 45%

Table 6.4 WebLab migration to IceDust effort

The WebLab implementation in IceDust enables live statistics, which was infea-
sible manually.

WebLab-IceDust performs similar or better compared to WebLab-vanilla, except
for object creation.

6.6.3 RQ-Effort

Migrating the WebLab business logic to IceDust took 80 PDs in total. Table 6.4
shows the different development tasks.

We spent 11% of the total effort (9 PDs) on reverse engineering WebLab’s
business logic and modeling it in IceDust.

We spent 30% (24 PDs) on integrating that business logic into the rest of
the application. This included writing migration code to port the data from
vanilla’s calculation to IceDust’s calculation, new user-interface (UI) elements
to indicate calculation progress, and retro-fitting unit tests. Also new func-
tionality was added during the integration: student grades finalization (after
a course is over and grades are final). Modeling finalization in IceDust was a
matter of minutes, creating UI elements took more effort.

We spent 14% of the total effort (11 PDs) on the IceDust compiler to add
new features. Both the IceDust developer and the WebLab developers made
changes to the IceDust compiler. (Remember that the WebLab developers are
familiar with Spoofax and WebDSL.) The added language features enabled us
to keep the separation of concerns between business logic and performance,
effort well spent.

We spent 45% of the total effort (36 PDs) on benchmarks and performance
engineering. As WebLab is used for exams at our university, it is of paramount
importance that we can trust its performance. Designing benchmarks, set-
ting up a benchmark infrastructure, and performing the benchmarks took the
most time. While it is technically not part of the migration, it was required to
give the responsible developers the confidence in WebLab-IceDust. A benefit
of the calculation strategies is that is easy to switch between them. Proper
benchmarking requires time, but getting a correctly functioning variant im-
plementation to benchmark was a matter of minutes. Concerning RQ-Effort
we conclude:

The effort for additional business logic is significantly lower in the ICL, but the
total effort is not reduced.

While IceDust does not lead to an overall effort reduction or increase, it does
increase separation of concerns.

140

6.7 D I S C U S S I O N

The preceding sections show how IceDust affects validatability, performance,
and effort of a real-life information system. We put our results in a broader
perspective in this section.

6.7.1 Internal Validity

Internal validity concerns whether our results can be trusted.

Bias One factor that affects this question is the bias because of the involve-
ment of the authors in this case study itself. The authors are the developers
of IceDust and WebLab. To counter this bias, we focused on aspects that can
be objectively measured (size, concept counts, performance, effort).

Team Expertise To clarify the potential impact of the team on the case study
outcomes, we describe the team’s background and expertise. The scientific
developers both have 5+ years experience in developing information systems
on the WebDSL technology stack. The IceDust developer had little experience
with the WebDSL technology stack, but 5+ years experience with develop-
ing web applications with object-oriented languages and relational databases.
When the project started, the scientific developers understood the business
logic written in IceDust, but had little understanding of IceDust’s calculation
strategies. During the migration they gained understanding of these strategies
by inquiring the IceDust developer and through experimentation.

Benchmark Internal Validity The benchmark results depend on full stack
of technologies: MySQL, Java, Hibernate, WebDSL, and IceDust. Moreover,
the results also depend on the hardware used and the settings for MySQL
and the JVM. We verified that we actually measured the impact IceDust by
benchmarking vanilla, and that we did not measure noise by benchmarking
multiple times with a low standard deviation.

In this chapter, our benchmarks focus on external validity. As suggested
by Vitek et al., we have benchmarks focusing on external and on internal
validity [Vitek and Kalibera, 2012]. Benchmarks focusing on internal validity
are described in previous work [Harkes et al., 2016].

6.7.2 Conclusion Validity

Our findings favor the using an ICL for separation of the business logic and
performance concerns. Conclusion validity raises the question whether these
findings can be explained.

Design of IceDust IceDust has been specifically designed to achieve the ben-
efits reported in this case study. So the design rationale of IceDust forms the
theoretical explanation of the case study outcomes. For an extensive descrip-
tion of this design rationale we refer to [Harkes and Visser, 2014; Harkes et al.,
2016; Harkes and Visser, 2017].

Chapter 6. WebLab Case Study 141

Cognitive Dimensions of Notations The specification of business logic in Ice-
Dust improves over the specification in an object-oriented language accord-
ing to the cognitive dimensions of notations, a set of established language
evaluation criteria [Blackwell et al., 2001]. Four dimensions are specifically
improved.

IceDust greatly reduces Error-Proneness with regard to incremental and
eventual computing. Developers can rely on the IceDust runtime to keep de-
rived values consistent with their defining expressions. IceDust also removes
Hidden Dependencies in derived values, as all derived values have a single def-
inition (unlike fields in object-oriented language which can be assigned to in
all methods). IceDust greatly reduces the Viscosity of calculation strategies,
changing a strategy is changing a keyword. IceDust also reduces the Verbosity
of Language by adopting native multiplicities.

Experience vs. Notation A rival explanation of the success for validatability
we measured might be that it is easier to understand the code as we spent con-
siderable time at the white-board trying to reverse engineer the original code.
The WebLab team is skeptical, a lot of human working memory is required
to fully grasp all details of WebLab’s business logic (even though it is only
500 LOC in IceDust). Every time a developer has worked on another project,
and comes back to WebLab, this business logic needs to be rediscovered. This
rediscovering is much easier in the IceDust specification.

6.7.3 Construct Validity

When describing our case study setup (Section 6.3), we explained how the
three aspects studied (validatability, performance, and effort) relate to our
overall goal of assessing the usefulness of ICLs for developing information
systems. From a construct validity point of view, there are additional aspects
(constructs) that we could have studied. Unfortunately, our migration did not
yield any data on these constructs. However, we do think that our study is
still useful, as these constructs are largely orthogonal to aspects we did study.

Interactive Development Information system development requires experi-
menting to design and understand some of the business logic specifications.
Validatable specifications and extensive testing can reduce, but not avoid this
need.

Unfortunately, WebDSL impairs interactive development due to long com-
pilation times (over 3 minutes for WebLab). While WebDSL features incre-
mental compilation, it only applies to non-invasive WebDSL features (such
as UI components). The IceDust to WebDSL compilation takes a couple of
seconds, and the extra generated WebDSL code lengthens the WebDSL com-
pilation by a minute. This extra minute can be explained by the huge amount
of fine-grained incrementality code generated. We do not believe IceDust itself
inherently impairs interactive development, but properly incrementalizing the
WebDSL and IceDust compilers is separate project.

142

Maintainability In Little Languages: Little Maintenance? [van Deursen and
Klint, 1998] van Deursen and Klint conclude that a DSL designed for a well-
chosen domain and implemented with adequate tools may drastically reduce
the costs for building new applications as well as for maintaining existing
ones. While we have no experience with long-term maintainability, we did
make observations which confirm their conclusion.

During the migration we added new functionality: grade finalization. Mod-
eling finalization of grades, and finalization statistics of courses in IceDust was
easy. The intended behavior could be expressed concisely in IceDust.

Another part of the effort in software maintenance is re-understanding the
existing code. As grade finalization interacts with grade calculation in gen-
eral, it needed to be ‘hooked in’. Due to the derived value expressions it was
easy to see what part of the specification needed to be modified. IceDust’s
emphasis on validatability suggests that re-comprehension of the system is
simplified.

Business Logic Evolution The business logic of information system evolves
over time. When decision policies change, different decisions can be made
by the business logic based on the same data. The question is how to deal
with this evolution. WebLab implements an ad hoc check and does not over-
ride previous decisions or derived values. The migration to IceDust did not
address this question. However, a validatable specification, which only talks
about business logic, might be a stepping stone for addressing this question.

6.7.4 External Validity

Here we discuss whether our results can be generalized.

Beyond WebLab IceDust is best suited for information systems with complex
business logic and a considerable amount of concurrent interaction. As for
these situations a validatable specification together with good performance is
important. So far, WebLab is the only information system which we modeled
with IceDust, integrated into the rest of the application, and benchmarked
with user data. We did model other systems with IceDust, but did not inte-
grate or benchmark them. The findings in this chapter with regard to vali-
datability apply to these other information systems as well.

Beyond the Team To be successful with IceDust, a team should have expe-
rience with building small to medium scale information systems with object-
oriented languages and relational databases. IceDust provides separation of
concerns between business logic specification and performance engineering,
but the latter still requires expertise. If the IceDust calculation strategies pro-
vide enough performance, this experience should suffice. However, to modify
or add strategies, the team in addition requires language engineering exper-
tise. The IceDust compiler is not overly complicated, both the WebLab team
and a master student were able to extend it independently. Note that they did
use Spoofax before.

Chapter 6. WebLab Case Study 143

Beyond WebDSL IceDust probably generalizes beyond WebDSL, any object-
oriented language with an object-relational mapper should do. IceDust pro-
vides an interface to the rest of the application with the getters and setters
of fields and the constructors of objects. At this moment we have not im-
plemented any other backends that persist their data. We have not explored
targeting non object-oriented languages.

Beyond Spoofax The IceDust implementation in Spoofax is a close trans-
lation from its grammar, static semantics, and dynamic semantics [Harkes
and Visser, 2014; Harkes et al., 2016; Harkes and Visser, 2017]. IceDust does
not feature exotic constructs in its semantics. Thus, with considerable effort,
IceDust should be implementable in any language workbench or general pur-
pose programming language.

6.7.5 Repeatability

This case study reports on the development of a real-world information sys-
tem. WebLab was not specifically set up as a case study. This has advantages
and drawbacks. The advantages include a realistic system, realistic perfor-
mance constraints, realistic data sets, and an experienced team of developers.
The drawback is the unavailability of the source code and user data. (The
business logic in IceDust and vanilla, as well as the raw performance num-
bers, we can make available as artifact.) In McGraths’s terms [McGrath, 1995],
this is a field study, it emphasizes realism over repeatability.

6.7.6 Research Implications

This chapter provides an in-depth case study of the use of IceDust to imple-
ment the business logic of a learning management information system, focus-
ing on validatability, performance, and effort. To corroborate and challenge
our findings, additional studies are needed, both for IceDust-based systems
as well as for other incremental computing approaches.

Furthermore, as this study detailed the need for new language features dur-
ing application development, we propose future research on co-development
of DSLs and applications.

6.8 R E L AT E D W O R K

We are not aware of any other case studies of ICL use for information sys-
tems. Instead, we compare our work to incremental computing and DSL case
studies. Also, we contrast IceDust to other ICLs which we might have used
instead.

6.8.1 Case Studies in Incremental Computing

Chan et al. investigate the trade-off between query performance, incremen-
tal maintenance cost, and storage space for materializing views [Chan et al.,

144

1999]. They find that the optimal solution is to materialize some views, not
all. We did not report on how we select calculation strategies and what we
materialize (inline is not materialized). However, we have observed a sim-
ilar trade-off between query time and incremental maintenance cost while
experimenting with various configurations.

