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A B S T R A C T

The modeling of dynamic frictional rolling contact is crucial for accurately predicting behavior and deterioration
of structures under dynamic interactions such as wheel/rail, tire/road, bearings and gears. However, reliable
modeling of dynamic frictional rolling contact is challenging, because it requires a careful treatment of friction
and a proper consideration of the dynamic effects of the structures on the contact. This study takes the wheel-rail
dynamic interaction as an example to systematically explore the core algorithms for the modeling of dynamic
frictional rolling contact by way of explicit finite element analyses. The study also theoretically demonstrates
that the explicit finite element method handles nonlinearities in friction, material properties, arbitrary contact
geometries and boundary conditions, and fully couples the calculation of frictional rolling contact with the
calculation of high-frequency structural dynamics. An indirect validation method for dynamic contact solutions
is proposed. To promote the broad use of the method, this paper proposes a detailed procedure for establishing
robust wheel-rail dynamic interact tion models and obtaining dynamic contact responses. The proposed pro-
cedure can also be applied to the modeling of dynamic interactions occurring to tire-road, bearings and gears.

1. Introduction

The problem of rolling contact is nonlinear in many aspects [1]. The
modeling of dynamic rolling contact is crucial for accurately predicting
behavior and deterioration of structures under dynamic interactions
such as wheel/rail, tire/road, bearings and gears. A reliable dynamic
rolling contact model requires a careful treatment of nonlinear fric-
tional rolling contact and a proper consideration of the dynamic effects
of the structures on the contact. Since the wheel-rail interaction due to
the frictional rolling contact significantly influences the vehicle dy-
namics and stability [2] and the dynamic effects involved in wheel-rail
interactions can be increased by high-speed rolling, a systematic study
of wheel-rail dynamic interactions is highly desired, especially within
the context of booming high-speed railways. This study thus takes the
wheel-rail dynamic interaction as an example to systematically explore
the core procedure dedicated to the modeling of dynamic frictional
rolling contact .

Studies on wheel-rail contact date from the 19th century. Hertz [3]
was among the earliest researchers to provide an analytical solution to
frictionless normal contact between elastic bodies with a half-space
assumption. Mindlin [4] developed the Hertz contact theory to treat
shifts of contact bodies by a tangential force within its friction limit.
Wheel-rail friction rolling contact was first studied by Carter [5], who

calculated creepage in the rolling direction with a 2D analytical model.
Vermeulen and Johnson [6] then extended Carter's 2D theory to 3D
with pure creepage and without spin by assuming an elliptical adhesion
area.

With the development of the computer and computational sciences,
numerical methods have increasingly been employed in the study of
wheel-rail contact, and these methods are believed to be more appro-
priate for solving wheel-rail rolling with high complexity in contact
conditions and material properties [7]. The numerical methods may be
divided into two classes [8]: the boundary element method (BEM) for
local analyses based on the half-space and quasi-quarter-space [9] as-
sumptions and the finite element method (FEM) for global analyses
based on general continuum mechanics. Important contributions to the
BEM solutions of wheel-rail frictional rolling contact with arbitrary
creepages and spin were made by Kalker [10], whose simplified and full
theories have been implemented in the extensively used computer
programs FASTSIM and CONTACT, respectively. Since the BEM-based
approaches discretize the surfaces of contact bodies in only the limited
domain of potential contact areas, they are restricted to linear elastic
contact problems [1] and fail to consider the wheel/rail dynamic effects
related to contact even in non-steady state contact solutions [8]. Here,
the wheel/rail dynamic effect refers to the fact that the inertia of
wheel/rail material elements may influence the stress field because
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these elements “flow” through the deforming region [11] and may play
important roles in wheel-rail impact contact and contact-induced un-
stable vibration [12].

The FEM with a discretization of whole contact bodies has been
demonstrated to be a more flexible tool for modeling frictional rolling
contact with arbitrary contact geometries, possible material non-
linearities, dissipation and bifurcations and corresponding standing-
wave phenomena [13]. Early finite element (FE) wheel-rail contact
models have either assumed quasi-static state contact [14–16] or ap-
plied contact loads independently calculated by other simplified or
multi-body dynamics models [17–19]. Because the inertia of wheel/rail
material elements is not involved in the contact calculations, these
studies may not consider the dynamic effects related to contact.

The explicit FEM, which has been successfully applied to various
nonlinear transient dynamics problems in recent decades [20], has been
increasingly proposed for wheel-rail interaction studies. Zhao and Li
[21] produced physical contact solutions of wheel-rail friction rolling
with the explicit FEM. Wheel-rail contact was rigorously treated and the
quasi-steady contact solutions obtained with the explicit FEM corre-
sponded well to those obtained with well-established approaches, i.e.,
Hertz contact theory and Kalker's CONTACT [10], in both the normal
and tangential directions; effect of small geometrical spin was observed.
Deng et al. [22] later used explicit FEM to study the wheel-rail frictional
rolling contact solutions with large spin. The calculated explicit FE
contact solutions have also been shown to be accurate via comparisons
with CONTACT solutions. Investigations of wheel-rail contact char-
acteristics using the explicit FEM include the simulations of the tran-
sient wheel-rail rolling contact in elastoplasticity [23], in the presence
of rail contamination [24], under high and low adhesion conditions
[25], as well as with the consideration of velocity-dependent friction
[26] and thermal effects [27].

In addition to the studies of wheel-rail contact solutions [21,22] and
contact characteristics [23–28], previous studies on wheel-rail inter-
actions with the explicit FEM also include the studies of wheel-rail
impact contact (at the rail joint [29–33], squat [34–40], crossing nose
[41–46] and crack [47]), studies of flange contact [12,48,49] and track
dynamic behavior [39,50,51]. These studies have generally employed
algorithm-optimized commercial programs, e.g., ANSYS/LS-DYNA and
ABAQUS/Explicit, to efficiently process the large amounts of elements
required in the detailed modeling of wheel/track structures and per-
form time integration with tiny time steps.

To facilitate other researchers to perform simulations of wheel-rail
dynamic interactions with those software packages or alternative ex-
plicit FEM programs, systematic perceptions of the involved algorithms
and modeling knowledge should be provided. Section 2 systematically
explores the core algorithms employed in the explicit FE wheel-rail
interaction analyses, which represent the mathematical model and
numerical solution procedure implemented in the solvers of commercial
programs. In addition, this paper theoretically demonstrates that the
explicit FEM is a suitable approach for modeling wheel-rail dynamic
interactions. The solutions of wheel-rail dynamic interactions provided
by the explicit FEM can rarely be directly validated because of the
current absence of an experimental method for precisely measuring
rolling contact solutions, such as contact stress and strain states, espe-
cially under dynamic conditions [47]. Considering that the explicit FEM
fully couples the calculation of wheel-rail contact (converted by nodal
forces, see Section 4.1) with the calculation of wheel/rail dynamic re-
sponses (converted by nodal motions, see Section 4.2), an indirect va-
lidation is proposed: the reliability of the wheel-rail dynamic contact
solutions may be confirmed by separately verifying the quasi-steady
contact solutions and validating the wheel/rail dynamic responses. The
former part has been presented in Refs. [21,22] (e.g. Fig. 1 (a)),
whereas the abilities of the method to reproduce wheel/track dynamic
behavior have been reported in Refs. [31,35,37,43,50,51] (e.g. Fig. 1
(b)).

To promote the broad use of the method, Sections 3 and 4 propose

detailed procedures for establishing robust explicit FE wheel-rail dy-
namic interaction models (pre-processing) and converting outputs into
wheel-rail contact and dynamics solutions (post-processing), respec-
tively. The proposed procedure can also be applied to the modeling of
dynamic interactions occurring to tire-road, bearings and gears. Section
5 presents a typical numerical example of wheel-rail dynamic interac-
tions to demonstrate the effectiveness of the method. Section 6 presents
the concluding remarks and discusses potential improvements in the
methodology required to address controversial issues related to wheel-
rail dynamic interactions, such as squeal and corrugation. As far as the
authors know, this is the first systematic presentation of dynamic fric-
tional rolling contact which combines fundamental theory (mathema-
tical model and numerical solution procedure) with engineering prac-
tice. Since the dynamic effects involved in the interactions of contact
bodies can be increased with rolling speed and load, this work is ex-
pected to benefit future researches of dynamic frictional rolling contact
in the context of high-speed railways and heavy-duty bearings.

