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Abstract
Miniaturization of electronics, reduction of time

to market and new functionalities in the current context
of autonomous driving, electrification and connectivity,
are bringing new reliability challenges. Prognostics and
Health Management (PHM) can be used effectively to
address some of the key challenges, in particular new
challenges associated with the transfer of consumer
electronics to automotive industry. The concept of
PHM is not new, but its application to electronic
systems is relatively new. It is expected that the PHM
demand for electronic systems would continuously
increase as autonomous driving is being realized. This
paper attempts to summarize the recent studies in the
system-level PHM of electronic systems. Condition
monitoring (CM) techniques and prognostics methods
used for the PHM of electronic systems are reviewed
first. Various implementation examples are followed
using different system classifications. The findings from
this review is expected to offer a technical summary of
accomplishments and challenges during the course of
applying PHM for electronic systems, and to identify
future research tasks to be performed to make the PHM
a more viable tool for reliability assessment of electronic
systems.

1. Introduction
Functional safety is a key reason for the development

of PHM, and it has been widely implemented in avionics
and large mechanical systems. Compared to mechanical
systems, the degradation of electronics is somewhat diffi-
cult to detect due to the geometric scales of components
and their complex architectures [1]. Quantification of the
degradation and fault progression in an electronic system
is even more difficult since not all faults necessarily lead
to system failure or functionality loss [2]. In addition,
there is an uprising trend in which the industry shifts to
increase system availability. This happens because some
of the businesses are not selling the product anymore, but
lease it or selling the system with the services included.

The electronics industry encounters an ever-increasing
demand for cost reduction, short time-to-market, minia-
turization, higher density/compactness of components,
rapid upgrades, and enhanced customer satisfaction. All
of these create numerous reliability problems. In some
cases, solutions are available only by allowing trade-offs,

inducing loss of profit, time and availability of the product.
Implementing PHM on a system level at the design stage
[3] as well as the qualification phase [1], can help solving
most of the problems. PHM of electronic components and
systems can offer competitive advantages as it improves
performance, reliability, safety, maintainability and avail-
ability [4].

In Telecom, it is called Intelligent Platform Manage-
ment Interface (IPMI), in aerospace, Integrated Vehicle
Health Management (IVHM) [5], in electronics, Prog-
nostics and Health Management [6]. In the maintenance
perspective, it is Condition Monitoring (CM) [7]. Imple-
mentations may vary in different applications, but the
same basic principles are employed. In CM, the sys-
tem/equipment health is monitored by the sensors and
predictive measures are taken right before the incipient
failure, whereas in Prognostics and Health Management
the Remaining Useful Life (RUL) is calculated at any
point in time.

Prognostics has not been applied to electronic systems
until recently. It may be attributed to the facts that (1) the
time to failure is not readily quantifiable, (2) prognostics
techniques are not ready for the complexity of electronic
systems, or (3) the safety is not a major issue. PHM for
electronics has first been introduced in avionics, followed
by automotive, and more recently, in consumer electronics.

Due to the large variety of the techniques used for
PHM, it is difficult to study and review all of the exiting
techniques. Hence, this study is focused on the most
relevant techniques used to integrate PHM in electronic
systems and sub-systems, and to highlight the papers that
offer a solution to problems of the system level PHM. Ba-
sically, PHM is an algorithm or a set of algorithms based
on measurements and models, which collect as an input
an already known information about the system/structure
and data from strategically positioned sensors. Then it
subsequently provides as an output different levels of
prognostics such as failure detection, diagnostics and
prediction. Various levels of prognostics require different
strategies/algorithms for successful implementation.

As depicted in Figure 1, a well-implemented prognostic
methodology should include the following items:

• Sensors for prognostics
• Data collection, processing, reduction and feature

extraction



• Data Security and integrity
• Identification and analyze precursors, Risk and un-

certainty analysis
• Health assessment, anomaly detection, fault recogni-

tion, fault classification, fault propagation
• Physics-of-Failure (PoF), Damage Models, Reliabil-

ity testing
• Model Order Reduction, Metamodels, Surrogate

Models of Finite Element Methods (FEM) or any
oder Physical Model

Methods used for recording relevant loading informa-
tion include measuring the temperatures [8], [6], installing
canary devices [9], collecting data about operational con-
ditions [10] or usage hours [8], using strain gauges to
measure the strain on solder joints, using piezoresistive
stress sensor inside a system package [11] and detecting
when the performance of a system degrades [6].

