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A B S T R A C T

Wildfires are a growing concern in the Mediterranean area. Prescribed burning (PB) is often used to reduce fire
risk, through fine fuel reduction. However, the monitoring of PB effects on ecosystem processes is mandatory
before its spread. This study aims to assess hydrological effects of PB on the topsoil by controlled laboratory
experiments. The evaporation flux successive to interception of a simulated rain in the litter and the fermen-
tation layers was determined using both a water balance approach and an experimental 2H and 18O isotopes
mass balance approach. PB was performed in spring 2014 in three Southern Italy pine plantations, dominated,
respectively, by Pinus pinea L. (in Castel Volturno Nature State Reserve), P. halepensisMill. (in Cilento, Vallo di Diano
e Alburni National Park) and P. pinaster Ait. (in Tirone Alto-Vesuvio Nature State Reserve). In each study site, two
cores, both including litter and fermentation layers, were sampled, 18months after PB, in burned and in near
unburned (control) areas, respectively, by means of customized collectors allowing to extract “undisturbed”
cores. Afterwards, each core was moved into a lysimeter set-up in the laboratory, under controlled conditions
(temperature of 22 °C, relative humidity of 50%), to carry out duplicate infiltration and evaporation experi-
ments. To simulate rainfall, 1 L of tap water (=32mm of rain) was sprinkled uniformly on the litter layer in the
lysimeter and intercepted water from the litter and fermentation layer was collected for isotope analysis at two
different depths for each layer, two times per day until 2 days after the rain simulation. The results of the water
balance and isotope mass balance showed a slightly lower evaporation of intercepted water from the forest floor
in burned areas, compared to unburned ones, but in most cases not statistically significant. The isotopic profiles
of 2H and 18O also confirmed independently this finding, since they showed more enrichment in the unburned
areas compared to the areas treated with PB. This could be due to thinner litter layers in burned areas of the
three plantations, at least up to 18months after treatment.

1. Introduction

Fire is a natural or anthropogenic ecological factor affecting forest
ecosystems in the world. Wildfires are a serious issue in areas with a
Mediterranean climate, where the alternation of dry and rainy seasons
provides ideal conditions for the spread of fire (Trabaud and
Grandjanny, 2002; Turco et al., 2017). The plant fuel, accumulating
during wet seasons, can easily burn during the following dry season,
because of decreased moisture, if a fire ignition occurs. Despite fire is
also a natural ecological factor in Mediterranean ecosystems and a lot of
plant species are adapted to it (Eugenio and Lloret, 2006; Naveh, 1994),

the increase in number of anthropogenic wildfires observed during the
last decades (Pausas, 2004) has made it necessary to reduce fire hazard
in forests. For this reason, practices as prescribed burning are spreading
through Europe. Fernandes and Botelho (2003) define prescribed
burning as “a deliberate application of fire in a defined area and under
specific operative conditions (prescriptions) in order to obtain defined
goals established in the planning phase”. The main objective of pre-
scribed burning is wildfire risk reduction. It is achieved by fuel removal
and disruption of vertical and horizontal fuel continuity. This practice
may also have other objectives (Fernandes et al., 2013), such as the
grazing management and conservation of some natural habitats listed in
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Annex I of the Directive 92/43/EEC.
So far, data on the effects of prescribed burning on ecosystem

components mainly concern areas where this practice has been largely
applied, such as Australia and USA (Bradstock et al.,1998; Fernandes
et al., 2012; White, 1983), and, within Europe, especially France,
Portugal and Spain (Fernandes et al., 2013; Fonturbel et al., 1995;
Fontúrbel et al., 2012; Lázaro, 2010; Moreira et al., 2003; Trabaud,
1982). In Italy, the applications of prescribed burning treatment are still
in an experimental phase (Ascoli et al., 2012). The research about
prescribed burning mainly focuses on the effects of the practice on
vegetation, soil physico-chemical characteristics and soil microbial
community (Battipaglia et al., 2014, 2016; Catalanotti et al., 2010;
Cookson et al., 2008; Fontúrbel et al., 2012; Hossain et al., 1993;
Johnson, 1992; Moreira et al., 2003; Nardoto and Bustamante, 2003;
Shen et al., 2016), but less attention is paid on the effects of prescribed
burning on hydrological processes.

