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Abstract

We present an efficient workflow that combines multiscale (MS) forward simulation and stochastic gradient
computation - MS-StoSAG - for the optimization of well controls applied to waterflooding under geological
uncertainty. The Iterative Multiscale Finite Volume (i-MSFV), a mass conservative reservoir simulation
strategy, is employed as the forward simulation strategy. The i-MSFV method has the ability to accurately
capture fine scale heterogeneities, and thus the fine scale physics of the problem. This allows for accurate
and efficient simulations with fine-scale error estimates in a more computationally efficient coarse-scale
simulation grid. The Stochastic Simplex Approximate Gradient (StoSAG) method, a stochastic gradient
technique, inspired from Ensemble Optimization (EnOpt), is employed to compute the gradient of the
objective function. Stochastic methods have recently been shown to be very efficient in terms of gradient
quality and computational cost especially for robust optimization problems. They rely on the reservoir
simulator as a black-box and perform a large number of forward simulations to approximate a gradient.
In our numerical experiments, we investigate the impact of MS parameters such as coarsening ratio and
heterogeneity contrast on the quality of the approximate MS-StoSAG gradient. Our experiments illustrate
that i-MSFV simulations provide accurate forward simulation responses for the gradient computation, with
the advantage of speeding up the workflow due to faster simulations. Speedups up to a factor of five on
the forward simulation were achieved for the examples considered in the paper. The combination of speed
and accuracy of MS forward simulation with the flexibility of the StoSAG technique (several different
parameters/responses can be easily considered) allows for a flexible and efficient optimization strategy
suitable for large-scale problems.

Introduction

We consider the life-cycle optimization of hydrocarbon production by manipulating well controls (pressure,
rates or valve settings) for a given configuration of wells, a process also known as long-term production
optimization or recovery optimization. In particular we consider robust optimization of strategies which
maximize an objective function over an ensemble of reservoir model realizations to capture the effect of
geologic uncertainty (Van Essen et al. 2009). The most efficient optimization tecniques for this purpose
are gradient-based with gradients computed using the Adjoint method (Jansen 2011). However, the
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implementation of an adjoint is time-consuming and requires access to the simulator source code. This
has led to a growing popularity of stochastic gradient-based optimization techniques which are easy to
implement and flexible to use with different control types as well as different reservoir simulators. One
of the most used stochastic gradient-based techniques is Ensemble Optimization (EnOpt) which was first
introduced by Chen et al. (2009). EnOpt uses a number of perturbed control vectors around a known control
strategy where the number of perturbations is much lower than the total number of elements in the control
vector (i.e. the number of well controls times the number of control time periods over the life time of the
reservoir). The associated objective function values of these perturbed controls are used to approximate the
gradient using linear regression.

For optimization of a single reservoir model, i.e. deterministic optimization, the computational effort to
estimate the gradient increases with the number of perturbed controls to be evaluated. However, Chen et al.
(2009) showed that for optimization over multiple reservoir models, i.e. for robust optimization, pairing one
reservoir model to one perturbed control strategy leads to a similar computational efficiency as gradient-
based techniques. Fonseca et al. (2014b) introduced an improved version of EnOpt for robust optimization,
called Stochastic Simplex Approximate Gradient (StoSAG), which is theoretically more sound and produces
higher- quality gradients. Moreover, they showed that, although the one-to-one pairing is computationally
efficient, higher quality StoSAG gradients can be achieved by using a larger number of perturbations. Thus
improving the computational efficiency of individual forward simulations, to allow for more perturbations,
is the focus of this paper.

One of the ways to improve the computational efficiency of forward simulation models in optimization
is the use of Reduced Order Models (ROM) (Cardoso et al. 2010; Jansen and Durlofsky 2016; van Doren
et al. 2006). Alternatively, there, has been an increase in the applicability of different simulation strategies
to speed up the computational process. One such technique is the Multiscale (MS) method (Hou and Wu
1997; Jenny et al. 2003). MS methods aim to solve the equations at a coarser scale, yet preserving the fine
scale description. MS methods have increasingly been demonstrated as an efficient and accurate technique
for reservoir simulation (Cusini et al. 2015; Kozlova et al. 2015, 2016; Tene et al. 2015). For an overview of
important developments in MS we refer to Lie et al. (2016). Among these developments, an important one
in the scope of the present work is the development of iterative MS methods, more specifically the Iterative
Multiscale Finite Volume method (i-MSFV) (Hajibeygi et al. 2008; Hajibeygi and Jenny 2011). Due to the
localization assumptions utilized in the construction of the MS basis functions, the solution obtained via
an MS scheme is not as accurate as the fine-scale solution. However, these discrepancies can be resolved
if an iterative scheme is employed. Moreover, because i-MSFV provides a fine-scale error estimate and an
approximate, however fully conservative velocity field, it allows for both accurate and efficient simulation
with control of the error estimate (Hajibeygi et al. 2012).

