
 
 

Delft University of Technology

Pragmatic software testing education

Aniche, Maurício; Hermans, Felienne; van Deursen, Arie

DOI
10.1145/3287324.3287461
Publication date
2019
Document Version
Other version
Published in
SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer Science Education

Citation (APA)
Aniche, M., Hermans, F., & van Deursen, A. (2019). Pragmatic software testing education. In SIGCSE 2019
- Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 414-420). ACM.
https://doi.org/10.1145/3287324.3287461

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1145/3287324.3287461


Pragmatic Software 
Testing Education
Maurício Aniche, Felienne Hermans, Arie van Deursen

(experience report)



Why software testing?

● Because society needs software that 
works!

● Fundamental activity in software 
development.

● Academic perspective: several open 
challenges.

● Industry perspective: "Very popular" 
nowadays, companies want developers 
who know how to test.



Teach software testing can be tricky

● ST is an elective course in many 
universities (Wong, 2012)

● Little attention is given to ST, given 
the large number of topics already 
covered (Clarke et al., 2014)

● Lack of educational tools and 
integration with other courses. 

● A clear curriculum (topic of today)



Worlds Apart

● Developers and academia talk 
about different things when it 
comes to software testing.

● Example: the term "automated 
software testing".

Garousi, Vahid, and Michael Felderer. "Worlds apart: industrial and 
academic focus areas in software testing." IEEE Software 34.5 (2017): 
38-45.



Academics

● The oracle problem
● Test case generation
● Search-based software testing
● Model-based software testing

Developers

● xUnit frameworks
● The Testing Pyramid
● Mocking
● What to test? What not to test?

(This list was not developed in a systematic way)

How to combine both perspectives?



Pragmatic software testing @ TU Delft

● 4th quarter, 1st year CS
○ The real main requirement is to 

know Java

● 5 ECTS (140 hours)
○ 2 lectures of 1.5h/week
○ 4 hours of labwork/week

● Large number of students
○ In 2017, 300 students.
○ In 2018, 450 students.
○ In 2019, ~750 students (expected)

● Assessment:
○ Midterm + exam (MC questions) 75%
○ Labwork 25%



9 key elements!

● Theory applied in the lecture.
● Real-world pragmatic discussions.
● Build a testing mindset.
● Software testing automation.
● A hands-on labwork.
● Test code quality matters.
● Design systems for testability.
● Mixture of pragmatic and theoretical books
● Interaction with practitioners.



Applied theory

● We believe in theory. But we prefer applied 
theory.

● Whatever theory we show to them, we also 
show to apply it in practice, e.g.,
○ We devise tests for a state machine, and later write 

them as JUnit tests.
○ We devise tests for complex decision tables, and later 

we write them as JUnit tests.

● Important: the theory and the practice happen 
during our lecture.
○ Students see us coding.



Pragmatic discussions

● Software testing is challenging, and 
exhaustive testing is impossible. In practice, 
developers have to make trade-offs.

● We discuss such real-life trade-offs:
○ How much should I test?
○ Should this piece of code be tested at unit or 

integration level?
○ Should I mock this class?



Building a testing mindset

● Students might not see testing as 
"something cool".

● We want them to have a testing mindset. 
How?
○ Showing that testing is a creative activity
○ Showing how to apply it in practice
○ Bringing guest lectures who discuss the importance 

of software testing



Software testing automation

● Industry has been long advocating the use of 
test automation.

● Our students:
○ Devise tests using theoretical knowledge (e.g., they 

devise test cases in a piece of paper)
○ They later write the tests in an automated manner.

● To that aim, students need to learn tools:
○ Junit
○ Mockito
○ Selenium / Cucumber



Hands-on labwork

● We consider getting your hands dirty highly 
important when learning software testing.

● Students apply all their knowledge in 
JPacman.
○ 3k lines of code
○ Devised specially for this course
○ Enables them to practice the different techniques 

we teach.

● Open source: 
https://github.com/serg-delft/jpacman-framework
(we are still working on a Teachers' Guide. If you want to use it now, 
just email us)

https://github.com/serg-delft/jpacman-framework


Test code quality matters

● Real life developers have to deal with large 
test codebases.
○ Empirical research shows that test smells are 

common...

● Code quality matters.
● Our TAs are trained to be picky!



Design for testability

● Software architecture meets software 
testing.

● More specifically, we discuss how to design 
systems that ease testability, e.g.,
○ How can I test my application when it depends on a 

database?
○ How can I test my mobile app if it depends so much 

on the Android's APIs, which are unmockable?

● JPacman is a good example of a testable 
system.



Theoretical and practical books

● We consider both the theoretical and the 
pragmatic part important.

