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An efficient multiscale (MS) gradient computation method for subsurface flow management 
and optimization is introduced. The general, algebraic framework allows for the calculation 
of gradients using both the Direct and Adjoint derivative methods. The framework also 
allows for the utilization of any MS formulation that can be algebraically expressed 
in terms of a restriction and a prolongation operator. This is achieved via an implicit 
differentiation formulation. The approach favors algorithms for multiplying the sensitivity 
matrix and its transpose with arbitrary vectors. This provides a flexible way of computing 
gradients in a form suitable for any given gradient-based optimization algorithm. No 
assumption w.r.t. the nature of the problem or specific optimization parameters is 
made. Therefore, the framework can be applied to any gradient-based study. In the 
implementation, extra partial derivative information required by the gradient computation 
is computed via automatic differentiation. A detailed utilization of the framework using 
the MS Finite Volume (MSFV) simulation technique is presented. Numerical experiments 
are performed to demonstrate the accuracy of the method compared to a fine-scale 
simulator. In addition, an asymptotic analysis is presented to provide an estimate of its 
computational complexity. The investigations show that the presented method casts an 
accurate and efficient MS gradient computation strategy that can be successfully utilized 
in next-generation reservoir management studies.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Model-based reservoir management techniques typically rely on the information provided by derivatives. For instance, 
in sensitivity analysis studies, derivatives can be directly used to identify the most influential parameters in the reservoir 
response. Also, derivative information can be utilized in history matching [1] and control optimization [2] studies, where 
gradient-based optimization techniques are employed in the minimization/maximization of an objective function.

These types of model-based reservoir management studies are computationally demanding. They require multiple eval-
uations of the reservoir model in order to compute its response under the influence of different inputs. Reduced-order 
modeling (ROM) techniques have been employed to reduce the computational cost of the reservoir response evaluation. In 
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sensitivity analysis studies, response surface models and design of experiments are often used to reduce the computational 
costs (see, e.g., [3]). In history matching and optimization studies, techniques like upscaling [4], streamline simulation [5], 
and proper orthogonal decomposition [6] are employed to create reservoir models that are faster to evaluate. However, 
ROM and upscaling methods usually do not provide accurate enough system responses due to excessive simplifications of 
the fluid-rock physics and heterogeneous geological properties. To resolve this challenge, Multiscale (MS) methods have been 
developed [7–9].

MS methods solve a coarser simulation model, thus increasing the computational speed, while resolving the fine scale 
heterogeneities. Note that the specific multiscale methods addressed here, map between fine and coarse grids that are 
both at continuum (Darcy) scale, but with different computational grid resolutions. Moreover, the map between the nested 
fine and coarse grids is developed by using multiscale basis functions [7]. The basis functions are local solutions of the 
fine-scale equation, which are adaptively updated [10,11] and allow the MS coarse system to account for the fine-scale 
heterogeneities (which typically do not have separation of scale). Note that in contrast with MultiGrid (MG) methods, MS 
methods are not developed as linear solvers, but are most efficient if they are used – similar as in this paper – to provide 
approximate conservative fine-scale solutions (crucial for multiphase systems). MS methods are found efficient and accurate 
for large-scale reservoir models [12,13]. Important in this class of MS methods (compared to upscaling methods) is that 
the coarse-scale solutions are mapped onto the original fine scale, using the same basis functions. As such, errors can be 
calculated against the fine-scale reference systems (and not upscaled averaged ones). This allows for the development of 
convergent iterative MS procedures [14–16]. Recent developments include MS formulations for fractured media [17,18] with 
compositional effects [19,12,13] and complex well configurations [20] and gravitational effects [21]. In addition, algebraic 
formulation of the method has made it convenient to be integrated within existing simulators using structured [22,23]
and unstructured [24–26] grids. The method has been also extended to fully-implicit formulations where all unknowns 
cross multiple dynamically-defined scales [27]. Although these developments are found efficient, they are mainly limited to 
forward simulation modeling. In this paper the focus is on the use of MS methods within reservoir management workflows.

Reservoir management techniques include optimization algorithms, in which calculation of derivatives plays an impor-
tant role. The classical approaches for calculation of derivatives are either computationally expensive or inaccurate. For 
instance, numerical differentiation (see, e.g., [28,29]) suffers from discretization approximations and truncation errors, and 
is impractical when the number of parameters is large. Alternatively, analytical methods – Direct Methods (or Gradient 
Simulators) [30] and Adjoint Methods [31,32] – can provide accurate and efficient derivatives under appropriate conditions 
(to be further discussed in the Section 2). However, the use of analytical methods has not been extensively adopted mainly 
because they are code-intrusive and require a substantial implementation effort. On this issue, automatic differentiation can 
partly alleviate the burden of computing derivative information [33]. Additionally, most commercial simulators do not pro-
vide analytical derivative capabilities nor do they provide access to extend their functionality in this direction. Partially due 
to these drawbacks, ensemble methods such as the Ensemble Kalman Filter (EnKF) have become very popular in the data 
assimilation community [34]. Similarly, stochastic approximate gradient techniques such as ensemble optimization (EnOpt) 
and the stochastic simplex approximate gradient (StoSAG) method are increasingly being used for life cycle optimization 
[35,36]. These methods, however, by construction, provide an approximation of the gradient.

Multiscale gradient computation has been studied in the past. A Multiscale finite-volume Adjoint (MSADJ) method has 
been applied to sensitivity computation [37], where the global adjoint problem is solved via a set of coupled sub-grid 
problems described at a coarser scale. The coarse-scale sensitivities are then interpolated to the local fine grid by recon-
structing the local variability of the model parameters with the aid of solving embedded adjoint sub-problems. In a follow 
up paper [38], the MSADJ method was efficiently applied to inverse problems of single-phase flow in heterogeneous porous 
media. Also, an efficient Multiscale Mixed Finite Element method has been developed for multiphase adjoint formulations, 
where both pressure and saturations are solved at the coarse scale [39]. In contrast to MSADJ, this method did not require 
fine-scale quantities.

The present development introduces a mathematical framework to compute sensitivities (gradients) in a multiscale 
strategy. The framework enables the same computational efficiency as existing multiscale methods [37–39]. However, its 
formulation allows for full flexibility with respect to the types of gradient information that are required by the different 
model-based reservoir management studies. This is achieved via an implicit differentiation strategy, as opposed to the more 
traditional Lagrange multiplier formulation. Also, the formulation naturally provides not only the Adjoint Method, but also 
the Direct Method. It is important to note that, although in this work the multiscale finite volume (MSFV) is being studied, 
the proposed MS-gradient method is not restricted to a specific MS method. Instead, it can be utilized in combination with 
any MS (and multi-level) strategy which is expressed in terms of restriction and prolongation operators.