It is well known that wildfires could influence the system's ability to
retain rainwater (Baker Jr., 1990; Certini, 2005; Fernandes et al.,
2013). They could create a discrete layer with enhanced water re-
pellence on the soil surface or a few centimetres below, parallel to the
mineral soil surface (Knicker, 2007), increasing the overland flow
(Baker Jr., 1990). However, a small increase in water repellence was
observed for soil heating lower than 175 °C and the hydrophobic layer
resulted destroyed at temperatures of 280–400 °C (Knicker, 2007). The
wildfires could also affect the water interception by litter and fermen-
tation layers and the successive evaporation flux after rainfall ends
(Baker Jr., 1990). However, prescribed burns are usually applied with
less intense burning conditions, so their effects on forest floor inter-
ception and successive evaporation flux are less severe than during
intense wildfire (Baker Jr., 1990). Interception is the amount of rainfall
that is temporarily stored on a canopy or forest floor and evaporates
during or shortly after a rainfall event (Lankreijer et al., 1993; Savenije,
2004). Gerrits (2010) showed that in a beech forest 7% of the rainfall in
winter, and 15% in summer, was intercepted by the canopy. The forest
floor intercepted another 22% of throughfall in both seasons. For a pine
forest floor, where canopy interception was not determined, 16–20% of
throughfall was intercepted in summer and winter, respectively
(Gerrits, 2010). Hence, canopy and forest floor interception and the
successive evaporation flux are important parts of the total water bal-
ance (Herbst et al., 2008; Murray, 2014) and, for this reason, especially
forest floor interception has to be considered if one wants to know the
effect of prescribed burning on soil water balance. To measure eva-
poration from the topsoil often lysimeter-like set-ups are used (Dietrich
and Kaiser, 2017; Gerrits et al., 2007; Li et al., 2000; Magliano et al.,
2017; Schaap and Bouten 1997; Stumpp et al., 2007) or field samples
are weighted in wet and dry conditions (Helvey, 1967; Pathak et al.,
1985; Putuhena and Cordery, 1996). The disadvantages of these

methods are that the litter and fermentation layers are disturbed and/or
that the “measuring device” is disturbing the measurement (e.g., edge
effects for wind, drainage problems) (Gerrits and Savenije, 2011; Pruitt
and Angus, 1960). Isotopic techniques, on the other hand, do not suffer
from these drawbacks (Aouade et al., 2016). By analysing the hydrogen
and oxygen stable isotopic compositions of the water stored on and in
the litter and fermentation layers, evaporation can be measured with
fewer disturbances (Aouade et al., 2016; Michener and Lajtha, 2008).
Furthermore, sampling of water samples is easy, quick, and non-de-
structive. Although sometimes it can be difficult to take representative
samples and for smaller set-ups the sample volume can influence the
available moisture (and thus the physical processes), this effect van-
ishes when the set-up is large enough and/or when unconstrained field
conditions are considered. Furthermore, an additional benefit of water
stable isotopes is that they provide useful information in hydrological
studies on the physical processes and water routing (Allen et al., 2016;
Reckerth et al., 2017; Wang et al., 2015). Isotopes are also widely used,
as ideal tracers (Koeniger et al., 2010), to track water through the soil
(Sprenger et al., 2016) and to derive quantitative information, such as
the soil evaporation flux (Rothfuss et al., 2015; Rothfuss and Javaux
2017). In literature, to best knowledge of the authors, there are no
studies that have considered the effects of a prescribed burning on the
forest floor interception and the successive evaporation flux. Indeed,
some studies (González-Pelayo et al., 2010; Johansen et al., 2001)
mainly focus on the effects of prescribed burning on the surface run-off,
soil hydrophobicity, infiltration and soil erosion phenomena associated
with it. Cawson et al. (2012) and Vega et al. (2005), for example,
showed a significant increase in the run-off surface and in the erosion of
the soil as a result of a prescribed fire of medium-high intensity, similar
to wildfire, due, mainly, to the high temperatures reached to the ground
during the treatment.

This research aims to investigate the effects of prescribed burning
on evaporation of intercepted water from the litter and fermentation
layers in three different pine plantations using both the classic water
balance technique and the stable water isotope approach. The hy-
potheses of this study are: i) stable isotopes can be used to quantify the
evaporation flux from interception and ii) prescribed fire may affect
evaporation of intercepted water from topsoil at least until this does not
reach its original thickness.

