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Abstract
Aquantum computer needs the assistance of a classical algorithm to detect and identify errors that
affect encoded quantum information. At this interface of classical and quantum computing the
technique ofmachine learning has appeared as away to tailor such an algorithm to the specific error
processes of an experiment—without the need for a priori knowledge of the errormodel. Here, we
apply this technique to topological color codes.We demonstrate that a recurrent neural networkwith
long short-termmemory cells can be trained to reduce the error rate òL of the encoded logical qubit to
valuesmuch below the error rate òphys of the physical qubits—fitting the expected power law scaling

 µ +( )d
L phys

1 2, with d the code distance. The neural network incorporates the information from ‘flag

qubits’ to avoid reduction in the effective code distance caused by the circuit. As a test, we apply the
neural network decoder to a density-matrix based simulation of a superconducting quantum
computer, demonstrating that the logical qubit has a longer life-time than the constituting physical
qubits with near-term experimental parameters.

1. Introduction

In fault-tolerant quantum informationprocessing, a topological code stores the logical qubits nonlocally ona lattice
of physical qubits, therebyprotecting thedata from local sources of noise [1, 2]. To ensure that this protection is not
spoiledby logical gate operations, they should act locally.A gatewhere the jth qubit in a codeblock interacts onlywith
the jth qubit of another block is called ‘transversal’ [3]. Transversal gates are desirable bothbecause theydonot
propagate errorswithin a codeblock, andbecause they canbe implemented efficiently byparallel operations.

Two families of two-dimensional topological codeshave been extensively investigated, surface codes [4–7] and
color codes [8, 9]. The two families are related: a color code is equivalent tomultiple surface codes, entangledusing a
local unitary operation [10, 11] that amounts to a code concatenation [12]. There are significantdifferences between
these two code families in termsof their practical implementation.On theonehand, the surface codehas a favorably
high threshold error rate for fault tolerance, but onlyCNOT,X, andZ gates canbeperformed transversally [13].On
theother hand,while the color codehas a smaller threshold error rate than the surface code [14, 15], it allows for the
transversal implementationof the fullClifford groupof quantumgates (withHadamard,π/4phase gate, andCNOT

gate as generators) [16, 17].While this is not yet computationally universal, it canbe rendereduniversal using gate
teleportation [18] andmagic state distillation [19].Moreover, color codes areparticularly suitable for topological
quantumcomputationwithMajoranaqubits, sincehigh-fidelityClifford gates are accessible by braiding [20, 21].

A drawback of color codes is that quantum error correction ismore complicated than for surface codes. The
identification of errors in a surface code (the ‘decoding’ problem) can bemapped onto amatching problem in a
graph [22], for which there exists an efficient solution called the ‘blossom’ algorithm [23]. This graph-theoretic
approach does not carry over to color codes,motivating the search for decoders with performance comparable
to the blossomdecoder, some ofwhich use alternate graph-theoretic constructions [24–28].
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An additional complication of color codes is that the parity checks are prone to ‘hook’ errors, where single-
qubit errors on the ancilla qubits propagate to higherweight errors on data qubits, reducing the effective
distance of the code. There existmethods due to Shor [29], Steane [30], andKnill [31] tomitigate this, but these
error correctionmethods comewithmuch overhead because of the need for additional circuitry. An alternative
schemewith reduced overhead uses dedicated ancillas (‘flag qubits’) to signal the hook errors [32–36].

Here we show that a neural network can be trained to fault-tolerantly decode a color codewith high
efficiency, using onlymeasurable data as input. No a priori knowledge of the errormodel is required.Machine
learning approaches have been previously shown to be successful for the families of surface and toric codes
[37–41], and applications to color codes are nowbeing investigated [42–44].We adapt the recurrent neural
network of [39] to decode color codes with distances up to 7, fully incorporating the information from flag
qubits. A test on a densitymatrix-based simulator of a superconducting quantum computer [45] shows that the
performance of the decoder is close to optimal, andwould surpass the quantummemory threshold under
realistic experimental conditions.

