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Abstract

The modelling of social-ecological systems can provide useful insights into
the interaction of social and environmental processes. However, quantitative
social-ecological models should acknowledge the complexity and uncertainty
of both underlying subsystems. For example, the agent-based models which
are increasingly popular for groundwater studies can be made more realistic
by incorporating geohydrological processes. Conversely, groundwater mod-
els can benefit from an agent-based depiction of the decision-making and
feedbacks which drive groundwater exploitation. From this perspective, this
work introduces a Python-based software architecture which couples the Net-
Logo agent-based platform with the MODFLOW/SEAWAT geohydrological
modelling environment. This approach enables users to design agent-based
models in NetLogo’s user-friendly platform, while benefiting from the full
capabilities of MODFLOW/SEAWAT. This workflow is illustrated for a sim-
plified application of Aquifer Thermal Energy Storage (ATES).
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1. Introduction

Agent-based models (ABMs) are an increasingly popular complement to
conventional analytical approaches for the study of environmental problems,
by allowing for the simulation of systemic outcomes which emerge from the
behavior of individual entities. The bottom-up perspective offered by ABMs
is especially relevant in the context of social-ecological systems (SESs), which
are complex adaptive systems driven by interacting but relatively distinct
social and biophysical subsystems (Ostrom, 2009). These interactions typ-
ically include time-dependent feedbacks between environmental and social
variables; these feedbacks may lead to a regime shift, i.e. a persistent, signif-
icant change in the state of the coupled system (Scheffer et al., 2001), which
may otherwise not arise from changes in a single subsystem. However, these
interactions and their contribution to transient system behaviour may be
overly simplified or left out of scope by conventional modelling approaches,
such as computable equilibrium models (Filatova et al., 2016).

ABMs provide an intuitive framework for the study of SESs (Hare and
Deadman, 2004). By accounting for interactions across heterogeneous decision-
makers as well as interactions across system levels, they can yield insights
regarding the impact of cross-system feedbacks on coupled system behaviors
(Schlter et al., 2012). ABMs can similarly be combined with other paradigms:
Vincenot et al. (2011) discuss the complementarities of agent-based models
and System Dynamics models, in the case of systems which combine divisi-
ble and whole components - which is typical of coupled socio-environmental
systems. However, regardless of the modelling paradigm used, quantitative
SES models generally face a range of conceptual and technical challenges
due to the complexity of the underlying systems, and the different disci-
plinary perspectives involved (e.g. Filatova et al., 2013; Voinov and Shugart,
2013). SES models may thus need to combine methods from social and
natural sciences to properly represent the coupled dynamics of social and
ecological subsystems. As described by Tavoni and Levin (2014), this inter-
disciplinary approach may be required to fully acknowledge the complexity of
environmental and socio-economic systems, and increase the policy relevance
of academic models.

To this end, different studies have focused on coupling physical models
of environmental systems together with agent-based simulations of socio-
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economic processes (e.g. Bithell and Brasington, 2009; Kelly et al., 2013;
Reeves and Zellner, 2010). Groundwater resources are a particularly rele-
vant case for coupled agent-based/physical simulation: these resources are
widely exploited and often scarcely available, and their management can in-
volve complex interactions between heterogeneous users, making ABMs an
appropriate modelling option. Furthermore, groundwater resources are often
difficult to track and monitor in the subsurface. Numerical modelling can
therefore provide useful insights for their management.

However, coupled agent-based/groundwater models may present partic-
ular challenges due to the long time scales and model runtimes which are
typically involved. Castilla-Rho et al. (2015) describe four issues with con-
ventional approaches for the coupled modelling of such groundwater systems:
the limitations of simplified lumped models, the technical complexity intro-
duced by the use of linked software packages and data-exchange libraries,
a lack of flexibility in developing scenarios, and the impracticality of per-
forming sensitivity analysis on separate models. To address these limita-
tions, they introduce an interactive environment which directly implements
groundwater flow equations in the popular NetLogo agent-based platform.
Given an ongoing trend towards increasingly complicated agent-based mod-
els of human-environmental systems (Sun et al., 2016), which correspond-
ingly become more difficult to design, this has the advantage of providing a
user-friendly environment for the design and use of agent-based groundwater
management models.

Nonetheless, this NetLogo-based approach still has drawbacks for those
groundwater management problems where geohydrological models are al-
ready available and could be directly reused, or where detailed geohydrolog-
ical modelling is required. This includes problems related to aquifer pollu-
tion, in which the transport of contaminants plays a role, or studies in which
groundwater conditions are subject to significant changes in salinity or tem-
perature - for example due to coastal saltwater intrusion or energy storage,
which are complex coupled processes of flow in porous media, chemical reac-
tions, transport and/or heat transfer.

To address this gap, this paper introduces a simple coupled simulation ar-
chitecture which can be used to connect the NetLogo platform with the MOD-
FLOW/SEAWAT geohydrological simulation packages, using the Python
object-oriented language. This approach retains NetLogo’s simplicity while
allowing users to account for complex hydrological processes, or to directly
interface the agent-based model with existing MODFLOW/SEAWAT mod-
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els. Furthermore, the issues raised by Castilla-Rho et al. in relation to
scenario design and sensitivity analysis are addressed by relying on existing
Python libraries, to establish an easily repeatable workflow for the analysis
of coupled agent-based/geohydrological models.

Section 2 follows this introduction by describing Aquifer Thermal Energy
Storage (ATES) as an example of a social-ecological system which requires
detailed geohydrological modelling, motivating the development of an ap-
propriate simulation architecture. This is then placed in the context of re-
cent work related to the coupled agent-based simulation of social-ecological
systems. Section 3 introduces the different software platforms used in this
work; section 4 then describes the object-oriented architecture which is used
to couple NetLogo and MODFLOW/SEAWAT. This architecture is applied
in section 5 for a simplified case study of Aquifer Thermal Energy Storage.
Section 6 summarizes the paper, along with recommendations for further
work.

