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Abstract: For traffic flow models, calibration and validation are essential. Cellular automaton (CA) models are a special class of
models, describing the movement of vehicles in discretised space and time. However, the previous work on calibration and
validation does not discuss CA models systematically. This study calibrates and validates a stochastic CA model. The authors
use a simple CA model, which only has two important parameters to be calibrated. The methodology for optimisation is to
minimise the relative root mean square error between two properties: the averaged velocity and the variation of velocities in a
platoon at a given density. Three different sites are used as cases to show the methodology, for which different types of data
(video trajectories or GPS data) are available. The authors find that the best model parameters vary for the different locations.
This may result from various driving strategies and potential tendencies. Thus, it is concluded that for CA models, various traffic
flow phenomena need to be simulated by various parameters.

1 Introduction
The study of traffic flow has a long history [1–3]. The traffic flow
models can help us in the field of traffic control, management and
operations, which are very important for both the scientists and
engineers. Usually, traffic flow models can be divided into two
categories: macroscopic models which describe traffic in
aggregated quantities, and microscopic models which describe the
status of each vehicle, including velocities and time-headways.

A special category of microscopic models is cellular automaton
(CA) model. It is discrete in both space and time, which makes it is
easy to use and can run fast in the computer simulations [4]. Since
the proposal of Nagel–Schreckenberg (NS) model [5], in this field
there are many CA models with various features. Especially, with
the development of Kerner's three-phase traffic theory [6–9], many
three-phase CA models which can reproduce synchronised flow
phenomena are proposed and studied in the recent years, including
Kerner–Klenov–Wolf model [10–12] and Kerner–Klenov–
Schreckenberg model [13].

In order to make traffic flow models useful, the model
calibration and validation are necessary. In the past years there are
many studies concerning this topic, especially for the microscopic
car-following models [14–19]. Many traffic flow data can be used:
some of them are empirical ones, e.g. the Next Generation
SIMulation (NGSIM) video data. Some others are experimental
ones, e.g. the precise data from GPS equipped [20–22].

However, until now there are nearly no specific studies about
the systematic calibration and validation of CA traffic flow models.
In many previous studies [23–31], the choice of parameters in CA
models is usually done by some qualitative comparison of different
simulation results, e.g. the fundamental diagrams or spatiotemporal
diagrams. This process is not systematic, and a complete
framework is lacked. Usually the differences and the errors are not
easy to measure. This also becomes an important disadvantage of
various CA models, which has been criticised much before. (Some
related work has been done in one CA pedestrian flow model [32].
However, its modelling mechanism is different from that of CA
traffic flow model.). Therefore, how to make CA traffic flow
models more realistic and how to choose the best parameters

systematically become an important topic, which will be our main
task.

Therefore, in this paper we put the CA model through a
complete calibration and validation process. To this end, we use a
simple and flexible CA model: it only has two important
parameters to be calibrated, and the change of them can lead to
significant differences for the macroscopic characteristics of the
model. For quantifying the error between the model and reality, we
use the averaged value and standard deviation of single-vehicle
velocities. The parameters which can minimise the error will be the
best results. This can become a general process for the calibration
work of CA model. Besides, different types of traffic flow data will
be used for the calibration, and the validation process, including
holdout validation and cross-validation will also be presented.

This paper is organised as follows. In Section 2, we briefly
introduce the rules and parameters of our CA model, and present
the basic model properties. In Section 3, we introduce the
calibration methodology for the CA model. In Section 4, we
present the testing methodology for the calibration, including the
introduction of three different types of traffic flow data. In Section
5, we show and discuss the calibration results. In Section 6, we do
the validation for the calibrated parameters, and the conclusions are
presented in Section 7.

2 CA model
2.1 Revisit of the model rules and parameters

In this paper, we use our model [28, 29] as an example for the
calibration and validation of a CA traffic flow model. In the
simulation, each cell is set to 1 m and each time step corresponds
to 1 s. Each vehicle occupies eight cells. A special property of our
rules is the parameter named anticipated deceleration (AD), which
means drivers prefer to decelerate with this value when necessary.
Note that AD can be chosen from a continuous distribution. The
anticipated velocity Vanti is defined as the highest v in which a
vehicle can stop in the gap in front satisfying the inequality

B(v, AD) ≤ gap (1)
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Here B(v, AD) is the distance that a vehicle travels before stopping
if it keeps decelerating with AD from an initial velocity. We
suppose m = int(v/|AD|), then B(v, AD) can be calculated as

B(v, AD) = v + (v + AD) + (v + 2AD) + . . . + (v + mAD)
= (2v + mAD)(m + 1)/2 (2)

Note that since m is proportional to v/|AD|, B scales with the square
of v and the inverse of |AD|. However, since CA models are
discrete and the decelerations occur before the movement, the
stopping distance does not equal v2/ 2AD .