2.Description of the problem

2.1. Color code
The color code belongs to the class of stabilizer codes [46], which operate by the following general scheme.We
denote by I,X,Y,Z the Paulimatrices on a single qubit and byΠn={I,X,Y,Z}⊗n the Pauli group on n qubits.
A set of k logical qubits is encoded as a 2k-dimensional Hilbert spaceL across nnoisy physical qubits (with
2n-dimensionalHilbert spaceP). The logical Hilbert space is stabilized by the repeatedmeasurement of n−k
parity checks Î PSi

n that generate the stabilizer  ( )L , defined as

    y y y= Î ñ = ñ" ñ Î( ) { ( ) ∣ ∣ ∣ } ( )S S, , 1L P L L L L

where  ( )P is the algebra of bounded operators on the physicalHilbert space.
As errors accumulate in the physical hardware, an initial state y = ñ∣ ( )t 0L may rotate out ofL.

Measurement of the stabilizers discretizes this rotation, either projecting y ñ∣ ( )tL back intoL, or into an error-

detected subspace ( )s t . The syndrome Î - ( )s t n k
2 is determined by themeasurement of the parity checks:

 = - ( )( )
( )

( )S 1i s t
s t

s t
i . It is the job of a classical decoder to interpret themultiple syndrome cycles and

determine a correction thatmaps  ( ) ;s t L such decoding is successful when the combined action of error
accumulation and correction leaves the systemunperturbed.

This job can be split into a computationally easy task of determining a unitary thatmaps  ( )s t L (a so
called ‘pure error’ [47]), and a computationally difficult task of determining a logical operationwithinL to
undo any unwanted logical errors. The former task (known as ‘excitation removal’ [44]) can be performed by a
‘simple decoder’ [38]. The latter task is reduced, within the stabilizer formalism, to determining atmost two
parity bits per logical qubit, which is equivalent to determining the logical parity of the qubit uponmeasurement
at time t [39].

We implement the color code [8, 9] on an hexagonal lattice inside a triangle, see figure 1. (This is the 6, 6, 6
color code of [15].)One logical qubit is encoded bymapping vertices v to data qubits qv, and tilesT to the
stabilizers  = =

Î Î
X X Z Z,T v T v T v T v . The simultaneous+1 eigenstate of all the stabilizers (the ‘code

space’) is twofold degenerate [17], so it can be used to define a logical qubit. As logical Z operatorwe choose ÄZ n.

Figure 1. Schematic layout of the distance-5 triangular color code. A hexagonal lattice inside an equilateral triangle encodes one logical
qubit in 19 data qubits (one at each vertex). The code is stabilized by six-foldX andZ parity checks on the corners of each hexagon in
the interior of the triangle, and four-fold parity checks on the boundary. For the parity checks, the data qubits are entangledwith a pair

of ancilla qubits inside each tile, resulting in a total of -d3 1

2

2
qubits used to realize a distance-d code. Pauli operators on the logical

qubit can be performed along any side of the triangle, single-qubit Clifford operations can be applied transversally, and two-qubit
joint Paulimeasurements can be performed through lattice surgery to logical qubits on adjacent triangles.
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The number of data qubits that encode one logical qubit is ndata=7, 19, or 37 for a codewith distance d=3, 5,
or 7, respectively. (For any odd integer d, a distance-d code can correct (d−1)/2 errors.)Note that ndata is less
than d2, being the number of data qubits used in a surface codewith the same d [7].

AnX error on a data qubit switches the parity of the surroundingZT stabilizers, and similarly aZ error
switches the parity of the surroundingXT stabilizers. These parity switches are collected in the binary vector of
syndrome increments d

 ( )s t 5, such that d =s 1i signals some errors on the qubits surrounding ancilla i. The
syndrome increments themselves are sufficient for a classical decoder to infer the errors on the physical data
qubits. Parity checks are performed by entangling ancilla qubits at the center of each tile with the data qubits
around the border, and thenmeasuring the ancilla qubits (see appendix A for the quantum circuit).

2.2. Errormodel
Weconsider two types of circuit-level noisemodels, both of which incorporate flag qubits to signal hook errors.
Firstly, a simple Pauli errormodel allows us to develop and test the codes up to distance d=7. (For larger d the
training of the neural network becomes computationally too expensive.) Secondly, the d=3 code is applied to a
realistic density-matrix errormodel derived for superconducting qubits.

