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A B S T R A C T

System safety and reliability assessment relies on historical data and experts opinion for estimating the required
failure probabilities. When data comes from different sources, be it different databases or subject domain ex-
perts, the estimation of accurate probabilities would be very challenging, if not impossible, and subject to high
epistemic uncertainty. In such cases, the use of imprecise probabilities to reflect the incomplete knowledge of
analysts and their epistemic uncertainty is inevitable.
Evidence theory is an effective tool for manipulating imprecise probabilities. However, challenges in the

assignment of prior belief masses and the lack of effective inference algorithms for combining and updating the
belief masses have impeded the widespread application of evidence theory.
To address the foregoing issues, in the present study, (i) an innovative heuristic approach is developed to

determine the prior belief masses based on the prior imprecise probabilities, and (ii) it is demonstrated how
Bayesian network can be used for both propagating and updating the belief masses. In a nutshell, the developed
methodology converts the prior imprecise probabilities into prior belief masses, propagates and updates the
belief masses using Bayesian network, and back-transforms the predicted/updated belief masses to posterior
imprecise probabilities.

1. Introduction

Uncertainty is an integral part of system safety and reliability as-
sessment. It can be in the form of structural uncertainty, reflecting the
indeterminacy in the selection of a model to represent an engineering
system, or in the form of parameter uncertainty, reflecting the un-
certainty in the data used as model input. Having a sufficiently large
and reliable dataset, both types of the foregoing uncertainty can rea-
sonably be accounted for in the modeling and assessment of en-
gineering systems. For instance, in the case of structural uncertainty, a
modeler may use a number of metrics such as Bayesian Information
Criterion (BIC) (Schwarz, 1978) to select among a finite set of models
the model which is simpler (having less parameters) yet results in the
maximum likelihood of given data (Neapolitan, 2003). In the case of
parametric uncertainty, which is the scope of the present study, prob-
ability distributions are the most common way to characterize the
randomness of events.

However, in absence of sufficient data or data of sufficient accuracy,
for example due to the rarity of an event, identification of point prob-
abilities or probability distributions to characterize parameter un-
certainty would be subject to degrees of imprecision, if not practically

impossible. In such cases, for instance, the analyst may be able to ex-
press his prior assessment of an event in the form of interval or im-
precise probabilities (Walley, 1991). Imprecise probabilities char-
acterize the uncertainty of an event A through a lower probability P A( )

_
and an upper probability P A¯ ( ), resulting in less specific yet more
credible outcomes (Kozine and Filimonov, 2000). Imprecise prob-
abilities have effectively been used in system safety and reliability as-
sessment to tackle epistemic uncertainty arising from data scarcity, data
incoherency, data incompleteness, and prior ignorance (Coolen and
Newby, 1994; Penmetsa and Grandhi, 2002; Utkin and Kozine, 2010).

Dempster-Shafer Theory (DST) – also known as evidence theory
(Dempster, 1967; Shafer, 1976) – has been employed as a promising
technique for manipulating imprecise probabilities (Guth, 1991; Xu and
Smets, 1996; Denoeux, 1999; Kozine and Filimonov, 2000; Smets,
2002; Rakowsky, 2007; Simon et al., 2008; Zhang et al., 2017). In DST,
the propagation of uncertainty is based on belief masses rather than
probability masses. The application of DST to reasoning with imprecise
probabilities consists of three steps: (i) obtaining the belief masses
(degrees of belief) from imprecise probabilities, (ii) combining the be-
lief masses using Dempster’s rule of combination and propagating the
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beliefs, and (iii) converting the resultant belief masses back into im-
precise probabilities.

Nevertheless, compared to probability theory, the application of
evidence theory to the field of system safety and reliability has not been
so widespread mainly due to the drawbacks of Dempster’s rule of
combination and also the lack of effective inference (propagation) al-
gorithms:

• Dempster’s rule can generate counterintuitive results when used to
combine belief masses derived from inconsistent (or even con-
sistent) probability intervals (Zadeh, 1986; Kozine and Filimonov,
2000). Besides its inefficiency in producing consistent results when
combining the belief masses (forward reasoning), Dempster’s rule
cannot be joined with Bayes’ rule for belief updating (backward
reasoning).
• The inference algorithms developed based on evidence theory for
combining joint/disjoint belief masses are not so effective as those
based on probability theory (Simon et al., 2008). This in turn has
hindered the application of evidence theory to complicated and
interdependent processes and systems. However, the development
of evidential networks (ENs), which are directed acyclic graphs for
reasoning based on belief masses (Xu and Smets, 1996), has largely
facilitated the application of evidence theory to complex systems
(Zhang et al., 2017).

To address the foregoing issues and enhance the efficiency of DST in
handing imprecise probabilities, Simon et al. (2008, 2009) developed
an EN based on Bayesian network (BN), hereafter BN-based EN. This
way, they managed to use the junction tree algorithm – an algorithm
used in BN for belief propagation (Jensen, 1996) – to propagate belief
masses, ridding the need of Dempster’s rule of combination.

In the present study, we modify the BN-based EN to make it more
intuitive and readily applicable to complex and interdependent sys-
tems. We also demonstrate that the BN-based EN can be used to update
belief masses. More importantly, we introduce an innovative technique
for identifying belief masses from imprecise probabilities, which is the
first and the most challenging step in the application of DST.

Section 2 recapitulates the basics of DST; it is also shown how the
application of Dempster’s rule of combination may produce inconsistent
results. In Section 3, an innovative heuristic technique is introduced to
obtain belief masses from imprecise point probabilities. In Section 4, BN
and EN are briefly explained. In Section 5, the BN-based EN originally
introduced in Simon et al. (2008) is modified and shown to be applic-
able to both belief propagating and updating. In Section 6, an appli-
cation of the methodology to safety assessment under uncertainty is
demonstrated. The main outcomes of the study are summarized in
Section 6.

2. Imprecise probabilities

2.1. Evidence theory

There are many techniques to manipulate and propagate imprecise
probabilities, including fuzzy sets, interval analysis, second-order
probabilities, and DST (Eldred et al., 2011). DST, which is also known
as evidence theory, was originally introduced by Dempster (1967) and
further developed by Shafer (1976) as a means to express lower and
upper bounds probabilities. DST has since been used as an effective tool
for handling imprecise probabilities and reasoning under uncertainty
(Holmberg et al., 1989; Guth, 1991; Xu and Smets, 1996; Denoeux,
1999; Smets, 2002; Yager, 2004; Bae et al., 2004; Rakowsky, 2007;
Simon et al., 2008; Riley, 2015; Misuri et al., 2018).