2. Background

2.1. Aquifer Thermal Energy Storage as a social-ecological system

ATES systems are used to seasonally store thermal energy in aquifers,
which - in combination with a heat pump - can significantly reduce the energy
demand of buildings for heating and cooling in temperate climates. These
systems involve at least one pair of coupled wells, which inject and extract
groundwater at different locations or depths of the aquifer; in winter con-
ditions, relatively warmer water is thus extracted from one well and passed
through a heat exchanger for heating, then re-injected into a cold well at a
lower temperature (typically 5-10C). Conversely, in summer conditions, the
flow across the wells is reversed - so that the cooler water injected in winter
is used for cooling, then reinjected into the warm well at a temperature of
15-25C. This process is illustrated on the left of Figure 1. This eventually
creates thermal zones around each well, which can have a radius of a few
dozen meters (shown in plan view for a typical urban layout on the right of
Figure 1).

The properties of these thermal zones are crucial for the performance and
management of ATES systems. They are affected by local geohydrological
conditions, such as the porosity of the aquifer or the presence of a regional
groundwater flow; thermal interferences between neighbouring systems can
also reduce thermal recovery if cold and warm wells are located too closely,
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Figure 1: Basic ATES operation (left); ATES thermal zones (right) (Bonte, 2013)

while wells of similar temperatures can have beneficial interactions by re-
ducing dissipation from the stored thermal volumes to the ambient medium.
These geohydrological and operational factors cause significant uncertain-
ties regarding subsurface conditions and the resulting performance of ATES
systems. Furthermore, at the building level, the demand for heating or cool-
ing is difficult to forecast due to variations in building occupancy, weather
conditions, or long-term changes in climate. The actual operation of ATES
systems (and their associated use of subsurface space) can therefore differ
significantly from the expected conditions which are used for permitting and
design. For example, although the cold and warm wells would ideally be used
symmetrically over the seasons for cooling and heating, ATES systems often
have a significant level of thermal imbalance in practice.

Given that local temperature disturbances can persist in the subsurface
over a period of decades, these geohydrological and operational variations
can cause unforeseen long-term changes in aquifer temperature distributions
- which, in turn, can affect the performance of ATES systems, and eventually
their continued adoption by building owners. The use of the subsurface
for thermal storage can essentially be perceived as a common-pool resource
(CPR) problem, due to the subtractable yield of subsurface storage and to the
relatively difficult exclusion of potential users (in the absence of appropriate
institutional arrangements). As such, some of the problems facing ATES
development and planning - e.g. the layout of systems in dense urban areas,
or thermal imbalances and interferences - can be related to generic CPR
issues such as crowding effects and resource overuse (Kunneke and Finger,
2009). This makes ATES particularly relevant as a case for coupled agent-
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based/geohydrological simulation: technology adoption dynamics and CPR
management are classic applications for agent-based modelling, while the
complexity of the underlying subsurface processes requires a full-featured
geohydrological simulation approach.

2.2. Coupled agent-based models for social-ecological simulation

As a complement to analytical methods and empirical studies, the ability
of agent-based models to link individual decision processes with aggregate
system outcomes has made them increasingly relevant for the study of SESs
(Janssen, 2006). These systems are complex and uncertain, and involve ex-
tensive feedbacks between social and environmental changes - factors which
may not be fully recognized by traditional methods used in policy analysis
(Schlter et al., 2012). By representing different hypotheses related to social
and economic decision processes within environmental models, agent-based
simulation can be used to explore SES dynamics and contribute to the de-
sign of appropriate policies. This may for instance foster a more participative
approach to policymaking by providing clear assumptions about user behav-
ior (Matthews et al., 2007). An (2012) extensively reviews decision models
for agent-based models of social-ecological systems, covering microeconomic,
psychosocial, institutional, participatory and heuristic approaches. Existing
frameworks for the study of SESs, such as the IAD and SES frameworks, can
also be applied to the conceptualization of agent-based models (Ghorbani,
2013).

CPR problems have been a core application of agent-based models of
SESs. The institutional arrangements which are used for the management or
self-governance of CPRs involve relationships between multiple system levels,
at different temporal and spatial scales - which makes agent-based models a
useful tool for their study (Janssen and Ostrom, 2006). As such, Deadman
et al. (2000) and Jager et al. (2000) considered the influence of individ-
ual decision-making heuristics on collective outcomes in CPR experiments.
Other authors have focused on specific case studies, notably in the field of
agricultural water management (Becu et al., 2003; Berger, 2001; Schlter and
Pahl-Wostl, 2007).

The agent-based modelling of social-ecological systems can benefit from
an accurate representation of environmental dynamics using specialized phys-
ical models, but this integration entails additional challenges for modellers.
Matthews et al. (2005) review different approaches and challenges for the
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development of such coupled agent-based models; from a technical perspec-
tive, a potential drawback is the complexity of the resulting architecture,
making the models more difficult to test and interpret. Similarly, the design
of appropriate interfaces and data exchange processes can lead to an overly
complex and impractical software architecture.