Another case study in databases [Hoppe and Gryz, 2007] investigates var-
ious performance optimizations for maximal event throughput. Changes
grouped together in a larger commit increases performance. Our experience
is similar. One big commit (with incremental) can recalculate a full course
much faster than many small commits (with eventual). However, large com-
mits introduce concurrency conflicts, hurting availability. They report the
highest performance with the business logic on the clients instead of in the
database (by means of triggers). In IceDust, we also run the business logic in
the GPL.

Behrend and Schueller did a case study adopting a new materialized view
update technique [Behrend and Schüller, 2014]. They observe that their tech-
nique improves performance only in specific conditions. Similarly, IceDust’s
incrementalization improves over vanilla in specific conditions: small updates
are processed much faster, while object creation is not.

These studies only report performance, not validatability or effort. So we
cannot compare our validatability and effort findings with other incremental
computing case studies.

6.8.2 Case Studies with DSLs

Adopting a state machine DSL in a case study [Batory et al., 2002] led to
findings similar to ours. They estimate a 10-fold effort reduction in modeling
new scenarios in the DSL. In contrast to us, they do not report any required
effort for improving their DSL compiler. They report decreased complexity
by a code size reduction of 2-3x. Similarly, we also have a 1.5x reduction.

Adopting the Risla DSL for financial applications [van Deursen, 1997] led
to similar findings. The effort for new products was reduced 5-fold. They
mention extending the DSL is not easy, but do not quantify this in effort. Like
us, they say “it has become much easier to validate the correctness of the software”.
Unfortunately, they do not provide evidence for this claim.

Adoption of the Pheasant DSL [Barisic et al., 2011] was studied in a lab
experiment setting. They report an effort reduction of roughly 1.5x. However,
in this lab setting, all tasks were expressible with the DSL, and DSL com-
piler effort is excluded. They report fewer errors and higher confidence for
inexperienced users, but no difference for experienced users. We find better
validatability for experienced users. This might be explained by the much
higher complexity of our multi-month migration, opposed to one hour lab
experiment setting.

Ericsson adopted model-driven (similar to DSL-driven) software engineer-
ing [Staron, 2006]. They conclude that coding is always necessary, including
coding the code-generators. Our case study agrees, we added features to the

Chapter 6. WebLab Case Study 145

IceDust compiler during migration as well. They report adoption needs to
be broken up in phases. We did not have to. This could be explained by
the fact that WebLab is a smaller system. One of their goals was to increase
productivity, but they did not measure it.

Adoption of the mbeddr extensible language [Völter et al., 2015] also led
to similar findings. mbeddr reduced complexity and improved readability
while code size stayed the same. Similarly, IceDust increases validatability,
but our code-size did reduce. 5% of their effort was spent on new language
extensions, while we spent 14% on new IceDust features. This might be ex-
plained by being able to express everything in C when a DSL feature is lacking
in mbeddr, while IceDust needs to cover everything. Like us, they report an
effort reduction for adding additional functionality, but not for the total effort.

6.8.3 ICLs for Information Systems

Various ICLs target information systems or present one as running example.
Here, we cover these ICLs. ICLs targeted at different domains, but which are
similar to IceDust’s mechanics are covered in previous work [Harkes et al.,
2016; Harkes and Visser, 2017].

Object-Set Queries (OSQ) [Rothamel and Liu, 2008] brings relational incre-
mental updates to an object-oriented setting. This might be a viable approach
for incrementalizing the bidirectional relation which we had to hand-optimize
in this case study. However, OSQ only supports set comprehensions, not
complex expressions for calculating primitive values. Moreover, OSQ works
in-memory, it is not clear whether it would work with an object-relational
mapper and concurrent interaction.

IncOQ [Liu et al., 2016] improves over OSQ by tracking dependencies stat-
ically and incorporating demand. However, the same limitations apply: only
set comprehensions and only in-memory.

Complex Object Queries [Nakamura, 2001] is a predecessor of these. How-
ever, this early approach incurs a considerable performance penalty by trans-
lating everything into sets and tuples.

MOVIE [Ali et al., 2003] also incrementalizes OQL queries, and it does
persist its data. However, it does not support recursion, which this case study
requires.

OR-SQL has also been incrementalized [Liu et al., 2003]. However, it only
supports additions and removals (as most relational approaches) which sig-
nificantly impair its efficiency when calculating complex primitive value ex-
pressions.

idIVM [Katsis et al., 2015] incorporates diffs based on ids in a relational
database. idIVM persists its data, but it is used by submitting queries to a
database rather than by an object-relational mapper. Moreover, idIVM does
not support recursion.

LogiQL [Green, 2015] also supports incremental relational updates [Veld-
huizen, 2013]. In contrast to many relational approaches its implementa-
tion supports recursive aggregation, be it behind a compiler flag. However,

146

also this database requires interaction through queries, rather than an object-
relational mapper.

6.9 C O N C L U S I O N

In this chapter we present a case study that evaluates the use of the ICL
IceDust for specification of the business logic of an information system. We
conclude that the migrated code has better validatability, similar or better
performance, and that the effort involved in modeling decreases, but total
effort does not. The ICL creates a separation of concerns between business
logic specification and performance engineering. Performance engineering
still takes considerable effort, including pull requests to the ICL compiler.

In future work we would like to investigate the phenomenon of co-develop-
ment of DSLs with their applications. What factors influence whether a DSL
is co-developed with its application? And is this co-development similar to
co-development of frameworks or libraries with applications?

Another direction for future work is composing incrementalization tech-
niques. IceDust’s path-based incrementalization works well for complex ex-
pressions, while the relational calculus works well for bidirectional relations.
Can these be combined in a unified incremental computing approach?

Chapter 6. WebLab Case Study 147

148

7
Conclusion

How far did we get in addressing the vision outlined at the beginning of this
dissertation? In this final chapter, we revisit our original goals, summarize the
main contributions presented in this dissertation, reflect on our methodology,
and discuss future work.

7.1 I N F O R M AT I O N S Y S T E M E N G I N E E R I N G R E V I S I T E D

In the introduction of this dissertation, we described six concerns for infor-
mation system engineering which are challenging to tackle simultaneously:

• validatability: how easy is it for information system developers to see
whether the system does the right thing?

• traceability: can the origin of decisions made by the system be verified?
• reliability: can we trust the system to consistently make decisions and

not lose our data?
• performance: can the system handle the load of its users?
• availability: can we trust that the system performs its functionality all (or

most) of the time?
• modifiability: how easy is it to change the system specification when

requirements change?

Our vision was to address these concerns for developing information systems
all at the same time, as it would improve information system development
and use tremendously. The domain-specific languages introduced in this dis-
sertation address these six concerns. Every individual DSL feature introduced
in this dissertation improves at least one of these concerns over the existing
state-of-the-art.

In the introduction, we hypothesized that declarative specification of infor-
mation system data models and business logic is feasible and useful. This
dissertation shows it is feasible to specify an information system in an incre-
mental computing DSL by describing the design of IceDust and detailing the
use of IceDust in the WebLab information system. Moreover, our experience
with the WebLab case study also shows the usefulness of specifying an infor-
mation system in an incremental computing DSL as validatability, traceability,
reliability, and modifiability were considerably improved while retaining sim-
ilar performance and availability.

7.2 S U M M A RY O F C O N T R I B U T I O N S

The first four core chapters in this thesis have contributions in terms of lan-
guage features over state-of-the-art approaches, while Chapter 6 details the

149

usefulness of these features in practice. We summarize our contributions per
chapter below:

• The Relations language (Chapter 2) is a data modeling language that
features first-class relations, n-ary relations, native multiplicities, bidi-
rectional relations, and concise navigation. These language features im-
prove information system validatability and modifiability over object-
oriented and relational approaches. Moreover, this language features
good traceability by adopting attributes from attribute grammars.

• IceDust (Chapter 3) is a data modeling language for expressing de-
rived attribute values with incremental and eventual computing based
on path analysis. IceDust enables switching to a different calculation
strategy (for example caching) without invasive code changes, and is
expressive enough to support recursive aggregation. IceDust’s language
features improve information system modifiability without sacrificing
performance and availability over object-oriented and relational appro-
aches.

• IceDust2 (Chapter 4) is a generalization of IceDust with derived bidi-
rectional relations with multiplicity bounds and support for statically
checked composition of calculation strategies. IceDust2’s language fea-
tures improve information system validatability over relational appro-
aches, and validatability, modifiability, and reliability over reactive pro-
gramming approaches.

• PixieDust (Chapter 5) is an incremental computing user-interface lan-
guage for browser-based applications. PixieDust’s language features im-
prove information system modifiability without sacrificing performance
over existing reactive approaches.

• IceDustified WebLab (Chapter 6) is a case study demonstrating the use-
fulness of specifying an information system in an incremental comput-
ing DSL as validatability, traceability, reliability, and modifiability were
considerably improved while retaining similar performance and avail-
ability.

With these contributions we improved information system engineering. We
conclude that declarative specification of information system data models and
business logic is feasible and useful.

7.3 R E F L E C T I O N O N M E T H O D O L O G Y

In order to achieve these results we used design oriented research which it-
erates four phases: analysis, design, evaluation, and diffusion. This iterative
methodology worked well for us. In every iteration we analyzed information
system development problems, we designed a new DSL (or DSL features) to

150

address these problems, we evaluated the new DSL by applying it in prac-
tice and subjecting it to scrutiny, and we diffused our knowledge through
scholarly articles. The iterative approach enabled us to design, implement,
evaluate, and publish new language features one by one. We were mildly
successful in diffusing our knowledge: all our papers got accepted by our
peer reviewers, but to our knowledge our vision of incremental computing
DSLs has not yet been adopted or put into practice by others outside of our
university.

We used a variety of specific methods to produce evidence supporting
contributions, each method corresponding to the type of evidence produced
(Table 1.1). Some of these methods worked out better than others for us.
Language formalization through grammars and inference rules for static and
dynamic semantics enabled us to get to the essence of DSLs and communi-
cate the DSLs to other scientists. Language implementation in Spoofax [Kats
and Visser, 2010] was at times smooth and at times unfeasible. This was
mainly determined by whether the desired language semantics fitted in the
meta languages provided by Spoofax. The informal arguments in standard
logical constructs gave us (and our peer reviewers) a reasonable amount of
confidence in the properties of our DSLs. We explored formalizing these ar-
guments in proof checkers to increase the confidence (Appendix A), but for us
the increased confidence did not outweigh the extra effort. The benchmarks
and case studies took more effort than expected. The micro benchmarks and
micro case studies gave us confidence that we were measuring improvements
because of new DSL features. Due to the enormous effort involved, we did
only one macro case study with corresponding benchmarks, showing that
our approach works for a real-life information system. Doing more macro
case studies remains future work.

7.4 F U T U R E W O R K

Although we made progress in simultaneously tackling validatability, trace-
ability, reliability, performance, availability, and modifiability in information
systems engineering, there is room for further improvement. The research in
this dissertation raises further research questions in various directions regard-
ing multiplicity-safety, data modeling, business logic specification, incremen-
tal computing and empirical evaluation.