2. Materials and methods

2.1. Study areas and fire treatments

The prescribed burning experiments were carried out in March 2014
in three pine plantations of Southern Italy (Fig. 1): a P. pinea plantation
in Castel Volturno Nature Reserve (CVR); a P. halepensis coastal

Fig. 1. Geographical location of experimental sites: P. pinea plantation at Castel Volturno Nature State Reserve (A; CVR), P. halepensis plantation at Cilento, Vallo di
Diano e Alburni National Park (B; CNP) and P. pinaster plantation at Tirone Alto Vesuvio Nature State Reserve (C; TAV).
Control and burned plots in each experimental sites are reported in blue and red, respectively on Google Earth maps (https://earth.google.com/web/).
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plantation in Cilento, Vallo di Diano e Alburni National Park (CNP); a P.
pinaster plantation in Tirone Alto-Vesuvio Nature State Reserve (TAV). In
each plantation, the fire treatment was carried out on an area of about
0.5 ha; a near untreated area with the same aspect, elevation, size and
soil was used as a control.

2.1.1. P. pinea (CVR)
In a P. pinea plantation (40°57′N; 13°59′E; 8m above sea level), in

Castel Volturno municipality, an experimental prescribed burning was
carried out on 12th March 2014. The climate of the area is typically
Mediterranean with hot and dry summers. The mean annual

temperature is 13.6 °C and the mean precipitation is 761.3mm yr−1

(data from meteorological station of Ischitella; Battipaglia et al., 2016).
During the prescribed burning experiment in the CVR plantation the
average air temperature was 18 °C, relative humidity 54%, wind speed
2.5 km h−1 and surface litter moisture 32%. Flame length was<0.5m,
fire line intensity< 50 kWm−1 and ignition pattern was backfire, re-
sidence time of temperature above 100 °C was 139 s in the litter and
30 s in the fermentation layer (Giuditta, 2016).

2.1.2. P. halepensis (CNP)
Prescribed burning was applied in CNP in a P. halepensis coastal

plantation (40°01′N; 15°16′E) on 19th March 2014. This plantation is
located in Capo Palinuro municipality, at 160m a.s.l. and 30% slope.
This study site is characterized by a Mediterranean climate, with a
mean annual temperature of 17.7 °C and a mean precipitation of
714mm yr−1 (data from meteorological station of Capo Palinuro;
Battipaglia et al., 2014). Weather conditions and prescribed burning

Fig. 2. Sampling phases (1–3) of litter and fermentation layer cores by an aluminium cylindrical collector designed to allow collecting “undisturbed” samples.

Fig. 3. Scheme of the cylindrical lysimeter used as experimental set-up
(z= depth of water collecting during the experiments, δ= isotopic ratio).

Table 1
Litter and fermentation layers thickness in the three studied pine plantations.

Site Thickness (cm)

Litter layer (I & II replicate) Fermentation layer (I & II replicate)

PpL-ub 5 5
PpL-b 4 5
Ph-ub 5 5
Ph-b 4 4
Pp-ub 7 6
Pp-b 6 6

Fig. 4. Mean values (+standard error) of the evaporation flux, calculated with
water balance approach (A) and water isotope mass balance approach (B) in
unburned and burned areas of three pine plantations, estimated until 2 days
after sprinkling. Significant (P < 0.1) difference between treatments are re-
ported with different letters on bars.
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behaviour during the experiment were: average air temperature of
14 °C, relative humidity 65%, wind speed 4 km h−1 and surface litter
moisture 34%. Flame length range was< 1.0m, fire line intensity<
90 kWm−1 and ignition pattern was backfire (Catalanotti et al., 2017),
residence time of temperature above 100 °C was 290 s in the litter,
whereas in the fermentation layer this temperature was not reached
(Giuditta, 2016). This plantation had been also treated in 2009 with a
first prescribed fire experiment.

2.1.3. P. pinaster (TAV)
Prescribed burning was applied in a P. pinaster plantation (40°49′N;

14°25′E) on 21st March 2014. This plantation is located in Tirone Alto
Vesuvio Natural State Reserve (Torre del Greco municipality) at 640m
a.s.l. and 20% slope. The study site has a typical Mediterranean climate,
with a mean annual temperature of 13.2 °C and a mean precipitation of
960mm yr−1 (data from the meteorological station of Ercolano –
Osservatorio Vesuviano). During the prescribed burning in TAV plan-
tation, the average air temperature was 16 °C, relative humidity 52%,
wind speed 5.5 km h−1 and surface litter moisture 38%. Flame length
range was< 1m, fire line intensity< 150 kWm−1 and ignition pattern
was backfire, residence time of temperature above 100 °C was 230 s in
the litter and 179 s in the fermentation layer (Giuditta, 2016).