PHM algorithms performance relies on [1], [2]:

• real-time sensor data which contains relevant struc-
tural data

• accurate data collection (limited resources, noise can-
cellation and so on)

• accurate,robust and effectiveness fault detection al-
gorithm

• reduced false alarms
• accurate models for prognostics

Three approaches of PHM are: (1) data-driven ap-
proach, (2) model-driven approach, and (3) fusion ap-
proach which combines the first two approaches. Due to
the limited availability of the fusion approach, this paper
focuses on the first two. The data-driven approach aims
at transforming the raw data from sensors into relevant
information, which is used to learn models for health as-
sessment and RUL prediction. The model based approach
deals with the prediction of the RUL of systems by using
numerical models to simulate the physical behavior of
degradation mechanisms.

This paper will review the two PHM approaches im-
plemented for electronic systems with an emphasis on
the sub-system and system level. The concepts and case
studies found in the literature will be presented.

2. PHM Frameworks/Architectures in electronic sys-
tems

In this section several PHM frameworks for electronic
systems found in literature are presented. The number of
the frameworks far exceeds the number of actual case
studies based on electronic system. The reason behind is
the large complexity and the non-linearity of the systems
that these techniques are to be applied to or the insufficient
technological breakthroughs. Also in [12] it is stated
that one of the reasons for the lack of progress is the
available data on which to apply prognostic algorithms.
Even with a lot more possibilities available now, there

are few electronic systems equipped with sensors that can
support collection of data.

The framework offers PHM guidelines to the research
community in this area [13]. This is why it is important
to start reviewing several concepts and strategies.

An PHM approach utilizes measurements, models, and
software to perform incipient fault detection, condition
assessment, and failure progression prediction [14]. PHM
can be performed on different completion stages, starting
from fault/anomaly detection through diagnostics till fault
prediction. A fault is defined as the operation outside
of specifications, while failure is defined as the lack of
operation [15]. Another advantage of PHM is that it
can be implemented in steps, for example in the design,
development stage [16], production and released products
[17]. A key requirement in any prognostics method is
identification of the appropriate parameter(s), which, can
be used to asses impending failure. It is usually called
precursor parameter selection. Also, a failure precursor
is an event that signifies impending failure [10]. Although
effective, most approaches to PHM focused on monitoring
failure precursor indications which does not require sys-
tem failures to be deterministic in nature, but does require
that the selected precursor has a deterministic link to the
actual system failure [18].

One way of identifying and select the precursor pa-
rameters is to apply Fault Mode and Mechanisms Effect
Analysis (FMMEA) proposed by Pecht et al. [19]. A
failure mechanism is defined as the physical phenomena
causing the onset of failure. Common examples of failure
mechanisms are fatigue, fracture, corrosion, cracking and
so on. Failure mode defines how a system or device fail,
for example overheating, unexpected shutdown, reduced
performance [20], lack of electrical contact. Also, based
on FMMEA a decision is made where to place the
sensors. It is used along with PoF approach which utilizes
knowledge of a product’s life cycle loading and failure
mechanisms to asses product reliability [21].

In comparison with PHM, CM is the application of
the appropriate sensors (data), analysis (knowledge), and
reasoning (context) to estimate the health and track the
degradation of equipment [14] and in some cases assessing
the remaining useful life.

The ultimate goal of PHM is to determine RUL of
a monitored system. RUL is typically a time, cycle,
or mission-based expression, correctly accompanied by
uncertainty bounds. Similarly, RUL may be a range of
values, correctly accompanied by a confidence interval.
The RUL is a prediction of a component or system func-
tional/operational usage expectancy based on measured,
detected, modeled, and/or predicted health state. The RUL
is dependent on the intended set of operating conditions
or mission to be performed [14].



Figure 1. PHM for Electronic Systems Metro-Map.

A. System definition

There is a lot of discussion regarding system classifi-
cation, definition and what it exactly represents. In case
of electronics we can establish different levels of system
classification as it follows [10]:

• Device Level (die and metalization)
• Component Level (resistor, capacitor, lead frame)
• Board level (circuit board and solder joints)
• Sub-system (Hard Drive, Electronic Unit)
• System
• System of systems

As previously mentioned this paper is mainly focusing on
the PHM methodology implemented on the sub-system
and system level.

B. Strategies/Schematics used in implementation

Mishra and Pecht [23] introduced the Life Consumption
Method (LCM) for PHM in electronic systems, which
basically uses the environmental loads combined with PoF
models to assess the life consumed. Based on the same
approach Zhang et al. [24] developed an enhanced method
adding uncertainty adjusted prognostics. Uncertainties are
included to capture the fault evolution as a distribution of
the predicted RUL.

CALCE PHM Research Center at the University of
Maryland used different approaches including canaries
and fuses, precursors feature and PoF models based on
life-cycle loads [10].

Amor-Segan et al. [5] focuses on the automotive indus-
try and proposes a new system level approach to manage
the faults in a vehicle networked electronic systems. The
framework involves different phases - data collection, data
analysis, knowledge discovery, diagnostics or prognostics
leading to corrective and preventative intervention.