2. Algorithm of the explicit finite element method

This section systematically explores the core algorithms employed
in the explicit FE wheel-rail interaction analyses with a focus on the
mathematical model and the numerical solution procedure im-
plemented in the solvers of commercial programs. The reviews of the
algorithms are mainly based on the computational mechanics theories
illustrated in the literature [20,52–58] and theoretical manuals of
commercial explicit FE programs [59–61]. In addition, the applicability
of the explicit FEM to wheel-rail dynamic interaction analyses is de-
monstrated from a theoretical perspective.

In the formulas presented in this paper, we mainly use index nota-
tion to represent vectors, matrices and tensors and use bold-faced
variables only when the numbers of components and operations are not
confusing. We use lowercase subscripts (i, j, k) for spatial components,
lowercase superscripts (t) for time points, capital subscripts (M) for
hourglass mode numbers, and capital superscripts (J, M, N) for nodal/
element numbers.

2.1. Mathematical model of wheel-rail dynamic interactions

Lagrangian formulation typically used for transient structural dy-
namic proble = =u u x t i k( , ) , 1,2,3i i k ms is employed for wheel-rail
dynamic interaction analyses. When adopting the Lagrangian for-
mulation, the time-dependent displacement ui in a fixed rectangular
Cartesian coordinate system can be expressed in terms of the convected
coordinates xk in the same coordinate system and time t as follows:

= =u u x t i k( , ) , 1,2,3i i k (1)

A general 3D transient structural dynamics problem may then be
described by constrained partial difference governing equations as
follows:

Momentum conservation equations:

+ = =σ ρf ρu i j¨ in Ω , 1,2,3ij j i i, (2a)

Displacement boundary conditions:

=u D on Γi i u (2b)

Traction boundary conditions:

=σ n T on Γij j i s (2c)

Contact discontinuity conditions:

− =+ −(σ σ )n 0 on Γij ij i c (2d)

Initial conditions:

= =u x U x u x V x( , 0) ( ), ˙ ( , 0) ( ) in Ωi k i k i k i k (2e)

Material constitutive relation:

Z. Yang et al. Tribology International 129 (2019) 214–231

215



= …σ σ E v E x u ε˙ ˙ ( , , , , , ˙ , )ij ij t i i ij (2f)

Strain-displacement relation:

= +ε u u˙ ( ˙ ˙ )/2ij i j j i, , (2g)

where σij is Cauchy stress tensor; ρ is the current density; fi is the body
force density; Di is the prescribed displacement boundary conditions on
part of the boundary Γu; Ti represents the components of the traction
boundary conditions on part of the boundary Γs; ni is a unit outwardly
normal to a boundary element on Γ; Ui and Vi are the initial displace-
ments and velocities, respectively; and E v, and Et are the Young's
modulus, Poisson's ratio and tangent modulus of the material, respec-
tively. The rate form adopted in Eqns. (2f) and (2g) may take non-
linearities into account.

The displacement-based FEM (compared with the force-based FEM)
is employed to solve the dynamic problem described in Eqn. (2). By
removing all displacement constraints and assuming that the reactions
are known, the variational governing equation can be derived by Ha-
milton's principle as follows:

∫ ∫ ∫− − + − + −

=

+ −ρu σ ρf δu d σ n T δu d σ σ n δu d( ¨ ) Ω ( ) Γ ( ) Γ

0

i ij j i i ij j i i ij ij j i
Ω

,
Γ Γs c

(3)

Eqn. (3) is a statement of the principle of virtual work, in which δui
is the variation of displacement. By applying the Gauss divergence
theorem to convert the surface integral to the volume integral, the
following is obtained:

∫ ∫ ∫= + −+ −σ δu d σ n δu ds σ σ n δu d( ), Ω ( ) ( ) Γij i j ij j i ij ij j i
Ω Γ Γs c (4)

Noting the mathematical identity:

= +σ δu σ δu σ δu( ),ij i j ij j i ij i j, , (5)

Then, the weak form of the equilibrium equation can be derived as
follows:

∫ ∫ ∫ ∫+ = +ρu δu d σ δu d ρf δu d T δu d¨ Ω Ω Ω Γi i ij i j i i i i
Ω Ω

,
Ω Γs (6)

To solve Eqn. (6) numerically, a spatial discretization may be used
to express the equilibrium equation in terms of time-dependent nodal
unknowns and base functions. A mesh of finite elements interconnected
at nodal points on the reference configuration is thus superimposed,
and particles are tracked through time:

∑= = =
=

u u x ξ η ζ t φ ξ η ζ u t i k( ( , , ), ) ( , , ) ( ) , 1,2,3i i k
N

n
N

i
N

1

(7)

where φN is the shape function in the parametric coordinates (ξ, η, ζ)
and n is the number of nodal points defining the element. Summing
over all m elements of a FE model, the semi-discrete equation of motion
in the matrix notation becomes:

∫ ∫ ∫ ∫⎜ ⎟∑ ⎛
⎝

⎞
⎠

+ − − =
=

N Nu B σ N f N tρ d d ρ d d¨ Ω Ω Ω Γ 0
M

m
T T T T

M

1 Ω Ω Ω Γe e e s,e

(8)

where σ is the Cauchy stress vector, and =σ σ σ σ σ σ σ( , , , , , )T
xx yy zz xy yz zx ;

ü is the nodal acceleration vector; N is the shape matrix constructed by
the shape functions; B is the strain-displacement matrix containing the
first spatial derivatives of the shape functions; and f and t are the
prescribed body load vector and traction load vector, respectively.
Because the hexahedral solid elements (n=8 in Eqn. (7)) are mostly
used in explicit FE wheel-rail interaction models, we take them as ex-
amples to illustrate the theories summarized in this paper. For the
hexahedral elements:

= ⎡
⎣⎢

………
⎤
⎦⎥

N ξ η ζ φ φ φ
φ φ φ φ( , , )

1
1

1
2

2 8
8

(8a)

= + + + = …φ ξ η ζ ξξ ηη ζζ N( , , ) 1
8

(1 )(1 )(1 ) 1,2, ,8N N N N
(8b)

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂
∂
∂

∂
∂

∂
∂

∂
∂

B Nξ η ζ ξ η ζ( , , ) ( , , )

x

y

z

y x

z y

z x (8c)

Note that the time dimension in Eqn. (8) is still continuous, and the
semi-discrete equation of motion for a general transient structural dy-
namics problem may thus be rewritten in a shorthand format:

= −Mu f f¨ ext int (9)

in which M , fint and fext are the mass matrix, internal force vector and
external force vector, respectively, and they are defined as follows:

∫⎜ ⎟∑ ⎛
⎝

⎞
⎠

=
=

M N Nρ dΩ
M

m
T

M

1 Ωe (9a)

Fig. 1. Direct verification and validation of the numerical results obtained with explicit FEM. (a) contact solution [21] (b) hammer-excited rail vibration [31].
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∫ ∫⎜ ⎟∑ ⎛
⎝

⎞
⎠

= +
=

f N f N tρ d dΩ Γ
M

m
T T

M

ext
1 Ω Γe s,e (9b)

∫⎜ ⎟∑ ⎛
⎝

⎞
⎠

=
=

f B σdΩ
M

m
T

M

int
1 Ωe (9c)

By adding two extra terms f, con and H , to the right-hand side of
Eqn. (9), the semi-discrete equilibrium equation for the wheel-rail dy-
namic interaction problem is obtained as follows:

= − + +Mu f f H f¨ ext int con (10)

where H is the anti-hourglass vector that only occurs in the reduced
integration to control the zero-energy modes, and fcon is the contact
force vector, which can be included as a contribution to the externally
applied tractions [20,52]. These two terms will be explicated in Sec-
tions 2.5 and 2.6, respectively.

