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Abstract

We introduce a proper multi-type display calculus for bilattice logic (with conflation) for
which we prove soundness, completeness, conservativity, standard subformula property and
cut elimination. Our proposal builds on the product representation of bilattices and applies
the guidelines of the multi-type methodology in the design of display calculi.

Keywords: Non-classical logics, bilattice logic, many-valued logics, substructural logics,
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1 Introduction

Bilattices are algebraic structures introduced in [26] in the context of a multivalued approach to
deductive reasoning, and have subsequently found applications in a variety of areas in computer
science and artificial intelligence. The basic intuition behind the bilattice formalism, which can
be traced back to the work of Dunn and Belnap [15, 4, 5] and even earlier, to Kleene’s proposal
of a three-valued logic, is to carry out reasoning within a space of truth-values that results from
expanding the classical set {f,t} with a value ⊥, representing lack of information, and a value >,
representing over-defined or contradictory information.

More generally, Ginsberg [26] argued that one could take as space of truth-values a set equipped
with two lattice orderings (a bilattice), reflecting respectively the degree of truth and the degree of
information associated with propositions. The bilattice framework may thus be viewed as an at-
tempt at combining the many-valued approach to vagueness of fuzzy logic with the Dunn-Belnap-
Kleene treatment of partial and inconsistent information. In fact, a number of works has shown
how bilattice-like structures naturally arise in the context of fuzzy logic when one tries to account
for uncertainty, imprecision and incompleteness of information [16, 39, 14, 13].

During the last two decades, the theory of bilattices has been investigated in depth from
a proof-theoretic and algebraic point of view: complete (Hilbert- and Gentzen-style) presenta-
tions of bilattice-based logics were introduced in [1, 2], followed by [9] which focuses on the
implication-free reduct of the logic. The calculi introduced in these papers share many features
with those considered e.g. in [17] for the Belnap-Dunn logic, of which bilattice logics are conser-
vative expansions.

Negation plays a very special role. Indeed, it is because of this connective that bilattice logics
are not self-extensional [42] (or, as other authors say, congruential), i.e. the inter-derivability re-
lation of the logic is not a congruence of the formula algebra. This means that there are formulas

∗This research is supported by the NWO Vidi grant 016.138.314, the NWO Aspasia grant 015.008.054, and the
Delft Technology Fellowship awarded to the third author in 2013.
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ϕ and ψ such that ϕ a` ψ and yet ¬ϕ 6a` ¬ψ (this is not the case of the Belnap-Dunn logic, which
is self-extensional). In the Gentzen-style calculus for bilattice logic GBL introduced in [1, Sec-
tion 3.2], there are four introduction rules for each binary connective, two of which are standard
and introduce it as main connective on the left and on the right of the turnstile, and two are non-
standard and introduce the same connective under the scope of negation. From a proof-theoretic
perspective, this solution has the disadvantage that the resulting calculus is not fully modular, does
not enjoy the standard subformula property, and violates some key criteria about introduction rules
for connectives adopted in the literature on display calculi, structural proof theory and dynamic
logics on the basis of technical considerations, and in the literature on proof-theoretic semantics
on more philosophical ground and concerns (see [40, 38, 21, 41]).

In this paper, we introduce a proper multi-type display calculus for bilattice logic that cir-
cumvents all the above-mentioned disadvantages.1 As a first approximation to the problem of
providing a calculus for the full Arieli-Avron logic [1, 10], we shall here focus on its implication-
free fragment, which is precisely the logic axiomatized by means of a Hilbert-style calculus in [9].
We consider this to be a reasonable tradeoff: on the one hand because, thanks to the modularity
of our calculus, we do not anticipate any major technical difficulties in introducing further rules
to account for the implication (this is current work in progress); on the other hand because the
characteristic behaviour of the bilattice negation (and the problems that arise in its proof-theoretic
treatment) already manifest in the context of the implicationless logic. Another natural future
project will be providing a display calculus for modal expansions of bilattice logic such as those
introduced in [33]–see the concluding remarks in Section 7.

The design of our display calculus follows the principles of the multi-type methodology (cf. Sec-
tion 2.3), introduced in [27, 20, 18, 19] for displaying dynamic epistemic logic and propositional
dynamic logic, and subsequently applied to displaying several other well known logics (e.g. linear
logic with exponentials [31], inquisitive logic [22], semi-De Morgan logic [28], lattice logic [30])
which are not properly displayable in their single-type presentation, and also to design families of
novel logical frameworks in a modular and principled way [7]. Our multi-type syntactic presen-
tation of bilattice logic is based on the algebraic insight provided by the product representation
theorems (see e.g. [8]) and possesses all the desirable properties of proper display calculi. In par-
ticular, our calculus enjoys the standard subformula property, supports a proof-theoretic semantics
and is fully modular. These features make it possible to prove important results about the logics
in a principled way and are key for developing interactive and automated reasoning tools [3].

Structure of the paper. In Section 2 we recall basic definitions and results about bilattices and
bilattice logics and discuss the general motivations and insights underlying (multi-type) display
calculi. Section 3 develops an algebraic analysis of bilattices as heterogeneous structures which
provides a basis for our multi-type approach to their proof theory. In Section 4, we introduce the
multi-type bilattice logic which corresponds to heterogenous bilattices. Our display calculi are
introduced in Section 5, and we prove its soundness, completeness, conservativity, subformula
property and cut elimination in Section 6. In Section 7 we outline some directions for future work.

2 Preliminaries

2.1 Bilattices

The following definitions and results can be found e.g. in [1, 9].

1The notion of proper display calculus has been introduced in [40]. Properly displayable logics, i.e. those which
can be captured by some proper display calculus, have been characterized in a purely proof-theoretic way in [11]. In
[29], an alternative characterization of properly displayable logics was introduced which builds on the algebraic theory
of unified correspondence [12].
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Definition 2.1. A bilattice is a structure B = (B,≤t,≤k,¬) such that B is a non-empty set, (B,≤t),
(B,≤k) are lattices, and ¬ is a unary operation on B having the following properties:

• if a ≤t b, then ¬b ≤t ¬a,

• if a ≤k b, then ¬a ≤k ¬b,

• ¬¬a = a.

We use ∧,∨ for the lattice operations which correspond to ≤t and ⊗,⊕ for those that correspond
to ≤k. If present, the lattice bounds of ≤t are denoted by f and t (minimum and maximum,
respectively) and those of ≤k by ⊥ and >. The smallest non-trivial bilattice is the four-element
one (called Four) with universe {f,t,⊥,>}.

Fact 2.2. The following equations (De Morgan laws for negation) hold in any bilattice:

¬(x∧ y) = ¬x∨¬y, ¬(x∨ y) = ¬x∧¬y,
¬(x⊗ y) = ¬x⊗¬y, ¬(x⊕ y) = ¬x⊕¬y.

Moreover, if the bilattice is bounded, then

¬t = f, ¬f = t, ¬> = >, ¬⊥ = ⊥.