In the Pauli errormodel, one error correction cycle of duration =t N tcycle 0 step consists of a sequence of
=N 200 steps of duration tstep, inwhich a particular qubit is left idle,measured, or acted uponwith a single-

qubit rotation gate or a two-qubit conditional-phase gate. Before the first cycle we prepare all the qubits in an
initial state, andwe reset the ancilla qubits after eachmeasurement. Similarly to [6], we allow for an error to
appear at each step of the circuit and during the preparation, including the reset of the ancilla qubits, with
probability perror. For the preparation errors, idle errors, or rotation errors we introduce the possibility of anX,
Y, orZ error with probability perror/3.Uponmeasurement, we record thewrong result with probability perror.
Finally, after the conditional-phase gate we applywith probability perror/15 one of the following two-qubit
errors: I⊗P,P⊗I, P⊗Q, withP,Qä{X,Y,Z}.We assume that perror= 1 and that all errors are independent,
so thatwe can identify perror≡òphys with the physical error rate per step.

The densitymatrix simulation uses the quantumsim simulator of [45].We adopt the experimental
parameters from thatwork, which are realistic for state-of-the-art superconducting transmon qubits. In the
density-matrix errormodel the qubits are not reset between cycles of error correction. Because of this, parity
checks are determined by the difference between subsequent cycles of ancillameasurement. This errormodel
cannot be parametrized by a single error rate, and insteadwe compare to the decay rate of a resting, unencoded
superconducting qubit.

2.3. Fault-tolerance
The objective of quantum error correction is to arrive at a error rate òL of the encoded logical qubit that ismuch
smaller than the error rate òphys of the constituting physical qubits. If error propagation through the syndrome
measurement circuit is limited, and a ‘good’ decoder is used, the logical error rate should exhibit the power law
scaling [6]

 = + ( )( )C , 2d
d

L phys
1 2

withCd a prefactor that depends on the distance d of the code but not on the physical error rate. The so-called
‘pseudothreshold’ [48] 6,

 =
-

( )( )C

1
3

d
dpseudo 2 1

is the physical error rate belowwhich the logical qubit can store information for a longer time than a single
physical qubit.

2.4. Flag qubits
During themeasurement of aweight-w parity checkwith a single ancilla qubit, an error on the ancilla qubitmay
propagate to asmany asw/2 errors on data qubits. This reduces the effective distance of the code in equation (2).
The surface code can bemade resilient to such hook errors, but the color code cannot:Hook errors reduce the
effective distance of the color code by a factor of two.

To avoid this degradation of the code distance, we take a similar approach to [32–36] by adding a small
number of additional ancilla qubits, so called ‘flag qubits’, to detect hook errors. For our chosen color codewith

5
The syndrome increment is usually d º - -

  ( ) ( ) ( )s t s t s t 1 mod 2.When ancilla qubits are not reset betweenQEC cycles, we use a
somewhat different definition, see appendix A.2 for details.
6
The quantity òpseudo defined in equation (3) is called a pseudo-threshold because it is d-dependent. In the limit  ¥d it converges to the

true threshold.
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weight-6 parity checks, we opt to use oneflag qubit for each ancilla qubit used tomake a stabilizermeasurement.
(This is amuch reduced overhead in comparison to alternative approaches [29–31].) Flag and ancilla qubits are
entangled duringmeasurement and read out simultaneously (circuits given in appendix A). Our scheme is not
a priori fault-tolerant, as previous work has required at least (d−1)/2flag qubits per stabilizer. Instead, we rely
onfitting our numeric results to equation (2)with dfixed to the code distance to demonstrate that our scheme is
in fact fault tolerant.

3.Neural network decoder

3.1. Learningmechanism
Artificial neural networks are function approximators. They span a function space that is parametrized by
variables calledweights and biases. The task of learning corresponds tofinding a function in this function space
that is close to the unknown function represented by the training data. To do this, onefirst defines ameasure for
the distance between functions and then uses an optimization algorithm to search the function space for a local
minimumwith respect to thismeasure. Finding the globalminimum is in general not guaranteed, but
empirically it turns out that often localminima are good approximations. For a comprehensive review see for
example [49, 50].