This paper is structured as follows. First, the multiscale gradient computation method is derived based on the MS reser-
voir model equations and the respective model responses. The computation of the required prolongation (matrix of basis 
functions) operator derivatives is developed within the Multiscale Finite Volume (MSFV) formulation. Computational com-
plexity of the method is also discussed from a theoretical point of view via asymptotic analysis of the algorithms. Thereafter, 
the Numerical Experiments section describes a systematic investigation of the validation, robustness, and accuracy of the 
MS-gradient method for test cases of increasing complexity. Because the proposed method is quite fundamental, the exper-
iments are aimed at evaluating the gradient computation itself, rather than any specific application.
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2. Derivation of the multiscale gradient computation mathematical framework

2.1. Forward simulation model

The derivation of the forward simulation model’s response with respect to the parameters starts by firstly describing its 
equations in a generic, purely algebraic form. The analysis is restricted to quasi-steady state problems. In that case, the set 
of equations that describes the forward simulation at the fine scale can be algebraically expressed, without any assumption 
regarding the underlying physical model, as

gF (x,θ) = 0, (1)

where gF : RN F × R
Nθ → R

N F represents the set of algebraic simulator equations, x ∈ R
N F is the state vector (which, for 

single-phase flow, contains the grid block pressures), θ ∈ R
Nθ is the vector of parameters (which typically contains grid 

block permeabilities and porosities but possibly also other parameters such as fault transmissibility multipliers or structural 
parameters), and the subscript F refers to ‘fine scale’. There are N F fine-scale cells and Nθ parameters. Eq. (1) implicitly 
assumes a dependency of the state vector x on the parameters θ, i.e.

x = x (θ) . (2)

Once the model state is determined, the observable responses of the forward model are computed. The forward model 
responses (typically wellbore pressures and/or rates) may not only depend on the model state, but also on the parameters 
themselves, and can be expressed as

yF = hF (x,θ) , (3)

where hF :RN F ×R
Nθ →R

N y represents the output equations [40]. It is assumed that gF can be described as

gF (x,θ) = A (θ)x − q (θ) , (4)

where A(θ) is an N F × N F matrix and q(θ) is an N F vector.

2.2. Algebraic multiscale formulation of flow in heterogeneous porous media

MS methods provide accurate and efficient solutions to the flow equations by incorporating the fine-scale heterogeneities 
in a coarse-scale operator [8]. This is achieved by basis functions, which are local solutions of the governing equations 
without right-hand-side (RHS) terms, subject to approximate local boundary conditions. These local basis functions construct 
the prolongation (interpolation) operator, P = P(θ), which is an N F × NC matrix that maps (interpolates) the coarse-scale 
solution to the fine-scale resolution. For the purpose of the development presented here, the required basic knowledge about 
the multiscale strategy is that a coarse-scale system can be algebraically described once the restriction operator, R = R(θ), 
is defined as an NC × N F matrix which maps the fine scale to the coarse scale (more information can be found in [41,22]). 
Let x̆ ∈ R

NC be the coarse scale solution (NC � N F ), R = R(θ) be an NC × N F matrix mapping from the fine scale to the 
coarse scale and P = P(θ) be an N F × NC matrix mapping from the coarse scale to the fine scale. x̆ is obtained by solving

ğ = (RAP) x̆ − (Rq) = Ăx̆ − q̆ = 0̆. (5)

Finally, the approximated fine-scale solution x′ is obtained by interpolating the coarse scale solution x̆, i.e.,

x′ = Px̆. (6)

2.3. Derivative calculation of simulator responses

In order to derive an expression to compute the multiscale derivatives with respect to the parameters, an implicit differ-
entiation scheme is followed [42,43]. The implicit differentiation scheme facilitates both the Direct and the Adjoint methods, 
in contrast to the formulations based on the standard Lagrange multiplier [2,28]. In addition, through its specific algebraic 
form, it allows for providing any gradient information required by the selected optimization algorithm.

Based on Eq. (6), the function g′ is defined as

g′ = x′ − Px̆ = 0, (7)

which represents the multiscale procedure to find approximate primary variables at the fine scale. The state vector is now 
described as a combination of both sets of primary variables at the fine and coarse scales, i.e.,

x =
[

x̆
x′

]
, (8)

and, similarly, the model equations are represented as a combination of the equations at both scales, i.e.,
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g (x,θ) =
[

ğ
g′

]
= 0. (9)

The definition of the state vector as in Eq. (8), as a key aspect of this development, allows for describing the state not 
only at the fine scale, but also at the coarse scale. The simulator responses y obtained from the multiscale method are 
represented as

y = h (x,θ) . (10)

The sensitivity matrix G is then computed by obtaining the derivative of Eq. (10) with respect to θ as

G = dh

dθ
= ∂h

∂x

dx

dθ
+ ∂h

∂θ
. (11)

In order to find a relationship that defines the derivative of the state vector with respect to the parameters, Eq. (9) is 
differentiated with respect to θ

∂g

∂x

dx

dθ
+ ∂g

∂θ
= 0, (12)

so that

dx

dθ
= −

(
∂g

∂x

)−1
∂g

∂θ
. (13)

Substituting Eq. (13) in Eq. (11) gives

G = −∂h

∂x

(
∂g

∂x

)−1
∂g

∂θ
+ ∂h

∂θ
. (14)

From Eqs. (5), (7), (8) and (9), it follows that

∂g

∂x
=

[
RAP 0
−P I

]
. (15)

Note that(
∂g

∂x

)−1

=
[

(RAP)−1 0
P(RAP)−1 I

]
(16)

holds. Thus, Eq. (14) can be restated as

G =
(

∂h

∂ x̆
+ ∂h

∂x′ P
)

(RAP)−1 ∂ ğ

∂θ
+ ∂h

∂x′
∂g′

∂θ
+ ∂h

∂θ
. (17)

By deriving Eq. (5) with respect to θ one finds

∂ ğ

∂θ
=

[
∂R

∂θ
(AP) + R

∂A

∂θ
P + (RA)

∂P

∂θ

]
x̆ − ∂R

∂θ
q − R

∂q

∂θ
(18)

and also, from Eq. (7),

∂g′

∂θ
= −∂P

∂θ
x̆. (19)

Note that the partial derivatives of the matrices A, R and P with respect to the vector of parameters θ result in (third 
order) tensors. The appropriate interpretation of tensor operations can be found in Appendix A. The substitution of Eqs. (18)
and (19) in Eq. (17) leads to an expression that will serve as the basis for the multiscale gradient computation, i.e.,

G =
(

∂h

∂ x̆
+ ∂h

∂x′ P
)

(RAP)−1

{[
∂R

∂θ
(AP) + R

∂A

∂θ
P + (RA)

∂P

∂θ

]
x̆ − ∂R

∂θ
q − R

∂q

∂θ

}
− ∂h

∂x′
∂P

∂θ
x̆ + ∂h

∂θ
.

(20)

Eq. (20) is quite general, i.e., it can be employed to compute gradients for any MS (and multi-level) method, given that 
the partial derivatives of R and P are provided.

For the sake of simplicity and to be coherent with the numerical experiments presented below, from now on the depen-
dency of the restriction operator R and the right-hand-side vector q on the parameters is neglected. This is consistent with 
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the MSFV method (where the restriction operator is based on a finite volume integration operator at coarse scale (see e.g. 
[22]). After these simplifications, Eq. (20) can be rewritten as

G =
(

∂h

∂
�
x

+ ∂h

∂x′ P
)

(RAP)−1R
(

∂A

∂θ
P + A

∂P

∂θ

)
�
x − ∂h

∂x′
∂P

∂θ

�
x + ∂h

∂θ
. (21)

The order of the operations involving the (RAP)−1 term is crucial to determine the computational performance of the 
sensitivity matrix computation. This order defines two different algorithms known in the literature as the Direct Method 
and the Adjoint Method. The following sections discuss how the two methods are derived for the MS scenario defined by 
Eq. (21), as well as the (dis)advantages of utilizing each of them.

3. Computation of gradient information: generalization of the framework

According to the type of study one wants to perform, different derivative information has to be provided. For instance, 
for optimization methods, Quasi-Newton methods require the gradient of the objective function (and possibly constraints). 
In history matching algorithms, as well as in sensitivity analysis studies, the sensitivity matrix G, defined as the matrix of 
derivatives of all responses with respect to all parameters, plays an important role. In Gauss–Newton methods, the matrix 
product GT G is directly used, while conjugate gradient methods require products of G and GT with arbitrary vectors. More 
detailed information on the different optimization algorithms can found in [44].

