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SUMMARY

AVITY optomechanics studies the interaction between mechanical resonators and
C optical cavities through radiation pressure forces and aims to harness this inter-
action for applications in the areas of high precision metrology, tests of fundamental
quantum mechanics, or quantum information processing. For the most ambitious of
these applications it is necessary that the mechanical resonator has a sufficiently high
mechanical quality factor such that it can undergo at least a few coherent oscillations
before interacting with incoherent thermal phonons. Furthermore, the optomechanical
coupling must be large enough to make the interaction between optics and mechanics
probable and, ideally, deterministic.

This work pursues both goals using a thin membrane in the middle (MIM) of an op-
tical cavity. This is a common configuration in cavity optomechanics but most experi-
ments to date have low mechanical quality factors and optomechanical couplings.

Chapters 2 and 3 contain a brief overview of the basic theory and experimental con-
cepts required to understand the following.

On chapter 4 we investigate the mechanical properties of SiN trampoline resonators:
square membranes supported by four tethers connected to the substrate. We study the
effect of all their geometrical parameters on the frequency—quality factor product and
find that the most relevant ones are the thicknesses of both the membrane and the sub-
strate. By fabricating trampoline membranes with a Si thickness of 1 mm and a 20 nm-
thick SiN layer, we obtain fundamental frequencies close to 150 kHz and quality factors
up to 108, resulting in a frequency-quality factor product of 1.37 x 10'3 Hz. This is the
first demonstration of a mechanical resonator with good enough properties to, for exam-
ple, reach the mechanical ground state of a macroscopic object using optomechanical
cooling starting from room temperature conditions.

Bare SiN membranes have low reflectivity due to their low refractive index and since
they are typically much smaller than a quarter of a wavelength (the thickness for which
the reflectivity of a thin film reaches its maximum). Since the optomechanical coupling
in a MIM configuration scales with the square root of the membrane’s reflectivity, bare
membranes have low optomechanical couplings. To counter this, we pattern photonic
crystals (PhC), composed of a periodic array of holes etched into the membranes, ob-
taining reflectivities higher than 99.3 %. For PhCs with a small area, the maximum re-
flectivity achievable drops with the film thickness. This work presents two solutions for
this problem. On chapter 4 we leave thick pillars of SiN on the 20 nm-thin membranes,
obtaining similar performance to thicker devices. On the other hand, on chapter 5 we
increase the PhC area from 90 x 90 pum? up to 10 x 10 mm?. This allows using laser beams
with a larger waist and smaller wavevector spread, increasing the maximum achievable
reflectivity of thin membranes.

Due to its square root dependency on the reflectivity, the gain in optomechanical
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coupling by patterning a PhC on the trampoline membranes is limited to little more
than 50 % of what can be achieved with a bare membrane. However, the high reflec-
tivity of PhC membranes can be harnessed to increase the optomechanical coupling by
orders of magnitude in comparison with that of a bare membrane. If more than one
highly reflective membrane is placed in the middle of a cavity, the relative motion be-
tween the mechanical elements is expected to generate strong phase shifts which can
result in strong optomechanical coupling rates. On chapter 6 we present one of the first
experimental explorations of such optomechanical arrays. We fabricate two PhC tram-
poline membranes on both sides of the same chip, which constitute two high reflectivity
mechanical resonators parallel to each other. We characterize them independently, mea-
suring finesse values up to 220, as well as inside an optical cavity, confirming that their
center-of-mass motion couples to the cavity in a fashion well described by the single-
MIM model. This type of device is a large step towards the observation of enhanced
coupling with optomechanical arrays.

The results presented here are not only significant for the field optomechanics but
they also present promising applications elsewhere. Mechanical resonators with very
high mechanical quality factor, such as those of chapter 4, can be used for displace-
ment or force detectors with very high sensitivity. Large-area PhC membranes (chapter
5) open the door to mechanically tunable mirrors whose optical properties can be freely
adapted to the wavelength or polarization response that the user wishes. And finally,
devices such as the double-PhC-membranes of chapter 6 could be used as integrated
cavities for filtering or simple optomechanics experiments.
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AVITY optomechanica bestudeert de interactie tussen mechanische resonatoren en
C optische trilholtes (cavities) middels de stralingsdruk en beoogt deze interactie te
gebruiken voor toepassingen zoals hoge precisie metrologie, het testen van fundamen-
tele quantum mechanica of quantum informatieverwerking. Bij de meest ambitieuze
van deze toepassingen is het noodzakelijk dat de mechanische resonator een voldoende
hoge mechanische kwaliteitsfactor heeft zodat de resonator tenminste een paar cohe-
rente oscillaties heeft ondergaan véér de interactie met incoherente thermische phono-
nen. Daarnaast moet de optomechanische koppeling sterk genoeg zijn om de interactie
tussen optiek en mechaniek waarschijnlijk en idealiter ook deterministisch te maken.

Beide doelen worden in dit werk nagestreefd met behulp van een dun membraan
in het midden van een optische trilholte (MIM). Dit is een welbekende configuratie in
cavity optomechanica maar in de meeste experimenten tot nu toe zijn de mechanische
kwaliteitsfactoren en optomechanische koppelingen laag.

Hoofdstukken 2 en 3 geven een kort overzicht van de theorie en experimentele con-
cepten die benodigd zijn om het volgende te begrijpen.

In hoofdstuk 4 onderzoeken we de mechanische eigenschappen van SiN trampoline
resonatoren: vierkante membranen die via vier verbindingen vast zitten aan het sub-
straat. We bestuderen het effect van al hun geometrische parameters op het frequentie—
kwaliteitsfactor product en ontdekken dat daarin de diktes van het membraan en het
substraat het meest relevant zijn. Door trampoline membranen te fabriceren met een Si
dikte van 1 mm en een 20 nm dikke SiN laag verkrijgen we fundamentele resonantie fre-
quenties nabij 150 kHz en kwaliteitsfactoren tot aan 108, wat resulteert in een frequentie—
kwaliteitsfactor product van 1.37 x 10! Hz. Dit is de eerste demonstratie van een me-
chanische resonator met eigenschappen die voldoende zijn om bijvoorbeeld de mecha-
nische grondtoestand van een macroscopisch object te bereiken door vanaf kamer tem-
peratuur optomechanisch te koelen.

Membranen van onbewerkt SiN hebben een lage reflectiviteit door hun lage bre-
kingsindex en doordat ze typisch veel kleiner zijn dan een kwart van de golflengte (de
dikte waarbij de reflectiviteit van een dunne film maximaal is). Aangezien de optome-
chanische koppeling in een MIM configuratie schaalt met de wortel van de reflectiviteit
van het membraan, is de optomechanische koppeling van onbewerkte membranen laag.
Om dit te bestrijden etsen we een periodiek patroon van gaatjes, een zogenaamd pho-
tonisch kristal (PhC), in de membranen, waardoor we reflectiviteiten boven de 99.3 %
verkrijgen. Bij PhC’s met een klein oppervlak zakt de maximaal bereikbare reflectiviteit
met de filmdikte. In dit werk worden twee oplossingen voor dit probleem gepresen-
teerd. In hoofdstuk 4 laten we dikke pilaren van SiN op de 20 nm dunne membranen
staan, waarbij we gedrag vergelijkbaar met dikkere apparaten verkrijgen. Aan de andere
kant vergroten we het PhC oppervlak van 90 x 90 pm? naar 10 x 10 mm? in hoofdstuk 5.
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Hierdoor kan men laser licht gebruiken met een grotere waist en een kleinere golfvector
spreiding, waardoor de maximaal haalbare reflectiviteit van dunne membranen wordt
verhoogd.

Door zijn wortel afthankelijkheid van de reflectiviteit is de versterking van de optome-
chanische koppeling, door het etsen van een PhC in een trampoline membraan, gelimi-
teerd aan ongeveer 50 % van wat gehaald kan worden met een onaangepast membraan.
Echter, de hoge reflectiviteit van PhC membranen kan gebruikt worden om de optome-
chanische koppeling met een aantal orde groottes te vergroten ten opzichte van onaan-
gepaste membranen. Als er meer dan één zeer reflectief membraan in het midden van
een trilholte wordt geplaatst, wordt er verwacht dat de relatieve beweging tussen de me-
chanische elementen sterke fase verschuivingen genereert wat tot sterke optomechani-
sche koppeling kan leiden. In hoofdstuk 6 presenteren we een van de eerste experimen-
tele verkenningen van zulke optomechanische reeksen. We fabriceren twee PhC trampo-
line membranen aan beide zijdes van dezelfde chip, die zo twee zeer reflectieve parallele
mechanische resonatoren vormen. Deze worden onafhankelijk gekarakteriseerd, waar-
bij finesse waardes tot 220 worden gemeten, en in een optische trilholte, waarbij wordt
bevestigd dat de massamiddelpunts beweging aan de trilholte koppelt op een manier die
goed beschreven kan worden door het enkel-MIM model. Dit type apparaat is een grote
stap richting het observeren van versterkte koppeling met optomechanische reeksen.

De hier gepresenteerde resultaten zijn niet alleen significant met betrekking tot op-
tomechanica maar kunnen elders ook tot veelbelovende toepassingen leiden. Mechani-
sche resonatoren met zeer hoge mechanische kwaliteitsfactor, zoals die beschreven in
hoofdstuk 4, kunnen gebruikt worden in verplaatsings- of krachtmeters met zeer hoge
gevoeligheid. PhC membranen met groot oppervlak (hoofdstuk 5) openen de deur naar
mechanisch afstembare spiegels waarvan de optische eigenschappen aangepast kunnen
worden aan de gewenste golflengte of polarisatie respons. Tenslotte zouden apparaten
zoals de dubbele PhC membranen uit hoofdstuk 6 gebruikt kunnen worden als geinte-
greerde trilholtes voor optisch filteren of simpele optomechanische experimenten.



INTRODUCTION

CONTEXT

ENGTH is a fundamental dimension which plays a crucial role in society. It is there-

fore natural that scientists and engineers have placed extensive efforts in developing
tools to measure it as accurately as possible.

Perhaps some of the most impressive length measurement tools developed recently
are gravitational wave detectors [1-4]. The goal of these devices is to measure minute
displacements caused by gravitational waves. An example of the extreme sensitivity of
these devices is the recent measurement of the collision of two black holes of approx-
imately 30 M each which occurred 410 Mpc away from the Earth. The gravitational
wave generated by this collision created a peak displacement on Earth of 4 am at approx-
imately 100 Hz. This event was notably measured by the LIGO and Virgo collaborations
in 2016 [5], which was awarded the Nobel Prize in Physics one year after [6].

The principle of operation of these remarkable experiments is surprisingly simple:
it relies on measuring variations in the distance between two mirrors using light. The
mirrors constitute an optical cavity. If the distance between them changes, so will the
cavity’s resonance frequency and, consequently, the phase of light that couples out of
the cavity. By accurately measuring light’s phase, one can retrieve the variations in cavity
length caused by passing gravitational waves or other sources of displacement.

However simple, it was soon understood that achieving the required sensitivities
would prove to be an incredibly complex scientific and engineering challenge. Crucially,
it was necessary to identify and minimize all possible sources of cavity displacement os-
cillations not related to gravitational waves, which in this context act as sources of noise.
Some effects are quite obvious. For example, the cavity mirrors need to be decoupled
as much as possible from their environment, so that mechanical vibrations around the
experiment do not make the mirrors move [7, 8]. Others are much subtler.

Of particular interest, when a photon reflects off one of the mirrors, it will trans-
fer some momentum to the mirror and thus displace it. Although the momentum of a
single photon is small, this effect can still be relevant, since one typically works with a
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large number of photons and each photon bounces back and forth inside the cavity a
large number of times. If the rate of photon momentum "kicks" (i.e. the radiation pres-
sure) was stable, it would simply cause a fixed change of the cavity length. But due to
the random nature of light [9], the radiation pressure fluctuates and acts as a source of
displacement noise.

CAVITY OPTOMECHANICS

In the context of displacement measurements, the radiation pressure is typically seen
as a source of noise which should be avoided in order to increase the measurements’
sensitivity. Interestingly, one can look at it not only as a source of noise, but also as a
tool to control the mirror’'s motion. For example, if the radiation pressure is modulated
in phase with the motion, then the mirror can be accelerated; vice versa, if the force
is out of phase, it is possible to decelerate it. This type of feedback amplification and
cooling can be applied directly to a moving particle [10] but, together with an optical
cavity, this effect can be harnessed to control objects with a high mass [11]. For example,
using feedback cooling it is possible to dampen the motion of particular mechanical
resonances of the gravitational wave interferometers and thus decrease their thermal
displacement noise [12].

Cavity optomechanicsis the field that more generally studies the interaction between
an optical cavity and a mechanical oscillator [13]. These effects are observed in a mul-
titude of systems with different optical and mechanical properties. The mechanical res-
onators span from massive, kilogram-scale mirrors oscillating at 100 Hz [12]; to thin, sus-
pended nanogram membranes with frequencies around 1 MHz [14]; or even picogram
nanobeams with GHz vibrational modes [15].

The most conventional cavity optomechanical picture is the case where the mechan-
ical resonator is a mirror at the end of a Fabry-Perot cavity, such as in gravitational wave
interferometers. Another typical situation is that in which the optical and mechanical
oscillators are highly integrated in the same volume, such as in nanobeams, where a
photonic crystal confines the mechanical and optical modes in the same region [15]. An
issue with these configurations is that when either the cavity or the mechanical oscilla-
tor needs to be modified, they will in general also affect the other one. An alternative
is to place a membrane in the middle of an optical cavity [14]. In this way, the cavity
and the mechanical oscillator are completely independent, avoiding common trade-offs
between their properties.

Over the past years, the goals of cavity optomechanics expanded further than high
sensitivity displacement detection. Indeed, today’s most interesting paths of research lie
on the regime where both oscillators behave as quantum harmonic oscillators. In this
case, the optomechanical coupling allows the preparation of quantum states of motion
(optical and/or mechanical) [16]; studying quantum decoherence mechanisms in mas-
sive objects [17]; or transducing between different frequencies coherently through the
mechanical oscillator [18].