We use a specific class of neural networks known as recurrent neural networks, where the ‘function’ can
represent an algorithm [51]. During optimization theweights and biases are adjusted such that the resulting
algorithm is close to the algorithm represented by the training data.

3.2.Decoding algorithm
Consider a logical qubit, prepared in an arbitrary logical state y ñ∣ L , kept for a certain timeT, and thenmeasured
with outcomemä{−1, 1} in the logicalZ-basis. Uponmeasurement, phase information is lost. Hence, the
only information needed in addition tom is the parity of bitflips in themeasurement basis. (A separate decoder
is invoked for eachmeasurement basis.) If the bit flip parity is odd, we correct the error by negatingma−m.
The task of decoding amounts to the estimation of the probability p that the logical qubit has had an odd number
of bitflips.

The experimentally accessible data for this estimation consists ofmeasurements of ancilla and flag qubits,
contained in the vectors d

 ( )s t and
 ( )s tflag of syndrome increments and flagmeasurements, and, at the end of the

experiment, the readout of the data qubits. From this data qubit readout afinal syndrome increment vector

d


( )f T can be calculated. Depending on themeasurement basis, it will only contain theX or theZ stabilizers.
Additionally, we also need to know the true bitflip parity ptrue. To obtain this we initialize the logical qubit at

y ñ º ñ∣ ∣0L (y ñ º ñ∣ ∣1L would be an equivalent choice) and then compare the finalmeasured logical state to this
initial logical state to obtain the true bitflip parity ptrueä {0, 1}.

An efficient decodermust be able to decode an arbitrary and unspecified number of error correction cycles.
As a feedforward neural network requires afixed input size, it is impractical to train such a neural network to
decode the entire syndrome data in a single step, as this would require a newnetwork (and new training data) for
every experiment with a different number of cycles. Instead, a neural network for quantum error correction
must be cycle-based: itmust be able to parse repeated input of small pieces of data (e.g. syndrome data from a
single cycle) until called upon by the user to provide output. Importantly, this requires the decoder to be
translationally invariant in time: itmust decode late rounds of syndrome data just as well as the early rounds. To
achieve this, we follow [39] and use a recurrent neural network of long short-termmemory (LSTM) layers [52]—
with one significantmodification, whichwe nowdescribe.

The time-translation invariance of the error propagation holds for the ancilla qubits, but it is broken by the
finalmeasurement of the data qubits—since any error in these qubits will not propagate forward in time. To
extract the time-translation invariant part of the training data, in [39] two separate networks were trained in
parallel, onewith and onewithout thefinalmeasurement input.Here, we instead use a single networkwith two
heads, as illustrated infigure 2. The upper head sees only the translationally invariant data, while the lower head
solves the full decoding problem. In appendix Bwe describe the details of the implementation.

The switch from two parallel networks to a single networkwith two heads offers several advantages: (1) the
number of LSTM layers and the computational cost is cut in half; (2) the network can be trained on a single large
error rate, then used for smaller error rates without retraining; (3) the bitflip probability from the upper head
provides a so-called Pauli frame decoder [2].

In the training stage the bit flip probabilities ¢p and pä [0, 1] from the upper and lower head are compared
with the true bitflip parity ptrueä{0, 1}. By adjusting theweights of the network connections a cost function is
minimized in order to bring ¢p p, close to ptrue.We carry out thismachine learning procedure using the
TensorFlow library [53].

4
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After the training of the neural network has been completedwe test the decoder on a fresh dataset. Only the
lower head is active during the testing stage. If the output probability p<0.5, the parity of bit flip errors is
predicted to be even and otherwise odd.We then compare this to ptrue and average over the test dataset to obtain
the logicalfidelity ( )t . Using a two-parameter fit to [45]

 = + - -( ) ( ) ( )( )t 1 2 , 4t t t1

2

1

2 L
0 step

wedetermine the logical error rate òL per step of the decoder.