2.2. Numerical solution procedure for the explicit FE wheel-rail dynamic
interaction analysis

2.2.1. Time discretization by central difference scheme
Among the various numerical approaches developed for solving the

dynamic interaction problem formulated by Eqn. (10), we focus only on
the explicit integration scheme using the central difference to approx-
imate the acceleration vector ü. The explicit schemes calculate the
values of dynamic quantities at time step +t 1 based entirely on the
available values at time step t . Eqn. (10) discretized by the central
difference scheme at time step t may be written as follows:

= − + +−u M f f H f¨ ( )t t t t t
ext int con

1 (11)

The velocity and displacement vectors may then be obtained using
the central difference time integration:

= ++ − +u u uΔt˙ ˙ ¨t t t t1/2 1/2 1/2 (12a)

= ++ + +u u uΔt ˙t t t t1 1 1/2 (12b)

where Δt is the time step size, which is constant in the linear analysis
but may vary in the nonlinear analysis [52], and

= ++
+

Δt Δt Δt
2

t
t t

1/2
1

(13)

2.2.2. Procedure for the explicit FE wheel-rail dynamic interaction analyses
The equilibrium Eqn. (11) discretized in both the space and time

domains indicates that the numerical solutions of a wheel-rail dynamic
interaction problem are dependent on a constant mass matrix and four
time-dependent force vectors. Therefore, the numerical solution pro-
cedure for the explicit FE wheel-rail dynamic interaction analysis is
mainly composed of mass matrix and force vector calculations. A
lumped mass matrix can be constructed by a row summation scheme
[62] prior to the iteration to promote the efficiency and practicality of
the explicit FEM. For the force vectors, the external force vector fext
may be calculated directly by the given load conditions (see Section
2.3); the internal force vector fint contributed by stresses may be cal-
culated by the constitutive and strain-displacement formulations built
in the element and material models (see Section 2.4); and the anti-
hourglass force vector H and the contact force vector fcon may be
calculated by the Flanagan-Belytschko scheme [63] (see Section 2.5)
and penalty contact method [55] (see Section 2.6), respectively. Table 1
outlines a numerical procedure for the explicit FE wheel-rail dynamic
interaction analysis. This procedure has been implemented in com-
mercial explicit FE programs and used in previous wheel-rail contact
and dynamics studies, although variations are possible, e.g., processing
contact with a “predictor-corrector method” [58,64]: 1. Predict nodal
accelerations/velocities/displacements before step (d) in Table 1 by

assuming no contact occurs; 2. Check the contact conditions in step (d)
with the predicted displacement field; and 3. Enforce contact forces and
correct the nodal motions, i.e., the acceleration, velocity and dis-
placement.

The numerical solution procedure presented in Table 1 contains two
loops. The outer loop is constructed mainly by formulating the equation
of motion and solving the equation with the central difference scheme,
whereas the inner loop calculates the wheel-rail contact, which is called
as a subroutine at each time step prior to the updates of the structural
dynamic responses. The calculation of wheel/rail dynamics and the
calculation of wheel-rail contact are, therefore, coupled in the numer-
ical algorithm, which provides the theoretical basis for the indirect
validation of the wheel-rail dynamic interaction solutions mentioned in
Section 1.

2.2.3. Stability of integration
The explicit integration scheme has a simple and neat solution

procedure but is conditionally stable: the integration is only stable if the
time step size used is smaller than the critical time step size. The
Courant-Friedrichs-Lewy stability condition [65] can be used to guar-
antee convergence, which requires that a sound wave may not cross the
smallest element within one time step:

≤Δt L C/c c d (14)

where Δtc is the critical time step size; Lc is the shortest characteristic
dimension of the element; and Cd is the dilatational wave speed of the
material. For hexahedral elements:

=L V A/c e emax (14a)

where Ve is the element volume, and Aemax is the largest surface area.
For elastic materials [59]:

= − + −C E v v v ρ(1 )/[(1 )(1 2 ) ]d (14b)

Eqn. (14b) can be simplified for one-dimensional solids where the
Poisson's ratio is neglected, i.e.:

=C E ρ/d (14c)

In the calculation of wheel-rail interactions, the wheel and rail are
generally considered to be steel with nominal values of E =210 GPa,

=v 0.3 and ρ =7800 kg/m3; thus, Cd is equal to approximately 6 km/s.
The critical time step Δtc characterized in inequality (14) may vary in
nonlinear dynamic analyses because of changes in the material para-
meters and/or geometry. The time step Δt should be correspondingly
adjusted in a conservative manner so that the condition in inequality
(14) is satisfied with certainty at all time steps. To guarantee the sta-
bility and simultaneously decrease the solution time, a suitable scale
factor sf may be employed to control the time step, i.e., = ×Δt sf L C/c d.
A detailed discussion about the scale factor sf used in the wheel-rail
dynamic interaction analysis is given in Section 3.3.6.

Because the numerically obtained highest natural frequency of a
structure is bounded by the highest frequency of any individual element
in the FE discretization [59], as long as the elements and time steps are
sufficiently small, an explicit FE model may include in its solution all
the relevant vibration modes of structures and continua and associated
wave propagations [23]. In addition, small time step sizes can reduce
the truncation errors but increase the round-off errors. By adding dis-
placement increments to the initial geometries:

= +x x ut t0 (15)

in the geometry updating step (step (j) in Table 1), rather than to the
geometries obtained at the previous time step, solutions turn out to be
much less sensitive to the round-off errors [59].

2.3. External force

The external force vector in Eqn. (11) can be directly constructed by
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the prescribed load conditions. Common external loads applied to
wheel-rail dynamics and contact models include gravitational loads,
hammer impulse loads and driving torques. The first two may be re-
garded as the body forces and surface nodal loads contributing to the
first and second terms of Eqn. (9b), respectively. The driving torque is
discussed in Section 3.3.3.

2.3.1. Gravitational load
Gravitational loads are generally applied to wheel-rail interaction

models to initialize internal forces before proceeding with calculations
of dynamic responses. The gravitational loads are applied as body
forces by setting a fixed gravitational acceleration g as follows:

∫ ∫⎜ ⎟ ⎜ ⎟∑ ⎛
⎝

⎞
⎠

∑ ⎛
⎝

⎞
⎠

= = =
= =

f N f N N Mρ d ρ gd gΩ Ω
M

m
T

M

M

m
T

M

grav
1 Ω 1 Ωe e (16)

2.3.2. Hammer impulse
Hammer impulses may be applied to the explicit FE wheel/track

models as surface nodal loads to characterize the dynamic behavior of
structures [50,51]. The prescribed surface nodal loads The prescribed
surface nodal loadat the Nth node of a surface segment pN may be
converted to the traction boundary conditions as follows:

Table 1
Numerical procedure for the explicit FE wheel-rail dynamic interaction analysis.
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∑= = =
=

t t ξ η n φ ξ η p( , ) ( , ) i 1,2,3i i
N

N N

1

4

(17)

where ni is the unit normal vector to the surface segment; see Eqn.
(26b) in Section 2.6.1. A Gaussian one-point quadrature may then be
used to conduct the surface integration in Eqn. (9b) as follows:

∫ ∫ ∫= =
− −

N t N t J N t Jd ξ η dξdηΓ ( , ) 4 (0,0) (0,0)T T T

Γ 1

1

1

1

s,e (18)

in which J is the surface Jacobian matrix and J4 (0,0) approximates
the element surface.

2.4. Internal force

To construct the internal force vector given in Eqn. (9c), the strain-
displacement matrix B and the stress vector σ are required. Continuing
to take the hexahedral element as examples, the Jacobian matrix J is
used to relate the displacement in the parametric coordinate system to
the global coordinates system:

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= …

∂
∂

∂
∂

∂
∂

−

∂
∂

∂
∂

∂
∂

J N 1,2, ,8

φ
x

φ
y

φ
z

φ
ξ

φ
η

φ
ζ

1

N

N

N

N

N

N

(19)

The strain-displacement matrix B may then be obtained with Eqn.
(8c), and the strain rate ε̇ and stress rate σ̇ are readily calculated by
applying the strain-displacement relation and the material constitutive
relation in Eqns. (2g) and (2f), respectively. The material constitutive
relation expressed in Eqn. (2f) can be either linear or nonlinear. See Ref.
[20] for an additional discussion of the material constitutive relations.
The Cauchy stresses may be calculated using explicit time integration as
follows:

+ = +σ σ σt Δt t Δt( ) ( ) ˙ (20)

Because G ξ η ζ( , , ) = B σT is defined over the volume, the internal
forces of structures may be updated with a Gaussian one-point quad-
rature analogous to Eqn. (18) as follows:

∫ =G G Jξ η ζ d( , , ) Ω 8 (0,0,0) (0,0,0)
Ωe (21)

in which J8 (0,0,0) approximates the element volume.