CHALLENGES

A few requirements must be met to realize some of these quantum optomechanics ex-
periments. Most prominently:

¢ The mechanical resonator must be able to undergo at least a few coherent oscilla-
tions before interacting with incoherent thermal phonons;

e The coupling between optics and mechanics must be large enough to make their
interaction probable and, ideally, deterministic.

The rate of thermal phonons that couple to the mechanical resonator is given by the
product of the thermal phonon occupancy ny,, which depends on the working frequency
and environment temperature, and the coupling between the resonator and its thermal
environment, also called the mechanical decay rate, I'y,, which is an intrinsic property
of the resonator [13]. The most straightforward way to increase the number of coherent
oscillations that a mechanical resonator can perform before it is decohered by environ-
mental phonons is to decrease ny, by cooling the bath temperature. This decreases the
thermal occupation of phonons at the frequency of the mechanical oscillator, therefore
decreasing the rate of thermal phonon coupling. This method is particularly interesting
for GHz resonators, since, at temperatures commonly reached by dilution refrigerators,
the thermal phonon occupancy is so low that the resonator can be considered to be in its
ground state of motion [19]. Unfortunately, in systems with lower frequencies, such as
the ones studied in this thesis, it is not technically feasible to decrease the temperature
sufficiently. Instead, one must engineer the resonator itself to decrease I'y.

The optomechanical coupling gy is a measure of how strongly the optical and me-
chanical resonators interact [13]. It is defined by how much the cavity frequency changes
for a given displacement of the mechanical oscillator. To facilitate comparison between
different systems, one often looks at the ratio between gp and the cavity decay rate. If this
ratio is larger than 1, an optomechanical system is said to be in the single photon/phonon
strong coupling regime. This means that a single phonon shifts the cavity frequency by
more than the decay rate. Having such a strong coupling between the optical and me-
chanical oscillators is a long-standing goal in the field. The most common approach to
increase gy is to optimize the overlap between the optical and mechanical mode vol-
umes, but the best results to date are still orders of magnitude below the strong coupling
regime [20]. Many groups are therefore exploring alternative paths that can bring us
closer to it.

THESIS GOALS AND OUTLINE

One of the most promising approaches towards the strong coupling regime explores the
collective motion of multiple membranes inside an optical cavity [21]. This type of op-
tomechanical array is a variation of the membrane-in-the-middle system. The concept
relies on using two or more highly reflective membranes with a spacing between them
such that they are optically resonant with the outer cavity. Small variations of the relative
position between the individual membranes will change the phase of the outer cavity’s
field more strongly than what would happen with a single membrane. It is predicted that
if the reflectivity of the membranes is high enough and if they are placed much closer to
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each other than the length of the outer cavity, it could be possible to strongly couple the
optical and mechanical oscillators.

This thesis paves the way towards the observation of enhanced coupling with op-
tomechanical arrays of tethered silicon nitride membranes. Chapter 2 briefly introduces
fundamental theory concepts of mechanical resonators, optical cavities, cavity optome-
chanics and optomechanical arrays. Chapter 3 explains how the devices are fabricated
and the tools we use to study them. The following three chapters describe experiments
realized during the course of the past four years. Chapter 4 explores the mechanical
properties of individual tethered membranes and shows that their geometries can be
optimized such that the mechanical decay rate decreases to values that could allow per-
forming quantum optomechanical experiments at room temperature. These membranes
are made reflective by patterning photonic crystals on them. Chapter 5 shows it is pos-
sible to make high-reflectivity photonic crystals on thin silicon nitride membranes with
large areas, which is necessary for optomechanical arrays with low mechanical dissipa-
tion and high optomechanical coupling. Finally, chapter 6 presents the first platform
that combines two tethered silicon nitride membranes with a high reflectivity and a
study of their optomechanical center-of-mass coupling.



THEORY

HIS chapter introduces some theoretical concepts required to understand the exper-
T iments performed in the remainder of the thesis. This is a brief introduction and
the reader is recommended to consult the cited references for more details and in-depth
discussions.

2.1. MECHANICAL OSCILLATORS

The displacement of a mechanical oscillator can be described by a vector (7, f) [13]. 7
represents a position on the device and ¢ a particular time at which the displacement
is described. Typically we are interested in studying the normal modes of the oscillator,
described by the product of a time-independent amplitude i, (¥) and a scalar function
X, (1) that contains the time evolution of each mode. 7 is a label of each specific mode.
The dynamics of these modes are described by the linear equation of motion

m)'é(t)+ml"m)'c(t)+mwlznx(t) =F(D), 2.1)

where m is the mass of the mechanical mode, F(t) represents the total force applied to
the resonator and where we have dropped the subscript 7, since from now on we will
always focus on a single resonance. I'y, and wp, are the decay rate and frequency of the
mechanical mode. The decay rate will be discussed in more detail on chapter 4. The
frequency can usually be either calculated, if the geometry of the mechanical oscillator
is simple enough, or simulated.

By Fourier transforming equation 2.1 we can rewrite it in the form x(w) = ym (W) F (w),
where w is the frequency and yn, (w) is the mechanical susceptibility which describes the
resonator’s displacement in response to applied forces:

1 1
Am(@) = —— (2.2)

m ws, — w? — iTpho

As such, by measuring x(¢) with respect to a known force F(¢) and performing a Fourier
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transform of both, one obtains the mass, frequency and decay rate of the particular res-
onator normal mode which is being studied.

Often, x(¢) is acquired by a spectrum analyzer. This tool measures the variance
Var [x(?)], which is equal to (x2(8)) if the mean is zero, and performs its Fourier trans-
form, outputting (x?(w)) [22, 23]. Using the Wiener-Kinchin theorem we learn that

(P (@) = Syx(),

where Sy (w) is the power spectral density of x(¢) [13].
Assuming once again that our system is linear, we can write

Sux (@) = |ym @) Srr(@),
where Srr(w) is the power spectral density of the force applied to the resonator. If the
device is in thermal equilibrium with an environment of temperature T,
ks T
Spr(@) = 2—=—Tm [y, ()] = 2mks TT,
w

where kg is Boltzmann’s constant. This leads to a thermally driven displacement power
spectral density which follows a Cauchy (Lorentzian) distribution [22, 24]

2kgT 1
Mmomlm 1+4(@n - 0)2/T2,

Sxx(w) = (2.3)

The previous equations give us the tools to interpret the spectra of mechanical res-
onators measured with a spectrum analyzer. They were derived from a classical interpre-
tation of the resonator’s motion. However, this can also be analyzed from the perspective
of a quantum harmonic oscillator. One of the key results of this picture is that even if the
oscillator has a phonon occupancy 71 = 0, its position still has a non-zero variance xﬁpf,
where

h

2mwn

prf = (2.4)
is the zero-point fluctuation of displacement and 7# is the reduced Planck constant.

If the resonator is in thermal equilibrium with its environment, it will have a thermal
phonon occupancy ny, = kg T/Hwy, [13]. The rate of thermal phonon coupling between
the resonator and the environment is given by

ninI'm = kg T/ Qm,

where Qn, = wn /Ty, is the mechanical quality factor. This interaction acts as a deco-
herence mechanism of the resonator. As mentioned on the introduction, in order to
perform quantum optomechanics experiments it is necessary that the resonator can os-
cillate coherently at least a few times, i.e.

Wm kgT kgT

>Slowp>— < Wy > —.
7T ™ gy mOm Ty

In this context, it is typical to compare mechanical resonators based on Qp, fi, where
wm = 27 fy, and the previous inequality can be written as Qu, fin > kg T/ h = 6.25 x 10'2 Hz.
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X

Figure 2.1: Schematic representation of a Fabry-Perot optical cavity, composed of two mirrors with reflectivities
R; and Ry. The mirrors have a distance L between each other. The left mirror is fixed, whereas the second can
suffer displacements of amplitude x around its resting position.

2.2. OPTICAL CAVITIES

Fabry-Perot interferometers are perhaps the most commonly known type of optical cav-
ities. These consist of two mirrors with reflectivities R; and R, which are aligned to each
other just as in figure 2.1. An incident optical beam that is transmitted through the input
mirror undergoes multiple reflections inside the cavity before it couples out of it. The
spectrum of a Fabry-Perot cavity results from the interference between all these partially
reflected and transmitted beams. Assuming there are no losses, the reflection and trans-
mission spectra are given by [25]

(VR - VR;)® + 4R Ry sin? (¢)

R = (2.5)
T (1= VR + 4V Ry sin? (¢)
(1-R)1-Ry)
Tiossless = : 2 (2.6)

(1- VRRG) + 4y RiRssin? (¢)

where 2¢ is the phase light acquires after a round-trip inside the cavity. This is usually
the sum of the phase shift caused by the reflections at the mirrors and the propagation
phase 4rnLcos(0)/A. In this, n is the refractive index inside the cavity, L is the distance
between the two mirrors, 6 is the angle between light’s propagation direction and the
cavity axis, and A is the wavelength of light. From here on we will assume n = 1 and
6 =0, i.e. that the cavity is empty and that light propagates parallel to the cavity axis.

Figure 2.2 contains the reflection and transmission of a Fabry-Perot cavity with R; =
R, = 0.9 as a function of phase ¢. The reflection is minimized (and the transmission
maximized) when ¢ = g, g € Z. These points are called the cavity resonances. Neglect-
ing the phase shifts introduced by the mirrors, the resonance condition can be written
as

2nL c
¢=T=qﬂ©vq=qz 2.7

where we have used ¢ = Av. This equation indicates the frequency of the cavity reso-
nances. Notice that the mirror phase shifts would only add a constant offset to all reso-
nance frequencies. The frequency difference between consecutive resonances is c¢/2L, a
constant which we name free spectral range (FSR).

Another interesting observation from figure 2.2 is that as the mirror reflectivities in-
crease, the resonances become narrower. For high reflectivities, the full width at half
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Figure 2.2: Reflection and transmission intensity coefficients of a lossless Fabry-Perot cavity as a function of
phase ¢, according to equations 2.5 and 2.6. The mirror reflectivities are equal (R} = Rp) and vary from 0.6
(lighter traces) to 0.9 (darker traces).
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Figure 2.3: Reflection and transmission intensity coefficients of a lossless Fabry-Perot cavity as a function of
phase ¢, according to equations 2.5 and 2.6. The reflectivity of mirror 2 is kept constant at Ry = 0.9, whereas
R varies from 0.6 (lighter traces) to 0.9 (darker traces).

maximum (FWHM) of these resonances, expressed in terms frequency, is given by [26]

K 2m
— =FSR———. (2.8
2n —In (Rl Rz)
The ratio between a cavity’s FSR and FWHM is called the finesse
2nFSR 2m 2n
F= = ~ (2.9
K —In(R1Ry) (1-R)+(0-Ry)

where the approximation assumes that the reflectivities are close to 1. The finesse can
be interpreted as the average number of round-trips that a photon travels in the cavity
before it is either transmitted through one of the mirrors or lost, for example through
absorption or scattering.

When R; = Ry, Riogsless = 0 and Tjogsless = 1 on resonance. The same does not happen
if the mirror reflectivities are different from each other, like represented in figure 2.3. In
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this case, the transmission (reflectivity) reaches a lower (higher) value. Analogously to
transmission lines, it is common to say that a cavity’s mirrors are impedance matched or
mismatched if they are equal or different, respectively. This is typically quantified by the
cavity contrast, which is defined by 1 — Rjggsless O resonance [27]. This is also colloquially
called the reflectivity dip depth.

In case there are intensity losses, for example through scattering or absorption at the
mirrors or somewhere inside the cavity, the reflected and transmitted powers do not add
up to one and so the models must be altered. A simple change which can take losses into
account is through adding to the previous equations a round-trip intensity loss 1 — A:

(VR - VR A) +4y/Ri R, Asin? (¢)

lossy = 5 : (2.10)
(1- VRIR2A)” +4v/R Ry Asin? (¢b)
1-R)(1-Ry)A
Tiossy = ( ol 2) (2.11)

(1- VR R A) +4y/R R, Asin? (¢)
Absorption worsens the cavity finesse. Equation 2.9 can be generalized to include losses
by defining the round-trip losses p = (1 - R;) + (1 — R2) + Aas F =2n/p.

So far the discussion considered a cavity composed of two infinite plane mirrors par-
allel to each other, with an incident plane electromagnetic wave with wavevector per-
pendicular to the mirrors. In this case, we can simply describe the cavity modes as plane
waves as well. However, in practice mirrors have a finite size and laser beams have a
gaussian profile. As a gaussian beam propagates back and forth inside the cavity, its
width (in the direction transverse to the cavity axis) increases. If the width is larger than
the mirror size, part of the light is lost through diffraction losses [25, 26]. Due to this, it
is hard to make high finesse cavities with a parallel-plane cavity geometry, since it im-
poses strict parallelism between the mirrors and also that they have a large area. Instead,
one typically uses spherically curved mirrors. In certain conditions, cavities composed
of spherical mirrors can have modes which are stable, in the sense that the beam width
does not increase after one round-trip and, therefore has lower diffraction losses.

A cavity can sustain stable modes if the condition 0 < g g» < 1 is met, where g; =1—
L/ROC; is the stability parameter and ROC; is the radius of curvature of mirror i [25, 26].
In a plane-parallel cavity ROC; = oo, and therefore the above product would be 1, right on
the limit of the stability condition. Commonly, stable cavities sustain Hermite-Gaussian
modes [25, 26], whose electric field distribution is described by

)Hm(\/§

where z is longitudinal direction of beam propagation, x, y are the transversal axes, Ey
is the field amplitude, wy is the beam waist radius or spot size, w(z) is the radius of
the beam at a distance z from the spot, H; are Hermite polynomials of order j, k is the
wavenumber, and 71 = arctan (/lz/ b4 wz). | and m indicate the order of the transversal
mode. The cavity spot size wy is defined by the geometry of the optical resonator [26]

LA 1- 174
wo =1 = [ 1go(l—g1g2) |7 (2.13)
|l (g1+82—28182)

wo
E;m(x,y,2) = Ep——H|

( 5 X )e-%e_ikznmnmm 2.12)
w(z) w(z)

w(z)
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The last term of equation 2.12 is the phase of the Hermite-Gaussian modes, which
include a propagation term —ikz, and the Gouy phase i(1 + [+ m)n. The latter is an
important term which can help us differentiate the behaviour of the multiple transversal
cavity modes. By considering its effect on the cavity resonance condition we arrive at an
improved description of the cavity spectrum [23, 25, 26]:

c 1+1+m
Vaim=— q+Tarccos(i\/g1g2) . (2.19)

2L
Each of these modes is an independent peak on the cavity spectrum. When a Gaussian
beam is sent to an optical cavity, it is split into all the transversal cavity modes accord-
ing to the projection of the incident beam to these modes. This projection tells us how
much of the incident beam energy propagates in each transversal mode. It also affects
the contrast of each resonance. One is usually interested in the situation when most of
the incident beam is coupled to the fundamental transversal mode I, m = 0. For this to
happen, the spot of both incident beam and fundamental mode must be located at the
same position and must have the same radius wy. The process of adjusting the incident
beam to maximize its overlap with the fundamental cavity mode is called mode match-

ing.