Multiplicity Safety

As described in the postscript of Chapter 2, the multiplicity safety is only
statically guaranteed for read operations. Update operations in IceDust are
checked for multiplicity-safety at runtime. In Alloy [Jackson, 2006], multipli-
city-safety can be checked by bounded model checking (e.g. before deploy-
ment of the application with actual data). This raises the question whether
it would be possible to check multiplicity-safety at compile time for update
operations.

Chapter 7. Conclusion 151

In the postscript of Chapter 4 we described a performance caveat of expres-
sion-based derived bidirectional relations. This performance caveat can be
avoided by using relational queries, but relational queries do not provide
multiplicity bounds. This raises the question whether it is possible to au-
tomatically transform queries into expressions and vice versa to obtain both
good performance and multiplicity bounds.

Data Modeling and Business Logic Specification

A recurring theme while developing information systems is migration of data
between versions of the data model and versions of the business logic. While
migration between data models has been studied in depth [Vermolen et al.,
2011], it is interesting to know whether those migrations can be made multi-
plicity safe. An approach could be to specify both versions of the data model
in different modules or name spaces, and write a migration correspondence
between the two which can be checked for multiplicity-safetey.

A new theme for migration in information systems is evolving business
logic. ICLs which support changes of the business logic at runtime will up-
date all derived values immediately. However, derived values such as course
grades (in Chapter 6) or invoices should not change after they are ‘final’, even
though in the future business logic might change, such as a tax percentage on
the invoice. An approach could be to keep all versions of the business logic
in separate modules, and refer to these modules from the data. However, this
would blow up the code size significantly.

Relational databases do not support recursive aggregation as termination
cannot be guaranteed. IceDust supports recursive aggregation, but does not
guarantee termination. However, with IceDust it should be possible to guar-
antee termination when the paths used in the recursion are not cyclic in the
runtime data (for example with a tree). In AlanLight a static checker is im-
plemented for recursion over hierarchical data [Kunst, 2018]. This raises the
question whether such a static checker can work for graph-based data as well.

Incremental Calculation

IceDust provides multiple calculation strategies and sound composition be-
tween these strategies. However, all these strategies are based on the tech-
nique of analyzing paths. Some programs perform much better when another
incrementalization technique is used, for example the bidirectional relations
mentioned in the postscript of Chapter 4. This raises the question whether
it would be possible to support multiple incrementalization techniques in a
single language.

One challenge is that different techniques operate on different basic data
structures. For example, materialized views for relational databases operate
on relational tables, while our work operates on object graphs. In order to
combine two techniques, they need to be retargeted to a common data struc-
ture, or data structures need to be efficiently transformable into each other. A
candidate for addition to IceDust would be Demand-driven incremental object

152

queries [Liu et al., 2016], as these are relational materialized views retargeted
to object graphs.

Empirical Evaluation

The last research direction is evaluating the impact of DSL usage on software
engineering empirically. In this dissertation we have concluded that the use
of an incremental computing DSL is useful for information system engineer-
ing in a single in-depth case study on a learning management information
system developed and maintained by scientific programmers within our uni-
versity. More research is needed to verify DSL usefulness in general. This
empirical research would need to be performed in many different flavors to
better understand the usefulness of DSLs: in-depth case studies versus many
small programming tasks, experienced DSL developers and users versus in-
experienced ones, DSL developers communicating with DSL users versus no
communication, etc. This research would help to understand how exactly
software engineering benefits from using DSLs.

Chapter 7. Conclusion 153

154

Bibliography

(2017a). Mobx. https://web.archive.org/web/20171008145333/https://
mobx.js.org/. Accessed: 2017-11-04. (Cited on pages 106 and 121.)

(2017b). React. https://web.archive.org/web/20171104234320/https://
reactjs.org/. Accessed: 2017-11-04. (Cited on page 104.)

(2017c). Redux. http://web.archive.org/web/20171104000918/https://
redux.js.org/. Accessed: 2017-11-04. (Cited on pages 106 and 121.)

(2018). Stack overflow developer survey 2018. https://insights.stackoverflow.
com/survey/2018. Accessed: 2018-03-21. (Cited on pages 124 and 125.)

(2019). Javafx. https://openjfx.io/. Accessed: 2019-01-26. (Cited on page 19.)

Acar, U. A. (2005). Self-adjusting computation. PhD thesis, Princeton Univer-
sity. (Cited on page 125.)

Acar, U. A. (2009). Self-adjusting computation: (an overview). In Puebla,
G. and Vidal, G., editors, Proceedings of the 2009 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation, PEPM 2009,
Savannah, GA, USA, January 19-20, 2009, pages 1–6. ACM. (Cited on pages 66
and 99.)

Albano, A., Ghelli, G., and Orsini, R. (1991). A relationship mechanism for a
strongly typed object-oriented database programming language. In Lohman,
G. M., Sernadas, A., and Camps, R., editors, 17th International Conference on
Very Large Data Bases, September 3-6, 1991, Barcelona, Catalonia, Spain, Proceed-
ings, pages 565–575. Morgan Kaufmann. (Cited on page 34.)

Ali, M. A., Fernandes, A. A. A., and Paton, N. W. (2003). Movie: An incre-
mental maintenance system for materialized object views. Data & Knowledge
Engineering, 47(2):131–166. (Cited on pages 65, 98, and 146.)

Apt, K. R., Blair, H. A., and Walker, A. (1986). Towards a theory of declarative
knowledge. IBM Thomas J. Watson Research Division. (Cited on pages 50, 52,
and 54.)

Balzer, S. (2011). Rumer: a Programming Language and Modular Verification
Technique Based on Relationships. PhD thesis, ETH, Zürich. (Cited on pages 22,
33, 43, 63, and 97.)

Balzer, S., Gross, T. R., and Eugster, P. (2007). A relational model of object
collaborations and its use in reasoning about relationships. In Ernst, E.,
editor, ECOOP 2007 - Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 - August 3, 2007, Proceedings, volume 4609 of Lecture

155

https://web.archive.org/web/20171008145333/https://mobx.js.org/
https://web.archive.org/web/20171008145333/https://mobx.js.org/
https://web.archive.org/web/20171104234320/https://reactjs.org/
https://web.archive.org/web/20171104234320/https://reactjs.org/
http://web.archive.org/web/20171104000918/https://redux.js.org/
http://web.archive.org/web/20171104000918/https://redux.js.org/
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://openjfx.io/

Notes in Computer Science, pages 323–346. Springer. (Cited on pages 15, 22,
and 33.)

Barisic, A., Amaral, V., Goulão, M., and Barroca, B. (2011). Quality in use of
domain-specific languages: a case study. In Anslow, C., Markstrum, S., and
Murphy-Hill, E. R., editors, Proceedings of the 3rd ACM SIGPLAN workshop
on Evaluation and usability of programming languages and tools, PLATEAU 2011,
Portland, OR, USA, October 24, 2011, pages 65–72. ACM. (Cited on page 145.)

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.-C., Gimenez, E.,
Herbelin, H., Huet, G., Munoz, C., Murthy, C., et al. (1997). The Coq proof
assistant reference manual: Version 6.1. PhD thesis, Inria. (Cited on page 12.)

Batory, D. S., Johnson, C., MacDonald, B., and von Heeder, D. (2002). Achiev-
ing extensibility through product-lines and domain-specific languages: a
case study. ACM Transactions on Software Engineering Methodology, 11(2):191–
214. (Cited on page 145.)

Becker, J., vom Brocke, J., Heddier, M., and Seidel, S. (2015). In search of
information systems (grand) challenges - a community of inquirers perspec-
tive. Business amp; Information Systems Engineering, 57(6):377–390. (Cited on
page 7.)

Behrend, A. and Schüller, G. (2014). A case study in optimizing continuous
queries using the magic update technique. In Jensen, C. S., Lu, H., Pedersen,
T. B., Thomsen, C., and Torp, K., editors, Conference on Scientific and Statistical
Database Management, SSDBM ’14, Aalborg, Denmark, June 30 - July 02, 2014,
page 31. ACM. (Cited on page 145.)

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987). Concurrency Control
and Recovery in Database Systems. Addison-Wesley. (Cited on page 5.)

Bharati, P. and Chaudhury, A. (2004). An empirical investigation of decision-
making satisfaction in web-based decision support systems. Decision Support
Systems, 37(2):187–197. (Cited on page 3.)

Bierman, G. M. and Wren, A. (2005). First-class relationships in an object-
oriented language. In Black, A. P., editor, ECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow, UK, July 25-29, 2005, Pro-
ceedings, volume 3586 of Lecture Notes in Computer Science, pages 262–286.
Springer. (Cited on pages 22, 34, 43, 63, and 97.)

Blackwell, A. F., Britton, C., Cox, A. L., Green, T. R. G., Gurr, C. A., Kadoda,
G. F., Kutar, M., Loomes, M., Nehaniv, C. L., Petre, M., Roast, C., Roe, C.,
Wong, A., and Young, R. M. (2001). Cognitive dimensions of notations: De-
sign tools for cognitive technology. In Beynon, M., Nehaniv, C. L., and Daut-
enhahn, K., editors, Cognitive Technology: Instruments of Mind, 4th Interna-
tional Conference, CT 2001, Warwick, UK, August 6-9, 2001, Proceedings, volume
2117 of Lecture Notes in Computer Science, pages 325–341. Springer. (Cited on
page 142.)

156

Boehm, B. W. (1988). A spiral model of software development and enhance-
ment. IEEE Computer, 21(5):61–72. (Cited on page 6.)

Boral, H. and DeWitt, D. J. (1984). A methodology for database system per-
formance evaluation. In Yormark, B., editor, SIGMOD 84, Proceedings of An-
nual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 176–185. ACM
Press. (Cited on page 12.)

Buneman, P., Libkin, L., Suciu, D., Tannen, V., and Wong, L. (1994). Compre-
hension syntax. SIGMOD Record, 23(1):87–96. (Cited on page 32.)

Burckhardt, S. (2014). Principles of eventual consistency. Foundations and
Trends in Programming Languages, 1(1-2):1–150. (Cited on page 67.)

Carlsson, M. (2002). Monads for incremental computing. In Proceedings of
the seventh ACM SIGPLAN international conference on Functional Programming
(ICFP 2002), pages 26–35. (Cited on page 125.)

Chan, G. K. Y., Li, Q., and Feng, L. (1999). Design and selection of material-
ized views in a data warehousing environment: A case study. In DOLAP 99,
ACM Second International Workshop on Data Warehousing and OLAP, November
6, 1999, Kansas City, Missouri, USA, Proceedings, pages 42–47. ACM. (Cited
on page 144.)

Chen, P. P. (1976). The entity-relationship model - toward a unified view of
data. ACM Trans. Database Syst., 1(1):9–36. (Cited on page 15.)

