
 
 

Delft University of Technology

Numerical modeling of wheel-rail squeal-exciting contact

Yang, Zhen; Li, Zili

DOI
10.1016/j.ijmecsci.2019.02.012
Publication date
2019
Document Version
Final published version
Published in
International Journal of Mechanical Sciences

Citation (APA)
Yang, Z., & Li, Z. (2019). Numerical modeling of wheel-rail squeal-exciting contact. International Journal of
Mechanical Sciences, 153-154, 490-499. https://doi.org/10.1016/j.ijmecsci.2019.02.012

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijmecsci.2019.02.012
https://doi.org/10.1016/j.ijmecsci.2019.02.012


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


International Journal of Mechanical Sciences 153–154 (2019) 490–499 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

Numerical modeling of wheel-rail squeal-exciting contact 

Zhen Yang, Zili Li ∗ 

Delft University of Technology, Section of Railway Engineering, Stevinweg 1, 2628 CN Delft, The Netherlands 

a r t i c l e i n f o 

Keywords: 

Wheel-rail contact 

Dynamic interaction 

Squeal 

Numerical modeling 

Explicit FEM 

a b s t r a c t 

Complex frictional rolling contact and high-frequency wheel dynamic behavior make modeling squeal greatly 

challenging. The falling-friction effect and wheel mode-coupling behavior are believed to be the two main mech- 

anisms that generate unstable wheel vibration and the resulting squeal noise. To rigorously consider both mech- 

anisms in one model, we propose an explicit finite element (FE) model to simulate wheel-rail dynamic frictional 

rolling. Wheel-rail squeal-exciting contact is investigated with considerations of dynamic effects, unsteady lat- 

eral creepage and velocity-dependent friction. With the inclusion of the dynamic effects in the contact solution, 

large-creepage-induced waves, which share features with Rayleigh waves, are discovered. The solutions of the 

dynamic contact calculated using the proposed model indicate that the explicit FE method is able to reproduce 

the falling-friction effect. The transient analyses of wheel-rail frictional rolling with wheel lateral creepage show 

the coupling of the axial and radial dynamics of the rolling wheel model, suggesting that the explicit FE method 

can also reproduce the mode-coupling behavior. This study improves the understanding and modeling of squeal- 

exciting contact from the perspective of wheel-rail dynamic interaction. 
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. Introduction to friction-induced squeal 

Squeal, which is an intrinsically nonlinear and transient phe-

omenon, poses great challenges in modeling [1] . Systematic studies on

ailway curve squeal began in the 1970s when Rudd [2] described the

heel-rail frictional characteristic (the functional dependence between

riction force and wheel-rail relative velocity) in terms of ‘negative

amping’ (generalized as full ‘stick-slip’) or ‘falling friction’, and associ-

ted this characteristic with the mechanism of wheel squeal. Since then,

arious increasingly sophisticated theoretical models have adopted parts

f this mechanism based on Rudd’s seminal model [3–8] . 

Analytical research [9] , however, revealed that instability can also

ccur with constant or even positive creep force characteristics when

dditional mechanical degrees of freedom are considered. Similarly, fi-

ite element (FE) analyses by the complex eigenvalue approach revealed

hat instability arises when two modes couple in the presence of friction

10] . To consider the influence of the vertical dynamics on friction, the

mode-coupling dynamic instability’ mechanism have been employed in

ombination with falling-friction theories to predict friction-induced in-

tability [8, 11–13] . Chiello , et al. [14] concluded that the two types

f destabilization caused by the falling-friction mechanism and by the

ode-coupling mechanism may be combined in each particular situa-

ion of squeal; thus, both mechanisms should be explored [15] . 

The generation of squeal is characterized as ‘enigmatic’ [16] or ‘er-

atic’ [17, 18] in railway research because field observations of squeal
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henomena often fail to be explained by the existing theories. The con-

act modeling accounting for the frictional instability of a vibrating

heel is considered the central part of the squeal prediction model

19] . One shortcoming of the existing squeal prediction models is the

ncomplete representation of the contact model. The simplifications of

he point contact models and Kalker’s contact models with discretized

ontact surface (widely used in the existing squeal prediction models)

ave unknown influences on the prediction of friction-induced vibration

20] . As reported by a recent review of the squeal study [21] , although

alker’s contact models can treat steady-state creepage, more detailed

ontact models that include transient effects may be needed for a correct

epresentation of the squeal mechanisms. 

This study proposes an explicit FE dynamic contact model to simu-

ate wheel-rail squeal-exciting contact with unsteady lateral creepage.

nsteady lateral creepage, particularly between the leading inner wheel

nd the low rail, is thought to be the main cause of squeal [22] . The

wo commonly considered mechanisms leading to squeal —the falling-

riction and mode-coupling mechanisms —are addressed in this study.

n contrast with the steady-state contact assumed in Kalker’s theories,

he proposed explicit FE contact model accommodates the dynamic, or

ransient, effects involved in wheel-rail interactions by coupling the cal-

ulation of wheel-rail frictional rolling contact with the calculation of

heel/rail structural dynamics (see Section 2.1 ). Here, the dynamic ef-

ects denote that the inertia of material elements influences the stress

eld when the elements ‘flow’ through the deforming region [23] .

ith the inclusion of the dynamic effects in the contact solution, the
 February 2019 
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Fig. 1. The structure and the schematic logic of this study. 

l  

w  

t  

w  

t  

d

 

A  

a  

n  

f  

t  

t  

w  

e  

2

2

 

p  

c  

s  

e  

i

𝐮

w  

e  

w  

t  

t

𝐮  

𝐮  

w  

c  

o  

c  

c  

a  

o  

(  

s  

g

 

r  

c  

l  

Table 1 

Numerical procedure for the explicit FE wheel-rail dynamic interaction analysis. 