Terrissa et al. [25] described PHM architecture into
seven layers:

• Data Acquisition
• Data processing
• Condition assessment
• Diagnostic
• Prognostic
• Decision support
• Human machine interface (HMI)
Braden [1], proposed a framework for development

stage for validation and testing the automotive electronics.
The proposed techniques are providing the estimation
of RUL based on a real time monitoring data during a
reliability testing. In Figure 2 a conceptual architecture of
PHM is shown, with a focus in diagnostics techniques.
Most of the work performed so far reaches different
diagnostic stages, implying that the prediction part is not
yet mature in electronic systems.

3. Sensor and parameter selection
Every PHM system typically collects the data through-

out sensors located strategically and usually measures
exterior and interior loading conditions. There is a lot of



Figure 2. Conceptual architecture of PHM-based fault diagnosis for electronics-rich system. [22]

references regarding sensor and parameter selection for
electronic system, although there are not many examples
of such devices used especially to handle the system level
prognostics. According to [26], monitoring the parameters
is a fundamental step in oder to accurately assess the
health and to predict the remaining useful life. This
section is a brief and general introduction for sensors and
parameters used for PHM in electronic system. For More
detailed information please check [26].

A. Sensors used in electronic systems and the parameters
related to the sensors

Typical parameters that have the potential to be moni-
toring devices in a PHM system is showed in Table 1.

Table 1. Examples of parameters for PHM applications. [27]

Domain Examples

Mechanical Length, area, volume, velocity or accelera-
tion, mass flow, force, torque, stress, shock,
vibration, strain, density, stiffness, strength,
angular, direction, pressure, acoustic inten-
sity or power, acoustic spectral distribution

Electrical Voltage, current, resistance, inductance, ca-
pacitance, dielectric constant, charge, po-
larization, electric field, frequency, power,
noise level, impedance

Thermal Temperature (ranges, cycles, gradients,
ramp rates), heat flux, heat dissipation

Chemical Chemical, species concentration, gradient,
reactivity, mess, molecular weight

Humidity Relative humidity, absolute humidity
Biological pH, concentration of biological molecules,

microorganisms
Electromagnetic radi-
ation and ionizing ra-
diation

Intensity, phase, wavelength (frequency),
polarization, reflectance, transmittance, re-
fractive index, distance, exposure dose, dose
rate

Magnetic Magnetic field, flux density, permeability,
direction, distance, position, flow

The sensors suggested above have to be addressed with
real-world components that are available in a reasonable
size and at a reasonable cost to support use under a cost-
benefit analysis [12].

B. Non-physical software parameters

Except the physical parameters that can be monitored
throughout the electronic system, also software parameters
can be monitored and indicate an impending failure of
the system. These parameters are for example software
values concerning the performance and the quality of
the service. The System Telemetry Harness proposed by
Sun Microsystems [15] uses soft variables (given by the
operating system regarding hardware performance) and
canary variables (given by the software such as quality
of the service, number of transactions per minute) for
estimating the health of the electronics for computer
servers.

Regardless of the fact that the clear indication of the
system degradation is given by the physical parameters,
these non-physical values can be used to link some
physical parameters to the actual system performance. A
framework is proposed in [5] regarding Electronic Control
Unit (ECU) to use ECU hardware and software data to
asses the health. It is using parameters from the ECU
such as ECU reset and initialisation statistics, ECU error
counts, function activation statistics, network status and
performance statistics. Also, FMMEA can indicate soft-
ware parameters to be monitored such as CPU usage, CPU
throttle [21], CPU loading factor [28]. Other examples can
be fault codes, scan error, memory usage capacity or queue
lengths.

4. An overview of Data-driven approaches
In electronic systems perspective diagnostics refers to

the ability to identify deviation from its normal operational
profile as well as detect, isolate and diagnose electrical
faults [2]. Data-driven approaches, also called model-free,
rely on observation data without a priori knowledge about
the system [29] and according to [30] they are called also
black box. In this section techniques used in data-driven
approaches for electronic system are presented. Usually
it refers to fault detection, diagnostics and prediction. In
most of the cases the first two parts are handled with
Data-driven approaches. The prediction part can be also
obtained from PoF.



Table 2. Data-driven techniques

Distance
Metric

Machine
Learning

Statistical Neural
Computa-
tion

Stochastic

Euclidean Fuzzy
Logic

Bayesian
Methods

Artificial
Neural
Networks

Markov
chain

Mahalanobis Support
Vector
Machine

Principal
Com-
ponent
Analysis

Deep
Learning

Monte
Carlo

Bayesian Kalman
Filter

Regression
Analysis

Self
Organizing
Maps

Wiener
Process

K-nearest
Neighbour

Particle
Filter

Gamma
Process

In Table 2, a selection of representative methods used
in prognostics are shown. These methods are used or have
the potential to be used in all necessary steps in prognos-
tics. Improvements of all these methods implemented for
different purposes are found in the literature. Also, there
are many more other techniques in other fields, which can
be transferred to the electronic systems in order to improve
the prognostic requirements.