The model rules are executed on all vehicles in parallel as
follows:

1. Estimating the virtual velocity of the front vehicle (vehicle n–
1)

vn − 1
′ → min {vmax − An, max {0, Vanti(AD, gapn − 1)

− An}, vn − 1} (3)

2. Deterministic acceleration or deceleration (see (4)) 
3. Randomisation

vn → max {vn − An, 0} with probability p (5)
4. Updating positions

xn(t + 1) → xn(t) + vn(t) (6)

In the above formulations, xn(t) and vn(t) are the position and
velocity of vehicle n at time t; vehicle n − 1 precedes vehicle n;
gapn is the distance between vehicle n and vehicle n − 1; An is the
normal acceleration value, which is set as 1 m/s2; vmax is the
velocity limitation of the vehicles; p is the randomisation
probability which is chosen between 0 and 1.

It should be noted that in step 2, we consider two possible
choices: the one is to accelerate, when the gap is large enough to
ensure the safety. The calculation method is similar to that used in
many previous CA models (e.g. NS model). The other one is to
decelerate, when the gap is not large enough. As mentioned before,
the calculation of Vanti is one new idea, which is different from
previous CA models. Besides, the r and 1 − r represent the
proportion of conservative and radical strategy adopted by drivers,
since r = 1 is a very conservative condition for acceleration, and r 
= 0 is an aggressive one. This parameter can be roughly interpreted
as the aggressiveness in some other car-following models [33].

Actually, one difficult aspect of calibrating CA models is that
they include a randomisation term which stops or slows down
vehicles at random times. This is not realistic at the vehicle level,
but it represents the collective phenomena observed in traffic.
When including random effects, the calibration of the parameter
indicating the probability of random decelerations (p in our
formulation) becomes difficult: unlike some other factors (e.g. the
reaction time in car-following models), the effect of p cannot be
found at the level of an individual driver. This makes some usual
techniques for the calibration of car-following models unavailable
for the calibration of CA models, including the use of vehicle
trajectories.

However, in our model, this is not so much a problem, since
within a certain range the effect of p is not so important as in some
other CA models. For example, when the other parameters are all
fixed, for the situations when p = 0.1 and when p = 0.01, the
fundamental diagrams will be similar [30, 31]. This is due to the
mechanism that AD and r have a much more significant influence
on our model. Thus in this paper, we will always set p as a constant
value: p = 0.1, and the focus is on AD and r. Only dealing with two
important parameters will make the work easy to control.

2.2 Discussion of the model properties

In this paper, we calibrate the model on two properties of single-
vehicle velocities. They are the averaged velocity (AV for short) of
all the vehicles in one platoon, and the standard deviation of these
velocities (SDV for short). They are simple yet important, since the
velocities are the most effective indicators for the traffic flow
status. The remainder of this section shows the effect of AD and r
on AV as well as SDV. These effects are computed using a
simulation under the periodic boundary conditions. The length of
the circular road is 80 km, which can contain 10,000 vehicles, and
the free flow velocity is set as 32 m/s.

An overview of the resulting AV and SDV is shown in Figs. 1
and 2, in which three global densities are considered, 25, 35 and
45 veh/km. We can find that the basic trends are quite similar: from
Fig. 1 it is clear that r has nearly no relation with AV, and AV
mainly depends on AD. Larger |AD| leads to larger AV. The trend
in Fig. 2 is different: AD has nearly no relation with SDV, and
SDV mainly depends on r. Smaller r leads to larger SDV. Here all
the trends are monotonic, which is important in light of the sequel
of calibration. Moreover, the fact that the two outcome measures
are decoupled (AD is linked to AV and r is linked to SDV) will
ease finding the right value, even if one needs to search manually.
In this paper, we will explore all combinations of r and AD. 