More fundamentally, addressing different temporal and spatial scales in
the social and environmental components is likely to be a key challenge for
coupled models. The choice of spatial scale can on its own significantly af-
fect the behavior of a SES model: larger scales may for instance reduce
the relative importance of local interactions and heterogeneity across agents
(Gotts and Polhill, 2010). Furthermore, while reconciling spatial and tempo-
ral scales across models may be a relatively simple technical issue, it may be
more difficult to meaningfully exchange information across models designed
for different purposes and scales (Voinov and Shugart, 2013). This can for
instance involve aggregating lower-level results (in space or time), at the
risk of ignoring important feedbacks. A starting point towards addressing
this challenge may be to design models with enough flexibility to test the
implications of different choices of scale on the coupled system’s behavior.

From this perspective, Bithell and Brasington (2009) recommend a step-
wise approach for the development of coupled SES models, with additional
detail being added as necessary to describe critical processes. Examples of
this approach include Bithell and Brasington (2009)’s coupling of an agent-
based decision model, an individual-based forestry model, and a spatially
explicit hydrological model, to study spatial dynamics in subsistence farm-
ing. Similarly, Reeves and Zellner (2010) coupled a groundwater model with
an agent-based layer for the study of land-use changes in Michigan, although
this approach only included unidirectional communication between the model
components.

While these coupled modelling methods can help capture the complex be-
haviors of social-ecological systems, the use and interpretation of the models
should acknowledge the uncertainties which are present at different levels of
the system. On a technical level, model runtimes, large parameter spaces
and interactions between components can make it difficult to perform sensi-
tivity analysis on coupled models. This may affect the practical usefulness
of the models for decision support or policy analysis, and ultimately their
credibility (Saltelli and Annoni, 2010).

Modellers should also acknowledge the fundamentally unpredictable na-
ture of complex adaptive systems. For instance, a typical groundwater man-
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agement problem will include conventional probabilistic uncertainties such as
aquifer heterogeneity, which can be modelled using geostatistical methods,
then assessed with a sensitivity analysis. However, the behavior of the cou-
pled system will also be driven by deep uncertainties (i.e. uncertainties for
which probability distributions or structural relationships are unknown; Lem-
pert et al., 2003), which are not amenable to a probabilistic treatment. These
include exogenous drivers such as long-term climate conditions, or structural
assumptions about decision-making in the social subsystem - which can ul-
timately produce significantly different emergent outcomes from equally jus-
tifiable assumptions. These uncertainties imply that the models would be
invalid for predictive purposes, so that their use for decision-making requires
a different approach.

Under such conditions, exploratory modelling (e.g. Bankes et al., 2013)
can help understand the behavior of the coupled system by using the models
for computational experiments, for instance by generating a wide ensemble of
plausible models to assess the effect of different uncertainties and modelling
assumptions. By representing a broad set of hypotheses about parameters or
relationships, exploratory modelling can help identify counterintuitive out-
comes, as well as key sensitivities which may usefully guide the collection
of empirical data. Furthermore, techniques for scenario discovery can be
used as a complement to sensitivity analysis to explore the conditions under
which a system may present a specific behavior - for instance, to identify
assumptions which would lead to the failure of a simulated policy (Bryant
and Lempert, 2010). This approach can contribute to the design of policies
which are more robust, i.e. which perform acceptably over a broad range of
uncertain futures (Lempert et al., 2006; Rosenhead et al., 1972), rather than
attempting to maximize performance under an a priori best-estimate set of
uncertain conditions.

3. Software description and availability

3.1. NetLogo

NetLogo (Wilensky, 1999) is an open-source environment for the design,
implementation and analysis of agent-based models, which has become a
leading platform for this purpose due to its user-friendliness and active user
community. This tool is primarily implemented in Java and Scala, and in-
cludes a range of functions and methods to support the rapid development of
spatially-explicit agent-based models. Different extension modules are also
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available, for instance to allow an interface with GIS datasets, or to link
NetLogo with the R package (Thiele et al., 2012); for this work, the pyNet-
Logo connector (Jaxa-Rozen and Kwakkel, 2018) will be used as a link to
the Python programming language. This connector is compatible with Net-
Logo 5.x and 6.0. As such, NetLogo offers a suitable starting point for the
purposes of this work, by facilitating the design of agent-based models and
enabling users to focus on the properties of the system under study, rather
than on the technical details of software implementation.

3.2. MODFLOW/SEAWAT

MODFLOW (Harbaugh, 2005) is a standard code for the simulation
of steady and transient groundwater flow in the subsurface, using a finite-
difference approach to solve the three-dimensional flow equations for a rect-
angular grid. It allows for the simulation of representative subsurface con-
ditions (e.g. heterogeneous hydraulic conductivities and transmissivities), as
well as external stresses such as precipitation and flows through wells and
drains. Additionally, the SEAWAT version (Langevin et al., 2008) couples
MODFLOW with the MT3DMS code (Zheng and Wang, 1999); the latter
provides a multi-species transport model for the simulation of advection, dis-
persion, and sorption. This coupling enables the simulation of groundwater
flow with variable density and viscosity, and can be applied to study the
transport of solutes and heat. This makes the SEAWAT version especially
relevant for problems related to aquifer contamination (Zhang et al., 2013),
or for the study of open or closed geothermal systems (e.g. Bakr et al., 2013;
Hecht-Mndez et al., 2010). The simulation architecture described in this
paper is currently compatible with MODFLOW-2005 and SEAWAT 4.

3.3. Python

Python is a general-purpose, object-oriented programming language which
is increasingly popular for scientific and engineering applications. An exten-
sive set of libraries is available for general data manipulation and analysis,
such as Numpy (Walt et al., 2011) and pandas (McKinney, 2010), as well as
interfaces with specific software packages and other environments. As such,
the pyNetLogo connector is used to interactively communicate with the Net-
Logo API from Python. In addition, the FloPy library (Bakker et al., 2016) is
used for pre/post-processing MODFLOW/SEAWAT input and output files,
by reading and writing these files from storage and interfacing them with

9



standard Python data structures. The coupled simulation architecture is ex-
ecuted using the EMA Workbench Python package (Kwakkel, 2017). This
package can be used to design experiments (e.g. for sensitivity analysis) and
provides different features for exploratory modeling and analysis, such as
parallel simulation of multiple experiments and built-in visualization.