A. Fault detection

Fault detection, also found as anomaly detection in the
literature is a fundamental requirement for prognostics.
The method should be accurate enough that the false alarm
rate is close to zero. So far, the distance metric techniques
have been shown the most effective in fault detection.
Also, methods like one-class Support Vector Machine and
Fuzzy Logic can be used for fault detection.

Canary devices mounted on the actual product can also
be used to provide warning of failure due to specific
wearout failure mechanisms. The time to failure of these
prognostic cell can be pre-calibrated with respect to the
time to failure of the actual product. The stresses expe-
rienced by the product is applied to these cells as well.
Canaries can be calibrated to provide sufficient advance
warning of failure to enable appropriate maintenance and
replacement activities [31].

B. Fault Diagnostics

Diagnostics monitors determine the current state of
health of a system and determine potential problems
[15]. Also, [25] diagnostic determines if the health of
the system have degraded, suggest fault possibilities and
identify the component that has ceased to operate. For
electronic systems diagnostics refers to the ability to iden-
tify deviation from its normal operational profile as well
as detect, isolate and diagnose electrical faults [2]. The
first efforts in diagnostic health monitoring of electronics
involved the use of built-in test (BIT), defined as an on-
board hardware-software diagnostic device to identify and
locate faults. It is used as a diagnostic tool, although has
a big rate of false alarms [31].

Diagnostic parameters and measures can be generated
using the time series [32], Bayesian network approach
[22], an advanced remote intelligent diagnostic support
system (RIDES) [33], self-diagnostic Automatic Test
Equipment (ATE) [7], etc.

1) Fault isolation: This concept normally is used in
the systems, where data detected as faulty should indicate
from which component or sub-system the faulty signal is
coming from. In the literature this is presented mostly as
a concept, there were no relevant examples in electronic
system where techniques or methods are used to isolate
the fault.

2) Fault identification: It is the process of identifying
the cause of a failure at various points in a system. Fault
identification is the key concept of diagnostics. Recently,
classification methods were used to mitigate the fault
identification such as machine learning techniques [34],
[35]. For example :

• Random Forrest - is an ensemble classifier that con-
sists of many decision trees and outputs the class that
is the mode of the classes output by individual trees

• Voting - Given a class of learned models, voting or
majority response could be used to determine the
response of the overall PHM system.

• Support Vector Machine - It is based on boundary
optimization problem of an already known failure
data

C. Fault prediction

The data driven approach can realize predictions for
RUL through statistical and probabilistic methods [4].
Models built for prognostics are focused on building com-
putation models that learn a specific or holistic behavior
of the system based on empirical sensor data. Examples of
data-driven techniques used for fault prediction [36] are:

• Ensemble Learning - such methods use multiple
models to obtain better predictive performance

• Neural Networks - This creates a linear RUL model
based on the historical sensor data of the system till
failure

• Stochastic - These methods employ probabilistic
methods to handle system level prognostics

Prognostics is possible for system modeling through
Markov chains, stochastic methods and time series analy-
sis, considering the Shannon‘s principle which states that
the physical processes in the past will remain in the future.

D. Case studies

Lopez et al. [15] used Sequential Probability Ratio Test
(SPRT) and the Multivariate State Estimation Technique
(MSET) for computer servers soft variables, canary vari-
ables and physical variables to implement prognostics.
Also, Urmanov [30] uses an approach to implement prog-
nostics for computer servers. He added empiric models
such as Wiener process with a drift in the process.



An unique hybrid prognostics and health management
methodology combining both data-driven and physics-of-
failure models is proposed in [21] for fault diagnostics and
life prediction of a computer system. First a FMMEA was
conducted and parameters as fan speed, CPU temperature,
motherboard temperature, videocard temperature, %CPU
usage, and %CPU throttle were established to be moni-
tored. Fault detection was performed using Mahalanobis
Distance (MD) and a Projection pursuit analysis was
performed to show which variables vary the most. These
parameters can be matched to a PoF damage model to
assess damage.

In [37] it is described the nonlinear Wiener process with
a time drift for degradation process and the Proportional
hazard model for RUL. Also methods such Gamma pro-
cess, and continuous-time Markov chain can be used for
degradation process.

In [38] failure prognostics of an electronic system is
performed by Fast Relevant Vector Machine based on
Fruit Fly Optimization algorithm. It does not provide a
concrete example, the procedure is a general approach.