2.2. Sampling and experimental set-up

In order to assess the prescribed burning effects on evaporation of
intercepted water from litter and fermentation layers, two cores were

sampled in each site, both including the litter and fermentation layer.
One core was collected in the unburned area, and the other one in the
burned area. An aluminium cylindrical collector, with a diameter of
18 cm and a height of 21 cm, customized to extract an “undisturbed”
core, was used. Sampling in the three experimental sites was performed
following three steps (Fig. 2): 1) the collector was pushed into litter and
fermentation layers; 2) the collector with the core was extracted
without altering samples; 3) the collector was closed to store samples
until measurements. The cores were sampled in September 2015,
18months after the prescribed burning treatments. In the laboratory of
Delft University of Technology (The Netherlands), each core was moved
into a cylindrical lysimeter with a diameter of 20 cm and a height of
18 cm (Fig. 3). The bottom of the set-up was filled with a different
amount of sand, considering the different thickness of litter and fer-
mentation layers in the three experimental sites (Table 1), and the not
neat separation between the layers, in order to align the litter and
fermentation layers with the sampling locations in the laboratory lysi-
meter. The lysimeter is a device specifically made for the collection of
water samples for isotopic analysis with Rhizon samplers, that are
provided with a thin hose with a porous filter (0.15–0.2 μm) on top, and
a connector to attach the syringe at the bottom. To extract water we
applied a vacuum with 5mL syringes.

In total there were six set-ups: P. pinea unburned (PpL-ub), P. pinea
burned (PpL-b), P. halepensis unburned (Ph-ub), P. halepensis burned
(Ph-b), P. pinaster unburned (Pp-ub), and P.pinaster burned (Pp-b), and
each experiment was carried out in duplicate.

Each experiment lasted three days and all experiments were carried

Fig. 5. Isotope depth profile in litter and fermentation layer at different days from the simulated rain (t0=day of the sprinkling, t1=1 day after sprinkling and
t2=2 days after sprinkling) in unburned (A, C) and burned (B, D) areas in P. pinea (CVR) plantation. F-layer= Fermentation layer.
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out in November 2015. For each experiment, the following procedure at
the start to determine the initial conditions was followed:

(I) the set-up was weighed (accuracy 10 g) before the rainfall simu-
lation (1 L of tap water, equivalent to 32mm of rain, sprinkled
uniformly on the set-up with a common plant spray);

(II) three water samples were taken from the plant spray during the
simulation;

(III) after finishing sprinkling, we waited until water percolation in the
lower box stopped. This was typically between 3–5 h;

(IV) the set-up was re-weighed, and a sample of the percolated water
was taken with a pipette from the lower box.

After this initial sampling and weighing, water samples for isotopic
analysis were taken twice per day in the morning and evening from the
litter (at 4 and 7 cm), fermentation layers (at 10 cm) and at the base or
just below the base of the fermentation layer (at 15 cm) with Rhizon
soil moisture samplers by applying a suction pressure with 5mL syr-
inges. Furthermore, the total weight of the set-up was measured every
day during the experiments.

During the experiments, the following variables were measured
(Fig. 3): isotopic ratio of the intercepted water (δint, ‰) from the litter
and the fermentation layers (at 4, 7, 10 and 15 cm depths), isotopic
ratio of the sprinkled water (δspr, ‰), of the water percolated (δl, ‰)
and of the air moisture (δair, ‰). The δ values, represent deviations in
per-mil (‰) from the Vienna Standard Mean Ocean Water (VSMOW)
(Mook, 2006; Gonfiantini, 1978):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

×δ
R

R
‰ ‰( ) 1 1000sample

VSMOW (1)

where, Rsample is the isotopic abundance ratio of 2H/H or 18O/16O in the
sample and RVSMOW is the respective isotopic abundance ratio of the
Vienna Standard Mean Ocean Water.