Definition 2.3. A bilattice is called distributive when all possible distributive laws concerning the
four lattice operations, i.e., all identities of the following form, hold:

x◦ (y• z) ≈ (x◦ y)• (x◦ z) for all ◦,• ∈ {∧,∨,⊗,⊕}

If a distributive bilattice is bounded, then

t⊗f = ⊥, t⊕f = >, >∧⊥ = f, >∨⊥ = t.

In the following, we use B to denote the class of bounded distributive bilattices.

Theorem 2.4 (Representation of distributive bilattices). Let L be a bounded distributive lattice
with join t and meet u. Then the algebra L�L having as universe the direct product L× L is a
distributive bilattice with the following operations:

〈a1,a2〉∧ 〈b1,b2〉 := 〈a1ub1,a2tb2〉

〈a1,a2〉∨ 〈b1,b2〉 := 〈a1tb1,a2ub2〉

〈a1,a2〉⊗ 〈b1,b2〉 := 〈a1ub1,a2ub2〉

〈a1,a2〉⊕ 〈b1,b2〉 := 〈a1tb1,a2tb2〉

¬〈a1,a2〉 := 〈a2,a1〉

f := 〈0,1〉
t := 〈1,0〉
⊥ := 〈0,0〉
> := 〈1,1〉

Theorem 2.5. Every distributive bilattice is isomorphic to L�L for some distributive lattice L.

Definition 2.6. A structure B = (B,≤t,≤k,¬,−) is a bilattice with conflation if (B,≤t,≤k,¬) is a
bilattice and the conflation − : B→ B is an operation satisfying:

• if a ≤t b, then −a ≤t −b;

• if a ≤k b, then −b ≤k −a;

• −−a = a.
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We say that B is commutative if it also satisfies the equation: ¬− x = −¬x.

Fact 2.7. The following equations (De Morgan laws for conflation) hold in any bilattice with
conflation:

−(x∧ y) = −x∧−y −(x∨ y) = −x∨−y
−(x⊗ y) = −x⊕−y −(x⊕ y) = −x⊗−y

Moreover, if the bilattice is bounded, then

−t = t, −f = f, −> = ⊥, −⊥ = >.

We denote by CB the class of bounded commutative distributive bilattices with conflation.

Theorem 2.8. Let D = (D,u,t,∼,0,1) be a De Morgan algebra, then D�D is a bounded commu-
tative distributive bilattice with conflation where:

• (D,u,t,0,1)� (D,u,t,0,1) is a bounded distributive bilattice;

• −(a,b) = (∼b,∼a);

Theorem 2.9. Every bounded commutative distributive bilattice with conflation is isomorphic to
D�D for some De Morgan algebra D.

2.2 Bilattice logic

In the present subsection we introduce Bilattice Logic (BL) and Bilattice Logic with Conflation
(CBL). The language of CBL L over a denumerable set AtProp = {p,q,r, . . .} of atomic proposi-
tions is generated as follows:

A ::= p | t | f | > | ⊥ | ¬A | A∧A | A∨A | A⊗A | A⊕A | −A.

the language of BL is the conflation-free reduct of L, where conflation is the name of the connec-
tive ‘−’. Bilattice Logic consists of the following axioms:

A ` A, ¬¬A a` A,

f ` A, A ` t, ⊥ ` A, A ` >,

A ` ¬f, ¬t ` A, ¬⊥ ` A, A ` ¬>,

A∧B ` A, A∧B ` B, A ` A∨B, B ` A∨B,

A⊗B ` A, A⊗B ` B, A ` A⊕B, B ` A⊕B,

A∧ (B∨C) ` (A∧B)∨ (A∧C),

A⊗ (B⊕C) ` (A⊗B)∨ (A⊕C),

¬(A∧B) a` ¬A∨¬B, ¬(A∨B) a` ¬A∧¬B,

¬(A⊗B) a` ¬A⊗¬B, ¬(A⊕B) a` ¬A⊕¬B,

and the following rules:

A ` B B ` C
A ` C

A ` B A ` C
A ` B∧C

A ` B C ` B
A∨C ` B

A ` B A ` C
A ` B⊗C

A ` B C ` B
A⊕C ` B
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CBL consists of the axioms and rules of BL plus the following axioms:

−−A a` A, −¬A a` ¬−A,

−f ` A, A ` −t, −> ` A, A ` −⊥,

−(A∧B) a` −A∧−B, −(A∨B) a` −A∨−B,

−(A⊗B) a` −A⊕−B, −(A⊕B) a` −A⊗−B.

The algebraic semantics of BL (resp. CBL) is given by B (resp. CB). We use A |=B C (resp. A |=CB

C) to mean: for any B ∈ B (resp. B ∈ CB), if AB ∈ Ft then CB ∈ Ft. Here AB and CB mean the
interpretations of A and C in B, respectively; and Ft = {a ∈ B : t ≤k a} is the set of designated
elements of B (using the terminology of [1, Definition 2.13], Ft is the least bifilter of B).

Soundness of BL (resp. CBL) is straightforward. In order to show completeness, we can
prove that every axiom and rule of Arieli and Avron’s GBL (resp. GBS, cf. [1]) is derivable in BL
(resp. CBL).2 Then the completeness of BL (resp. CBL) follows from the completeness of GBL
(resp. GBS, [1, Theorem 3.7]).

Theorem 2.10 (Completeness). A `BL C iff A |=B C (resp. A `CBL C iff A |=CB C).

2.3 Display calculi and multi-type display calculi

A major issue in structural proof theory is the design of analytic calculi, that is, calculi in which
formulas are deduced through a process of step-wise decomposition, in which no elements ex-
traneous to the formula to be proved are allowed. The best known analytic calculi are Gentzen’s
sequent calculi [25], the analiticity of which takes the form of the cut elimination theorem, stating
that every sequent for which a deduction exists can be proven by a deduction in which a certain rule
(the cut rule, the only rule violating analiticity) is not applied. The syntactic proof of cut elimina-
tion is very informative, but is also lengthy and intricate, and hence error-prone. Moreover, it is not
robust: that is, it does not extend modularly from a given calculus to any of its extensions obtained
by adding a given rule. Various extensions and refinements of Gentzen’s sequent calculi have been
introduced to improve modularity while retaining cut-elimination. One of the most elegant and
successful such proposals is Belnap’s framework of display calculi [6]. Belnap’s refinement is
based on the introduction of a richer syntax for the constituents of each sequent, which includes
structural connectives along with logical connectives. This syntax allows for the definition of an
environment in which the essentials of syntactic cut elimination can be precisely described. In
this environment, a cut elimination meta-theorem can be proved, which gives a set of sufficient
conditions for the cut elimination theorem to hold of sequent calculi. Most of these conditions are
easily verified by inspecting the shape of the rules. Meta-theorems provide much smoother, robust
and modular routes to cut elimination than the original proof devised by Gentzen. In a slogan, cut
elimination via meta-theorems is to ordinary cut elimination what canonicity is to completeness.
Indeed, canonicity provides a uniform strategy to achieve completeness; likewise, the conditions of
Belnap’s meta-theorem guarantee that one and the same transformation strategy achieves cut elim-
ination for any calculus satisfying them. Belnap’s display calculi account simultaneously for large
families of logical systems, including modal logics and substructural logics. However, the scope
of display calculi, as proposed by Belnap and later refined by Wansing by means of the notion of
proper display calculi [40], does not encompass many important logical systems, and in [11, 29],
a characterization is given of the logics which can be endowed with (single-type) proper display
calculi. The theory of multi-type calculi is a generalization of Belnap’s original framework, ca-
pable to encompass those logics which – like linear logic, dynamic epistemic logic, propositional
dynamic logic, and inquisitive logic – fall out of the scope of the characterization given in [29],