It is important to emphasize that, on one hand, MS methods provide approximate reservoir responses and
stochastic methods, on the other hand, provide an approximation of the gradient. On that note, Krogstad et
al. (2011); Moraes et al. (2016) show that analytical gradients (e.g. adjoint-based ones) computed via MS
strategies provide an accurate enough approximations of the true gradient, capable of providing optimization
results comparable to fine-scale optimizations. Also, Fonseca et al. (2015) provide a discussion on the
quality of stochastic gradient compared to analytically computed ones.

The remainder of the paper is organized as follows. First, we discuss the StoSAG optimization
methodology followed by the multiscale reservoir simulation framework which has been implemented in-
house and used in this study. We then provide the workflow used for the optimization experiments performed
in this paper. Following the theoretical descriptions of these two building blocks we illustrate the advantages
and computational gains achieved on two different reservoir models for optimization cases with and without
geological uncertainties.
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Theoretical Framework

Stochastic Gradient Computation

In model-based optimization problems, traditionally, controllable variables, in individual wells or at
field scale, such as injection or production rates, bottom-hole pressures (BHP) or ICV settings etc., are
manipulated to maximize the value of an objective function such as Net Present Value (NPV) or Ultimate
Recovery (UR). The controllable variables commonly referred to as controls and denoted by the vector u
consist of all the variables to be optimized at the different control time steps. In this section we briefly outline
the StoSAG method first introduced in Fonseca et al. (2014b) which is a modified version of the ensemble
optimization method first introduced by Chen et al. (2009). For a detailed description of the methodology
we refer to Fonseca et al. (2016).

For a control vector u' we generate an ensemble of multi-variate Gaussian distributed perturbed control
vectors {uy, U,,......... , Wy}, around the control vector u’ with a user defined covariance matrix C, where £
is the optimization iteration index. At the first iteration the choice of the control vector is user-defined and
at subsequent iterations determined by the optimization algorithm. The covariance matrix C is usually kept
constant throughout the optimization although methods exists to adaptively update the covariance matrix
see e.g. Fonseca et al. (2014a); Stordal et al. (2016). The objective function J chosen to be optimized is then
evaluated for each of the perturbed control vectors {u;, u,,......... ,u,, which leads to a corresponding set
of objective function values {J,,/5,......... Jut

To estimate the stochastic gradient we assemble a mean-shifted matrix of the control vectors U defined as

U=[u —u’ u—u’uy —uf, (1)

and a mean-shifted vector of the corresponding objective function values j defined as
J=[T(w) = J) J(uz) = J(u) - J(upy) — J(u)]". (2)

The equations described above can be used for deterministic (single geological model) optimization.
Recently many papers have investigated the theoretical and practical applications of stochastic gradients for
robust optimization; see e.g. Chen (2008); Fonseca et al. (2014b) and references therein. In this paper we
use a 1:1 ratio, i.e. one reservoir model to one perturbed control strategy, to robustly estimate the gradient.
This leads to a slightly different notation for the vector of objective function anomalies given in (2) which
for robust optimization is defined as

j=[J(u,m) — J(u m) J(uy,my) — J(ut my)--- J(uy,my) — J(ut, my)|". (3)

where m are the geological model realizations which are equal in number to the number of perturbed control
vectors. The StoSAG gradient is then calculated with linear regression and is given by (Fonseca et al. 2016)

g = (U(U"))"j, (4)

where the superscript + indicates the Moore-Penrose pseudo inverse. The gradient g calculated above is then
utilized in a simple steepest ascent algorithm (Nocedal and Wright 2006) to calculate an updated control
vector until convergence is achieved. Do and Reynolds (2013) have shown that the formulation provided
above has many commonalities with other stochastic gradient methods such as Simultaneous Perturbation
Stochastic Approximation (SPSA) (Spall 1992).