2.5. Hourglass control

Explicit FE wheel-rail interaction analyses have generally adopted
the one-point quadrature scheme (Eqn. (18) and (21)) for the sake of

computational efficiency, which may also avoid the shear locking issue.
The one-point reduced integration, however, leads to spurious zero-
energy modes or “hourglass” modes for hexahedral and quadrilateral
elements. For hexahedral elements, the hourglass modes are present
whenever diagonally opposite nodes have identical velocities, which
give zero strain rates according to Eqn. (2g). The anti-hourglass force
vector H is thus introduced in Eqn. (10) to avoid the undesirable
hourglass modes from growing large and destroying solutions. An or-
thogonal Flanagan-Belytschko hourglass control scheme [63] may be
used in the explicit FE wheel-rail dynamic interaction analysis. The
anti-hourglass forces are given by:

∑= = = =
=

H f Q ρC V u γ γ i M1
4

( ˙ ) 1,2,3; 1,2,3,4iM
N

hg d e
N

i M

N
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2
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1

8

(22)

where Qhg is the hourglass coefficient, and the nodal velocities u̇i
N are

the sum of the hourglass field u̇ N
HG and the linear portion of the nodal

velocities u̇ N
LIN:

= = +u u uu̇ ˙ ˙ ˙i
N N N N

HG LIN (22a)

The hourglass shape vectors γM
N are defined in terms of the hourglass

base vectors ГM
N given in Table 2:

∑= −
=

γ φ uГ ˙ ГM
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i
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(22b)

Flanagan-Belytschko hourglass control scheme given by Eqn. (22) is
in viscous form: the calculated anti-hourglass force is proportional to
the components of the nodal velocity contributing to hourglass modes.
This method is more suitable for dynamic problems with high velocity/
strain rate. In contrast, the stiffness-form hourglass control scheme
calculates the anti-hourglass forces proportional to the components of
the nodal displacement contributing to hourglass modes. The stiffness-
form scheme can reduce total accumulated hourglass deformation and
is preferred for low rate problems. In addition to Flanagan-Belytschko
scheme, other hourglass control methods such as Belytschko-Bindeman
[66], Puso [67] and Jabareen-Rubin [68] have also been implemented
in the explicit FE commercial programs [59,60]. To estimate the effects
of different hourglass control schemes, the ratio of the hourglass energy
(i.e. the work done by the anti-hourglass force) over the internal energy
may be checked. As a general guideline, the hourglass energy should
not exceed 10% of the internal energy.

2.6. Contact algorithm

Because of its iterative nature [20,52], the penalty contact algo-
rithm is considered to be suitable for solving explicit FE contact pro-
blems and has been broadly proposed to enforce the wheel-rail contact
constraints. As indicated in Table 1, the penalty contact algorithm can
be straightforwardly implemented in the explicit FE programs as a
subroutine. Penetration is allowed and represents the key to the penalty
method [20]. The penalty algorithm checks each slave node for pene-
tration through the master surface. The contact surface with coarser
mesh or with stiffness higher than its counterpart is usually
treated as the master surface. This study refers to the wheel surface as
the slave surface and to the rail surface as the master surface; the
symmetry of the approach eliminates any bias in this choice [59].

2.6.1. Normal contact
In a wheel-rail contact simulation, a slave wheel node is seldom in

exact contact with a master rail node. Instead, the slave wheel node
usually “contacts” a segment composed of four rail surface nodes. At
each time step, the contact segments on the rail surface need to be
searched for. For an arbitrary slave node Ns defined on the prospective
wheel contact surface, we need first locate the closest master node and
segment on the rail surface. As shown schematically in Fig. 2 (a), the

Table 2
Hourglass base vectors for hexahedral elements.

Node (N) ГN
1 ГN

2 ГN
3 ГN

4

1 1 1 1 −1
2 1 −1 −1 1
3 −1 −1 1 −1
4 −1 1 −1 1
5 −1 −1 1 1
6 −1 1 −1 −1
7 1 1 1 1
8 1 −1 −1 −1

Note that the hourglass shape vectors γM
N are orthogonal to the linear velocity

field u̇ N
LIN, which makes the anti-hourglass force vector fiM

N also orthogonal to
the linear velocity field u̇ N

LIN and is necessary for accurately detecting an
hourglass. Therefore, the hourglass control scheme avoids transferring energy
to or from the rigid body and uniform strain modes.
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slave node Ns is denoted as a red spot, and its closest master node Nm is
stored by segments Si (i= 1,2,3,4). If the nodes Ns and Nm do not co-
incide, Ns can be shown to lie in one of the segments Si via the following
tests:

× × > × × > =+ +c s c c c s s c i( )·( ) 0 , ( )·( ) 0 1,2,3,4i i i i i1 1 (23)

The vectors ci and +ci 1 are along the edges of Si and point outwards
from Nm, and the vector s is the projection of the vector beginning at
Nm and ending at Ns onto the closest segment (S2 in this demonstra-
tion). The inequalities of Eqn. (23) ensure that the vector s is between
the vectors ci and +ci 1 and is thus located within the segment Si. If the
inequalities are not satisfied, another master segment containing Nm

will be checked. The algorithm does not limit the number of segments
containing Nm, and the master segment determined at the previous time
step is preferentially checked at each time step.

The “contact point” Nc is the projection of the slave wheel node Ns

on the master rail segment (S2 in this demonstration). The determined
master segment has a bilinear parametric representation in a local co-
ordinate system as follows:

∑=
=
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3

(24)
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= + + = …φ ξ η ξξ ηη N( , ) 1
4

(1 )(1 ) 1,2, ,4N N N
(24b)

where r ξ η( , ) represents the master segment; ii represents unit direction
vectors; and xi

N represents the nodal coordinates of the nodes contained
by the segment. Let g be a vector drawn to the slave node Ns. The
contact point Nc with coordinates ξ η( , )c c on the master segment can be
determined by satisfying the following:

∂
∂

− =r g r
ξ

ξ η ξ η( , )·[ ( , )] 0c c c c (25a)

∂
∂

− =r g r
η

ξ η ξ η( , )·[ ( , )] 0c c c c (25b)

The coordinates ξ η( , )c c in Eqns. (25a) and (25b) may be solved
numerically with Newton-Rapson iterations. Since the method may
diverge with distorted elements [59], a careful treatment of mesh in the
wheel-rail contact region, especially in the solution zone, is highly
desirable. Penetration of the slave wheel node through its master rail
segment may then be judged by a scalar l:

= −n g rl ξ η·[ ( , )]c c (26a)

⎜ ⎟= = ⎛
⎝
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× ∂
∂
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∂
∂

× ∂
∂

n r r r rn ξ η
ξ η ξ η

( , ) /i c c
(26b)

If ≥l 0, no penetration occurs and nothing will be done; if <l 0, an
interface force vector fcN normal to the master segment will be applied
to the contact point, and its magnitude is proportional to the amount of

penetration:

= −f nlkcN (26c)

Hence, interface springs may be assumed between the penetrating slave
wheel nodes and rail contact surface as shown in Fig. 2 (b), and the
penalty contact (spring) stiffness k is intrinsically the combination of a
geometrical penalty term and a velocity penalty term [58]. For the
hexahedral elements containing the master segments used in the wheel-
rail contact surfaces, k may be given in terms of the bulk modulus K ,
the element volume V and the face area A as follows:

=k
f KA

V
SI

2

(26d)

where fSI is a scale factor for the penalty contact stiffness. The choice of
its value in wheel-rail interaction simulations will be discussed in
Section 3.3.1. The equal and opposite contact forces distributed over
the master segment nodes fmaster

J may also be obtained as follows:

= − =f fφ ξ η J( , ) 1,2,3,4master
J J

c c cN (27)

The penalty contact algorithm implemented in the explicit FEM can
treat an arbitrarily shaped surface by representing the surface with a
faceted mesh.