2In order to do this, we view a sequent Γ⇒ ∆ of GBL (GBS) as the equivalent sequent
∧

Γ⇒
∨

∆.
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and uniformly endow them with the same excellent properties enjoyed by (single-type) proper dis-
play calculi. What sets multi-type calculi apart from other proof-theoretic methodologies is that,
in multi-type calculi, entities of different types can coexist and interact on equal ground: each type
has its own internal logic (i.e. language and deduction relation), and the interaction between logics
of different types is facilitated by special heterogeneous connectives, primitive to the language,
and treated on a par with all the others. This enriched environment is specifically designed to
address the problem of expressing the interactions between entities of different types by means
of analytic rules. Indeed, although the source of the mathematical difficulties was different for
each of the logics mentioned above, a common core to these difficulties was identified precisely
in the encoding of key interactions between entities of different types. For instance, for dynamic
epistemic logic the difficulties lay in the interactions between (epistemic) actions, agents’ beliefs,
and facts of the world; for linear logic, in the interaction between general resources and reusable
resources; for propositional dynamic logic, between general and iterative actions; for inquisitive
logic, between general and flat formulas. In each case, precisely the formal encoding of these
interactions gave rise to non-analytic axioms in the original formulations of the logics. In each
case, the multi-type approach allowed to redesign the logics, so as to encode the key interactions
into analytic multi-type rules, and define a multi-type proper display calculus for each of them.
Adding types makes it possible to move to a richer and more expressive environment in which
these interactions can be unravelled and reformulated with analytic (multi-type) terms.

A key feature towards the implementation of the multi-type methodology on specific logics,
such as bilattice logic, is the use of algebraic information for proof-theoretic purposes. That is,
we aim at reformulating the algebraic semantics of the given logic in a way which highlights
the existence and interaction of different algebras, which can be taken as potential interpreters
of different types, as well as of natural maps connecting these algebras, which can be taken as
potential interpreters of heterogeneous connectives spanning between these types. In the case of
bilattices, this reformulation pivots on the representation theorem of bilattices as twist-product of
lattices.

3 Multi-type algebraic presentation of bilattices

In the present section we introduce the algebraic environment which justifies semantically the
multi-type approach to bilattice logic presented in Section 5. The main insight is that (bounded)
bilattices (with conflation) can be equivalently presented as heterogeneous structures, i.e. tuples
consisting of two (bounded) distributive lattices (De Morgan algebras) together with two maps
between them.

Multi-type semantic environment

For a bilattice B, let Reg(B) = {a ∈ B : a = ¬a} be the set of regular elements [8]. It is easy to show
that Reg(B) is closed under ⊗ and ⊕, hence (Reg(B),⊗,⊕) is a sublattice of (B,⊗,⊕). For every
a ∈ B, we let

reg(a) := (a∨ (a⊗¬a))⊕¬(a∨ (a⊗¬a))

be the regular element associated with a. It follows from the representation result of [8, Theorem
3.2] that

B � (Reg(B),⊗,⊕)� (Reg(B),⊗,⊕)

where the isomorphism π : B → Reg(B) ×Reg(B) is defined, for all a ∈ B, as π(a) := 〈reg(a),
reg(¬a)〉. The inverse map f : Reg(B)×Reg(B)→ B is defined, for all 〈a,b〉 ∈ Reg(B)×Reg(B),
as

f (〈a,b〉) := (a⊗ (a∨b))⊕ (b⊗ (a∧b)).
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Heterogeneous Bilattices

Definition 3.1. A heterogeneous bilattice (HBL) is a tuple H = (L1, L2, n, p) satisfying the fol-
lowing conditions:

(H1) L1, L2 are bounded distributive lattices.

(H2) n : L1→ L2 and p : L2→ L1 are mutually inverse lattice isomorphisms.

We let HBL denote the class of HBLs. An HBL is perfect if:

(H3) both L1 and L2 are perfect lattices;3

(H4) p,n are complete lattice isomorphisms.

By (H2) we have that np = IdL1 and pn = IdL2 , from which it straightforwardly follows that n
and p are both right and left adjoints of each other. The definition of the heterogeneous bilattice
with conflation (HCBL) is analogous, except that we replace (H1) with the following condition:

(H1′) L1 and L2 are De Morgan algebras, with De Morgan negations denoted ∼1 and ∼2 respec-
tively.

We let HCBL denote the class of HCBLs. In what follows, we let Lδ denote the canonical extension
of the lattice L. The following lemma is an easy consequence of the results in [24, Theorems 2.3
and 3.2].

Lemma 3.2. If (L1,L2,n,p) is an HBL (HCBL), then (Lδ1,L
δ
2,n

δ,pδ) is a perfect HBL (resp. HCBL).

L1

Lδ1

L2

Lδ2

n

nδ

pδ

p

Equivalence of the two presentations

The following result is a straightforward verification of Definition 3.1.

Proposition 3.3. For any bounded distributive bilattice B, the tuple

B+ = (Reg(B), Reg(B), IdReg(B), IdReg(B))

is an HBL., where u1 = u2 = ⊗,t1 = t2 = ⊕,11 = 12 = > and 01 = 02 = ⊥.

For any CB B, the tuple

B+ = ((Reg(B),∼1), (Reg(B),∼2), IdReg(B), IdReg(B))

is an HCBL, where ∼2 = ∼1 = −.
3A distributive lattice A is perfect (cf. [23]) if it is complete, completely distributive and completely join-generated

by the set J∞(A) of its completely join-irreducible elements (as well as completely meet-generated by the set M∞(A)
of its completely meet-irreducible elements).