Multiscale Reservoir Simulation

Multiscale (MS) methods (Hou and Wu 1997; Jenny et al. 2003), in summary, use locally constructed MS
basis functions to enable the solution of the original fine-scale problem in a coarse scale and allow the
solution to be accurately represented back to the fine-scale representation of the reservoir model.
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In the context of this work we consider an immiscible, incompressible two-phase flow regime. Because
MS methods are well-suited to solve elliptic problems, a sequential strategy to solve the governing equations
is traditionally considered. Here, an Implicit in Pressure, Explicit in Saturation (IMPES) coupling is
employed. For further explanations about the governing equations and solution strategies see, e.g., Aziz
and Settari (1979).

In our simulator the flow (pressure) equation, is solved via the Multiscale Finite Volume (MSFV) method.
The MSFV method, by construction, is mass conservative (Jenny et al. 2003). This is achieved via the
introduction of basis functions, which are local solutions to the governing flow equation, subject to assumed
local boundary conditions, without right-hand-side (RHS) terms

—V-(A-Vp) =0, (5)

where A is the mobility and ¢ is the basis function value. These local basis functions construct the
prolongation (interpolation) operator, which is responsible to map (interpolate) the coarse-scale solution to
fine-scale resolution (Wang et al. 2014; Zhou and Tchelepi 2012). This involves the definition of a primal
coarse grid (on which the conservative coarse-scale system is constructed) and a dual coarse grid, which is
obtained by connecting coarse nodes. Coarse node is a fine cell inside (typically at the center) each coarse
cell. Basis functions are solved locally on these dual coarse cells. Such overlapping coarse and dual coarse
grids are crucial for conservative solutions in MSFV. An illustration of the MSFV grids is provided in Fig. 1.

B e
-
-
4
-
-

Figure 1—lllustration of MSFV coarse grids for a 2D domain. Given a fine-scale grid (shown in light solid
black lines), the coarse grid (shown in solid bold black) is imposed as a non-overlapping partition of the
computational domain. The coarse nodes (vertices) are then selected (filled in red cells). Connecting
coarse nodes constructs the dual-coarse grid (highlighted in blue) where basis functions are solved.

As basis functions do not account for RHS terms, wells terms are considered as supplementary functions,
called well functions (Jenny and Lunati 2009). Well functions are local solution of the flow problem
considering unity solution at the well (i.e., p,, = 1). An illustration of basis and well functions is provided
in Fig. 2. The prolongation operator can be expressed in terms of the basis functions corresponding to each
coarse cell j = 1,..., N¢ and each well function y,, corresponding to all w = 1,...,N,, wells adds a column
vector to the porous rock prolongation operator

P=[@ - on | b1 - by |- (6)
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Figure 2—(a) Basis function, (b) sum of all basis functions and (c) well function for a given
heterogeneous porous media (represented in the bottom of the plots) in a given dual-grid cell containing
a well (source term). The well perforates two fine grid blocks in the center of the dual grid block.

The computation of well/basis functions are only performed once in the simulation, as a pre-processing
step. During the multiphase run, they are adaptively updated only where the local properties within the
specific dual cell is changed (Jenny et al. 2005). It is clear that the computation of basis functions is highly
parallelizable, an advantage with respect to global-based ROM approaches.

The MS system can then be algebraically expressed as (Wang et al. 2014)

(RAP)p = (Rq) (7)

where R is the restriction based on a finite volume integration operator at coarse scale resulting on a matrix
of 0's and 1's (see e.g. Wang et al. (2014)). The interpolated fine-scale pressure is obtained by

p' =Pp. (8)

Due to the localization assumptions utilized to compute the basis functions, the pressure solution obtained
via a MSFV simulation is not as accurate as the fine scale solution. However, these discrepancies can be
resolved if an iterative scheme is employed (Hajibeygi and Jenny 2011). The Iterative Multiscale Finite
Volume method (i-MSFV) is capable of resolving these differences by resolving the high frequency errors
via some iterative solve iterations (smoothing) in the fine scale and resolving the low frequency errors via
the MSFV coarse scale solution. In brief, the method consists of re-writing Egs. (7) and (8) in residual form
and to iteratively solve the resulting system of equations until a convergence criterion is met. Note that i-
MSFYV delivers conservative coarse-scale solutions after any iteration stage. As such, it is not used as a
linear solver, but to maintain the desired user-defined accuracy.

