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Abstract

A quantum computer needs the assistance of a classical algorithm to detect and identify errors that
affect encoded quantum information. At this interface of classical and quantum computing the
technique of machine learning has appeared as a way to tailor such an algorithm to the specific error
processes of an experiment—without the need for a priori knowledge of the error model. Here, we
apply this technique to topological color codes. We demonstrate that a recurrent neural network with
long short-term memory cells can be trained to reduce the error rate ¢, of the encoded logical qubit to

values much below the error rate e,y of the physical qubits—fitting the expected power law scaling
d+1)/2
phys
qubits’ to avoid reduction in the effective code distance caused by the circuit. As a test, we apply the
neural network decoder to a density-matrix based simulation of a superconducting quantum
computer, demonstrating that the logical qubit has a longer life-time than the constituting physical

qubits with near-term experimental parameters.

€L X € , with d the code distance. The neural network incorporates the information from ‘flag

1. Introduction

In fault-tolerant quantum information processing, a topological code stores the logical qubits nonlocally on a lattice
of physical qubits, thereby protecting the data from local sources of noise [ 1, 2]. To ensure that this protection is not
spoiled by logical gate operations, they should act locally. A gate where the jth qubit in a code block interacts only with
the jth qubit of another block is called ‘transversal’ [3]. Transversal gates are desirable both because they do not
propagate errors within a code block, and because they can be implemented efficiently by parallel operations.

Two families of two-dimensional topological codes have been extensively investigated, surface codes [4-7] and
color codes [8, 9]. The two families are related: a color code is equivalent to multiple surface codes, entangled using a
local unitary operation [10, 11] that amounts to a code concatenation [12]. There are significant differences between
these two code families in terms of their practical implementation. On the one hand, the surface code has a favorably
high threshold error rate for fault tolerance, but only CNOT, X, and Z gates can be performed transversally [13]. On
the other hand, while the color code has a smaller threshold error rate than the surface code [14, 15], it allows for the
transversal implementation of the full Clifford group of quantum gates (with Hadamard, /4 phase gate, and CNOT
gate as generators) [ 16, 17]. While this is not yet computationally universal, it can be rendered universal using gate
teleportation [ 18] and magic state distillation [ 19]. Moreover, color codes are particularly suitable for topological
quantum computation with Majorana qubits, since high-fidelity Clifford gates are accessible by braiding [20, 21].

A drawback of color codes is that quantum error correction is more complicated than for surface codes. The
identification of errors in a surface code (the ‘decoding’ problem) can be mapped onto a matching problemin a
graph [22], for which there exists an efficient solution called the ‘Dlossom’ algorithm [23]. This graph-theoretic
approach does not carry over to color codes, motivating the search for decoders with performance comparable
to the blossom decoder, some of which use alternate graph-theoretic constructions [24-28].

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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® data qubit
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Figure 1. Schematic layout of the distance-5 triangular color code. A hexagonal lattice inside an equilateral triangle encodes one logical
qubit in 19 data qubits (one at each vertex). The code is stabilized by six-fold X and Z parity checks on the corners of each hexagon in

the interior of the triangle, and four-fold parity checks on the boundary. For the parity checks, the data qubits are entangled with a pair
3d> -1

of ancilla qubits inside each tile, resulting in a total of qubits used to realize a distance-d code. Pauli operators on the logical
qubit can be performed along any side of the triangle, single-qubit Clifford operations can be applied transversally, and two-qubit
joint Pauli measurements can be performed through lattice surgery to logical qubits on adjacent triangles.

An additional complication of color codes is that the parity checks are prone to ‘hook’ errors, where single-
qubit errors on the ancilla qubits propagate to higher weight errors on data qubits, reducing the effective
distance of the code. There exist methods due to Shor [29], Steane [30], and Knill [31] to mitigate this, but these
error correction methods come with much overhead because of the need for additional circuitry. An alternative
scheme with reduced overhead uses dedicated ancillas (‘flag qubits’) to signal the hook errors [32-36].