A lattice isomomorphism h : L→ L′ is complete if it satisfies the following properties for each X ⊆ L:

h(
∨

X) =
∨

h(X) h(
∧

X) =
∧

h(X),
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Proposition 3.4. If (L1, L2, n, p) is an HBL (resp. HCBL), then L1 × L2 is a bilattice (resp. a
bilattice with conflation) when endowed with the following structure:

〈a1,a2〉⊗ 〈b1,b2〉 := 〈a1u1 b1, a2u2 b2〉

〈a1,a2〉⊕ 〈b1,b2〉 := 〈a1t1 b1, a2t2 b2〉

〈a1,a2〉∧ 〈b1,b2〉 := 〈a1u1 b1, a2t2 b2〉

〈a1,a2〉∨ 〈b1,b2〉 := 〈a1t1 b1, a2u2 b2〉

¬〈a1,a2〉 := 〈p(a2),n(a1)〉
−〈a1,a2〉 := 〈p(∼2a2),n(∼1a1)〉

f := 〈0,1〉
t := 〈1,0〉
⊥ := 〈0,0〉
> := 〈1,1〉

Proof. Firstly, we show that 〈L1×L2,⊗,⊕〉 and 〈L1×L2,∧,∨〉 are bounded distributive lattices. It
is obvious that they are both bounded lattices. We only need to show that the distributivity law
holds. We have:

〈a1, a2〉⊗ (〈b1, b2〉⊕ (〈c1, c2〉)
= 〈a1, a2〉⊗ (〈b1t1 c1, b2t2 c2〉) Def. of ⊕
= 〈a1u1 (b1t1 c1), a2u2 (b2t2 c2)〉 Def. of ⊗
= 〈(a1u1 b1)t1 (a1u1 c1), (a2u2 b2)t2 (a2u2 c2)〉 Distributivity of L1 and L2
= 〈(a1u1 b1), (a2u2 b2)〉⊕ 〈(a1u1 c1), (a2u2 c2)〉 Def. of ⊕
= (〈a1, a2〉⊗ 〈b1, b2〉)⊕ (〈a1, a2〉⊗ 〈c1, c2〉) Def. of ⊗

As to 〈L1×L2,∧,∨〉, the argument is analogous.
Now we show that the properties of ¬ are also met. Assume that 〈a1, a2〉 ≤t 〈b1, b2〉, equiv-

alently, a1 ≤1 b1 and b2 ≤2 a2. By the definition of ¬, we have ¬〈a1, a2〉 = 〈p(a2), n(a1)〉 and
¬〈b1, b2〉 = 〈p(b2), n(b1)〉. Hence p(b2) ≤1 p(a2) and n(a1) ≤2 n(b1) by (H2). Thus ¬〈b1, b2〉 ≤t

¬〈a1, a2〉. A similar reasoning shows that the corresponding property involving ¬ and ≤k also
holds. The following argument shows that ¬ is involutive.

¬¬〈a1, a2〉

= ¬〈p(a2), n(a1)〉 Def. of ¬
= 〈pn(a1), np(a2)〉 Def. of ¬
= 〈a1, a2〉 np = IdL1 and pn = IdL2

As to conflation, assume 〈a1, a2〉 ≤t 〈b1, b2〉, equivalently, a1 ≤1 b1 and b2 ≤2 a2. By the def-
inition of − we have −〈a1, a2〉 = 〈p(∼2a2), n(∼1a1)〉 and −〈b1, b2〉 = 〈p(∼2b2), n(∼1b1)〉. Hence
p(∼2a2) ≤1 p(∼2b2) and n(∼b1) ≤2 n(∼b2) by (H2). Thus −〈a1, a2〉 ≤t −〈b1, b2〉. A similar reason-
ing shows that the corresponding property involving − and ≤k also holds. The following arguments
show that − is involutive and − and ¬ are commutative.

−−〈a1, a2〉

= −〈p(∼2a2), n(∼1a1)〉 Def. of −
= 〈p(∼2n(∼1a1)), n(∼1p(∼2a2))〉 Def. of −
= 〈p(∼2∼2n(a1)), n(∼1∼1p(a2))〉 H2
= 〈pn(a1), np(a2)〉 H1
= 〈a1, a2〉 np = IdL1 and pn = IdL2

−¬〈a1, a2〉

= −〈p(a2), n(a1)〉 Def. of ¬
= 〈p(∼2n(a1)), n(∼1p(a2))〉 Def. of −
= ¬〈∼1p(a2), ∼2n(a1)〉 Def. of ¬
= ¬〈p(∼2a2), n(∼1a2)〉 H2
= ¬−〈a1, a2〉 Def. of −
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Definition 3.5. For any HBL H = (L1, L2, n, p), we let H+ = (L1 × L2, ∧, ∨, ⊗, ⊕, ¬) denote
the product algebra where the four lattice operations are defined as in L1�L2 (Theorem 2.4) and
the negation is given by ¬〈a1,a2〉 := 〈p(a2), n(a1)〉 for all 〈a1,a2〉 ∈ L1 × L2. If L1 and L2 are
isomorphic De Morgan algebras, then we define H+ = (L1×L2, ∧, ∨, ⊗, ⊕, ¬, −) as before, with
the conflation given by −〈a1,a2〉 := 〈p(∼2a2), n(∼1a1)〉 for all 〈a1,a2〉 ∈ L1×L2.

Proposition 3.6. For any B ∈ B (resp. B ∈ CB) and any HBL (resp. HCBL) H, we have

B � (B+)+ and H � (H+)+.

Proof. Immediately follows from Propositions 3.3 and 3.4. �

4 Multi-type bilattice logic

The results of Section 3 show that HBL (resp. HCBL) is an equivalent presentation of B (resp. CB),
and motivate from a semantic perspective the syntactic shift we take in the present section, from a
single-type language to a multi-type language.4 Indeed, heterogeneous algebras provide a natural
interpretation for the following multi-type language LMT consisting of terms of types L1 and L2.

L1 3 A1 ::= p1 | 11 | 01 | pA2 | ∼1A1 | A1u1 A1 | A1t1 A1

L2 3 A2 ::= p2 | 12 | 02 | nA1 | ∼2A2 | A2u2 A2 | A2t2 A2

The interpretation of LMT-terms into HCBLs is defined as the easy generalization of the in-
terpretation of propositional languages in universal algebra; namely, L1-terms (resp. 2-terms) are
interpreted in the first and second De Morgan algebras of any HCBL, respectively.

The toggle between CB and HCBL (cf. Sections 3) is reflected syntactically by the translations
t1(·), t2(·) :L→LMT defined as follows:

t1(p) := p1 t2(p) := p2
t1(t) := 11 t2(t) := 02
t1(f) := 01 t2(f) := 12
t1(>) := 11 t2(>) := 12
t1(⊥) := 01 t2(⊥) := 02

t1(A∧B) := t1(A)u1 t1(B) t2(A∧B) := t2(A)t2 t2(B)
t1(A∨B) := t1(A)t1 t1(B) t2(A∨B) := t2(A)u2 t2(B)
t1(A⊗B) := t1(A)u1 t1(B) t2(A⊗B) := t2(A)u2 t2(B)
t1(A⊕B) := t1(A)t1 t1(B) t2(A⊕B) := t2(A)t2 t2(B)

t1(¬A) := pt2(A) t2(¬A) := nt1(A)
t1(−A) := p∼2t2(A) t2(−A) := n∼1t1(A)

The translations above are compatible with the toggle between B (resp. CB) and HBL (resp. HCBL).
Indeed, recall that B+ denotes the heterogeneous algebra associated with a given B ∈ B (cf. Defi-
nition 3.5). The following proposition is proved by a routine induction on L-formulas.

Proposition 4.1. For all L-formulas A and B and every B ∈ B (resp. B ∈ CB),

B |= A ≤ B iff B+ |= t1(A) ≤ t1(B).
4In what follows, we only introduce the multi-type language associated with HCBL. The language associated with

HBL can be obtained by removing the unary operators ∼1 and ∼2.
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5 Multi-type proper display calculus

In this section we introduce the proper display calculus D.BL (D.CBL) for bilattice logic (with
conflation).