Following the MS pressure equation solution, we solve for the saturations at the fine scale. Because
of the hyperbolic nature of the transport equations, fine grid scale resolution is necessary in order to
capture the local, sharp saturation fronts. However, although the MSFV approximated solution is, by design,
conservative at the coarse scale, it is not conservative at the fine scale. There different alternatives to build
a fine-scale conservative velocity field to be used in the solution of the transport equation in fine scale.
One option is to solve additional local Neumann problems at the primal-coarse grid domains (Jenny et al.
2005). Note that such a reconstruction stage should be done only for those coarse cells where the transport
equation is needed to be solved at the fine- scale. Alternatively, one can smooth the fine-scale i-MSFV
solution until a sufficiently small fine-scale residual is achieved. Like the former, this conservative velocity
field reconstruction can also be done adaptively (Hajibeygi et al. 2012), with the additional advantage of
controlling the solution quality via an error estimate.

Another important aspect associated with MS multiphase simulations is that basis functions from previous
time steps can be stored and reused for most of the local domains in the next time step. Only for those local
domains where mobility changes fall beyond a threshold value the basis functions need to be updated. Such
an adaptive strategy can be employed for i-MSFV as well, i.e., the iterative procedure (smoothing stage)
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can be employed only where and when the residual norm falls beyond a threshold value (Hajibeygi and
Jenny 2011).

Finally, because CourantFriedrichsLewy (CFL) conditions for numerical stability (Coats et al. 2003)
can be very restrictive in terms of the time-step size selection, we employ an asynchronous time-stepping
strategy (Chen et al. 2004). This is achieved by solving the transport equation using small time-steps, hence
honoring the CFL condition, but keeping pressure and velocity fields unchanged.

MS-StoSAG workflow

In this paper we have used the workflow presented in Fig. 3 for our optimization experiments. Note that
the evaluation of the model responses is performed via MS reservoir simulation as a means to improve the
computational efficiency of our optimization workflow. Although a simple steepest-ascent with variable step
size optimization algorithm has been used, the framework is flexible to allow the use of more sophisticated

ones.
Generate
ensemble of Simulate the Comipiis Compute Uik
FETUTEE g GISEILIE NPV gradient control vector ||
control with MS
vectors
Perform MS
no . .
simulation
Stopping ye Increase Compute
criteria met? in NPV? NPV
Jes Reduce ]
no step length

Figure 3—The MS-StoSAG optimization workflow. MS reservoir simulation is used in the evaluation of the model responses.

An in-house, research-oriented MS reservoir simulator is used for the purpose of the experiments. The
simulator has been developed based on the theoretical framework here described. It has been benchmarked
to other research simulators like MRST (Lie et al. 2012). An overview of the MS reservoir simulator can
be found in Fig. 4. In the workflow, the tolerance E controls the reconstruction of the basis functions (BF),
which only happens when a given error metric e exceeds the tolerance. The transport solver time-step At
is limited by CFL conditions, but the flow solver time-step A, is not. The velocity field is kept unchanged
until the transport solver time ¢, reaches At,. The simulator outputs the information required to compute the
gradient and objective function when the final time ¢ 1s reached.
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Figure 4—Schematic description of the MS reservoir simulation.

Numerical Experiments

We illustrate the application of our proposed framework in the life-cycle optimization of two different
models. For both models, the controls are bottom-hole pressures in the injection and production wells. The
objective function used for optimization is a standard economic objective, Net Present Value (NPV), as
defined in Eq. (9), for which we use the prices provided in Table 1.

K
[(QO,k) *To — (pr,k) : 7ﬁwp - (qwi,k) : Twi] : Atk
; (1+b)7

Table 1—Costs associated with oil production.

Value Unit

QOil price 252 $/m’

Cost of injected water 60 $/m’
Cost of produced water 30 $/m’

where ¢,,  represents the oil production rate in m*/day, g\ is the water production rate in m*/day, g, x is
the water injection rate in m’/day, , is the price of oil produced in $/m’, r,,, is the cost of produced water in

$/m’, r,; is the cost of injected water in $/m’, At, is the difference between consecutive time steps in days,
b is the discount factor expressed as a fraction per year, #; is the cumulative time in days corresponding to
time step k, and 7, is the reference time period for discounting, typically one year.

In the MS simulation of all numerical experiments there is no basis function reconstruction. Instead, we
delegate the resolution of the discrepancies left by the localization assumptions and inaccuracies due to
outdated basis functions to the i-MSFV smoothing step. Also, the conservative velocity field is reconstructed
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directly from the smoothed pressure field. For such, we require the i-MSFV loop to reduce the the fine scale

residual in one order of magnitude, and the fine scale residual tolerance after smoothing is set to 107°. A /*-
norm is employed to computed the residual norm. The stabilized bi-conjugate gradient iterative solver with
ILUT preconditioner (Saad 1994) is used as fine-scale smoother.