Here we show that a neural network can be trained to fault-tolerantly decode a color code with high
efficiency, using only measurable data as input. No a priori knowledge of the error model is required. Machine
learning approaches have been previously shown to be successful for the families of surface and toric codes
[37-41], and applications to color codes are now being investigated [42—44]. We adapt the recurrent neural
network of [39] to decode color codes with distances up to 7, fully incorporating the information from flag
qubits. A test on a density matrix-based simulator of a superconducting quantum computer [45] shows that the
performance of the decoder is close to optimal, and would surpass the quantum memory threshold under
realistic experimental conditions.

2. Description of the problem

2.1.Color code

The color code belongs to the class of stabilizer codes [46], which operate by the following general scheme. We
denoteby [, X, Y, Z the Pauli matrices on a single qubitand by I1" = {[, X, Y, Z} @M the Pauli group on n qubits.
A set of klogical qubits is encoded as a 2%-dimensional Hilbert space H; across  noisy physical qubits (with
2"-dimensional Hilbert space Hp). The logical Hilbert space is stabilized by the repeated measurement of n — k
parity checks S; € I1" that generate the stabilizer S(H,), defined as

S(Hy) = {S € B(Hp), SlY1) = Ir)VIvr) € Hi}, (D

where B(Hp) is the algebra of bounded operators on the physical Hilbert space.

As errors accumulate in the physical hardware, an initial state [¢; (f = 0)) may rotate out of H; .
Measurement of the stabilizers discretizes this rotation, either projecting |¢; (¢)) back into Hy, or into an error-
detected subspace Hz ;). The syndrome 5’ (¢) € 7~ is determined by the measurement of the parity checks:
SiHsz ) = (— 1) Hz (. Itis the job of a classical decoder to interpret the multiple syndrome cycles and
determine a correction that maps Hx ;) — Hy; such decoding is successful when the combined action of error
accumulation and correction leaves the system unperturbed.

This job can be split into a computationally easy task of determining a unitary that maps Hs () — H; (aso
called ‘pure error’ [47]), and a computationally difficult task of determining a logical operation within H; to
undo any unwanted logical errors. The former task (known as ‘excitation removal’ [44]) can be performed by a
‘simple decoder’ [38]. The latter task is reduced, within the stabilizer formalism, to determining at most two
parity bits per logical qubit, which is equivalent to determining the logical parity of the qubit upon measurement
attime t[39].

We implement the color code [8, 9] on an hexagonal lattice inside a triangle, see figure 1. (This is the 6, 6, 6
color code of [15].) One logical qubit is encoded by mapping vertices v to data qubits g,, and tiles T'to the
stabilizers Xr = I_IVE r X Zr = Hve r Zv. The simultaneous +1 eigenstate of all the stabilizers (the ‘code
space’) is twofold degenerate [17], so it can be used to define alogical qubit. Aslogical Z operator we choose Z®".

2



10P Publishing

NewJ. Phys. 21(2019) 013003 P Baireuther et al

The number of data qubits that encode one logical qubitis #4,., = 7,19, or 37 for a code with distance d = 3,5,
or 7, respectively. (For any odd integer d, a distance-d code can correct (d — 1)/2 errors.) Note that 14, is less
than 42, being the number of data qubits used in a surface code with the same d [7].

An Xerror on a data qubit switches the parity of the surrounding Z stabilizers, and similarly a Z error
switches the parity of the surrounding X stabilizers. These parity switches are collected in the binary vector of
syndrome increments 65 (t)’, such that 8s; = 1 signals some errors on the qubits surrounding ancilla . The
syndrome increments themselves are sufficient for a classical decoder to infer the errors on the physical data
qubits. Parity checks are performed by entangling ancilla qubits at the center of each tile with the data qubits
around the border, and then measuring the ancilla qubits (see appendix A for the quantum circuit).