We also check the distribution of the velocities of the vehicles,
since they can help to understand how AV and SDV change. Fig. 3
depicts this distribution with a 25 veh/km density as example. Here
r can determine the shape of the distribution: larger r can make it
much narrower, which implies the traffic flow is more stable and

vn →
min {vn + An, vmax} when (1 − r)vn + rB(vn, AD) < gapn + v′n − 1

Vanti(AD, gapn + v′n − 1) when (1 − r)vn + rB(vn, AD) ≥ gapn + v′n − 1
(4)

Fig. 1  AV values under different periodic boundary conditions
(a) ρ = 25 veh/km, (b) ρ = 35 veh/km, (c) ρ = 45 veh/km
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the interactions between vehicles are strong. For the situation when
r = 1, there is only one obvious peak and the traffic flow can be
considered as one platoon. The criterion of defining one platoon is
that inside the platoon, all time-headways should be 6 s or less
[34], which will be suitable for the calibration methodology
introduced in the next section. AD can decide the velocity values,
and larger |AD| can make them also larger. For the situation when r 
= 1, with the growth of |AD|, the single peak just moves to righter
side. However for r = 0, larger |AD| can produce the second peak at
high velocities, which even becomes dominant. It implies the
existence of free flow, and the traffic flow is not stable in time or
space. For this situation, it cannot be considered as one single
platoon again, and cannot be used for calibration. 

Besides, it is clear that too large |AD| values can lead to some
too large velocities, which should not be considered during the
model calibration. This also shows the problem of some early CA
models. For example, NS model can be considered as our model
with AD = − 32 m/s2, since vehicles always can stop in one time
step, even at the maximum velocity. This configuration will
produce some unrealistic simulation results.

3 Methodology for the calibration
The traffic flow we observed on the real highways can be
considered as the situation under open boundary conditions.
However, it is difficult to find the precise traffic demand in a real
situation, which might be fluctuating. Therefore, we cannot directly
compare the empirical data with the simulation results under open
boundary conditions, since the demand cannot be set according to
the real-life situation. Instead, we simulate traffic under periodic
boundary conditions, and the dynamics for the certain density can
be found. For the calibration work, we use the following steps:

(1) Find stable platoons in empirical traffic data. Here ‘stable’
means the velocities and time-headways of all the vehicles are
similar, and no headways are longer than 6 s (cut-off value for
platoons).
(2) Combine small platoons with the same densities into one large
platoon for calibration, if necessary. The new flow and velocity
may be different, while the density will remain the same. This
process will be explained by cases B and C in Sections 4 and 5.
(3) Determine the basic properties of this platoon: flow (Q),
velocity properties (AV and SDV) and density (ρ). Due to the
perspective and distortion, the spatial density in the empirical video
data is more accurate closer to the cameras than further away.
Therefore, in this paper we choose to use the temporal density,
which is obtained by the locally observed flow and velocity: ρ = 
Q/AV.
(4) Initialise the simulation on the circular road (L = 80 km). The
vehicles are homogeneously distributed at the global density of ρ.
(5) Run the simulation to T = 10,000 s to reach a stable state. After
that, the single-vehicle velocities are recorded at one fixed location,
and the velocity distributions can be obtained.
(6) Find the minimum of the objective function (measure of
performance [35]). To define the function there are many possible
options [36], and here we only present one simple form like
relative root mean square error (RMSE)

E = AVs − AVe
AVe

2

+ k × SDVs − SDVe
SDVe

2

(7)

Here AVs and SDVs represent the simulation results of AV and
SDV, while AVe and SDVe represent the empirical results. AVs and
SDVs are the functions of ρ, AD and r. For sake of simplicity we
set k = 1 here. In order to find the minimum E, we draw some
three-dimensional figures to show how E changes with AD and r,
which will be presented in Section 5.

It should be noted that in the empirical data, sometimes the
traffic flow is stable, while sometimes it is not. To discuss the
reason why is out of the scope of this paper. The methodology
discussed here is intended to be used for stable platoons. Actually,
inside one unstable platoon, there may be two or more different
states, which can be calibrated separately. However, it is difficult to
automatically divide one large unstable platoon into several small
stable platoons.

4 Calibration datasets
For the calibration, we use data from three different sites, which
are described here. The calibration results for each of these sites
are presented in Section 5. Since they have different densities, we
have to calibrate them separately.

4.1 Case study A: empirical data from two-lane traffic

Traffic flow data is the base of the calibration work. First we use
the empirical video data from Nanjing Airport Highway [37]. This
highway is the main road connecting the urban district with
Nanjing Lukou Airport. There are 40 cameras along the 28 km-
long highway, and in each direction there are two lanes. The speed
limit is 120 km/h.