To preserve the general applicability of our method, the general problem of multiplying G by arbitrary matrices W
(of order m × NY ) and V (of order Nθ × n) from the left and the right, respectively, is considered. When n = 1, GV is 
simply the product of G with a vector, whereas, when m = 1, (WG)T = GT WT gives the product of GT with the (column) 
vector WT . Those examples show how, by defining algorithms to calculate GV and WG for arbitrary V and W, different 
types of derivative information can be accommodated in a single framework.

3.1. Direct method

The derivation starts by considering the calculation of GV for a given Nθ × n matrix V. From Eq. (21), by defining

Z =
[
(RAP)−1 R

(
∂A

∂θ
P + A

∂P

∂θ

)
�
x
]

V, (22)

the product GV can be rewritten as

GV =
(

∂h

∂
�
x

+ ∂h

∂x′ P
)

Z −
(

∂h

∂x′
∂P

∂θ

�
x
)

V + ∂h

∂θ
V. (23)

Here, Z is obtained as the solution to the following linear system of equations

(RAP)Z =
[

R
(

∂A

∂θ
P

�
x + A

∂P

∂θ

�
x
)]

V. (24)

This is known as the Forward Method [42], Gradient Simulator [30], or Direct Method [28]. Note that Z has dimensions of 
NC × n and, therefore, it requires n linear systems to be solved. Hence, the cost of computing GV is proportional to the 
number of columns in V. In particular, to obtain the full sensitivity matrix G with the Direct Method, in which case one has 
to set V equal to the identity matrix of order Nθ , the cost will be proportional to the number of parameters.

The algorithm to compute the product of the sensitivity matrix with a matrix via the Direct Method is depicted in 
Algorithm 1.

Algorithm 1: Right multiplying the sensitivity matrix by an arbitrary matrix via the Direct Method.

Input : R, A, P, ∂A
∂θ , x̆, ∂h

∂ x̆ , ∂h
∂x′ , ∂h

∂θ , V
Output: GV

1 Compute α =
(

∂h
∂ x̆ + ∂h

∂x′ P
)

and β = ∂A
∂θ Px̆

2 foreach j = 1, 2, ..., n do

3 Compute γ =
(

∂P
∂θ x̆

)
V., j ; // Algorithm 3, where m = V., j

4 Compute δ = R (βV., j + Aγ
)

5 Solve z = (RAP)−1δ

6 Compute (GV)., j = αz − ∂h
∂x′ γ + ∂h

∂θ V., j

In Algorithm 1, the notation ‘., j’ represents the j-th column of a matrix. Algorithm 1 requires the computation of the 
product of ∂P/∂θx̆ by a column vector. This is discussed in the next section when Algorithm 3 is presented.
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3.2. Adjoint method

Next the calculation of WG for a given m × NY matrix W is considered. From Eq. (21), defining

ZT = W
(

∂h

∂ x̆
+ ∂h

∂x′ P
)

(RAP)−1, (25)

one obtains

WG = ZT R
(

∂A

∂θ
P + A

∂P

∂θ

)
x̆ − W

∂h

∂x′
∂P

∂θ
x̆ + W

∂h

∂θ
, (26)

which can be rearranged as

WG =
(

ZT R
∂A

∂θ
Px̆ +

(
ZT RA − W

∂h

∂x′

)
∂P

∂θ
x̆
)

+ W
∂h

∂θ
. (27)

Multiplying Eq. (25) by RAP from the right and transposing, Z is obtained as the solution to the following linear system 
of equations

(RAP)T Z =
(

∂h

∂
�
x

+ ∂h

∂x′ P
)T

WT . (28)

This is known in the literature as the Adjoint (or Backward) Method [32]. Note that now Z has dimensions of NC × m, 
hence it requires m linear systems to be solved. As such, the cost of computing WG is proportional to the number of rows 
in W. In particular, to obtain the full sensitivity matrix G with the Adjoint Method, in which case one has to set W equal to 
the identity matrix of order NY , the cost will be proportional to the number of responses.

The algorithm to compute the product of the sensitivity matrix with a matrix from the left via the backward method is 
depicted in Algorithm 2.

Algorithm 2: Left multiplying the sensitivity matrix by an arbitrary matrix via the Adjoint Method.

Input : R, A, P, ∂A
∂θ , x̆, ∂h

∂ x̆ , ∂h
∂x′ , ∂h

∂θ , W
Output: WG

1 Compute α =
(

∂h
∂ x̆ + ∂h

∂x′ P
)

and β = R ∂A
∂θ x̆

2 foreach i = 1, 2, ..., m do
3 Solve z = (RAP)−T αW T

i,.

4 Compute mT =
(

zT RA − Wi,.
∂h
∂x′

)
5 Compute γ = mT

(
∂P
∂θ x̆

)
; // Algorithm 4

6 Compute (WG)i,. = zT β + γ + Wi,.
∂h
∂θ

Algorithm 2 requires a left multiplication of ∂P/∂θx̆ by a row vector mT . This will be further discussed in the next 
section, where Algorithm 4 is presented.

3.3. Remarks about the framework

This paper presents a novel technique for computation of the gradients using multiscale methods. It entails some impor-
tant features which are summarized in this section.

First of all, the general formulation of the method accommodates both the Direct and Adjoint approaches. Note that the 
previously-developed multiscale gradient calculations were all applicable to Adjoint formulation only [37–39].

It is important to also note that the algebraic multiscale-gradient formulation, presented here, does not make any 
assumption with respect to neither the nature of the problem nor the specific optimization parameters. This flexible frame-
work provides any gradient information which is required by the chosen optimization algorithm. Note that the previous 
methods have been developed for specific types of parameters (e.g., permeability in [37]). As such, they cannot be readily 
used to provide gradient information if the required parameters by the chosen optimization algorithm are not those the 
methods were developed for. For instance, the work presented in [37] and [38] addressed the computation of sensitivities 
where the parameters were specifically the grid-block permeability values. This specific parameter leads to the sensitiv-
ity of the coarse-scale quantities (transmissibility) being related to the fine-scale permeability via additional local adjoint 
problems for the basis functions. As such, the method presented in [37,38] is not applicable if, e.g., well controls are being 
used as optimization parameters. On the other hand, the work presented in [39] develops an algorithm that allows the well 
controls being used. However, it does not account for the sensitivity calculations of the coarse-scale quantities with respect 
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Fig. 1. Illustration of MSFV coarse grids for a 2D domain. Given a fine-scale grid (shown in light solid black lines), the coarse grid (shown in solid bold 
black) is imposed as a non-overlapping partition of the computational domain. The coarse nodes (vertices) are then selected (red cells). Connecting coarse 
nodes constructs the dual-coarse grid (blue cells) where basis functions are solved. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

to the fine-scale parameters. Instead, only a coarse-scale adjoint problem was solved to compute the required gradient 
information.

The implicit differentiation strategy of the present method makes it more flexible, compared to those methods developed 
based on the Lagrange multiplier formulation (as in [37–39]). Note that the Lagrange multiplier formulations are developed 
based on an objective function, which requires to be pre-defined for each specific application [2,28]. Instead, the presented 
implicit differentiation strategy [42,43] is built on a more generic system, i.e., the sensitivity matrix. More importantly, the 
pre- and post-multiplication of this sensitivity matrix by arbitrary matrices provides a flexible way to conform it to the 
specific type of gradient information needed (without requiring the pre-computation of the full sensitivity matrix).