2.2. Error model

We consider two types of circuit-level noise models, both of which incorporate flag qubits to signal hook errors.
Firstly, a simple Pauli error model allows us to develop and test the codes up to distance d = 7. (For larger d the
training of the neural network becomes computationally too expensive.) Secondly, the d = 3 codeisappliedtoa
realistic density-matrix error model derived for superconducting qubits.

In the Pauli error model, one error correction cycle of duration fy. = Nty consists of a sequence of
Np = 20 steps of duration tp, in which a particular qubit is left idle, measured, or acted upon with a single-
qubit rotation gate or a two-qubit conditional-phase gate. Before the first cycle we prepare all the qubits in an
initial state, and we reset the ancilla qubits after each measurement. Similarly to [6], we allow for an error to
appear at each step of the circuit and during the preparation, including the reset of the ancilla qubits, with
probability p.,.o.. For the preparation errors, idle errors, or rotation errors we introduce the possibility of an X,
Y, or Z error with probability pe;,or/3. Upon measurement, we record the wrong result with probability pe,ro.-
Finally, after the conditional-phase gate we apply with probability pe,.../15 one of the following two-qubit
errors:I ® P,P ® I,P ® Q,with P, Qe{X, Y, Z}. Weassume that p....,, < 1 and that all errors are independent,
so that we can identify perror = €pnys With the physical error rate per step.

The density matrix simulation uses the quantumsim simulator of [45]. We adopt the experimental
parameters from that work, which are realistic for state-of-the-art superconducting transmon qubits. In the
density-matrix error model the qubits are not reset between cycles of error correction. Because of this, parity
checks are determined by the difference between subsequent cycles of ancilla measurement. This error model
cannot be parametrized by a single error rate, and instead we compare to the decay rate of a resting, unencoded
superconducting qubit.

2.3. Fault-tolerance

The objective of quantum error correction is to arrive at a error rate € of the encoded logical qubit that is much
smaller than the error rate €,y of the constituting physical qubits. If error propagation through the syndrome
measurement circuit is limited, and a ‘good’ decoder is used, the logical error rate should exhibit the power law
scaling [6]

d+1)/2 (2)

e, = Cy € phys |

with C;a prefactor that depends on the distance d of the code but not on the physical error rate. The so-called
‘pseudothreshold’ [48] °,

1
€pseudo — 2/d-n 3)
Cd

is the physical error rate below which the logical qubit can store information for a longer time than a single
physical qubit.

2.4.Flag qubits
During the measurement of a weight-w parity check with a single ancilla qubit, an error on the ancilla qubit may
propagate to as many as w/2 errors on data qubits. This reduces the effective distance of the code in equation (2).
The surface code can be made resilient to such hook errors, but the color code cannot: Hook errors reduce the
effective distance of the color code by a factor of two.

To avoid this degradation of the code distance, we take a similar approach to [32-36] by adding a small
number of additional ancilla qubits, so called ‘flag qubits’, to detect hook errors. For our chosen color code with

5 The syndrome increment is usually 65'(¢) = §'(t) — 5 (f — 1) mod 2. When ancilla qubits are not reset between QEC cycles, we use a
somewhat different definition, see appendix A.2 for details.

6 The quantity €,seudo defined in equation (3) is called a pseudo-threshold because it is d-dependent. In the limit d — oo it converges to the
true threshold.
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weight-6 parity checks, we opt to use one flag qubit for each ancilla qubit used to make a stabilizer measurement.
(This is a much reduced overhead in comparison to alternative approaches [29-31].) Flag and ancilla qubits are
entangled during measurement and read out simultaneously (circuits given in appendix A). Our scheme is not

a priori fault-tolerant, as previous work has required at least (d — 1)/2 flag qubits per stabilizer. Instead, we rely
on fitting our numeric results to equation (2) with d fixed to the code distance to demonstrate that our scheme is
in fact fault tolerant.