The Python modules used in this work will be made available under
the following repository: https://github.com/quaquel/pyNetLogo. These
modules have been tested with a standard distribution for scientific Python
(Continuum Anaconda 3.6); using this distribution, the modules require the
additional installation of the pyNetLogo and FloPy Python packages, which
are available with the standard pip package manager.

4. An object-oriented architecture for coupling NetLogo andMOD-
FLOW

The basic functionality of the pyNetLogo connector can be combined with
Python’s object-oriented environment to create a link with MODFLOW /
SEAWAT models, with Python objects being used as a common interface
between the two model components. In the context of groundwater manage-
ment, interactions are likely to involve stresses such as well flows; using the
agent functions module described in this section, these interactions can be
mediated through Python objects representing wells, which are “mapped”
to corresponding NetLogo agents using the pyNetLogo functions. Parame-
ters such as well flows or injection temperatures can thus be determined in
the agent-based model, then passed to the geohydrological model. Figure 2
below presents an overview of the overall coupled architecture.

As such, after each step of the NetLogo model, the Python well objects
are updated based on the actions taken by NetLogo agents, and generate
input files for the geohydrological model using the FloPy library (Bakker
et al., 2016). The geohydrological model is in turn executed for one period,
after which the Python objects process the resulting binary output files using
FloPy’s utility functions to obtain arrays for hydraulic head and temperature,
or any other simulated concentration (e.g. salinity). By default, the execu-
tion periods for each model respectively correspond to one NetLogo “tick”
and one MODFLOW stress period. A specified subset of the results (such as
the effective head and temperature at the grid location of each well) is then
passed to NetLogo, so that the geohydrological output can be used as an
input for the decision-making routines of agents. Using Antle et al. (2014)’s
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Figure 2: General overview of the coupled simulation architecture

terminology, the Python objects and NetLogo agents are thus “closely” cou-
pled at runtime, while the Python objects are “loosely” coupled through data
exchanges with the MODFLOW/SEAWAT geohydrological model.

The core classes and methods of the agent functions module are de-
scribed in Table 1 below. In addition to the PyAgent generic agent class, the
PyGrid class is used to track the properties of the MODFLOW/SEAWAT
simulation grid, including spatial and temporal discretization parameters,
and output arrays for cell conditions (e.g. hydraulic head, salinity or tem-
perature).

As discussed by Voinov and Shugart (2013), the choice of temporal and
spatial resolution is a core question for the development of coupled models of
social-ecological systems. By default, the architecture assumes that the mod-
els share the same resolution. However, to allow processes to be represented
at different resolutions in each model, the time resolution can be modified
by setting the tmult attribute of the PyGrid object to a desired multiplier
for the NetLogo temporal resolution, relative to MODFLOW/SEAWAT. For
instance, a value of 2 implies that NetLogo will be run for two time steps
in each MODFLOW/SEAWAT time step; conversely, a value of 0.5 will ex-
ecute MODFLOW/SEAWAT twice for each NetLogo step. Similarly, the
smult attribute sets a conversion factor for spatial resolution between MOD-
FLOW grid cells and NetLogo environment patches, with values larger than
1 implying a coarser NetLogo resolution.

11



Class/method name Description Arguments Returns

PyAgent Generic agent class
create NetLogo agent() Create a NetLogo agent corre-

sponding to the Python object
Object attributes to be passed
to the NetLogo agent (list of
strings)

update NetLogo agent() Update an existing NetLogo
agent

Object attributes to be passed
to the NetLogo agent (list of
strings)

-

update Python object() Update the Python object with
properties from the correspond-
ing NetLogo agent

NetLogo attributes to be passed
to the Python object (list of
strings)

-

PyWell ATES well class
calc LRC() Locate the well in a PyGrid ob-

ject to set layer (L) / row (R) /
column (C) grid coordinates for
MODFLOW / SEAWAT

PyGrid instance -

PyGrid Aquifer grid class
make grid() Generate grid properties for

MODFLOW / SEAWAT - can
be used with existing model in-
put files, or with a list of well
objects to dynamically refine
the grid

List of well objects (for dynamic
grid refinement); MODFLOW
.dis filename (optional)

-

clean grid() Dynamically refine the MOD-
FLOW / SEAWAT simulation
grid using a list of well objects

List of well objects (for dynamic
grid refinement); MODFLOW
.dis filename (optional)

-

boundaries() Generate grid boundary prop-
erties for MODFLOW / SEA-
WAT

MODFLOW .dis filename (op-
tional)

-

update runtime objectlist() Compare active NetLogo agents
with the existing Python ob-
jects, and create / remove
Python objects as needed

List of objects to compare with
the NetLogo agents; NetLogo
attributes to be passed to newly
created Python objects (list of
strings)

List of
Python
objects

create obj from NetLogo() Create a list of Python ob-
jects corresponding to NetLogo
agents

Python object class to be in-
stantiated; NetLogo attributes
to be passed to Python objects
(list of strings)

List of
Python
objects

write NetLogo attriblist() Update a set of NetLogo agents
with a list of attributes from a
list of Python objects

List of Python objects for which
to update corresponding NetL-
ogo agents

-

Table 1: Basic agent functions classes and methods
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The UML diagrams in Figure 3 summarizes the class structure and action
sequence for this example.