According to DST, all the possible states (mutually exclusive and
collectively exhaustive) of an event are presented as singletons in a set
known as the frame of discernment Ω. Based on available information
(objective data or experts’ opinion), to each subset of Ω such as Ai an

evidential weight 0≤m(Ai)≤ 1 can be assigned to indicate the degree
of evidence in favor of the claim that a specific state in Ω belongs to Ai
(Rakowsky, 2007). m(Ai) is also known as the belief mass function (or
belief mass, in short):

= H H H{ , , , }n1 2 (1)

=A H H H H H H H H H H2 { , { }, { }, , { }, { , }, { , }, , { , , , }}i n n1 2 1 2 1 3 1 2

(2)

Each Ai which satisfies m(Ai) > 0 is called a focal set. If all the
states of an event are known, then m(∅)=0, and the null hypothesis
(state) can be eliminated from the set of focal sets for simplicity.
Otherwise, the null can be maintained as a focal set with a positive
belief mass to show the uncertainty about the possible states of the
event of interest (Simon et al., 2008). Further, it must always hold that:

=m A( ) 1i
2 (3)

Having all m(Ai) determined, the amounts of belief (Bel) and
plausibility (Pls) of each focal set Ai, which are equivalent to the lower
and upper probabilities of Ai, respectively, can be determined as
(Shafer, 1976):

=Bel A m B( ) ( )i
B B A| i (4)

=Pls A m B( ) ( )i
B B A| i (5)

Bel A P A Pls A( ) ( ) ( )i i i (6)

According to Eqs. (4) and (5), Bel(Ω)= Pls(Ω)=1.0.
Further, as can be noted from Eq. (4), Bel(Ai) can be interpreted as

the degree of evidence that the state of the event belongs to Ai or to any
of its subsets, i.e., B⊆Ai. Similarly, according to Eq. (5), Pls(Ai) can be
interpreted as the degree of evidence that the state of the event belongs
to Ai or any set such as B whose intersection with Ai is not null, i.e., B
Ai≠∅. The difference between Pls(Ai) and Bel(Ai) represents the
epistemic uncertainty about Ai as shown in Fig. 1 (Rakowsky, 2007).

Since Bel(Ai) and Pls(Ai) are non-additive functions, that is, Bel
(Ai)+ Pls(Ai)≠ 1 (Simon et al., 2008):

=Bel A Pls A( ) 1 ( )i
c

i (7)

=Pls A Bel A( ) 1 ( )i
c

i (8)

where Ai
c is the complement of Ai, i.e., =A Ai

c
i. Having the Bel

and Pls functions, the belief mass of a focal set can be determined using
the möbius transformation as (Smets, 2002):

=m A Bel B( ) ( 1) ( )i
B B A

A B

|

| | | |

i

i

(9)

where A B| | | |i refers to the difference between the number of elements
in Ai and B. As can be noted from Eq. (9), for singleton focal sets, which
are the focal sets with only one element, m(Ai)= Bel(Ai). Further, the
amount of uncertainty in a focal set can be expressed as:

Fig. 1. Presentation of epistemic uncertainty using belief and plausibility
functions (Rakowsky, 2007).
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=Unc A Pls A Bel A( ) ( ) ( )i i i (10)

Considering an event with two states S1 and S2; the frame of dis-
cernment and the focal sets of the event can be identified as Ω= {S1,
S2} and =A 2i = {∅, {S1}, {S2}, {S1, S2}}, respectively. Since the
states of the event are known with certainty, m(∅)=0, and thus ∅ is
no longer considered as a focal set: Ai={{S1}, {S2}, {S1, S2}}. Among
the remaining focal sets, {S1} and {S2} are singletons, referring to the
exact states of the system whereas {S1, S2} refers to the uncertainty of
the analyst about the state of the event.

Suppose that based on the available evidence, the lower and upper
probabilities of the event being in state {S1} has been determined as
0.3≤P(S1)≤ 0.8. According to Eq. (6), the lower and upper prob-
abilities can be taken as Bel(S1)= 0.3 and Pls(S1)= 0.8. Since {S1} is a
singleton, based on Eq. (9): m(S1)=Bel(S1)= 0.3.

Since the focal sets {S1} and {S2} are complements (see the system’s
Ω), using Eqs. (7) and (9): m(S2)= Bel(S2)= 1−Pls(S1)= 0.2. As the
belief masses of all the focal sets have to add up to unity (Eq. (3)), m(S1,
S2)= 1−m(S1)−m(S2)= 0.5. Obviously, Bel(S1, S2)=Pls(S1,
S2)= 1.0, showing that at a time the state of the event will certainly be
one of {S1} or {S2}. Having m(S2)= 0.2 and m(S1, S2)= 0.5, using
Eqs. (4) and (5), the belief and plausibility measures of {S2} can be
calculated as Bel(S2)=m(S2)= 0.2 and Pls(S2)=m(S2)+m(S1,
S2)= 0.7; thus: 0.2≤P(S2)≤ 0.7.

The amounts of Bel and Pls of {S1} and {S2} have been depicted in
Fig. 2, where the amount of uncertainty for each state has been shown
as the difference between the respective Pls and Bel amounts (the
numbers inside the gray areas). For the sake of clarity, the amount of
uncertainty for each state has been denoted by positive and negative
signs to show that the increase in one’s probability is compensated for
by the decrease in the other’s. As can be noted from Fig. 2, m(S1, S2) is
equal to the contribution of the uncertainty of one of the states to the
uncertainty of the other state, which in this case is m(S1, S2)=Unc
(S1)=Unc(S2)= 0.5.

Having the lower and upper probabilities of the states1, the belief
masses of all the focal sets can be determined for an event with two
states (e.g., the foregoing example) or three states (will be shown in the
next section). To calculate the belief masses of events with more than
three states, the abovementioned equations will result in a system of
equations with more unknowns than the equations (an undetermined
system of equations) and thus an infinite number of solutions. In
Section 3 we will introduce a heuristic approach to assign belief masses
to events with more than three states.