Hirohata et al. [28], monitors the cooling performance
degradation and load history of a Printed Circuit Board
(PCB) in digital equipment. A hierarchical Bayes model
based on Computer-aided Engineering results of thermal
stress simulation and experiment data from actual mea-
surements is used. The case study is a notebook PC
on which the temperature and deformation distribution
from monitoring variable by using Bayes model can be
estimated. Based on the monitored data such as device
load factor and revolution number of cooling fan it can
estimate the temperature and the deformation distribution
of the PCB. This linking is provided by the FEM sim-
ulation obtained parameters, such as thermal dissipation
of the device and thermal boundary condition using the
hierarchical Bayes model. The term Health Distance was
developed calculated between two signal D1 and D2 as a
shift on an angle. This angle is computed as the inverse
of cosinus between the sum of all dot product and the
product of each euclidean norm of D1 and D2. When the
angle is 0 the signals are the same and when the angle is
pi the signals are totally different.

In [29] and improved approach was presented, that
makes it possible to extract and analyze the power sys-
tems eigenvalues, which are related to the frequency of
the power system that determine correlations between
extracted features and state of health. The goal is to
provide correlation information such as SOH using pattern
analysis with real-time data from a non-intrusive smart
power sensor. The test vehicle represents the electronic
power systems ( e.g. switched mode power supply).

A data-driven approach presented in [32] is applied
to electronic systems and uses methods such as pattern
recognition (SVMR), signal processing and Markov chain
techniques. In [32] it is stated that building analytical

models for even rudimentary on-board systems from the
component models is virtually impossible due to the high
level of complexity and non-linearity. The methodology
consists of four main stages: (1) Mahalanobis Distance
to generate healthy baseline, (2) Noise suppression and
conversion to generate symbolic time-series, (3) A Markov
state model and (4) Diagnostic and prognostic parameters
and measures to be generated using the time series and
neural network techniques. A wavelet transformation was
performed on a MD time series to remove noise from the
signal, and to extract features from the data. This data
was partitioned into eight regions, each being represented
by a symbol. Based on this a Markov state model is
generated to provide the parameters and measures for
health condition monitoring and prognostics.

In [22], Diagnostic Bayesian network based on PHM is
proposed to perform available and efficient fault diagnos-
tics for electronic system. The numerical data is gathered
based on a set of radar indicators on avionics system.
The algorithm uses the Bayesian approach and the basic
idea is a formula which is used to calculate the condition
probability of occurring fault B when a fault symptom A
appears. The monitored data is voltage or current and it
is used to define the fault symptoms.

Jin et al. [7], proposes a model to monitor the degra-
dation of electronic equipment and further to predict the
RUL based on the self-diagnostic data. The degradation
precursor, characterized by voltage or current signals, is
modeled as a Non-stationary Gaussian process with time-
varying mean and variance. The algorithm is periodically
executed to collect the system health information using
voltage and current signals as failure precursors for the
healthy index. This model is based on a Statistical signal
degradation based on the shift of the mean or the change
of the variance, or both.

Lall et al [34] [35] uses different data-driven techniques.
In [34] prognostic framework for electronic systems has
been developed with neural network based self organizing
maps with multiple failure modes. Unsupervised learning
of the neural net has been used to train the neural net
for identification of individual failure modes. Transient
strain is measured during the drop-event by digital image
correlation. In addition FEM models are constructed to
which different failure modes are imposed. Prognostic
framework is studied with neural network self organizing
maps. Fault-mode isolation and mode classification is
conducted by Artificial Neural Network approach. The test
vehicles are two PCBs test boards of JEDEC Standard.

In [35] a new technique has been developed for health
monitoring and failure mode classification based on mea-
sured damage precursors. The Karhunen Loeve Transform
has been used for feature reduction and de-correlation
of the feature vectors for fault mode classification in
electronic assemblies. Euclidean, and Mahalanobis, and
Bayesian distance classifiers based on joint-time fre-



quency analysis, have been used for classification of
the resulting feature space. The system approach is to
determine throughout the drop-test all the failure modes
such as solder inter-connect failure, inter-connect miss-
ing, chip delamination or chip cracking in packaging
architectures. The monitored parameters are the transient
strains recorded during the drop-event using digital image
correlation. The test vehicles are two PCBs with various
components mounted on them. A feature vector is created
by analyzing the transient strain signal with time fre-
quency technique. Karhunen Loeve Transforms is used to
de-correlate the feature space of damage progression. The
same failure modes are simulated with explicit FEM and
the same transient strain data is extracted. On the decorre-
lated feature space containing data from both experiments
and simulation dominant directions are extracted with MD
and PCA to represent each failure mode. Doing so a
clustering of the failure data is made.