3. Neural network decoder

3.1. Learning mechanism
Artificial neural networks are function approximators. They span a function space that is parametrized by
variables called weights and biases. The task of learning corresponds to finding a function in this function space
thatis close to the unknown function represented by the training data. To do this, one first defines a measure for
the distance between functions and then uses an optimization algorithm to search the function space for a local
minimum with respect to this measure. Finding the global minimum is in general not guaranteed, but
empirically it turns out that often local minima are good approximations. For a comprehensive review see for
example [49, 50].

We use a specific class of neural networks known as recurrent neural networks, where the ‘function’ can
represent an algorithm [51]. During optimization the weights and biases are adjusted such that the resulting
algorithm is close to the algorithm represented by the training data.

3.2.Decoding algorithm

Consider alogical qubit, prepared in an arbitrary logical state |11 ), kept for a certain time T, and then measured
with outcomem € {—1, 1} in the logical Z-basis. Upon measurement, phase information is lost. Hence, the
only information needed in addition to m1 is the parity of bit flips in the measurement basis. (A separate decoder
is invoked for each measurement basis.) If the bit flip parity is odd, we correct the error by negating m — —m.
The task of decoding amounts to the estimation of the probability p that the logical qubit has had an odd number
of bit flips.

The experimentally accessible data for this estimation consists of measurements of ancilla and flag qubits,
contained in the vectors s (¢) and 5g,, (t) of syndrome increments and flag measurements, and, at the end of the
experiment, the readout of the data qubits. From this data qubit readout a final syndrome increment vector
(5]? (T') can be calculated. Depending on the measurement basis, it will only contain the X or the Z stabilizers.

Additionally, we also need to know the true bit flip parity p;,,.. To obtain this we initialize the logical qubit at
[¥L) = 10) (¢r) = |1) would be an equivalent choice) and then compare the final measured logical state to this
initial logical state to obtain the true bit flip parity pye € {0, 1}.

An efficient decoder must be able to decode an arbitrary and unspecified number of error correction cycles.
As a feedforward neural network requires a fixed input size, it is impractical to train such a neural network to
decode the entire syndrome data in a single step, as this would require a new network (and new training data) for
every experiment with a different number of cycles. Instead, a neural network for quantum error correction
must be cycle-based: it must be able to parse repeated input of small pieces of data (e.g. syndrome data from a
single cycle) until called upon by the user to provide output. Importantly, this requires the decoder to be
translationally invariant in time: it must decode late rounds of syndrome data just as well as the early rounds. To
achieve this, we follow [39] and use a recurrent neural network of long short-term memory (LSTM) layers [52]—
with one significant modification, which we now describe.

The time-translation invariance of the error propagation holds for the ancilla qubits, but it is broken by the
final measurement of the data qubits—since any error in these qubits will not propagate forward in time. To
extract the time-translation invariant part of the training data, in [39] two separate networks were trained in
parallel, one with and one without the final measurement input. Here, we instead use a single network with two
heads, as illustrated in figure 2. The upper head sees only the translationally invariant data, while the lower head
solves the full decoding problem. In appendix B we describe the details of the implementation.

The switch from two parallel networks to a single network with two heads offers several advantages: (1) the
number of LSTM layers and the computational cost is cut in half; (2) the network can be trained on a single large
error rate, then used for smaller error rates without retraining; (3) the bit flip probability from the upper head
provides a so-called Pauli frame decoder [2].