2.2. Dempster’s rule of combination

Dempster’s rule of combination is a technique to aggregate the be-
lief masses assigned to focal sets by multiple independent sources of
information (e.g., different databases, or experts) (Shafer, 1976). This
rule takes into account common shared believes among the sources
while discarding the conflicting believes through a normalization
factor. Having m1(A) and m2(A) as belief masses estimated by two
sources of information for an identical frame of discernment, the joint
belief mass m1,2(A) can be calculated as:

=m ( ) 01,2 (11)

= =
=

m A m m A
K

m B m C( ) ( )( ) 1
1

( ) ( )
B C A

1,2 1 2 1 2
(12)

=
=

K m B m C( ) ( )
B C

1 2
(13)

where K is a measure of conflict between the believes of source 1 and
source 2. m1(B) and m2(C) are the masses of the subsets of the same
frame of discernment according to the two different sources of in-
formation, e.g., two experts.

Dempster’s rule of combination, however, has been criticized for
generating inconsistent and counterintuitive results (Zadeh, 1986;
Voorbraak, 1991; Kozine and Filimonov, 2000). For instance, consider a
system with two states ΩSystem= {up, down}; asking the opinion of two
experts about the probability of the system being in the down state, the
first expert expresses his opinion as 0.1 < P1(down) < 0.3 whereas
the second expert as 0.4 < P2(down) < 0.7.

According to the 1st expert: m1(down)=Bel1(down)= 0.1,
m1(up)= 1−Pls1(down)= 1−0.3=0.7, and m1(up, down)=1
−m1(down)−m1(up)= 0.2. According to the 2nd expert:
m2(down)=Bel2(down)=0.4, m2(up)= 1−Pls2(down)= 1−0.7
=0.3, and m2 (up, down)= 1−m2(down)−m2(up)= 0.3.

To find the joint belief mass m1,2(down), the measure of conflict K
should first be calculated. Since {up} {down}=∅, K=m1(down).
m2(up)+m1(up). m2(down)= (0.1 × 0.3)+ (0.7 × 0.4)= 0.31. Thus:

= +

+ =
= +

+ =
= =

m down m down m down m down m up down

m up down m down
m up m up m up m up m up down

m up down m up
m up down m down m up

( ) { ( ). ( ) ( ). ( , )

( , ). ( )} 0.22;
( ) { ( ). ( ) ( ). ( , )

( , ). ( )} 0.70, and
( , ) 1 ( ) ( ) 0.08.

K

K

1,2
1

1 1 2 1 2

1 2

1,2
1

1 1 2 1 2

1 2

1,2 1,2 1,2

As a result, Bel1,2(down)=m1,2(down)=0.22 and
Pls1,2(down)=m1,2(down)+m1,2(up, down)=0.30, resulting in
0.22≤P12(down)≤ 0.30. As can be seen from this example, the ag-
gregation of belief masses via Dempster’s rule of combination has re-
sulted in a joint probability interval for the down state of the system
which is a subset of the probability interval estimated by the first expert
despite the fact that the opinions of the both experts were equally taken
into account. An application of Dempster’s rule to a ternary event can
be found in Rakowsky (2007).

3. Identifying belief masses from imprecise probabilities: A
heuristic technique

In this section, we introduce a heuristic technique for obtaining the
joint belief masses from imprecise point probabilities with no need for
applying Dempster’s rule of combination. In Section 5, we will de-
monstrate how the identified belief masses can be used in a BN form-
alism for belief propagation.

3.1. Ternary event

Suppose that we seek the opinion of the experts about the

Pls = 0.8

Bel = 0.3

+ 0.5
- 0.5

S1 S2

Bel = 0.2

Pls = 0.7

Fig. 2. Relationship between amounts of uncertainty in a binary event. The
amount of belief mass shared between the states is equal to the contribution of
one state’s uncertainty to the other’s.

1 Each state is equivalent to a singleton focal set.
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probabilities of the states of a ternary event. This time the experts ex-
press their believes in the form of point probabilities as reported in
Table 1.

Hence, the experts’ uncertainty about the states of the system can be
expressed using probability bounds (Simon et al., 2008) as:

= =
= =
= =

P P
P P
P P

0.2 P(S1) 0.5
0.3 P(S2) 0.5
0.2 P(S3) 0.3

1 2

2 1

2 1

Note that these imprecise probabilities can also be interpreted as the
imprecise probabilities of the states estimated by one expert (instead of
two) based on available evidence. Since {S1}, {S2}, and {S3} are sin-
gleton focal sets: m(S1)=Bel(S1)= 0.2, m(S2)=Bel(S2)= 0.3, and m
(S3)= Bel(S3)= 0.2.

Now consider the focal set {S1, S2}. According to Eq. (7): Bel(S1,
S2)= 1−Pls(S3)= 0.7. Furthermore, since {S1}, {S2}, and {S1, S2}
are the subsets of {S1, S2}, using Eq. (9): m(S1, S2)= Bel(S1, S2)−Bel
(S1)− Bel(S2)= 0.2. Following the same procedure, m(S1, S3)= 0.1,
m(S2, S3)= 0, and m(S1, S2, S3)= 0. As such, {S1, S3} and {S1, S2,
S3} would no longer be considered as focal sets. This approach has been
adopted from Simon and Weber (2009) where the lower and upper
bound probabilities (or failure rates) have been derived from different
reliability databases instead of subject domain experts.

Consider the previous ternary event with the same point prob-
abilities in Table 1. Having the lower and upper probability bounds of
the states, the amounts of shared belief masses can be identified using
the similar schematic approach as in Fig. 2.

Fig. 3 depicts the amounts of uncertainty (numbers inside gray
areas) about the probabilities of S1, S2, and S3. Again, the uncertainties
have been denoted by positive and negative signs merely to indicate the
direction of changes (increase or decrease) in the probabilities when
moving from the first expert (denoted as P1) to the second expert (de-
noted as P2).

As can be seen from Fig. 3, the uncertainty in S1 is equal to an
increase from P1(S1)= 0.2 to P2(S1)= 0.5, i.e., Unc
(S1)= P2(S1) – P1(S1)=+ 0.3. This increase in the probability of S1
has been compensated for by both the decrease in the probability of S2
as Unc(S2)= P1(S2)− P2(S2)=− 0.2 and the decrease in the prob-
ability of S3 as Unc(S3)=P1(S3)− P2(S3)=− 0.1.