Finally, the multiscale-gradient formulation is developed through an algebraic formulation, which is convenient to be 
implemented in the next-generation optimization frameworks, and also benefits all multilevel approaches that can be de-
scribed through restriction and prolongation operations such as multigrid [45] and domain-decomposition [46,47] methods.

4. Partial derivative of MSFV prolongation operator with respect to the parameters

A particular aspect of the methodology is the computation of partial derivatives of the prolongation operator with respect 
to the parameters, i.e., ∂P/∂θ in Eq. (21), and operations with this tensor. This is particularly challenging because the 
computation of P might involve complex operations, e.g., the solution of linear systems in the case of MSFV methods.

In this work, the MSFV method is considered; extensions to other MS methodologies can be obtained along the same 
lines. In this case, P is the assembly of all basis functions obtained via the solution of local flow problems, i.e.,

−∇ · (λ · ∇ϕ) = 0, (29)

where λ is the mobility and ϕ is the basis function value. The dual-grid sub domains where the basis functions are com-
puted are defined as follows. A primal coarse grid (on which the conservative coarse-scale system is constructed) and a dual 
coarse grid, which is obtained by connecting coarse nodes, are defined on a given fine-scale grid. A coarse node is a fine 
cell inside (typically at the center of) each coarse cell. The basis functions are solved locally on these dual coarse cells. Such 
overlapping coarse and dual coarse grids are crucial for conservative solutions in MSFV. An illustration of the MSFV grids is 
provided in Fig. 1. The prolongation operator can be expressed in terms of the basis functions corresponding to each coarse 
cell j = 1, . . . , NC as

P = [
ϕ1 ϕ2 · · · ϕNC −1 ϕNC

]
, (30)

where the basis function belonging to cell j, ϕ j , is at column j, being a vector of dimension N F [22]. The construction of 
the basis functions ϕ j is based on the Finite Volume (FV) discretization of Eq. (29) on the dual coarse grid cells. In order to 
compute the basis functions, reduced-dimensional problems are first solved at the edge cells to provide Dirichlet boundary 
conditions for internal cells. For the sake of clarity, let us assume a Cartesian two-dimensional solution domain (although 
extension to 3D is straightforward). More specifically, let � j be the set of all edges emanating from coarse node j (in 2D, 
#� j = 4). For each edge e ∈ � j , let

AE
e, jϕ

E
e, j − bE

e, j = 0 (31)

be the reduced-dimension discrete form of Eq. (29) along the edge e, where ϕE
e, j is the basis function at that edge, and bE

e, j

is the RHS which results from specifying corner values of ϕE
e, j = 1 at the vertex j and ϕE

e, j = 0 at the opposite vertex of e. 
If � j is the set of all faces which have coarse node j as a common vertex (#� j = 4 in 2D), for each face f ∈ � j , according 
to Eq. (29), one can solve

AF
f , jϕ

F
f , j −

∑
e∈�

EF
e, f ϕ

E
e, j = 0, (32)
j
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for ϕF
f , j , which is the basis function at the internal (face) cells. Also, EF

e, f is a transformation matrix that appropriately 
assembles a vector represented in the edge topology of e into the face topology of f . Note that EF

e, f is zero when e does 
not belong to the boundary of f and that Eq. (32) implicitly defines the boundary condition as zero for any boundary cells 
of f which do not belong to any of the edges in � j . Finally, ϕ j is the result of assembling the contribution of each ϕF

f , j , 
f ∈ � j , into the overall fine mesh topology:

ϕ j =
∑
f ∈� j

E f ϕ
F
f , j, (33)

where E f is a transformation matrix that assembles a vector represented in the face topology of f into a size N F vector 
following the fine grid topology.

The derivative of ϕ j w.r.t. the parameters is obtained from Eq. (33), i.e.,

∂ϕ j

∂θ
=

∑
f ∈� j

E f

∂ϕF
f , j

∂θ
. (34)

Differentiating Eq. (32), one can write

∂AF
f , j

∂θ
ϕF

f , j + AF
f , j

∂ϕF
f , j

∂θ
−

∑
e∈� j

EF
e, f

∂ϕE
e, j

∂θ
= 0, (35)

from which it follows that

∂ϕF
f , j

∂θ
=

(
AF

f , j

)−1

⎛
⎝−∂AF

f , j

∂θ
ϕF

f , j +
∑

e∈� j

EF
e, f

∂ϕE
e, j

∂θ

⎞
⎠ . (36)

Similarly, from Eq. (31),

∂ϕE
e, j

∂θ
= −

(
AE

e, j

)−1 ∂AE
e, j

∂θ
ϕE

e, j (37)

holds. Combining Eqs. (36) and (37) into (34) results in

∂ϕ j

∂θ
=

∑
f ∈� j

E f

(
AF

f , j

)−1

⎛
⎝−∂AF

f , j

∂θ
ϕF

f , j −
∑

e∈� j

EF
e, f

(
AE

e, j

)−1 ∂AE
e, j

∂θ
ϕE

e, j

⎞
⎠ . (38)

The third order tensor defining the derivative of P w.r.t. the parameters is obtained by grouping all ∂ϕ j/∂θ at its slices,

∂P

∂θ
=

[
∂ϕ1
∂θ

∂ϕ2
∂θ · · · ∂ϕNC −1

∂θ

∂ϕNC
∂θ

]
N F ×NC ×Nθ

. (39)

See Appendix A for a discussion on this notation. As discussed in Algorithm 1, the product (∂P/∂θx̆)m, where x̆ ∈ R
NC

and m ∈ R
Nθ , is required. Since

∂P

∂θ
x̆ =

NC∑
j=1

∂ϕ j

∂θ
x̆ j (40)

where x̆ j denotes the j-th entry of vector �x, it follows, from Eq. (38), that

(
∂P

∂
θx̆

)
m =

NC∑
j=1

x̆ j

∑
f ∈� j

E f

(
AF

f , j

)−1

⎛
⎝−

(
∂AF

f , j

∂θ
ϕF

f , j

)
m −

∑
e∈� j

EF
e, f

(
AE

e, j

)−1
(

∂AE
e, j

∂θ
ϕE

e, j

)
m

⎞
⎠ . (41)

Algorithm 3 depicts the solution procedure to calculate (∂P/∂θx̆)m based on Eq. (41).
In a similar manner, Algorithm 2 requires the product mT (∂P/∂θx̆), where x̆ ∈ R

NC and m ∈ R
N F . From Eqs. (38) and 

(40), one obtains

mT
(

∂P

∂θ
x̆
)

=
NC∑
j=1

x̆ j

∑
f ∈�

mT E f

(
AF

f , j

)−1

⎛
⎝−∂AF

f , j

∂θ
ϕF

f , j −
∑

e∈�

EF
e, f

(
AE

e, j

)−1
(

∂AE
e, j

∂θ
ϕE

e, j

)⎞
⎠ . (42)
j j
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Algorithm 3: Computation of the product (∂P 
/
∂θx̆ )m, where x̆ ∈R

NC and m ∈ R
Nθ .