Initialize algorithm: apply initial conditions; define contact pairs; construct the 

lumped mass matrix M; and set the termination time. 

LOOP1 t = 0, 1, 2,…, n (time step number) 

(I) Apply load conditions to construct the external force vector 𝐟 𝑡 ext . 
(II) Process elements to construct the internal force vector 𝐟 𝑡 int . 
(III) Construct the wheel-rail contact force vector 𝐟 𝑡 con using the penalty contact 

method. 

LOOP2 N = 1, 2,…, m (slave wheel node number) 

i. Locate the master rail segment for the slave wheel node N . 

ii. Locate the wheel-rail contact point (projection of the slave node on the master 

segment). 

iii. Calculate the contact force. 

END LOOP2 

(IV) Update the nodal accelerations ̈u 𝑡 , velocities u̇ 𝑡 +1∕2 and displacements u t + 1 . 

(V) Check for termination. 

END LOOP1 

Output: wheel/rail nodal force and nodal motion ( ̈u , u̇ and u) 
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arge-creepage-induced waves, which share features with Rayleigh

aves, are discovered. This study refers to wheel-rail contact with struc-

ural dynamic effects as wheel-rail dynamic interaction. The aim of this

ork is to contribute to the better modeling and understanding of fric-

ion instability and squeal generation from the perspective of wheel-rail

ynamic interaction. 

Fig. 1 shows the structure and the schematic logic of this study.

fter reviewing studies on the two widely accepted generation mech-

nisms in Section 1 , Section 2 presents the explicit FE wheel-rail dy-

amic interaction model. Section 3 then analyzes the simulated contact

orces ( Section 3.1 ), the dynamic contact solutions ( Section 3.2 ) and

he wheel dynamic behavior ( Section 3.3 ). The analyses suggest that

he explicit FE model can reproduce the falling-friction effect and the

heel mode-coupling behavior and thus confirm that the explicit finite

lement method (FEM) is suitable for modeling squeal-exciting contact.

. Explicit FE wheel-rail dynamic interaction model 

.1. Algorithms of the explicit FE wheel-rail dynamic interaction analysis 

This subsection summarizes the core algorithms employed in the ex-

licit FE wheel-rail interaction analyses with a focus on the mathemati-

al model and the numerical solution procedure. The explicit integration

cheme uses the central difference method to approximate the accel-

ration vector ü . The equilibrium equation for the wheel-rail dynamic

nteraction problem at time step t can be written as Eq. (1) : 

̈
 

𝑡 = 𝐌 

−1 (𝐟 ext 𝑡 − 𝐟 int 𝑡 + 𝐟 con 𝑡 
)

(1) 

here M, f int and f ext are the mass matrix, internal force vector and

xternal force vector, respectively, and f con is the contact force vector,

hich can be included as a contribution to the externally applied trac-

ions [24,25] . The velocity and displacement vectors can then be ob-

ained using central difference time integration via Eqs. (2) and (3) : 

̇
 

𝑡 +1∕2 = 𝐮̇ 𝑡 −1∕2 + Δ𝑡 𝑡 +1∕2 𝐮̈ 𝑡 (2)

 

𝑡 +1 = 𝐮 𝑡 + Δ𝑡 𝑡 +1 𝐮̇ 𝑡 +1∕2 (3)

here Δt is the time step size. The Courant–Friedrichs–Lewy stability

ondition [26] was used in this study to guarantee the convergence

f the explicit integration, which requires that a sound wave may not

ross the smallest element within one time step. The critical time step

haracterized by the smallest element may vary in nonlinear dynamic

nalysis [24] because of changes in the material parameters and/or ge-

metry. A scale factor of 0.9 is thus employed to control the time step

 Δt = 0.9 × critical time step), so that the convergence condition can be

atisfied with certainty. In this study, the time step of the explicit inte-

ration Δt ≈ 86 ns. 

Table 1 outlines the numerical procedure for the explicit FE wheel-

ail dynamic interaction analysis, which is composed primarily of cal-

ulations of the mass matrix and force vectors in equilibrium Eq. (1) . A

umped mass matrix can be constructed prior to the iteration to promote
491 
he efficiency and practicality of the explicit FEM. For the force vec-

ors, the external force vector f ext can be calculated directly by the given

oad conditions; the internal force vector f int contributed by stresses can

e calculated by the constitutive and strain-displacement formulations

uilt in the element and material models; and the contact force vector

 con can be calculated using the penalty contact method [27] . When the

enalty contact algorithm is applied, the time step size Δt used in the ex-

licit integration should not exceed the contact-based critical time step

o avoid contact instability. The contact-based critical time step deter-

ined by the penalty contact algorithm is proportional to min { 
√
𝑚 

𝐽 ∕ 𝑘 }
here m 

J ( J = 1,2) is the mass attached to the contact "spring" and k is

he penalty contact stiffness [28] . In this study, the penalty contact-

ased critical time step is 118 ns, bigger than the time step of the ex-

licit integration Δt (86 ns); the convergence of contact calculation can,

herefore, be guaranteed. 