A method based on the simulation-before-test (SBT)
technique to quantitatively assess the health of an elec-
tronic system is presented in [39]. The case study is
an analog state variable filter circuit. A circuit-centric
approach assessing the health on an electronic system
is highlighted, which enables an electronic system to be
decomposed into individual critical circuits from which
local results can be merged to obtain a system level
health indication. Thus, by monitoring few nodes within
the circuit and estimating and combining HIs for the
critical circuits, one could obtain a health indicator for
the whole system. The proposed approach involves three
stages: system decomposition, off-line testing and on-
line testing. The off-line testing is mainly represented by
simulations-before-test to understand the circuit behavior
under healthy and failure conditions, hence various faults
are seeded into critical components. To asses the health, an
index or +1 healthy and -1 faulty is considered. A function
is used to consider the state between these two values. This
function is the same as in the case of SVM and LS-SVM.
Another circuit-centric example is also presented in [40].

An example of applying PHM at the design stage to
enhance reliability is presented in [3]. It introduces failure
precursors and investigates their impact on product real
failure to improve accuracy of reliability prediction in
design phase. Hard disk drives are selected as a case
study. A failure precursor is used such as scan error
from Self-Monitoring Analysis and Reporting Technology
(SMART) which can be caused by bad sectors (damage
on hard drive sectors) on hard disk or malfunction of
magnetic head. These failure precursors are selected and
their statistical distribution of time-to-failure-precursor are
obtained. The calculation shows that mean-time-to-failure
for drives with failure precursor is 49 times shorter than
mean-time-to-failure for drive with no failure precursors.
Also it shows that PHM applied at 3 months, 6 months
and 1 year of operational hours have different results in

RUL calculations. The one calculated at 1 year is getting
more closer to the real drive failure occurrence.

Niu et al. [41] presents a novel approach for health
monitoring of electronic products using MD and Weibull
distribution. The MD value is used as a health index
and the Weibull distribution is used to determine health
decision metrics. A case study of a notebook computer
health monitoring system is carried out. First FMMEA
is used to select effective performance parameters, and
then a normalization process is performed on the data.
The failure mode contains rotation failures of the fan,
head crashes in the hard disk drive and electrical short
on the memory card with the corresponding measurable
variables, such as temperature of the fan, hard disk drive
and memory usage capacity. The scale parameters are
extracted from the distribution. Additionally the distribu-
tion and the mean is calculated. Weibull distribution is
used because not always MD values follows a Gaussian
distribution.

5. An overview of Model-driven approaches
Data-driven approaches can be very effective for elec-

tronic systems, considering that the capability of realizing
complex physical models for system is reduced. However,
in most of the cases the parameters monitored have no
connections to the real fault/failure. This fact is demanding
for a method to link the actual failure with the monitored
parameters. Using physical models can easily make this
link and have the benefit to be more accurate.

A. PoF description and FMMEA

The PoF approach utilizes knowledge of a system‘s life
cycle loading conditions, geometry, and material proper-
ties to identify potential failure mechanisms and estimate
RUL [31]. A prognostic feature or failure precursor pro-
vides advanced warning of impeding failure that in turn
may predict RUL. Essential to any predictive system are
the careful selection of prognostic product feature that
correlate damage accumulation with known failure modes
[1]. The PoF approach includes several steps, mainly
FMMEA, feature extraction and RUL estimation. Further,
failure models or graph-based models are not suitable for
detection of intermittent system behavior as they are mod-
eled for specific degradation mechanisms. Sudden changes
in system parameters that characterize intermittent fault
are not accounted in these models [19]. Model-based
approach uses prior knowledge of the system to develop
mathematical models to process and evaluate the current
data [29]. These mathematical representation incorporate
a physical understanding of the system, and include both
system modeling and PoF modeling. RUL is carried out
based on knowledge of the processes causing degradation
and leading to failure of the system. In the system model-
ing approach, mathematical functions or mappings, such
as differential equations, are used to represent the system.
Statistical estimation techniques based on residuals are



then used to detect, isolate and predict degradation [19].
PoF approaches to model electronic system reliability
have shown that time-to-failure for electronic parts and
interconnects can be predicted within quantifiable bounds
of uncertainty. [16]

Table 3. Standard failure mechanisms in electronic systems [22], [42]

Failure Mechanisms Failure sites Relevant loads

Fatigue Wire-bond,solder
leads, bond
pads, traces, vias,
interfaaces

∆T ,T mean,dT/dt,dwell
time,∆H,∆V

Corrosion Metalization M,∆V ,T
Electro-mitigation Metalization T ,J
Conductive filament
formation

Between
metalization

M,∇V

Stress-driven
diffusion voiding

Metal traces s,T

Time-dependent di-
electric breakdown

Dielectric layers V ,T

where: ∆: Cyclic range; ∇: Gradient; V : Voltage; T : Temperature; M:
Moisture; J: Current density; s: Stress, H: Humidity.