The data we used in Sections 4 and 5 are all single-vehicle data,
in which the velocities and time-headways of all the vehicles can
be obtained. The single-vehicle data are extracted by the equipment

Fig. 2  SDV values under different periodic boundary conditions
(a) ρ = 25 veh/km, (b) ρ = 35 veh/km, (c) ρ = 45 veh/km

 

Fig. 3  Some typical velocity distributions under different simulation
conditions, ρ = 25 veh/km. Four results of (AD, r) are shown
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named Autoscope Rackvision Terra. We performed error correction
on the data through checking the videos by the software named
Tracker [38]. The error of each single-vehicle velocity is no more
than 1 m/s (3.6 km/h).

The single-vehicle velocities of one typical platoon (named
Platoon A) in the left lane are shown in Fig. 4a, and the
corresponding distribution is in Fig. 4b. The data was collected
during the morning peak, while the traffic demand was high and no
stop-and-go waves can be found. It is clear that in Fig. 4a, the
fluctuation of the velocities is quite small, and most of them are all
between 11 and 14 m/s (40–50 km/h). Thus in Fig. 4b, only one
obvious peak can be found. For Platoon A, there are 318 vehicles
passing one location during 643 s, which means the averaged flow
is 1780 veh/h. Here AV = 13.1 m/s and SDV = 1.18 m/s, so the
averaged density is about ρ = 37.7 veh/km. 

4.2 Case study B: combined empirical data from single-lane
traffic

The second dataset is obtained from another empirical study. From
July to September 2010, a large-scale reconstruction project was
carried out in Nanjing Airport Highway: everyday a 5–10 km-long
road section was under reconstruction, and one of the two lanes
was temporarily closed. Thus, we obtain some empirical single-
lane traffic flow data. For more details, we refer to earlier work
[39, 40].

The traffic demand in this section was usually low. Therefore,
when there is no other interference (e.g. a slow truck which became
an obvious moving bottleneck), we cannot easily find long
platoons on this single-lane highway, and only short platoons can
be seen. Nevertheless, as mentioned in Section 3, short platoons
with the same averaged density can be combined for calibration.
For example, the statistical results of four small platoons are shown
in Table 1. The averaged density of these platoons is all between 33
and 34 veh/km. Therefore, we combine all the single-vehicle
velocities and obtain a new 88-vehicles platoon named Platoon B.
The flow, AV and averaged density are 2044 veh/h, 61.2 km/h and

ρ = 33.4 veh/km, respectively. So there are AV = 17.0 m/s and
SDV = 1.56 m/s for Platoon B. 

4.3 Case study C: single-lane traffic experiments

In the third dataset, the GPS data is obtained from the traffic
experiment conducted in the suburban area of Hefei [41, 42].
During the experiment with 25 vehicles, the driver of the leading
vehicle was required to control the velocity at certain pre-
determined constant values, and other drivers were asked to drive
their cars as they normally do, but overtaking is not allowed. All
the drivers were requested to continue driving several rounds.

The road in the experiment is 3.2 km long, and we only use the
single-vehicle velocity data collected in the section where x = 500–
2500 m. This is because the influences of start-up at the beginning
(0–500 m), and that of turning and decelerating at the end (2500–
3200 m) are obvious. In many experimental rounds we find four of
them have the similar averaged densities: they are all between 50.8
and 51.8 veh/km. Two platoons which belong to one round
(Platoon 1 in Table 2) are collected at x = 500 m and x = 1500 m,
while the other two platoons which belong to another round
(Platoon 2 in Table 2) are collected at x = 2000 m and x = 2500 m.
The four platoons are obtained from four locations. As we do in
Section 4.2, we also combine them as a new 100-vehicles platoon
named Platoon C. Here the flow, AV and averaged density are
1894 veh/h, 36.9 km/h and ρ = 51.3 veh/km, respectively. AV = 
10.2 m/s and SDV = 0.96 m/s for Platoon C. 