The numerical solution procedure presented in Table 1 contains two

oops. The outer loop is constructed mainly by formulating the equation

f motion and solving the equation with the central difference scheme.

n contrast, the inner loop calculates the wheel-rail contact, which is

alled as a subroutine at each time step prior to updating the structural

ynamic responses. The calculation of wheel/rail dynamics and the cal-

ulation of wheel-rail contact are therefore coupled in the numerical

lgorithm. 

The Coulomb friction law is applied to solve the wheel-rail tangential

ontact [27] . A trial tangential contact nodal force f ∗ at time step t + 1

an be defined as Eq. (4) : 

 

∗ = 𝐟 cT 𝑡 − 𝑘 Δ𝐞 (4)

here f cT 
t is the tangential contact force calculated at time step t, k

s the penalty contact stiffness, and Δe is the incremental movement of

he slave wheel node along the rail surface. The traction bound f bound 
t at

ime step t in the Coulomb friction law is the product of the magnitude of

he normal force f cN 
t at the same time step and the coefficient of friction
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Table 2 

Prescribed displacement boundary conditions applied to the simulation cases. 

Prescribed displacement 

boundary conditions 

Simulation cases with 

a constant COF 

Simulation case with a 

velocity-dependent COF 

No lateral wheel motion case 1 

Small lateral wheel motion case 2 

Medium lateral wheel motion case 3 case 5 

Large lateral wheel motion case 4 
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b  
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COF) 𝜇, as Eq. (5) : 

 bound 
𝑡 = 𝜇||𝐟 cN 𝑡 || (5)

The tangential contact force at time step t + 1 can thus be written as

q. (6 ): 

 cT 
𝑡 +1 = 

{ 

𝐟 ∗ 𝑖𝑓 |𝐟 ∗ | ≤ 𝑓 bound 
𝑡 +1 

𝑓 bound 
𝑡 +1 𝐟 ∗ ∕ |𝐟 ∗ | 𝑖𝑓 |𝐟 ∗ | > 𝑓 bound 

𝑡 +1 (6)

The COF 𝜇, which is considered a constant in the classical Coulomb’s

aw, can vary with various factors in wheel-rail contact, such as sliding

peed, contact pressure, surface lubrication or contamination, rough-

ess, temperature and humidity [29] . Because the explicit FEM couples

he calculation of wheel/rail dynamic responses with the calculation of

heel-rail contact in the time domain, a velocity-dependent Coulomb’s

aw with a functional COF can be implemented in the explicit FEM. The

OF updated at each time step can be expressed in terms of the static

nd dynamic friction coefficients 𝜇s and 𝜇d , respectively, a decay con-

tant c and wheel-rail relative sliding velocities 𝐮̇ rel between the slave

odes and master segments at the same time step using Eqs. (7) and (8) :(
𝐮̇ rel 

)
= 𝜇𝑑 + 

(
𝜇𝑠 − 𝜇𝑑 

)
e − 𝑐 |𝐮̇ rel | (7)

̇
 rel = Δ𝐞 ∕Δ𝑡 (8)

The decay constant c describes how quickly the static coefficient ap-

roaches the dynamic coefficient and can be determined by fitting the

easured results [29] . 

.2. Wheel-rail dynamic interaction model with wheel lateral motion 

Fig. 2 (a) shows the employed three-dimensional explicit FE wheel-

rack dynamic interaction model with wheel lateral motion. A 10-m

ength of half-track and a half wheel set with sprung mass of the car

ody and the bogie were considered. The wheel, the rail and the sleep-

rs were modeled using 8-node solid elements. To achieve high solution

ccuracy with a reasonable model size, nonuniform meshing was used.

he mesh size around the initial position of the wheel-rail contact and
ig. 2. Wheel-rail dynamic interaction model. (a) 3D FE model; (b) simulated 

rictional rolling with wheel lateral motion. 

p  

a  

f  

c  

f  

i  

w  

d  

(  

t  

t  

p  

F

t

c

d

492 
he 150-mm length of the solution zone was 1 mm. The lumped mass of

he car body and bogie was modeled as mass elements that were con-

ected to the wheelset by the primary suspension of the vehicle with

arallel linear springs and viscous dampers. Because the sleepers and

allast have little influence on the high-frequency dynamic behavior un-

er study, each sleeper model contained only 12 solid elements and the

allast was simplified as vertical spring and damper elements with the

isplacement constrained in the lateral and longitudinal directions. The

ame constraint type was used at the two ends of the rail model. The pa-

ameters involved in the track model are taken primarily from [30] . The

heel-rail contact was defined with real geometry and with the wheel

ange included. The wheel geometry corresponded to a passenger car

heel of the Dutch railway with the standard profile of S1002; the rail

as UIC54E1 with an inclination of 1:40. No geometry irregularities

ere considered on the surfaces of the wheel or rail. 