4.Neural network performance

4.1. Power law scaling of the logical error rate
Results for the distance-3 color code are shown infigure 3 (with similar plots for distance-5 and distance-7 codes
in appendix C). These results demonstrate that the neural network decoder is able to decode a large number of
consecutive error correction cycles. The dashed lines arefits to equation (4), which allow us to extract the logical
error rate òL per step, for different physical error rates òphys per step.

Figure 4 shows that the neural network decoder follows a power law scaling (2)with dfixed to the code
distance. This shows that the decoder, once trained using a single error rate, operates equally efficiently when the
error rate is varied, and that ourflag error correction scheme is indeed fault-tolerant. The corresponding
pseudothresholds (3) are listed in table 1.

Figure 2.Architecture of the recurrent neural network decoder. After a body of recurrent layers the network branches into twoheads,
each ofwhich estimates the probability p or ¢p that the parity of bitflips at timeT is odd. The upper head does this solely based on
syndrome increments d


s andflagmeasurements


sflag from the ancilla qubits, while the lower head additionally gets the syndrome

increment d

f from thefinalmeasurement of the data qubits. During training both heads are active, during validation and testing only

the lower head is used.Ovals denote the two long short-termmemory (LSTM) layers and the fully connected evaluation layers, while

boxes denote input and output data. Solid arrows indicate dataflow in the system (with
 ( )
ht

1
and

 ( )
hT

2
the output of thefirst and second

LSTM layer), and dashed arrows indicate the internalmemory flowof the LSTM layers.

Figure 3.Decay of the logical fidelity for a distance-3 color code. The curves correspond to different physical error rates òphys per step,
from top to bottom: 1.6 × 10−5, 2.5 × 10−5, 4.0×10−5, 6.3×10−5, 1.0×10−4, 1.6×10−4, 2.5×10−4, 4.0×10−4, 6.3×10−4,
1.0×10−3, 1.6×10−3, 2.5×10−3. Each point is averaged over 103 samples. Error bars are obtained by bootstrapping. Dashed lines
are two-parameter fits to equation (4).
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4.2. Performance on realistic data
To assess the performance of the decoder in a realistic setting, we have implemented the distance-3 color code
using a densitymatrix based simulator of superconducting transmon qubits [45].We have then trained and
tested the neural network decoder on data from this simulation. Infigure 5we compare the decay of thefidelity
of the logical qubit as it results from the neural network decoder with the fidelity extracted from the simulation
[45]. The latterfidelity determines via equation (4) the logical error rate òoptimal of an optimal decoder. For the
distance-3 codewe find òL=0.0148 and òoptimal=0.0132 permicrosecond. This can be used to calculate the

Figure 4. In color: Log–log plot of the logical versus physical error rates per step, for distances d=3, 5, 7 of the color code. The dashed
line through the data points has the slope given by equation (2). Quality offit indicates that at least +⎢⎣ ⎥⎦( )d 11

2
independent physical

errorsmust occur in a round to generate a logical error in that round, so syndrome extraction is fault-tolerant. In gray: error rate of a
single physical (unencoded) qubit. The error rates at which this line intersects with the lines for the encoded qubits are the
pseudothresholds.

Figure 5. Same asfigure 3, but for a densitymatrix-based simulation of an array of superconducting transmon qubits. Each point is an
average over 104 samples. The densitymatrix-based simulation gives the performance of an optimal decoder, with a logical error rate
òoptimal=0.0132 permicrosecond. From this, and the error rate òL=0.0148 permicrosecond obtained by the neural network, we
calculate the neural network decoder efficiency to be 0.89. The averagefidelity of an unencoded transmon qubit at rest with the same
physical parameters is plotted in gray.

Table 1.Pseudothresholds calculated
from the data offigure 4, giving the
physical error rate belowwhich the
logical qubit can store information for a
longer time than a single physical qubit.

Distance d Pseudothreshold òpseudo

3 0.0034

5 0.0028

7 0.0023

6
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decoder efficiency [45] òoptimal/ òL=0.89, whichmeasures the performance of the neural network decoder
separate fromuncorrectable errors. The dashed gray line is the average fidelity (following equation (4)) of a
single physical qubit at rest, corresponding to an error rate of 0.0164 [45]. This demonstrates that, evenwith
realistic experimental parameters, a logical qubit encodedwith the color code has a longer life-time than a
physical qubit.

