<]
TUDelft

Delft University of Technology

Pragmatic software testing education

Aniche, Mauricio; Hermans, Felienne; van Deursen, Arie

DOI
10.1145/3287324.3287461

Publication date
2019

Document Version
Other version

Published in
SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer Science Education

Citation (APA)

Aniche, M., Hermans, F., & van Deursen, A. (2019). Pragmatic software testing education. In SIGCSE 2019
- Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 414-420). ACM.
https://doi.org/10.1145/3287324.3287461

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1145/3287324.3287461

Pragmatic Software p
Testing Education TUDelft

(experience report)

Mauricio Aniche, Felienne Hermans, Arie van Deursen

Why software testing?

e Because society needs software that
works!

e Fundamental activity in software
development.

e Academic perspective: several open
challenges.

e Industry perspective: "Very popular"
nowadays, companies want developers
who know how to test.

Teach software testing can be tricky

e STisan elective coursein many
universities (Wong, 2012)

e Little attention is given to ST, given
the large number of topics already
covered (Clarke et al., 2014)

e Lackof educational tools and
integration with other courses.

e Aclear curriculum (topic of today)

Worlds Apart

Developers and academia ta_lr
about different things when i

comes to software testing.)
Example: the term "automate

software testing".

. i d
" rt: industrial an
i Vahid, and MichaelFeldere“.ch.rldsEgzaoftware 34.5 (2017):
Garoust, vahid, areas in software testing." IE
academic focus

38-45.

FOCus: SOFI'WARE TESTING

Worlds Apart

Industrial and
Academic Focus Areas
in Software Testing

Vahid Garousi, Hacettepe Um'versity

Michae] Felderer, Um‘versity of Innsbryck

A Comparison of the titles of Presentationg in

Practitioners working in [insert any
SE subarea here]. However, hon-
estly, many conferences fail to re.
ally achieye that. Certain confer-
ences have haq Some success—for

Internationa] Conference on Soft-
ware Engineering (ICSE) and Inter-
nationa Conference on Software
Testing, Verification and Valida-
tion (ICST). Bye much more must be
done to really “bring researchers and
Practitionerg together,”

Toward that end, we focus here
on software testing as 5 representa-
tive area of SE. To determine how in-
dustry ang academia approach sof-
ware testing, we compared the titles
of Presentations frop, selected cop.
ferences in each of the tWo commy-
nities. The results shed light on ope

cause of low JAC in software testing

Figure 1 depicts our analysis ap-

Academics Developers

The oracle problem e xUnitframeworks

Test case generation e The Testing Pyramid
Search-based software testing e Mocking

Model-based software testing e What to test? What not to test?

How to combine both perspectives?

(This list was not developed in a systematic way)

Pragmatic software testing @ TU Delft

e 4th quarter, 1styear CS
o Thereal main requirementis to
know Java

e 5ECTS (140 hours)

o 2 lectures of 1.5h/week

o 4 hours of labwork/week
e Large number of students

o In2017,300 students.
o In 2018, 450 students.
o In2019,~750 students (expected)

® Assessment:
o Midterm +exam (MC questions) 75%
o Labwork 25%

9 key elements!

Theory applied in the lecture.

Real-world pragmatic discussions.

Build a testing mindset.

Software testing automation.

A hands-on labwork.

Test code quality matters.

Design systems for testability.

Mixture of pragmatic and theoretical books
Interaction with practitioners.

o

/ 4 / A
] i i -
IS BN B8 BF A¥ AW A § i
IS B / / ¥ AR A i
. . / 'qd/ 3/ 7/ 7/ / /
. s 77‘ 7/ 7 / . »

(S BN e e

/ ! I]

s oY 5
;=, s B
-1’-! 1/ l(
T 6

W EE EE EE EE BB EE EE B

Lidd

Applied theory

We believe in theory. But we prefer applied
theory.
Whatever theory we show to them, we also
show to apply itin practice, e.g.,
o We devise tests for a state machine, and later write
them as JUnit tests.

o We devise tests for complex decision tables, and later
we write them as JUnit tests.

Important: the theory and the practice happen

during our lecture.
o Students see us coding.

Pragmatic discussions

e Software testingis challenging, and
exhaustive testing is impossible. In practice,
developers have to make trade-offs.

e Wediscuss such real-life trade-offs:
o How much should I test?
o Should this piece of code be tested at unit or
integration level?
o Should I mock this class?

Building a testing mindset

e Students might not see testing as
"something cool".
e We wantthem to have a testing mindset.
How?
o Showing that testing is a creative activity
o Showing how to apply itin practice

o Bringing guest lectures who discuss the importance
of software testing

Software testing automation

Industry has been long advocating the use of
test automation.

Our students:
o Devise tests using theoretical knowledge (e.g., they
devise test cases in a piece of paper)
o They later write the tests in an automated manner.