The wheel-rail dynamic interaction was simulated by employing the

oftware ANSYS& LS-DYNA: the static equilibrium of the system under

ravity was first solved with an implicit solver of ANSYS; and an explicit

olver of LS-DYNA, whose core algorithms is presented in Section 2.1 ,

as then employed to simulate wheel-rail dynamic frictional rolling.

he dynamic simulation applied the displacement field calculated with

he implicit solver for stress initialization. In the transient dynamic sim-

lation, the wheel rolled from its initial position at time t 0 = 0 s to the so-

ution zone with an initial speed of 100 km/h along the rail, as shown in

ig. 2 (b). The dynamics arising from the wheel/rail initial kinematic and

otential energy due to imperfect static equilibrium [31] have relaxed

t time t 1 = 15 ms. The wheel lateral motion was subsequently simulated

rom time t 2 = 16 ms by applying the prescribed displacement boundary

onditions listed in Table 2 to both ends of the wheel half-axle (except

or in case 1). Note that, in this study, the angle of attack was approx-

mated to zero because, in the simulations, the initial angles of attack

ere zero and both ends of the wheel half-axle model applied the same

isplacement boundary condition during transient rolling. Fig. 3 (a) and

b) present the prescribed displacement boundary conditions applied in

he simulations and the resulting lateral wheel displacements, respec-

ively. The two graphs share the same trend, but the simulated dis-

lacements fluctuated due to the flexibility of the wheel and axle; the
ig. 3. Time histories of the prescribed displacement boundary conditions and 

he resulting lateral wheel displacements. (a) Prescribed displacement boundary 

onditions applied to the simulation cases; (b) simulated resulting lateral wheel 

isplacements. 
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nsteady lateral creepage was thus simulated. The wheel entered the so-

ution zone at time t 3 = 16.5 ms and exited at t 4 = 18.7 ms. The dynamic

volution of the contact solutions was captured between t 3 and t 4 . 

A driving wheel was modeled in this study by applying a torque on

he wheel axle. The torque initially increased gradually from zero until

eaching its maximum value at 6 ms and remaining constant. A longi-

udinal creep force was thus generated. The explicit FEM can also be

mployed to simulate frictional rolling contact between a driven wheel

nd rail, e.g., by applying a longitudinal traction force on the wheel axle

32] , which, however, produces a longitudinal creep force in the oppo-

ite direction. The corresponding traction coefficient equals the quotient

f the longitudinal creep force and the wheel load and is considered

o be constant in steady-state rolling [31] , whereas it varies with time

n dynamic rolling because of vibration. The quasi-steady-state traction

oefficient was 0.27 in this study. A constant COF = 0.45 was used for

imulation cases 1–4. 

Knothe , et al. [33] reported that the falling-friction characteristic

an be reproduced only by assuming that COF depends on the wheel-

ail sliding velocity; simulation case 5 listed in Table 2 was therefore

onducted with a velocity-dependent COF. Simulation case 5 shared

he same configuration as case 3 (except for COF). When a velocity-

ependent COF is applied, the overall COF may differ from the local

OF at a node [29] . 

. Analyses of wheel-rail contact and dynamics results 

This section first analyzes the contact forces calculated by the ex-

licit FE model in Section 3.1 to provide a broad overview of the wheel-

ail dynamic interaction with wheel lateral motion. To reproduce the

wo potential mechanisms of squeal introduced in Section 1 (the falling-

riction and mode-coupling mechanisms), the simulated wheel-rail dy-

amic contact solutions and structural dynamic responses are analyzed

n Sections 3.2 and 3.3 , respectively. 

.1. Contact forces 

Fig. 4 (a) and (b) show the time histories of the contact forces sim-

lated without wheel lateral motion (case 1) and with medium lateral
493 
otion (case 3), respectively. Before time t 1 = 15 ms, the simulated con-

act forces fluctuated mostly due to vibrations excited by initial kinetic

nd potential energy in the unrelaxed system. The traction bound (de-

oted by the cyan curve) fluctuated around the static value 50 kN. It

ould be assumed that a quasi-steady state was entered after the oscilla-

ions were damped to less than 10% of the static values at time t 1 . The

reep force is the resultant force of the lateral and longitudinal contact

orces. In Fig. 4 (a), the simulated creep force (denoted by the red curve)

lmost overlaps the longitudinal force (denoted by the green curve) be-

ause the value of the lateral force (denoted by the blue curve) is small.

y contrast, as shown in Fig. 4 (b), the lateral force simulated by case 3

umped to large value after t 2 = 16 ms due to the enforcement of a pre-

cribed displacement boundary condition; consequently, the creep force

eached the traction bound and friction saturation occurred at approx-

mately 19 ms. The dynamic evolution of the contact solution between

imes t 3 = 16.5 ms and t 4 = 18.7 ms were output and are analyzed in the

ext subsection. 

.2. Contact solutions 

This subsection analyzes the dynamic contact solutions calculated

sing the proposed explicit FE wheel-rail interaction model, including

ontact stresses and the distributions of micro-slip and adhesion-slip re-

ions within the contact patch. This subsection also discusses the influ-

nces of lateral creepage and velocity-dependent COF on the dynamic

ontact solutions. 

.2.1. Contact solutions with dynamic effects 

Fig. 5 (a) shows a magnified view of the time histories of the con-

act forces calculated by case 1 between times t 3 = 16.5 and t 4 = 18.7 ms

within the solution zone). The close-up view shows that the simulated

raction bound and creep force oscillated periodically but were not ex-

ctly in phase. Eight time points with a fixed interval (0.06 ms) were

elected from a certain period of the creep force fluctuation, designated

–8 in the magnified view in Fig. 5 (a). Fig. 5 (b) plots the distributions of

he simulated surface shear stress (red curve) and traction bound (blue

urve) within the contact patch at these eight selected time points. The

dhesion and slip regions determined by the contact stress are denoted
Fig. 4. Time histories of the simulated contact forces. 