2.3. CAVITY OPTOMECHANICS

2.3.1. LINEAR COUPLING HAMILTONIAN

The electromagnetic field can be quantized, giving rise to a description of light as quan-
tum harmonic oscillators with a distribution of single photon energies ziw [9]. Inside
an optical cavity, the energy spectrum is restricted to the cavity modes iwg,;,,, Where
Wq,1,m = 27V q,1,m is given by equation 2.14, for the case of a Fabry-Perot cavity. Since
we will always be concerned with the same optical mode, the mode indices will be from
now on dropped and the cavity mode frequency will be labeled as w.. The total energy
in a mode is given by the product of the single photon energy with the total number of
photons in the mode 7i.. In mathematical form, the Hamiltonian is given by

N 1
thwc(ﬁc+§).

Recall that even if a quantum harmonic oscillator is not occupied (i.e. if 7ic = 0), it still
has a zero-point energy of iw./2, as can be read from the previous equation.

In a similar fashion, the motion of a mechanical oscillator can also be quantized.
Considering a particular mechanical mode with frequency wy, and phonon number 7y,
the Hamiltonian of a system containing two independent optical and mechanical modes
is

H=hoche + hom iim

where the zero point energy 7 (w¢ + wm) /2 has been dropped.

Consider now the situation in which the optical and mechanical oscillators are some-
how coupled. For example, one of the cavity mirrors might be allowed to move, modu-
lating the cavity length and, therefore, the cavity mode spectrum. In such a dispersive



2.3. CAVITY OPTOMECHANICS 11

cavity optomechanics system, the cavity frequency becomes a function of the mechani-
cal resonator’s position x:

H = hwe(x) Aig + wm Aim.

We are typically concerned with small mechanical displacements. As such, the previ-
ous equation can be approximated by expanding w.(x) into a sum of Taylor polynomials
and discarding terms with an order larger than 1, thus arriving at the linear coupling
Hamiltonian

3 3
W) o) e+ Heog i = o (0) g + o iy + 22

H=h|wc(0)+ £
G = 0w (x)/0x is called the optomechanical coupling strength and it represents the cavity
frequency shift per unit of displacement [28].

Recall that 71, = @' a4, where a' and a are the creation and destruction ladder opera-
tors or the specific light mode we are studying. Similarly, 71, = b'b, where b and b are
the ladder operators of the mechanical oscillator. The ladder operators can be used as
well to describe the mechanical displacement as X = xzpf(I;T + b), where Xzpt is the zero-
point displacement amplitude, as defined in equation 2.4. The Hamiltonian of the last
equation can now be rewritten using the ladder operators as

H =~ hw:0)a'a+honb b+ RGxyps (IAQJr + f)) a'a.

where the first two terms are the uncoupled resonator energies and the last term is the
dispersive optomechanical interaction. The product go = Gx,py is called the vacuum or
single photon/phonon coupling rate and it quantifies the cavity frequency shifts due to
the mechanical vacuum fluctuations. In other words, it is a measure of the interaction
strength between single photons and phonons. gy is a particularly useful value which
allows comparing optomechanical systems with distinct properties.

It is often relevant to compare gy to the cavity linewidth x. The ratio go/x deter-
mines how much the cavity frequency shifts in relation to the cavity linewidth when the
mechanical resonator has a displacement of x,,¢. If go/x > 1, the system is said to be
strongly coupled at the level of single quanta. In this case, a single phonon excitation is
able to shift the cavity resonance by more than the cavity linewidth, making the optome-
chanical interaction non-linear and the system energy spectrum anharmonic [28, 29].
This regime is crucial for quantum optomechanics experiments such as photon block-
ade or efficient production of non-classical optical and mechanical states [28]. How-
ever, apart from atomic clouds [30], all optomechanical systems have so far gyo/x < 1.
The most common approach to reach single-photon/phonon strong coupling is to max-
imize the overlap between the optical and mechanical modes, such as with nanobeams
or zipper-cavities. Indeed, the best results reported to date are with slotted photonic
crystal cavities with go/x = 2 x 1073 [20, 31]. This is still far from strong coupling and
there is an intense research effort in the field to reach this regime.

The following subsections discuss the situations in which one or more mechanical
resonators are placed in the middle of an optical cavity, with a focus on calculating the
optomechanical coupling strength of both systems. Interestingly, the relative motion
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Figure 2.4: Frequency of several consecutive longitudinal modes of a Fabry-Perot (left) and MIM (right) as a
function of mirror and membrane displacement, respectively. The displacement is normalized by the laser
wavelength. Both cavities have the same length. The frequencies are subtracted by the laser frequency and
normalized by the FSR. The membrane reflectivity IrmI2 takes the values 0.4 (lighter traces), 0.6, 0.8 and 0.99
(darker traces).

between multiple mechanical resonators has a coupling strength that scales very favor-
ably with the reflectivity of the individual elements, offering a promising path towards
reaching the strong coupling regime.

2.3.2. FABRY-PEROT

The previous subsection did not specify an equation for the optomechanical coupling
strength G since this is dependent on the details of the particular system one is inter-
ested in. One of the simplest cases is that of a Fabry-Perot cavity in which one of the
mirrors can move, such as represented in figure 2.1. In that situation, the frequency of a
particular cavity mode is wE (x) = 2w qc/2(L+x) (eq. 2.14) where q is the index of the lon-
gitudinal mode which is being studied (assuming that this is the fundamental transversal
mode and ignoring additional frequency offsets) and x is the displacement of the mirror
from the average cavity length L. With this we have direct access to the coupling strength
of a Fabry-Perot:

dwP(x) 8 qc wiP(x) PSR

_ = —47— 2.1
0x n6x2(L+x) L+x d A (2.15)

Grp =

where ¢ = AwE?/27. The left plot of figure 2.4 shows the cavity frequency for a few con-
secutive longitudinal FP cavity modes as a function of displacement of one of the mir-
rors. Since the displacement is typically very small in comparison to the cavity length,
the cavity frequencies appear to decrease linearly with displacement with a constant rate
GFp.

2.3.3. MEMBRANE-IN-THE-MIDDLE

One extension of the simple Fabry-Perot cavity is the case when the mirrors are fixed
rigidly but a mechanical resonator is placed in the middle of it. The first experiments
of this type used a membrane in the middle (MIM) of an optical cavity [14, 32], but the
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Figure 2.5: Schematic representation of a membrane with reflectivity Ry, = |rm|? in the middle of a Fabry-
Perot optical cavity, composed of two mirrors with reflectivities Ry and Ry. The mirrors are fixed at a distance
L between each other. The membrane can undergo displacements of amplitude x around its resting position.

mechanical element can also be a nanosphere, a cantilever, or any other type of me-
chanically compliant scatterer [33]. This is schematically represented in figure 2.5. As
the membrane moves along the cavity axis, it changes the boundary conditions of the
electric field and, consequently, the optical spectrum. One advantage of a MIM system
is that the mechanical and optical properties can be decoupled from each other. This
means that in principle one can study a mechanical element with arbitrary characteris-
tics and change the cavity finesse independently, whereas in other systems these two are
often coupled together and suffer from technical trade-offs.

To obtain an expression for a MIM’s cavity frequency as a function of the membrane’s
position wM™(x) and, consequently, the optomechanical coupling strength Gy, we
analyze the system in one dimension (along the cavity axis) and separate the electro-
magnetic field into forward and backward propagating planewaves in different regions,
labelled by the index i. The waves share the same propagation constant |k| = w./c but
have different amplitudes a; and b;, as indicated in figure 2.5. In the paraxial beam ap-
proximation, this type of problem can be solved using the transfer matrix method [25,
34-36]. For this the system is separated into individual building blocks, such as free-
space propagation and scattering. Each of these can be described by a 4 x 4 matrix M
which, when applied to the field amplitudes on one side i of the block, outputs the field
on the opposite side i — 1:
aj-1 a;

bi_q b;

The free-space propagation over a distance d can be represented by the matrix

=M

eikd
Mp(d) = 0 e-ikd

and the scattering at an infinitesimally thin element with amplitude reflection and trans-
mission coefficients r and ¢ by
-r 1]

1 [ —r?
Ms(r,t)s;[ ’ r]

We can now transform the MIM into a product of these two matrices:

Qin ay at
=M

) = [

L L
b |~ M;s(rm, tM)Mp(E + ) Ms(rm, tm)Mp(E —X)Ms(rm, tm)
r
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where ry; and f are the amplitude reflection and transmission coefficients of the mir-
rors and ry, and f, those of the membrane. x is the displacement of the membrane from
the center of the cavity. We assume that the mirrors have the same amplitude reflection
and transmission coefficients, and that they are lossless (i.e. [ry|> +|fv|?> = 1). The mem-
brane transmission and reflection coefficients are given by [37, 38]

o 2n . (n? - 1)sin(knl)
M7 2incos(knl) + (n2 + Vsin(knl)’ ™ 2incos(knl) + (n? + 1) sin(knl)

where 7 is the refractive index and [ the thickness of the membrane.

Having defined the matrix My, the overall amplitude transmission #v and re-
flection rypv of the system can be calculated by taking the matrix elements Mf\l,[g/l as
follows [34]:

M2

1 MIM
IMIM = ——5— TMIM = —5— (2.16)
MIM MIM

Thus using this method one can obtain a full description of the MIM system. It should
be pointed out that it is not necessary to assume that the mirrors are lossless nor that
they have the same transmission and reflection coefficients. However, these assump-
tions strongly simplify the analysis and they do not impact the cavity resonance fre-
quencies, which is what we are interested in finding. These frequencies can be found
by maximizing | tprm |2, which gives [37, 39]:

19 (19
wg/HM(x)z.’ZnFSR q+( 21) —( ;) arccos(lrmlcos(MTx))] (2.17)

where ¢ is the index of the mode. This expression assumes that the membrane is loss-
less, i.e. that |ryl? +|£ml? = 1. The right plot of figure 2.4 represents 0™ (x) for differ-
ent membrane reflectivities Ry, = |rm|?. Just as expected, equation 2.17 reduces to the
frequency of an empty Fabry-Perot (eq. 2.7) when ry, = 0, with equally spaced longitudi-
nal modes and no dependency in the displacement of the fully transparent membrane.
However, if the membrane is reflective, the behavior of a MIM is markedly different.
There are two regimes which are particularly interesting.

The first is the regime for which the cavity frequency depends linearly on the dis-
placement. This occurs for small displacements close to x = 1/8 + nA/4,n € Z. Around
these positions, the first derivative of the cavity frequency, which was defined in subsec-
tion 2.3.1 as the linear coupling strength, is given by

MM (x)
0x

FSR
)=8nT|rmI=ZGFp|rm|. (2.18)

GMIM = max (‘

From the last equality we learn that the coupling strength of a MIM system can be twice

as high as that of a Fabry-Perot with the same cavity length, if the reflectivity of the mem-
brane is large enough.

The second regime of interest occurs around x = A/4 + nA/4,n € Z. For small dis-

placements around these positions, the first derivative of @™ (x) vanishes and the fre-

quency depends quadratically on the displacement. Just as for the linear coupling, we



2.3. CAVITY OPTOMECHANICS 15

R, < L H > R,
i
- ' R R ' l-

Figure 2.6: Schematic representation of a membrane with reflectivity Ry, = |rm|? in the middle of a Fabry-
Perot optical cavity, composed of two mirrors with reflectivities Ry and Ry. The mirrors are fixed at a distance
L between each other. The membrane can undergo displacements of amplitude x around its resting position.

can define a quadratic coupling strength [28, 32]

azwg’HM (x)

0x?

2 _
GMIM = max(

) — 3072 FSR [7ml
- 2
A \/1_|rm|2

and a quadratic vacuum coupling rate g(()Z) = Gﬁingpf.

It is interesting to note that by displacing the membrane by 1/8, the system’s main
coupling mechanism can be easily tuned from linear to quadratic. This is another advan-
tage of the MIM platform, which is not easily achievable in other systems. The quadratic
coupling regime offers different physics which do not have as much attention in the op-
tomechanics community. Also in this thesis we will focus our attention on the properties

of the linear MIM coupling.

2.3.4. OPTOMECHANICAL ARRAYS

From the previous subsection we learned that Gy increases with the membrane am-
plitude reflectivity coefficient. This can also be seen in figure 2.4. However, this scaling
is linear, which means that only modest gains can be made even with highly reflective
membranes. In fact, the best reported go/x MIM ratios are of the order of 10~% which is
still quite far from the strong coupling regime [14, 40].

Curiously, some theoretical proposals predict that variations of the MIM configu-
ration can result in strongly enhanced linear optomechanical coupling strengths and,
consequently, may provide a path towards strong coupling [21]. These consist in placing
more than one scattering element with similar mechanical and optical properties in the
middle of a cavity. If the scatterers are somehow coupled together, for example through
the electromagnetic field that travels between them, their motion can be described by a
set of collective motional modes. We will discuss the coupling of two particular collec-
tive modes of motion to the optical cavity: the center-of-mass (COM) mode, in which the
membranes move synchronously with each other, and the relative or breathing mode, in
which the COM remains constant but the distance between membranes oscillates.