In the training stage the bit flip probabilities p’ and p € [0, 1] from the upper and lower head are compared
with the true bit flip parity i, € {0, 1}. By adjusting the weights of the network connections a cost function is
minimized in order to bring p’, p close to py.. We carry out this machine learning procedure using the
TensorFlow library [53].
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Figure 2. Architecture of the recurrent neural network decoder. After a body of recurrent layers the network branches into two heads,
each of which estimates the probability p or p’ that the parity of bit flips at time T'is odd. The upper head does this solely based on
syndrome increments 65 and flag measurements Sy, from the ancilla qubits, while the lower head additionally gets the syndrome
increment ¢f from the final measurement of the data qubits. During training both heads are active, during validation and testing only
the lower head is used. Ovals denote the two long short-term memory (LSTM) layers and the fully connected evaluation layers, while

boxes denote input and output data. Solid arrows indicate data flow in the system (with ﬁ,(l) and ET(Z) the output of the firstand second
LSTM layer), and dashed arrows indicate the internal memory flow of the LSTM layers.
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Figure 3. Decay of the logical fidelity for a distance-3 color code. The curves correspond to different physical error rates €,y per step,
from top to bottom: 1.6 x 107>,2.5 x 107°,4.0 x 107°,6.3 x 107>,1.0 x 104 1.6 x 107%2.5 x 107%,4.0 x 107%,6.3 x 107*,
1.0 x 107%,1.6 x 1073,2.5 x 10> Each point is averaged over 10° samples. Error bars are obtained by bootstrapping. Dashed lines
are two-parameter fits to equation (4).

After the training of the neural network has been completed we test the decoder on a fresh dataset. Only the
lower head is active during the testing stage. If the output probability p < 0.5, the parity of bit flip errors is
predicted to be even and otherwise odd. We then compare this to p,. and average over the test dataset to obtain
the logical fidelity (¢). Using a two-parameter fit to [45]

F) =5 + 31 = 2e) "0/, (4)

we determine the logical error rate € per step of the decoder.

4.Neural network performance

4.1. Power law scaling of the logical error rate

Results for the distance-3 color code are shown in figure 3 (with similar plots for distance-5 and distance-7 codes
in appendix C). These results demonstrate that the neural network decoder is able to decode a large number of
consecutive error correction cycles. The dashed lines are fits to equation (4), which allow us to extract the logical
error rate e per step, for different physical error rates €,y per step.

Figure 4 shows that the neural network decoder follows a power law scaling (2) with d fixed to the code
distance. This shows that the decoder, once trained using a single error rate, operates equally efficiently when the
error rate is varied, and that our flag error correction scheme is indeed fault-tolerant. The corresponding
pseudothresholds (3) are listed in table 1.
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errors must occur in a round to generate alogical error in that round, so syndrome extraction is fault-tolerant. In gray: error rate ofa
single physical (unencoded) qubit. The error rates at which this line intersects with the lines for the encoded qubits are the
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Figure 5. Same as figure 3, but for a density matrix-based simulation of an array of superconducting transmon qubits. Each point is an
average over 10* samples. The density matrix-based simulation gives the performance of an optimal decoder, with alogical error rate
€optimal = 0.0132 per microsecond. From this, and the error rate ¢;, = 0.0148 per microsecond obtained by the neural network, we
calculate the neural network decoder efficiency to be 0.89. The average fidelity of an unencoded transmon qubit at rest with the same
physical parameters is plotted in gray.

4.2. Performance on realistic data

Table 1. Pseudothresholds calculated
from the data of figure 4, giving the
physical error rate below which the
logical qubit can store information for a
longer time than a single physical qubit.

Distance d

Pseudothreshold €seudo

0.0034
0.0028
0.0023

To assess the performance of the decoder in a realistic setting, we have implemented the distance-3 color code

using a density matrix based simulator of superconducting transmon qubits [45]. We have then trained and
tested the neural network decoder on data from this simulation. In figure 5 we compare the decay of the fidelity
of the logical qubit as it results from the neural network decoder with the fidelity extracted from the simulation
[45]. The latter fidelity determines via equation (4) the logical error rate €,pimal of an optimal decoder. For the
distance-3 code we find ¢;, = 0.0148 and €,(imar = 0.0132 per microsecond. This can be used to calculate the

6
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decoder efficiency [45] €optimal/ €1, = 0.89, which measures the performance of the neural network decoder
separate from uncorrectable errors. The dashed gray line is the average fidelity (following equation (4)) of a
single physical qubit at rest, corresponding to an error rate of 0.0164 [45]. This demonstrates that, even with
realistic experimental parameters, a logical qubit encoded with the color code has a longer life-time than a
physical qubit.