Language

The language LMT of D.CBL is given by the union of the sets L1 and L2 defined as follows.
L1 is given by simultaneous induction over the set AtProp1 = {p1,q1,r1, . . .} of L1-type atomic
propositions as follows:

A1 ::= p1 | 11 | 01 | p A2 | ∼1 A1 | A1u1 A1 | A1t1 A1

X1 ::= A1 | 1̂1 | 0̌1 | P X2 | ∗1 X1 | X1 û1 X1 | X1 ť1 X1 | X1 Ǎ1 X1 | X1 @̂1 X1

L2 is given by simultaneous induction over the set AtProp2 = {p2,q2,r2, . . .} of L2-type atomic
propositions as follows:

A2 ::= p2 | 12 | 02 | n A1 | ∼2 A2 | A2u2 A2 | A2t2 A2

X2 ::= A2 | 1̂2 | 0̌2 | N X1 | ∗2 X2 | X2 û2 X2 | X2 ť2 X2 | X2 Ǎ2 X2 | X2 @̂2 X2

The language of D.BL is the {∗1,∗2,∼1,∼2}-free fragment of LMT.

Rules

For i ∈ {1,2},

• Pure Li-type display rules

Xi ûi Yi ` Zi
res

Xi ` Yi ǍZi

Xi ` Yi ťi Zi
res

Xi @̂i Yi ` Zi

• Multi-type display rules

P X2 ` Y1
adj

X2 ` NY1

N X1 ` Y2
adj

X1 ` PY2

• Pure Li-type identity and cut rules

Idi pi ` pi

Xi ` Ai Ai ` Yi
Cut

Xi ` Yi

• Pure Li-type structural rules

Xi ûi 1̂i ` Yi
1̂i Xi ` Yi

Xi ` Yi ťi 0̌i
0̌iXi ` Yi

Xi ûi Yi ` Zi
E

Yi ûi Xi ` Zi

Xi ` Yi ťi Zi
E

Xi ` Zi ťi Yi

(Xi ûi Yi) ûi Zi ` Wi
A

Xi ûi (Yi ûi Zi) ` Wi

Xi ` (Yi ťi Zi) ťi Wi
A

Xi ` Yi ťi (Zi ťi Wi)

Xi ` Zi
W

Xi ûi Yi ` Zi

Xi ` Yi
W

Xi ` Yi ťi Zi

Xi ûi Xi ` Zi
C

Xi ` Zi

Xi ` Yi ťi Yi
C

Xi ` Yi

• Pure Li type operational rules
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1̂i ` Xi1i 1i ` Xi
1i

1̂i ` 1i

0i
0i ` 0̌i

Xi ` 0̌i 0iXi ` 0i

Ai ûi Bi ` Xi
ui

Aiui Bi ` Xi

Xi ` Ai Yi ` Bi
ui

Xi ûi Yi ` Aiui Bi

Ai ` Xi Bi ` Yi
ti

Aiti Bi ` Xi ťi Yi

Xi ` Ai ťi Bi
ti

Xi ` Aiti Bi

• Multi-type structural rules

X1 ` Y1
N

N X1 ` NY1

X2 ` Y2
P

P X2 ` PY2

1̂1 ` X1
P1̂2

P1̂2 ` X1

X1 ` 0̌1
P0̌2

X1 ` P0̌2

• Multi-type operational rules

N A1 ` X2n
n A1 ` X2

X2 ` N A1 n
X2 ` n A1

P A2 ` X1p
p A2 ` X1

X1 ` P A2 p
X1 ` p A2

The multi-type display calculus D.CBL also includes the following rules:

• Pure Li display structural rules:

∗i Xi ` Yi
adj∗

∗i Yi ` Xi

Xi ` ∗i Yi
adj∗

Yi ` ∗i Xi

• Pure Li structural rules:

Xi ` Yi
cont
∗i Yi ` ∗i Xi

• Multi-type structural rules:

N∗1 X1 ` Y2
∗2N
∗2 N X1 ` Y2

X2 ` N∗1 Y1
∗2N

X2 ` ∗2 NY1

• Pure Li operational rules:

∗i Xi ` Yi∼i
∼i Xi ` Yi

Xi ` ∗i Yi ∼i
Xi ` ∼i Yi

An essential feature of our calculus is that the logical rules are standard introduction rules
of display calculi. This is key for achieving a canonical proof of cut elimination. The special
behaviour of negation is captured by a suitable translation in a multi-type environment, which
makes it possible to circumvent the technical difficulties created by the non-standard introduction
rules of [1].
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6 Properties

In this section, we sketch the proofs of the main properties of the calculi D.BL and D.CBL. We
only sketch them since these proofs are instances of general facts of the theory of multi-type
calculi.

Soundness

We outline the verification of soundness of the rules of D.BL (resp. D.CBL) w.r.t. the semantics
of perfect HBL (resp. HCBL). The first step consists in interpreting structural symbols as their
corresponding logical symbols. This induces a natural interpretation of structural terms as logical
/ algebraic terms, which we omit. Then we interpret sequents as inequalities, and rules as quasi-
inequalities. The verification of soundness of the rules of D.BL (resp. D.CBL) then consists in
checking the validity of their corresponding quasi-inequalities in perfect HBL (resp. HCBL). For
example, the rules on the left-hand side below are interpreted as the quasi-inequalities on the
right-hand side:

P X2 ` Y1

X2 ` NY1
 ∀a2∀b1 [p(a2) ≤1 b1 ⇔ a2 ≤2 n(b1)]

Xi ` Yi

∗i Yi ` ∗i Xi
 ∀ai∀bi [ai ≤i bi ⇔ ∼ibi ≤i ∼iai]

The verification of soundness of pure-type rules and of the introduction rules following this
procedure is routine, and is omitted. The validity of the quasi-inequalities corresponding to multi-
type structural rules follows straightforwardly from the observation that the quasi-inequality cor-
responding to each rule is obtained by running the algorithm ALBA [29, Section 3.4] on one of
the defining inequalities of HBL (resp. HCBL).5 For instance, the soundness of the first rule above
is due to p and n being inverse to each other (see discussion after Definition 3.1).

Completeness

Proposition 6.1. For every formula A of BL (resp. CBL), the sequents t1(A) ` t1(A) and t2(A) ` t2(A)
are derivable in D.BL (resp. D.CBL).