B. Models used

There are several mathematical techniques that can
provide prognostics measures for electronic systems. PoF
models used in electronics:

• Fatigue - Coffin - Manson, Merkle
• Corrosion - Howard
• Electromitigation - Black
• Conductive filament formation - Rudra
• Stress driven diffusion voiding - Okabayashi
• time dependent dielectric breakdown - Fowler - Nord-

heim

According to [2], there are four main models used in PHM
such as:

• Statistical reliability based approaches. Developed for
non-critical systems. Weibull distribution is the most
used method.

• Life cycle load-based approaches. Damage accumu-
lation models based on environmental data are used.

• State estimation-based approaches. It can track the
gradual degradation of the system.

• Feature extraction-based approaches. Feature ex-
tracted from the monitored data.

These models used in electronics are mostly suitable for
components, because they do not consider the interactions
between components in a system. A much better approach
for models can represent the adoption of FEM, reduction
techniques for FEM, meta-models or surrogate models to
reproduce the entire system behavior.

C. Case studies

Gu et al. [44] proposed LCM to be applied to a
electronic component-board assembly placed under the
hood of an automobile and subjected to normal driving

conditions in the Washington DC area. Solder joint fa-
tigue was identified as the dominant failure mechanism.
Vibrations were measured in-situ and used to estimate
the LCM using the environmental data. Then acceleration
data recorded from vibration loading was analyzed for
remaining-life prediction.

Zhang et al. [24], used PoF to calculate RUL of a PCB
with different Ball Grid Array packages mounted on it.
They used daisy chain resistance as monitoring parameters
input for LCM and Uncertainty Adjusted Prognostics
methods.

Gu and Pecht [10], analyzed the electronic products
with FMMEA and they developed a prognostic approach
to estimate the remaining useful life using PCB strain
data. Prognostics was performed by using the stress data
extracted at the component solder joint.

Fault mode effect analysis (FMEA) is applied in [43],
identifying the root cause of failure, probability of occur-
rence and system-level effects on a GPS system. Failure
criteria are the deviation in primary feature value by 30dB
below the initial value. A prognostic feature provides an
advanced warning of impeding failure to predict RUL.

In [18] prognostics methods are applied to a Line
Replaceable Unit (LRU), this can be a engine controller
for a jet engine. Discrete event simulation is used to follow
the life of individual socket instances from the start of
their field life to the end of their operation and support.
This can be an alternative for continuous monitoring. The
input for such simulation model is a stochastic analysis
based on a Monte Carlo simulation.

Pecht et al. [19] proposed a FMMEA analysis, which
determined the critical modes and mechanisms affecting
the assembly due to the thermal cycling resulting in
open circuit. Temperature and resistance were found to
be critical to detect system failure for the given loading
conditions. FMMEA can be used for PHM for electronic
systems because it can track all the failure modes and
mechanisms in a system on a given loading condition.
The anomaly detection was performed using a data-
driven residual analysis technique and the healthy baseline
creation was based on ten-cycle data. A regression model
was created based on component resistance in function
of temperature. The residual between the model and the
observed data was used for SPRT algorithm to detect
anomalies. SPRT is a statistical likelihood ratio test for
anomaly detection. When an anomaly is detected, the
parameters causing the anomaly are identified and then
used in physics-based models. For example in this case
what was causing the anomaly is the resistance change
due to thermal fatigue was identified. Hence a Coffin-
Manson model was used to calculate RUL. This approach
is also capable of detecting intermittent failures.

Ramakrishnan and Pecht [45] used PoF based prog-
nostics to assess RUL of an electronic component board
placed under the hood of an automobile and subjected



to normal driving conditions. The test board incorporated
surface-mount leadless inductors soldered onto an FR-4
substrate using eutectic tin-lead solder. Temperature and
vibration were measured in situ on the board in the appli-
cation environment. Using the monitored environmental
data, stress and damage models were successfully used to
estimate consumed life.

The uncertainties in prognostics have an effect on its
applicability and the quality of prognostics results. Monte
Carlo method is the most common method for uncer-
tainty analysis. In [46] the prognostics uncertainty analysis
method based on stochastic response surface method has
been proposed. The case study is a board-level electronic
product of a strain tester (it measures resistance strain test
signal). The SRSM constructs the response surface based
on the Hermite polynomial to approximate the random
response function, which can guarantee the convergence in
probability. Here, PoF-based method is used to calculate
RUL of the electronic products.A solder fatigue model
such as Coffin-Manson, plate through hole thermal fatigue
model (PTH), electro-mitigation model (Black) is chosen.
A predictive linear cumulative damage models and failure
mechanism competition model is constructed to deal with
different failure mechanisms.

In [47] the case study is a laptop computer by im-
plementing FMMEA using a software called MADe.
FMMEA is applied to divide the system into subsystems.
However, the software does not include all the possible
mechanisms that may occur in assemblies. This software
can be used to model the entire system and identifies the
failure mechanisms in the selected subsystems.