Figure 2.6 represents such an optomechanical array for the particular case of two
membranes in the middle of a cavity. We assume that the membranes have the same
amplitude reflectivity r, and mechanical properties. The membranes have an initial
spacing between them of / and can undergo displacements of x; and x, in relation to
their resting positions. Defining the position of mirror 1 as the origin of the x axis, the
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COM can be found from L/2 + x; + x», whereas the relative distance between the mem-
branes is given by / + x, — x;. Similarly to the previous subsection, this problem can be
solved using the transfer matrix method. The matrix which defines the whole system is

L-1+x L-l-x;
T)Ms(rm» tm)Mp(l + X2 — x1) Ms(rm, tm)Mp(T)Ms(rM» M)

M (rm, tn) Mp(
and the cavity frequency can be calculated once again from the maxima of the transmis-
sion function (c.f. equation 2.16). Several papers discuss this and alternative methods of
obtaining the cavity frequency of an optomechanical array [21, 38, 39, 41, 42], but in this
thesis we will only reproduce the results more relevant to us, pertaining to the optome-
chanical coupling strength of the COM and relative modes of motion.

The two-membrane array can be seen as a shorter Fabry-Perot etalon. As such, the
spacing between the membranes will define the reflectivity rr of the stack. If the mem-
branes move synchonously, the spacing between them and, consequently, the reflectiv-
ity, remains constant. As such, the COM motional mode couples to the cavity in a similar
fashion to a MIM. The COM coupling strength takes a similar form to equation 2.18 but
the reflectivity is now that of the stack of membranes [21]

FSR
GCM:8nT|rT|:2GFP|rT|- (2.19)
When using low reflectivity membranes, Gcy is can be larger than Gy since, in that
case, |rr| can be higher than |ry|. However, by adding a membrane, the system’s total
mass doubles. Therefore, the optomechanical coupling rate becomes

Xzpt

CcM zp

8 =2Ggplrrl—=

0 \/E

where X is that of a single membrane. If || is close to 1, ggM is actually lower than

g™ by a factor of v2. In a more general way, although Gcm does not depend directly
on the number of membranes used (but indirectly through the total reflectivity) the cou-
pling rate of a stack with N similar membranes scales as

Xzpf

g™ = 2Ggp |1

where x,pr is that of a single membrane.

For the COM mode, the membranes move synchonously and the distance between
them is fixed. Therefore, the reflectivity of the membrane stack remains constant. In
contrast, for the relative motional mode, the COM is fixed but the distance between
the membranes oscillates. As a consequence, the reflectivity of the stack varies more
strongly, introducing larger optical phase shifts and, thus cavity frequency oscillations.
This effect is most pronounced for small displacements around a certain spacing / for
which the membrane array is optically transmissive. In this case, the coupling strength
is [39]

[7ml
1Tl

Grel =2G (2.20)
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The previous equation is valid only for reflectivity values not too close to 1. We can see
that the coupling strength scales very favourably with the single membrane reflectivity.
As the reflectivity approaches 1, the coupling strength is capped at [38]

= GFP% = GMIM%- (2.21)
This means that the coupling of the relative motion between two membranes is en-
hanced by a factor of L/2! in comparison to the coupling of a single MIM, when the
membrane reflectivity is close to 1. This enhancement factor is geometrically defined
and if the membranes are placed close together in the middle of a long cavity, one could
aim at achieving coupling rates close to the strong coupling regime. As opposed to the
COM coupling, this effect scales favourably with the number of membranes in the array,
with a factor of N3/2 [21].

In conclusion, we have seen that the optomechanical coupling between the relative
motion of an array of membranes in the middle of an optical cavity can be very large,
provided that the membranes are close together and that their reflectivity is very high.
The challenge lies in successfully creating such structures while maintaining good me-
chanical properties. This thesis contains a series of experiments that culminates in an
optomechanical array of two highly reflective membranes which paves the way towards
the observation of coupling enhancement in the context of optomechanical arrays.







METHODS

HE goal of this thesis is to develop and study mechanical resonators for optomechan-
T ical experiments in membrane- or array-in-the-middle configurations. This chapter
contains a description of the devices that were used, in particular in what concerns their
design and fabrication. It also discusses the most important methods and techniques
used to perform the studies presented in the following chapters: two setups used to test
and characterize devices in terms of their mechanical and optical properties, followed
by a cavity setup, whose goal is to perform optomechanical experiments.

3.1. DEVICE DESIGN AND FABRICATION

3.1.1. DESIGN

The first membrane-in-the-middle (MIM) experiments were performed using square
membranes made of suspended silicon nitride (SiN) films [14, 37]. These films are typ-
ically created using low pressure chemical vapor deposition (LPCVD) on top of a crys-
talline silicon (Si) substrate. With this technique it is possible to obtain SiN films with
large intrinsic stress (~ 1 GPa), high purity and smooth surfaces. Due to these properties,
SiN square membranes can have large mechanical quality factors of 1 x 106 at 1 MHz and
low optical losses (imaginary part of the refractive index of ~ 1 x 106 at 1550 nm). This
makes them very interesting objects of study for MIM optomechanics experiments.

Recently many groups started exploring if and how the mechanical dissipation of
such devices could be improved even further. One possible approach is to design a struc-
ture around the membrane which impedes the leaking of phonons around the mechan-
ical resonance frequency which one is interested in interacting with. These phononic
shields effectively try to create a bandgap to avoid mechanical excitations from propa-
gating.

A different approach is to change the geometry of the membrane and its connec-
tions to the substrate in order to lower the mechanical dissipation through stress engi-
neering. This is the approach followed in this thesis. We suspend square membranes
with a side length of 100 ~ 300 pm using four ~ 10 um-wide tethers connected to the
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Figure 3.1: False-colored scanning electron microscope picture of three trampoline membranes fabricated on
the same Si substrate. The membranes patterned onto LPCVD SiN and suspended by four tethers. The right
figure is a zoom-in of one of the membranes, where the PhC pattern can be seen.

substrate. Figure 3.1 shows examples of this type of tethered or trampoline membranes.
Chapter 4 explores in more detail the loss mechanisms of this type of structure and how
their mechanical decay can be optimized to be at least two orders of magnitude better
than simple square membranes at the same fundamental resonance frequency.

In addition to manipulating the mechanical properties of SIN membranes, we study
and tailor their optical spectrum using photonic crystals. The following subsections ex-
plain their principle of operation, as well as how the devices are fabricated.

3.1.2. PHOTONIC CRYSTAL SLABS

As mentioned on the introduction, the mechanical resonators studied in this thesis are
thin silicon nitride membranes and we interact with them using perpendicularly inci-
dent optical beams. The reflectivity spectrum of such a thin film is well modelled by a
low finesse Fabry-Perot etalon (see section 2.2) in which the refractive index inside the
etalon is that of silicon nitride (n = 2 at A = 1550nm [43]) and the reflectivity of the in-
terfaces R = 0.11 can be calculated through Fresnel’s equations [44]. For a wavelength of
1550 nm, the reflectivity is a function of film thickness ¢, with a period 1/2n = 387.5nm,
and reaches its first maximum of 0.6 at A/4n = 193.75nm. Two problems arise. First,
one is often interested in using films thinner than 193.75 nm, for reasons which will be-
come clear on chapter 4. Second, for some applications it is crucial to have membrane
reflectivities much higher than 99 %.

To get around these issues, we pattern a square array of holes on the thin film in or-
der to create a photonic crystal (PhC) slab [45, 46]. The left side of figure 3.2 represents a
unit cell of such a device. The cylindrical holes have a radius r and are patterned with a
period a (also called the lattice parameter) onto a membrane with thickness ¢. Figure 3.2
(right) contains a cross-section view of a PhC slab. Suppose the device interacts with a
plane-wave with an incident wavevector k;. If the slab was not patterned with the PhC,
its reflection Er and transmission %t would be well modeled from the Fabry-Perot etalon
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Figure 3.2: Left: unit cell of a photonic crystal slab. The crystal consists on a series of cylinders with radii r
etched with a periodicity a onto a film with thickness ¢. Right: cross-section of a PhC slab and representation
of the wavevectors involved in the resonant response of the device.

model (egs. 2.10 and 2.11). In addition, the slab supports in-plane guided modes, rep-
resented by kg. The photonic crystal functions as a grating which diffracts the incident

beam and the guided modes. The diffracted wavevectors ka depend on the geometry of
the PhC. By careful design, it is possible to modematch the incident and guided modes,
resulting in an efficient coupling between 751 and %g, as well as between %g and E, : [47].
The interference between the highly resonant light which leaks out of the guided modes
with broadband direct reflection and transmission of the thin film results in spectral fea-
tures which resemble Fano resonances [48].

The plot in figure 3.3 is an example of the reflection spectrum of such a PhC slab. Due
to the symmetry of the unit cell, this type of structure is polarization independent for
normal incidence. The resonance wavelength Apyc is defined by the geometrical param-
eters of the slab. To find geometries for which Apy is close to our operating wavelength
of 1550 nm, we use simulation softwares which are able to estimate the spectrum of PhC
slabs. For this we have used Lumerical [49], a commercial simulator based on the finite-
difference time-domain (FDTD) method, as well as a S* [50], an open-source rigorous
coupled-wave analysis (RCWA) solver. These programs calculate the optical response of
a PhC slab when a plane wave of a given wavelength is incident on it.

With FDTD, the space is discretized and Maxwell’s equations are solved by approxi-
mating the derivatives as central-differences. This process is repeated such that the time
and space propagation of an electromagnetic wave incident on a PhC can be obtained.
With this method one can simulate the response of a short pulse incident on a PhC. By
Fourier transforming the time response we obtain the frequency spectrum. This makes it
asimple method to calculate the spectrum over a large range of wavelengths with a single
simulation. In addition, it is possible to simulate a whole structure composed of many
unit cells, as well as to define multiple types of incident beams, such as plane-waves or
Gaussian beams. Since the whole space and time must be discretized, this comes at the
cost of long simulation durations and large memory consumption.

By contrast, the RCWA method simulates the response of plane-waves incident on
the unit cell of a longitudinally periodic structure. The software divides the unit cell into
multiple layers (such as vacuum or silicon nitride) which can have arbitrary geometries
in the longitudinal directions. It then calculates the modes of the electromagnetic field
in each of the layers and solves the boundary conditions at the interfaces between lay-
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Figure 3.3: Example of the reflection spectrum of a PhC slab, resembling a Fano resonance, with resonance
wavelength Appc.

ers, assuming uniformity in the z direction and periodicity at the edges of the unit cell.
The reflected and transmitted waves are calculated as the sum of the electromagnetic
modes. The user must choose how many modes to use from the infinite basis of the
electromagnetic field. For simple structures, such as the PhCs used in this work, only a
small number of modes are necessary to accurately simulate the spectrum. Because of
this, and since it does not require a fine discretization along the z direction, RCWA can
be more efficient than FDTD. Each simulation calculates the electromagnetic field for a
specific wavelength. This can be repeated over the desired wavelength range.

When designing a PhC membrane, we start with a known device thickness and de-
sired resonance wavelength. We then run an algorithm which optimizes the lattice con-
stant a and hole radius r for which the spectral response of a plane wave perpendicu-
larly incident on a unit cell of a PhC with those dimensions has a resonance wavelength
close to the desired one. Given the simplicity of our structure and simulation, FDTD and
RCWA require similar computational times and therefore we have used both methods
for this application.

In some cases, we would like to study how a Gaussian beam, and not a simple plane
wave, interacts with the sample. If performed with FDTD, this would be computation-
ally expensive, since it would have to simulate a space with a volume considerably larger
than the actual Gaussian beam waist. Furthermore, each simulation would be specific to
a given beam waist. We know, however, that a Gaussian beam (and other types of beams)
can be composed from an infinite sum of plane waves with a continuous (Gaussian) dis-
tribution of wavevector angles. As such, one can simulate the spectrum of many plane
waves incident on the PhC unit cell at different angles and later recreate the response of
Gaussian beams with arbitrary waist radii. Each plane wave simulation is computation-
ally cheap and can be reused later for the recreation of any type of beam. This method is
explained in more detail on chapter 5.
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3.1.3. FABRICATION
This section describes the fabrication process in general terms. A more detailed discus-
sion can be found in [51]. The essential steps to fabricate a tethered SiN membrane are:

1. SiN deposition

The fabrication process starts with the preparation of the substrate. We use double-
side polished silicon (Si) substrates, with the crystal orientation (100) and a thick-
ness ranging from 100 um to 1 mm. The substrates are cleaned with RCA-1 and -2
processes, which remove organic and ionic contaminants, as well as stripping the
oxidized surface layer. Using low pressure chemical vapor deposition (LPCVD), a
thin silicon nitride (SiN) layer is uniformly deposited on top of the Si substrates at
a temperature of 800 °C (fig. 3.4a). After deposition, the substrate is slowly cooled
down. Due to their difference in thermal expansion coefficients, as the chip cools
down, SiN contracts more than Si, resulting in a net tensile stress of the thin film at
room temperature. Depending on the exact recipe, the stoichiometry of the film
can be controlled, as well as its final intrinsic stress. Using this technique we can
deposit films with a thickness between 25 and 300 nm and about 1 GPa of intrinsic
stress.

2. Lithography

The SiN layer is patterned using electron beam lithography. For this, a 500 nm-
thick layer of positive electron beam resist (AR-P 6200) is spun on the chip (see
fig. 3.4b). The trampoline and PhC patterns are exposed on the resist layer using
a Raith EBPG 5200 lithography system. We typically write an array of 3 x 3 devices
on a single chip. With this we can either sweep some parameter of the device ge-
ometry, or make 9 similar ones to test consistency of properties. The areas of the
resist exposed to the electron beam are developed using pentyl acetate (fig. 3.4c).

3. SiN etching

The resist pattern is transferred on to the SiN layer using reactive ion etching (see
fig. 3.4d). In particular we create a plasma of C,Fg/SFg or CHF; using an inductively
coupled reactive ion etcher, which etches the SiN both physically and chemically.
Once the pattern is transferred, the electron beam resist is stripped with an O,
plasma and a piranha (H,SO,/H,0,) solution (fig. 3.4e). Often it is also necessary
to pattern the SiN layer of the opposite side. In that case, we repeat the lithography
and SiN etching steps, taking care to protect the already patterned layer with resist
to minimize harm or contamination.