Czaplicki, E. and Chong, S. (2013). Asynchronous functional reactive pro-
gramming for guis. In Boehm, H.-J. and Flanagan, C., editors, ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’13, Seattle, WA, USA, June 16-19, 2013, pages 411–422. ACM. (Cited on
pages 106 and 121.)

Davies, J., Welch, J., Cavarra, A., and Crichton, E. (2006). On the generation
of object databases using booster. In 11th International Conference on Engineer-
ing of Complex Computer Systems (ICECCS 2006), 15-17 August 2006, Stanford,
California, USA, pages 249–258. IEEE Computer Society. (Cited on pages 78
and 98.)

Demaine, E. D., Mozes, S., Rossman, B., and Weimann, O. (2009). An op-
timal decomposition algorithm for tree edit distance. ACM Transactions on
Algorithms, 6(1). (Cited on page 103.)

Demers, A. J., Reps, T. W., and Teitelbaum, T. (1981). Incremental evaluation
for attribute grammars with application to syntax-directed editors. In POPL,
pages 105–116. (Cited on pages 66 and 99.)

Demetrescu, C., Finocchi, I., and Ribichini, A. (2011). Reactive imperative
programming with dataflow constraints. In Lopes, C. V. and Fisher, K.,

Bibliography 157

editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages 407–426.
ACM. (Cited on page 125.)

Donaldson, S. E. and Siegel, S. G. (2001). Successful software development.
Prentice Hall Professional. (Cited on page 129.)

Dybå, T., Sjøberg, D. I. K., and Cruzes, D. S. (2012). What works for whom,
where, when, and why?: on the role of context in empirical software engi-
neering. In Runeson, P., Höst, M., Mendes, E., Andrews, A. A., and Harrison,
R., editors, 2012 ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, ESEM ’12, Lund, Sweden - September 19 - 20, 2012,
pages 19–28. ACM. (Cited on pages 124 and 127.)

Elliott, C. M. (2009). Push-pull functional reactive programming. In Weirich,
S., editor, Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell
2009, Edinburgh, Scotland, UK, 3 September 2009, pages 25–36. ACM. (Cited
on pages 65, 70, and 98.)

Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook,
W. R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G., Molina,
P. J., Palatnik, M., Pohjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu,
V. A., Visser, E., van der Vlist, K., Wachsmuth, G., and van der Woning, J.
(2013). The state of the art in language workbenches - conclusions from the
language workbench challenge. In Erwig, M., Paige, R. F., and Wyk, E. V.,
editors, Software Language Engineering - 6th International Conference, SLE 2013,
Indianapolis, IN, USA, October 26-28, 2013. Proceedings, volume 8225 of Lecture
Notes in Computer Science, pages 197–217. Springer. (Cited on page 125.)

Felleisen, M. (1990). On the expressive power of programming languages.
In Jones, N. D., editor, ESOP 90, 3rd European Symposium on Programming,
Copenhagen, Denmark, May 15-18, 1990, Proceedings, volume 432 of Lecture
Notes in Computer Science, pages 134–151. Springer. (Cited on pages 2, 123,
and 125.)

Fowler, M. (2005). Language workbenches: The killer-app for domain spe-
cific languages? (Cited on page 125.)

Fowler, M. (2010). Domain-Specific Languages. Addison Wesley. (Cited on
page 7.)

Fowler, S., Denuzière, L., and Granicz, A. (2015). Reactive single-page ap-
plications with dynamic dataflow. In Pontelli, E. and Son, T. C., editors,
Practical Aspects of Declarative Languages - 17th International Symposium, PADL
2015, Portland, OR, USA, June 18-19, 2015. Proceedings, volume 9131 of Lecture
Notes in Computer Science, pages 58–73. Springer. (Cited on page 121.)

Giannakopoulos, T., Dougherty, D. J., Fisler, K., and Krishnamurthi, S. (2009).
Towards an operational semantics for alloy. In Cavalcanti, A. and Dams,

158

D., editors, FM 2009: Formal Methods, Second World Congress, Eindhoven, The
Netherlands, November 2-6, 2009. Proceedings, volume 5850 of Lecture Notes in
Computer Science, pages 483–498. Springer. (Cited on page 64.)

Glinz, M. (2005). Rethinking the notion of non-functional requirements. In
Proc. Third World Congress for Software Quality, volume 2, pages 55–64. (Cited
on page 61.)

Gluche, D., Grust, T., Mainberger, C., and Scholl, M. H. (1997). Incremen-
tal updates for materialized oql views. In Bry, F., Ramakrishnan, R., and
Ramamohanarao, K., editors, Deductive and Object-Oriented Databases, 5th In-
ternational Conference, DOOD 97, Montreux, Switzerland, December 8-12, 1997,
Proceedings, volume 1341 of Lecture Notes in Computer Science, pages 52–66.
Springer. (Cited on pages 65 and 98.)

Green, T. J. (2015). Logiql: A declarative language for enterprise applica-
tions. In Milo, T. and Calvanese, D., editors, Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages 59–64. ACM. (Cited on pages 65, 97,
125, and 146.)

Green, T. J., Huang, S. S., Loo, B. T., and Zhou, W. (2013). Datalog and
recursive query processing. Foundations and Trends in Databases, 5(2):105–195.
(Cited on pages 50, 52, 65, and 97.)

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. (2008). Webdsl:
a domain-specific language for dynamic web applications. In Harris, G. E.,
editor, Companion to the 23rd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2008,
October 19-13, 2007, Nashville, TN, USA, pages 779–780. ACM. (Cited on
page 128.)

Gupta, A. and Mumick, I. S. (1995). Maintenance of materialized views:
Problems, techniques, and applications. IEEE Data Eng. Bull., 18(2):3–18.
(Cited on pages 4, 52, 65, 97, and 125.)

Gupta, A., Mumick, I. S., and Subrahmanian, V. S. (1993). Maintaining views
incrementally. In Buneman, P. and Jajodia, S., editors, Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
D.C., May 26-28, 1993, pages 157–166. ACM Press. (Cited on pages 65, 69,
and 97.)

Gupta, M. (2012). Akka essentials. Packt Publishing Ltd. (Cited on page 66.)

Hadzilacos, V. (1988). A theory of reliability in database systems. Journal of
the ACM, 35(1):121–145. (Cited on page 3.)

Halpin, T. (2006). Object-role modeling (orm/niam). In Handbook on architec-
tures of information systems, pages 81–103. Springer. (Cited on pages 15, 19,
and 41.)

Bibliography 159

Hammer, M. A., Dunfield, J., Headley, K., Labich, N., Foster, J. S., Hicks,
M. W., and Horn, D. V. (2015). Incremental computation with names. In
Aldrich, J. and Eugster, P., editors, Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA,
October 25-30, 2015, pages 748–766. ACM. (Cited on pages 69, 87, and 99.)

Hammer, M. A., Khoo, Y. P., Hicks, M., and Foster, J. S. (2014). Adapton:
composable, demand-driven incremental computation. In O’Boyle, M. F. P.
and Pingali, K., editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014, page 18. ACM. (Cited on pages 69, 87, 99, and 125.)

Harkes, D. (2014). Relations: a first class relationship and first class deriva-
tions programming language. In Binder, W., Ernst, E., Peternier, A., and
Hirschfeld, R., editors, 13th International Conference on Modularity, MODU-
LARITY ’14, Lugano, Switzerland, April 22-26, 2014, pages 9–10. ACM. (Cited
on page 35.)

Harkes, D., Groenewegen, D. M., and Visser, E. (2016). Icedust: Incremen-
tal and eventual computation of derived values in persistent object graphs.
In Krishnamurthi, S. and Lerner, B. S., editors, 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, vol-
ume 56 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. (Cited
on pages 13, 69, 70, 84, 96, 97, 108, 110, 121, 125, 134, 141, 144, and 146.)

Harkes, D., van Chastelet, E., and Visser, E. (2018). Migrating business
logic to an incremental computing dsl: A case study. In Proceedings of the
11th ACM SIGPLAN International Conference on Software Language Engineering.
ACM. (Cited on page 13.)

Harkes, D. and Visser, E. (2014). Unifying and generalizing relations in role-
based data modeling and navigation. In Combemale, B., Pearce, D. J., Barais,
O., and Vinju, J. J., editors, Software Language Engineering - 7th International
Conference, SLE 2014, Västeras, Sweden, September 15-16, 2014. Proceedings, vol-
ume 8706 of Lecture Notes in Computer Science, pages 241–260. Springer. (Cited
on pages 13, 42, 43, 44, 64, 74, 96, 97, 141, and 144.)

Harkes, D. and Visser, E. (2017). Icedust 2: Derived bidirectional relations
and calculation strategy composition. In Müller, P., editor, 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain, volume 74 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik. (Cited on pages 13, 108, 111, 114, 121, 125, 141, 144, and 146.)

Hemel, Z., Groenewegen, D. M., Kats, L. C. L., and Visser, E. (2011). Static
consistency checking of web applications with WebDSL. Journal of Symbolic
Computation, 46(2):150–182. (Cited on page 23.)

160

Hemel, Z. and Visser, E. (2011). Declaratively programming the mobile web
with Mobl. In Lopes, C. V. and Fisher, K., editors, Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland,
OR, USA, October 22 - 27, 2011, pages 695–712. ACM. (Cited on page 121.)

Hermans, F., Pinzger, M., and van Deursen, A. (2010). Automatically extract-
ing class diagrams from spreadsheets. In Hondt, T. D., editor, ECOOP 2010 -
Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June
21-25, 2010. Proceedings, volume 6183 of Lecture Notes in Computer Science,
pages 52–75. Springer. (Cited on page 65.)

Hoare, T. (2009). Null references: The billion dollar mistake. Presentation at
QCon London, 298. (Cited on page 136.)

Hoppe, A. and Gryz, J. (2007). Stream processing in a relational database:
a case study. In Eleventh International Database Engineering and Applications
Symposium (IDEAS 2007), September 6-8, 2007, Banff, Alberta, Canada, pages
216–224. IEEE Computer Society. (Cited on page 145.)

Huang, S. S. and Smaragdakis, Y. (2008). Expressive and safe static reflection
with morphj. In Gupta, R. and Amarasinghe, S. P., editors, Proceedings of the
ACM SIGPLAN 2008 Conference on Programming Language Design and Imple-
mentation, Tucson, AZ, USA, June 7-13, 2008, pages 79–89. ACM. (Cited on
page 51.)

Humble, J. and Farley, D. (2010). Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. Pearson Education.
(Cited on page 6.)

Jackson, D. (2002). Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering Methodology, 11(2):256–290. (Cited on
pages 64 and 98.)

Jackson, D. (2006). Software Abstractions - Logic, Language, and Analysis. MIT
Press. (Cited on pages 37, 125, and 151.)

Jacobson, I., Booch, G., and Rumbaugh, J. E. (1999). The unified software
development process - the complete guide to the unified process from the original
designers. Addison-Wesley object technology series. Addison-Wesley. (Cited
on page 15.)