5 Calibration results and discussions
5.1 Results for case study A

At the density of ρ = 37.7 veh/km, we perform the simulations, as
mentioned in Section 3. Fig. 5 shows the errors between the
measurements and the simulations. In normal conditions,
accelerations up to 3–4 m/s2 are observed. Accelerations stronger
than −4 m/s2 will occur only in emergency conditions, rather than
everyday driving. The explorative tests show that the model will

Fig. 4  Platoon A in our empirical video data. It was collected at the left lane, on the morning peak of 27 August 2010
(a) Single-vehicle velocities, (b) Velocity distribution

 
Table 1 Statistical information of four small platoons, and their combination results (Platoon B) in our empirical video data.
They were all collected at one location in the single-lane section, on the afternoon of 13 August 2010
Platoon Length, veh Passing time, s Flow, veh/h AV, km/h Averaged density, veh/km
1 27 48 2025 59.9 33.8
2 21 37 2043 60.6 33.7
3 18 33 1964 58.0 33.9
4 22 37 2141 64.5 33.2
combination 88 155 2044 61.2 33.4
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yield non-realistic results when AD is not in the range of −3.7 to
−3.3 m/s2. Thus, calibration is limited to this range. It is found that
in this range, the errors mainly depend on the value of r, rather than
AD. Here we find the minimum value is EA,min = 0.039, at the point

of (AD, r) = (−3.5, 0.7). Therefore, (−3.5, 0.7) should be the best
parameters for the modelling of Platoon A. Besides, the velocity
distribution is shown in Fig. 5b, which is similar to Fig. 4b. In all
the three cases, the velocity distributions only have one peak. 

5.2 Results for case study B

The results at ρ = 33.4 veh/km are shown in Fig. 6. By the
comparison with Fig. 5, we can find that the shape is more
complex, and the effect of r on E is larger. Here the minimum
value is EB,min = 0.036, at the point of (AD, r) = (−5.1, 0.7). It is
interesting that for the two different types of platoons, the best
values of r are just the same, while for AD they are different. 

5.3 Results for case study C

We repeat the calibration process as in Sections 5.1 and 5.2, and
get the results shown in Fig. 7. Here the minimum value is EC,min
0.079, and the best parameters should be (−3.9, 0.9). Now the
differences between the empirical data and the experimental one
seem large. 

5.4 Discussions

By comparison we find there are three different (AD, r) results for
the three cases: (−3.5, 0.7), (−5.1, 0.7) and (−3.9, 0.9). These
differences may be due to two main aspects:

i. The driving strategies: In our model, r represents the
proportion of conservative strategy chosen by drivers. It is
possible that in the conducted experiments (case C), all the
drivers know they have no chance to overtake, so there is no
need to hurry at all. For this situation, the model drive less
aggressively, and should have larger r value (r = 0.9). On the
contrary, in real life (cases A and B) drivers will not be so
relaxed, and sometimes they want to save as much time as
possible. This can lead to smaller r value (r = 0.7). Actually,
the results are not due to the differences between real life and
conducted experiments, but the impact of environments.

ii. The potential tendencies: For example, for the case B of single-
lane traffic, |AD| is larger than that in cases A and C. However,
it is not reasonable to simply make the conclusion that under
single-lane conditions, drivers will prefer a larger AD. This
difference may result from some other factors, e.g. in the
single-lane section of Nanjing Airport Highway the traffic
demand is always low. Even when one lane is temporarily
closed, the flow value per lane is still lower than that in the
multi-lane sections. Thus, drivers know in this section they can
run much faster, and have the potential tendency to choose a
much larger |AD| value.

6 Validation of the CA model
6.1 Methodology

Next we need to validate the parameters calibrated in the previous
sections. First we check the validity of the parameters inside the
platoon. We can divide one large platoon (e.g. Platoon A) into two
small parts: Platoon A1 and Platoon A2. Platoon A1 can be
selected for calibration and Platoon A2 can be used for validation.
Here we set the function as (see (8)) This methodology shows
whether the same calibration results will be found for two different
datasets with the same conditions (same density, road stretch and

Table 2 Statistical information of the two platoons at four different locations, and their combination results (Platoon C) in our
experimental GPS data. They were all collected on 19 January 2013
Platoon Leading velocity, km/h Location, m Passing time, s Flow, veh/h AV, km/h Averaged density, veh/km
1 41 500 47.6 1891 36.5 51.8
1 41 1500 45.4 1982 38.3 51.8
2 37 2000 48.5 1856 36.5 50.8
2 37 2500 48.6 1852 36.1 51.3
combination / / 190.1 1894 36.9 51.3

 