4. Sietching

The Si between the two thin film SiN layers is removed using a KOH wet etching
step (fig. 3.4f). We typically perform this process with a KOH concentration of 30 %
in weight and at 70 °C, which results in a Si etching rate of 44.5 um/h along the
(100) direction. The residuals from KOH etching are cleaned using a solution of
HCIL. Furthermore, organic residues from any of the previous steps can be cleaned
using a piranha solution. During this step, the SiN patterns are suspended and
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Figure 3.4: Schematic representation of the essential steps for the fabrication of tethered SiN membranes.
Adapted from [51].

therefore the chip must be handled with great care. Some of the structures which
we fabricate are very sensitive to shocks and surface tension forces between lig-
uids. Particular attention must be given to the way the samples are dried. For this
we use critical point drying, which greatly decreases the exposure of the sample to
large surface tension forces and to the commonly used N, blow drying.

Since we typically alter the geometry of the trampolines and the photonic crystal pat-
terns in almost every sample iteration, it is more useful to work with small chips rather
than a whole wafer. Therefore, we perform the SiN deposition on a 4" wafer, since this
step is common to every chip with the same thickness, which we afterwards dice into
10 x 10 mm? chips. Before dicing, we cover the wafer with photoresist on both sides to
protect the surfaces from scratches and contamination during dicing and handling. The
protective photoresist coating is stripped using acetone immediately before each chip
is used in a lithography step. If after stripping the chip still looks to have contaminated
spots, it is cleaned using a piranha solution.

If only one side of the chip were to be patterned with a trampoline, after the Si etch-
ing the unpatterned side would have a suspended square SiN membrane. To obtain a
trampoline with clear optical access on both sides, we must also perform a lithography
and SiN etching step on the side opposite to the trampoline. For single-trampoline de-
vices, we simply pattern a square on the side opposite to the device. This way, during the
Si etching, both sides of the chip are etched simultaneously, making this step take half as
long as if only one side were to be patterned.

In fact, it is crucial to minimize the Si etching time. Even though KOH etches Si
anisotropically, it is not perfectly selective to a single crystal orientation. In particular,
the etch rate ratio between the (100) and the (111) directions, which correspond to the
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perpendicular and parallel directions to the chip surface, is about 74:1. This results in
a small overhang around the trampolines which has a strong impact in the mechanical
properties of the devices. One method to decrease the overhang substantially is to use
a special chip holder which isolates the trampoline side and only exposes the opposite
one to the etchant [52]. With this, the process can be stopped as soon as the KOH etches
the Si underneath the trampoline, minimizing that side’s exposure to KOH and therefore
the overhang. However, this method is often cumbersome and time-consuming.

As it was briefly mentioned, the devices must be handled with care once suspended.
Whereas 200 to 50 nm devices are notoriously robust, mishandling thinner ones results
in unwanted consequences. The worst case is when the trampoline rips or shatters. Of-
ten, however, the device remains intact but with poor mechanical properties. As such,
we take great care to avoid shock collisions of the chip holder, strive to move the chip as
slowly as possible when immersed in liquids, and use critical point drying.

Finally, one must highlight the importance of cleanliness during the whole fabrica-
tion process. Any impurity that lays on the trampoline membranes, in particular on its
tethers, will strongly cripple its mechanical properties. Our recipes therefore include
many cleaning and optical analysis steps to ensure that the chips are clean. The chal-
lenge lies in guaranteeing that this is true over the majority of the chip, since our devices
span much larger areas than what is typical in other photonics applications. One detail
which is often overlooked is the drying step. If not done properly, whenever drying a chip
which was immersed on some liquid there is a chance of leaving residues on the surface
which might be hard to later remove. Water is particularly hard to dry properly. As such,
we try to always transfer the chip to a beaker with isopropyl alcohol, which has a much
lower surface tension and is therefore easier to dry.

3.2. MECHANICS CHARACTERIZATION SETUP

In order to characterize the mechanical resonators studied in this thesis, we have built a
dedicated setup based on the optical readout of the devices’ displacement. When a laser
beam is reflected off a sample, its phase ¢(t) depends on the device’s position x(#) as
¢(t) =2mx(t)/A, where A is the laser wavelength. In other words, the device’s movement
changes the optical path of the reflected beam and, consequently, its phase in relation
to a fixed reference. The Fourier transform of the phase oscillations give us access to
information about the mechanical resonances of the device.

Photodetectors are sensitive to light’s intensity but not its phase. Typically, in order
to measure the phase of an optical beam, one interferes it with a reference beam which
does not interact with the sample. The two beams interfere, which translates phase dif-
ferences between them into intensity variations, which can be measured with a pho-
todetector. If all other sources of phase oscillations are small or if they affect both beams
equally, then the phase difference between the two will primarily include signatures of
the sample. Perhaps the best known interferometry techniques are the Michelson and
Mach-Zehnder interferometers. Here we use a different technique, named Balanced Ho-
modyne Detection, which is described in the following subsection.

The setup is schematically represented in figure 3.5. For probing the mechanical dis-
placement we use a fiber coupled laser tunable from 1520 to 1570 nm (New Focus Vidia-
Discrete 6427). Only 10 % of this laser’s power is used to probe the sample, whereas 90 %
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Figure 3.5: Schematic of the mechanics characterization setup. FPC: fiber polarization controller; PID: propor-
tional, integral, differential controller; SA: spectrum analyzer; PM: powermeter; PD: photodiode.

is used as an interference reference (local oscillator). The probe goes through a fiber
polarization controller (FPC) and a circulator. After, it is combined with a 650 nm laser.
Although the optical components are designed for 1550 nm, they still allow the propaga-
tion of this red laser, which coarsely follows the path of the probe and, therefore, is used
as an alignment aid, since 1550 nm is not visible by naked eye nor by Si cameras. The
laser beams are coupled to free-space using a Thorlabs TC12APC-1550 triplet collima-
tor, with an output waist radius of 1.14 mm, and aligned to the sample with the help of
two steering mirrors. We focus the beam with a f = 125mm lens, resulting in a spot of
55 um at the sample. The beam is aligned to be perpendicular to the sample’s surface,
such that the light reflected from it couples efficiently back into the fiber collimator. The
beam goes once again through the circulator and 90 % of it is used as a signal, while 10 %
is measured by a powermeter (PM), which is useful during alignment.

In order to see the sample which is being measured, we set up a simple imaging sys-
tem. A white LED is coupled to the beam path through one of the steering mirrors, whose
back surface is unpolished, working as a light diffusing element. Light reflected from the
sample is focused on a Si camera. Together with the alignment laser, this allows us to
identify the positions of the probe beam and the sample.

The sample sits on two stick-slip piezoelectric translation stages from Physik Instru-
mente (Q-521). These stages have a travel range of 32 mm in both directions of the plane
perpendicular to the laser beam, making it possible to study four different 10 x 10 mm?
chips with multiple devices on each. We add a gold sputtered chip to the stage, which
provides a large, highly reflective surface with no topographical features, which greatly
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aids in the alignment of the laser beam to the translation stage plane. We also clamp a
small piezoelectric to the chip stage, which can be used to mechanically drive the sam-
ples.

The sample and stages are placed inside a vacuum chamber, which, with the aid of
a turbomolecular and a Roots pump, is able to achieve pressures as low as 1 x 10~8 hPa.
This is a particularly crucial component of the setup since, otherwise, the main damping
mechanism of samples with low intrinsic mechanical losses would be viscous drag from
collisions with surrounding gas molecules. The chamber can be pumped down close
to base pressure in approximately 2 h. Together with the large stage which allows us to
move between multiple chips in a single pump-down, this constitutes a practical setup
to quickly test devices with high mechanical quality factors. This was an important factor
for the experiment in chapter 4.

3.2.1. BALANCED HOMODYNE DETECTION
Balanced homodyne detection (BHD) is an interferometry technique which allows mea-
suring the field quadratures of a weak signal beam in relation to a stronger one, the local
oscillator (LO). The measured quadrature is defined by the phase difference between
both beams at low frequencies which can be arbitrarily chosen. In fact, this technique
is commonly applied in quantum optics to tomographically measure the quadratures of
signals with quantum properties, such as vacuum or squeezed states, which gives access
to their probability density distributions [53].

In a BHD we assume the signal (as(¢)) and LO (aro(?)) field amplitudes to be de-
scribed by

as(r) =as + 6 Xs(2) +6Ys(2)
aro(t) = [@o +0Xi0() +6Yio()] e

where @; represents the average vector of field i € {s,LO}, 6 X;(t) and §Y;(t) are small
fluctuations of the field quadratures around the respective average, and ¢ is the phase
difference between both fields. We assume that @ is parallel with 6 X;(#), which means
that 6 X5 () can be interpreted as amplitude and 6 Y;(t) as phase fluctuations of the signal
field. In the experiments described in this work, we are generally interested in measuring
the phase oscillations of the signal, i.e. § Y;(#), which contains information about the
motion of our mechanical oscillators.

As indicated in figure 3.5, the beams are combined in a beam splitter and measured
by two photodiodes, whose currents are subsequently subtracted. If the condition that
las| << larol is met, the difference between the photodiode currents i_(¢) is given by

i (1) = 2|as|larol cos(®) + V2| a0l [§ Xs(£) cos(p) + 8 Ys(£) sin(e)] . (3.1)

The first term of this equation is an offset to the current which does not vary with time.
Looking at the second term we find that by varying ¢ accordingly it is possible to mea-
sure any quadrature of the signal. In particular, setting ¢ = n/2, the equation reduces
to i_(f) = V2|a1ol 8 Ys(1), i.e. to a signal oscillating around zero and proportional to the
signal phase quadrature. Furthermore, this measurement does not depend on the sig-
nal’s, but on the LO’s amplitude. Thus it is often said that the LO acts as a gain factor to
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the signal quadrature oscillations. More detailed discussions of the BHD can be found
in multiple sources [23, 54, 55].

In practical terms, ¢ can have strong oscillations due to temperature drifts or me-
chanical vibrations of the setup which affect the signal and LO arms differently. This
results in strong variations of the bias term of the BHD output with typical frequencies
up to ~ 10kHz. To counteract this effect, one typically places a tool on the LO arm to ac-
tively control its phase and counteract the unwanted oscillations which shift the average
¢ away from 7/2. For this, one first acquires the low frequency component of the BHD
output current ("' (¢) = 2|a;| larol cos(¢). Note that close to ¢ = /2, i () can be
approximated by a linear function, symmetric around the origin. This can thus be used
as an error signal in a feedback circuit. This error signal is processed by a commercial
Proportional-Integral-Differential analog circuit board (Toptica PID110) and connected
to a fiber stretcher, a tool to control the phase of a signal propagating in an optical fiber,
explained in detail in the next subsection, on the LO arm. With this, we are able to ac-
tively keep ¢ = /2 and, therefore, lock the BHD at the point of highest sensitivity to
phase oscillations. The locking circuit compensates oscillations with frequencies up to
a few kHz, whereas the mechanical modes of our devices are at hundreds of kHz. There-
fore, the feedback loop should not affect the higher frequency measurements.

3.2.2. FIBER STRETCHER

A low-cost and straightforward way to shift the phase of a beam propagating through
an optical fiber is to change the optical path length, for example by stretching the fiber.
This can be done, for example, by tightly winding an optical fiber around a cylindrical
piezoelectric tube which expands when a voltage is applied between the inner and outer
sides. The stretchers we have built can be seen in figure 3.6a. The piezoelectric actu-
ator, model SMC4037T50111 from Steminc, has a diameter of 50 mm, a capacitance of
37.5nF, a piezoelectric constant ds3 = 320 x 10712 m/V and an unloaded resonance fre-
quency of 32kHz. This means that theoretically we can use this device to compensate
for phase oscillations up to this frequency. The holder for the actuator and the case to
enclose it were designed and 3D-printed inhouse. The 3D models are free to use and can
be found online [56].

Considering the situation in which a fiber is tightly wound around the cylinder and
that its length changes by exactly the same amount as the piezoelectric actuator perime-
ter 6 P, the phase change 6¢ can be calculated from 6¢p = N 27” né P, where A is the wave-
length, n is the refractive index of the optical fiber and N is the number of fiber loops
around the cylinder. Using the fact that the piezoelectric constant ds3z = r/V tells us
how the radius r of the cylinder changes when a voltage V is applied, we arrive at an
equation for the phase change as a function of voltage and number of loops

4 2
6¢:N%ndg3V.

This equation can be rearranged to provide the voltage to obtain a phase change of 7:

A
n = -
4nndss N
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Figure 3.6: a Picture of a homemade fiber stretcher. b Output of a homodyne detector as a function of the
modulation applied to a fiber stretcher in one of the interferometer arms. ¢ Typical magnitude response of a
fiber stretcher, together with a voltage amplifier and the low frequency output of a homodyne detector. The
dashed line indicates the frequency of the first piezoelectric actuator resonance.

We usually wind the fiber between 70 and 100 times, resulting in expected V, be-
tween 2.7 and 3.8 V. To measure the actual V;, we place the fiber stretcher in the local
oscillator arm of an unlocked homodyne detection scheme and measure the low fre-
quency output of the BHD as a function of voltage applied to the stretcher. This is shown
on figure 3.6b. Equation 3.1 tells us that the low frequency oscillations of the BHD follow
the cosine of the phase difference between the two arms, which is verified in the figure.
Vy is then half of the periodicity of this curve, which is 0.95 V.

The measurement shown in 3.6b was obtained by applying a ramp function to the
fiber stretcher at 500 Hz. The ramp was created by a signal generator and amplified using
a Falco WMA-200 low noise voltage amplifier. We also measured the magnitude of the
response of the same setup as a function of frequency using a vector network analyzer,
shown in 3.6¢. In this setup it was not possible to optimize the SNR, which is why the
measurement is so noisy. Even so, it is possible to observe the piezoelectric actuator
resonance at about 34 kHz.
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3.2.3. RINGDOWN SPECTROSCOPY

As mentioned before, if the BHD is locked at ¢p = n/2, its output current is propor-
tional to Y;(¢), which includes information about the sample’s displacement x(#). Us-
ing a spectrum analyzer, one directly obtains the power spectral density of the current
S;ii(w) which is proportional to the mechanical power spectral density Syx(w) (see eq.
2.3). Therefore, from the BHD current we gain access to the frequency and linewidth
of the mechanical resonances of the device under study. In this work we are concerned
with features of relatively low frequency (hundreds of kHz) and linewidth (down to a few
mHz). However, our spectrum analyzer (R&S FSV30) has a minimum resolution band-
width of RBW = 1Hz. In order to properly resolve such fine features one would have to
average the signal for along time or to acquire a long time trace and extract the mechani-
cal properties from its Fourier transform. But these methods expose the measurement to
artificial broadening mechanisms, limiting the minimum linewidth that we can measure
to a value close to the spectrum analyzer’s RBW.