Jouault, F. (2005). Loosely coupled traceability for atl. In Proceedings of the
European Conference on Model Driven Architecture (ECMDA) workshop on trace-
ability, Nuremberg, Germany, volume 91, page 2. (Cited on page 3.)

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.
(1990). Feature-oriented domain analysis (foda) feasibility study. Technical
report, DTIC Document. (Cited on page 70.)

Bibliography 161

Kats, L. C. L., Vermaas, R., and Visser, E. (2011). Integrated language def-
inition testing: enabling test-driven language development. In Lopes, C. V.
and Fisher, K., editors, Proceedings of the 26th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011,
pages 139–154. ACM. (Cited on page 12.)

Kats, L. C. L. and Visser, E. (2010). The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In Cook, W. R., Clarke,
S., and Rinard, M. C., editors, Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2010, pages 444–463, Reno/Tahoe, Nevada. ACM. (Cited on
pages 11, 25, 125, and 151.)

Katsis, Y., Ong, K. W., Papakonstantinou, Y., and Zhao, K. K. (2015). Utilizing
ids to accelerate incremental view maintenance. In Sellis, T., Davidson, S. B.,
and Ives, Z. G., editors, Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015, pages 1985–2000. ACM. (Cited on page 146.)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier,
J.-M., and Irwin, J. (1997). Aspect-oriented programming. In Aksit, M. and
Matsuoka, S., editors, ECOOP 97 - Object-Oriented Programming, 11th Euro-
pean Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings, volume 1241 of
Lecture Notes in Computer Science, pages 220–242. Springer. (Cited on page 93.)

Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lupei, D., and
Shaikhha, A. (2014). Dbtoaster: higher-order delta processing for dynamic,
frequently fresh views. VLDB J., 23(2):253–278. (Cited on page 125.)

Konat, G., Kats, L. C. L., Wachsmuth, G., and Visser, E. (2012). Declarative
name binding and scope rules. In Czarnecki, K. and Hedin, G., editors,
Software Language Engineering, 5th International Conference, SLE 2012, Dresden,
Germany, September 26-28, 2012, Revised Selected Papers, volume 7745 of Lecture
Notes in Computer Science, pages 311–331. Springer. (Cited on page 12.)

Krishnamurthi, S., Fisler, K., Dougherty, D. J., and Yoo, D. (2008). Alchemy:
transmuting base alloy specifications into implementations. In Harrold, M. J.
and Murphy, G. C., editors, Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, Atlanta, Georgia, USA,
November 9-14, 2008, pages 158–169. ACM. (Cited on page 98.)

Kunst, G. (2018). Alanlight: sound, functionally correct, bounded acyclic
data flow modeling. (Cited on page 152.)

Lerner, B. S., Elberty, L., Li, J., and Krishnamurthi, S. (2013). Combining
form and function: Static types for jquery programs. In Castagna, G., ed-
itor, ECOOP 2013 - Object-Oriented Programming - 27th European Conference,
Montpellier, France, July 1-5, 2013. Proceedings, volume 7920 of Lecture Notes in
Computer Science, pages 79–103. Springer. (Cited on page 34.)

162

Liu, J., Vincent, M. W., and Mohania, M. K. (2003). Maintaining views in
object-relational databases. Knowl. Inf. Syst., 5(1):50–82. (Cited on page 146.)

Liu, Y. A., Brandvein, J., Stoller, S. D., and Lin, B. (2015). Demand-driven in-
cremental object queries. arXiv preprint arXiv:1511.04583. (Cited on page 66.)

Liu, Y. A., Brandvein, J., Stoller, S. D., and Lin, B. (2016). Demand-driven in-
cremental object queries. In Cheney, J. and Vidal, G., editors, Proceedings of the
18th International Symposium on Principles and Practice of Declarative Program-
ming, Edinburgh, United Kingdom, September 5-7, 2016, pages 228–241. ACM.
(Cited on pages 99, 146, and 153.)

Liu, Y. D. and Smith, S. F. (2005). Interaction-based programming with clas-
sages. In Johnson, R. E. and Gabriel, R. P., editors, Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego,
CA, USA, pages 191–209. ACM. (Cited on page 33.)

Maier, I. and Odersky, M. (2013). Higher-order reactive programming with
incremental lists. In Castagna, G., editor, ECOOP 2013 - Object-Oriented Pro-
gramming - 27th European Conference, Montpellier, France, July 1-5, 2013. Pro-
ceedings, volume 7920 of Lecture Notes in Computer Science, pages 707–731.
Springer. (Cited on pages 65, 70, 87, and 98.)

McGrath, J. E. (1995). Methodology matters: Doing research in the behavioral
and social sciences. In Readings in Human–Computer Interaction, pages 152–
169. Elsevier. (Cited on page 144.)

McSherry, F., Murray, D. G., Isaacs, R., and Isard, M. (2013). Differen-
tial dataflow. In CIDR 2013, Sixth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings.
www.cidrdb.org. (Cited on page 125.)

Meijer, E. (2010). Reactive extensions (rx): curing your asynchronous pro-
gramming blues. In ACM SIGPLAN Commercial Users of Functional Program-
ming, page 11. ACM. (Cited on pages 66, 70, and 99.)

Meijer, E., Beckman, B., and Bierman, G. M. (2006). Linq: reconciling object,
relations and xml in the .net framework. In Chaudhuri, S., Hristidis, V., and
Polyzotis, N., editors, Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Chicago, Illinois, USA, June 27-29, 2006, page 706.
ACM. (Cited on page 34.)

Meyerovich, L. A., Guha, A., Baskin, J. P., Cooper, G. H., Greenberg, M.,
Bromfield, A., and Krishnamurthi, S. (2009). Flapjax: a programming lan-
guage for ajax applications. In Arora, S. and Leavens, G. T., editors, Proceed-
ings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2009, pages 1–20. ACM.
(Cited on page 121.)

Bibliography 163

Mitschke, R., Erdweg, S., Köhler, M., Mezini, M., and Salvaneschi, G. (2014).
i3ql: language-integrated live data views. In Black, A. P. and Millstein, T. D.,
editors, Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of SPLASH
2014, Portland, OR, USA, October 20-24, 2014, pages 417–432. ACM. (Cited on
pages 65, 69, and 98.)

Mosses, P. D. and New, M. J. (2009). Implicit propagation in structural opera-
tional semantics. Electronic Notes in Theoretical Computer Science, 229(4):49–66.
(Cited on pages 11 and 30.)

Mumick, I. S., Pirahesh, H., and Ramakrishnan, R. (1990). The magic of
duplicates and aggregates. In McLeod, D., Sacks-Davis, R., and Schek, H.-
J., editors, 16th International Conference on Very Large Data Bases, August 13-
16, 1990, Brisbane, Queensland, Australia, Proceedings, pages 264–277. Morgan
Kaufmann. (Cited on pages 54 and 65.)

Nakamura, H. (2001). Incremental computation of complex objects queries.
In OOPSLA, pages 156–165. (Cited on page 146.)

Neil, E. J. O. (2008). Object/relational mapping 2008: hibernate and the entity
data model (edm). In Wang, J. T.-L., editor, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008, pages 1351–1356. ACM. (Cited on page 128.)

Nelson, S., Noble, J., and Pearce, D. J. (2008). Implementing first-class rela-
tionships in java. Proceedings of RAOOL, 8. (Cited on pages 22 and 34.)

Nilsson, H., Courtney, A., and Peterson, J. (2002). Functional reactive pro-
gramming, continued. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell. ACM. (Cited on page 52.)

Noble, J. (1997). Basic relationship patterns. Pattern Languages of Program
Design, 4. (Cited on page 19.)

Oskarsson, Ö. (1982). Mechanisms of modifiability in large software systems. PhD
thesis, VTT Grafiska. (Cited on page 6.)

Pearce, D. J. and Noble, J. (2006). Relationship aspects. In Filman, R. E.,
editor, Proceedings of the 5th International Conference on Aspect-Oriented Software
Development, AOSD 2006, Bonn, Germany, March 20-24, 2006, pages 75–86.
ACM. (Cited on page 34.)

Pierce, B. C. (2002). Types and Programming Languages. MIT Press, Cambridge,
Massachusetts. (Cited on page 11.)

Porter, B., Grieves, M., Filho, R. V. R., and Leslie, D. (2016). Rex: A develop-
ment platform and online learning approach for runtime emergent software
systems. In Keeton, K. and Roscoe, T., editors, 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, pages 333–348. USENIX Association. (Cited on page 100.)

164

Ramakrishnan, R., Ross, K. A., Srivastava, D., and Sudarshan, S. (1994). Ef-
ficient incremental evaluation of queries with aggregation. In Workshop on
Design and Impl. of Parallel Logic Programming Systems, pages 204–218. (Cited
on pages 65 and 97.)

Reynders, B., Devriese, D., and Piessens, F. (2017). Experience report: Func-
tional reactive programming and the dom. In Sartor, J. B., D’Hondt, T., and
Meuter, W. D., editors, Companion to the first International Conference on the Art,
Science and Engineering of Programming, Programming 2017, Brussels, Belgium,
April 3-6, 2017. ACM. (Cited on page 121.)

Ross, K. A. and Sagiv, Y. (1992). Monotonic aggregation in deductive
databases. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 2-4, 1992, San Diego, Cali-
fornia, pages 114–126. ACM Press. (Cited on pages 65 and 97.)

Rothamel, T. and Liu, Y. A. (2008). Generating incremental implementations
of object-set queries. In Smaragdakis, Y. and Siek, J. G., editors, Generative
Programming and Component Engineering, 7th International Conference, GPCE
2008, Nashville, TN, USA, October 19-23, 2008, Proceedings, pages 55–66. ACM.
(Cited on page 146.)

Rumbaugh, J. E. (1987). Relations as semantic constructs in an object-oriented
language. In OOPSLA, pages 466–481. (Cited on page 34.)

Runeson, P., Höst, M., Rainer, A., and Regnell, B. (2012). Case Study Research
in Software Engineering - Guidelines and Examples. Wiley. (Cited on page 124.)

Salvaneschi, G., Hintz, G., and Mezini, M. (2014). Rescala: bridging between
object-oriented and functional style in reactive applications. In Binder, W.,
Ernst, E., Peternier, A., and Hirschfeld, R., editors, 13th International Confer-
ence on Modularity, MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014,
pages 25–36. ACM. (Cited on pages 4, 65, 70, 76, 87, 98, and 122.)

Schuster, C. and Flanagan, C. (2016). Reactive programming with reactive
variables. In Fuentes, L., Batory, D. S., and Czarnecki, K., editors, Companion
Proceedings of the 15th International Conference on Modularity, Málaga, Spain,
March 14 - 18, 2016, pages 29–33. ACM. (Cited on page 121.)

Shaw, M. (2003). Writing good software engineering research papers. In
Proceedings of the 25th International Conference on Software Engineering, May
3-10, 2003, Portland, Oregon, USA, pages 726–737. IEEE Computer Society.
(Cited on pages 10, 11, and 12.)