(a) Contact forces simulated by case 1; (b) contact 

forces simulated by case 3. 
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Fig. 5. Periodic surface stress distributions for simula- 

tion case 1. (a) Magnified view (within the solution 

zone) of the time histories of the contact forces for 

simulation case 1; (b) stress distributions calculated at 

corresponding time points denoted by 1–8 in (a) (blue 

curve: traction bound; red curve: surface shear stress; 

A: adhesion region; and S: slip region; the green ar- 

rows indicate the position of the moving local peak). 

(For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of 

this article.) 
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A’ and ‘S’ in the figure, respectively. A comparison of the stress distri-

utions calculated at the eight time points in Fig. 5 (b) indicates that

he surface shear stress within the adhesion region increased gradually

rom the 1st time point to the 4th time point and decreased from the 5th

ime point to the 8th time point. This trend is in accordance with the

ariation in the creep force shown in the magnified view of Fig. 5 (a).

he animation displaying the variation in the surface stress with time

34] indicates that the surface shear stress and the traction bound varied

eriodically with the contact forces. As reported by [10] , the interface

ressure distribution varies with time during vibration; thus, the peri-

dic variation in the surface normal and shear stresses reproduced in

his numerical example may reflect the dynamic effects involved in the

xplicit FE contact solutions. 

In addition, a moving local peak of the shear stress, indicated by the

reen arrows in Fig. 5 (b), was observed within the adhesion region in the

ariation process of the contact stress. The peak starts at the leading edge

f the contact patch, moves towards the trailing part, and ultimately

xits the adhesion region at the juncture of the adhesion-slip regions.

ecause the shear stress is close to the traction bound when close to

he leading edge of the contact patch and when close to the juncture of

he adhesion-slip regions, sudden friction saturation, or a turbulence of

icro-slip [35] , may arise when such a local peak of shear stress enters

r exits the adhesion region. 

.2.2. Contact solutions with lateral creepage 

Contact stress and micro-slip are symmetrically distributed with re-

pect to the longitudinal axis within the contact patch when creepage

xists only in the longitudinal direction. When simulating wheel lateral
494 
otion in this study, the resulting wheel-rail lateral creepage caused

symmetric distributions of contact stress and micro-slip within the con-

act patch, as shown in Fig. 6 . To compare contact solutions with a broad

ange of lateral creepage, Fig. 6 plots six typical contact solutions ob-

ained for several simulation cases: (a) and (b) were obtained with sim-

lation case 1 at 17.58 ms and with case 2 at 17.58 ms, respectively;

c) and (e) were obtained with case 3 at 17.58 ms and 18.54 ms, re-

pectively; and (d) and (f) were obtained with case 4 at 17.07 ms and

7.94 ms, respectively. From top to bottom, the graphs in Fig. 6 display

he simulated stress distributions along the longitudinal centerline of the

ontact patch (1st row), stress distributions (2nd row) and micro-slip

istributions (3rd row) within the contact patch, as well as shear stress

nd adhesion-slip region distributions obtained with Kalker’s boundary

lement method program CONTACT [36] (4th row). The correspond-

ng creepage values (lateral creepage 𝜂 and longitudinal creepage 𝜉) are

resented in Table 3 (except for Fig. 6 (f)). 

Traditional rolling contact theories are generally based on the half-

pace assumption; the main parts of contact bodies not close to the

ontact point can, therefore, be considered as rigid. The creepage may

hen be conveniently calculated with the ‘rigid’ wheel-rail relative ve-

ocity and the wheel rolling velocity. However, this is no longer valid

or FE contact models, which drop the half-space assumption and are

exible everywhere. The traditional method of the creepage calculation

s thus not applicable for the presented explicit FE wheel-rail contact

odel. Considering that the explicit FEM and CONTACT should provide

imilar creepage-creep force relationships, as reported in [37] , we esti-

ated the corresponding creepage values of the explicit FE contact solu-

ions using CONTACT in this study: the creep forces calculated with the
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Fig. 6. Simulated contact solutions with lateral creepage (1st row: stress distributions along the longitudinal centerline; 2nd row: stress distributions within the 

contact patch (color depth: pressure magnitude; blue arrows: directions and magnitudes of the shear stress); 3rd row: micro-slip distributions (color depth: magnitude 

of the normal wheel-rail relative velocity; red arrows: directions and magnitudes of the micro-slips); and 4th row: shear stress and adhesion-slip region distributions 

calculated with Kalker’s CONTACT [36] (black arrows: directions and magnitudes of the shear stress). (a) simulation case 1 at 17.58 ms; (b) case 2 at 17.58 ms; (c) 

case 3 at 17.58 ms; (d) case 4 at 17.07 ms; (e) case 3 at 18.54 ms; and (f) case 4 at 17.94 ms. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Table 3 

Input forces and output creepage in the simulations with CONTACT. 

Calculated forces 

and creepage 

corresponding to the 

graphs in Fig. 6 (a) (b) (c) (d) (e) (f) 

Normal load F n (kN) 126.68 125.61 123.87 102.60 116.19 106.46 

Lateral creep force 

F ty (kN) 

2.19 9.30 20.27 18.41 36.83 47.04 

Longitudinal creep 

force F tx (kN) 

39.46 39.19 38.12 33.59 34.01 6.09 

Lateral creepage 

𝜂 (%) 

0.019 0.080 0.185 0.199 0.440 –

Longitudinal 

creepage 𝜉 (%) 

0.304 0.308 0.317 0.331 0.326 –
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xplicit FE model (see Table 3 ) were input into the simulations with

ONTACT as the prescribed tangential forces, and the other input pa-

ameters used in the CONTACT simulations were the same as those in-

olved in the explicit FE simulations. Contact solutions and the creepage

alues were then obtained with CONTACT and presented in the 4th row

f Fig. 6 and in Table 3 , respectively. Note that no creepage value was

resented for Fig. 6 (f) because when friction saturation occurs, a pre-

cribed creep force corresponds to nonunique creepage. 