Five-Spot Model

In the first numerical experiment, a simple synthetic 2D inverted five-spot model is considered. It consists
of a 21 x 21 regular mesh with grid block size dimensions of 33.3 x 33.3 x 2 m. The reservoir porosity
is constant and equal to 0.3. The permeability distribution is depicted in Fig. 5 and the fluid properties are
described in Table 2. For the optimization, we have 5 control variables per control time step. In this exercise
we use 6 control time steps of 720 days each, thus we optimize 30 variables. The values of the bottom-hole
pressures are bounded for the production wells between a minimum value of 280 bar and a maximum value

of 300 bar. The injection well pressures are bounded between a minimum value of 300 bar and maximum
value of 320 bar.

3.8e-14

Figure 5—The permeability realization used for deterministic optimization and well placement

Table 2—FIluid properties for five-spot Model.

Property Value Unit

0il dynamic viscosity (i,) 0.5x107° Pas

Water dynamic viscosity (i,,) 1.0x107° Pas
End-point relative permeability, oil (k,,.,) 0.9
End-point relative permeability, water (k;,,) 0.6
Corey exponent, oil (V,) 2.0
Corey exponent, water (N,,) 2.0
Residual-oil saturation (S,, = 0.2) 0.2
Connate-water saturation (S,,c) 0.0

Deterministic Life-cycle Optimization. We first consider a single model realization. For this purpose we
use an ensemble of 50 perturbed control vectors with a perturbation size defined as 10% of the difference
between the min and max bounds of the controls. The stopping criteria used is a maximum number of 25
optimization iterations. The initial starting strategy is one wherein the injector well operates at a constant
BHP of 310 bars and the production wells at a constant BHP of 290 bars. When working with reduced order
or upscaled models it is imperative to compare and validate the results with respect to the fine scale model
realization. Fully Implicit methods (FIM) are commonly used for reservoir simulation. In the appendix we
compare the differences in performances between FIM and IMPES on the fine scale model. We observe that
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higher objective function values are achieved when using the IMPES soultion strategy. The MS reservoir
simulator used here is based on the IMPES coupling and thus in the remainder of this paper we will compare
our multiscale model results to the fine scale model run with IMPES.

Multiscale Optimization. We consider two different coarsening ratios to test the efficiency of our proposed
MS-StoSAG workflow. The two coarsening ratios are 7x7 and 3x3. Thus a deterministic optimization with
the optimization parameters discussed above is performed for 3 different models, fine scale using IMPES,
i-MSFV 7x7 and i-MSFV 3x3. The optimization process is illustrated in Fig. 6. We observe that all three
models find optimal strategies which produces approximately similar NPV values. We also observe that
while the i-MSFV 7x7 model achieves a slightly lower NPV compared to the fine scale IMPES model,
the i-MSFV 3x3 model achieves a higher NPV than the other two models. Thus the coarsest model used
produced the highest NPV which may be counter-intuitive. Cross validation of the i-MSFV strategies on
the 21x21 fine scale model produces NPV values which are indistinguishable from each other which could
be the result of a relatively simple small model. Fig. 7 is a comparison of the optimal control strategies
obtained from the different models. We observe that all the strategies are very similar to each other thus
the objective function values are also similar. A speedup of approximately factor four was achieved with
details discussed in the computational efficiency section discussed below.
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Figure 6—Comparison of the objective function through the iteration process for IMPES and the two i-MSFV models
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Figure 7—Comparison of the optimal control strategies between IMPES and two -MSFV models

Sensitivity to Optimization Parameters. The parameters which influence the computation of a stochastic
gradient such as ensemble size of perturbed controls, perturbation sizes to generate the ensemble of controls,
random seeds used to generate the perturbed controls were varied and tested with the different i-MSFV
models. The results from this exercise followed the exact same trends as reported in earlier publications see
e.g. Fonseca et al. (2015) who investigated the impact of gradient quality based on the various parameter
choices.