Siegmund, J., Siegmund, N., and Apel, S. (2015). Views on internal and
external validity in empirical software engineering. In 37th IEEE/ACM In-
ternational Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, pages 9–19. IEEE. (Cited on page 12.)

Bibliography 165

Slepak, J., Shivers, O., and Manolios, P. (2014). An array-oriented language
with static rank polymorphism. In Shao, Z., editor, Programming Languages
and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture
Notes in Computer Science, pages 27–46. Springer. (Cited on page 35.)

Staron, M. (2006). Adopting model driven software development in indus-
try - a case study at two companies. In Nierstrasz, O., Whittle, J., Harel,
D., and Reggio, G., editors, Model Driven Engineering Languages and Systems,
9th International Conference, MoDELS 2006, Genova, Italy, October 1-6, 2006,
Proceedings, volume 4199 of Lecture Notes in Computer Science, pages 57–72.
Springer. (Cited on page 145.)

Steimann, F. (2013). Content over container: object-oriented programming
with multiplicities. In Hosking, A. L., Eugster, P. T., and Hirschfeld, R., edi-
tors, ACM Symposium on New Ideas in Programming and Reflections on Software,
Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013,
pages 173–186. ACM. (Cited on pages 16, 34, 43, 74, and 96.)

Steimann, F. (2015). None, one, many - what’s the difference, anyhow? In
Ball, T., Bodík, R., Krishnamurthi, S., Lerner, B. S., and Morrisett, G., editors,
1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6,
2015, Asilomar, California, USA, volume 32 of LIPIcs, pages 294–308. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik. (Cited on page 43.)

Szabó, T., Erdweg, S., and Völter, M. (2016). Inca: a dsl for the definition
of incremental program analyses. In Lo, D., Apel, S., and Khurshid, S.,
editors, Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 320–331.
ACM. (Cited on page 125.)

Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., and Varró, D.
(2014). Incquery-d: A distributed incremental model query framework in
the cloud. In Dingel, J., Schulte, W., Ramos, I., Abrahão, S., and Insfrán, E.,
editors, Model-Driven Engineering Languages and Systems - 17th International
Conference, MODELS 2014, Valencia, Spain, September 28 - October 3, 2014. Pro-
ceedings, volume 8767 of Lecture Notes in Computer Science, pages 653–669.
Springer. (Cited on page 66.)

Söderberg, E. and Hedin, G. (2012). Incremental evaluation of reference at-
tribute grammars using dynamic dependency tracking. Technical Report 98,
Department of Computer Science, Lund University. (Cited on pages 66
and 99.)

Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160. (Cited on page 49.)

166

ten Veen, N., Harkes, D. C., and Visser, E. (2018). Pixiedust: Declarative
incremental user interface rendering through static dependency tracking. In
Champin, P.-A., Gandon, F. L., Lalmas, M., and Ipeirotis, P. G., editors, Com-
panion of the The Web Conference 2018 on The Web Conference 2018, WWW 2018,
Lyon , France, April 23-27, 2018, pages 721–729. ACM. (Cited on page 13.)

Ujhelyi, Z., Bergmann, G., Ábel Hegedüs, Ákos Horváth, Izsó, B., Ráth, I.,
Szatmári, Z., and Varró, D. (2015). Emf-incquery: An integrated development
environment for live model queries. Science of Computer Programming, 98:80–
99. (Cited on pages 69 and 98.)

van Antwerpen, H., Néron, P., Tolmach, A. P., Visser, E., and Wachsmuth,
G. (2016). A constraint language for static semantic analysis based on scope
graphs. In Erwig, M. and Rompf, T., editors, Proceedings of the 2016 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation, PEPM 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, pages 49–60. ACM. (Cited on
page 12.)

van Deursen, A. (1997). Domain-specific languages versus object-oriented
frameworks: A financial engineering case study. In Proceedings Smalltalk and
Java in Industry and Academia, STJA’97. Ilmenau Technical University. (Cited
on page 145.)

van Deursen, A. and Klint, P. (1998). Little languages: little maintenance?
Journal of Software Maintenance, 10(2):75–92. (Cited on page 143.)

Veldhuizen, T. L. (2013). Incremental maintenance for leapfrog triejoin. arXiv
preprint arXiv:1303.5313. (Cited on page 146.)

Vermolen, S., Wachsmuth, G., and Visser, E. (2011). Generating database
migrations for evolving web applications. In Denney, E. and Schultz, U. P.,
editors, Generative Programming And Component Engineering, Proceedings of the
10th International Conference on Generative Programming and Component Engi-
neering, GPCE 2011, Portland, Oregon, USA, October 22-24, 2011, pages 83–92.
ACM. (Cited on page 152.)

Visser, E. (1997). Syntax Definition for Language Prototyping. PhD thesis, Uni-
versity of Amsterdam. (Cited on page 12.)

Visser, E. (2002). Meta-programming with concrete object syntax. In Batory,
D. S., Consel, C., and Taha, W., editors, Generative Programming and Compo-
nent Engineering, ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh,
PA, USA, October 6-8, 2002, Proceedings, volume 2487 of Lecture Notes in Com-
puter Science, pages 299–315. Springer. (Cited on page 12.)

Visser, E. (2003). Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in Stratego/XT 0.9. In Lengauer, C., Batory, D. S., Consel,
C., and Odersky, M., editors, Domain-Specific Program Generation, International
Seminar, Dagstuhl Castle, Germany, March 23-28, 2003, Revised Papers, volume

Bibliography 167

3016 of Lecture Notes in Computer Science, pages 216–238. Springer. (Cited on
page 12.)

Visser, E. (2007). WebDSL: A case study in domain-specific language engi-
neering. In Lämmel, R., Visser, J., and Saraiva, J., editors, Generative and Trans-
formational Techniques in Software Engineering II, International Summer School,
GTTSE 2007, volume 5235 of Lecture Notes in Computer Science, pages 291–373,
Braga, Portugal. Springer. (Cited on pages 19, 23, 34, 43, 50, and 90.)

Visser, E. (2015). Understanding software through linguistic abstraction. Sci-
ence of Computer Programming, 97:11–16. (Cited on pages 1 and 125.)

Vitek, J. and Kalibera, T. (2012). R3: Repeatability, reproducibility and rigor.
ACM SIGPLAN Notices, 47(4a):30–36. (Cited on pages 12 and 141.)

Vollebregt, T., Kats, L. C. L., and Visser, E. (2012). Declarative specification
of template-based textual editors. In Sloane, A. and Andova, S., editors,
International Workshop on Language Descriptions, Tools, and Applications, LDTA
’12, Tallinn, Estonia, March 31 - April 1, 2012, pages 1–7. ACM. (Cited on
page 12.)

Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L. C. L.,
Visser, E., and Wachsmuth, G. (2013). DSL Engineering - Designing, Implement-
ing and Using Domain-Specific Languages. dslbook.org. (Cited on page 125.)

Völter, M., van Deursen, A., Kolb, B., and Eberle, S. (2015). Using c language
extensions for developing embedded software: a case study. In Aldrich, J.
and Eugster, P., editors, Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30,
2015, pages 655–674. ACM. (Cited on pages 124 and 146.)

Völter, M. and Visser, E. (2011). Product line engineering using domain-
specific languages. In de Almeida, E. S., Kishi, T., Schwanninger, C., John, I.,
and Schmid, K., editors, Software Product Lines - 15th International Conference,
SPLC 2011, Munich, Germany, August 22-26, 2011, pages 70–79. IEEE. (Cited
on page 100.)

Walker, R. J. and Viggers, K. (2004). Implementing protocols via declarative
event patterns. In Taylor, R. N. and Dwyer, M. B., editors, Proceedings of
the 12th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2004, Newport Beach, CA, USA, October 31 - November 6, 2004,
pages 159–169. ACM. (Cited on pages 2 and 132.)

Wiedermann, B. and Cook, W. R. (2007). Extracting queries by static anal-
ysis of transparent persistence. In Hofmann, M. and Felleisen, M., editors,
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2007, Nice, France, January 17-19, 2007, pages 199–
210. ACM. (Cited on pages 64 and 66.)

168

Willis, D., Pearce, D. J., and Noble, J. (2006). Efficient object querying for
java. In Thomas, D., editor, ECOOP 2006 - Object-Oriented Programming, 20th
European Conference, Nantes, France, July 3-7, 2006, Proceedings, volume 4067 of
Lecture Notes in Computer Science, pages 28–49. Springer. (Cited on pages 34
and 64.)

Willis, D., Pearce, D. J., and Noble, J. (2008). Caching and incrementalisation
in the java query language. In Harris, G. E., editor, Proceedings of the 23rd
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN,
USA, pages 1–18. ACM. (Cited on pages 66 and 99.)

Wren, A. (2007). Relationships for object-oriented programming languages.
University of Cambridge, Computer Laboratory, Technical Report, 702(UCAM-CL-
TR-702). (Cited on pages 22, 23, and 34.)

Xi, H. and Pfenning, F. (1999). Dependent types in practical programming.
In POPL, pages 214–227. (Cited on page 7.)

Yeo, K. T. (2002). Critical failure factors in information system projects. In-
ternational journal of project management, 20(3):241–246. (Cited on page 125.)

Yin, R. K. (2013). Validity and generalization in future case study evaluations.
Evaluation, 19(3):321–332. (Cited on page 124.)

Zeng, K., Agarwal, S., and Stoica, I. (2016). iolap: Managing uncertainty
for efficient incremental olap. In Özcan, F., Koutrika, G., and Madden, S.,
editors, Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 1347–1361. ACM. (Cited on page 125.)

Zhao, W., Rusu, F., Dong, B., Wu, K., and Nugent, P. (2017). Incremental
view maintenance over array data. In Salihoglu, S., Zhou, W., Chirkova,
R., 0001, J. Y., and Suciu, D., editors, Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, pages 139–154. ACM. (Cited on page 125.)

Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D., Krcmar, H., Loos,
P., Mertens, P., Oberweis, A., and Sinz, E. J. (2011). Memorandum on design-
oriented information systems research. EJIS, 20(1):7–10. (Cited on pages 1
and 10.)