To that aim, students need to learn tools:

o Junit
o Mockito
o Selenium /Cucumber

Hands-on labwork

e We consider getting your hands dirty highly
important when learning software testing.
e Students apply all their knowledge in

JPacman.
o 3klines of code
o Devised specially for this course
o Enables them to practice the different techniques
we teach.

e Opensource:

https://github.com/serg-delft/jpacman-framework
(we are still working on a Teachers' Guide. If you want to use it now,
just email us)

https://github.com/serg-delft/jpacman-framework

Test code quality matters

e Real life developers have to deal with large

test codebases.
o Empirical research shows that test smells are
common...

e Code quality matters.
e OurTAs are trained to be picky!

Design for testability

Software architecture meets software
testing.
More specifically, we discuss how to design

systems that ease testability, e.g.,
o How can | test my application when it depends on a
database?
o How can | test my mobile app if it depends so much
on the Android's APIs, which are unmockable?

JPacman is a good example of a testable
system.

Theoretical and practical books

e We consider both the theoretical and the
pragmatic part important.

e Thus, we suggest different books for these
two different aspects.

o Theory:ISTQB
o Practice: Pragmatic Unit Testing in Java 8.

Interaction with practitioners

e Guest lectures are fundamental for students.

e Maybe not for them to learn any new
practice, but for them to see how trade-offs
happen in practice.

e We have tried online AMA sessions.

We were curious...

e RQ1: What common mistakes do students
make when learning software testing?

e RQ2: Which software testing topics do
students ind hardest to learn?

e RQ3: Which teaching methods do students
find most helpful?

Research methodology:

e Survey with 84 students.

e Survey with 10 TAs.

e Analysis of ~2k feedback statements from
our TAs to students.

Thelr common mistakes

e Testcoverage (416 times, 20.87%).

o Students commonly either miss tests, i.e., they do not provide all the expected tests for a given piece
of code, or they write tests that are not totally correct, e.g., the test does not actually test the piece
of code.

e Maintainability of test code (407 times, 20.42%).

o Better naming and excessive complexity, code duplication and lack of reusability, tests that could be

splitin two, better usage of test cleanup features, such as JUnit’s Before and After.
e Understanding testing concepts (306 times, 15.35%).

o Advantages and disadvantages of unit and system tests, and the importance of removing test
smells.

e Boundary testing (258 times, 12.95%).

o Students miss some of the boundaries.

Thelr common mistakes

e State-based testing (247 times, 12.39%)

o students often miss or create wrong states or events (56) and transitions (72).
e Assertions (158 times, 7.93%)

o Missing assertions.
e Mock Objects (117 times, 5.87%)

o how to properly verify interactions with mock objects (i.e., Mockito’s ‘verify’ method) and to explain
when one should mock an object.

e Tools (84 times, 4.21%).

o AssertJ and Cucumber can be tricky to use.

Topics hard to learn

Usage of JUnit Q176%

AAA pattern Q273%

Choose the test level Q329%
Mock Objects Q442%
Boundary Testing Q554%
Structural testing Q644%
Apply MC/DC Q717%
State-based testing Q830%
Best practices Q946%
Testability Q1035%

TDD Q1131%

Design by contracts Q1230%
Acceptance tests Q1346%
How much to test Q1419%
Defensive programming Q1527%
Exploratory Testing Q1636%
Avoiding flaky tests Q1756%
Minimum set of tests Q1835%

100

23% |

25%
50%
31%
32%
40%
34%
37%
41%
41%
37%
54%
35%
39%
48%
46%
26%
40%
0

1%
2%
219
279
149
169
499
339
149
259
329
169
209
429
259
189
199
259

100

Topics hard to learn

AAA pattern Q273%

CholEeme e e 1 O

Mock Objects Q4 42%
Boundary Testing Q554%
Structural testing Q644%

Apply MC/DC Q717%

State—based testing Q830%
Best practices Q946%
Testability Q1035%
TDD Q1181%
Design by contracts Q1230%
Acceptance tests Q1346%
How much to test Q1419%
Defensive programming Q1527%
Exploratory Testing Q1636%
Avoiding flaky tests Q1756%
Minimum set of tests Q1835%
100

(o)

Usage of JUnit Q176% [I 23% |
—

1%
2%

31%
32%
40%
34%
37%
41%
41%
37%
54%
35%
39%
48%
46%
26%
40%

0 50

217
279
149
169
499
339
149
259
329
169
209
429
259
189
199
259
100

Using the JUnit framework (Q1) as
well as to think about the
Act-Arrange-Assert pattern that
composes any unit test (Q2) easy to
learn.

(Matches the number of feedback
related to tools in previous RQ)

Topics hard to learn

Usage of JUnit Q176%

AAA pattern Q273%

Choose the test level Q329%
Mock Objects Q442%

Structural testing Q644%
Apply MC/DC Q717%

Best practices Q946%
Testability Q1035%
TDD Q1181%

Design by contracts Q1230%
Acceptance tests Q1346%

How much to test Q1419%
Defensive programming Q1527%
Exploratory Testing Q1636%
Avoiding flaky tests Q1756%
Minimum set of tests Q1835%
100 50 0 50

MC/DC is not an easy coverage

criteria. However, structural testing

in general was considered a
somewhat easy topic.