Robust Life-cycle Optimization. Inclusion of uncertainty within the optimization framework is usually
accounted for by utilizing an ensemble of equiprobable geological model realizations. In this paper a large
ensemble of 1,000 realizations of the five-spot model was generated via the decomposition of a reference
permeability image using Principal Component Analysis parameterization. See Jansen (2013) for more
details. Fig. 8 illustrates 4 different permeability realizations from a reduced ensemble of 50 members used
in the optimization experiments. The reduced ensemble was selected by simulating all 1000 realizations with
the same control vector and uniformly sampling realizations based on the highest, lowest and intermediate
objective function values. We acknowledge that there exists a range of formal clustering techniques to
carefully select a representative ensemble. For the proof-of-concept optimization experiments in this paper
the representativeness of the selected ensemble to a larger ensemble is deemed to be outside the scope of
this paper. Building basis functions is a key element in the multiscale simulation framework. For the robust
optimization experiments considered in this paper the basis functions for every single geological model
realization have been built. Innovative techniques to use a limited number of basis functions in order to
improve the computational efficiency of the optimization framework are outside the scope of the current

paper.

2.4e-14

Figure 8—Four different permeability realizations from the ensemble of 1,000 members used in the 2D numerical experiments.
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The objective function used for the robust optimization experiments is the expected NPV calculated over
the 50 realizations. Fig. 9 illustrates the evolution of the mean NPV through the optimization process for
the different simulation models. The same coarsening ratios and initial starting strategy has been used as
the deterministic case. The fine scale IMPES model achieves the highest objective function values followed
by the i-MSFV 7x7 model and the i-MSFV 3x3 model. Though the five-spot model is relatively small it
is reassuring that, irrespective of the different models (fine scale or i-MSFV) used, very similar objective
function values have been achieved when geological uncertainties are accounted for.

417

39r |

Undiscounted Net Present Value (107 USD)
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== i-MSFV 3x3
i-MSFV 7x7

10

15 20 25
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Figure 9—Comparison of the mean objective function value for the three
different models, IMPES (blue), i-MSFV 7x7(orange) and i-MSFV 3x3(red)

Fig. 10 is a comparison of the optimal control strategies for two different models, fine scale IMPES and
i-MSFV 3x3. The optimal control strategies achieved after robust optimization are quite different from the
strategies achieved for deterministic optimization which could be the impact of geological uncertainties,
the correspondingly different basis functions and impact of coarsening ratio on the different realizations.
A-priori determination of the impact of these factors on the results is non-trivial and is probably model as

well as problem dependent.
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Figure 10—Comparison of the controls that generated the highest NPV
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Computational Efficiency. Table 3 provides a comparison of the computational efficiency and speedup
gained for the different models used for the experiments. We use the linear solver time to measure the speed
up. This accounts for all computations performed by the i-MSFV solution strategy, i.e solution of the coarse
system plus fine-scale smoothing. Note that, although the construction of basis function adds an overhead
to the total simulation time (Tene et al. 2015), we highlight that in our experiments basis functions are only
built once. Also, it is well-known that the linear system solution is the most time-consuming part in reservoir
simulation framework.

Table 3—Comparison of the computational effort and average number of smoothing steps for the different i-MSFV cases

Simulation strategy Time for linear solver (sec) Number of smoothing steps
IMPES 21x21 4
i-MSFV 7x7 <1 1
i-MSFV 3x3 <1 2

An approximately factor 4 speedup can be achieved for this relatively small five-spot model. The
average number of smoothing steps throughout the optimization is approximately similar, irrespective of
the coarsening ratio used which is model and problem dependent. The tolerances of the residual for the MS
solution and the smoothing steps are the same for all cases. In order to understand and validate the efficiency
of the proposed framework a larger model is used below.

Kanaal Reservoir Model

A second example is considered to illustrate the effectiveness of our proposed workflow. We use a 99 x 99
2D model of with grid blocks of 10 x 10 x 5 m. Thus we have approx. 10,000 grid blocks in this model
compared to the 441 grid blocks in the five-spot model. The geological description used in this model has
been inspired from a typical channelized North Sea reservoir. The channels (Kanaal in Dutch) are set in
a sandy shale background with permeabilities ranging from 10-50 mD. The channels have permeabilities
ranging from 250-700mD with constant porosities of 20%. This reservoir is developed using a line drive
well configuration with 3 injection wells and 6 production wells as illustrated in Fig. 11. The fluid properties
of this reservoir are given in Table 4.