Figure 3: Simplified class and sequence diagrams
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5. Case study

5.1. Case description: a simplified study of ATES

This section uses a simple model which depicts an urban application of
Aquifer Thermal Energy Storage (ATES) systems. A more detailed ATES
case study is described in Bloemendal et al. (2018); for the purposes of this
work, the model was simplified to minimize runtimes while illustrating typical
interactions between the model components, and the plausible impacts on
coupled system behavior which these feedbacks may cause. Appendix A
presents a detailed description of the case following the standard ODD+D
protocol (Mller et al., 2013).

For the present case, a set of 10 NetLogo agents represents simulated
building owners which are able to create warm and cold ATES storage wells
(also defined in NetLogo as agents of a different type) over a 120-month
period. These building and well agents are randomly located in a 1000m
x 1000m environment, with a 20m nominal NetLogo patch resolution. The
wells follow a predefined pumping pattern over time which corresponds to
typical seasonal storage cycles, presented in Figure 4. These well flows are
computed in NetLogo at a monthly time resolution, then passed to a single-
layer confined aquifer model in MODFLOW / SEAWAT. As discussed by
Lo Russo et al. (2014), a monthly discretization should offer reasonable ac-
curacy when simulating typical ATES flow patterns. For this idealized case,
this resolution is chosen as a practical compromise between the seasonal dis-
cretization used in previous work on ATES (e.g. Bakr et al., 2013), which
may lead to inaccurate temperature estimations, and the daily or weekly
resolution needed to represent more complex operating patterns (e.g. Bloe-
mendal and Hartog, 2018; Rostampour et al., 2016), which would increase
model runtimes.

The geohydrological model extents are set to 1400m x 1400m to provide
sufficient clearance for temperature distributions to stabilize around the bor-
ders of the NetLogo environment, with a 20m thickness and 4m nominal
spatial resolution. The ambient groundwater flow is set using constant head
boundaries, with no ambient flow in nominal conditions. The nominal spatial
resolution is chosen to ensure that the expected radius of thermal influence
around each well covers at least five grid cells, following recommendations
by Sommer et al. (2015) for the numerical study of ATES systems in MOD-
FLOW / SEAWAT; in typical conditions, this resolution allows the estimated
thermal efficiency to converge within 1%. After executing the MODFLOW
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Parameter Component Value or range Unit Symbol
Adoption rate NetLogo 0.02 - 0.1 period-1 α
Distance policy (min. distance between wells) NetLogo 50 - 200 m d
Efficiency threshold for adoption NetLogo 0.8 - ηa
Efficiency threshold for deactivation NetLogo 0.7 - ηd
Grid cell (patch) resolution NetLogo 4 - 20 m ∆p
Length of each simulation period NetLogo/SEAWAT 30 day ∆t
Maximum ATES well flow NetLogo 1000 m3/day Qmax

Maximum number of ATES wells NetLogo 20 - 300 agents n
Random seed NetLogo - - θ
Ambient aquifer temperature SEAWAT 10 ◦C Tamb

Ambient groundwater flow SEAWAT 0 - 20 m/year v
Aquifer depth SEAWAT 20 m ∆z
Aquifer porosity SEAWAT 0.1 - 0.5 - p
ATES injection temperature (cold wells) SEAWAT 5 ◦C T c

in
ATES injection temperature (warm wells) SEAWAT 15 ◦C Tw

in
Bulk density of aquifer medium SEAWAT 1760 kg/m3 ρb
Grid cell resolution SEAWAT 4 - 20 m ∆g
Horizontal hydraulic conductivity SEAWAT 10 - 60 m/day K
Volumetric heat capacity of water SEAWAT 4.18 ∗ 106 J/m3/K Cw

Table 2: Model parameters for ATES case study

/ SEAWAT model over one monthly simulation period, the NetLogo well
agents are then updated with the effective hydraulic head and temperature
at their location.

Table 2 summarizes the main parameters used for the NetLogo and MOD-
FLOW / SEAWAT components; the ranges indicated for certain parameters
will be used in the next subsections for runtime evaluation and sensitivity
analysis. Parameters for the geohydrological model are derived from typical
operating conditions for ATES systems in the Netherlands (Calje, 2010).

The ATES wells are operated in coupled pairs (or doublets) of cold and
warm wells, which inject water at each monthly simulation period t with
the Qc

t and Qw
t rates given below (with negative values corresponding to an

extraction of water from the aquifer). As shown in Figure 4, the period
of the flows is chosen to approximate seasonal storage patterns, with one
injection and extraction cycle per 12 months. The total annual pumped
volume is representative of a typical commercial building using ATES in the
Netherlands. Due to the physical coupling between wells, these flow patterns
do not cause any net extraction from the aquifer over a full annual storage
cycle.

These flows can be converted to an equivalent amount of injected or
retrieved thermal energy per doublet of wells:
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Figure 4: Seasonal ATES injection/extraction flows

Eout
t =

{
Qc
tCw(Twout,t − T cin)∆t, Qc

t > 0
Qc
tCw(T cout,t − Twin)∆t, Qc

t < 0

Ein
t = Qw

t Cw(Twin − T cin)∆t

(1)

The injection temperatures T cin, Twin for cold and warm wells are constant
and provided in Table 2. The extraction temperatures T cout,t, T

w
out,t are up-

dated at each simulation period from the MODFLOW / SEAWAT simulation
grid, and are assumed to correspond directly to the temperature Tk,t of the
grid cell k in which each well is located. The NetLogo agents then compute
the thermal efficiency of each doublet ηt they own, using the ratio of the
cumulative retrieved and injected thermal energy:

ηt =

t∑
1

Eout
t

t∑
1

Ein
t

(2)

The temperatures of the grid cells k are also used to calculate an indi-
cator εt, for the fraction of the simulated subsurface volume which presents
a significant temperature change relative to the average aquifer temperature
Tamb. Given that the MODFLOW / SEAWAT cell volumes are uniform, and
taking a threshold of 0.1K:

εt =
|{k | |Tk,t − Tamb| > 0.1}|

|{k}|
(3)
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This indicator thus tracks the intensity at which the aquifer is being used
for thermal storage over time.