● Thus, we suggest different books for these 
two different aspects.
○ Theory: ISTQB
○ Practice: Pragmatic Unit Testing in Java 8.



Interaction with practitioners

● Guest lectures are fundamental for students.
● Maybe not for them to learn any new 

practice, but for them to see how trade-offs 
happen in practice.

● We have tried online AMA sessions.



We were curious...

● RQ1: What common mistakes do students 
make when learning software testing?

● RQ2: Which software testing topics do 
students ind hardest to learn?

● RQ3: Which teaching methods do students 
find most helpful?

Research methodology:

● Survey with 84 students.
● Survey with 10 TAs.
● Analysis of ~2k feedback statements from 

our TAs to students.



Their common mistakes

● Test coverage (416 times, 20.87%).
○ Students commonly either miss tests, i.e., they do not provide all the expected tests for a given piece 

of code, or they write tests that are not totally correct, e.g., the test does not actually test the piece 
of code.

● Maintainability of test code (407 times, 20.42%).
○ Better naming and excessive complexity, code duplication and lack of reusability, tests that could be 

split in two, better usage of test cleanup features, such as JUnit’s Before and After.

● Understanding testing concepts (306 times, 15.35%). 
○ Advantages and disadvantages of unit and system tests, and the importance of removing test 

smells.

● Boundary testing (258 times, 12.95%). 
○ Students miss some of the boundaries.



Their common mistakes

● State-based testing (247 times, 12.39%)
○ students often miss or create wrong states or events (56) and transitions (72).

● Assertions (158 times, 7.93%)
○ Missing assertions.

● Mock Objects (117 times, 5.87%)
○ how to properly verify interactions with mock objects (i.e., Mockito’s ‘verify’ method) and to explain 

when one should mock an object.

● Tools (84 times, 4.21%).
○ AssertJ and Cucumber can be tricky to use.



Topics hard to learn



Topics hard to learn

Using the JUnit framework (Q1) as 
well as to think about the 
Act-Arrange-Assert pattern that 
composes any unit test (Q2) easy to 
learn.

(Matches the number of feedback 
related to tools in previous RQ)



Topics hard to learn

MC/DC is not an easy coverage 
criteria. However, structural testing 
in general was considered a 
somewhat easy topic.



Topics hard to learn

Pragmatism (choose the right test 
level, how much to test + minimum 
set of tests that gives confidence) is 
not easy to learn.



Topics hard to learn

Students think Mock Objects are an 
easy topic.

However, when it comes to best 
practice, although students overall 
perceive it as easy, TAs disagree. 
This also contradicts data in RQ1.



Favourite learning methods
We still lack books that students 
can enjoy...



Favourite learning methods
They enjoy guest lectures. 
However, they did not enjoy AMA 
as much as we'd have hoped.

We conjecture it's due to their lack 
of experience, i.e., it's hard for 
them to come up with questions 
for practitioners.



Favourite learning methods
Live coding and discussions are 
appreciated.



Where we are now?

● Better balance between formative and 
summative assessments.

● Scalability issues in assessment:
○ Try self-assessment.
○ MC questions are not my favorite option.

● Increase the testing challenges in JPacman
● Write lecture notes (open book)





Pragmatic Software Testing Education

Maurício Aniche - m.f.aniche@tudelft.nl

Felienne Hermans - f.f.j.hermans@liacs.leidenuniv.nl

Arie van Deursen - arie.vandeursen@tudelft.nl

mailto:m.f.aniche@tudelft.nl
mailto:f.f.j.hermans@liacs.leidenuniv.nl
mailto:arie.vandeursen@tudelft.nl


Photos in this presentation
● Photo by Houcine Ncib: https://unsplash.com/photos/jEYwJ4MYcAM
● Photo by Michał Parzuchowski: https://unsplash.com/photos/geNNFqfvw48
● Photo by 贝莉儿 NG: https://unsplash.com/photos/kWvsIYwUkJs
● Photo by Liam Welch: https://unsplash.com/photos/mVS69QbE4H4
● Photo by adrian: https://unsplash.com/photos/yocwPcXJe9c
● Photo by Dane Deaner: https://unsplash.com/photos/JNpmCYZID68
● Photo by John Doyle: https://unsplash.com/photos/RSgwLqIWH8w
● Photo by Markus Spiske: https://unsplash.com/photos/tGcCXy5bfzQ
● Photo by Elisa Michelet: https://unsplash.com/photos/b4EsL48DIK0
● Photo by Jon Tyson: https://unsplash.com/photos/TBtsrLYebSU
● Photo by Damir Bosnjak: https://unsplash.com/photos/W5qJExlQTGI