5. Conclusion

Wehave presented amachine-learning based approach to quantum error correction for the topological color
code.We believe that this approach to fault-tolerant quantum computation can be used efficiently in
experiments on near-term quantumdevices with relatively high physical error rates (so that the neural network
can be trainedwith relatively small datasets). In support of this, we have presented a densitymatrix simulation
[45] of superconducting transmon qubits (figure 5), wherewe obtain a decoder efficiency of ηd=0.89.

Independently of our investigation, three recent works have shown how a neural network can be applied to
color code decoding. References [42] and [44] only consider single rounds of error correction, and cannot be
extended to amulti-round experiment or circuit-level noise. References [43] uses the Steane andKnill error
correction schemeswhen considering color codes, which are also fault-tolerant against circuit-level noise, but
have larger physical qubit requirements than flag error correction. None of theseworks includes a test on a
simulation of physical hardware.
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AppendixA.Quantumcircuits

A.1. Circuits for the Pauli errormodel
Figure A1 shows the circuits for themeasurements of theX andZ stabilizers in the Pauli errormodel. To each
stabilizer,measuredwith the aid of an ancilla qubit, we associate a second ‘flag’ ancilla qubit with the task of
spotting faults of the first ancilla [32–36]. This avoids hook errors (errors that propagate from a single ancilla
qubit onto two data qubits), whichwould reduce the distance of the code. After themeasurement of theX
stabilizers, all the ancillas are reset to ñ∣0 and reused for themeasurement of theZ stabilizers. Before finally
measuring the data qubits, we allow the circuit to run forT cycles.

A.2.Measurement processing for the density-matrix errormodel
For the densitymatrix simulation, neither ancilla qubits norflag qubits are reset between cycles, leading to a
more involved extraction process of both d

 ( )s t and
 ( )s tflag , as we now explain.

Let
 ( )m t and

 ( )m tflag be the actual ancilla and flag qubitmeasurements taken in cycle t, and
 ( ) ( )m t m t,0

flag
0

be compensation vectors of ancilla and flagmeasurements that would have been observed had no errors
occurred in this cycle. Then,

d = +
  ( ) ( ) ( ) ( )s t m t m t mod 2, A10

= +
  ( ) ( ) ( ) ( )s t m t m t mod 2. A2flag flag flag

0

Calculation of the compensation vectors
 ( )m t0 and

 ( )m tflag
0 requires knowledge of the stabilizer -

 ( )s t 1 , and
the initialization of the ancilla qubits -

 ( )m t 1 and theflag qubits -
 ( )m t 1flag , being the combination of the

effects of individual non-zero terms in each of these.
Note that aflag qubit being initialized in ñ∣1 will cause errors to propagate onto nearby data qubits, but these

errors can be predicted and removed prior to decodingwith the neural network. In particular, let us concatenate
 ( ) ( )m t m t, flag and

 ( )s t to form a vector


( )d t . The updatemay then bewritten as amatrixmultiplication:

= -
 

( ) ( ) ( )m t M d t 1 mod 2, A3fflag
0

whereMfis a sparse, binarymatrix. The syndromes
 ( )s t may be updated in a similar fashion

d= - + + -
   

( ) ( ) ( ) ( ) ( )s t s t s t M d t1 1 mod 2, A4s
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whereMsis likewise sparse. BothMfandMsmay be constructed bymodeling the stabilizermeasurement circuit
in the absence of errors. The sparsity in bothmatrices reflect the connectivity between data and ancilla qubits; for
a topological code, bothMfandMs are local. The calculation of the syndrome increments d

 ( )s t via
equation (A1)does not require prior calculation of

 ( )s t .