Since the amount of belief masses shared between the two states is
equal to the contribution of one state’s uncertainty to the other state’s

uncertainty and vice versa, m(S1, S2) will be equal to the increase in P
(S1) due to the decrease in P(S2), or simply the contribution of Unc(S2)
to Unc(S1). Considering the absolute values of uncertainties (dis-
regarding their positive or negative sign), such contribution can be
quantified as:

=
+

= ×
+

=m(S1, S2) Unc(S1) Unc(S2)
Unc(S2) Unc(S3)

0.3 0.2
0.2 0.1

0.2

Likewise, having Unc(S1)=+0.3 and Unc(S3)=−0.1:

=
+

= ×
+

=m(S1, S3) Unc(S1) Unc(S3)
Unc(S2) Unc(S3)

0.3 0.1
0.2 0.1

0.1

As can be seen from Fig. 3, both P(S2) and P(S3) decrease due to an
increase in P(S1), making S2 and S3 co-directional focal sets, that is,
they both are associated with negative (direction-wise) uncertainties.
Since S2 and S3 both experience negative uncertainties, they do not
seem to contribute to each other’s uncertainty (a negative uncertainty
cannot be compensated for by another negative uncertainty), and thus
m(S2, S3)= 0. Having the belief masses of single and binary focal sets,
the belief mass of Ω can thus be calculated using Eq. (3) as m(S1, S2,
S3)= 0.

As can be seen, the belief masses calculated using the heuristic
approach in Fig. 3 are the same as the ones calculated using the ap-
proach adopted from Simon and Weber (2009). Thus, in the next ex-
ample, we only demonstrate the application of the heuristic technique.

3.2. Quaternary event

Now suppose an event with four states with a frame of discernment
as Ω= {S1, S2, S3, S4} and the power set Ai={(S1}, …, {S4}, {S1, S2},
…, {S3, S4}, {S1, S2, S3}, …, (S2, S3, S4}, {S1, S2, S3, S4}}. The two
experts’ opinions about the states probabilities are presented in Table 2.

Similarly to the previous section, the experts’ uncertainty about the
states of the event can be expressed using probability intervals as:

= =
= =
= =
= =

P P
P P
P P
P P

0.1 P(S1) 0.3
0.4 P(S2) 0.45
0.15 P(S3) 0.3
0.1 P(S4) 0.2

1 2

1 2

2 1

2 1

The lower bound probabilities can be taken as the belief functions
whereas the upper bound probabilities as the plausibility functions.
Owing to the fact that the belief function of a singleton focal set is equal
to its belief mass: m(S1)= 0.1, m(S2)= 0.4, m(S3)= 0.15, and m
(S4)= 0.1. Fig. 4 depicts the lower and upper probability bounds of the
states as well as the amounts of uncertainty, where P1 and P2 refer,
respectively, to the estimates made by the first and the second experts.

The belief masses of the binary focal sets can be calculated based on
the contribution of positive and negative (direction-wise) uncertainties
as:

=
+

=
+

= ×
+

=

m S S Unc S Unc S
Unc S Unc S

Unc S Unc S
Unc S Unc S

( 1, 3) ( 1) ( 3)
( 3) ( 4)

( 3) ( 1)
( 1) ( 2)

0.2 0.15
0.15 0.1

0.12.

Table 1
Experts opinion about a ternary event in the form of point probabilities.

State Expert 1 Expert 2

S1 P1= 0.2 P2= 0.5
S2 P1= 0.5 P2= 0.3
S3 P1= 0.3 P2= 0.2

+ 0.3

- 0.2

S1 S2

- 0.1

S3

P1= 0.2

P2= 0.5 P1= 0.5

P2= 0.3
P1= 0.3

P2= 0.2

Fig. 3. Presentation of uncertainty in a three-state event. The probabilities are
listed in Table 1.

Table 2
Experts opinion about the states of a quaternary event.

State Expert 1 Expert 2

S1 P1= 0.1 P2= 0.3
S2 P1= 0.4 P2= 0.45
S3 P1= 0.3 P2= 0.15
S4 P1= 0.2 P2= 0.1
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=
+

=
+

= ×
+

=

m S S Unc S Unc S
Unc S Unc S

Unc S Unc S
Unc S Unc S

( 1, 4) ( 1) ( 4)
( 3) ( 4)

( 4) ( 1)
( 1) ( 2)

0.2 0.1
0.15 0.1

0.08.

=
+

=
+

= ×
+

=

m S S Unc S Unc S
Unc S Unc S

Unc S Unc S
Unc S Unc S

( 2, 3) ( 2) ( 3)
( 3) ( 4)

( 3) ( 2)
( 1) ( 2)

0.05 0.15
0.15 0.1

0.03.

=
+

=
+

= ×
+

=

m S S Unc S Unc S
Unc S Unc S

Unc S Unc S
Unc S Unc S

( 2, 4) ( 2) ( 4)
( 3) ( 4)

( 4) ( 2)
( 1) ( 2)

0.05 0.1
0.15 0.1

0.02.

Likewise, for the co-directional singleton focal sets, we will have m
(S1, S2)=m(S3, S4)= 0. The summation of the belief masses of the
single and binary focal sets determined this way should add up to unity,
making the belief masses of the other multi-state focal sets (e.g., focal
sets with three states) amount to zero, according to Eq. (3).

In order to examine the accuracy of the foregoing approach in
identifying the belief masses, consider the belief function of the focal set
{S2, S3, S4} which can be calculated using Eqs. (4) or (7). Considering
Eq. (4), for instance, Bel(S2, S3, S4)= 1−Pls(S1)= 1−0.3= 0.7.
Similarly, using Eq. (7), Bel(S2, S3, S4)=m(S2)+m(S3)+m(S4)+m
(S2, S3)+m(S2, S4)+m(S3, S4)+m(S2, S3, S4)= 0.7, showing that
the belief masses identified using the heuristic approach are correct.

The results obtained from the graphical presentation of the un-
certainties and belief masses can be summarized as:

Suppose that based on the lower and upper bounds probabilities, the
singleton focal sets (focal sets with one state, or simply all the states of
the system) can be split into two subsets +S and S to indicate the sets of
states associated with positive and negative uncertainties, respectively.