In the contour/vector diagrams showing the stress distributions (2nd

ow), the pressure magnitude corresponds to the depth of the color; the

lue arrows indicate the directions of the shear stress, and their lengths

re proportional to the shear stress magnitude. Similarly, in the con-

our/vector diagrams showing the micro-slip distributions (3rd row),

he depth of the color within the contact patch indicates the magni-

ude of the normal wheel-rail relative velocity; the red arrows indicate

he directions of the micro-slip, and their lengths are proportional to

he micro-slip magnitude. The asymmetry of the distribution of the con-

act patch can be characterized by an orientation angle 𝜃, as shown in

ig. 6 (c). The orientation angle increases with the lateral creepage from

ig. 6 (a) to (e). For the solutions calculated with CONTACT (4th row),
495 
he black arrows indicate the directions of the shear stress, and their

engths are proportional to the shear stress magnitude. The orientation

ngles obtained with CONTACT are consistent with those obtained with

he explicit FEM. 

The distributions of the adhesion-slip regions determined by the sim-

lated explicit FE contact stresses in the 1st row and the micro-slips

n the 3rd row are in line with each other. They are also in reason-

ble agreement with the distributions of the adhesion-slip regions de-

ermined with CONTACT in the 4th row. In the graphs of the micro-slip

istribution (3rd row), the slip regions covered with micro-slip vectors

re located at the trailing part of the contact patch, while the adhe-

ion regions ‘A’ indicated by dashed ovals shrink with increasing lateral

reepage from Fig. 6 (a) to (e). Fig. 6 (f) shows friction saturation. 

The color depth outside the contact patch corresponds to a zero nor-

al relative velocity in the graphs of the micro-slip distribution (3rd

ow). Thus, the color depths at the leading and trailing edges are lighter

nd darker, respectively, indicating a positive and negative normal rela-

ive velocity. Wave phenomena indicated by the variation in color depth

an be observed in the micro-slip distributions calculated with the ex-

licit FEM in Fig. 6 (e) and (f). Because the surface elements of the wheel

nd rail were in contact, further movement towards or away from each

ther caused transient intensification or relaxation of the contact, re-

pectively. The waves were therefore essentially embodied in the alter-

ation of compression intensification and relaxation [35] . According to

he vibration frequencies of the rail surface nodes and the wavelengths

bserved in Fig. 6 , the wave speed can be estimated as approximately

 km/s, which is in line with the speed of Rayleigh wave traveling in

teel. Moreover, the phase difference between normal and tangential

urface nodal vibrations is approximately 𝜋/2, which also corresponds

ell with the Rayleigh wave. 

.2.3. Contact solutions with a velocity-dependent COF 

A velocity-dependent COF defined in Eq. (7) was adopted in simula-

ion case 5. The decay coefficient c , static COF 𝜇s and dynamic COF 𝜇d 

ere set to 6, 0.5 and 0.32, respectively, as used in [29] . Fig. 7 presents

ne example of the contact solutions calculated with simulation case
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Fig. 7. One example of the contact solutions calcu- 

lated using a velocity-dependent COF (simulation case 

5. S1, S2 and S3: slip regions). (a) Adhesion-slip divi- 

sion determined by the micro-slip (red arrows: micro- 

slips); (b) stress distribution (color depth: pressure 

magnitude; blue arrows: directions and magnitudes 

of the shear stress); (c) adhesion-slip divisions deter- 

mined by the stress distributions extracted from (b) 

along the four longitudinal lines of the contact patches 

indicated by black arrows. (For interpretation of the 

references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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e  
 at 16.68 ms. Although simulation case 5 shared the same configura-

ion as case 3 (except for COF), the orientation angle shown in Fig. 7 (b)

s much smaller than those shown in Fig. 6 (c) and (e) because lateral

reep force increased when the wheel passed the solution zone (see the

lue curve between time t 3 and t 4 in Fig. 4 (b)) and the contact solution

resented in Fig. 7 was calculated at an earlier time step than those of

ig. 6 (c) and (e) and thus had a smaller lateral creepage. 

Fig. 7 (a) shows the simulated micro-slip distribution within the

ontact patch. Compared to the adhesion-slip distributions simulated

ith a constant COF shown in Fig. 6 , the adhesion-slip distribution in

ig. 7 shows a less regular pattern: the slip regions denoted by the black

vals S1, S2 and S3 are scattered in the trailing part of the contact patch.

owever, this result is believed to be a realistic contact condition [29] .

The contact pressures and surface shear stresses plotted in Fig. 7 (c)

ere extracted from the stress distribution shown in Fig. 7 (b) along the

our longitudinal lines of the contact patches indicated by black arrows.

n Fig. 7 (c), the red and blue curves indicate the simulated surface shear

tress F t and the traction bound (the product of the contact pressure

 n and the velocity-dependent COF 𝜇( v )), respectively, the green curve

ndicates the product of the contact pressure and the static COF 𝜇s , and

he black curve indicates the product of the contact pressure and the

ynamic COF 𝜇d . 