Fig. 5  Calibration results for Platoon A
(a) Errors under different simulation conditions, ρ = 37.7 veh/km, (b) Simulated
velocity distribution when (AD, r) = (−3.5, 0.7)

 

Fig. 6  Calibration results for Platoon B: the errors under different
simulation conditions, ρ = 33.4 veh/km

 

Fig. 7  Calibration results for Platoon C: the errors under different
simulation conditions, ρ = 51.3 veh/km
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even platoon) This will result in three different optimal parameter
sets: one for EA, one for EA1 and one for EA2. We can compute the
combined error Et1 for each of these three parameter sets for each
of the platoons. Obviously, the error is minimum for the optimal
parameter set for that dataset. The interesting part is to find out
how far off the errors are if the other parameter sets are being used.
This validation technique belongs to ‘holdout validation’, as
introduced by Treiber and Kesting [43].

Another option is to compare the parameter sets for the different
datasets, thereby checking the consistency of the parameter sets for
different conditions. We do something similar: we check the error
of the model with the parameters optimised for one parameter set
applied to another parameter set. Moreover, we compute a total
error for a parameter set, consisting of the sum of the errors in the
three datasets

Et2(AD, r) = EA(ρA, AD, r) + EB(ρB, AD, r) + EC(ρC, AD, r) (9)

This validation technique belongs to ‘cross-validation’, which can
make maximal use of the available data.

6.2 Results

The results of holdout validation are shown in Table 3. Here
Platoon A1 corresponds to the earlier 159 vehicles of Platoon A,
while Platoon A2 corresponds to the later 159 ones. Their flows,
velocities and densities can be calculated, respectively: here for
A1, AV = 12.8 m/s, SDV = 1.24 m/s and ρ = 38.8 veh/km. The best
parameters are (−3.6, 0.7). For A2, AV = 13.5 m/s, SDV = 1.00 m/s
and ρ = 37.0 veh/km. The best parameters are (−3.5, 0.8). As
expected, the fitted values fit best on the parts they are optimised
for, confirming the calibration procedure. Overall, all the three
parameters of (AD, r) perform well. Therefore, we conclude that a
parameter set of (−3.5, 0.7) for Platoon A is correct for the whole
platoon as well as for each of its parts. 

Then the results of cross-validation are shown in Table 4. Here
again, the parameters fitted the situations they are calibrated for
(the diagonal of the table), are the best. The numbers off the
diagonal are much higher, which is contrary to the holdout
validation. Here we can say the parameters of (−3.5, 0.7) for
Platoon A are a little better than the others. Nevertheless, none of
them can fit all three datasets very well. Comparing with Table 3,
if we set 0.5 as one critical value for E, we can find in Table 3 they
are all smaller than 0.5, while in Table 4 they are all larger than it.
These results indicate that it is impossible to simulate all the traffic
flow phenomena by one model with fixed parameters. This
situation could also be found in some other field, including
pedestrian flow [44]. 

7 Conclusion
In this paper, we show how to do calibration and validation for CA
models. Due to the existence of randomisation probability, some
frequently used methodologies for the calibration and validation of

car-following models are not possible for CA models.
Nevertheless, we find a new macroscopic way. We define the
objective function E, which has the form like relative RMSE of the
AV and SDV. Two important parameters in our CA model, the AD
and the fraction of aggressive drivers are calibrated, and for the
minimum error we can find the best combination of (AD, r). This
process is easy to understand and follow.

Then, three different types of traffic flow data are used for
calibration: the single-vehicle data of empirical traffic in Nanjing
Airport Highway, including the situations of single-lane traffic and
multi-lane traffic, and the GPS data obtained from traffic
experiments conducted in Hefei. For the small platoons with the
same densities, we can combine them together. It is not strange that
we find different best parameters for different datasets.

Here the differences mainly result from the driving strategies
and the potential tendencies in different environments. Finally,
after the validation we find none can fit all of them well at the
same time, which implies it may be impossible to simulate all the
traffic flow phenomena with one model with fixed parameters.

Although a complete process of calibration and validation has
been presented in this paper, this is just a beginning. For more
complex CA models, more parameters need to be calibrated,
including some common factors in all the models (vehicle length,
time step etc.) and some specific parameters in our model (e.g. An).
On the other hand, some complex scenarios need to be considered,
including the lane-changing behaviours, and the influence of
heterogeneity of traffic flow, especially the proportion of large
trucks. These works will be done in the future.
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