Proof. By induction on the complexity of the formula A. If A is an atomic formula, the translation
of ti(A) ` ti(A) with i ∈ {1,2} is Ai ` Ai, which is derivable using (Id) in L1 and L2, respectively.
If A = B⊗C, then ti(B⊗C) = ti(B)ui ti(C) and if A = B⊕C, then ti(B⊕C) = ti(B)ti ti(C). By
induction hypothesis, ti(Ai) ` ti(Ai). The following derivations complete the proof:

ti(B) ` ti(B)
W

ti(B) ûi ti(C) ` ti(B)

ti(C) ` ti(C)
W

ti(C) ûi ti(B) ` ti(C)
E

ti(B) ûi ti(C) ` ti(C)
(ti(B) ûi ti(C)) ûi (ti(B) ûi ti(C)) ` ti(B)ui ti(C)

C
ti(B) ûi ti(C) ` ti(B)ui ti(C)
ti(B)ui ti(C) ` ti(B)ui ti(C)

ti(B) ` ti(B)
W

ti(B) ` ti(B) ťi ti(C)

ti(C) ` ti(C)
W

ti(C) ` ti(C) ťi ti(B)
E

ti(C) ` ti(B) ťi ti(C)
ti(B)ti ti(C) ` (ti(B) ťi ti(C)) ťi (ti(B) ťi ti(C))

C
ti(B)ti ti(C) ` ti(B) ťi ti(C)
ti(B)ti ti(C) ` ti(B)ti ti(C)

5As discussed in [29], the soundness of the rewriting rules of ALBA only depends on the order-theoretic properties
of the interpretation of the logical connectives and their adjoints and residuals. The fact that some of these maps are not
internal operations but have different domains and codomains does not make any substantial difference.
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The arguments for A = B∧C and A = B∨C are similar and they are omitted.
If A = ¬B, then t1(¬B) = pt2(B) and t2(¬B) = nt1(B). By induction hypothesis ti(A) ` ti(A).

Hence, the following derivations complete the proof:

t2(B) ` t2(B)
P

P t2(B) ` P t2(B)
P t2(B) ` p t2(B)
p t2(B) ` p t2(B)

t1(B) ` t1(B)
N

N t1(B) ` N t1(B)
N t1(B) ` n t1(B)
n t1(B) ` n t1(B)

If A =−B, then t1(−B) = p∼2 t2(B) and t2(−B) = n∼1 t1(B). By induction hypothesis ti(B) ` ti(B).
Hence, the following derivations complete the proof:

t2(B) ` t2(B)
cont

∗2 t2(B) ` ∗2 t2(B)
∗2 t2(B) ` ∼2 t2(B)
∼2 t2(B) ` ∼2 t2(B)

P
P ∼2 t2(B) ` P ∼2 t2(B)
p ∼2 t2(B) ` P ∼2 t2(B)
p ∼2 t2(B) ` p ∼2 t2(B)

t1(B) ` t1(B)
cont

∗1 t1(B) ` ∗1 t1(B)
∗1 t1(B) ` ∼1 t1(B)
∼1 t2(B) ` ∼1 t1(B)

N
N ∼1 t1(B) ` N ∼1 t1(B)
N ∼1 t1(B) ` n ∼1 t1(B)
n ∼1 t1(B) ` n ∼1 t1(B)

�

Proposition 6.2. For all formulas A,B of BL (resp. CBL), if A ` B is derivable in BL (resp. CBL),
then t1(A) ` t1(B) is derivable in D.BL (resp. D.CBL).

Proof. In what follows we show that the translations of the axioms and rules of BL (resp C.BL)
are derivable in D.BL (resp. D.CBL). Since BL (resp C.BL) is complete w.r.t. the class of bilattice
algebras (by Theorem 2.10), and hence w.r.t. their associated heterogeneous algebras (by Proposi-
tions 3.3 and 3.4), this is enough to show the completeness of D.BL (resp. D.CBL). For the sake
of readability, in what follows, for each BL-formula A and i ∈ {1,2}, we let ti(A) := Ai.

The identity axiom A ` A is proved in Proposition 6.1.
The derivations of the binary rules are standard and we omit them.
As to f ` A, by the translation, t1(f) = 01, hence, the sequent 01 ` A1 is derivable in D.BL as

follows

01 ` 0̌1
W

01 ` 0̌1 ť1 A1
0̌101 ` A1

The proofs of the translations of A ` t, ⊥ ` A and A ` > are analogous.
As to A ` ¬f, by the translation, t1(¬f) = pt2(f) = p12, hence we can prove A1 ` p12 by the

introduction rule of (12) on the left side, (W), (1̂2), (adj), (p) and the introduction rule of (12) on
the right side. The proofs of ¬t ` A, ¬⊥ ` A, A ` ¬> are are analogous.

In what follows, we let the sequent on the right side of denote the result of the translation.
The translations of the remaining axioms in BL are derivable in D.BL as follows:
¬¬A a` A  pn A1 a` A1

A1 ` A1
N

N A1 ` N A1
n A1 ` N A1adj

Pn A1 ` A1
pn A1 ` A1

A1 ` A1
N

N A1 ` N A1
N A1 ` n A1 adj

A1 ` Pn A1
A1 ` pn A1

−−A a` A  p ∼2 n ∼1 A1 a` A1
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A1 ` A1cont
∗1A1 ` ∗1A1
∗1A1 ` ∼1 A1

N
N∗1 A1 ` N ∼1 A1
N∗1 A1 ` n ∼1 A1

∗2N
∗2NA1 ` n ∼1 A1adj∗

∗2n ∼1 A1 ` NA1
∼2 n ∼1 A1 ` NA1adj

P ∼2 n ∼1 A1 ` A1
p ∼2 n ∼1 A1 ` A1

A1 ` A1cont
∗1A1 ` ∗1A1
∼1 A1 ` ∗1A1

N
N ∼1 A1 ` N∗1 A1
n ∼1 A1 ` N∗1 A1

∗2N
n ∼1 A1 ` ∗2NA1 adj∗

NA1 ` ∗2n ∼1 A1
NA1 ` ∼2 n ∼1 A1 adj

A1 ` P ∼2 n ∼1 A1
A1 ` p ∼2 n ∼1 A1

−¬A a` ¬−A  p ∼2 n A1 a` pn ∼1 A1

A1 ` A1 cont
∗1 A1 ` ∗1 A1
∗1 A1 ` ∼1 A1

*
∗1 ∼1 A1 ` A1

N
N∗1 ∼1 A1 ` N A1
N∗1 ∼1 A1 ` n A1

∗2N
∗2 N ∼1 A1 ` n A1adj∗
∗2 n A1 ` N ∼1 A1
∼2 n A1 ` N ∼1 A1
∼2 n A1 ` n ∼1 A1

P
P ∼2 n A1 ` Pn ∼1 A1
P ∼2 n A1 ` pn ∼1 A1

p ∼2 n A1 ` pn ∼1 A1

A1 ` A1 cont
∗1 A1 ` ∗1 A1
∼1 A1 ` ∗1 A1 adj∗

A1 ` ∗1 ∼1 A1
N

N A1 ` N∗1 ∼1 A1
n A1 ` N∗1 ∼1 A1

∗2N
n A1 ` ∗2 N ∼1 A1 adj∗

N ∼1 A1 ` ∗2 n A1
n ∼1 A1 ` ∗2 n A1
n ∼1 A1 ` ∼2 n A1

P
Pn ∼1 A1 ` P ∼2 n A1
Pn ∼1 A1 ` p ∼2 n A1

pn ∼1 A1 ` p ∼2 n A1

¬A∧¬B a` ¬(A∨B)  p A2u1 p B2 a` p(A2u2 B2) and
¬A⊗¬B a` ¬(A⊗B)  p A2u1 p B2 a` p(A2u2 B2)