According to Coulomb’s law of statics, the blue curve in Fig. 7 (c)

hould coincide either with the green curve of the adhesion regions or

ith the red curve of the slip regions. Discrepancies were, however, ob-

erved in the numerical solutions at two data points, as indicated by the

wo red arrows: the blue curves at these two data points should have
496 
verlapped with the red curves because the calculated micro-slips at

hese locations are nonzero in Fig. 7 (a), as indicated by the two green

rrows. These discrepancies may stem from two aspects. First, the shear

tress and traction bound shown in Fig. 7 (c) were obtained at different

ime steps. Because the velocity-dependent COF 𝜇( ̇𝐮 rel ) used to calcu-

ate the traction bound ( Eq. (5) ) and the tangential force (Eq. (6)) at

 certain time step relies on the nodal displacements obtained at the

revious time step ( Table 1 step (d)), the traction bound displayed in

ig. 7 (c) was in fact calculated one time step later than the shear stress.

onsidering that the time step used in the simulation was small (ap-

roximately 86 ns), the second aspect is expected to dominate: the dis-

repancies were due to the different sensitivities of the approaches used

o determine the slip region. The micro-slip shown in Fig. 7 (a) and the

elocity-dependent COF 𝜇( v ) used for Fig. 7 were calculated using the

heel-rail relative velocities, whereas the shear stress F t was obtained

sing the relative displacement ( Eq. (4) ). Because the displacement was

btained by integrating velocity ( Eq. (3) ) and integration can act as a

lter, the traction bound shown in Fig. 7 (c) is expected to reflect dy-

amic effects more sensitively than the surface shear stress calculated

sing the displacement. 

The adhesion-slip distribution determined using the calculated con-

act stresses in Fig. 7 (c) is in reasonable agreement with that determined

sing the calculated micro-slip in Fig. 7 (a), indicating that the explicit

EM can predict wheel-rail dynamic contact solutions with velocity-

ependent COFs. Because the falling-friction characteristic can be re-

roduced only by the velocity-dependent COF [33] , the explicit FEM is

xpected to be capable of reproducing the falling-friction characteristic.
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Fig. 8. Comparison of the calculated and measured wheel 

modal frequencies (solid lines: measured; dotted lines: FE sim- 

ulated). 
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Fig. 9. Time histories and PSDs of the wheel lateral vibration simulated by 

different simulation cases. (a) Time histories; (b) PSDs. 
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.3. Wheel dynamic behavior 

Based on the analysis of the simulated wheel-rail dynamic contact

olution with velocity-dependent COF, the preceding subsection indi-

ated that the explicit FEM is capable of addressing the falling-friction

eneration mechanism of wheel squeal. As reported in [38] , an explicit

E model may include in its solution all relevant vibration modes and

ssociated wave propagations as long as the elements and time steps

re sufficiently small. The computational time step ( Δt in Eqs. (2) and

3) ) of the transient analyses in this study fluctuated around 86 ns; thus,

he vibration frequency up to 5.8 MHz can theoretically be predicted.

his subsection analyzes the wheel dynamic behavior and compares the

heel dynamic responses simulated with and without lateral motion to

ddress the mode-coupling mechanism of squeal. 

.3.1. Validation of wheel dynamic behavior 

Wheel dynamic behavior plays a more important role in the gener-

tion of high-frequency squeal than track dynamic behavior [22] . Each

onal frequency of squeal is expected to relate to a wheel mode [17,

9] . To accurately simulate wheel dynamic responses during rolling,

his study first validated the dynamic behavior of the explicit FE wheel

ubmodel with a laboratory hammer test. A typical NS-intercity wheel

sed in the Dutch railway was measured. Because material damping of

 wheel is generally very low and the exact value of the wheel modal

amping is not critical for noise prediction [22] , the wheel dynamic

ehavior can be characterized by the modes and the corresponding nat-

ral frequencies [21, 30] . The wheel modes are generally characterized

y the numbers of nodal diameters and nodal circles [22] . Fig. 8 com-

ares the wheel vibration modes measured by the hammer test and those

dentified through the FE modal analysis within the frequency range of

queal (up to 10 kHz). The natural frequencies of the wheel modes in var-

ous directions are plotted against the number of nodal diameters. Mea-

ured results are plotted using solid lines and the corresponding results

rom the FE modal analysis are presented using dotted lines. Reasonable

greement was reached. All these physical modes were thus included in

he transient dynamic simulation by virtue of the full FE model and the

mall time step [31] . 

.3.2. Squeal-like wheel vibration 

After the validation of wheel dynamic behavior, wheel dynamic re-

ponses were simulated using the proposed explicit FE wheel-rail dy-

amic interaction model. Fig. 9 (a) and (b) show the time histories and

he corresponding power spectrum densities (PSDs), respectively, of the

ateral vibration of the rolling wheel calculated in simulation cases 1–4.

he squeal-like vibration signals represented by large amplitude limit-

ycles were produced by the explicit FE model when applying the wheel

ateral motion. The amplitudes of the limit cycles of the time histories
497 
ncreased with increasing amplitude of the lateral motion applied to the

heel model. The three dominant frequencies of the squeal-like vibra-

ion signals shown in PSDs in Fig. 9 (b) are 163 Hz, 1172 Hz and 1921 Hz.

omparing these frequencies to the wheel modal frequencies identified

n Subsection 3.3.1 , we can determine the wheel modes excited in the

imulations of wheel-rail dynamic interaction with wheel lateral mo-

ion: the mode with zero nodal circle and zero nodal diameter (0,0), the

ode with zero nodal circle and three nodal diameters (0,3), and the

ode with zero nodal circle and four nodal diameters (0,4), as shown

n Fig. 9 (b) and Table 4 . The results correspond well to the conclusion

hat zero-nodal-circle modes tend to be excited in squeal [22] . 