Input : x̆, m, ϕE
e, j , AE

e, j, 
∂AE

e, j
∂θ , j = 1, ..., NC , e ∈ � j , ϕF

f , j , AF
f , j , 

∂AF
f , j

∂θ , j = 1, ..., NC , f ∈ � j

Output:
(

∂P
∂θ x̆

)
m

1 Set: 
(

∂P
∂θ x̆

)
m = 0

2 foreach j = 1, 2, ..., NC (primal coarse nodes) do
3 foreach f ∈ � j do

4 Compute α = − 
(

∂AF
f , j

∂θ ϕF
f , j

)
m

5 foreach e ∈ � j do

6 Compute β =
(

∂AE
e, j

∂θ ϕE
e, j

)
m

7 Solve local edge system γ =
(

AE
e, j

)−1
β

8 Accumulate result in α : α = α − EF
e, f γ

9 Solve local face system δ =
(

AF
f , j

)−1
α

10 Accumulate result in 
(

∂P
∂θ x̆

)
m : 

(
∂P
∂θ x̆

)
m =

(
∂P
∂θ x̆

)
m + x̆ j E f δ

By defining

γT
f , j = mT E f

(
AF

f , j

)−1
(43)

and

δT
e, f , j = γT EF

e, f

(
AE

e, j

)−1
, (44)

Eq. (42) can be rewritten as

mT
(

∂P

∂θ
x̆
)

=
NC∑
j=1

x̆ j

∑
f ∈� j

⎛
⎝−γT

f , j

(
∂AF

f , j

∂θ
ϕF

f , j

)
−

∑
e∈� j

δT
e, f , j

(
∂AE

e, j

∂θ
ϕE

e, j

)⎞
⎠ . (45)

Right multiplying Eq. (43) by AF
f , j and transposing, one can see that γ f , j is obtained as

(
AF

f , j

)T
γ f , j = ET

f m. (46)

Note that ET
f is the transformation matrix that assembles a vector following the fine grid topology into its proper restric-

tion to the face topology of f . Analogously, δe, f , j is obtained by solving(
AE

e, j

)T
δe, f , j =

(
EF

e, f

)T
γ. (47)

Similar as for ET
f , (EF

e, f )
T is the transformation matrix that assembles a vector following the face topology of f into its 

restriction to the edge topology of e. Equations (45), (46) and (47) are the basis for the algorithm to calculate mT (∂P/∂θx̆), 
as depicted in Algorithm 4. Note that the face systems are solved before the edge ones, in contrast to the order of the MS 
calculation.

4.1. Prolongation and its derivative in the presence of wells

Wells and other fine-scale source terms are considered in the multiscale formulation by supplementary well basis func-
tions [20,17]. Well functions are local solutions to Eq. (29) subject to Dirichlet conditions of 1 at the well cell and 0 at the 
coarse nodes. Hence, considering well functions, the prolongation operator (for porous rock) is enriched and reads

P = [
ϕ1 · · · ϕNC

∣∣ ψ1 · · · ψNW

]
, (48)

where each well function ψw adds a column vector to the porous rock prolongation operator. Note that there are NW

wells in the domain. For rate-constrained wells, one has to add additional rows to the prolongation (and consequently, the 
coarse-scale system) in order to solve for the well pressures as additional unknowns [17]. The derivative of (48) w.r.t. the 
parameters is given by
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Algorithm 4: Computation of the product mT (∂P 
/
∂θx̆ ), where x̆ ∈R

NC and m ∈ R
N F .

Input : x̆, m, ϕE
e, j , AE

e, j, 
∂AE

e, j
∂θ , j = 1, ..., NC , e ∈ � j , ϕF

f , j , AF
f , j , 

∂AF
f , j

∂θ , j = 1, ..., NC , f ∈ � j

Output: mT
(

∂P
∂θ x̆

)
1 Set: mT

(
∂P
∂θ x̆

)
= 0

2 foreach j = 1, 2, ..., NC do
3 foreach f ∈ � j do

4 Solve transpose local face system γ =
(

AF
f , j

)−T
ET

f m

5 Compute α = −γT

(
∂AF

f ,i
∂θ ϕF

f ,i

)
6 foreach e ∈ � j do

7 Solve transpose local edge system δ =
(

AE
e, j

)−T (
EF

e, f

)T
γ

8 Accumulate result in α : α = α − δT

(
∂AE

e, j
∂θ ϕE

e, j

)
9 Accumulate result in mT

(
∂P
∂θ x̆

)
: mT

(
∂P
∂θ x̆

)
= mT

(
∂P
∂θ x̆

)
+ x̆ jα

∂P

∂θ
=

[
∂ϕ1
∂θ · · · ∂ϕNC

∂θ

∣∣ ∂ψ1
∂θ · · · ∂ψNW

∂θ

]
. (49)

Computation of the partial derivatives of the well basis functions follows similar strategy as discussed for Eq. (38).

5. Computational aspects of the MS-gradient method

5.1. Partial derivative computation and automatic differentiation

In the computation of analytical gradients, a significant part of the overall implementation effort is associated with the 
computation of partial derivative matrices. This computation step often requires access to the source code because not all 
partial derivatives are readily available, as opposed to the state variable derivatives via the Jacobian matrix (see, e.g., inputs 
required by Algorithm 1 and Algorithm 2). To calculate the partial derivative matrices an Automatic Differentiation (AD) 
approach is used, because of its flexibility and accuracy. A review of different AD approaches is provided by [33]. In our 
work, an Operator Overloading AD technique (Bendtsen and Stauning 1996) based on Expression Templates [48] is applied. 
This facilitates the computation and assemblage of all the partial derivative matrices because they are obtained at the same 
time as when the system matrix and the simulator response are computed.

5.2. Computational efficiency

An asymptotic analysis is performed to assess the efficiency of the MS-gradient information, compared with the fine-scale 
gradient computation. Note that the computational cost of linear system assembly and matrix-vector products are negligible 
when compared to the cost involved in solving the linear system of equations. The complexity of solving a linear system of 
size N is assumed to be O(aNb), where a and b are constants associated with the specific linear solver employed.

Following Algorithm 1, n (number of columns in the V matrix) linear systems of size NC must be solved to fully define 
the gradient information, hence its computational complexity reads O(n(aM S NC

bM S )). Additionally, Algorithm 3 consists of 
solving NL × n × NC linear systems of size NR = N F /NC to provide the partial derivative of P w.r.t. the parameters. Here, 
NR is the multiscale coarsening ratio, and NL is the number of local problems that must be solved per coarse grid vertex (4 
in 2D and 8 in 3D problems). Thus, the computational complexity of Algorithm 3 is O(NLnNC (aM S NR

bM S )), which results in 
a complexity of OD

M S (n(aM S NC
bM S + NL NC (aM S NR

bM S ))) for the MS Direct Method.
A similar analysis can be performed for Algorithm 2 and Algorithm 4, resulting in an estimate of the complexity of the 

MS Adjoint Method, i.e., OA
M S (m(aM S NC

bM S + NL NC (aM S NR
bM S ))), where m is the number of columns of W.

The complexity of the fine-scale gradient computation for the Direct and Adjoint Methods is given by O(n(aF S NC
bF S ))

and O(m(aF S NC
bF S )), respectively. Therefore, the cost ratio between the MS and fine-scale computational efficiency can be 

defined as

OM S

OF S
= aM S

aF S

(
NC

bM S

N F
bF S

+ NL
N F

bM S

N F
bF S

NC
(1−bM S )

)
, (50)

which holds for both the Direct and the Adjoint Method.
For the sake of simplicity, it is assumed that the solver employed to the MS system is equally efficient to the one 

employed to the fine-scale system, i.e., aM S = aF S and bM S = bF S = b. As such, the expression defining the cost ratio 
simplifies to
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Fig. 2. Cost ratio between MS and fine-scale gradient computation methods, as a function of the multiscale coarsening ratio, NR , for a 2D (blue) and 3D 
(red) domain with N F = 107 fine-scale cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

OM S

OF S
= 1

Nb
R

+ NL
Nb−1

R

Nb−1
F

. (51)

For a fixed number of fine grid cells N F , it is mainly the coarsening ratio NR that determines the complexity of the 
MS-gradient algorithm. To illustrate this point, a domain with N F = 107 fine-scale grid cells is considered. The MS-gradient 
speed-up, OM S/OF S , for different coarsening ratios NR for both 2D and 3D cases is presented in Fig. 2, where b = 1.3.