Bibliography 169

170

A
Appendix: IceProof

In Chapter 2 we introduced the relations language with native multiplicities.
We described the syntax, type system, multiplicity system, and dynamic se-
mantics. Such a language description raises the question whether the type and
multiplicity system is sound. In this appendix we prove type-preservation,
termination, and multiplicity-preservation for a subset of the relations lan-
guage. The proofs are mechanized in Coq and are available online.1

A.1 L A N G U A G E S P E C I F I C AT I O N

The subset of the language we consider in this appendix is expressions with-
out an environment or store. We include the expressions added in Chapters
3 and 4 which do not require an environment or store. We call this sub lan-
guage IceProof. Figure A.1 shows the grammar of IceProof. IceProof features
just two types: integers and booleans (Figure A.2). IceProof tracks the multi-
plicity of expressions and their values (native multiplicities). It features four
different multiplicities: exactly one, zero or one, one or more, and zero or

1https://github.com/MetaBorgCube/IceDust/blob/develop/icedust.proofs/multiplicities.v

e 2 Expr ::= nat | true | false | null:Int | null:Boolean

| f (e) | e1 � e2 | e1 ? e2 : e3

f 2 UnOp ::= ! | min | max | avg | sum | count | conj | disj | first

� 2 BinOp ::= + | - | * | / | % | && | || | > | >= | < | <= | == | =! | <+ | ++
| elemAt | indexOf

Figure A.1 The grammar of IceProof

t 2 Type ::= Int | Boolean

Figure A.2 Types in IceProof

m 2 Multiplicity ::= [1,1] | [0,1] | [1,n) | [0,n)

Figure A.3 Multiplicities in IceProof

v 2 Value ::= IntValue | BooleanValue
IntValue ::= nat⇤

BooleanValue ::= Boolean⇤

Boolean ::= true | false

Figure A.4 Values in IceProof

171

https://github.com/MetaBorgCube/IceDust/blob/develop/icedust.proofs/multiplicities.v

Expression type Expr : Type

c 2 {true, false}

c : boolean
[Bool]

nat : int
[Int]

null ":" t : t
[Null]

� 2 {+,�, ⇤, /, %}
e1 : int e2 : int

e1 � e2 : int
[Math]

� 2 {&&, ||}
e1 : boolean e2 : boolean

e1 � e2 : boolean
[AndOr]

e : boolean

! e : boolean
[Not]

� 2 {>,>=,<,<=}
e1 : int e2 : int

e1 � e2 : boolean
[Cmp]

e1 : t e2 : t � 2 {==, !=}

e1 � e2 : boolean
[Eq]

e1 : boolean e2 : t e3 : t

e1 ? e2 ":" e3 : t
[Cond]

e : int f 2 {avg, min, max, sum}

f (e) : int
[Aggr]

e : boolean f 2 {conj, disj}

f (e) : boolean
[Logic]

e : _

count(e) : int
[Count]

e1 : t e2 : t � 2 {<+,++}

e1 � e2 : t
[Mult]

e1 : t e2 : int

e1 elemAt e2 : t
[ElemAt]

e1 : t e2 : t

e1 indexOf e2 : int
[Index]

e : t

first(e) : t
[First]

Figure A.5 Type rules of IceProof

more (Figure A.3). Consequently, the values in IceProof are lists of integers or
lists of booleans (Figure A.4).

A.1.1 Type System

Figure A.5 shows the type system of IceProof. The type system features no
type environment as none of the expressions introduce context. The type
system is completely standard, except for the last four rules which deal with
the fact that the values are lists. The choice and merge operator take two sub
expressions of the same type are of this type as well and the elemAt, indexOf,
and first operators are the standard list operations.

A.1.2 Multiplicity System

Figure A.6 shows the multiplicity system of IceProof. The basic idea is that ex-
pression with multiple operands take the Cartesian product of these operands.
This means that binary operators mimic maybe-Monad behavior for zero or

172

Expression multiplicity Expr ⇠ Multiplicity

c 2 {this, true, false, Int, String}

c ⇠ [1, 1]
[Const]

null ":" t ⇠ [0, 1]
[Null]

� 2 {+,�, ⇤, &&, ||,>,
>=,<,<=,==, !=}

e1 ⇠ [l1, u1] e2 ⇠ [l2, u2]

e1 � e2 ⇠ [min(l1, l2), max(u1, u2)]
[BinOp]

� 2 {/, %}
e1 ⇠ [_, u1] e2 ⇠ [_, u2]

e1 � e2 ⇠ [0, max(u1, u2)]
[DivOp]

e1 ⇠ [l1, 1] e2 ⇠ [l2, u2]

e3 ⇠ [l3, u3]

m = [min(l1, l2, l3), max(u2, u3)]

e1 ? e2 ":" e3 ⇠ m
[Cond]

e ⇠ m

! e ⇠ m
[Not]

f 2 {avg, min, max}
e ⇠ [l, n)

f (e) ⇠ [l, 1]
[Aggr]

f 2 {sum, count, conj, disj}

f (e) ⇠ [1, 1]
[Aggr2]

e1 ⇠ [0, u1] e2 ⇠ [l2, u2]

e1 <+ e2 ⇠ [l2, max(u1, u2)]
[Choice]

e1 ⇠ [1, u1]

e1 <+ e2 ⇠ [1, u1]
[Choice2]

e1 ⇠ [l1, _] e2 ⇠ [l2, _]

e1 ++ e2 ⇠ [max(l1, l2), n)
[Concat]

e ⇠ [l, _]

first(e) ⇠ [l, 1]
[First]

e1 ⇠ [_, _] e2 ⇠ [_, u]

e1 elemAt e2 ⇠ [0, u]
[ElemAt]

e1 ⇠ [_, u1] e2 ⇠ [_, u2]

e1 indexOf e2 ⇠ [0, max(u1,u2)]
[IndexOf]

Figure A.6 Multiplicity rules of IceProof

one values: a maybe value as input for the computation returns a maybe value
as output. The division and modulo operators exhibit slightly different behav-
ior. Since dividing by zero has no result, at least one value in both operands
might still result in no answer. Instead of throwing a division by zero excep-
tion zero answers are given for any denominator equal to zero. The Choice
operator chooses at runtime the left expression if it has a result, and otherwise
the right expression. This means its multiplicity is defined as the maximum
of both upper and lower bound, except if the left lower bound is one. The
Concat operator combines the results of both expressions. This means that at
runtime it might always return more than one value; thus the upper bound is
n. The first operator returns a value if its operand has one or more value,
and the collection operations return at most as many values as their second
operand.

A.1.3 Dynamic Semantics

Figure A.7 shows the dynamic semantics of IceProof. All the evaluation rules
have a specific form: they operate on lists. A nice example of this is the

Chapter A. Appendix: IceProof 173

Expression evaluation Expr + Value

c is constant

c + [c]
[Const]

null ":" t + []
[Null]

� 2 {+,�, ⇤, &&, ||,>,>=,<,<=,==, !=}
e1 + V1 e2 + V2

V3 =[v1�v2 | v1 2 V1, v2 2 V2]

e1 � e2 + V3

[BinOp]

e1 + V1 e2 + V2 � 2 {/, %}
V3=[v1�v2 | v2 !=0, v12V1, v22V2]

e1 � e2 + V3

[Div]

e + V

! e + [¬ v | v 2 V]
[Not]

e1 + V1 e2 + V2 e3 + V3

V4=[v1? v2: v3 |v12V1, v22V2, v32V3]

e1 ? e2 : e3 + V4

[Cond]

f 2 {conj, disj, sum} e + V

f (e) + [f (V)]
[Aggr]

f 2 {avg, min, max} e + V
|V| � 1

f (e) + [f (V)]
[Aggr2]

f 2 {avg, min, max} e + []

f (e) + []
[Aggr3]

e + V

count(e) + [|V|]
[Count]

e1 + V1 e2 + V2

e1 <+ e2 + (V1 != []) ? V1 : V2

[Choice]

e1 + V1 e2 + V2

e1 ++ e2 + V1 ++V2

[Concat]

e1 + V1 e2 + V2

V3 = [V1[v2] | v2 < |V1|, v2 2 V2]

e1 elemAt e2 + V3

[ElemAt]

e1 + V1 e2 + V2

V3 = [v3 | V1[v3] = v2, v2 2 V2]

e1 indexOf e2 + V3

[IndexOf]

Figure A.7 Evaluation rules of IceProof

rule for binary operations. The left and right expressions evaluate to a list
of values, the Cartesian product of these lists is taken, and on each pair of
values the operator is applied. For single values a normal computation is
performed, for maybe values a maybe computation and for many values a
Cartesian product computation. Most evaluation rules follow this pattern.
Some aggregation operations are defined for at least a single value (Aggr)
while others are defined for all values (Aggr2). The choice operator returns
the value of the left expression, if it has at least one value, otherwise the value
of the right expression. The concat operator combines all values, regardless of
how many there are. Finally, the list operations are also lifted: elemAt returns
the elements at all provided indexes in all provided lists, and indexOf returns
all indexes of all search elements in all lists.

A.2 T Y P E P R E S E RVAT I O N P R O O F

With the language specified we can turn to the proofs. First we prove type
preservation: if an expression has a type and evaluates to a value, then the

174

value is that type.

Theorem 6 (Type Preservation) e : t ^ e + v =) v : t

Proof. Assume e : t and e + v. We need to show v : t. We do this by induction
on the evaluation relation e + v. This leads to 41 cases. By induction, v has
a concrete structure in every case. We use this to refine or proof obligation
to t = Int or t = Bool. Also by induction, e has a concrete structure, we use
this to get the concrete value of t as an assumption for all non-polymorphic
expressions. This solves all non-polymorphic expressions. The polymorphic
expressions (if, <+, ++, first, and elemAt) need a proof for both types of
values (integers and booleans), hence 10 cases. For these cases we use the
types from the sub-expressions to derive the type of the overal expression.
This solves the polymorphic cases. ⌅

A.3 T E R M I N AT I O N P R O O F

Next, we prove termination for well-typed expressions. For the termination
proof we use an executable function for the evaluation relation, evalF, such
that the following is true.

Lemma 7 (EvalR equal evalF) e + v () evalF(e) = Some(v)

Proof. The proof forward is induction over e + v with simple rewrites. The
proof backward is induction over e, and destructs both evalF and + to show
implication. ⌅

We can use this lemma to execute the evaluation function in our termination
proof.

Theorem 8 (Termination) e : t =) 9v e + v

Proof. Proof by induction over e : t. The cases for literals are trivial. For
all expressions with sub-expressions, use the induction hypotheses to get the
values of the recursive calls. Next, we use type-preservation to derive the
structure of these sub-expression values. Then we use the fact that we have
evaluation as an executable function: we inline these values in the evaluation
function body. At which point we have constructed the values that are re-
turned from the evaluation function. These values are the 9v that we were
looking for. ⌅

A.4 M U LT I P L I C I T Y P R E S E RVAT I O N P R O O F

Last, we prove multiplicity preservation: if an expression has a type, a multi-
plicity, and evaluates to a value, then that value is of the right multiplicity.

Theorem 9 (Multiplicity Preservation) e : t ^ e ⇠ m ^ e + v =) v ⇠ m

Chapter A. Appendix: IceProof 175

Proof. Proof by induction over e + v with t and m independent. First,
we derive all types and multiplicities of the sub-expressions. Then, we spe-
cialize our induction hypotheses to the types and multiplicities of the sub-
expressions. At this point we let the proof assistant Coq mechanically exam-
ine all cases. We do case distinction on all sub-expression multiplicities and
all sub-expression value lists (empty list, singleton list, or two-or-longer list).
As IceProof has 4 multiplicites, and 3 interesting value lenghts, this gener-
ates (4 ⇤ 3)1 cases for unary operators, (4 ⇤ 3)2 cases for binary operators, and
(4 ⇤ 3)3 cases for the if. All these cases are trivial: either the assumptions are
inconsistent (for example e1 : [1, 1] with e1 + [true, f alse]), or we can inline
the values in the executable evaluation function (evalF), compute the output
value, and conclude that it has the right multiplicity. ⌅

A.5 F U T U R E W O R K

There are several interesting properties to prove for IceDust. Especially the
invariants listed in Chapter 4.