An alternative is to measure the dynamics of the specific mode of interest, which is
achieved by integrating the spectrum within a certain bandwidth around the resonance.
Recall that the linewidth can be interpreted as the rate at which energy of a mode leaks to
the environment. As such, the mechanical linewidth I'y, can be obtained by resonantly
driving the resonance until it reaches an excited steady-stade and measuring the time it
takes for its energy to decrease by a factor of e~! after the driving force is stopped. This
technique is called ringdown spectroscopy and it is commonly applied to systems with
narrow linewidths, as is the case of high finesse optical cavities.

In a ringdown measurement one typically assumes the time evolution of the system’s
energy follows

W (1) = W(t)e™ m=),

where tj is the moment when the resonant driving force is stopped [22]. Notice that the
energy is related to the displacement by

1 2
W(t) = =mx“(t).
2
Therefore the previous equation can be rewritten as
X2 (1) = x*(fp)e TmU= ),

The area under the noise spectrum of a mechanical resonance wp, is equal to the average
of x2(t) over some integration time and bandwidth BW [13, 28]

wm+BW/2 dow
<x2> =f Sxx(w)—.
wm—BW/2 2n

BW must be larger than the expected linewidth but small enough so that the signal-to-
noise ratio is significant. If the integration time is much slower than I'y,,, the time evolu-
tion of (x?) can be used to obtain I'p,.

Experimentally, we use the spectrum analyzer to measure Si.(w) and integrate it
over some frequency range around the mechanical resonance of interest. Calculating
the total power in a certain bandwidth is a common procedure and in some spectrum
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analyzers this is called zero-span mode. We chose the BW to be close to 100 Hz and the
measurement is repeated at a rate much faster than the mechanical decay time. The
sample is driven with sinusoidal signal at the resonance frequency applied to a piezo-
electric actuator which is clamped to the sample stage. During this driving phase (x?)
increases from its thermal fluctuations level and soon reaches a steady state. Finally, the
driving is turned off, the decay of (x?) is acquired and Iy, is obtained from fitting this
decay to an exponential function.

3.3. OPTICS CHARACTERIZATION SETUP

In order to characterize the optical properties of our samples, in particular to study the
photonic crystal mirrors, we use the setup outlined in figure 3.7. With this setup we
measure light transmitted and reflected from a sample. By properly calibrating the setup
we gain access to the transmission and reflection spectra.

A fiber coupled Santec TSL510 wavelength-tunable laser is used as a light source.
Its polarization is adjusted with a fiber polarization controller (FPC) and the beam is
brought into free-space using a triplet collimator (Thorlabs TC12APC-1550). The first
polarizing beam splitter (PBS) is used as a polarizer to mitigate the effect of polariza-
tion drifts in the fiber part of the setup. The second PBS splits light into the beam that
is going to interact with the sample (incident beam) and a reference beam that is de-
tected by PD;es. We use the reference beam to remove the effect of power oscillations
from the measured spectra that are not related to the sample. Between the two PBSs we
place a half-waveplate (1/2) to control the power ratio between the incident and refer-
ence beams. After the second PBS, the incident beam is focused onto the sample us-
ing a lens set (between 1 and 3 lenses) which are adjusted to change the waist from 8
to 420 um. Light reflected by the sample is sent back into the second PBS. We place a
quarter-waveplate (1/4) in the incident beam path such that the reflected beam is sep-
arated from the incident beam by the PBS and then detected by PDg. Light transmitted
by the sample is recorded by PDt. The photodetectors are home-built surface-mount-
device circuits equipped with a JDSU ETX500 photodiode. By means of electronic design
and spectral characterization, a linear response to the optical input power is guaranteed.
An oscilloscope (Rhode & Schwarz RTB2004) records the output of all photodetectors si-
multaneously as the laser wavelength is scanned, allowing the acquisition of the sample’s
reflection and transmission spectra.

For alignment purposes, the A/4 waveplate is adjusted to allow reflected light to
propagate back to the collimator. If the incident beam is perpendicular to the sample
surface, which is the alignment that is usually desired, then the reflected beam couples
most efficiently back into the collimator. The back-coupled power is sent to a powerme-
ter (PM) using a fiber circulator and the sample’s tip, tilt, x, y and z positions are adjusted
to maximize this power. Care is taken to ensure good tip and tilt alignment with respect
to the incident beam, since the response of the PhC is very sensitive to the incidence
angle.

Using flip mirrors we are also able to send the transmitted or reflected beam into
an infrared CCD (Duma Optronics BeamOn-IR 1550). The camera helps during the tip
and tilt alignment of the sample, or acts as a reference during the alignment of the lens
system. It is also useful to assess if the sample affects the beam profile in any way.
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Figure 3.7: Schematic of the optics characterization setup. All beam splitters are polarizing. FPC: fiber polar-
ization controller; PM: powermeter; PD: photodiode.

To obtain the reflection and transmission spectra, the voltages measured by the pho-
todetectors have to be calibrated. Depending on the experiment, this calibration can
be based on some assumptions that make it more or less laborious. For example, if the
sample can be assumed lossless, then the calibration procedure is greatly simplified.
When studying individual photonic crystal membranes, the losses are usually lower than
1072 [57, 58], which cannot be resolved by this setup due to its uncertainty being on the
order of 1073, as we will see below. As losses become of the same order of the measure-
ment uncertainty, as in the case of double PhC membranes, it is important to calibrate
the setup in a way that allows us to directly measure such losses. Finally, in some sit-
uations we do not have access to the transmitted light, which requires calibrating the
reflected power in relation to a mirror with known reflectivity. These calibration meth-
ods are described in the following subsections.

3.3.1. CALIBRATION WITH KNOWN MIRROR

If there is no access to the transmitted beam, one can still estimate the reflection spec-
trum by comparing the power that the sample reflects to that which is reflected from a
mirror with well known properties. This requires two measurement sets: in the first we
place a mirror with known reflectivity R, in place of the sample and acquire the voltages
of the reflection V}gal and reference Vrcee;l photodetectors as a function of wavelength; in

the second, we replace the mirror by a sample and obtain V"¢ and V¢, The sample’s
reflection spectrum is then calculated as

VPhC /VPhC
_ 'R ref % R !
- al 1 cal-
vl e

ref
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The reflectivity of the calibration mirror is specified to be 99.8(3) %. Considering all mea-
surement uncertainties to be independent from each other, one can estimate the uncer-
tainty in reflectivity AR via the method of uncertainty propagation

=/ Z(OR(X) Ax)? ~0.006,

where x = {Vlf hC Vr?f‘c, VRcal, Vrf;l, Real}-

In the experiment described in chapter 5, to estimate the uncertainty of the beam
waist, the same propagation method was applied. As uncertainty parameters, the posi-
tion of each lens and its focal length was taken into account. The beam was propagated
through the lens system by means of the complex beam parameter and ABCD matri-

ces [26].

3.3.2. CALIBRATION ASSUMING NO LOSSES

If both the reflected and transmitted beam are accessible, a different calibration pro-
cess can be followed. Assuming that all loss sources are negligible, then the input power
Pi, = Pr + Pr, where Pg and Pr are the reflected and transmitted powers, respectively.
By definition, the reflection coefficient is given by R = 32 = = Pt PT The powers are pro-
portional to the voltages that the photodetectors output Assuming the photodetector
responses are similar, then R = Similarly, the transmission coefficient is given by

T —
VR+VT
The convenience of this method makes it a good choice when one is interested in

quickly characterizing the spectrum of many samples, for example during the resonance
wavelength optimization phase of the fabrication process, by sacrificing accuracy in R
and T. This method was thus not used in the results which are shown in the remainder
of this thesis.

V+V

3.3.3. CALIBRATION OF PHOTODETECTORS

More realistically, some of Py, is lost either in the optical components or by the sample
itself through scattering or absorption. As such, Py, # Pg + Pr. In this case we can ob-
tain the sample’s spectrum by properly calibrating all photodetectors in order to more
accurately estimate Pj,, Pg and Pr.

If no sample is present, then Pj, = Pr, assuming the losses at the last two lenses to be
negligible. By measuring € = Pt/ P,ef without a sample, we can later retrieve Pj, = € Py,
even if a sample is in the incident beam path. With this it is straightforward to obtain the
transmission coefficient as T = Pp/€Pyet.

The reflected beam suffers some losses when it goes through the 1/4 waveplate and
the PBS. These losses are not negligible and they are wavelength dependent. Therefore,
to obtain a more accurate reading from PDg, we once again place a mirror with known
reflectivity R, instead of the sample in order to measure y = Pr/Pjn Ry = Pr/€PretRin.
After, the reflection spectrum of a sample is given by R = PI‘}: =5 ep}i‘ref.

Contrary to the previous subsection where we assumed that all photodetectors re-
spond similarly, in this case we measure the responsivity k of each device, arriving at the
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following equations for the reflection and transmission spectra:

K1V
€K yef Vref
KrVR
Y€Kret Vief

An in depth explanation of this calibration procedure is given in [59].

3.4. CAVITY SETUP

As discussed in the previous chapters, our goal is to perform optomechanics experi-
ments by placing mechanical resonators in a membrane-in-the-middle (MIM) config-
uration. For this we have built a setup with an optical cavity inside a vacuum chamber,
which is outlined in figure 3.8. In this setup, two beams, named probe and pump, are
derived from the same laser. Depending on the measurement one wishes to perform,
this laser can either be a stable, fixed frequency laser (NKT Koheras Adjustik), or a highly
tunable one (New Focus TLB-6730 or Santec TSL510). The probe and the cavity are kept
resonant with each other using a Pound-Drever-Hall scheme (section 3.4.2), in which
the feedback signal can either tune the laser frequency or change the cavity length using
a piezoelectric ring. The frequency of the pump can be shifted using a single-sideband
suppressed-carrier (SSB-SC, Thorlabs LN86S-FC) modulation scheme [60-62]. The cav-
ity transmission is measured with a photodiode (PDr), and the phase oscillations of re-
flected light are measured with a balanced homodyne detector (section 3.2.1).

Most of the laser is initially split into a local oscillator (LO) for the BHD. As before, the
phase of this beam can be controlled with a fiber stretcher. After, it is brought into free-
space using a fiber collimator and its polarization is adjusted so it is fully transmitted
through a polarizing beam-splitter (PBS) which later combines the LO with the signal
beam. The two beams are then split equally into two photodiodes, whose difference
current provides the BHD signal that is used for spectral measurements and for locking
the phase of the signal and LO paths.

The remaining laser light is split into the probe and pump beams. The probe is phase
modulated with an electro-optical modulator (EOM, Ixblue Photline MPX-LN-0.1) to
generate sidebands for PDH locking. It is brought into free space and focused through
a Faraday isolator which will later send light reflected from the cavity into a detector for
PDH (PDppy) and BHD (PDgyp). After, it goes through a PBS that combines the probe
and pump into the same propagation path. The profile of the beam is matched to one
of the fundamental transversal modes of the optical cavity using three lenses placed in
between the cavity and two steering mirrors which are used to align the beam with the
cavity axis. These beams are then aligned to the optical cavity by repeatedly scanning the
laser frequency over a span large enough to include a few cavity free spectral ranges and
optimizing the ratio between light coupled to the fundamental transversal modes and
higher order ones. With proper alignment and mode-matching, we are able to reach ra-
tios as high as 96 %. The pump beam follows a path with similar optical components and
propagation length to that of the probe, which makes it possible to have similar coupling
efficiencies to the fundamental cavity mode for both probe and pump.
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Figure 3.8: Schematic of the cavity setup. All beam splitters are polarizing. LO: local oscillator; PM: power-
meter; PD: photodiode; PDH: Pound-Drever-Hall; EOM: electro-optic modulator; SSB-SC: single sideband,
suppressed carrier modulator; SA: spectrum analyzer; PID: proportional, integral, derivative controller.
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Similarly to the mechanics setup, the cavity and the membrane sit inside a vacuum
chamber to minimize viscous damping. The chamber is pre-pumped with a turbomolec-
ular and Roots pump set down to 5 x 10~ hPa. Below this pressure, the vacuum is kept
with an ion pump, which after a few days of pumping can bring the pressure down to
1x 108 hPa.

The following subsections describe in more detail the cavity design and properties.
The Pound-Drever-Hall modulation technique is also introduced. Even though it was
implemented in the setup, it is not required to understand the experiments described in
the following chapters.

3.4.1. CAVITY DESIGN

In designing an optical cavity one must specify the spatial mode profiles as well as the
cavity finesse [26, 63]. The mode profiles are set by the spacing between the end mirrors
as well as their radii of curvature. The finesse is given by the total cavity losses, which for
an empty cavity are the transmission from and scattering at the mirrors.

To study the membrane in the middle of the cavity, we chose to use mirrors with the
same radii of curvature. In order to obtain small waists between 25 and 50 pm, which are
fractions of the membrane widths that we are able to fabricate (100 to 300 um), the cav-
ity assumes a nearly concentric, or spherical, geometry, in which both radii of curvature
are approximately equal to half the cavity length. Short cavities result in high optome-
chanical coupling rates. However, they also increase the cavity linewidth and, as such,
the sideband resolution ratio wy, /x. We chose a cavity length L of approximately 50 mm,
which gives enough room to build the membrane translation system around it; results
in a free spectral range FSR = 3GHz, which is easily accessible with the frequency fine
tuning controls of our lasers and with the modulators and electronics at our disposal;
and gives us the chance of reaching sideband resolution with commercially available
mirrors. This length sets the radii of curvature to 25mm. Notice that in this concen-
tric geometry, the stability parameter of both mirrors is —1, which is on the edge of the
stability criterion (see section 2.2). Therefore, we slightly decrease the cavity length to
47.9mm (FSR = 3.13GHz), corresponding to a beam waist of 49 um (eq. 2.13). Having
defined the fundamental cavity mode profile, we use a beam propagation software to
calculate the focal length and position of the three lenses that match the shapes of the
beam right after the PBS which combines probe and pump, and that of the cavity.