6. Numerical experiments

In this section, performance of the MS-gradient method is studied for single-phase incompressible flow in heterogeneous 
porous media. The following numerical experiments are presented to first validate and then assess the accuracy of the 
gradient information computed by the method. For this purpose, a misfit objective function with no regularization term

O (θ) = 1

2
(h (x,θ) − dobs)

T C−1
D (h (x,θ) − dobs) , (52)

with a gradient

∇θ O = GT C−1
D (h (x,θ) − dobs) , (53)

is considered [28]. In all experiments, the fitting parameters are cell-centered permeabilities. The observed quantity, dobs , is 
the fine scale pressure at the location of (non-flowing) observation wells, therefore

∂h

∂x′ = I, (54)

and

∂h

∂ x̆
= 0. (55)

The tensor ∂A/∂θ represents partial derivatives of the system (transmissibility) matrix with respect to permeability. Note 
that the results are expressed in terms of a non-dimensional pressure, i.e.,

pD = p − pprod

pinj − pprod
, (56)

where pinj and pprod are the injection and production pressures, respectively. In all the experiments, pinj = 1.0 and pprod =
0.0, the grid-block dimensions are 	x = 	y = 	z = 1 m and the fluid viscosity is 1.0 × 10−3 Pa s. In addition, in all the 
following test cases, well basis functions are included.

6.1. Validation experiments

The MS-gradient method is validated against the numerical differentiation method with a higher-order, two-sided Taylor 
approximation

∇θ O i = 1 (
O

(
θi, . . . , θi−1, θi + δθi, θi+i, . . . , θNθ

) − O
(
θi, . . . , θi−1, θi − δθi, θi+i, . . . , θNθ

))
, (57)
2δθi
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Fig. 3. Fine and coarse grids and wells setup for 1D numerical experiments. The solid thin lines represent the fine grid-blocks. The bold dashed lines 
represent the primal-coarse grid blocks. Vertex cells identified with red circles. The crossed circle represents the injection well, the dotted circle the 
production well, and the solid circle the observation well. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 4. (a) Fine, primal and dual coarse grids for 2D validation test cases and (b) reference permeability field.

where δ is a multiplicative parameter perturbation. The relative error can be defined as

ε = ‖∇θ O F D − ∇θ O AN‖2

‖∇θ O AN‖2
, (58)

where ∇θ O F D is obtained by performing the appropriate number of multiscale reservoir simulations required to evaluate 
Eq. (57) and ∇θ O AN is obtained by either employing the Direct or the Adjoint Method to evaluate Eq. (53). Note that

m = C−1
D (h (x,θ) − dobs) , (59)

where m is an auxiliary vector, so the gradient of O can be written as ∇θ O  = (mT G)T and Algorithm 1, with W = mT , 
calculates ∇θ O with a cost proportional to one extra MS simulation, making the Adjoint Method a much more efficient 
way to calculate the gradient than the Direct Method. Moreover, for all cases, unless stated otherwise, for simplicity, it is 
assumed CD = I.

In order to validate the proposed derivative calculation methods, as well as their implementation, the linear decrease of 
the error ε by decreasing the perturbation value δ (see chapter 8 of [29]) from 10−1 to 10−4 (the range within which only 
discretization errors are observed) is investigated.

The investigation is carried out in three examples of increasing complexity. The first case is a one-dimensional, homoge-
neous medium with 45 grid blocks. A primal coarse grid of just 3 grid blocks is employed (coarsening ratio of 15). Injection 
and production wells are located at, respectively, cells 1 and 45. One observation well is located at the center of the domain, 
i.e. at grid block 23. The pressure measured in the observation well is taken from a reference case with a randomly sampled 
permeability field. The non-dimensional injection and production pressures are one and zero, respectively. Fig. 3 illustrates 
the setup for this experiment.

In the other two experiments, the accuracy of the method is assessed for 2D test cases, one homogeneous and another 
one heterogeneous. In both cases the fine grid size is 21 × 21, while the coarse grid size is 3 × 3 (coarsening ratio of 7 × 7). 
The primal- and dual-coarse grids are illustrated in Fig. 4(a).

The permeability field is extracted from 1000 geological realizations, as shown in Fig. 4(b), and serves to compute the 
observed pressure. For the heterogeneous case, another geological realization is chosen from the ensemble. The ensemble is 
generated via the decomposition of a reference permeability “image” using Principal Component Analysis parameterization. 
Fig. 5 illustrates 4 different permeability realizations from the ensemble. See [49] for more details.

A quarter five-spot well configuration is considered, with two observation wells close to the operating wells. The well 
positions and operating pressures are described in Table 1.

Fig. 6 shows that the MS-gradient and fine-scale methods have the same order of accuracy with respect to the perturba-
tion δ, for all cases. The expected behavior of linearly decreasing error values as the perturbation size decreases is observed 
in all experiments. One can also note that the Direct and Adjoint Methods are equally accurate, i.e., they both provide the 
analytical gradient at the same accuracy. Also, it is important to notice that the localization assumptions involved in 2D are 
consistently represented by the analytical methods. The result of the third experiment (Fig. 6(c)) indicates the correctness 
of the method when applied to compute gradients for heterogeneous media.
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Fig. 5. Four different permeability realizations from the ensemble of 1000 members used in the 2D numerical experiments.

Table 1
Well configuration for the homogeneous, two-dimensional case.

Well Fine scale position (I, J) Well type

INJE (1, 1) Injection
PROD (21, 21) Production
OBSWELL1 (3, 3) Observation
OBSWELL2 (19, 19) Observation

Fig. 6. Validation of MS gradient computation method via comparison with numerical differentiation. (a) One-dimensional, homogeneous, (b) two-
dimensional homogeneous and (c) two-dimensional heterogeneous steady-state flow test cases.

6.2. Gradient accuracy

In order to assess the quality of the MS gradient, the angle between fine-scale and MS normalized gradients, i.e.,

α = cos−1
(
∇T

θ Ô F S ∇θ Ô M S

)
, (60)

is measured. Here,

∇θ Ô F S = ∇θ O F S

‖∇θ O F S‖2
(61)

and

∇θ Ô M S = ∇θ O M S

‖∇θ O M S‖2
. (62)

Also, ∇θ O F S and ∇θ O M S denote the fine-scale and MS analytical gradients, respectively. As a minimum requirement, 
acceptable MS gradients are obtained if α is much smaller than 90◦ [50].

Firstly, for the 1D test case, both methods result in α = 0◦ , indicating that fine scale and MS gradients are perfectly 
aligned in this case. This is due to the fact that, in 1D, no approximations (due to localization) are made in the MS solution, 
and thus, in the MS gradient computation.