2.6.2. Tangential contact
The Coulomb friction law is available to solve the wheel-rail tan-

gential contact. A trial tangential contact nodal force ∗f at time step
+t 1 may be defined as follows:

= −∗f ef kΔcT
t (28a)

where fcT
t is the tangential contact force calculated at time step t ; k is

the penalty contact stiffness; and eΔ is the incremental movement of the
slave wheel node along the rail surface:

= −+ + + +e r rΔ ξ η ξ η( , ) ( , )t
c
t

c
t t

c
t

c
t1 1 1 1 (28b)

The traction bound fbound
t at time step t in the Coulomb friction law

is the product of the magnitude of the normal force fcN
t at the same

time step and the coefficient of friction (COF) μ:

= ff μbound
t

cN
t (28c)

The tangential contact force at time step +t 1 may thus be written
as follows:
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The COF μ, which is considered a constant in the classical Coulomb's
law, may vary with various factors in wheel-rail contact such as sliding
speed, contact pressure, surface lubrication or contamination, rough-
ness, temperature, and humidity [26]. Section 2.2.2 demonstrated that
the explicit FEM couples the calculation of wheel/rail dynamic re-
sponses with the calculation of wheel-rail contact in the time domain.
Thus, a velocity-dependent Coulomb's law with a functional COF may
be implemented in the explicit FEM. The COF updated at each time step

Fig. 2. Parametric representation of wheel-rail contact.
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may be expressed in terms of the static and dynamic friction coefficients
μs and μd, respectively, a decay constant c and wheel-rail relative
sliding velocities u̇rel between the slave nodes and master segments at
the same time step as follows:

= + − −μ μ μ μ e( ) u
d s d

c ˙ rel (29a)

=u eΔ Δt˙ /rel (29b)

The decay constant c describes how fast the static coefficient ap-
proaches the dynamic coefficient and may be determined by fitting the
measured results [26]. Because the wheel-rail contact forces can be
physically interpreted as externally applied tractions [20,52], the con-
tact force vector required in Eqn. (11) may be expressed as follows:

∫⎜ ⎟∑ ⎛
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cN
t

M

con
1 Γc,e (30)

The traditional division of an elastic contact problem into a normal
problem and a tangential problem is based on an assumption that the
friction transmitted between elastic contact bodies has a negligible in-
fluence on the normal contact solutions [69]. In the explicit FEM, the
normal and tangential contacts are calculated successively and depen-
dently at each time step, which is necessary for solving inelastic contact
problems. Studies with the explicit FEM [22,23] have indicated that the
tangential elastoplastic wheel-rail contact solutions have noticeable
effects on the normal solutions: an increase in tangential force increases
plastic flow, and the contact patch tends to become larger in size and
shifts forward more.

2.6.3. Contact stability
The contact-based critical time step determined by the penalty

contact algorithm is proportional to { }min m
k

J
, where mJ (J=1,2) is

essentially the mass attached to the contact “spring” and k is the pen-
alty contact stiffness given in Eqn. (26d). The time step size Δt used in
the explicit FEM should not exceed the contact-based critical time step
to avoid contact instability. The easiest method of increasing the con-
tact-based critical time step is to scale down the penalty contact stiff-
ness k.

2.7. Displacement constraints

Suitable displacement constraints are necessarily defined as essen-
tial boundary conditions in the mathematical model of wheel-rail dy-
namic interactions and are largely applied to structural boundaries,
such as the inner end of wheel half-axles, the rail ends and the rail
bottom surfaces (see Section 3.3.4). These constraints can be imposed
by setting the constrained acceleration components to zero [59]. Since
the prescribed nodal displacement constraints are imposed in the local
coordinate system, an orthogonal matrix Q constructed by the nor-
malized unit vectors in the local axes needs to be employed to transform
the global nodal acceleration vectors üi

N (for node N) updated by Eqn.
(11) to the local system as follows:

= =u Qu i¨ ¨ 1,2,3LOCi
N

i
N (31a)

After the constrained acceleration components are zeroed, the
modified vectors üLOCi

N can be transformed back to the global system:

= =u Q u i¨ ¨ 1,2,3i
N T

LOCi
N (31b)

where üi in Eqn. (31b) is the finally updated nodal acceleration vector
of the time step, which will further be integrated to approximate the
nodal velocities and displacements by Eqns. (12a) and (12b).

2.8. Summary of the algorithms

By systematically exploring the core algorithms employed in the

explicit FE wheel-rail interaction analyses, this section enhances the
understanding of the explicit FE wheel-rail interaction studies and
shows the applicability of the explicit FEM to the wheel-rail dynamic
interaction analyses from a theoretical perspective. The advantages of
using the explicit FE algorithm to solve the wheel-rail dynamic inter-
actions may thus be summarized as follows:

• The explicit FEM couples the calculation of wheel/rail structural
dynamic responses with the calculation of wheel-rail contact, which
makes the explicit FEM a suitable approach for solving wheel-rail
dynamic interactions and provides a theoretical basis for the in-
direct validation of the wheel-rail dynamic contact solution.

• The explicit FEM is capable of treating nonlinearities in materials,
geometry and boundary conditions. The implemented penalty con-
tact algorithm can handle arbitrarily shaped contact surfaces, and it
calculates normal and tangential contact successively and depen-
dently at each time step, which is necessary for solving inelastic
wheel-rail contact problems.

• By avoiding the need for matrix evaluation, assembly and decom-
position as required by implicit integration algorithms, the explicit
procedure is computationally attractive for analyzing high-fre-
quency dynamic problems of short duration, especially when the
total dynamic response time that must be modeled is only a few
orders of magnitude longer than the stability critical time step,
which is frequently the case in wave propagation analyses [70]. The
explicit wheel-rail FE model may include in its solution all the re-
levant vibration modes of structures and continua and associated
wave propagations.

The conditionally stable explicit FEM is, however, less efficient than
the implicit FEM for static equilibrium analyses or low-frequency dy-
namics problems lasting for a much longer time period [47]. Implicit-
explicit sequential approaches may thus be employed to minimize both
the solution time and the dynamic effects induced by the initialization
of wheel-rail interaction analysis. The implicit-explicit sequential ap-
proach involves performing an implicit static equilibrium analysis fol-
lowed by an explicit transient dynamics analysis. The modeling pro-
cedure is elaborated in the next section.

3. Modeling procedure

This section discusses how to establish robust explicit FE wheel-rail
dynamic interaction models. A basic explicit FE wheel-rail dynamic
interaction model may contain a half-track model and a half-wheelset
model with its share of the sprung mass of a car body and a bogie. We
can divide the modeling procedure into three stages in a physical se-
quence: Stage 1. build wheel and rail models; Stage 2. let the wheel and
rail come into contact and achieve static equilibrium; and Stage 3. let
the wheel roll along the rail. The commercial programs ANSYS/LS-
DYNA were employed to demonstrate this modeling procedure, and
other programs with implementations of implicit-explicit sequential
approaches, such as ABAQUS/Explicit, may also be applied.

3.1. Modeling of wheel and rail structures

3.1.1. Geometry modeling
The geometries of wheels and rails, including the contact profiles,

should be modeled as realistically as possible because they may influ-
ence both the structural dynamic properties and contact solutions. The
detailed nominal geometries of a wheel radial section and a rail cross
section may initially be created in a graphical software (e.g., AutoCAD;
see Fig. 3 (a)). Based on these geometries, the wheel and rail volumes
can subsequently be generated in the pre-processing FE software (e.g.,
ANSYS; see Fig. 3 (b)) by rotating the wheel radial section with respect
to the central line of the wheel axle and extruding the rail cross section
longitudinally. The wheel/rail volumes are suggested to be generated
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after meshing the wheel radial section and rail cross section for mod-
eling convenience.

3.1.2. Mesh
Adequately fine mesh is needed for a robust FE wheel-rail interac-

tion model, especially when precise contact solutions and high-fre-
quency dynamics are desired. Zhao and Li [21] report that the element
size of approximately 1/20 of the minor axis of the contact patch tends
to provide accurate contact solutions, whereas approximately 1/10 of
the minor axis may be acceptable for many engineering problems. To
obtain an optimal mesh in the sense of cost effectiveness and acceptable
error, a partially refined mesh as shown in Fig. 4 may yield a better
approximate solution [13]. Fine special discretization should be con-
centrated on the prospective contact regions. Another meshing method
balancing the efficiency and accuracy of contact solutions uses the
surface-based tie constraints to refine the mesh in the contact regions
[42,71]. The tetrahedral or wedge elements with triangular faces,
which have indeterminate contact condition at the corners, are not
suitable for analyzing contact problems and should be avoided by re-
meshing the model [60]. In addition, remeshing may be employed to
adjust mesh size [21] or the position of solution zone [12] of an explicit
FE contact model. Fig. 5 shows the explicit FE model used to study
wheel-rail contact transition from single point to two points. Because
the contact transition occurs at different rail locations with different
prescribed angles of attack (AoA), the position of solution zone is ad-
justed by remeshing the rail model to capture the contact transition
process.