The cavity finesse F, in combination with its FSR, defines the optical linewidth « =
FSR/F. A small linewidth is usually desirable, since it makes reaching the sideband re-
solved regime easier. However, it also makes the cavity more sensitive to length fluc-
tuations, which can complicate the laser locking procedure. We therefore opted to use
reflectivities for the front and back mirrors of, respectively, 99.9 % and 99.995%. This
results in a theoretical finesse and linewidth of 6000 and 240 kHz.

Figure 3.9a shows the cavity spectrum in transmission where the resonances are in-
dicated with a red dot on top. The high transmission features correspond to longitudinal
modes with similar transversal mode indices. In this case, we have aligned the cavity
such that these modes correspond to the fundamental transversal modes. The smaller
peaks are higher order modes to which a small part of the incident beam couples to.
Panel b of the same figure shows a zoom-in of the fundamental cavity mode. For this
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Figure 3.9: a Spectrum of the cavity transmission. The cavity modes are indicated by the red dots. The two
highest peaks correspond to consecutive longitudinal modes with similar (fundamental) transversal mode in-
dices, spaced by the cavity FSR = 3.13GHz. The smaller peaks are higher order transversal modes. b Fine scan
over one of the fundamental modes. The two sidebands are generated by an EOM modulated with a 3 MHz
sinusoidal voltage. A fit of the data gives a finesse of 8000 and a linewidth of 192kHz. ¢ Exploded view of the
cavity and the membrane stage assembly.

scan, the probe was weakly modulated using the EOM with a 3 MHz sinusoidal voltage.
The modulation creates sidebands at higher and lower frequencies of the carrier and
since the modulation is weak, we only need to consider the first order sidebands. These
will couple to the optical cavity and they are seen in the spectrum as the two peaks at
the left and right of the main resonance. The distance of the sidebands from the carrier
is well defined by the sinusoidal voltage modulation and can therefore be used to accu-
rately calibrate the timescale of the oscilloscope into a frequency scale, allowing us to
directly measure the cavity linewidth. In this particular case we have obtained a finesse
and linewidth of 8000 and 192 kHz, slightly better than predicted theoretically. However,
shortly after the cavity mirrors may have gotten dirty, increasing their scattering, chang-
ing these values to 2900 and 526 kHz.

The cavity assembly, as well as the membrane stage and the support structure that
connects both to the vacuum chamber is shown in an exploded view on figure 3.9c. The
cavity is composed of the grey structure on the figure top. The mirrors are mounted
inside the cubic structures, with a steel spacer in between. The bottom mirror holder
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includes a ring piezo which we can use to fine tune the cavity length by approximately
2.5um. On the figure bottom one can see a plate that connects to the vacuum cham-
ber. In between the support plate and the cavity there are two elevation stages which are
separated by rubber pads made of viton. These are included as a means to reduce the
coupling of mechanical vibrations from outside the chamber to the cavity. Finally, the
chip translation stage is shown on the right. It consists of a stack of stick-slip piezoelec-
tric stages (Attocube ANPx/z101) with a cantilever on top, where the chip is mounted.
The stick-slip assembly can move the membrane in x, y and z by 5mm. This gives us
great flexibility to align and study multiple devices in a single pump down. In addition,
the z element can be fine tuned over a range of 5 um. For tip and tilt control, the stages
are mounted on top of a kinematic plate (Thorlabs POLARIS-K1M4/M).

Although this setup was useful to perform the static measurements presented in
chapter 6, it could not be used for other typical cavity optomechanics measurements
due to difficulties in locking the frequencies of the laser and the cavity. Even though it
was possible to lock the cavity and the laser when the cavity was empty, the same was not
true with a membrane in its middle. After many tests and modifications of the detection
and feedback electronics, we concluded that the problem lies in low frequency mechan-
ical vibrations from the device positioning stage which couple dispersively to the cavity
frequency through the optomechanical interaction and which are amplified by the feed-
back loop, making the system unstable. In particular, the cantilever-shaped membrane
holder has its first mechanical resonance frequency oscillating along the cavity axis at
approximately 700 Hz. Interestingly, it was possible to lock the system if the optome-
chanical coupling was quadratic. In this regime, the cavity frequency depends on the
total energy of the mechanical resonances and not on the displacement itself. Since the
total energy changes much slower than the displacement, the effect of these low fre-
quency resonances became less pronounced, making it easier to lock the cavity and the
laser. Presently we are finishing building a revised cavity assembly in which several key
changes were made with the goal of increasing the system’s stability:

* The tip and tilt stage was modified to one which is more compact and can be cou-
pled to the rest of the setup in a more rigid and symmetric way;

* The x and y stages are now based on stiffer, more compact and ball-bearing based
manual translation stages; the z stage was removed, to make the system more
compact;

e The device holder was thickened, elongated and it is now partially clamped on the
opposite side of the cavity (still allowing freedom for x and y translation), pushing
its first relevant resonance frequency to above 7000 Hz.

More details about the new cavity design can be found in [64].

3.4.2. POUND-DREVER-HALL MODULATION

In experiments involving optical cavities one is often interested in having the laser fre-
quency w; to be the same or at a known offset from the cavity resonance frequency w..
However, both the laser and the cavity suffer from frequency noise (e.g. due to length
oscillations, thermo-optical drifts of the laser gain medium, etc.) which can have a large
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amplitude, making it impossible to passively make the two resonant. To counteract these
effects, one typically generates an error signal that carries information about the differ-
ence in frequency between the laser and the cavity, and actively tunes either the laser or
the cavity frequency to compensate for those differences.

The error signal must indicate in which direction the frequency of one of the ele-
ments needs to be changed in order to achieve resonance. Simply measuring the reflec-
tion or transmission of a probe incident to the cavity cannot generate a valuable error
signal, if the frequency oscillations are of the order or larger than the cavity linewidth,
since the intensity spectrum of the cavity is symmetric around the resonance and, there-
fore, does not provide information about the direction in which the frequency needs to
be corrected. However, the phase spectrum of a beam reflected from the cavity is asym-
metric around the resonance and can therefore indicate the direction of the frequency
correction.

As mentioned in section 3.2, one usually must interfere a beam with a known refer-
ence in order to measure an optical phase. In our experiment we use the Pound-Drever-
Hall technique to lock the cavity to the lasers [65, 66]. In this technique, the probe is
weakly modulated with an EOM with a frequency wppy, generating two sidebands at
frequencies w; + wppy and w; — wppy. wppy is chosen to be 27 x 17.3 MHz, much larger
than the cavity linewidth «, such that the sidebands do not couple into the cavity when
the probe is close to resonance. If the probe is approximately resonant with the cavity,
the phase of the upper and lower sidebands will be constantly shifted by +7/2, respec-
tively, and they can therefore be used as phase references. On the other hand, the probe
phase shift will strongly depend on how far it is from the cavity resonance. The inter-
ference between the probe and the sidebands therefore generates an error signal which
indicates the magnitude and direction of the frequency difference between the cavity
and the laser.

As shown in figure 3.8, we use signal generator to modulate the probe EOM. The
signal reflected from the cavity is measured by PD PDH and mixed with the same fre-
quency that modulates the EOM. The low frequency mixing component has the phase
information we desire for the error signal. The signal is therefore lowpass-filtered, fed
to a proportional, integral, derivative (PID) controller and sent to the piezo that controls
the cavity length, after being amplified. The feedback can alternatively be applied to the
laser frequency fine tuning modulator.

This type of locking technique is well described in the literature. For more details,
the reader can, for example, look into the very instructive article from Eric Black [66].







HIGH-(Q,, SIN MECHANICAL
RESONATORS

All quantum optomechanics experiments to date operate at cryogenic temperatures, im-
posing severe technical challenges and fundamental constraints. Here we present a novel
design of on-chip mechanical resonators which exhibit fundamental modes with frequen-
cies fm and mechanical quality factors Qy, sufficient to enter the optomechanical quan-
tum regime at room temperature. We overcome previous limitations by designing ultra-
thin, high-stress silicon nitride membranes, with tensile stress in the resonators’ clamps
close to the ultimate yield strength of the material. By patterning a photonic crystal on
the SiN membranes, we observe reflectivities greater than 99 %. These on-chip resonators
have remarkably low mechanical dissipation, with Qn, ~ 108, while at the same time ex-
hibiting large reflectivities. This makes them a unique platform for experiments towards
the observation of massive quantum behavior at room temperature.

This chapter has been published together with R. A. Norte and S. Groblacher in Physical Review Letters 116
(14), 147202 (2016) [67]
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4.1. INTRODUCTION

PTOMECHANICAL systems, where light is coupled to mechanical motion via the ra-
diation pressure force, have generated enormous interest over the past years as they
are promising candidates for testing macroscopic quantum physics, have great potential
as quantum transducers between distinct quantum systems, as well as for their capabil-
ities in sensor applications [13]. State-of-the-art systems have recently demonstrated
ground-state cooling [19, 68], mechanical quantum state preparation [16, 69], entangle-
ment [70] and squeezing of both the optical [71, 72], as well as the mechanical mode [73-
75]. Experiments involving such optomechanical systems in the quantum regime are
technically very challenging and so far have exclusively operated at cryogenic tempera-
tures. This poses serious restrictions on the type of experiments that are feasible. With-
out the need for cryogenic pre-cooling, one could envision their use as hybrid quantum
systems with for example atomic gases [76] or single atoms [77]. It would also open up
practical avenues for real world applications of such quantum optomechanical systems.
One of the most successful implementation of mechanical oscillators for such (quan-
tum) optomechanics experiments are devices made of high-stress silicon nitride (Si3N,),
which have been utilized in quantum-limited accelerometers [78], coupling of their mo-
tion to ultra-cold atoms [33, 79], optomechanics in 3D microwave cavities [80], quadratic
coupling in cavity optomechanics [14] and conversion between microwave and optical
signals [81].

However, even these low mechanical dissipation oscillators have to date not operated
in a regime where realistic quantum experiments at room temperature are feasible. The
benchmark for this elusive regime is the f,, x Q product of the resonator which requires
the mechanical quality factor Q, to be larger than the number of thermal phonons at
room temperature (fi, x Qm > kg Troom/h), with h being the Planck and kg the Boltz-
mann constant [82]. This regime will allow for ground-state cooling using the radiation
pressure force and hence allow for experiments operating in the quantum domain. In
general, the quality factor-frequency product also determines the number of coherent
oscillations the resonator can undergo before one thermal phonon enters the system, i.e.
Nosc = Qm fm - h/2mn - kg T. Experimental realizations of on-chip mechanical resonators
that exceed this requirement have all been demonstrated in higher-order mechanical
modes [83, 84]. Such mechanical systems are however in practice not useful for cool-
ing experiments as higher order modes are enveloped by numerous neighboring modes,
which increase the displacement background noise as one cools the mode of interest.
To avoid this limit, it is important to couple to the fundamental mode of the membrane.
An additional challenge is to operate at mechanical frequencies beyond 10° Hz, where
commercial lasers exhibit a minimal amount of classical noise and can relatively eas-
ily be quantum limited to shot-noise in order to avoid heating or decoherence through
noise [85]. Another difficulty for realistic quantum optomechanics experiments at room
temperature is that often good mechanical quality is mutually exclusive with good opti-
cal reflectivity [86-88]. This limits the achievable coupling rates and increases the neces-
sary optical power to a level where absorption becomes a practical limitation for cooling
and quantum experiments.

In this letter, we demonstrate the first optomechanical platform that overcomes all
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Figure 4.1: a Schematic of our tethered membrane which consists of a central membrane connected to the sil-
icon substrate through a series of thin tethers. The central photonic crystal reflector can be used for increased
reflectivities. Shown are our design parameters which are individually swept keeping all other parameters con-
stant to observe their effect on the fin x Qm product. Finite element simulations map out the strain throughout
the resonator and calculate deformation due to the relaxation of the material at the b tether clamps and c cen-
tral membrane, which together significantly enhance the tensile stress in the tethers. d Schematic of ringdown
measurement setup. The membrane is resonantly driven by a piezoelectric transducer inside an optical inter-
ferometer. We determine the mechanical dissipation by observing the ringdown of the mechanical resonance
(see text for details).

these limitations, paving the way for room temperature experiments in the quantum
regime. We fabricate on-chip optomechanical mirrors which exhibit f; x Qn products
of their fundamental mechanical modes above the requirement for ground state cooling
without cryogenics (figure 4.1). With a center-of-mass frequency of ~ 150kHz and me-
chanical quality factor Qp, ~ 108, this new-generation of SizN, tethered membranes is on
par with the state-of-the-art in optically levitated nanospheres, known for their extreme
mechanical isolation and ultra-low dissipation, which are only limited by gas-molecule
collisions in high vacuum and photon recoil-heating [89, 90].

In order to achieve such remarkably low dissipation rates of I', /27 = 1.4mHz with a
tethered system, we design ultra-thin high-stress SizN, membranes which enhance the
intrinsic stress in crucial tether regions - significantly reducing clamping and bending
losses [91]. A key observation is that high-stress membranes have mechanical frequen-
cies which are stress-dominated, meaning that one can minimize the thickness of the
resonator in order to reduce bending losses without significantly reducing the mechani-
cal mode frequencies. We fabricate tethered membranes with ultra-low dissipation rates
by engineering up to 6 GPa of stress within films as thin as 15nm and intrinsic stress
of 1.3 GPa. Using finite element simulations to calculate the stress throughout the res-
onators, we push the tensile stress in the resonator’s clamps to values near the ultimate
yield strength of low-pressure chemical vapor deposition (LPCVD) Si3N,. In addition, we
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are able to show that we can increase the intrinsic optical reflectivity R of these mem-
branes to up to 99.3 % by patterning a two-dimensional photonic crystal onto the struc-
ture. These structures enable coupling rates that allow ground-state cooling from room
temperature with realistic parameters in a membrane-in-the-middle design [37, 92-94]
and can also be used as an end-mirror of a Fabry-Perot cavity [87, 95-97].