For the 2D homogeneous case, the fine scale and MS gradients result in α = 10.97◦ , using the same setup depicted in 
Fig. 4(a). Although the gradients are practically pointing in the same direction, a deviation between the two is observed. To 
better investigate this difference, Fig. 7(a) and Fig. 7(b) present the fine-scale and MS pressure solutions, respectively, and 
Fig. 7(c) shows the difference between these two pressure solutions. Fig. 7(d) and Fig. 7(e) present the absolute, normalized 
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Fig. 7. Fine scale (p) pressure solution (a) and MSFV (p′) pressure solution (b). Difference between fine-scale and MSFV pressure solutions (c). Absolute, 
normalized fine scale gradient (d) and MSFV (e). Difference between fine-scale and MS absolute, normalized gradients (f). In all figures the dual-coarse grid 
is shown. Also shown, in the red boxes, are the coarse nodes. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Table 2
Well configuration for the homogeneous, two-dimensional case.

Well Fine scale position (I, J) Well type

INJE (11, 11) Injection
PROD1 (1, 1) Production
PROD2 (21, 1) Production
PROD3 (1, 21) Production
PROD4 (21, 21) Production
OBSWELL1 (3, 3) Observation
OBSWELL2 (19, 3) Observation
OBSWELL3 (3, 19) Observation
OBSWELL4 (19, 19) Observation

gradient of the OF computed via fine-scale and MS gradient methods, respectively. Fig. 7(f) shows the difference between 
the absolute, normalized gradient computed by the two methods.

The difference between the MS and fine-scale methods is due to the localization assumption in the calculation of the 
basis functions [14]. Note that, thanks to the well functions, the multiscale solutions are accurately capturing the wells.

6.3. Effect of heterogeneity distribution and coarsening ratio

In the first case, OF gradients are computed for the whole ensemble of heterogeneous permeability fields (see Fig. 4). 
Moreover, the same realization depicted in Fig. 4(b) is considered as the reference from which the observed pressures are 
computed.

An inverted five-spot well pattern is employed, whiled four observation wells are placed close to the production wells. 
The well configuration is depicted in Table 2.

Two different coarsening ratios are applied, one resulting in a coarse grid of 3 × 3 (as illustrated in Fig. 4(a)) and another 
one resulting in a coarse grid of 7 × 7. The angles between the fine scale gradient and the MS gradient for each realization 
are computed, using Eq. (60). A histogram illustrating the angle distribution for each coarsening ratio is presented in Fig. 8.

Note that, for this case, the quality of the gradients is significantly improved once the coarse grid size of 3 ×3 is increased 
to 7 × 7. Important to note is that, as shown in Fig. 9, the MS gradients are least accurate when the norm of the gradient 
vector is small. Therefore, they are not expected to have a major effect on the optimization procedure.

For the 3 × 3 coarse grid case, 9.71% of the angles are greater than 90◦ , indicating that some MS gradients point in the 
opposite direction of the decreasing OF direction. On the other hand, if a 7 × 7 coarse grid is used no angle is greater than 
90◦ .
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Fig. 8. Histograms of angles between fine scale and multiscale gradients for 3 × 3 (a) and 7 × 7 (b) coarse grids. The fine-scale computational domain 
contains 21 × 21 grid cells. The vertical red dashed line indicates the 90◦ limit. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 9. Cross-plots of fine scale gradient norm vs. α for the 1000 realizations in the heterogeneous ensemble for (a) 3 × 3 and (b) 7 × 7 coarse grid. Note 
that MS gradients are accurate for the cases with large values of gradient norms. Their relatively inaccurate estimates (large α) happen mostly when the 
norms of gradients are small. The vertical red dashed line indicates the 90◦ limit. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 10. Permeability distribution of four different realizations taken from the sets of 20 geostatistically equiprobable permeability fields with 0◦ (a), 15◦
(b), and 45◦ (c) correlation angles. Also, a patchy field (d) with a small correlation length is considered.

In order to further explore this point, four sets of 20 equiprobable realizations of log-normally distributed permeability 
fields with a spherical variogram and dimensionless correlation lengths of 
1 = 0.5 and 
2 = 0.02 are generated using 
sequential Gaussian simulations [51]. For each set, the variance and the mean of ln(k) are 2.0 and 3.0, respectively, where k
is the grid block permeability. As depicted in Fig. 10, for the realizations with a long correlation length, the angles between 
the permeability layers and the horizontal axis are 0◦ , 15◦ , and 45◦ . A patchy (small correlation length) pattern is also 
considered (Fig. 10(d)). Compared with the previous set, the permeability contrast is much higher in this case.

The fine-scale and coarse grids contain 100 × 100 and 20 × 20 cells, respectively. The well configuration utilized in this 
numerical experiment is depicted in Table 3.

From Fig. 11, one can observe that all cases with α > 50o are associated with small gradient norms and that, for all 
geological sets, the MS gradient provides gradient directions that are very accurate, compared with the fine scale solution, 
when the gradient norms are large.

Note also that, in the case of a small gradient norm, the OF has a weak dependency on the parameters in the vicinity 
of the point where the gradient is being calculated. As such, the overall performance of the optimization algorithm is not 
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Table 3
Well configuration for Case 2.

Well Fine scale position (I, J) Well type

INJE (1, 1) Injection
PROD (100, 100) Production
OBSWELL1 (3, 3) Observation
OBSWELL2 (98, 98) Observation

Fig. 11. Cross-plot of fine scale gradient norm (log scale) vs. α for the four sets of 20 equiprobable permeability realizations. The vertical red dashed line 
indicates the 90◦ limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

expected to be affected by replacing the fine-scale gradient calculation with the MS version. For practical purposes, as will be 
shown by the next numerical experiment, acceptable results in optimization studies can be achieved by using approximated 
multiscale gradients. In general, an iterative multiscale strategy [14] should be used in order to guarantee the quality of 
the multiscale gradient. The key component of such a development is to relate the quality of the approximate parameters 
(often measured via residuals) with the quality of the gradients. The employment of an iterative scheme imposes challenges 
associated with, for instance, the computation of extra partial derivative information that arises from the smoothing step. 
These challenges fall beyond the scope of this paper.

6.4. Parameter estimation study

In order to investigate how the approximate MS gradient performs in an optimization algorithm, a parameter estimation 
study is performed. In this study, the same permeability ensemble as illustrated in Fig. 5 is used. The permeability field 
employed to create the synthetic data is illustrated in Fig. 4(b). The initial guess is randomly chosen from the ensemble. The 
MS method employs 7 ×7 coarse grid cells. The well configuration is presented in 1. Differently from the other experiments, 
a misfit objective function with a regularization term [28], i.e.

O (y,θ) = 1

2

(
θ − θprior

)T C−1
θ

(
θ − θprior

) + 1

2
(h (x,θ) − dobs)

T C−1
D (h (x,θ) − dobs) , (63)

is considered, where θ ∈R
N F is the vector of parameters, taken to be the natural logarithm of the permeability in each grid 

cell. The covariance matrix Cθ is computed from the ensemble of realizations as

Cθ = 1

Ne − 1

(
� − μeT

)(
� − μeT

)T
(64)

where � is the N F × Ne matrix whose j-th column is given by the member of the ensemble θ j , j ∈ {1, ..., Ne},

μ = 1

Ne

Ne∑
j=1

θ j (65)

is the ensemble mean, and e = [1, ...,1]T is a vector of ones of size Ne × 1. In Eq. (63), the prior is taken to be the ensemble 
mean,

θprior = μ. (66)

CD is a diagonal matrix given by [28]

CD = σ 2I, (67)
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Table 4
Matched data for parameter estimation study utilizing gradients computed via fine 
scale Adjoint Method.

