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Abstract—Logs are widely used as a source of information
to understand the activity of computer systems and to monitor
their health and stability. However, most log analysis techniques
require the link between the log messages in the raw log file
and the log statements in the source code that produce them.
Several solutions have been proposed to solve this non-trivial
challenge, of which the approach based on static analysis reaches
the highest accuracy. We, at Adyen, implemented the state-of-
the-art research on log parsing in our logging environment and
evaluated their accuracy and performance. Our results show that,
with some adaptation, the current static analysis techniques are
highly efficient and performant. In other words, ready for use.

Index Terms—software engineering, runtime monitoring, log
parsing.

I. INTRODUCTION

Logs record runtime information of computer systems and
produce timestamped documentation of events, states and
interactions of components. The information gained from
logging is used to perform root cause analysis on identified
problems, which consists mostly of manual labour. Overall, a
log entry is produced by a log printing statement in a system
program’s source code. Techniques have been developed to
relieve this manual work and to take advantage of the rich
information present in logs in an automated manner, such
as process mining [8], [12], [25], anomaly detection [6],
[10], [11], [28], [27], fault localisation [26], [32], invariant
inference [7], performance diagnosis [15], [20], [22], [31],
online trace checking [5], and behaviour analysis [21], [29].

In practice, as soon as developers learn something from
these log analysis techniques, they often want to go back
to the log statement in the source code that produced the
log message they just analysed. However, tracing back log
messages to their origin is a non-trivial challenge in large-scale
systems. While frameworks like Log4j [3] enable developers
to print the class name and line number of log statements
together with the log message, collecting this information in
a production environment at every log statement comes with
a loss of performance. Behind the scenes, Log4j collects the
log statement line by throwing an exception and capturing the
generated stack trace.1

1Log4j’s developers have experimented with other alternatives, but so
far, this is the most efficient way. See https://issues.apache.org/jira/browse/
LOG4J2-1029).

As there is no direct connection between log messages
and source code in the produced (raw) log data, the link
must be created afterwards. Previous works propose several
approaches based on clustering [10], [23], heuristics [17], [24],
longest common sequence method [9], textual similarities [14],
evolutionary search [18], and static analysis [28] to solve this
challenge.

We at Adyen, a payment service provider operating globally
and providing over 250 different payment methods, decided to
derive an approach based on the state-of-the-art research and
apply it in our logging systems. We evaluate our implementa-
tion on a dataset consisting of 100,000 log lines, taken directly
from our production servers. Our results show that 97.6% of
the links were correctly determined (CI=5%, CL=95%). As a
consequence, we believe that state-of-the-art research is ready
for the real world.

This paper makes the following contributions:
1) The description of the architecture as well as the chal-

lenges we faced to implement state-of-the-art research on
linking log data to their original log statement at Adyen,
a large-scale software system.

2) Empirical evidence that Xu et al.’s [28] approach to link
log lines to their original log statements works effectively
in an industry setting.

II. RELATED WORK

Typically a log message consists of a constant part, which
remains the same for every event occurrence, and a variable
part containing dynamic information, which is determined
during runtime. The goal of log parsing is to separate the
constant and variable parts within a log message. As parsing
is the basis for many log analysis techniques, log parsing is
an active research area, as shown in the introduction.

He et al. [13] performed an evaluation study on the most
popular clustering-based methods and found, despite achieving
high accuracy, that SLCT [24] and IPLoM [17] do not scale
well with the volume of logs, since the clusters are constructed
according to the difference in the messages. Furthermore,
offline log parsing methods are limited by the memory of a
single computer. Therefore, He et al. [14] propose an online
method that parses raw log messages in a streaming manner,
outperforming previous methods [9], [10], [19], [17]. Another

https://issues.apache.org/jira/browse/LOG4J2-1029
https://issues.apache.org/jira/browse/LOG4J2-1029


finding of clustering based methods is that the overall accuracy
is improved when log messages are preprocessed with some
domain knowledge-based rules to remove obvious numerical
parameters, such as numbers, memory and IP addresses [13].
Although beneficial to the effectiveness of the log parsing,
this is a manual process. Messaoudi et al. [18] capture the
template of a message by applying an evolutionary algorithm.
This first of a kind approach significantly outperforming other
approaches ([14], [17]).