5. Conclusion

We have presented a machine-learning based approach to quantum error correction for the topological color
code. We believe that this approach to fault-tolerant quantum computation can be used efficiently in
experiments on near-term quantum devices with relatively high physical error rates (so that the neural network
can be trained with relatively small datasets). In support of this, we have presented a density matrix simulation
[45] of superconducting transmon qubits (figure 5), where we obtain a decoder efficiency of n; = 0.89.

Independently of our investigation, three recent works have shown how a neural network can be applied to
color code decoding. References [42] and [44] only consider single rounds of error correction, and cannot be
extended to a multi-round experiment or circuit-level noise. References [43] uses the Steane and Knill error
correction schemes when considering color codes, which are also fault-tolerant against circuit-level noise, but
have larger physical qubit requirements than flag error correction. None of these works includes a test on a
simulation of physical hardware.
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Appendix A. Quantum circuits

A.1. Circuits for the Pauli error model

Figure A1 shows the circuits for the measurements of the X and Z stabilizers in the Pauli error model. To each
stabilizer, measured with the aid of an ancilla qubit, we associate a second ‘flag’ ancilla qubit with the task of
spotting faults of the first ancilla [32—36]. This avoids hook errors (errors that propagate from a single ancilla
qubit onto two data qubits), which would reduce the distance of the code. After the measurement of the X
stabilizers, all the ancillas are reset to |0) and reused for the measurement of the Z stabilizers. Before finally
measuring the data qubits, we allow the circuit to run for T cycles.

A.2.Measurement processing for the density-matrix error model
For the density matrix simulation, neither ancilla qubits nor flag qubits are reset between cycles, leading to a
more involved extraction process of both 65 () and Spaq (¢), as we now explain.

Let /7 (¢) and 77,4 (¢) be the actual ancilla and flag qubit measurements taken in cycle £, and 7 (1), Mg (t)
be compensation vectors of ancilla and flag measurements that would have been observed had no errors
occurred in this cycle. Then,

85 (t) = m(t) + mO(t) mod 2, (A1)
Shag (1) = Migag (t) + Migye (t) mod 2. (A2)
Calculation of the compensation vectors 7 (¢) and n‘q’f?ag (t) requires knowledge of the stabilizer s’ (t — 1), and
the initialization of the ancilla qubits 771(t — 1) and the flag qubits 7724 (t — 1), being the combination of the
effects of individual non-zero terms in each of these.
Note that a flag qubit being initialized in |1) will cause errors to propagate onto nearby data qubits, but these

errors can be predicted and removed prior to decoding with the neural network. In particular, let us concatenate
1m(t), Mgag(t)and 5 (¢) to formavector d (¢). The update may then be written as a matrix multiplication:

Mg (t) = Myd (t — 1) mod 2, (A3)
where M; is a sparse, binary matrix. The syndromes 5 () may be updated in a similar fashion

SO =50t— 1)+ 6@ + Md(t— 1) mod 2, (A4)
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Figure Al. Top left: Schematic of a 6-6-6 color code with distance 3. Top right: Stabilizer measurement circuits for a plaquette on the
boundary. Bottom left: Partial schematic of a 6-6-6 color code with distance larger than 3. Bottom right: Stabilizer measurement
circuits for a plaquette in the bulk. For the circuits in the right panels, the dashed Hadamard gates are only present when measuring the
X stabilizers, and are replaced by idling gates for the Z stabilizer circuits; the grayed out gates correspond to conditional-phase gates
between the considered data qubits and ancillas belonging to other plaquettes; and the data qubits are only measured after the last
round of error correction, otherwise they idle whilst the ancillas are measured.

where M; is likewise sparse. Both My and M, may be constructed by modeling the stabilizer measurement circuit
in the absence of errors. The sparsity in both matrices reflect the connectivity between data and ancilla qubits; for
atopological code, both My and M;are local. The calculation of the syndrome increments 65 (t) via

equation (A1) does not require prior calculation of 5'(¢).