Figure 11—lllustration of the well configuration used for the Kanaal reservoir model with injectors in the middle denoted by X
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Table 4—FIluid properties for the Kanaal reservoir model

Property Value Unit

Oil dynamic viscosity (i) 2x107° Pas

Water dynamic viscosity (1,) 1.0x10° Pas
End-point relative permeability, oil (k) 0.9
End-point relative permeability, water (k) 0.8
Corey exponent, oil (N,) 2.0
Corey exponent, water (N,,) 2.0
Residual-oil saturation (S,, = 0.2) 0.2
Connate-water saturation (S,.c) 0.0

An ensemble of 50 geological realizations has been created using geological modeling software (Schlum-
berger 2016) to be used for the robust optimization experiments. Each of the realizations has been
constrained to well logs from 4 exploration wells which were generated from a base case model. This base
case model does not form part of the ensemble of model realizations. An illustration of a subset of models
is illustrated in Fig. 12. The life cycle period for this reservoir is 12 years. We allow the controls, i.e. the
bottomhole pressures in all wells, to be manipulated once every 6 months, i.e. 24 we have control time steps.
Thus for the 9 wells we optimize a total of 9x24 = 216 controls. The values of the bottomhole pressures
are bounded for the production wells between a minimum value of 280 bar and a maximum value of 300
Bar. The injection well pressures are bounded between a minimum value of 300 bar and maximum value
of 320 bar.

Figure 12—Four different permeabilty realizations from an ensemble of 100 members

Robust Life-cycle Optimization. For this example we focus on robust optimization experiments. The initial
control strategy corresponds to the bottomhole pressures on their maximum bound for the injectors, i.e.
a constant pressure of 320 bars, and on their minimum bound for the producers, i.e. 280 bars. Different
coarsening ratios and their impact on the optimization are investigated. The coarsening ratios for this
example are 3x3, 11x11 and 33x%33. The fine scale model is 99x99. We observe in Fig. 13 that all the
optimization experiments find solutions that achieve an objective function value higher than a reactive
control strategy. The economic water cut for the reactive control strategy for the prices considered in this
paper is 82%. We also observe from Fig. 13 that different coarsening ratios achieve different optimal mean
NPV values with similar trends as observed for the five-spot model. The smaller the coarsening ratio, the
higher is the NPV achieved, with the fine scale IMPES solution achieving the highest objective function
value. This result is expected because of higher the coarsening ratio, the smaller is the model in terms of
grid sizes and thus the lower is the accuracy compared to the finer grid models.
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Figure 13—Comparison of objective function value between IMPES and the different i-MSFV models used

Comparison of Optimal Strategies. Fig. 14 is an illustration of the optimal controls for 2 wells for the
fine scale IMPES model and the coarser scale i-MSFV 11x11 model. The optimal controls are significantly
different from each other with the same trend observed for the other seven wells. The objective function
values of the different optimal strategies are very similar to each other even though the strategies are very
different which is in accordance with the observation in earliers studies; see, e.g., Jansen et al. (2008). A
comparison of the optimal controls for two different i-MSFV models is illustrated in Fig. 15. Once again,
we observe that different optimal control strategies achieve very similar objective function values.
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Figure 14—Comparison of the optimal control strategies from IMPES and i-MSFV 11x11 model
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Figure 15—Comparison of the optimal control strategies from i-MSFV 11x11 and i-MSFV 3x3 model

In addition to visually recognising differences in the optimal control strategies we provide in Table 5
a comparison of the optimal volumes of oil and water produced and injected for the different simulation
models. We observe an interesting trend in the results. Higher volumes of oil and water are produced in
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the i-MSFV models compared to the fine scale IMPES model. Additionally we observe that the higher the
coarsening ratio, the higher are the production and injection volumes. We have not yet been able to find a
conclusive explanation for these trends.

Table 5—Comparison of optimal produced and injected volumes for the different simulation models

Simulation Strategy Cumulative Oil Produced Cumulative Water Produced Cumulative Water Injected
IMPES 99x99 3.82e5 2.88e5 6.37e5
i-MSFV 33x33 3.87e5 3.09¢5 6.97e5
i-MSFV 11x11 3.86e5 3.03e5 6.90e5
i-MSFV 3x3 3.92¢5 3.32¢5 7.24e5

Computational Efficiency. In this section we compare the computational efficiency and speedup gained
for the different coarsening ratios. For the larger Kanaal model an approximately 5 times speedup in
computational efficiency is achieved as observed in Table 6. The tolerances of the residual for the MS
solution and the smoothing steps are the same for all the cases. We also observe a clear trend in the average
number of smoothing steps required for the different coarsening ratios with a higher number of smoothing
steps being required for a coarser model.