The mesh-determined time step of explicit integration (Eqn. (14))
may be increased by mass scaling, i.e. scale up the mass of a model non-
physically, to reduce simulation time. One simple method of the mass
scaling is to artificially increase the material density (Eqn. (14b)). Note
that the mass scaling is only justifiable when it has insignificant influ-
ence on the solution, which is usually the case for quasi-static analyses.
For dynamic analyses where an accurate mass distribution is critical to
the solution, the added penetrations and kinetic energy should be
carefully checked when applying the mass scaling.

Profiles with geometric irregularities are generally considered in the

wheel-rail impact contact simulations [34–38,43]. One example of the
measured rail top surface with geometric irregularities at an insulated
rail joint (IRJ) is shown in Fig. 6. The rail surface geometric irregula-
rities measured by Railprof [37] or HandySCAN [72] may be imposed
on the originally smooth surface of the model by adjusting the nodal
coordinates in the input files of the dynamic analysis solver.

3.1.3. Modeling of other components and model parameters
In addition to the wheel and rail, other train/track components such

as the car body, primary suspension, sleepers, fastenings and ballast,
may be modeled for different study purposes. The sleepers may also be
modeled with hexahedral elements as well as different material prop-
erties than those used in the rail and wheel models; the ballast is gen-
erally built as spring-damper pairs with a fixed foundation; and the
fastening models may significantly influence the track dynamic beha-
vior, whose modeling techniques were comprehensively discussed in
Refs. [39,50]. Because the car body and the bogie frame have a negli-
gible influence on high-frequency wheel-rail dynamic interactions [73],

Fig. 3. Modeling of the wheel and rail geometries. (a) Generated in AutoCAD (b) Generated in ANSYS.

Fig. 4. Wheel and rail meshes. (a) Mesh of rail cross section (b) Mesh of wheel tread (c) Overview of wheel & rail meshes.

Fig. 5. Remesh rail model to adjust the position of solution zone.
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they are normally simplified as mass elements connected to the
wheelset by the primary suspension with parallel linear springs and
viscous dampers.

The explicit FE wheel and rail models generally adopt either elastic
or elastoplastic steel with nominal values as the material; and the
sleeper models normally adopt elastic timber or concrete as the mate-
rials, although inelastic models can be conveniently used. Because the
parameters used in fastening and ballast models can rarely be directly
measured in the field, they are generally calibrated by fitting the si-
mulated frequency response functions to the measured values [50,51].
Typical values of the parameters employed in the explicit FE wheel-rail
interaction models can be found in Refs. [36,37].

3.2. Modeling of static contact

A wheel-rail static equilibrium analysis may be performed to obtain
the deformation of structures caused by the gravitational load, which
will subsequently be considered the initial conditions for the wheel-rail
dynamic interaction analyses. The augmented Lagrangian contact al-
gorithm is recommended for the wheel-rail static contact analysis,
which is intrinsically an iterative series of penalty methods with auto-
matic updates of penalty values [74]. The contact pair with a static COF
needs to be defined, and it consists of the wheel and rail surface nodes
that may be within the static wheel-rail contact patch.

In the wheel-rail static contact analysis, the rail ends, half-wheel-
axle ends and car body should be constrained in the lateral (Ux) and
longitudinal (Uz) directions. To prevent the wheel model from un-
desired rolling, its central radial section (normal to the rail longitudinal
direction) can be constrained in the longitudinal direction (Uz); see
Fig. 7. By applying the gravitational load, the static contact solutions
can be obtained. Fig. 8 shows the distribution of the vertical

components of the stresses on a piece of rail model that was in contact
with the wheel model in a static contact analysis. An elliptic contact
patch can be clearly seen at the top of the rail.

3.3. Modeling of dynamic interactions

As indicated by the numerical solution procedure presented in
Table 1, definitions of the wheel-rail rolling contact pair, the initial
conditions, and the load and displacement boundary conditions are
required to proceed with an explicit FE wheel-rail dynamic interaction
analysis.

3.3.1. Rolling contact pair
A rolling contact pair needs to be defined in the wheel-rail transient

frictional rolling calculation. To employ the penalty contact algorithm
introduced in Section 2.6, the master and slave segments of the rolling
contact pair defined on the rail top and wheel tread should contain the
whole prospective rolling contact region; however, the defined contact
regions should be as small as possible to reduce the computation costs
caused by contact searching. One example of the contact pair defined
for an explicit FE wheel-rail dynamic interaction analysis is shown in
Fig. 9. In LS-DYNA, a three-dimensional ‘box’ may be defined to
reduce the contact-associated computational time [59]. Only the
elements inside the box are active for contact searching.

Either constant or variable COFs may be used in wheel-rail rolling
simulations. Zhao and Li [26] studied wheel-rail dynamic contact so-
lutions that implemented a velocity-dependent COF and concluded that
the velocity-dependent COF may mimic a more realistic contact con-
dition and provide a less regular adhesion-slip distribution pattern
compared with the constant COF.

Sections 2.6.1 and 2.6.3 mentioned that the scale factor of the
penalty contact stiffness fSI plays an important role in the penalty

Fig. 6. Measured geometry applied to a wheel-insulated rail joint impact model [31]. (a) Nominal geometry (b) Applying the measured geometry.

Fig. 7. Displacement constraints.

Fig. 8. Static contact solution.
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contact algorithm. Ideally, a sufficiently high and low contact stiffness
is required so that the penetration and slip distance are acceptably
small and the problem can be well-behaved in terms of convergence,
respectively. Fig. 10 compares the wheel-rail contact solutions obtained
with different scale factors of the penalty contact stiffness: fSI =1, 0.5
and 0.1. The contact pressure magnitudes are indicated by contour
lines, and the tangential stresses are indicated by red arrows. The ar-
rows point in the directions of the tangential stresses, and their lengths
are proportional to the magnitude. This figure shows that with de-
creasing scale factor fSI (from Fig. 10 (a) to (c)), the obtained contact
patch areas increases while the contact pressure decreases. A value of

=f 1SI is recommended for wheel-rail dynamic interaction analyses.
The contact solutions provided by =f 1SI are consistent with those
obtained by the Hertz contact theory and CONTACT [21,22]; moreover,
when applying 1mm or even finer wheel/rail surface meshes, >f 1SI
may require the time step size to be scaled down for computational
stability, which decreases the efficiency of the explicit integration.

3.3.2. Initial conditions
By applying the implicit-explicit sequential analysis, the initial

nodal displacements of the wheel-rail transient rolling simulation can
be obtained by the wheel-rail static equilibrium analysis illustrated in
Section 3.2. The initial nodal velocities of the wheel in both rotation
and forward translation should be prescribed, and the value of the
applied wheel rotational velocity equals the quotient of the applied
translational velocity and the wheel radius. The equivalent transla-
tional nodal velocities should also be applied to the primary

suspensions and sprung mass because they travel forward together with
the wheel.

3.3.3. Load boundary conditions
In addition to the gravitational load illustrated in Section 2.3.1, the

driving torque is another widely used load boundary condition in the
simulation of wheel-rail tractive frictional contact [34–38,43]. Because
the hexahedral elements used to construct wheel models have only
translational freedom, the Hughes-Liu (H-L) beam elements [75] de-
generated from the hexahedral element can be employed to take the
externally exerted torque. As shown schematically in Fig. 11, four H-L
beam elements with length L are used. The L value should not be too
small because the critical time step size of the H-L beam element for
integration stability is =−Δt L E ρ/ /H L . Each H-L beam element con-
sists of three nodes: Ij (j = 1,2,3,4), J and K. Nodes I1∼ I4 and J are all
attached to the wheel model and located in the same plane S. Node J is
the driven node located at the wheel axial center and shared by the four
beam elements. Node K is also shared by the four beam elements, and it
is required to define the axis system of beam element. The vector
pointing from K to J is normal to plane S. A driving torque MT in plane S
is applied to the driven node J, and its direction is determined by the
right-hand rule.