Appendix B. Details of the neural network decoder

B.1. Architecture

The decoder’ consists of a double headed network, see figure 2, which we implement using the TensorFlow
library [53]. The network maps a list of syndrome increments 65 (¢) and flag measurements 5y, (t) with

t/teyde = 1,2, ..., Ttoa pair of probabilities p’, p € [0, 1]. (In what follows we measure time in units of the cycle
duration t.yje = Notseeps With Ny = 20.) The lower head gets as additional input a single final syndrome
increment 617 (T). The cost function I that we seek to minimize by varying the weight matrices w and bias
vectors b of the network is the cross-entropy

H(p,, p,) = —plogp, — (1 — pplog (1 — p,) (B

between these output probabilities and the true final parity p, . € {0, 1} ofbitflip errors:
I=H(pyye> P) + 5H(Pyer ) + cllweyarll. (B2)

The term c||[wgyar|]> with ¢ < 1 is a regularizer, where wgya; C w are the weights of the evaluation layers.
The body of the double headed network is a recurrent neural network, consisting of two LSTM layers
[52, 54, 55]. Each of the LSTM layers has two internal states, representing the long-term memory ¢ € RN and

the short-term memory I;t(l) € RN, where N = 32,64, 128 for distances d = 3, 5, 7. Internally, an LSTM layer
consists of four simple neural networks that control how the short- and long-term memory are updated based
on their current states and new input x,. Mathematically, it is described by the following equations [54, 55]:

i, = oW, + vl + by, (B3a)

4 https://github.com/baireuther/neural_network_decoder.
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Figure B1. Same as figure 4. The blue ellipse indicates the error rates used during training, and the green ellipse indicates the error rates
used for validation.

f. = o(wiX, + vihe | + by), (B3b)

G, = o (Woky + Whi_y + by), (B3c)
iy = tanh(Wp % + Vinhe_1 + by, (B3d)
G=f 08, +iom (B3e)

h =8 © tanh(Z). (B3f)

Here w and v are weight matrices, b are bias vectors, o is the sigmoid function, and © is the element-wise
product between two vectors. The letters i, m, f, and o label the four internal neural network gates: input, input
modulation, forget, and output. The first LSTM layer gets the syndrome increments 65 (¢) and flag
measurements S, (¢) as input, and outputs its short term memory states Ht(l). These states are in turn the input
to the second LSTM layer.

The heads of the network consist of a single layer of rectified linear units, whose outputs are mapped onto a
single probability using a sigmoid activation function. The input of the two heads is the last short-term memory

-2
state of the second LSTM layer, subject to a rectified linear activation function ReL(hT( )). For the lower head we

concatenate ReL(l;T(Z)) with the final syndrome increment 6f (T).

B.2. Training and evaluation

We use three separate datasets for each code distance. The training dataset is used by the optimizer to optimize
the trainable variables of the network. It consists of 2 x 10° sequences of lengths between T = 1and T = 40 ata
large error rate of p = 10> for distances 3 and 5, and of 5 x 10° sequences for distance 7. At the end of each
sequence, it contains the final syndrome increment 5]? (T') and the final parity of bit flip errors py,,.. After each
training epoch, consisting of 3000—-5000 mini-batches of size 64, we validate the network (using only the lower
head) on a validation dataset consisting of 10° sequences of 30 different lengths between 1 and 10* cycles. By
validating on sequences much longer than the sequences in the training dataset, we select the instance of the
decoder that generalizes best to long sequences. The error rates of the validation datasets are chosen such that
they are the largest error rate for which the expected logical fidelity after 10* cycles is still larger than 0.6 (see
figure B1), because if the logical fidelity approaches 0.5 a meaningful prediction is no longer possible. The error
rates of the validation datasetsare 1 x 107%,2.5 x 10744 x 10 *for distances 3, 5, 7 respectively. To avoid
unproductive fits during the early training stages, we calculate the logical error rate with a single parameter fit to
equation (4) by setting o = 0 during validation. If the logical error rate reaches a new minimum on the
validation dataset, we store this instance of the network.