All the experiments lasted maximum three days. Temperature and
relative humidity of the room were also monitored every 15min, in
order to verify controlled laboratory conditions during the experiments.
The collected data indicate that the room temperature was fairly stable
during the entire duration of all the experiments, ranging between
19.5 °C and 21 °C, with a maximum excursion during a single experi-
ment of less than 1.0 °C. The relative humidity was always between
45% and 70%. Atmospheric water was sampled by condensation in
order to know the isotopic composition of the air moisture. A thermo-
stat box was filled with dry ice (−78 °C) and closed by a lid with an
opening for a standard 100mL plastic vial. Air flow was pumped
through the hermetically closed plastic 100mL vial by means of two
inserted syringes. As the entire set-up was surrounded by dry ice,
complete condensation was assumed to be accomplished. A sensitivity
analysis of the atmospheric isotopic content on the calculated eva-
poration was performed. The whole system was connected to a vacuum
pump and about 2mL of water per 4 h were obtained.

2.3. Water balance

Evaporation density rate, Ea [L T−1] was calculated based on the

Fig. 6. Isotope depth profile in litter and fermentation layer at different days from the simulated rain (t0=day of the sprinkling, t1=1 day after sprinkling and
t2=2 days after sprinkling) in unburned (A, C) and burned (B, D) areas in P. halepensis (CNP) plantation. F-layer= Fermentation layer.
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differences between precipitation P [L T−1], storage changes dS/dt, and
percolation L [L T−1], as follows:

= − −dS
dt

P E La (2)

The storage changes were measured directly in the set-up. Artificial
precipitation (=32mm) was only applied at the beginning of the ex-
periment. Since the evaporation experiment started only when perco-
lation ceased, P and L were neglected, which reduces Eq. (1) to dS/
dt=− Ea during the evaporation experiment. The storage changes in
millimetres per day were obtained by dividing the mass change (kg) by
the surface area of the lysimeter (i.e., A=314 cm2) and the density of
water (ρ=1000 kgm−3).

2.4. Isotope measurements

Water samples were analysed with the LGR liquid water isotope
analyser (LWIA) following Penna et al (2010). The analyser measures
2H and 18O in liquid water samples with an accuracy of± 0.80‰
and±0.25‰, respectively (Penna et al., 2010). The results were re-
ported in δ values (‰) as defined in Eq. (1).

2.5. Isotope mass balance

The isotope mass balance calculation has been carried out to cal-
culate evaporation. The isotope mass balance can be formulated as
(Sutanto et al., 2012):

∙ + ∙ = ∙ + ∙ + ∙δ m δ m δ m δ m δ mi i p p e e f f l l (3)

where m [M] and δ stand for the water mass and (oxygen or hydrogen)
isotopic composition. Subscripts i, p, e, f, and l stand, respectively, for
initial measurement, precipitation, evaporation, final measurement,
and percolation. In particular, in our isotope mass balance calculation,
δi and δf are the average of initial and final isotopic compositions in the
first 7 cm of the cores for the two experiments, at t0 (day of the
sprinkling) and t2 (2 days after sprinkling), respectively. Since rainfall
was not applied during the experiment and percolation stopped before
the experiment started, mp=ml=0 and since mf=mi−me, this sim-
plifies Eq. (3) to:

= + −δ m δ m δ m m* * * ( )i i e e f i e (4)

From this me can be readily derived:

=
−

−
= ∙ ∙m

m δ δ
δ δ

E ρ A
( )

e
i i f

e f
a

(5)

and δe is calculated with the Craig-Gordon model. To calculate δe with
the Craig-Gordon formulation, temperature, humidity and the isotopic
composition of the ambient air should be known. The Craig-Gordon
model (Craig and Gordon, 1965) makes use of the fact that evaporation
from open water depends on the relative humidity of the receiving at-
mosphere. The higher is the air humidity, the less fractionation occurs
(Craig and Gordon, 1965; Kendall and McDonnell, 2012). This con-
ceptual method calculates the isotopic composition of open water
evaporation as a function of temperature and humidity as described

Fig. 7. Isotope depth profile in litter and fermentation layer at different days from the simulated rain (t0=day of the sprinkling, t1=1 day after sprinkling and
t2=2 days after sprinkling) in unburned (A, C) and burned (B, D) areas in P. pinaster (TAV) plantation. F-layer= Fermentation layer; S= Sand.
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below:

=
− −

−
δ δ hδ ε

h
( )