Appendix B.Details of the neural network decoder

B.1. Architecture
The decoder7 consists of a double headed network, see figure 2, whichwe implement using theTensorFlow
library [53]. The networkmaps a list of syndrome increments d

 ( )s t andflagmeasurements
 ( )s tflag with

t/tcycle=1, 2, ...,T to a pair of probabilities ¢ Î [ ]p p, 0, 1 . (Inwhat followswemeasure time in units of the cycle
duration tcycle=N0tstep, withN0=20.)The lower head gets as additional input a singlefinal syndrome
increment d


( )f T . The cost function I that we seek tominimize by varying theweightmatrices w and bias

vectors

b of the network is the cross-entropy

= - - - -( ) ( ) ( ) ( )H p p p p p p, log 1 log 1 B11 2 1 2 1 2

between these output probabilities and the true final parity Î { }p 0, 1true of bit flip errors:

= + ¢ +( ) ( ) ∣∣ ∣∣ ( )wI H p p H p p c, , . B2true
1

2 true EVAL
2

The term ∣∣ ∣∣wc EVAL
2 with c= 1 is a regularizer, where Ìw wEVAL are theweights of the evaluation layers.

The body of the double headed network is a recurrent neural network, consisting of two LSTM layers
[52, 54, 55]. Each of the LSTM layers has two internal states, representing the long-termmemory Î

( )ct
i N and

the short-termmemory Î
 ( )
ht

i N , whereN=32, 64, 128 for distances d=3, 5, 7. Internally, an LSTM layer
consists of four simple neural networks that control how the short- and long-termmemory are updated based
on their current states and new input xt.Mathematically, it is described by the following equations [54, 55]:

s= + +-
   

( ) ( )w vi x h b a, B3t i t i t i1

Figure A1.Top left: Schematic of a 6-6-6 color codewith distance 3. Top right: Stabilizermeasurement circuits for a plaquette on the
boundary. Bottom left: Partial schematic of a 6-6-6 color codewith distance larger than 3. Bottom right: Stabilizermeasurement
circuits for a plaquette in the bulk. For the circuits in the right panels, the dashedHadamard gates are only present whenmeasuring the
X stabilizers, and are replaced by idling gates for theZ stabilizer circuits; the grayed out gates correspond to conditional-phase gates
between the considered data qubits and ancillas belonging to other plaquettes; and the data qubits are onlymeasured after the last
round of error correction, otherwise they idle whilst the ancillas aremeasured.

7
https://github.com/baireuther/neural_network_decoder.
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s= + +-
   

( ) ( )w vf x h b b, B3t f t f t f1

s= + +-
   

( ) ( )w vo x h b c, B3t o t o t o1

= + +-
   

( ) ( )w vm x h b dtanh , B3t m t m t m1

= +-
 

  
  ( )c f c i m eB3t t t t t1

=
   ( ) ( )h o c ftanh . B3t t t

Here w and v areweightmatrices,

b are bias vectors,σ is the sigmoid function, ande is the element-wise

product between two vectors. The letters i,m, f, and o label the four internal neural network gates: input, input
modulation, forget, and output. Thefirst LSTM layer gets the syndrome increments d

 ( )s t andflag

measurements
 ( )s tflag as input, and outputs its short termmemory states

 ( )
ht

1
. These states are in turn the input

to the second LSTM layer.
The heads of the network consist of a single layer of rectified linear units, whose outputs aremapped onto a

single probability using a sigmoid activation function. The input of the twoheads is the last short-termmemory

state of the second LSTM layer, subject to a rectified linear activation function


( )
( )

hReL T

2
. For the lower headwe

concatenate


( )
( )

hReL T

2
with the final syndrome increment d


( )f T .

B.2. Training and evaluation
Weuse three separate datasets for each code distance. The training dataset is used by the optimizer to optimize
the trainable variables of the network. It consists of 2×106 sequences of lengths betweenT=1 andT=40 at a
large error rate of p=10−3 for distances 3 and 5, and of 5×106 sequences for distance 7. At the end of each
sequence, it contains the final syndrome increment d


( )f T and thefinal parity of bitflip errors ptrue. After each

training epoch, consisting of 3000–5000mini-batches of size 64, we validate the network (using only the lower
head) on a validation dataset consisting of 103 sequences of 30 different lengths between 1 and 104 cycles. By
validating on sequencesmuch longer than the sequences in the training dataset, we select the instance of the
decoder that generalizes best to long sequences. The error rates of the validation datasets are chosen such that
they are the largest error rate for which the expected logicalfidelity after 104 cycles is still larger than 0.6 (see
figure B1), because if the logical fidelity approaches 0.5 ameaningful prediction is no longer possible. The error
rates of the validation datasets are 1×10−4, 2.5×10−4, 4×10−4 for distances 3, 5, 7 respectively. To avoid
unproductive fits during the early training stages, we calculate the logical error ratewith a single parameter fit to
equation (4) by setting t0=0 during validation. If the logical error rate reaches a newminimumon the
validation dataset, we store this instance of the network.