• If Si is a state of the system with positive uncertainty, i.e., +S Si ,
and Sj is a state of the system with negative uncertainty, i.e., S Sj :

= =
+

m S S Unc S
Unc S

Unc S
Unc S Unc S

Unc S
( , ) ( )

( )
( )

( ) ( )
( )i j i

j

S S k
j

i

S S qk q (14)

• If Si and Sj are co-directional, i.e., both belong to +S or both belong
to S :

=m S S( , ) 0.i j (15)

• Having the belief masses of the binary focal sets determined using
Eqs. (14) and (15), the belief masses of the other multi-state focal
sets such as m S S S( , , )i j k will be zero.

4. Reasoning under uncertainty

4.1. Bayesian network

Bayesian network BN= (G, θ) (Pearl, 1988) is a directed acyclic
graph for knowledge representation and probabilistic inference. G is the
structure of the graph in which the random variables are presented as
nodes and dependencies among the random variables are denoted as
directed arcs connecting the nodes (Fig. 5). The graph G satisfies
Markovian condition in that each variable in G is independent of its
nondescendents given its immediate parents. As a result, the associated
joint probability distribution of the random variables can be factorized
as the multiplication of conditional probabilities of the nodes (vari-
ables) given their parents as:

=
=

P X X X P X pa X( , , , ) ( | ( ))n
i

n

i i1 2
1 (16)

The conditional probabilities = P X pa X( | ( )i i i are known as the
network parameters which can either be elicited from subject matter
experts or be learned from data. Considering the BN in Fig. 5, the joint
probability of the variables can be presented as: P(X, Y, Z)= P(X) P(Y)
P(Z|X, Y). BN can be used for predictive analysis (prediction of the
symptom based on the cause), e.g., P(Z= z2|X= x1), and for diagnostic
analysis (diagnosis of the cause given the symptom), e.g., P
(X= x1|Z= z2).

Having the marginal probabilities of the root nodes (nodes with no
parents, e.g., X and Y in Fig. 5) and the conditional probabilities of child
nodes (e.g., Z in Fig. 5), a number of exact inference algorithms such as
bucket elimination (or variable elimination) (Dechter, 1996) and
junction tree (Lauritzen and Spiegelhalter, 1988; Jensen, 1996) as well
as approximate inference techniques such as belief propagation (also
known as sum-product message passing) (Pearl, 1982), Monte Carlo
Markov Chain (MCMC) (Cheng and Druzdzel, 1999), dynamic dis-
cretization and MCMC2 (Fenton and Neil, 2019) and rank correlation3

(Hanea and Kurowicka, 2008) can be used to calculate the marginal
probabilities of the child nodes.

4.2. Evidential network

The main assumption in BN formalism is that all data can be re-
presented by probability functions. That is, in BN the uncertain
knowledge is to be modeled by probability theory. There have been
attempts to develop network-based systems for modeling uncertain
knowledge using other theories such as possibility theory (Zadeh, 1978)
and evidence theory (Shafer, 1976). Shenoy (1989, 1992) proposed a
framework, so-called valuation-based system (VBS), for modeling un-
certainty in expert systems, applicable to probability theory, possibility
theory, and evidence theory. In other words, BN can be deemed as a

P1= 0.4

+ 0.05

- 0.15
- 0.1

S2 S3 S4

P2= 0.45

P1= 0.3

P2= 0.15
P2= 0.1

S1

P2= 0.3

P1= 0.1

+ 0.2
P1= 0.2

Fig. 4. Presentation of uncertainty in a four-state event. Probabilities are listed
in Table 2.

Fig. 5. A typical Bayesian network.

2 The algorithm has been used in AGENARISK software: https://www.
agenarisk.com/
3 The algorithm has been used in UNINET software: https://www.tudelft.nl/

ewi/over-de-faculteit/afdelingen/applied-mathematics/applied-probability/
risk/software/uninet/
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VBS based on probability theory (Simon et al., 2008; Simon and Weber,
2009; Benavoli et al., 2009).

Likewise, an evidential network (EN) can be seen as a specification
of VBS based on evidence theory (Xu and Smets, 1996). Similarly to BN,
EN is a directed acyclic graph composed of nodes and arcs to propagate
uncertainty based on belief masses and conditional belief tables rather
than probability masses and conditional probability tables. Lauritzen
and Jensen (1997) generalized the algorithm originally developed by
Jensen (1996) for BN so that it could be applied for inference in other
domains such as evidence theory.

5. Propagation of belief masses using Bayesian network

The belief masses allocated to the focal sets of an event must add up
to unity; thus, if the event is presented as a root node in BN, the belief
masses can be taken as marginal probabilities of the node’s states. As a
result, inference algorithms developed for BN can be used to propagate
uncertainty based on evidence theory (i.e., using belief masses) rather
than probability theory (i.e., using probability masses).

In this regard, Simon et al. (2008) developed an innovative EN by
combining DST with BN to take advantage of the junction tree algo-
rithm (Jensen, 1996) in propagating and computing the belief masses of
child nodes based on the belief masses of their parent nodes. This way,
the developed EN (herein, the BN-based EN), can simply be modeled
and analyzed using BN modeling software. In Section 5.1, the BN-based
EN developed by Simon et al. (2008) is first described using a simple
system made of binary components/events. In Section 5.2, we modify
the BN-based EN to become more intuitive and less complex. In Section
5.3, we demonstrate that the BN-based EN can be applied to both
combining and updating the belief masses.

5.1. BN-based EN (Simon et al., 2008)

For the sake of exemplification, consider a system Z comprising two
binary components X and Y as shown in Fig. 5. Since the components
and the system are binary, they can each be in one of S1= {up} or
S2= {down} states (see Fig. 2). The frame of discernment of X (or Y or
Z) and its focal sets can be presented as ΩX= {up, down} and
AX= {{up}, {down}, {up, down}}, respectively, where {up,
down}= {up} ⊕ {down}. Among the focal sets of X, {up, down}
models the epistemic uncertainty about the state of X (it does not mean
that X can be both in {up} and {down} states).