1e
w a

(6)

with δe the isotopic composition of the evaporated moisture (−), h the
relative humidity (−), δw (−), the isotopic compositions of the surface
water corresponding to δi2H and δi18O estimated in the first 7 cm of the
cores and δa (−), the vapor isotopic composition (sampled 1m away
from the lysimeter in the same room), measured with the LWIA, using

water samples collected by condensation as described in Section 2.2.
The enrichment factor (ε) was determined according to Kendall and
McDonnell (2012), considering as exponent of the diffusivity ratio
n=1, as suggested by Barnes and Allison (1983). A sensitivity analysis
showed that the enrichment factor (ε) has a minor effect on the cal-
culated isotopic composition of the evaporated water and a negligible
effect (< 0.01mmday−1) on the calculated evaporation. The eva-
poration flux calculated by isotope mass balance was reported con-
sidering the average of 2H and 18O mass balance results for the two

Fig. 8. Scatter plots for δ2H (‰) vs δ18O (‰) from t0 (immediately after percolation stopped, in red) to t2 (2 days after percolation stopped, in yellow), obtained, for
each experiment, in unburned and burned areas, respectively, of P. pinea (A and B), P. halepensis (C and D) and P. pinaster (E and F) plantations, considering different
depths in the lysimeter. GMWL: Global Meteoric Water Line (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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experiments.

2.6. Statistical analysis

The significance (P < 0.1) of differences among treatments
(burned and unburned), for each experiment, was analyzed by one-way
ANOVA, followed, if required, by Student-Newman-Keuls test (by
SigmaPlot 12.0 Jandel Scientific). The choice of a relatively high sig-
nificance level depends on the small number of available samples (two).
Choosing a smaller P would result in a very small power of the test, i.e. a
high probability of accepting the null hypothesis when it is false.

3. Results and discussion

The mean amount of water stored, after sprinkling, in the samples
collected from P. pinea (CVR) plantation was 15mm in the unburned
area and 10mm in the burned one, while in P. halepensis (CNP) plan-
tation it was equal to 25mm and 16mm in the unburned and burned
areas, respectively. In the P. pinaster plantation (TAV) it was 21mm in
untreated area and 14mm in treated one.

In the P. pinea (CVR) plantation, evaporation of intercepted water
from the litter and fermentation layers measured with water balance
(Fig. 4A) was 1.23mmday−1 in the unburned area and 1.03mmday−1

in the burned one, while in the P. halepensis (CNP) plantation it was
0.90mmday−1 and 0.67mm day−1 in the unburned and burned areas,
respectively. In the P. pinaster plantation (TAV) it was equal to 1.93mm
day−1 in untreated area and 1.23mm day−1 in the treated one. Hence,
all three study sites showed a reduction trend of evaporation in treated
areas, compared to untreated ones, although the difference could be
considered statistically significant, at the 10% significance level, only
for the P. pinaster plantation (Fig. 4A).

The mean evaporation calculated with the isotope mass balance
(Fig. 4B), was equal to 1.48mm day−1 in the unburned area and to
1.28mm day-1 in the burned area in P. pinea plantation (CVR), while in
the P. halepensis (CNP) plantation it was 0.79mm day−1 and
0.45mmday−1 in unburned and in the burned areas, respectively. In P.
pinaster plantation (TAV) it was equal to 1.82mm day−1 and 1.47mm
day-1 in untreated and treated areas, respectively (Fig. 4B). In this case,
the reduction of evaporation of intercepted water, recorded in the
samples collected in the burned areas, was not statistically significant,
compared to unburned ones, in all experimental sites. It has to be
highlighted that our findings of the isotope mass balance showed an
identical trend as the water balance results, indeed both approaches
showed that the samples collected in burned areas had lower, although
in most cases not statistically significant, evaporation estimates com-
pared to those collected in the unburned areas. No significant differ-
ences occurred between evaporation values obtained, for each sample,
with isotope mass balance and water balance method. The water bal-
ance approach is actually considered the most accurate method to
evaluate evaporation compared to the other methods, such as the iso-
tope mass balance, since it uses a weighing balance so directly mea-
suring the losses of water inside the lysimeter due to evaporation and
percolation (Sutanto et al., 2012). However, the results of our labora-
tory experiment strongly point to water stable isotope mass balance as
also an effective method to calculate evaporation of intercepted water
from the forest floor. Our set-up used a condensation method to de-
termine the atmospheric water isotopic content instead of direct gas-
phase measurement. A hypothetical error of the atmospheric isotopic
content of 4‰ 2H or 1‰ 18O has an effect of ma× 0.2mmday−1 on
the calculated evaporation rate but does not change the differences of
calculated evaporation between the samples. To reduce the uncertainty
of the proposed method, direct sampling and measuring of isotopic
composition of the atmospheric vapor in gas-phase is advised for future
studies. The isotope method is in principle easily applicable also in the
field, thus allowing estimates of evaporation with an easy and non-in-
vasive experimental technique.