We stop the training after 10° epochs. One training epoch takes about one minute for distance 3 (network
size N = 32) when training on sequences up to length T'= 20 and about two minutes for sequences up to length
T = 40 on an Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.60 GHz. For distance 5(N = 64, T = 1,2,...,40) one
epoch takes about five minutes and for distance 7 (N = 128, T = 1, 2, ...,40) about ten minutes.

To keep the computational effort of the data generation tractable, for the density matrix-based simulation
(figure 5) we only train on 10° sequences of lengths between T = 1and T = 20 cycles and validate on 10*
sequences of lengths between T' = 1 and T' = 30 cycles. For the density matrix-based simulation, all datasets
have the same error rate.
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We train using the Adam optimizer [56] with a learning rate of 10>, To avoid over-fitting and reach a better
generalization of the network to unseen data, we employ two additional regularization methods: Dropout and
weight regularization. Dropout with a keep probability of 0.8 is applied to the output of each LSTM layer and to
the output of the hidden units of the evaluation layers. Weight regularization, with a prefactor ofc = 1077, is
only applied to the weights of the evaluation layers, but not to the biases. The hyperparameters for training rate,
dropout, and weight regularization were taken from [39]. The network sizes were chosen by try and error to be as
small as possible without fine-tuning, restricted to powers of two N = 2",

After training is complete we evaluate the decoder on a test dataset consisting of 10° (10* for the density
matrix-based simulation) sequences of lengths such that the logical fidelity decays to approximately 0.6, but
no more than T = 10* cycles. Unlike for the training and validation datasets, when generating the test dataset
we sample a final syndrome increment and the corresponding final parity of bit flip errors after each cycle. We
then select the sequences with lengths t, = nAT < T, from this data for evaluation, where ATis the
smallest integer for which the total number of points is less than 50. This is done in order to reduce the
needed computational resources. The logical error rate € per step is determined by a fit of the fidelity to
equation (4).

B.3. Pauli frame updater
We operate the neural network as a bit-flip decoder, but we could have alternatively operated it as a Pauli frame
updater. We briefly discuss the connection between the two modes of operation.

Generally, a decoder executes a classical algorithm that determines the operator P(f)€11” (the so-called Pauli
frame) which transforms |4y (¢)) back into the logical qubit space Hi = H; . Equivalently (with minimal
overhead), a decoder may keep track of logical parity bits p that determine whether the Pauli frame of a ‘simple
decoder’ [38] commutes with a set of chosen logical operators for each logical qubit.

The second approach of bit-flip decoding has two advantages over Pauli frame updates: Firstly, it removes
the gauge degree of freedom of the Pauli frame (SP(¢) is an equivalent Pauli frame for any stabilizer S). Secondly,
the logical parity can be measured in an experiment, where no ‘true’ Pauli frame exists (due to the gauge degree
of freedom).

Note that in the scheme where flag qubits are used without reset, the errors from qubits initialized in | 1) may
be removed by the simple decoder without any additional input required by the neural network.

Appendix C. Results for distance-5 and distance-7 codes

Figures C1 and C2 show the decay curves for thed = 5and d = 7 color codes, similar to the d = 3 decay curves
shown in figure 3 in the main text.
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Figure C1. Same as figure 3 for a distance-5 code; the physical error rate €, from top to bottomis: 1.0 x 107, 1.6 x 107%,
25 x 107,40 x 107,63 x 107%,1.0 x 107,1.6 x 107,25 x 10 °.
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