Driven by the torque, the wheel rolls along the rail with a conse-
quently generated longitudinal creep force FL between the wheel and
rail, which satisfies the requirement that the traction coefficient μT is
less than the COF μ. The traction coefficient is distinguished from the
COF in wheel-rail rolling contact studies by its definition in Eqn. (32):

= <μ F
F

μT
L

N (32)

where FL and FN are the longitudinal and normal contact forces, re-
spectively, and μ is the overall COF of the contact pair that limits the
traction force transmitted in the contact. The overall COF may be

Fig. 9. Contact pair defined for the explicit FE wheel-rail dynamic interaction
analysis.

Fig. 10. Contact solutions with different fSI values (contour graph unit: MPa). (a) Contact stress ( fSI=1) (b) Contact stress ( fSI=0.5) (c) Contact stress ( fSI=0.1).

Fig. 11. Driving torque applied to four H-L beam elements.
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different from the local COF at certain nodes when the velocity-de-
pendent friction is considered [26]. In addition, the traction coefficient
may be assumed to be constant in stationary rolling, whereas it varies
with time in dynamic rolling because of vibration, and its nominal
value is proportional to the applied driving torque (Eqn. (32)).

A sudden exertion of driving torque may bring significant excitation
to the wheel-rail rolling system. A gradually increased driving torque is
thus suggested to avoid excitation as much as possible [28] and mini-
mize the dynamic relaxation process (see Section 3.3.5). A functional
driving torque M t( )T is investigated here and is expressed as follows:

=
⎧
⎨
⎩

− <

≥
( )( )M t cos t t

M t t
( ) 1 ,

,
T

M πt
t2 0

0 0

0
0

(33)

where M0 is the maximum value of the torque and t0 is the duration
required to reach M0. Fig. 12 graphically shows the loading function
with M0 =20 kNm and t0 =6ms. Fig. 13 compares the calculated
wheel-rail normal loads and creep forces with the applications of the
loading function in Eqn. (33) and a constant driving torque
M t( )T =20 kNm. This figure shows that the functional driving torque
significantly damps the undesired excitation on the creep force,
whereas it has less, if any, effect on the normal load.

3.3.4. Displacement boundary conditions
Different displacement boundary conditions may be applied to the

explicit FE wheel-rail interaction models according to different research
objectives. When the structural dynamics are of less concern or quasi-
steady-state contact solutions are desired, the bottom surface of the rail
foot may be fully constrained as in the models presented in Refs.
[21,22]. When the dynamic effects must be considered and captured, a
more detailed modeling of the track substructure is necessary
[12,34,35,37,43,47,50,51]. The fastening models simplified as spring-
damper pairs may be constrained in the lateral and longitudinal di-
rections if only the vertical dynamics are of concern [51]. More com-
plex boundary conditions are required when solid rail-pad

representations of rail fastenings are used [50]. Because the ballast has
less influence on the wheel-rail dynamic contact solutions, it is nor-
mally constrained in both the lateral and longitudinal directions and
fixed at the foundation.

When only a half wheelset is modeled, the inner end of the wheel
half-axle can be constrained in the lateral direction to keep the rolling
wheel from toppling over. The ends of the finite-length rail models are
generally constrained in the lateral and longitudinal directions, which
may cause reflective waves that influence the solutions, especially when
the track models are insufficiently long. A numerical experiment con-
ducted in Ref. [76] indicated that a FE track model with a length of
20m is considered sufficiently long to reduce the influence of wave
reflection, whereas a length of 10m may meet engineering require-
ments for reproducing the measured axle box acceleration. Non-re-
flective boundary conditions have also been implemented in certain
commercial FE programs [59,60], and their application on wheel-rail
dynamic interactions is currently under development.

3.3.5. Dynamic relaxation
In the analysis of wheel-rail dynamic interactions, a certain length

of rolling distance from the wheel initial position to the solution zone is
necessary to damp the oscillations caused by the wheel/rail initial ki-
nematic and potential energy from imperfect static equilibrium [22,77].
This process is called dynamic relaxation. Because the wheel-rail rolling
contact physically excites vibrations of the structures and waves in
continua, the quasi-steady state may be considered to be achieved by
the dynamic relaxation when the oscillations are damped out to less
than 10% of the static values [12]. The wheel-rail dynamic interaction
solutions obtained after the process of the dynamic relaxation can be
output for post-processing.

3.3.6. Time step control
As mentioned in Section 2.2.3, a scale factor sf is employed to

control the time step and to guarantee the stability of the explicit in-
tegration, and =sf 0.9 has been widely used in previous explicit FE
wheel-rail interaction studies. Applying smaller time steps in the ex-
plicit FEM may produce better accuracy as reported in Ref. [20]. Fig. 14
compares the contact solutions obtained with sf =0.9 and 0.6 (used for
explosive problems), where Fn, Ft , and μ are the amplitudes of the
contact pressure, surface shear stress, and COF, respectively. The ex-
cellent consistency of the results obtained with different value of sf
indicates that a scale factor of 0.9 is acceptable for wheel-rail interac-
tion analyses, and it guarantees integration stability and simultaneously
decreases the solution time.

4. Solution analyses

The previous section proposes pre-processing knowledge for the
explicit FE wheel-rail dynamic interaction analysis; this section in-
troduces post-processing approaches to converting the output of nu-
merical programs for wheel/rail nodal forces and nodal motions into
wheel-rail contact and dynamics solutions.

Fig. 12. Functional driving torque.

Fig. 13. Forces obtained with different torque functions. Fig. 14. Comparison of contact stresses calculated with sf =0.9 and 0.6.
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4.1. Contact solutions

The wheel-rail contact solutions of interest generally include the
contact patch area, normal and shear contact stresses, and micro-slip
and adhesion-slip distributions within the contact patch. These solu-
tions can be obtained by post-processing the nodal force and nodal
motion simulated by the wheel-rail dynamic interaction models.

4.1.1. Contact patch area and stresses
The contact patch area may be determined with surface nodal

forces: a surface node is in contact if the nodal force in the direction
normal to the local surface is non-zero [12,21,22]. Hence, the first step
is to convert the output surface nodal forces in the global coordinate
system into those in the local coordinate system. Because inertia force is
included in the dynamic analyses, the force of a surface node outside
the contact may be small but non-zero; thus, a non-zero threshold (e.g.,
0.001 N) is used in practice to determine whether a node is in contact.
Fig. 15 shows one example of the wheel and rail nodes in contact de-
termined by this rule.

The contact stresses, including the surface normal stress and shear
stress, may be calculated with the nodal forces in the local coordinate
system. For the generally used quadrilateral segments:

∑= =
=

σ
f

l
i

4
1,2,3i

M

J

i
MJ

1

4

2 (34)

where σi
M is the contact stress vector on the Mth segment of the wheel/

rail surface and the spatial components, with =i 1,2,3 representing the
normal, lateral and longitudinal directions in the local coordinate
system, respectively; fi

MJ is the local nodal force vector, with =J 1,2,3,4
representing the number of the nodes constructing segment M as shown
schematically in Fig. 16; and l is the dimension of the quadrilateral
segment. According to Newton's third law, the contact stresses may be

calculated with either the wheel nodal forces or rail nodal forces.
Fig. 17 compares the contact stresses calculated with the wheel and rail
nodal forces and indicates that the choice has negligible influence on
the calculated contact stresses.

4.1.2. Micro-slip distribution
The micro-slip refers to the tangential relative velocity between two

particles in contact. As explained in Section 2.6.1, a rail surface contact
node is actually in contact with the “contact point” rather than a wheel
surface node; thus, interpolations are required to convert the velocities
of wheel nodes into the velocities of the “contact points”. Fig. 18
schematically shows a length-weighted linear interpolation scheme. In
Fig. 18 (a), the red cross represents an arbitrary rail node Nr and the
four blue spots =iN ( 1,2,3,4)iw represent the four wheel nodes com-
posed of the wheel surface segment in contact with the rail node Nr.
Another blue spot overlapping the red cross in Fig. 18 (b) denotes the
interpolated “contact point” Nw on the wheel surface and in contact
with rail node Nr; and =l i( 1,2,3,4)i indicates the distances from the
“contact point” Nw to the four sides of the wheel surface contact seg-
ment.