Well Observed
pressure [−]

Initial
pressure [−]

Matched
pressure [−]

Percent
error [%]

OBSWELL1 0.2508 0.1693 0.2505 0.024
OBSWELL2 0.6918 1.8305 0.6920 0.012

Table 5
Matched data for parameter estimation study utilizing gradients computed via fine 
scale Adjoint Method.

Well Observed
pressure [−]

Initial
pressure [−]

Matched
pressure [−]

Percent
error [%]

OBSWELL1 0.2508 0.1704 0.2498 0.080
OBSWELL2 0.6918 0.8284 0.6929 0.065

Fig. 12. Permeability field updates. Initial permeability field (a), after model calibration with fine scale (b) and MS (c) gradient computation. Difference 
between initial permeability field and fine scale (d) and MS (e) model calibration. Absolute difference between fine scale and MS permeability fields after 
model update is also shown (f).

where σ 2 is the variance of the data measurement error. In this experiment, the standard deviation of the pressure mea-
surement error is σ ≈ 0.03 (note that the measurement error is also non-dimensional). This represents a (very accurate) 
measurement error in the range of those usually employed in synthetic study cases (see e.g. [28]).

The optimization utilizes an LBGFS implementation [44], with a convergence criterion in the form of a small OF gradi-
ent norm value (10 m−2). The matches obtained from the optimizations utilizing fine scale and MS Adjoint Methods are 
presented in Table 4 and Table 5, respectively.

It is clear that good matches are obtained via both gradient computation strategies. All matched pressure errors are in 
the order of 10−4, while the measurement errors are 10−5. The permeability fields estimated by both gradient methods are 
illustrated in Fig. 12. The same figure also shows the differences between initial and updated permeability fields, as well as 
the fine scale vs. MS estimated parameters.

It is clear that the updates employed when a MS gradient is provided (Fig. 12(e)) to the optimizer are close to the 
updates found when a fine scale gradient (Fig. 12(d)) is utilized.

Finally, the performance of the optimization algorithm is assessed when both (fine scale and MS) gradients are utilized. 
Fig. 13 illustrates the evolution of the normalized OF along the optimization process, where the OF values are normalized 
by its initial value.

Although MS-gradient approach is much more efficient (recall Fig. 2), and both optimizations lead to good matches when 
converged, the MS-gradient based optimization converges slower than the one based on the fine scale gradients. It is noted 
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Fig. 13. Evolution of the normalized OF value for model calibration utilizing both fine scale and MSFV gradients.

that the quality of the MS solution can be further improved through an iterative procedure [14], which will be subject of 
our future research.

7. Conclusions

A Multiscale gradient computation strategy was developed based on a general algebraic formulation that does not depend 
on a particular objective function. This was possible by recasting the calculation of derivatives as multiplying a sensitivity 
matrix and its transpose with arbitrary matrices. The proposed framework is capable of providing different types of gradi-
ent information. Such flexibility allows the employment of the framework to any reservoir management study that requires 
gradient information. Also, the formulation naturally provides both Direct and Adjoint Methods. It was shown, via an asymp-
totic analysis, that the MS gradient computation strategy can be considerably more efficient than the fine scale strategy. Due 
to the algebraic nature of the formulation, the presented strategy can be applied to any MS (and multilevel) methodology.

The accuracy of the developed MS gradient computation strategy is studied for a set of examples with increasing com-
plexity. The investigations show that the sources of inaccuracies in the MS solution (e.g. localization assumptions) also result 
in inaccuracies in the gradient computation. However, fortunately, strategies to improve the MS solution also improve the 
MS gradient accuracy. Another important observation is that greater angles between MS and fine scale gradient vectors are 
associated with small values of the gradient norms. Because small gradient norms indicate a weak association between pa-
rameters and responses, such differences are typically not very relevant in optimization. Lastly, in our example, the gradient 
directions, and therefore the convergence behavior of the gradient-based optimization procedure, were similar when either 
the fine scale or the MS strategy was applied. All this indicates that the presented method allows for accurate, yet less 
computationally expensive, gradient computations that can be successfully utilized in reservoir management studies.

Extension of the presented algorithm to include iterative multiscale strategies [14] is important for real-field applications. 
The key component of this extension is to develop an a-priori estimate of the quality of the gradients. Furthermore, for 
multiphase simulations, the introduced augmented state vector should also include the reconstruction of conservative field 
[52]. These are subjects of ongoing research.
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Appendix A. Tensors and tensor operations interpretation

The partial derivatives of R, P and A matrices with respect to the vector of parameters θ result in third-order tensors. 
These tensors can be interpreted as a stack of matrices, with each matrix representing the partial derivatives of each of its 
columns with respect to the parameters. For example, a third order tensor defined by Eq. (39) reads

∂P

∂θ
=

[
∂ϕ1
∂θ

∂ϕ2
∂θ · · · ∂ϕNC −1

∂θ

∂ϕNC
∂θ

]
N F ×NC ×Nθ

, (A.1)

where ∂P/∂θ is an N F × NC × Nθ third-order tensor that can be interpreted as a stack of Nθ matrices of partial derivatives 
∂ϕ j/∂θ, j = 1, ..., NC , each of dimension N F × NC .

In order to illustrate the operations with this third-order tensor, the operations involved in the partial derivative Eq. (5)
w.r.t. θ are explained, disregarding the dependency of R on θ, i.e.,
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∂ ğ

∂θ NC ×Nθ

= RNC ×N F

⎛
⎜⎜⎜⎝

1︷ ︸︸ ︷
∂A

∂θ N F × N F ×Nθ

P N F ×NC
+A

N F × N F

∂P

∂θ N F ×NC ×Nθ︸ ︷︷ ︸
2

⎞
⎟⎟⎟⎠ x̆NC . (A.2)

The subscripts represent the dimensions of the tensors. The product 1 in Eq. (A.2) can be interpreted as a stack of 
matrices resulting from Nθ products between matrices ∂A/∂θ|·,·,k of dimension N F ×N F and the matrix P of dimension N F ×
NC , k = 1, ..., Nθ , and, therefore is a third-order tensor N F × NC × Nθ . Analogously, product 2 also results in a third-order 
tensor of size N F × NC × Nθ as a stack of the products A times ∂P/∂θ|·,·,k , k = 1, ..., Nθ . In the equations, the “squared” 
dimensions highlight the dimensions which are operated on in each of the matrix products. Now consider the product of 
the term under parenthesis in Eq. (A.2) with the vector x̆,

∂ ğ

∂θ NC ×Nθ

= RNC ×N F

(
∂A

∂θ
P + A

∂P

∂θ

)
N F × NC ×Nθ

x̆ NC︸ ︷︷ ︸
1

. (A.3)

The product 1 in Eq. (A.3) can be interpreted as Nθ products between matrices (∂A/∂θP + A∂P∂θ)|·,·,k of dimensions 
N F × NC and the vector x̆ of dimension NC , k = 1, ..., Nθ , hence leading to a matrix of dimensions N F × Nθ , as follows

∂ ğ

∂θ NC ×Nθ

= R
NC × N F

((
∂A

∂θ
P + A

∂P

∂θ

)
x̆
)

N F ×Nθ

. (A.4)

Finally, the last operation is a simple product between two matrices with the dimensions indicated in Eq. (A.4), leading 
to

∂ ğ

∂θ NC ×Nθ

=
((

R
(

∂A

∂θ
P + A

∂P

∂θ

))
x̆
)

NC ×Nθ

, (A.5)

from where one can notice that the operations at the right-hand side lead to a matrix with the dimensions equal to those 
of the left-hand side matrix.
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