6. Summary and recommendation
The existing PHM examples are usually using the

current and voltage of the systems as monitoring parame-
ters. It would be more desired if parameters representing
the actual physical quantities linked to failures could be
identified. This would require development of new sensors
as well as new PHM strategies. Based on the literature
reviewed in this paper, it can be stated that the data-
driven approaches are more suitable for system monitoring
since the physical models are usually developed to analyze
components or failure mechanisms. Regarding model-
driven approaches, efficient model reduction techniques
and advanced statistical uncertainty propagation tech-
niques would be needed to be able to tackle complicated
and expensive system modules. The concept of surrogate
models can be combined with simulation models in order
to alleviate the burden of computational cost. Further
advances are expected to be added to PHM applied to
electronic systems.

7. Conclusions
Prognostics and Health Monitoring for electronic sys-

tems is not a mature subject and requires further work
to be performed in several areas. The most important

Table 4. Challenges in PHM for Electronic Systems

Conceptual Technical Economical

Systems Complexity System design Warranty issues
Time to market, size
and cost

Precursor selection PHM Benefits in
product value

Higher loads, longer
functionality time

Intermittent Failures Development Extra
Cost

Maintenance Culture System Physical
Models

tasks involve development of sensors and their location
throughout the system, transferring data-driven techniques
already developed for different PHM applications to elec-
tronic systems. It would be interesting if in the context of
Big data/Deep Learning just one algorithm could be used
to reach all the levels of prognostics based on the input
size and quality. This could simplify all the necessary
methods to be used in a chain, but also can be very costly
computationally. Nevertheless, the current advancement in
Artificial Intelligence techniques will play a key role in the
next generations of PHM systems in any type of fields.
Clearly, the fusion between data-driven approaches and
the model-driven approaches is a key in the performance
of the PHM system.

The future trend should be focused on developing smart
electronic components with embedded sensors, which
contain sensing cells and the logic part in the system-
on-chip and have wireless communication and ultra-low
power consumption.
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Table 5. Case Studies

Methods Parameters Test Vehicle References

• Mahalanobis Distance - Healthy Baseline
• Noise suppression, time series, signal process-

ing - Data Handling
• Markov state Model - Generating prognostics

parameters

• System Specs usage, Environmental Loads
• Fan Speed, CPU Usage, Temperature

Personal
Computers

[32]

• Mahalanobis Distance - Healthy Index
• Weibull Distribution

• Memory Usage Capacity
• Temperature of the fan, Hard Disk Drive

Notebook Com-
puters

[41]

• Reliability Mean-Time-to-Failure • Scan error
Hard Disk Drive [3]

• Support Vector Machine
• Least Square - Support Vector Machine

• Resistance and Capacitance
Analog State
Variable Filter
Circuit

[39]

• Karhunen Loeve Transform
• Euclidean, Mahalanobis and Bayesian Distance
• Finite Element Methods
• Principal Component Analysis
• Neural Networks, Self-Organizing Maps

• Transient Strains
PCB [35], [34]

• Empirical Methods
• Multivariate State Estimation Technique, Se-

quential Probability Ratio Test

• Temperatures, Humidity, Vibration
• Voltages, Current
• CPU and Memory Loads, Fan Speed, Queue

Lengths

Computer
Servers

[30], [15]

• Physics-of-Failure • Temperatures, Humidity, Vibration
• Voltages, Current,Power

PCB [45]

• Non-Stationary Gaussian - Analytical Model • Voltages, Current
[7]

• Bayesian Network - Fault Identification • Voltages, Current
[22]

• Mean-Time-between-Failures
• State of Health

• Voltages
Power Supply [29]

• Hierarchical Bayes Model
• Finite Element Methods

• CPU Loading Factor, Fan Rotation Speed
Note PC [28]

• Life Consumption Methods
• Physics-of-Failure

• Acceleration Data
PCB, Line Re-
placeable Units

[44], [18]

• Physics-of-Failure • Signal Strength
RF system, GPS [43]

• Life Consumption Method
• Uncertainty Adjusted Prognostics Fusion

• Resistance
PCB [24]

• Failure Modes and Mechanisms Effect Analy-
sis Software

• Software identifies the parameters
Laptop [47]

• Markov Theory
• Stochastic prediction model

• Thermal failure rate
• Repair rates
• Mean time between thermal failures

DC frequency
Conversion
conditioning

[48]

• Ferni-Dirac Health description
• Quantum mechanics analogy
• Back-propagation Neural Network remaining

useful life model

• Voltage
PCB Power Con-
version Board

[49]

• Finite Element Methods
• Mahalanobis Distance, Singular Value Decom-

position, Support Vector Machine

• Mechanical Stresses
Outer Molded
Electronic
Control Unit

[11]
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