The combination of the belief masses of the components (nodes) can
be done by means of Boolean algebra (Simon et al., 2008). For instance,
consider a case where X= {up} and Y= {up, down} are connected to Z
by an AND4 gate; using Boolean algebra, the state of Z can be identified
as {up} ∩ {up, down}= {up} ∩ ({up}⊕{down})= ({up} ∩ {up}) ⊕
({up} ∩ {down})= {up} ⊕ {up}= {up}. Likewise, in the case of an
OR5 gate, the state of Z can be identified as {up} ∪ {up,
down}= ({up}∪{up}) ⊕ ({up}∪{down})= {up} ⊕ {down}= {up,
down}. The results of AND and OR gates in the form of a truth table
have been presented in Table 3.

For the system shown in Fig. 5, assume that the analyst, based on his
degree of belief, has assigned the marginal belief mass distributions to
the focal sets of X and Y as m(AX)= {0.5, 0.4, 0.1} and m(AY)= {0.4,
0.4, 0.2}. Fig. 6 displays the resulting EN in which X and Y are con-
nected to Z via OR gate.

As can be seen in Fig. 6, the inference algorithm of BN can be used
to calculate the marginal belief mass distribution of Z as m(AZ)= {0.2,
0.64, 0.16} based on the marginal mass distributions of X and Y. Having

the belief mass distribution of Z, the belief and plausibility of Z= {up}
can be calculated using Eqs. (4) and (5) as Bel({up})=m({up})= 0.2
and Pls({up})=m({up})+m({up, down})= 0.36. Thus, according to
Eq. (6): 0.2≤ P(Z=up)≤ 0.36. Likewise, the belief and plausibility of
Z= {down} can be calculated as: 0.64≤P(Z=down)≤0.80.

The procedure of calculating belief and plausibility can be carried
out directly using the developed BN (which in fact is an EN) by adding
the Bel and Pls nodes for each state to the network (Fig. 7). For the sake
of clarity, the conditional belief tables used to connect nodes Bel
(Z=down) and Pls(Z=down) to Z are presented in Tables 4 and 5,
respectively. To avoid an unnecessarily large EN, the analyst may de-
cide to eliminate nodes Bel(Z=up) and Pls(Z= up) from the EN and
only keep Bel(Z=down) and Pls(Z=down) if the failure of the system
is of interest (similar to fault tree analysis) or the opposite if the re-
liability of the system is of interest (similar to reliability block diagram
analysis). Nevertheless, having the belief and plausibility of the down
state, for instance, those of the up state can readily be calculated using
Eqs. (7) and (8).

5.2. Modified BN-based EN

As can be seen in Fig. 7, since Bel and Pls functions are non-additive,
e.g., Bel(up)+Pls(up)≠ 1.0, they have been presented as two separate
nodes in the EN (Simon et al., 2008). The EN in Fig. 7 can, however, be
modified as Fig. 8 so that the uncertainty in Z= {up} can be expressed
within Z without resorting to additional nodes. The EN in Fig. 8 has
been developed taking into account the relationship among the belief,
plausibility, and disbelief functions as shown in Fig. 1:

+ + =Bel A Unc A Dis A( ) ( ) ( ) 1.0i i i (17)

=Dis A Pls A( ) 1 ( )i i (18)

where Unc(Ai) and Dis(Ai), respectively, refer to the uncertainty and
disbelief about the focal set Ai (see Fig. 1).

Table 3
Truth table to combine the focal sets of components X and Y via AND and OR
gates (Simon et al., 2008).

Z

X Y OR AND

{up} {up} {up} {up}
{up} {down} {down} {up}
{up} {up, down} {up, down} {up}
{down} {up} {down} {up}
{down} {down} {down} {down}
{down} {up, down} {down} {up, down}
{up, down} {up} {up, down} {up}
{up, down} {down} {down} {up, down}
{up, down} {up, down} {up, down} {up, down}

Fig. 6. EN for uncertainty assessment using BN inference algorithm.

4 AND gate implies that both X and Y must be in the down state for Z to be in
the down state.
5 OR gate implies that either X or Y must be in the down state for Z to be in the

down state.

N. Khakzad Safety Science 116 (2019) 149–160

154



As can be seen from Fig. 8, Bel(Z= {down})= 0.64; having the
amounts of uncertainty as Unc(Z= {down})= 0.16 and disbelief as Dis
(Z= {down})= 0.20, the amount of plausibility can be calculated ei-
ther using Eq. (10) as Pls(Z= {down})= Bel(Z= {down})+Unc
(Z= {down})= 0.64+ 0.16= 0.80 or using Eq. (18) as Pls
(Z= {down})= 1−Dis(Z= {down})= 1 – 0.20=0.80. The results
are the same as those calculated via separate nodes of Bel(Z=down)
and Pls(Z=down) in Fig. 7. As previously mentioned, if the failure of
the system (Z) is of interest, the modeler may decide to keep the EN
simple by merely focusing on node “Z= down” in Fig. 8. The condi-
tional belief tables to calculate the states of node “Z= down” in case of
OR gate (Fig. 8) or AND gate have been reported in Tables 6 and 7,

Fig. 7. Calculating the interval probabilities of Z= {up} and Z= {down} using Bel and Pls nodes.

Table 4
Conditional belief table to calculate the states of Bel(Z=down) based on the
states of Z in Fig. 7.

Bel (Z=down)

Z Belief Doubt

{up} 0 1
{down} 1 0
{up,down} 0 1

Table 5
Conditional belief table to calculate the states of Pls(Z=down) based on the
states of Z in Fig. 7.

Pls (Z=down)

Z Plausibility Disbelief

{up} 0 1
{down} 1 0
{up,down} 1 0

Fig. 8. Calculating the epistemic uncertainty of Z= {up} and Z= {down}
without additional nodes of Bel and Pls functions.

Table 6
Conditional belief table of node “Z= down” in the case of OR gate (Fig. 8).

Z= down (OR gate)

X Y Bel Unc Dis

up up 0 0 1
up down 1 0 0
up up, down 0 1 0
down up 1 0 0
down down 1 0 0
down up, down 1 0 0
up, down up 0 1 0
up, down down 1 0 0
up, down up, down 0 1 0

Table 7
Conditional belief table of node “Z= down” in the case of AND gate.

Z= down (AND gate)

X Y Bel Unc Dis

up up 0 0 1
up down 0 0 1
up up, down 0 0 1
down up 0 0 1
down down 1 0 0
down up, down 0 1 0
up, down up 0 0 1
up, down down 0 1 0
up, down up, down 0 1 0
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respectively.