The building agents use simple decision heuristics to build additional wells
or deactivate existing wells, based on the thermal efficiency computed from
the SEAWAT results using eq. 2 (after an initialization period of 36 months
to let temperature distributions stabilize). If the average thermal efficiency
of the wells owned by a building is above a certain threshold ηa, the building
agent has a given adoption probability α of adding a pair of coupled warm
and cold wells at each time step, until a given maximum number n of ATES
wells is reached in the simulation. These new wells are located randomly
within the simulated area, at a given minimal distance d from existing wells.
If the average thermal efficiency is under another threshold ηd (for instance
due to excessive thermal interferences), the agents are assumed to deactivate
the wells.

5.2. Computational runtime evaluation

Although NetLogo’s accessibility has made it popular as a prototyping
environment for the development of simple agent-based models, it has also
successfully been used for more complex models; these can offer comparable
performance to base programming languages such as Java when efficiently
implemented (Railsback et al., 2017). To support these capabilities, the
coupled simulation architecture therefore needs to be usable with more so-
phisticated agent-based models without overly increasing runtimes in relation
to the individual models. This subsection thus tests a variant of the ATES
case study under different parameterizations for the spatial resolution of the
agent-based and geohydrological models, as well as different fixed numbers
of ATES well agents (i.e. ignoring the decision heuristics otherwise used to
create or deactivate well agents).

The NetLogo model is tested with three different environment resolutions
from 4m - 20m (corresponding to 2500, 22,500 and 62,500 patches), while the
MODFLOW / SEAWAT aquifer grid is tested on five different resolutions in
the same resolution interval (ranging from 4900 to 122,500 cells). In addition,
the NetLogo model is tested with five numbers of ATES well agents, from 20
- 300. To account for cases in which the MODFLOW / SEAWAT grid would
be recomputed over time due to changes in agent locations, the aquifer model
grid is recomputed at each time step. At finer resolutions, the MODFLOW
grid is representative of a typical complex groundwater case (such as the
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large-scale ATES case study presented by Bakr et al. (2013), which used
650,000 grid cells).

Figure 5 presents the total runtime (in seconds) which is attributed to
each model component under these parameterizations, using 30 monthly time
periods in each case. For clarity, the figure presents each resolution level
as the corresponding total number of NetLogo patches and MODFLOW /
SEAWAT grid cells, given that runtimes are more likely to be proportional to
these values rather than resolution. Figure 6 presents these results expressed
as a fraction of total runtime across the three simulation components.

It can be observed from Figure 5 that the runtime attributed to the
Python architecture scales proportionally to the number of agents, and is
mostly independent of the resolutions used in NetLogo and MODFLOW /
SEAWAT. In parallel, NetLogo runtime scales roughly proportionally to the
number of environment patches, while MODFLOW runtime increases more
than proportionally to the number of grid cells. As such, although the frac-
tion of total runtime attributed to the simulation architecture is significant in
Figure 6 when combined with a large number of agents and coarse model res-
olutions, it becomes largely negligible at finer resolutions (e.g. 1-3% of total
runtime using a 4m resolution in NetLogo and MODFLOW / SEAWAT).

Figure 7 further breaks down the runtime performance of the Python
architecture in a given parameterization, using 200 agents with 2500 Net-
Logo patches and 122,500 MODFLOW grid cells. The Python runtime is
mostly attributed to interactions between NetLogo and Python through the
update runtime objectlist() and write NetLogo attriblist() functions,
with the grid and agent processes (i.e. methods of the PyGrid and PyAgent
classes) being relatively negligible.

Based on these results, the coupled simulation architecture is therefore
unlikely to significantly increase computational costs, compared to the run-
times which would be associated with each individual model component - in
particular given that the cost of data exchanges scales proportionally to the
number of agents, whereas the runtime of more complex agent-based models
may scale much more quickly due to interactions or links between agents
(Railsback et al., 2017).

5.3. Analysis under uncertainty

The use of models for decision support under uncertainty can be facili-
tated by an integrated environment for experimental design and analysis (e.g.
Hadka et al., 2015). To highlight the relevance of such an approach for the
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Figure 5: Runtime for each model component (left column: Python architecture; middle
column: NetLogo model; right column: MODFLOW / SEAWAT model). Each row of
subplots corresponds to a different resolution of the NetLogo environment. The rows and
columns of each subplots correspond to different NetLogo agent counts and MODFLOW
/ SEAWAT grid resolutions

coupled agent-based/geohydrological models, this subsection uses the EMA

19



Figure 6: Fraction of total runtime for each model component (left column: Python archi-
tecture; middle column: NetLogo model; right column: MODFLOW / SEAWAT model).
Each row of subplots corresponds to a different resolution of the NetLogo environment.
The rows and columns of each subplot correspond to different NetLogo agent counts and
MODFLOW / SEAWAT grid resolutions

Workbench Python package (Kwakkel, 2017) to test the ATES case under
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Figure 7: Distribution of runtime across Python processes (for 200 agents with 2500
NetLogo patches and 122,500 MODFLOW grid cells)

parametric uncertainty. The EMA Workbench provides features for experi-
mental design (for instance using Monte Carlo or Latin Hypercube sampling),
the parallel execution of simulation runs, and exploratory analysis with tech-
niques for sensitivity analysis or scenario discovery. In the context of this
work, it enables a consolidated approach for the analysis of the coupled mod-
els, for instance by assigning parameters to both model components through
a common model interface, and by collecting results from both components
within a single data structure.