.3.3. Mode-coupling behavior 

Fig. 10 compares the wheel vibrations calculated with no lateral mo-

ion (case 1) and with large lateral motion (case 4). The comparison of

he simulated wheel lateral vibrations in Fig. 10 (a) and (d) indicates that



Z. Yang and Z. Li International Journal of Mechanical Sciences 153–154 (2019) 490–499 

Fig. 10. WPSs of the simulated wheel vibration without lat- 

eral wheel motion (case 1) and with large lateral wheel motion 

(case 4). (a) Lateral vibration for case 1; (b) vertical vibration 

for case 1; (c) longitudinal vibration for case 1; (d) lateral vi- 

bration for case 4; (e) vertical vibration for case 4; (f) longitu- 

dinal vibration for case 4. 

Table 4 

Corresponding dominant frequencies of the simulated vibrations and the wheel 

modes. 

Dominant frequency in 

PSDs 

Corresponding modal 

frequency Corresponding mode 

163 Hz 183 Hz 0 nodal circle, 0 nodal diameter 

1172 Hz 1075 Hz 0 nodal circle, 3 nodal diameters 

1921 Hz 1934 Hz 0 nodal circle, 4 nodal diameters 
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D

he enforcement of the lateral displacement boundary condition at time

 2 = 16 ms excited the out-of-plane axial modes (0,0), (0,3) and (0,4), as

enoted in Fig. 10 (d). The comparisons of the simulated wheel vertical

nd longitudinal vibrations in Fig. 10 (b) and (e) and in Fig. 10 (c) and (f)

ndicate that the prescribed wheel motion in the axle direction may also

xcite the in-plane radial wheel modes with one nodal diameter and

wo nodal diameters, which are denoted by mode Radial 1 and mode

adial 2 in Fig. 10 (e) and (f), respectively. The coupling of the axial

nd radial dynamics shown in Fig. 10 suggests that the mode-coupling

echanism can be reproduced by the proposed explicit FE wheel-rail

ynamic interaction model. 

The dominant frequency component of approximately 150 Hz in

ig. 10 (f) was excited mainly by the longitudinal creep force, which

enerally fluctuated in antiphase with the lateral creep force after time

 3 (see Fig. 4 (b)). The dominant frequency of the creep force fluctua-

ions can be estimated by Fig. 4 (b) as approximately 150 Hz. However,

ecause the axial wheel mode ((0,0): 183 Hz) with a close modal fre-

uency was excited, the energy amplitude of the calculated wheel lat-

ral vibration concentrated at approximately 150 Hz was much larger

han that of the longitudinal vibration, as indicated by the color bars of

ig. 10 (d) and (f). 

. Conclusions and future research 

We have proposed an explicit FE wheel-rail dynamic interaction

odel with wheel lateral motion to address the falling-friction and

ode-coupling mechanisms, which are commonly considered to gener-

te squeal. The explicit FEM couples the calculation of frictional rolling

ontact with the calculation of structural dynamic responses and is in-

rinsically suitable for modeling friction-induced unstable vibration. The

imulation results indicated that the proposed model can reproduce both

echanisms, thus confirming that the explicit FEM is reliable for pre-

icting wheel-rail squeal-exciting contact and is promising for the accu-

ate prediction of squeal. 
498 
We have analyzed the dynamic contact solutions calculated by the

xplicit FE wheel-rail interaction model, including contact stresses and

he distributions of micro-slip and adhesion-slip regions within the con-

act patch. The contact solutions obtained with the explicit FE are in

easonable agreement with those obtained with Kalker’s boundary el-

ment program CONTACT. Wave phenomena caused by large lateral

reepage were observed in the explicit FE contact solutions. A moving

ocal peak of shear stress was discovered within the adhesion region

n the variation of contact stress, which was concluded to relate to the

eneration of the turbulence-induced waves reported in [35] . 

We also discussed the influence of the velocity-dependent COF on

he dynamic contact solutions. Applying the velocity-dependent COF

esulted in a less regular adhesion-slip distribution pattern, which

ay show a more realistic contact condition. The distributions of the

dhesion-slip regions determined by the simulated contact stresses and

y the micro-slips were mutually consistent when the constant COF was

sed, whereas small discrepancies were observed when the velocity-

ependent COF was used. The discrepancies were concluded to stem

rom the different sensitivities of the approaches used to determine the

lip region. 

The dynamic behavior of the FE wheel model was validated through

 laboratory hammer test. By relating the dominant frequencies of the

imulated squeal-like vibration to the identified wheel modal frequen-

ies, three zero-nodal-circle modes prone to be excited in squeal were

etermined and found to correspond well to previously reported results.

Because ‘enigmatic’ squeal is sensitive to both structural dynamic be-

avior and contact condition, the dynamic contact algorithms should be

urther studied and experimentally validated. In addition, the displace-

ent boundary conditions applied to the proposed explicit FE wheel

odel may not be sufficiently accurate for simulating wheel curving

ehavior and rolling contact on the curve tracks. More realistic kine-

atic boundary conditions or a full wheelset model may be required to

eliably calculate unstable wheel vibration and consequent squeal. 
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