5.3. Belief updating in BN-based EN

In Section 2.2, it was illustrated via an example how Dempster’s rule
of combination may produce inconsistent results when joining the be-
lief masses. Likewise, conventional ENs which rely on Dempster’s rule
of combination for propagating belief masses would inevitably inherit
the same drawback in combining or updating the belief masses, casting
doubt on the credibility of predicted (in forward analysis) and/or up-
dated (in backward analysis) belief masses and corresponding imprecise
probabilities.

Mapping EN to credal network (CN) – as an extension to BN in
which probability functions are replaced with credal sets (Cozman,
2000) – has been proposed in some studies as a potentially better so-
lution especially when it comes to belief updating. Application of CN to
probability updating, however, can produce excessively wide posterior
probability intervals which are not always so informative (Seidenfeld
and Wasserman, 1993). In addition, as shown in Misuri et al. (2018),
the inference algorithms developed for CN can generate different and
inconsistent results6.

In the present study, we will demonstrate that the BN-based EN can
reliably be used for belief updating, resulting in consistent updated
belief masses from which the posterior probability intervals can be
obtained. The reason is that the BN-based EN, as opposed to conven-
tional EN, takes advantage of BN inference algorithms for manipulating
the belief masses and propagating the uncertainty rather than relying
on Dempster’s rule of combination.

5.3.1. Results of evidential network
To make the discussion more concrete, the EN in Fig. 9 presents the

same EN in Fig. 6 in which the belief masses of X and Y have been
updated given mZ(down)=1.0, which simply implies P
(Z=down)=1.0, as evidence.

In order to examine the accuracy of the updated belief masses, a
comparison between the results of EN and a Monte Carlo simulation is
performed for both the forward (Fig. 6) and backward (Fig. 9) analyses.
In Fig. 6, given the belief masses of nodes X, Y, and Z, the corresponding
prior probability intervals of down states can be calculated as: 0.4≤P
(X=down)≤0.5, 0.4≤ P(Y=down)≤ 0.6, and 0.64≤P
(Z=down)≤0.8.

In Fig. 9, given the evidence in Z, i.e. mz (down)= 1.0, the updated
belief masses of X and Y can be used in the same way to calculate their
posterior probability intervals of down states as: 0.63≤ P(X=down |
Z=down)≤0.69 and 0.63≤P(Y=down | Z= down)≤0.76.

5.3.2. Result of Monte Carlo simulation
Since X and Y are the root nodes of the BN (or EN), they are con-

ditionally independent (as long as the state of Z is unknown, due to the
d-separation rule (Pearl, 1988)). As Z is connected to X and Y by OR
gate, the probability of Z in down state can be calculated as:

= = = + =
= =

P Z down P X down P Y down
P X down P Y down

( ) ( ) ( )
( ) ( ) (19)

Furthermore, using the Bayes’rule, the updated probability of X (or
Y) being in the down state given Z in the down state can be calculated
as:

= = = = = =
=

= =
=

P X down Z down P X down P Z down X down
P Z down

P X down
P Z down

( | ) ( ) ( | )
( )

( )
( ) (20)

To perform the Monte Carlo simulation, 1000 samples were gener-
ated for P(X=down) and P(Y= down) based on their prior probability
intervals 0.4≤ P(X=down)≤0.5 and 0.4≤ P(Y=down)≤0.6 as-
suming uniform distributions (the first two columns of Table 8).

For each pair of P(X=down) and P(Y=down), the probability of P
(Z=down) can then be calculated using Eq. (19) as in the 3rd column of
Table 8 while the conditional probabilities of P(X=down|Z=down) and
P(Y=down|Z=down) can be calculated using Eq. (20) as in the 4th and
5th columns of Table 8. Sorting the probabilities listed in the 3rd, 4th, and
5th columns of Table 8 from the lowest to the highest, the rounded-up
probability intervals were identified as: 0.65≤P(Z=down)≤0.79,
0.53≤P(X=down|Z=down)≤0.71, and 0.57≤P(Y=down|Z=
down)≤0.79.

The results of the EN analysis and Monte Carlo simulation are
summarized in Table 9, showing a good agreement between the pre-
dicted and updated probabilities calculated using these two methods.

6. Safety assessment with imprecise probabilities

6.1. Truss under tensile stress

To demonstrate an application of EN to safety assessment under
epistemic uncertainty, consider a truss consisting of two7 axial mem-
bers AB and AC, each with respective uniform square section areas of
aAB= 2×10−4m2 and aAC=4×10−4m2, under a concentrated load
F (kN) with a trunctated normal distribution as F∼Normal (µ= 180,
σ=25) as shown in Fig. 10. By solving the equilibrium equation of
joint A, the amounts of tensile forces in the bars AB and AC are de-
termined, respectively, as FAB= F1=0.5 F and FAC= F2= 0.866 F.

Assume that the analyst is not sure whether the bars are of the same
type and made of steel (Steel), alluminium alloy (Alloy), or ductile iron
(Iron), with respective ultimate tensile stresses (UTS) of 500MPa,
480MPa, and 410MPa. The analyst thus asks two experts to express
their degree of belief about the type of the bars, in the form of the lower
and upper bound probabilities as listed in Table 10. Given the heuristic
technique in Section 3, the epistemic uncertainty about the materials
type can be expressed via belief masses in Table 11.

6.2. Failure assessment

If the tensile stress (τ) in a bar exceeds the respective UTS, the bar

Fig. 9. EN of Fig. 6 which has been updated given the evidence
mZ(down)= 1.0.

6 Misuri et al. (2018) used GL2U (http://people.idsia.ch/~sun/gl2u.html)
and JavaBayes (http://www.cs.cmu.edu/~javabayes/) just to find out these
two packages would result in different posterior probabilities, with the latter
resulting in more logical posteriors according to the evidence.