A2 ` A2
P

P A2 ` P A2
p A2 ` P A2

W
p A2 û1 p B2 ` P A2

p A2u1 p B2 ` P A2 adj
N(p A2u1 p B2) ` A2

B2 ` B2
P

P B2 ` P B2
p B2 ` PB2

W
p B2 û1 p A2 ` P B2

E
p A2 û1 p B2 ` P B2

p A2u1 p B2 ` P B2 adj
N(p A2u1 p B2) ` B2

N(p A2u1 p B2) û2 N(p A2u1 p B2) ` A2u2 B2
C

N(p A2u1 p B2) ` A2u2 B2 adj
p A2u1 p B2 ` P(A2u2 B2)
p A2u1 p B2 ` p(A2u2 B2)

A2 ` A2
W

A2 û2 B2 ` A2
A2u2 B2 ` A2

P
P(A2u2 B2) ` P A2
P(A2u2 B2) ` p A2

p(A2u2 B2) ` p A2

B2 ` B2
W

B2 û2 A2 ` B2
E

A2 û2 B2 ` B2
A2u2 B2 ` B2

P
P(A2u2 B2) ` P B2
P(A2u2 B2) ` p B2

p(A2u2 B2) ` p B2

p(A2u2 B2) û1 p(A2u2 B2) ` p A2u1 p B2
C

p(A2u2 B2) ` p A2u1 p B2

¬(A∧B) a` ¬A∨¬B  p(A2t2 B2) a` p A2t1 p B2 and
¬(A⊕B) a` ¬A⊕¬B  p(A2t2 B2) a` p A2t1 p B2
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A2 ` A2
P

P A2 ` P A2
P A2 ` p A2

W
P A2 ` p A2 ť1 p B2adj

A2 ` N(p A2 ť1 p B2)

B2 ` B2
P

P B2 ` P B2
P B2 ` p B2

W
P B2 ` p B2 ť1 p A2

E
P B2 ` p A2 ť1 p B2adj

B2 ` N(p A2 ť1 p B2)
A2t2 B2 ` N(p A2 ť1 p B2) ť1 N(p A2 ť1 p B2)

C
A2t2 B2 ` N(p A2 ť1 p B2)

adj
P(A2t2 B2) ` p A2 ť1 p B2

p(A2t2 B2) ` p A2 ť1 p B2

p(A2t2 B2) ` p A2t1 p B2

A2 ` A2
P

P A2 ` P A2
p A2 ` P A2 adj

Np A2 ` A2
W

Np A2 ` A2 ť2 B2

Np A2 ` A2t2 B2 adj
p A2 ` P(A2t2 B2)
p A2 ` p(A2t2 B2)

B2 ` B2
P

P B2 ` P B2
p B2 ` P B2 adj

NpB2 ` B2
W

Np B2 ` B2 ť2 A2
E

Np B2 ` A2 ť2 B2

Np B2 ` A2t2 B2 adj
p B2 ` P(A2t2 B2)
p B2 ` p(A2t2 B2)

p A2t1 p B2 ` p(A2t2 B2) ť1 p(A2t2 B2)
C

p A2t1 p B2 ` p(A2t2 B2)

−(A∧B) a` −A∧−B  p ∼2 (A2t2 B2) a` p ∼2 A2u1 p ∼2 B2

A2 ` A2
W

A2 ` A2 ť2 B2
A2 ` A2t2 B2cont

∗2 (A2t2 B2) ` ∗2 A2

∗2 (A2t2 B2) ` ∼2 A2

∼2 (A2t2 B2) ` ∼2 A2
P

P ∼2 (A2t2 B2) ` P ∼2 A2

P ∼2 (A2t2 B2) ` p ∼2 A2

p ∼2 (A2t2 B2) ` p ∼2 A2

B2 ` B2
W

B2 ` B2 ť2 A2
E

B2 ` A2 ť2 B2
B2 ` A2t2 B2cont

∗2 (A2t2 B2) ` ∗2 B2

∗2 (A2t2 B2) ` ∼2 B2

∼2 (A2t2 B2) ` ∼2 B2
P

P ∼2 (A2t2 B2) ` P ∼2 B2

P ∼2 (A2t2 B2) ` p ∼2 B2

p ∼2 (A2t2 B2) ` p ∼2 B2

p ∼2 (A2t2 B2) û1 p ∼2 (A2t2 B2) ` p ∼2 A2u1 p ∼2 B2
C

p ∼2 (A2t2 B2) ` p ∼2 A2u1 p ∼2 B2

A2 ` A2 cont
∗2 A2 ` ∗2 A2
∼2 A2 ` ∗2 A2

P
P ∼2 A2 ` P∗2 A2
p ∼2 A2 ` P∗2 A2

W
p ∼2 A2 û1 p ∼2 B2 ` P∗2 A2 adj

N(p ∼2 A2 û1 p ∼2 B2) ` ∗2 A2 adj*
B2 ` ∗2 N(p ∼2 A2 û1 p ∼2 A2)

B2 ` B2 cont
∗2 B2 ` ∗2 B2
∼2 B2 ` ∗2 B2

P
P ∼2 B2 ` P∗2 B2
p ∼2 B2 ` P∗2 B2

W
p ∼2 B2 û1 p ∼2 A2 ` P∗2 B2

E
p ∼2 A2 û1 p ∼2 B2 ` P∗2 B2 adj

N(p ∼2 A2 û1 p ∼2 B2) ` ∗2 B2 adj*
B2 ` ∗2 N(p ∼2 A2 û1 p ∼2 B2)

A2t2 B2 ` ∗2 N(p ∼2 A2 û1 p ∼2 B2) ť2 ∗2 N(p ∼2 A2 û1 p ∼2 B2)
C

A2t2 B2 ` ∗2 N(p ∼2 A2 û1 p ∼2 B2)
adj*

N(p ∼2 A2 û1 p ∼2 B2) ` ∗2 (A2t2 B2)
N(p ∼2 A2 û1 p ∼2 B2) ` ∼2 (A2t2 B2)

adj
p ∼2 A2 û1 p ∼2 B2 ` P ∼2 (A2t2 B2)
p ∼2 A2 û1 p ∼2 B2 ` p ∼2 (A2t2 B2)

C
p ∼2 A2u1 p ∼2 B2 ` p ∼2 (A2t2 B2)
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−(A⊗B) a` −A⊕−B  p ∼2 (A2u2 B2) a` p ∼2 A2t1 p ∼2 B2