Isotopic profiles were obtained for each depth (from 4 to 15 cm)
from the analysis of the variation of the isotopic ratios of 2H and 18O,
measured in intercepted water by the litter and the fermentation layer,
after the simulation of the rain. In each experimental site and condition
(unburned and burned), the increase in δ values showed that eva-
poration of intercepted water occurred (Figs. 5–7). At t0 we can already
see an evaporation front occurring, because the first samples were taken
only when percolation fully stopped which took between 3–5 h. The
evaporation front is located at the surface of the lysimeter and this
demonstrated that the majority of evaporation came from the litter
layer. This result was also found by Liu et al. (2015) in an Alpine shrub
land. The isotopic profiles also showed less evaporation in the burned
areas compared to unburned ones, as indicated by smaller enrichment
in the litter layers of burned samples. The comparison of the results of
the unburned and burned areas, showed that fractionation was higher
in the unburned areas than in the burned ones, since the regression
lines of the unburned areas deviated more from the GMWL (Fig. 8). If
the enrichment from t0 (immediately after percolation stopped) and t2
(2 days after percolation stopped) was compared, all experiments
showed similar enrichment for deuterium as for 18O.

The difference in evaporation, between the burned and unburned
areas, as observed by the water balance approach as well as from the
stable water isotopes data, can be considered as a direct effect of a low
intensity prescribed fire on the amount of litter and the fermentation
layer and/or on their physico-chemical properties. Since the atmo-
spheric conditions in the laboratory were similar during all experi-
ments, the lower evaporation rates observed for burned samples col-
lected in the three experimental sites, could be a consequence of a lower
interception capacity. As reported, the amount of water stored in litter
and fermentation layers, after percolation, that showed values com-
parable to Lowdermilk (1930) and Bulcock and Jewitt (2012), was
lower in samples collected in burned areas, compared to unburned ones
in all experimental sites. This reduction of the water storage capacity
could be ascribed to the thinning of the litter in the burned areas, that
had not yet recovered the pre-fire levels, at least up to 18months after
the treatment with prescribed burning, which was the case for all three
plantations. This was also found by Baker Jr. (1990) and Vadilonga
et al. (2008), who reported that prescribed burning treatments mainly
expressed their influence on forest floor, only by reducing, temporarily,
its amount of water storage capacity, at least until the amount of litter
returned to pre-fire levels. Since prescribed fires generally produce
lower temperatures, they have not the same effects on soil hydrological
properties as wildfires, which, instead, have been reported to have
marked effects on the increase of run-off (van Eck et al., 2016) and on
soil erosion (Certini, 2005; Prosser and Williams, 1998; Shakesby and
Doerr, 2006).

4. Conclusions

This is a laboratory study to evaluate the effects of prescribed
burning treatments on evaporation of intercepted water from different
forest floors. Three litter covers in a P. pinea, P. halepensis and P. pinaster
plantations with different thickness were investigated. The evaporation
rates were measured by a water balance and an isotope mass balance,
looking at the isotope enrichment and the deviation of the regression
lines from the GMWL. Both methods showed, with evaporation esti-
mates in good agreement, that the burned areas, in all experimental
sites, had a lower, but in most cases not statistically significant, eva-
poration rate over the study period, compared to unburned areas. The
results of the isotope enrichment also indicated less evaporation in the
burned areas, compared to unburned ones. The reduction trend of the
evaporation flux in the treated systems could be explained by a lower
interception capacity, subsequent to a lower amount of water stored in
cores collected in burned areas, after percolation, probably due to a
thinner litter layer at least up to 18months after prescribed burning.
However, further investigation is necessary to assess if what it was
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observed, performing laboratory experiments, could also hold in field
conditions.
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