We stop the training after 103 epochs. One training epoch takes about oneminute for distance 3 (network
sizeN= 32)when training on sequences up to lengthT=20 and about twominutes for sequences up to length
T=40 on an Intel(R)Xeon(R)CPUE3-1270 v5@3.60 GHz. For distance 5 (N=64,T=1, 2, ..., 40) one
epoch takes aboutfiveminutes and for distance 7 (N=128,T=1, 2, ..., 40) about tenminutes.

To keep the computational effort of the data generation tractable, for the densitymatrix-based simulation
(figure 5)we only train on 106 sequences of lengths betweenT=1 andT=20 cycles and validate on 104

sequences of lengths betweenT=1 andT=30 cycles. For the densitymatrix-based simulation, all datasets
have the same error rate.

Figure B1. Same as figure 4. The blue ellipse indicates the error rates used during training, and the green ellipse indicates the error rates
used for validation.
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We train using the Adamoptimizer [56]with a learning rate of 10−3. To avoid over-fitting and reach a better
generalization of the network to unseen data, we employ two additional regularizationmethods: Dropout and
weight regularization. Dropoutwith a keep probability of 0.8 is applied to the output of each LSTM layer and to
the output of the hidden units of the evaluation layers.Weight regularization, with a prefactor of c=10−5, is
only applied to theweights of the evaluation layers, but not to the biases. The hyperparameters for training rate,
dropout, andweight regularizationwere taken from [39]. The network sizes were chosen by try and error to be as
small as possible without fine-tuning, restricted to powers of twoN=2n.

After training is complete we evaluate the decoder on a test dataset consisting of 103 (104 for the density
matrix-based simulation) sequences of lengths such that the logical fidelity decays to approximately 0.6, but
nomore thanT=104 cycles. Unlike for the training and validation datasets, when generating the test dataset
we sample a final syndrome increment and the corresponding final parity of bit flip errors after each cycle.We
then select the sequences with lengths tn=nΔT<Tmax from this data for evaluation, whereΔT is the
smallest integer for which the total number of points is less than 50. This is done in order to reduce the
needed computational resources. The logical error rate ò per step is determined by a fit of the fidelity to
equation (4).

B.3. Pauli frame updater
Weoperate the neural network as a bit-flip decoder, but we could have alternatively operated it as a Pauli frame
updater.We briefly discuss the connection between the twomodes of operation.

Generally, a decoder executes a classical algorithm that determines the operatorP(t)äΠn (the so-called Pauli
frame)which transforms y ñ∣ ( )tL back into the logical qubit space = L0 . Equivalently (withminimal
overhead), a decodermay keep track of logical parity bits


p that determinewhether the Pauli frame of a ‘simple

decoder’ [38] commutes with a set of chosen logical operators for each logical qubit.
The second approach of bit-flip decoding has two advantages over Pauli frame updates: Firstly, it removes

the gauge degree of freedomof the Pauli frame (SP(t) is an equivalent Pauli frame for any stabilizer S). Secondly,
the logical parity can bemeasured in an experiment, where no ‘true’Pauli frame exists (due to the gauge degree
of freedom).

Note that in the schemewhere flag qubits are usedwithout reset, the errors fromqubits initialized in ñ∣1 may
be removed by the simple decoderwithout any additional input required by the neural network.

AppendixC. Results for distance-5 and distance-7 codes

Figures C1 andC2 show the decay curves for the d=5 and d=7 color codes, similar to the d=3 decay curves
shown infigure 3 in themain text.

FigureC1. Same as figure 3 for a distance-5 code; the physical error rate òphys from top to bottom is: 1.0×10−4, 1.6×10−4,
2.5×10−4, 4.0×10−4, 6.3×10−4, 1.0×10−3, 1.6×10−3, 2.5×10−3.
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