However, approaches based on static analysis have an addi-
tional source of information available, the source code itself.
Templates are extracted from the logging statements which are
then used to match log messages with. This extra knowledge
additionally allows the techniques to be completely automated,
thus eliminating the need for manual work. Examples of such
an approach can be found in Xu et al. [28] and Zhao et al. [30],
where authors parse the source code, extract regular expression
templates out of the log statements, and match them to the log
messages they observe in their log systems.

III. FROM RESEARCH TO PRACTICE: OUR APPROACH

The overview of the approach is shown in Figure 1, where
a square represents a process, and a hexagon represents input
or output. All these steps are done automatically by our
tool (that we will make available at https://github.com/SERG-
Delft/msr19-logs). We start by identifying log statements in
the source code, for which we traverse the abstract syntax tree
(AST), and analyze nodes related to log statements. Next, we
extract a template from the statement along with its severity
level and class name. We construct a template in the form
of a regular expression that matches all possible log messages
produced by it. We then enrich the templates with type analysis
information such as the textual representation of objects and
type hierarchies to make the templates more precise. To make
the templates easily searchable, we conclude this phase by
creating an index of the templates. With this template database
at hand we then find, for each log message that comes to our
production systems, the regular expressions that match, and
select the one that has the highest similarity to the constant
part of the log message. In the following, we describe each
part of our approach in detail.

a) Identify Log Statements: We parse the source code to
an AST to programmatically search the source code for state-
ments corresponding to log statements. Our implementation
uses JavaParser [2], a simple and lightweight AST library.

In order to analyze the log statements, we iterate over the
individual nodes to find those that represent log statements.
Previous work by Zhao et al. [30] identifies log statements
by searching for method calls corresponding to the standard
logging methods, such as those defined by Log4j [3] (e.g.,
log.info() and log.warn()). In practice we had to
extend this; companies like Adyen create their own logging
libraries suited for their needs (e.g., to automatically log
transaction IDs).

b) Create Template: We construct templates based on
the arguments of the log statement; a template that would

match any message generated by it. These templates are then
used to match the log messages with, providing the trace
back to the log statement in the source code. Note that a
more precise template will more accurately match the log
messages. However, in practice, the arguments of a log state-
ment have restrictions: developers can construct the argument
in every way imaginable, as long as it follows the language
specification (e.g., messages that contain integers, doubles,
Strings, etc). Even non-primitive objects with a custom textual
representation can be included. In other words, arguments can
vary from a simple literal expression to an interpolation of
primitive types together with objects, which all are converted
to a single line of text during runtime. We apply static analysis
to create templates based on the arguments of the logging
statement. Any literal expression is directly copied to the
regular expression, while runtime variables are replaced by
wildcards (often enhanced by the type of the variable).

Suppose we have the following log statement with mixed
expressions: log.info("average = " + avg), where
"average = " is a String, avg is of type double, and
everything is concatenated together, forming a single String.

The AST, in a simplified view, contains three types of nodes:
one representing the String, one representing the concatenation
(+), and one representing the double value. Our approach
recognizes the first literal string and copy it directly to the tem-
plate; then it recognizes the double variable, and it generates
a wildcard for double numbers. The final regular expression
for that log statement is then average = .*[double].

c) Enrich templates: While capturing the type of prim-
itive variables and generating proper regular expressions for
them is trivial, finding a precise regular expression for an ob-
ject requires more work. In Java, objects are transformed to a
String through the toString() method, which exists in any
Java object. The toString() method is often overridden by
developers, so that objects print useful information.

Following the approach of Xu et al. [28], whenever we no-
tice an object as an argument in a log statement, we try to infer
its regular expression based on its toString() implemen-
tation. We apply it recursively, as an object’s toString()
method can also print another object. If no toString()
implementation is found, we replace the object with a generic
wildcard “.*”. Given that the real type of the object is only
known at runtime (i.e., polymorphism), we create one template
for each sub-class of the argument’s type in the log statement.
Each template contains a regular expression extracted from a
sub-class implementation of the toString() method.