We may obtain the interpolated velocities vw of the “contact point”
Nw by the length-weighted linear interpolation as follows:

= + + +
+ +

v v v v vl l l l l l l l
l l l l( )( )w

2 4 1 1 4 2 2 3 3 1 3 4

1 2 3 4 (35)

where =v i( 1,2,3,4)i represents the nodal velocities of the wheel nodes
N iw . The micro-slip sn may then be calculated as follows:

= −s v vn w r (36)

where vr are the nodal velocities of the rail node Nr. The length-
weighted linear interpolation scheme is also applicable to the calcula-
tions for the displacement, acceleration and vertical coordinate (normal
to the local contact surface) of the “contact points” on the wheel. The
accuracy of the length-weighted linear interpolation scheme may con-
veniently be estimated by comparing the wheel vertical coordinates
before and after interpolation. Fig. 19 shows that the interpolated
wheel surface formed by the “contact points” overlaps the original
wheel surface, indicating that the interpolation scheme is reliable. In
addition, note that the calculated wheel-rail contact patch is not flat but
saddle shaped. This result confirms that FEM drops the half-space as-
sumption and the non-flat contact patch may cause geometric spin. The
geometric spin calculated with the explicit FEM is discussed in Refs.
[21,22].

4.1.3. Adhesion-slip distribution
The division of the adhesion and slip regions in the contact patch is

an important feature of the frictional rolling contact. The slip region can
be distinguished from the adhesion region either by comparing the
surface shear stress Ft with the traction bound μ Fn or by calculating the
micro-slip sn within the contact patch. A node is in a slip region if:

− < >F F sμ ε or εn t nT s (37)

where εT and εs are the tolerances of the two approaches. A value of

Fig. 15. Wheel and rail nodes in the contact patch

Fig. 16. Nodal forces converted into contact stresses.

Fig. 17. Contact stresses calculated with the wheel and rail nodal forces.
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0.3% of the maximal tangential nodal force in the contact patch is
suggested for εT [21,26,28], whereas a value of 0.05m/s is suggested
for εs [26]. For a robust wheel-rail dynamic interaction model, the
calculated adhesion-slip distribution determined by both approaches
should be consistent with each other.

4.2. Structural dynamics

To obtain the structural dynamic responses, which are generally the
vibration acceleration and velocity, the nodes enclosed by the part of
the structure of interest need to be selected. The structural vibration
accelerations üstr , for example, may then be calculated by averaging the
accelerations of the nodes enclosed by the structural part in the global
coordinate system üN :

∑=
=

u u
n

¨ 1 ¨str
N

n
N

1 (38)

where n is the total number of nodes enclosed by the structural part.
Fig. 20 compares the simulated and measured hammer-excited rail
acceleration at different locations along the rail. The legend of each
graph indicates the distance from the hammer excitation point to the
response location. Each simulation result (red curves) is the average of
the accelerations of the nodes in the vicinity (within about 1 cm) of the
response location.

5. Numerical example

This section provides a numerical example of simulating wheel-rail
impact at a typical IRJ (see Fig. 21). This numerical example demon-
strates that the explicit FEM is capable of handling arbitrary contact
geometries, nonlinear material properties, and dynamic effects.

To obtain the dynamic contact solutions between a rolling wheel

and the target IRJ shown in Fig. 21, we performed three simulations by
varying the material and/or geometric parameters of one explicit FE
wheel-rail interaction model. Simulation 1 adopted an elastic wheel/
rail material and the nominal rail geometry (Fig. 6 (a)); simulation 2
used elastoplastic material and nominal geometries; and simulation 3
used elastoplastic material and the measured IRJ geometry (Fig. 6 (b)).
For each simulation, the contact solutions of three consecutive output
time steps are displayed in Fig. 22 to show the main characteristics of
the wheel-IRJ dynamic interactions.

In Fig. 22 (a) and (b), excluding the discontinuous contact in the
middle graphs, the wheel-rail contact solutions obtained with both
elastic (simulation 1) and elastoplastic (Simulation 2) models show the
same characteristics as those reported in Refs. [22,23]. The contact
patches simulated with the elastic model have elliptical shapes,
whereas those with the elastoplastic model have “egg” shapes. The
amplitudes of the contact pressures are located approximately in the
middle of the contact patches for the elastic case but shift forward and
are reduced by the plastic deformation for the elastoplastic case. The
contact patch areas simulated with the nominal geometry in Fig. 22 (a)
and (b) basically remain steady and increase to a small extent during
impact, whereas simulation 3 with the measured geometry in Fig. 22 (c)
provides much more pronounced non-steady-state contact solutions. In
simulation 3, the contact patch shape, which is neither elliptical nor
“egg-shaped”, and the pressure distribution vary considerably with time
due to the contact geometric irregularities and wheel-rail impact.

In addition, impact wave patterns were produced by the wheel-IRJ
dynamic interaction simulations. One example produced by simulation
3 is shown in Fig. 23, which confirms that the explicit FE wheel-rail
interaction analysis may take dynamic effects into account.

6. Conclusions and future work

This paper has systematically explored the core algorithms em-
ployed in the explicit FE wheel-rail interaction analyses and theoreti-
cally demonstrated that the explicit FEM is a suitable approach for
solving dynamic frictional rolling contact by fully coupling the calcu-
lation of frictional rolling contact with the calculation of high-fre-
quency structural dynamics. An indirect validation method for dynamic
contact solutions has been proposed. The reliability of the wheel-rail
dynamic interaction solutions can be confirmed by separately verifying
the quasi-steady-state contact solutions against Hertz contact theory
and CONTACT and validating the structural dynamic responses with
measurements. To promote the broad use of the method, this paper has
also proposed procedures for establishing robust explicit FE wheel-rail
dynamic interaction models and converting outputs into solutions of
rolling contact and dynamic responses. The summarized algorithms and
the proposed procedures can also be applied to the modeling of

Fig. 18. Interpolated wheel nodal coordinate/motions into rail. (a) Before interpolation (b) After interpolation.

Fig. 19. Coordinates/positions of wheel and rail nodes.
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dynamic interactions occurring to tire-road, bearings and gears.
The explicit FEM is considered a promising approach to explaining

certain enigmas in railway research, such as squeal and corrugation,
whose generation mechanisms are closely related to both the wheel-rail
frictional rolling and wheel/track dynamic behavior. Future work re-
quired for these potential applications may include the following as-
pects.

• A half wheelset model may not accurately simulate wheel-rail con-
tact when the dynamics of the other half wheelset is not negligible.
A full wheelset model considering full dynamics of wheel-rail

contact has been presented in Ref. [43] to simulate wheel-turnout
contact. A full wheelset model may also be employed in future
studies to reliably calculate unstable wheel vibration during curving
motions.

• Solid rail-pad representations with proper material parameters
proposed in Ref. [50] may be adopted in future studies of wheel-rail
dynamic interactions to improve the accuracies of the lateral and
longitudinal dynamics simulations.

• Wave phenomena induced by wheel-rail dynamic interactions must
be further investigated. Experimental validation of the waves si-
mulated by the proposed explicit FE models should be conducted.

In addition, an explicit FEM solver dedicated to the analysis of
wheel-rail dynamic interactions may be developed in the future. The
computation cost is expected to be reduced by eliminating redundant
conditional statements in the general-purposed explicit FE commercial
programs, and the newly developed solver may also provide more
convenience and flexibility to amendments to the algorithm. The pen-
alty contact algorithm with nonlinear [78] or functional penalty contact
stiffness, the dynamic contact algorithms developed for more sensitive
and realistic tangential contact solutions, and the coupling with multi-
body dynamics analyses may be implemented for future analyses of
wheel-rail dynamic interactions.

Fig. 21. Typical IRJ in the Dutch railway network.

Fig. 22. Evolution of the wheel-rail contact pressure obtained by three different simulations, (a) Simulation 1 (elastic material and nominal geometry): elliptical
contact patch, (b) Simulation 2 (elastoplastic material and nominal geometry): “egg-shaped” contact patch, (c) Simulation 3 (elastoplastic material & measured
geometry): non-steady-state contact patch.
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