A.5.1 Type- and Multiplicity-Safety

The proofs in this Appendix only cover semantics without an environment or
store. These proofs could be extended to cover expressions with environments
and stores. When the IceDust object store is added, derived value expressions
can be modeled as well. Though, at that point, the executable interpreter has
to be changed to a non-terminating interpreter. This means the termination
lemma has to be relaxed to progress, or to fuel-based interpretation.

A.5.2 Preservation of bidirectionality

If an IceDust interpreter with object store is created, it would also be interest-
ing to prove the bidirectionality preservation invariant in Chapter 4 (Invari-
ant 2). A simplified version of this proof could cover IceDust without derived
values: just an object graph with getters and setters. This proof could then be
extended with derived relations.

A.5.3 Correctness of incremental calculation strategies

For all programs that terminate with the non-incremental runtime, it holds
that the incremental runtime returns the same value as the non-incremental
runtime. It would be interesting to prove for these programs that incremental
behavior results in the same values as “from scratch computation”.

A simple version of this proof would cover a single IceDust object, or rather
a language with no objects but just a set of global fields. This proof would
include an invariant such as Invariant 1 from Chapter 4: either reevaluating
all expressions results in exactly the cached values, or some up-to-date flag
is false. Moreover, this proof would need include a simple version of the

176

path-based abstract interpretation from Chapter 3. The simplest proof can
completely ignore multiplicities and only support a handful of expressions.

This proof could then be extended to cover IceDust (Chapter 3), with de-
rived attributes and bidirectional relations. This would require modeling all
features that interact with incremental updates: including multiplicities (to
support path-inversion), and the full path-based abstract interpretation (to
support conditionals).

Later, that proof could be extended to cover all IceDust features. Adding
derived derived relations (Chapter 4) would mean that the dependency graph,
which is used for dirty flagging, is not know statically, only when executing
the interpreter. Covering multiple calculation strategies (eager and lazy in-
cremental) would mean using different invariants for different strategies. The
proof could then also be extended to cover calculation strategy composition
(Chapter 4), proving that the strategy composition type system ensures the
invariants of the various strategies under composition. Finally, the proof also
could be extended with the inlining behavior of functions (Chapter 5).

Chapter A. Appendix: IceProof 177

178

Curriculum Vitae

Daco C. Harkes

1 March 1990
Born in Waddinxveen

2001-2007
VWO diploma
Driestar College in Gouda
Nature and Technology profile

2007-2010
B.Sc. in Computer Science
Delft University of Technology
Department of Mathematics and Computing Science
Cum laude (with honor)

2012-2014
M.Sc. in Computer Science
Delft University of Technology
Department of Mathematics and Computing Science
Cum laude (with honor)

2014-2018
Ph.D. in Computer Science
Delft University of Technology
Department of Software Technology

179

180

List of Publications

• Harkes, D. C. (2014). Relations: a first class relationship and first class
derivations programming language. In Binder, W., Ernst, E., Peternier,
A., and Hirschfeld, R., editors, 13th International Conference on Modularity,
MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014, pages 9–10.
ACM.

• Harkes, D. C. and Visser, E. (2014). Unifying and generalizing relations
in role- based data modeling and navigation. In Combemale, B., Pearce,
D. J., Barais, O., and Vinju, J. J., editors, Software Language Engineering -
7th International Conference, SLE 2014, Västeras, Sweden, September 15-16,
2014. Proceedings, volume 8706 of Lecture Notes in Computer Science,
pages 241–260. Springer.

• Harkes, D. C., Groenewegen, D. M., and Visser, E. (2016). Icedust: Incre-
mental and eventual computation of derived values in persistent object
graphs. In Krishnamurthi, S. and Lerner, B. S., editors, 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016,
Rome, Italy, volume 56 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.

• Harkes, D. C. and Visser, E. (2017). Icedust 2: Derived bidirectional
relations and calculation strategy composition. In Müller, P., editor, 31st
European Conference on Object-Oriented Programming, ECOOP 2017, June
19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

• ten Veen, N., Harkes, D. C., and Visser, E. (2018). Pixiedust: Declarative
incremental user interface rendering through static dependency track-
ing. In Companion of the The Web Conference 2018 on The Web Conference
2018, pages 721–729. International World Wide Web Conferences Steer-
ing Committee.

• Harkes, D. C., van Chastelet, E., and Visser, E. (2018). Migrating business
logic to an incremental computing DSL: a case study. In Pearce, D.
J., Mayerhofer, T. and Steimann F., editors, Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engineering.

• Harkes, D. C. (2018). We should stop claiming generality in our domain-
specific language papers (extended abstract). In Proceedings of the 2018
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software.

• Harkes, D. C. (2018). We should stop claiming generality in our domain-
specific language papers. In The Art, Science, and Engineering of Program-
ming.

181

Declara've	Specifica'on	of	Inform
a'on	System

	Data	M
odels	and	Business	Logic	

Daco	Harkes

Daco	 Harkes	 was	 born	 in	
Waddinxveen,	the	Nether-
lands	on	March	1st,	1990.	
AKer	 he	 graduated	 from	
high	 school	 in	 2007,	 he	
started	 a	 Bachelor	 in	
Computer	 Science	 and	
Technology	 at	 the	 DelK	
axxxUniversity	 of	 Technology,	 which	 he	 finished	

in	 2010.	 In	 2012	 he	 started	 a	 Master	 in	
Computer	 Science	 at	 the	 DelK	 University	 of	
Technology,	which	he	finished	in	2014.	From	
September	2014	to	September	2018	he	was	
a	 Ph.D.	 candidate	 with	 the	 Programming	
Languages	 group	 at	 the	 faculty	 of	 Electrical	
Engineering,	 Mathema'cs,	 and	 Computer	
Science	of	the	DelK	University	of	Technology,	
under	supervision	of	Eelco	Visser.

	Declarative Specification of Information System Data Models and Business Logic
	Contents
	Samenvatting
	Summary
	Preface
	Introduction
	Information System Engineering
	Research Context
	Contributions
	Native multiplicities and concise navigation of first-class n-ary bidirectional relations
	Path-based incremental and eventual computing
	Derived bidirectional relations and strategy composition

	Research Methodology
	Individual artifact methodologies

	Origin of Chapters

	Relations Language: Unifying and generalizing relations in role-based data modeling and navigation
	Introduction
	Native Multiplicities
	Multiplicity Annotations
	Native Multiplicities

	Design Space for Role-Based Relations
	Overview
	Detailed Description of Points in Design Space

	A Relational Data Modeling Language
	Type System
	Meta variables
	Types
	Multiplicities
	Well-formedness

	Dynamic Semantics
	Stores
	Store well-formedness
	Evaluation rules

	Related Work
	Conclusion

	Postscript: Relations Language
	Postscript

	IceDust: Incremental and Eventual Computation of Derived Values in Persistent Object Graphs
	Introduction
	Declarative Data Modeling with Derived Values
	Bidirectional Relations
	Native Multiplicities
	Derived Value Attributes
	Language Definition

	Dependency and Data Flow Analysis
	Example
	Step 1: Dependencies
	Step 2: Data Flow
	Step 3: Data Flow Graph

	Implementation Strategies
	Compiling to WebDSL
	Calculate on Read
	Calculate on Write
	Calculate Eventually

	Evaluation
	Benchmark Setup
	Benchmark Results
	Discussion

	Case Study
	Related Work
	Languages with Relations
	Calculate on Read
	Calculate on Write (Incremental Computation)
	Calculate Eventually

	Conclusion

	IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition
	Introduction
	Declarative Data Modeling by Feature Selection
	Running Example
	Orthogonality of Field Configurations in IceDust
	Generalizing Data Modeling with IceDust

	Run-Time Feature Interaction
	Operational Semantics
	Getter
	Setter
	Flag Dirty
	Update Cache
	Incremental Update Algorithm
	Object Creation and Deletion
	Multiplicity Lower Bounds
	Eventual Calculation Strategy
	Discussion: Computation Cycles

	Sound Composition of Calculation Strategies
	Type Checking Strategy Composition
	Example

	Implementations
	Compilation to Java
	Compilation to WebDSL

	Case Studies
	Conference Management System
	Learning Management System

	Multiplicity Bounds for the Right-Hand Side of Derived Relations
	Related Work
	Derived Bidirectional Relations
	Incremental Computation without Bidirectional Relations
	Eventual Calculation without Bidirectional Relations
	Software Product Lines and Language Engineering

	Summary and Future Work

	Postscript: IceDust 2
	Postscript

	PixieDust: Declarative Incremental User Interface Rendering through Static Dependency Tracking
	Introduction
	Existing Approaches
	Linear Tree Diffing
	Identifying which parts of the DOM-tree need updating
	Summary

	Static dependency tracking
	PixieDust
	Data Model
	View
	Example

	Dependency and Data-Flow Analysis
	Dependencies between Fields in Data Model
	Dependencies with Filter, Find, and OrderBy
	Dependencies with Functions
	Dependencies between Views

	Operational Semantics
	evaluation
	Conciseness
	Performance

	Related Work
	Conclusion

	WebLab Case Study: Migrating Business Logic to an Incremental Computing DSL: A Case Study
	Introduction
	Background
	Web-based Information System Engineering
	Incremental Computing Languages and IceDust
	Language Engineering with Spoofax

	Case Study Setup
	Research Questions
	Data Collected

	Case Study Context
	WebLab
	Software Architecture
	Server Setup
	Development Timeline
	Tools
	Organization and Team

	The WebLab IceDust Implementation
	Overall Structure and Migration
	Size of the System
	Use of IceDust's Features
	IceDust Feature Requests

	IceDust Evaluation
	RQ-Validatability
	RQ-Performance
	RQ-Effort

	Discussion
	Internal Validity
	Conclusion Validity
	Construct Validity
	External Validity
	Repeatability
	Research Implications

	Related Work
	Case Studies in Incremental Computing
	Case Studies with DSLs
	ICLs for Information Systems

	Conclusion

	Conclusion
	Information System Engineering Revisited
	Summary of Contributions
	Reflection on Methodology
	Future Work

	Bibliography
	Appendix: IceProof
	Language Specification
	Type System
	Multiplicity System
	Dynamic Semantics

	Type Preservation Proof
	Termination Proof
	Multiplicity Preservation Proof
	Future work
	Type- and Multiplicity-Safety
	Preservation of bidirectionality
	Correctness of incremental calculation strategies

	Curriculum Vitae
	List of Publications