d) Create Index: Scanning the entire (extensive) template
database to find a match for each log message is unfeasible.
To solve the problem, we compile the constant part of all
templates into a reverse index [4] to make them searchable.
Then we query this index to retrieve a set of similar templates
based on TF-IDF [16] of the constant part, which has a higher
possibility of matching. Implementation-wise, we use Apache
Lucene [1] to index the templates, following the approach by
Xu et al. [28].
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Fig. 1. Overview of the approach.

e) Match messages to relevant templates: With the in-
dexed database at hand, our system is ready to provide the log
statement that originated any given log message we receive in
our production environment. This happens in four steps: 1)
we first filter out templates that do not belong to the class
that originated the log statement (logging the class name is
a cheap operation in Log4j), 2) we query the index for the
templates that are more likely to match based on the content
of the message and receive a relevance ranked list, 3) we then
evaluate whether the corresponding regular expression matches
the message, and 4) we return the highest ranking template
where the log message matches the regular expression.

IV. EMPIRICAL STUDY

In this section, we evaluate the effectiveness of linking log
data to its log statement in the source code with static analysis
regarding accuracy and performance. To that aim, we propose
the following research questions:
RQ1 What is the accuracy of the approach when dealing with

extensive log data?
RQ2 What is the performance of our approach?

A. Studied Sample

We evaluate the effectiveness of the approach in real life
conditions and will use log data taken directly from the
production servers of Adyen. The logs are produced by a
software system which has the purpose of processing payments
from all over the world. At the moment of writing the codebase
consists of millions of lines of code2, written by over 150
developers. Of those lines, approximately tens of thousands
of log statements generate log messages. The percentage of
lines of log statements is on the lower end compared to that
of other systems, normally about 1%-5% [28], as developers
try to be as efficient as possible in their logging.

The dataset used to evaluate the approach consists of
logs produced during normal operations, and no filtering was
applied to the messages. We obtained 100,000 messages from
a normal (i.e. non-holiday) weekday.

B. Methodology

To answer RQ1, we match the log messages from the
dataset to the source code and evaluate whether the link
provided by the approach is indeed correct. In the 100,000
messages in our sample, our approach generates 676 links (i.e.,

2Exact number is omitted due to confidentiality reasons.

connected the log messages to 676 different log statements in
the source code). To identify whether the link was correctly
made, we manually analyze a statistically significant sample
of 245 links, with a confidence level of 95% and confidence
interval of 5%. For each link, we select one random matched
message to evaluate the link. More specifically, we check
whether the statement could have produced the message by
taking into account the structure of the message, the severity,
and the accompanying class name. Furthermore, we evaluate
the log messages of which the approach provides a link to
an incorrect log statement. We manually inspect these log
messages to inspect why the approach was unable to provide
a correct link. We explain and show the underlying cause for
the misidentified messages.

To answer RQ2, we apply the approach ten times on the
dataset and measure the performance to eliminate any bias of
external programs influencing the execution time. The machine
used has two cores @ 3.1GHz from a Intel Core i7 CPU, and
16GB RAM. We analyze the execution time per individual
step of the creation process and report the mean execution
time of the ten runs. Finally, we link the log messages from the
dataset to the templates and analyze the execution time needed
per individual log message. We evaluate the distribution of the
execution time according to the mean, quartiles, and quantiles.

C. Results

1) RQ1. What is the accuracy of the approach when dealing
with extensive log data?: Overall, the approach achieves
97.6% accuracy (239 out of 245 analyzed log statements) on
tracing back the origin of log data to its log statement in the
source code. All but two log messages have been linked to
log statements in the source code. These two failures can be
explained by the fact that they have been both produced by
the same log statement, which logs a message that is too large
(approximately 17k characters) to be handled by our logging
facilities. This log statement has already been modified in a
future release.

Out of the 676 log statement identified as the source of
all log messages, six of those have proven to be incorrect.
The misidentifications occur due to the following underlying
causes:

JSON-based logs: Before querying the index, we strip the
JSON data out of the message since we consider this to be
variable information. Therefore, when the message consists of
JSON data only, the resulting query is an empty string. We



Step Time (minutes) Percentage

Finding log statements 37:25 92.1%
Creating template 00:32 1.3%
Enriching template 02:27 5.9%
Creating index 00:16 0.7%

Total 40:42 100%

TABLE I
MEAN EXECUTION TIME PER STEP OF THE APPROACH (AVERAGE OF TEN

RUNS)

also observed our tool failing due to bad JSON stripping. In
future versions, we should propose better ways to deal with
JSON-only log messages.