The Jupyter Notebook provided with this paper documents this analysis,
including the integration of the coupled models within the EMA Workbench,
the sampling of uncertain parameters in the NetLogo and geohydrological
components, and the post-processing of the results.

5.3.1. Basic exploration

Figure 8 shows an example of output from the coupled models, showing
randomly located ATES well agents in the NetLogo environment, and the
corresponding temperature distribution in the PyGrid object.

Using a Latin Hypercube sample of 512 experiments to adequately sample
the parametric uncertainty ranges listed in Table 2, the coupled simulation
yields a broad range of behaviors, illustrated in Figure 9. The figure presents
three key outcomes: the number of active ATES wells over time (left graph),
the mean thermal efficiency of the ATES systems (middle graph), and the
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Figure 8: Example of coupled model output: NetLogo model (left); SEAWAT temperature
distribution (right)

fraction of the simulated subsurface volume which shows a significant tem-
perature change (right graph). The number of active ATES wells and the
subsurface usage respectively summarize the states of the agent-based and
aquifer model, with thermal efficiency as a key link between the models due
to its feedback effect on agent decision-making. The graphs show time series
for a random subset of 16 experiments (colored in shades of blue) after an
initialization period of 36 months, chosen to stabilize thermal distributions
after three annual storage cycles. The shaded envelopes show the minimum
and maximum values for each outcome over time, and a kernel density esti-
mator (in the panels to the right of the graphs) illustrates the distribution
of experiments within this envelope at the end of the simulation.

The graphs point to different modes of behavior for the coupled models,
which are affected by interactions across the NetLogo and MODFLOW /
SEAWAT components: for instance, under some conditions, a rapid increase
in the number of active wells can reduce their average thermal efficiency, due
to interactions across neighboring wells - which then leads building agents
to deactivate some of the systems. The scatter plots in Figure 10 indicate
basic relationships between the three indicators for all 512 experiments, with
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Figure 9: Coupled model outcomes over time, for a random subset of 16 out of 512
experiments, after an initialization period of 36 months

the number of active wells in NetLogo being associated positively with the
used MODFLOW / SEAWAT subsurface volume and negatively with mean
thermal efficiency, while the latter has a weaker relationship with the used
subsurface volume.

5.3.2. Global sensitivity analysis

To better understand the impact of uncertain parameters on the model
outcomes and illustrate a typical analysis workflow, this subsection applies
a simple global sensitivity analysis to the coupled models using the SALib
library (Herman and Usher, 2017). This library can be directly called from
the EMA Workbench to generate appropriate sampling designs for common
sensitivity analysis techniques (such as Morris elementary effects, Fourier
amplitude sensitivity testing, or Sobol indices) and to analyze the model
outcomes.

For this example, SALib was used to sample a set of experiments with
the Morris technique, using five uncertain parameters across both models
with an additional value for the random seed of the NetLogo model (which
corresponds to stochastic uncertainty, and here drives the choice of a ran-
dom location for newly created wells). Figure 11 summarizes the sensitivity
analysis results using u∗ indices (Campolongo et al., 2007) obtained from
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Figure 10: Scatter plots for outcomes at the end of the simulation

160 replications, for a total of 160*(N+1) = 1120 samples. The magnitude
of the u∗ values estimates the relative influence of each parameter on model
outcomes; the sum of the u∗ values can thus be normalized to 1 at each
time step for each indicator, so that the area graphs below show the relative
importance of each variable over time.

This approach enables the comparison of sensitivities over time and across
model components, on a common basis. For instance, the number of active
wells over time is mostly driven by the NetLogo parameters for adoption
rate and distance policy, with the former being predominant earlier in the
simulation, while the latter is most influential on values at the end of the
simulation (given that it largely determines how many wells can be built
in the simulated area). Similarly, the MODFLOW / SEAWAT parameter
for aquifer porosity is most influential on the fraction of subsurface volume
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Figure 11: Normalized Morris sensitivity results over time

used for storage early in the simulation (when the number of active wells is
still similar across the experiments), but is then overtaken by the parameters
which cause different pathways for ATES adoption in the NetLogo model.
Although the geohydrological uncertainties remain significant, this implies
that the assumptions made in the NetLogo model are more influential for
the overall behavior of the coupled models. It should be noted that this is at
least partly driven by the choice of uncertainty ranges: for instance, while the
simulated groundwater flow values were typical of average conditions in the
Netherlands, approximately 20% of systems in the country are subject to a
higher ambient groundwater flow relative to their storage capacity than was
simulated in this idealized case (Bloemendal and Hartog, 2018). These sys-
tems may encounter significant losses in thermal efficiency, which could lead
to different conclusions regarding the relative importance of agent-related or
geohydrological uncertainties.

Nonetheless, this finding is broadly consistent with observations made in
relation to more realistic models of social-ecological systems (e.g. Schlter
et al., 2014): although environmental processes may themselves be signifi-
cantly affected by deep uncertainties, the design choices made in the con-
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ceptualization and formalization of agent decision-making almost inevitably
have a substantial impact on the outcomes of SES models. Without resolv-
ing these uncertainties, an exploratory modelling approach can at least help
clarify the implications of these design choices for the behavior of the system.