Topics hard to learn

Usage of JUnit Q176%

1% | Pragmatism (choose the right test

Choose the test level Q329%

edoum |evel, how much to test + minimum
219/ | set of tests that gives confidence) is

Boundary Testing Q554%
Structural testing Q644%
Apply MC/DC Q717%
State-based testing Q830%
Best practices Q946%
Testability Q1035%

TDD Q1131%

Design by contracts Q1230%

/' noteasy to learn.
149

169
499
339
149
259

How much to test Q1419%
Defe
Exploratory Testing Q1636%

Q1756% ‘
Minimum set of tests Q1835% B

EWaVal I

LIA=A™4

LIA=A™4

Topics hard to learn

Usage of JUnit Q176% [I 23% | 1%
AAA pattern Q273% [25% |

Mock Objects Q4 42% B s Il

Structural testing Q644%
Apply MC/DC Q717%
Best practices Q946%

W TU 397

TDD Q1181%

Design by contracts Q1230%
Acceptance tests Q1346%

How much to test Q1419%
Defensive programming Q1527%

100 50 0 50 100

Students think Mock Objects are an
easy topic.

However, when it comes to best
practice, although students overall
perceive it as easy, TAs disagree.
This also contradicts data in RQ1.

Favourite learning methods

Lectures Q1 0%
Guest lectures Q2 10%
Live coding Q3 6%

Live discussions Q4 7%

PragProg book Q5 29%
ISTQB book Q6 31%

e

72%

Labwork Q7 1%

Support from TAs Q8 7%
Related papers Q9 35%
AMA sessions Q10 30%

Midterm exam Q11 9%
100

We still lack books that students
can enjoy...

Favourite learning methods

Lectures Q1 0%

| Guest lectures Q2 10%

Live coding Q3 6%

Live discussions Q4 7%
PragProg book Q5 29%
ISTQB book Q6 31%
Labwork Q7 1%

Support from TAs Q8 7%
Related papers Q9 35%

AMA sessions Q10 30%

19% 75%

51% 20%

36% 33%

-

34% 30%

Midterm exam Q11 9%
100

5

0 0 50 100

They enjoy guest lectures.
However, they did not enjoy AMA
as much as we'd have hoped.

We conjecture it's due to their lack
of experience, i.e., it's hard for
them to come up with questions
for practitioners.

Favourite learning methods

Live coding and discussions are

Lectures Q1 0% .
appreciated.

Guest lectures Q2 10%

Live coding Q3 6%

Live discussions Q4 7%

PragProg book Q5 29%
ISTQB book Q6 31%
Labwork Q7 1%

Support from TAs Q8 7%
Related papers Q9 35%
AMA sessions Q10 30%

Midterm exam Q11 9%
100 50 0 50 100

Where we are now?

e Better balance between formative and
summative assessments.

e Scalability issues in assessment:

o Tryself-assessment.
o MC questions are not my favorite option.

e Increase the testing challenges in JPacman
e \Write lecture notes (open book)

&

Nat Pryce
@natpryce

are .-
eyes of s
software

pure.tu

9:09 AM - 25 Feb 2019

ets 61 Likes &@3&%@’ &

.scussed NO
oftware testing,

delft.nl/por

design.’ %
tal/files/ A ...

2@

13 Retwe
Q 5 0 18 @ ¢)
e Tweet your reply
Nat Pryce @natpryceé - Feb 25 v
paper bY Mauricio Aniche, Felienné Hermans & Arie van Deursen of Delft

&

University of

Technology-

S

™ 4 8

GROWING

OBJECT-(

S, Btll,(, r-ORIENTED
OFTWARE, :

GUIDED BY TESTS

STEV
VE Fre
‘ REEMA ey
NAT AN 74 N

"

Pragmatic Software Testing Education

Mauricio Aniche - m.f.aniche@tudelft.nl

Felienne Hermans - f.f.j.hermans@liacs.leidenuniv.nl

Arie van Deursen - arie.vandeursen@tudelft.nl

]
TUDelft

mailto:m.f.aniche@tudelft.nl
mailto:f.f.j.hermans@liacs.leidenuniv.nl
mailto:arie.vandeursen@tudelft.nl

Photos in this presentation

Photo by Houcine Ncib: https://unsplash.com/photos/JEYwWJ4MYCAM
Photo by Michat Parzuchowski: https://unsplash.com/photos/geNNFqgfvw48
Photo by DIFJL NG: https://unsplash.com/photos/kWvsIYwUkJs
Photo by Liam Welch: https://unsplash.com/photos/mVS69QbE4H4
Photo by adrian: https://unsplash.com/photos/yocwPcXJe9c

Photo by Dane Deaner: https://unsplash.com/photos/JNpmCYZID68
Photo by John Doyle: https://unsplash.com/photos/RSgwLqlWH8w
Photo by Markus Spiske: https://unsplash.com/photos/tGcCXy5bfzQ
Photo by Elisa Michelet: https://unsplash.com/photos/b4EsL48DIKO
Photo by Jon Tyson: https://unsplash.com/photos/TBtsrLYebSU
Photo by Damir Bosnjak: https://unsplash.com/photos/W5qJExIQTGI