Unknown logging method: Adyen also uses custom-made
logging methods to construct logs in specific formats. Since
our implementation was unaware of them, no templates were
created for log statements using these methods. However,
since the implementation is easily configurable, these logging
methods can be added in future versions.

Inaccuracies in the creation process of templates: The
approach uses static analysis to create templates of log state-
ments that predict what the messages will look like at runtime.
Unfortunately, not all predictions are completely accurate. The
inaccuracy often happens when the message is constructed
outside the log statement itself, e.g., String logMsg =
"..." + variable; log.info(logMsg);.

2) RQ2. What is the performance of our approach?:
Table I shows the execution time per individual process of
the template creation process at Adyen’s codebase. The total
execution time took on average approximately 40 minutes
across all ten runs. Most of this time is spent searching the
codebase for method calls that correspond to log statements,
on average 92,1%. The actual execution time of creating and
indexing templates only takes 3 minutes and 16 seconds,
around 7,9% of the total execution time. The results are in
line with a similar approach by Zhao et al. [30], whose static
analysis takes less than two minutes to run for systems ranging
from 100.000 to 300.000 lines of code.

In the matching process, the median execution time to
process a single log message is only 4 milliseconds. Table
II details the statistics, which shows that for 99% of the log
messages are processed in under 132ms.

However, the total execution time to process all log mes-
sages is 01h13m19.969, which is much higher than expected.
We observed that the maximum time to process a single log
message is exceptionally high: 02m19.922, or 35,000 times the
median. The approach derived an incorrect template from the
statement in question. Two wildcards are missing from the
template, which results in a template not able to match the
log messages produced by the statement. This results that all
templates are evaluated to try to find a matching log statement
for this specific message, thus causing such a long execution
time. Therefore, it is most important to create as precise as
possible templates which significantly reduces the time needed
to match the log messages. Given this finding, we implemented
a fail-safe mechanism in our approach so that it gives up if

Statistic Time (ms) Cumulative Time (%)

Minimum (0%) 3 0,00%
1st quartile (25%) 4 1.97%
Median (50%) 4 4.27%
3rd quartile (75%) 6 6.98%
90th quantile 6 9.61%
95th quantile 13 12.39%
98th quantile 59 15.22%
99th quantile 132 17.43%
Maximum (100%) 139922 100.00%

TABLE II
EXECUTION TIME STATISTICS, PER LOG MESSAGE

the search for a matching template takes too long.
Threats to Validity. Our data sample is collected from a

single random day. This sample exercises 676 different log
statements of our system. After manually analyzing these log
statements, we observe that log statements were quite diverse
in terms of the number of literals, variables, variable types, and
importance to our system. Therefore, while a replication would
strengthen the validity of our findings, our results already give
us a high degree of certainty and interesting insights.

V. CONCLUSION

This paper presented our implementation of the state-of-
the-art research on log parsing and its evaluation for Adyen’s
large-scale software system. Our results show that our ap-
proach (and consequently, the state-of-the-art research) is
highly effective in tracing back the origin of log data to its
log statement in the source code, on average in 4 milliseconds
per log message and with an accuracy of 97.6% (CL=95%,
CI=5%). We thus believe that state-of-the-art research is ready
for the real world.

We also learned that, for such state-of-the-art research to be
applied in companies, implementations have to be:
• Non-intrusive: Companies will not afford changes in their

existing source code for any technique to work. It also can
not have any negative impact on the performance of the
software. In our implementation, our parser makes sure it
understands the specificities of the source code, and all the
parsing, template enriching, and matching process happen
on separate machines.

• Adaptable: Companies have their logging utilities, and
tooling needs to adapt to it. Our implementation provides
an easy way for developers to add support for different log
libraries.

• Extendable: Complex software makes use of operations
other than simple concatenation to build a log statement.
Our tool currently supports log messages consisting of
any combination of primitive objects, non-primitive objects
(including class polymorphism), formatted strings and ref-
erenced strings for Java. In the future, we plan to provide
better JSON support as well as a more complex log building
code.
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