5.3.3. Scenario discovery

Scenario discovery (Bryant and Lempert, 2010; Kwakkel and Jaxa-Rozen,
2016) aims to identify the combinations of input uncertainties which tend to
be associated with given regions of the model output space, using statistical
techniques such as the Patient Rule Induction Method (PRIM) (Friedman
and Fisher, 1999) or classification and regression trees (CART). This ap-
proach is similar to the “factor mapping” setting discussed in the sensitivity
analysis literature (Saltelli et al., 2008), and complements the study of vari-
able importances by focusing on specific outcomes or behaviors of interest.

To complete this example, this subsection therefore applies PRIM on
the Latin Hypercube sample of 512 experiments previously used for basic
exploration, with a given scenario of interest. This scenario is assumed to
correspond to a high usage of the aquifer for thermal storage, defined as
cases in which the fraction of used subsurface volume is in the top quintile
at the end of the simulation; these cases of interest are highlighted in the full
ensemble of results in Figure 12 below.

Figure 13 shows an example of a box - or combination of uncertainty
ranges - identified by the PRIM algorithm for this scenario. The values next
to each variable name indicate the estimated p-value of each parameter, fol-
lowing a binomial test for its significance in this combination. The mass,
coverage and density values respectively give the fraction of the total exper-
iments which are within this box, the fraction of all cases of interest for the
scenario which are described by the box, and the fraction of experiments
within the box which are of interest.

The scenario for a high usage of subsurface volume thus tends to be
associated with a low range of the d distance parameter (i.e. between 7.5
and 11 NetLogo patches), a high range for the adoption rate α, and a fairly
low range of aquifer porosity p in the SEAWAT model. Based on the density
metric, 93.9% of the experiments which combine these input ranges would be
in the top quintile of subsurface use. By identifying influential combinations
of uncertainties across the coupled models, scenario discovery thus provides
useful additional information to complement conventional sensitivity analysis
techniques. This is particularly relevant for models which present broad
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Figure 12: Cases of interest for scenario discovery

Figure 13: PRIM uncertainty ranges identified for cases of interest

ranges of plausible outcomes or different modes of behavior, and for the
study of systems which may need to meet explicit performance thresholds.
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6. Conclusions

This paper introduced a coupled simulation architecture which interfaces
NetLogo and the MODFLOW/SEAWAT geohydrological simulation codes,
using Python’s object-oriented features. This architecture was applied for a
simplified case study of Aquifer Thermal Energy Storage; the operation and
deployment of this technology relies on dynamic agent behavior as well as rel-
atively complex subsurface processes (such as heat transport and sorption),
which justified the development of a full-featured simulation architecture
which can account for feedbacks between human and groundwater compo-
nents. As a simple example of the possibilities of this approach, the case
study included basic decision heuristics under which simulated ATES owners
endogenously adjust the use of the systems based on realized performance.
These feedbacks can for instance support more realistic case studies for the
long-term adoption of ATES in urban areas, in which adoption patterns are
affected by expected technical and economic performance. In parallel, NetL-
ogo’s spatial modelling features allow for an intuitive representation of ATES
spatial planning, which was here depicted by a minimal distance policy for
neighboring storage wells.

As described by Castilla-Rho et al. (2015), the typical drawbacks of cou-
pled agent-based/groundwater modelling include technical complexity, a lack
of flexibility in scenario design, and the difficulty of performing coupled sen-
sitivity analysis. The first two of these challenges were here addressed by
relying on a simple object-oriented design, which extends the NetLogo model
component in an intuitive fashion. Although the coupling requires the ex-
ternal pyNetLogo and FloPy libraries, these libraries are actively supported
and at a relatively stable stage of development, which should reduce fu-
ture compatibility issues. Furthermore, we expect that the possibility of
reusing existing MODFLOW/SEAWAT models, while benefiting from the
user-friendliness of the NetLogo platform, helps manage the complexity of
the overall model development process. An evaluation of the computational
costs associated with the different simulation components, under different
parameterizations which should be representative of the typical scope of a
groundwater management study, also showed that the coupled simulation
architecture is unlikely to significantly increase total runtimes relative to the
individual models.

The use of the Python language also addresses issues with the coupled
analysis of the models, by enabling the straightforward integration of the sim-
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ulation architecture with different open-source packages available in Python.
This approach was demonstrated by using the coupled models with the EMA
Workbench; this package can be used to design experiments and analyze the
behavior of the coupled models through a common model interface. A typical
simulation workflow was illustrated with a global sensitivity analysis of the
coupled models, along with a scenario discovery analysis.

As such, while we acknowledge the benefits of a fully integrated platform
such as the FlowLogo environment (Castilla-Rho et al., 2015) in terms of
technical complexity, we believe that the capabilities of a comprehensive geo-
hydrological modelling environment justify a coupled simulation approach in
the case of more complex groundwater management problems. This approach
would indeed be required for studies of aquifer pollution or contamination,
or the management of coastal aquifers in which saltwater intrusion is signifi-
cant (which represents an increasingly pressing issue in the context of climate
change adaptation, e.g. Rawlani and Sovacool, 2011). To facilitate future
work using these features, we have therefore ensured that the architecture
modules are available through an online repository, along with interactive
notebooks which replicate the analyses presented in the paper.

From a broader view, the results of these analyses highlighted the impor-
tance of an integrated view for the treatment of model uncertainties, which
can be supported by an approach like exploratory modelling: while this case
only involved simple behavioral assumptions in the agent-based component,
the behavior of the coupled models was sensitive to different parametric
values and combinations across the agent-based and geohydrological com-
ponents. A separate treatment of these uncertainties would have made it
more difficult to identify important relationships between the models. Such
a consolidated process for the analysis of coupled models can ultimately help
analysts better understand the interactions and feedbacks between socio-
technical and environmental variables, and contribute to the design of more
robust policies for the management of social-ecological systems.
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Figure 14: ODD+D documentation of the ATES test case.
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