Table 6—Comparison of the computational effort and average number of smoothing steps for the different i-MSFV cases

Simulation strategy Speed up for linear solver Number of smoothing steps
IMPES 1
i-MSFV 33x33 4.44 5
i-MSFV 11x11 5.69 12
i-MSFV 3x3 4.62 18
Discussion

The multiscale implementation used in this work can be further improved upon to obtain even higher
computational efficiency similar to the results reported in Krogstad et al. (2011). The speedup in the
computational efficiency reported in Krogstad et al. (2011) was obtained with coarse scale representations
for the both the flow and transport equations. In this paper the flow problem is solved at the coarse scale
while the transport equation has been solved on the fine scale which improves the accuracy of our results.
Even though no basis function reconstructions were performed in our experiments, and the i-MSFV
fine- scale smoothing performed remarkably well, that might not be the case when more complex physics
are involved in the simulation model (e.g. gravity effects, capillarity, higher mobility ratios). However,
even under more complex scenarioss MS strategies should still deliver considerable speedups given that
basis functions need only be built adaptively and infrequently. Also, the employment of different velocity
field reconstruction techniques could be necessary in the case that i-MSFV becomes expensive. But again,
techniques like those presented by Hajibeygi and Jenny (2011); Jenny et al. (2005) benefit from adaptivity.
Furthermore, the implementation of our MS reservoir simulator does not yet capitalize on all potential
advantages of MS methods. MS methods are well suited to take full advantage of modern high performance-
computing architectures. For instance, the solution of basis functions are embarrassingly parallelizable.
Moreover, we expect that the computational advantage will increase for larger-sized reservoir models.
When working with coarse scale models for optimization it is imperative to validate the optimized
strategy on the fine scale model to understand and quantify the impact of optimization. Reduced-order
or upscaled models, though computationally very efficient, do not always produce similar production
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responses compared to the fine scale model. In our approach, because the transport problem is always solved
on the fine scale, the optimal strategies need not be validated as is confirmed by the results in this paper. This
is an additionally attractive feature of the workflow proposed in this paper. When working with reduced
order modeling methods such as POD (van Doren et al. 2006) or TPWL (Cardoso et al. 2010), multiple
high-fidelity simulations need to be performed a-priori to develop the reduced order model and afterwards
to verify the accuracy of the results. In our workflow we alleviate the need for these expensive pre- and re-
computations. As opposed, computation of the basis functions in the MS method is extremely cheap: in the
order or seconds to minutes depending on the complexity of the model.

Conclusions

In this paper we presented a computationally efficient multiscale based stochastic optimization (MS-
StoSAG) workflow, and applied it to two synthetic test cases. Deterministic and robust optimization
experiments were performed to illustrate that significant (10-15%) improvements in objective function
values are attainable in a computationally efficient manner. The validation of our results highlights the
accuracy of the multiscale forward simulation models. The results from our experiments show that an
approximately five times speedup can be achieved with scope for even higher speedups with our proposed
workflow. Thus we have shown that a flexible workflow using multiscale forward simulation and stochastic
gradients can achieve computationally efficient results of significant practical value.
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Appendix
Comparison of optimization performance between FIM and IMPES

There exists many different numerical schemes used in reservoir simulators. Fully Implicit (FIM) solution
schemes form the most commonly used technique. Other numerical schemes such as Implicit Pressure
Explicit Saturation (IMPES), though computationally attractive, can in some cases result in less accurate
results, especially in case of strong coupling between pressures and saturations as often occurs in near-well
bore regions. At the other hand, small saturation time steps, which are a necessity in the IMPES scheme
to maintain numerical stability, result in lower numerical diffusion which typically increases the accuracy
of the results (Aziz and Settari 1979). In the examples considered in this paper the same solution accuracy
was achieveable with IMPES and FIM. In order to compare results from coarse scale simulation models

it is imperative to have a reference fine scale solution. We test the impact of using FIM and IMPES in an
optimization context as is illustrated in Fig. 16.
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Figure 16—Comparison of the optimization performance between FIM and IMPES

The optimal objective function value achieved when using the IMPES scheme is higher than the optimal
objective function values achieved with FIM. We reason this to be due to the well known numerical diffusion
errors present in the FIM formulation. These errors result in faster water breakthough and thus larger
volumes of water being injected and produced. The optimization also highlights that the optimal control
strategies illustrated in Fig. 17 are quite different. Higher volumes of water are injected and produced which
will have a negative impact on the objective function used in this paper.
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Figure 177—Comparison of the optimal control strategies from FIM and IMPES scheme on fine scale model