A2 ` A2cont
∗2 A2 ` ∗2 A2
∗2 A2 ` ∼2 A2

P
P∗2 A2 ` P ∼2 A2
P∗2 A2 ` p ∼2 A2

W
P∗2 A2 ` p ∼2 A2 ť1 p ∼2 B2

P∗2 A2 ` p ∼2 A2t1 p ∼2 B2adj
∗2A2 ` N(p ∼2 A2t1 p ∼2 B2)

adj∗
∗2N(p ∼2 A2t1 p ∼2 B2) ` A2

B2 ` B2cont
∗2 B2 ` ∗2 B2
∗2 B2 ` ∼2 B2

P
P∗2 B2 ` P ∼2 B2
P∗2 B2 ` p ∼2 B2

W
P∗2 B2 ` p ∼2 B2 ť1 p ∼2 A2

E
P∗2 B2 ` p ∼2 A2 ť1 p ∼2 B2

P∗2 B2 ` p ∼2 A2t1 p ∼2 B2adj
∗2 B2 ` N(p ∼2 A2t1 p ∼2 B2)

adj∗
∗2 N(p ∼2 A2t1 p ∼2 B2) ` B2

∗2 N(p ∼2 A2t1 p ∼2 B2) û2 ∗2 N(p ∼2 A2t1 p ∼2 B2) ` A2u2 B2
C

∗2 N(p ∼2 A2t1 p ∼2 B2) ` A2u2 B2adj∗
∗2 (A2u2 B2) ` N(p ∼2 A2t1 p ∼2 B2)
∼2 (A2u2 B2) ` N(p ∼2 A2t1 p ∼2 B2)

adj
P ∼2 (A2u2 B2) ` p ∼2 A2t1 p ∼2 B2

p ∼2 (A2u2 B2) ` p ∼2 A2t1 p ∼2 B2

A2 ` A2cont
∗2 A2 ` ∗2 A2
∼2 A2 ` ∗2 A2

P
P ∼2 A2 ` P∗2 A2
p ∼2 A2 ` P∗2 A2 adj

Np ∼2 A2 ` ∗2 A2 adj∗
A2 ` ∗2 Np ∼2 A2

W
A2 û2 B2 ` ∗2 Np ∼2 A2

A2u2 B2 ` ∗2 Np ∼2 A2 adj∗
Np ∼2 A2 ` ∗2 (A2u2 B2)
Np ∼2 A2 ` ∼2 (A2u2 B2)

adj
p ∼2 A2 ` P ∼2 (A2u2 B2)
p ∼2 A2 ` p ∼2 (A2u2 B2)

B2 ` B2cont
∗2 B2 ` ∗2 B2
∼2 B2 ` ∗2 B2

P
P ∼2 B2 ` P∗2 B2
p ∼2 B2 ` P∗2 B2 adj

Np ∼2 B2 ` ∗2 B2 adj∗
B2 ` ∗2 Np ∼2 B2

W
B2 û2 A2 ` ∗2 Np ∼2 B2

E
A2 û2 B2 ` ∗2 Np ∼2 B2

A2u2 B2 ` ∗2 Np ∼2 B2 adj∗
Np ∼2 B2 ` ∗2 (A2u2 B2)
Np ∼2 B2 ` ∼2 (A2u2 B2)

adj
p ∼2 B2 ` P ∼2 (A2u2 B2)
p ∼2 B2 ` p ∼2 (A2u2 B2)

p ∼2 A2t1 p ∼2 B2 ` p ∼2 (A2u2 B2) ť1 p ∼2 (A2u2 B2)
C

p ∼2 A2t1 p ∼2 B2 ` p ∼2 (A2u2 B2)

�

Conservativity

To argue that the calculus introduced in Section 5 is conservative w.r.t. BL (resp. CBL), we follow
the standard proof strategy discussed in [29, 27]. Denote by `BL (resp. `CBL) the consequence rela-
tion defined by the calculus for BL (resp. CBL) introduced in Section 2, and by |=HBL (resp. |=HCBL)
the semantic consequence relation arising from the class of (perfect) HBLs (resp. HCBLs). We
need to show that, for all formulas A and B of the original language of BL (resp. CBL), if t1(A) `
t1(B) is a D.BL-derivable (resp. D.CBL-derivable) sequent, then A `BL B (resp. A `CBL B). This
can be proved using the following facts: (a) the rules of D.BL (resp. D.CBL) are sound w.r.t. per-
fect HBLs (resp. HCBLs); (b) BL (resp. CBL) is complete w.r.t. B (resp. CB); and (c) B (resp. CB)
are equivalently presented as HBL (resp. HCBL, cf. Section 3), so that the semantic consequence
relations arising from each type of structures preserve and reflect the translation (cf. Propositions
6.1 and 6.2). Let then A,B be formulas of the original language of BL (resp. CBL). If t1(A) ` t1(B)
is a D.BL (resp. D.CBL)-derivable sequent, then, by (a), t1(A) |=HBL t1(B) (resp. t1(A) |=HCBL t1(B)).
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By (c) and Proposition 4.1, this implies that A |=B B (resp. A |=CB B). By (b), this implies that
A `BL B (resp. A `CBL B), as required.

Subformula property and cut elimination

Let us briefly sketch the proof of cut elimination and subformula property for D.BL (resp. D.CBL).
As discussed earlier on, proper display calculi have been designed so that the cut elimination and
subformula property can be inferred from a meta-theorem, following the strategy introduced by
Belnap for display calculi [6]. The meta-theorem to which we will appeal for D.BL (resp. D.CBL)
was proved in [19].

All conditions in [19, Theorem 4.1] except C′8 are readily seen to be satisfied by inspection of
the rules. Condition C′8 requires to check that reduction steps are available for every application
of the cut rule in which both cut-formulas are principal, which either remove the original cut
altogether or replace it by one or more cuts on formulas of strictly lower complexity. In what
follows, we only show C′8 for the unary connectives ∼ and n (the proof for p is analogous). The
cases of lattice connectives are standard and hence omitted.

Li-type connectives

... π1

Xi ` ∗i Ai
Xi ` ∼i Ai

... π2

∗i Ai ` Yi
∼i Ai ` Yi

Xi ` Yi  

... π2

∗i Ai ` Yi
∗i Yi ` Ai

... π1

Xi ` ∗i Ai
Ai ` ∗i Xi

∗i Yi ` ∗i Xicont
Xi ` Yi

Multi-type connectives

... π1

X2 ` NA1
X2 ` nA1

... π2

NA1 ` Y2
nA1 ` Y2

X2 ` Y2  

... π1

X2 ` NA1
PX2 ` A1

... π2

NA1 ` Y2
A1 ` PY2

PX2 ` PY2
P

X2 ` Y2

7 Conclusions and future work

The modular character of proper multi-type display calculi makes it possible to easily extend
our formalism so as to capture axiomatic extensions (e.g. the logic of classical bilattices with
conflation [1, Definition 2.11]) as well as language expansions of the basic bilattice logics treated
in the present paper. Expansions of bilattice logic have been extensively studied in the literature
as early as in [1], which introduces an implication enjoying the deduction-detachment theorem
(see also [10]). More recently, modal operators have been added to bilattice logics, motivated
by potential applications to computer science and in particular verification of programs [33, 36];
as well as dynamic modalities, motivated by applications in the area of dynamic epistemic logic
[34, 35].

Yet more recently, bilattices with a negation not necessarily satisfying the involution law
(¬¬a = a) have been introduced with motivations of domain theory and topological duality (see
[32]), and the study of the corresponding logics has been started [37]. These logics are weaker
than the one considered in the present paper, and so adapting our display calculus formalism to
them might prove a more challenging task (in particular, the translations introduced in Section 6
may need to be redefined, as they rely on the maps p and n being lattice isomorphisms, which is
no longer true in the non-involutive case).
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