4.2. DEVICE DESIGN

The central mirror on the tethered membranes is a 2-D photonic crystal device (see fig-
ure 4.2a), that is designed using finite difference time domain (FDTD) simulations. They
are similar to previous designs of grating reflectors [57] and photonic crystals [98, 99],
which usually consist of an array of either lines or holes etched into the dielectric, re-
spectively. Such a periodic change in the refractive index allows for a bandgap to be
tailored for a specific wavelength, resulting in (simulated) reflectivities > 99.9%. Exper-
iments to date employing such photonic crystal mirrors for optomechanical resonators
have however suffered from a trade-off between high reflectivity and high-mechanical
quality, due to the requirement of thick dielectrics in order to achieve large R [99]. We
confirm this by measuring PhC mirrors consisting of a square lattice of holes as a func-
tion of silicon nitride thickness (see section 4.6.3). In order to circumvent this design
issue we follow two slightly different approaches: we either leave a thick cylindrical slab
of SiN around the PhC (see figure 4.2b) or instead of using holes we use pillars, resulting
in an inverse photonic crystal (see figure 4.2c). While the latter design still suffers from
fabrication imperfections resulting in reflectivities of ~ 95 %, the other new design allows
us to reach R > 99% (figure 4.2d). We show that both methods decouple the mechani-
cal from the optical properties and allow for optomechanical devices with simultaneous
high-Qp, and high-R.

We also study the tethered membranes’ mechanical parameters, several of which suf-
fer from the conventional trade-off between either good mechanical quality factor or
high frequency (see figure 4.5 and table 4.4, Supplementary Information). For example,
extending the length of the tethers by increasing the size of the window a,, in order to
reduce clamping and bending losses not only results in higher mechanical quality fac-
tors but also lower frequencies [100]. Achieving ultra-high Qp, with this parameter will
result in very low fundamental modes, where low-frequency classical noise in lasers be-
comes a compelling limitation on radiation-pressure sideband cooling (for more detail
and discussion on design parameters see the Supplementary Information).

4.3. LOSS MECHANISMS

It is known that for fundamental modes of long, thin nanostrings (width w = 3 ~ 5 um),
mechanical dissipation starts to be dominated by bending losses [101]. By accounting
for the dominating effect of flexural bending near the clamps of tensile strings one can
express the quality factor for the fundamental mode of doubly clamped strings as [102,

103]

-1
an(tf)2+ E(rf)
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Qstr = Qbending (4.1)
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Figure 4.2: a Conventional design of a PhC membrane. The maximum reflectivity (1 — Tyyjn) strongly depends
on the thickness of the silicon nitride (see SI). For a this is in competition with the requirement of thin films
(i.e. small ) for good mechanical quality (cf. figure 4.4). We overcome this limitation by either leaving a thick
cylindrical slab in the center of the membrane b or by using an inverse photonic crystal design c. These designs
decouple the mechanical and optical properties of the membrane and show similar optical performances to a.
d Transmittance T of three different designs of tethered mechanical membranes. We experimentally confirm
the minimum transmission measurements by using a PhC membrane as one end-mirror of a Fabry-Perot cavity
in combination with a second mirror with known reflectivity and measuring the finesse. The thickness of the
photonic crystal tpy, was chosen to be 200 nm for all designs.

where E is the Si3N, Young’s modulus, o is the stress in the string, f is the film thick-
ness, L is the length of the nanostring, and Qpending is the quality factor due to bend-
ing losses in a relaxed string, which is mostly dependent on intrinsic material damp-
ing. From eq. 4.1, one finds that the quality factor of a string can be enhanced by us-
ing thinner strings with decreasing #. A crucial observation from thin plate theory is
that membranes under large tensile forces have stress-dominated mechanical frequen-
cies (i.e. fi1 = 1/(v2L)\/o/p, where p is the material’s density) which are independent
of membrane thickness. Since our devices’” dissipation is dominated by bending losses
through the tethers and their mechanical modes are weakly dependent on thickness, we
can engineer thinner membranes with increased mechanical quality factors and negli-
gible impact on the frequency. This design scheme overcomes the trade-off between Qp,
and fr, in order to realize optomechanical resonators with unprecedented enhancement
of the fundamental mode fi,;, x Qn, product.

In addition, substrate thickness also plays an important role in anchoring losses
for out-of-plane fundamental modes, where larger vibrational displacements of thin-




46 4. HIGH-Q SIN MECHANICAL RESONATORS

a 81— b

1 ¢ fin X Om > KeTroom/h o
N 1 | m = ¥m = T8 Troom 10" Om=(9.8+0.2)-107
Teq I 1 f = 140 kHz
3 54 200 um Si = ]
S 7] A
2] 500 um Si 5
§4‘ ! 900 um Si g 10" 3
x 3_- : ! o 1
P i ]

1] i * '

T T T T 10_2|"'|"'|"'|"'|"
0 50 100 150 200 0 100 200 300 400
SiN Thickness / nm Time /s

Figure 4.3: a Shown is the fm x Qm product for the nominal design (see text) of our tethered membrane for
various silicon substrate ({200, 500, 900} um) and SigN, film ({20, 50, 100, 200} nm) thicknesses. Each point is
the average of measurements on resonators with identical geometry. In addition we verified that the results
are independent of the particular PhC design. For thin silicon substrates (s = 200 um), the anchoring losses
completely dominate and result in minimal enhancement of the mechanical quality factor even at f; = 20 nm.
However, these ultra-thin films exhibit fi x Qm products above the ground state cooling limit (shaded region)
when fabricated on thicker substrates, where anchoring losses are less pronounced. b Ringdown measurement
for the best observed value for a single device with Qm = 9.8(2) x 107 at fm = 140 kHz for a 20 nm thick film,
with otherwise nominal parameters.

ner substrates near the clamping points of a fundamental mode significantly increase
mechanical dissipation [104]. Previous studies found some enhancement in 30 ~ 50 nm-
thick square membranes when moving from 200 pum substrates to 500 pm with a negligi-
ble effect in thicker SizN, films (; = 100) [22]. Silicon substrate thickness and silicon ni-
tride film thickness are the parameters we focus on to achieve significant enhancements
in fin x Q. We investigate these effects by fabricating our resonators from ultra-thin
films < 15nm and on substrates as thick as 900 pm.

4.4. RESULTS

We determine the mechanical quality factors of our membranes by performing ring-
down measurements using a piezoelectric stack in an optical interferometer (see fig-
ure 4.1d). Due to viscous damping, which becomes increasingly dominant with thinner
membranes, our measurements are conducted inside an ultra-high vacuum chamber at
~ 107" hPa. Positioning stages are used to align the chip with the membranes to a 20 um
spot of a 1550 nm laser. The chip is placed onto the piezolectric stack under its own
weight since any type of clamping or gluing of the chip to the experimental setup can
reduce the mechanical quality factor by several orders of magnitude [22]. Each of our
chips has 9-16 resonators which allow us to collect several data points for each param-
eter sweep. We start with a nominal resonator design (see Supplementary Information
for details) and adjust each parameter keeping others fixed.

In figure 4.3a we plot the effects on fi, x Qm by varying the thickness of the silicon ni-
tride films and silicon substrates for the nominal membrane design. We find that losses
in thicker SizN, resonators (f = 100nm) are dominated by bending losses. From the
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Figure 4.4: a Sketch of the stress-strain curve for silicon nitride. We design our structures such that for the
thinnest films we operate in the regime close to the ultimate yield strength of the material. b Microscope image
showing a nominal clamp with outer fillet royt = 20 pm and tether width w = 5 um when properly fabricated
with turbulence reducing holders. ¢ Typical necking deformation in very thin films (< 20nm). This occurs at
the tether clamps where the stress is the largest and when the resonators are being exposed to small viscous
forces or temperature gradients during fabrication. The tether is deformed to a width of ~ 1 um.

data we also see that low dissipation in ultra-thin resonators can be completely dom-
inated by anchoring losses in thin substrates (~ 200 um). A clear enhancement in the
fm x Qm product is observed, exceeding the above requirement for ground state cool-
ing at room temperatures as one fabricates thinner tethered membranes on increasingly
thicker substrates, where their anchoring losses are no longer a limiting factor on Qp,.
In order to push the devices to their material limits, we engineer the stress at the
clamps (the dominant source of flexural bending loss) to just short of the SizN, ultimate
yield strength (= 6.4 GPa [105]). At thicknesses < 15nm, the silicon nitride membranes
become increasingly susceptible to plastic deformation when subjected to small viscous
forces due to handling or large temperature variations during wet chemical processing.
Figure 4.4c shows the necking that occurs when the resonator is subjected to these small
forces which result in large frequency drops from ~ 170kHz to ~ 60kHz and reduction in
Qm to ~ 10°. Necking is a form of irreversible plastic deformation that occurs when ex-
cessively large strains localize in small cross-sections. In order to minimize such effects,
we use polytetrafluoroethylene (PTFE) turbulence shielding holders [106, 107] which
gently dilute the resonators from one liquid to the next during fabrication. This signifi-
cantly reduces the resonators’ exposure to viscous forces and surface-tension in the wet
chemistry processes required to release, clean and rinse the sample thoroughly [107]. At
thicknesses below 20 nm we observe consistently reduced Qp, ~ 107. Ultra-thin films be-
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low 20 nm produce delicate structures which make it difficult to attribute the lower qual-
ity factors to intrinsic limits of the sensitive handling during fabrication or whether other
surface-dominant loss mechanisms such as Akhiezer damping become more dominant
loss channels. Figure 4.3b shows a ringdown for our best device at 20 nm silicon nitride
thickness, 900 um wafer thickness and mechanical quality factor Qy, = 9.8(2) x 107 at a
fundamental mode frequency of 140 kHz (fi, x Qm = 1.37 x 1013 Hz).

With the demonstrated combination of large reflectivities and low mechanical dissi-
pation, we will be able to access the optomechanical quantum regime from room tem-
perature. A first demonstration of such quantum behavior could be achieved by cooling
the mechanical mode into its quantum ground state, which is already realistic with these
device parameters (see Supplementary Information for detailed calculations).

4.5. CONCLUSION

To conclude, we studied the dissipation mechanism in a new regime of ultra-thin, highly-
stressed optomechanical resonators and their effects on mechanical quality factor and
fundamental mode frequency. By moving to these thin devices on thick silicon sub-
strates and by engineering the stress in their tethers to near the ultimate yield strength of
SizN, we are able to overcome a well-known trade-off between frequency and mechani-
cal quality factor to achieve fundamental mode fi,, x Qn, which are more than twice the
requirement for quantum ground state cooling from room temperature. Our on-chip
device performances are on par with the best values measured for optically levitated
nanospheres without the need for high power trapping lasers or complex experimen-
tal setups. We also demonstrate the possibility to combine our resonators with differ-
ent photonic crystal mirror designs which result in reflectivities between 95 % and 99 %,
while simultaneously achieving ultra-high Qp,. These results allow to finally realize ex-
periments to laser-cool a mechanical oscillator from room temperature to its quantum
ground state (see SI). Such reflective tethered membranes are also ideal for optical trap-
ping configurations that enhance the frequency and the mechanical quality factor even
further, while avoiding thermal bistabilities which become a severe limitation at high
laser powers [108, 109]. With a Q, ~ 108, our dissipation rates are only matched in other
silicon nitride membranes with the use of cryogenic cooling near 14 mK, with an im-
provement of two orders of magnitude in mechanical quality factor from room temper-
ature [110]. This allows one to speculate that coupling our new generation of resonators
to such low temperature baths could allow for Qy, ~ 10°.

Our devices have the potential to allow for fundamental tests of quantum physics
by generating massive, non-classical states of a mechanical oscillator, for example in
space, where complicated cryogenic setups are not feasible [111]. In addition, thanks to
the ultra-low mechanical dissipation, it is possible to push boundaries of applications
in ultra-sensitive (e.g. force) detection, as has recently been demonstrated [112]. For the
devices used here, we calculate a force sensitivity of about 10 aN/ Hz!'/2, which, together
with reference [112] and to our best knowledge, is the highest to date at room tempera-
ture. Achieving this level of dissipation in an on-chip design heralds a realistic building
block towards optically-linked silicon-based quantum networks [113] operating at room
temperature.



4.5. CONCLUSION 49

ACKNOWLEDGMENTS

We would like to thank M. Aspelmeyer, L. Bavdaz, A. G. Krause, I. Marinkovi¢, and G. A.
Steele for fruitful discussions and help with early measurements. We also acknowledge
valuable support from the Kavli Nanolab Delft, in particular from C. de Boer and M.
Zuiddam.




50 4. HIGH-Q SIN MECHANICAL RESONATORS

4.6. SUPPLEMENTARY INFORMATION

4.6.1. COOLING TO Low PHONON OCCUPANCIES

Cooling to the motional ground state of a mechanical oscillator with frequency w, and
linewidth I'y, (FWHM) using an optical cavity with frequency w. and amplitude decay
rate x in practice means reducing the average thermal occupation to 75 < 1. In order
to resolve the mechanical noise spectrum this also means that the effective mechani-
cal quality factor Qe > 1. Qefr is the optomechanically broadened quality factor and is
different from the intrinsic quality factor Qy, = w, /T'y. To experimentally achieve such
cooling performances, we significantly increase the optomechanical coupling from bare
SizN, resonators by adding photonic crystals, which allow us to reach reflectivities be-
tween 95 % and 99 % (see main text). In the following analysis, we calculate the phonon
occupancies and the corresponding effective quality factors that are achievable by op-
tomechanically cooling the mechanical resonators presented in this letter.

EFFECTIVE MECHANICAL FREQUENCY AND DAMPING RATES

The optomechanical coupling changes the mechanical properties of the resonator, giv-
ing rise to an effective frequency wiff(w) = w?, + 20wop (w) and damping rate Tegr(w) =
I'm +T'om(@). wom () and I'om (w) are the shifted frequency and damping rate due to
the optomechanical interaction, derived from the modified mechanical susceptibility in
frequency space w, which are given by [13]

o) = za)m( A+w N A—w )
M =8\ dr02+x? T B-wZi2)’
Wm K K
r w) =g*—=2 — s
om@) =g ((A+w)2+1<2 (A—w)2+1<2)
where w) is the laser frequency, A = w; — o the detuning with respect to the cavity,
g = 8oV ¢ the linearized optomechanical coupling strength, 7. = 5—5“(2'3 2 the aver-

age cavity photon number, P the laser power, x; the amplitude d