7 Under the current loading condition, the member BC is not subject to any
axial load, and thus not contributing to the structure’s safety.
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fails. The truss thus loses its structural integrity (the system fails) if
either AB or AC fails. The failure of each of the bars under tensile stress
can be modeled as:

= =

=
×

= ×

P AB fails P UTS P F
a

UTS

P F UTS P F UTS

( ) ( )

0.5
2 10

( 4 10 )

AB AB
AB

AB
AB

AB AB4
4

(21)

= =

=
×

= ×

P AC fails P UTS P F
a

UTS

P F UTS P F UTS

( ) ( )

0.866
4 10

( 4.6 10 )

AC AC
AC

AC
AC

AC AC4
4

(22)

As such, AB and AC fail if the amount of F exceeds the amounts
listed in Table 12 considering different possible types of materials. The
EN for assessing the failure probability of the truss has been displayed
in Fig. 11.

In Fig. 11, the continuous variable F has been discretized into in-
tervals due to the fact that 99.7% of the density lies in µ± 3σ. How-
ever, since an F less than 164 kN would not cause failure in neither of
the bars (see Table 14), the first two intervals, i.e., µ− 2σ and µ−3σ,
have been merged together as the first state of node ‘F’. The states of the
nodes “Type of AB” and “Type of AC” and the respective probabilities
(belief masses) have already been identified in Table 11. Having the
intervals of F, the type of bars, and thus the corresponding minimum
amounts of F needed for the failure of each type (Table 12), the state
probabilities of nodes “AB fails” and “AC fails” can readily be calcu-
lated. For instance, consider a case where ‘F= Btw_180_205’ (i.e.,
180≤ F 〈2 0 5):

• For “Type of AB= Steel”, since the minimum F required for the
failure of an AB made of steel is 200 kN (see Table 12), the failure
probability of AB can be calculated as

= =P AB fails Type of AB Steel P F( | ) ( 200). As F is already be-
tween 180 and 205 kN, this probability could be modified as

= < = <
= <

P AB fails Type of AB Steel F P F F
P F

( | , 180 205) ( 200 |180 205)
(200 205)

.

Table 8
Part of the results generated by Monte Carlo simulation.

P (X= down) P(Y= down) P(Z= down) P(X=down|Z= down) P(Y=down|Z=down)

0.496 0.456 0.726 0.683 0.629
0.420 0.518 0.721 0.583 0.719
0.438 0.579 0.763 0.573 0.759
0.458 0.445 0.699 0.655 0.636
0.488 0.428 0.707 0.690 0.605

Table 9
Comparison between the results of evidential network (EN) and Monte Carlo (MC) simulation.

Forward analysis Backward analysis

Technique P(Z= down) P(X=down|Z=down) P(Y= down|Z= down)
EN 0.64≤P≤0.80 0.63≤P≤0.69 0.63≤P≤0.76
MC 0.65≤P≤0.79 0.53≤P≤0.71 0.57≤P≤0.79

Fig. 10. Truss under a concentrated load F.

Table 10
Prior point probabilities estimated by the experts for the type of the bars in
Fig. 10.

Type Bar AB Bar AC

Expert 1 Expert 2 Expert 1 Expert 2

Steel 0.2 0.3 0.4 0.5
Iron 0.3 0.4 0.2 0.1
Alloy 0.5 0.3 0.4 0.4

Table 11
Belief masses of the types of the bars based on the values in Table 10.

Focal set Bar AB Bar AC

{Steel} 0.2 0.4
{Iron} 0.3 0.1
{Alloy} 0.3 0.4
{Steel, Iron} 0.0 0.1
{Steel, Alloy} 0.1 0.0
{Iron, Alloy} 0.1 0.0
{Steel, Iron, Alloy} 0.0 0.0

Table 12
Amounts of F associated with the failure of truss members in Fig. 10.

Minimum F required for failure (KN)

Type UTS (MPa) AB AC

Steel 500 200 230
Iron 410 164 189
Alloy 480 192 221
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Because F∼Normal (µ=180, σ=25), this probability can be
calculated as < = =( ) ( )P F(200 205) 0.053205 180

25
200 180

25 ,
where (.) is the cumulative density function of standard normal
distribution, available in tabular forms or calculable from the error
function.

Since the type of AB is known for this certain state, Bel(AB
fails)= Pls(AB fails)= 0.053, resulting in Unc(AB fails)= 0.0 and thus
Dis(AB fails)= 1−0.053= 0.947.

Similarly:

• For “Type of AB= Iron”: =P AB fails Type of AB( |
< = < =Iron F P F F, 180 205) ( 164 |180 205) 1.0; thus: Bel

(AB fails)= Pls(AB fails)= 1.0, Unc(AB fails)= 0.0, Dis(AB
fails)= 0.0; and
• For “Type of AB=Alloy”: =P AB fails Type of AB( |

< = <
= < =

Alloy F P F F
P F

, 180 205) ( 192 |180 205)
(192 205) 0.157

; thus: Bel(AB

fails)= Pls(AB fails)= 0.157, Unc(AB fails)= 0.0, Dis(AB
fails)= 0.843.

Having the conditional belief mass functions (and probabilities)
calculated for certain types of AB, the ones for uncertain types of AB can
readily be determined:

• For “Type of AB=Steel_Alloy”, which refers to the uncertainty
about the type of AB, the smaller failure probability of 0.053 (which
is attributed to ‘Type of AB= Steel”) can be taken as Bel(AB fails)
whereas the larger failure probability of 0.157 (which is attributed
to “Type of AB=Alloy”) can be taken as Pls(AB fails). As such, Unc
(AB fails)= 0.157−0.053= 0.104, and Dis(AB
fails)= 1−0.053−0.104= 0.843. Likewise:
• For “Type of AB= Iron_Alloy”, the smaller failure probability of
0.157 (which is attributed to “Type of AB=Alloy”) can be taken as
Bel(AB fails) whereas the larger failure probability of 1.0 (which is
attributed to “Type of AB= Iron”) can be taken as Pls(AB fails). As
such, Unc(AB fails)= 0.843, and Dis(AB fails)= 0.0.

Having the conditional probabilities of nodes “AB fails” and ”AC
fails” determined this way, the conditional probabilities of node ‘Truss
fails” can be defined as an OR gate as presented in Table 13. For the

sake of clarity, the conditional probabilities for an AND gate have also
been included in Table 13. According to the belief masses in Fig. 11, the
probability intervals of the truss and its members can readily be cal-
culated as: 0.32≤P(Truss fails)≤ 0.36; 0.31≤ P(AB fails)≤ 0.35, and
0.05≤P(AC fails)≤ 0.07, implying a relatively higher contribution of
AB’s failure to the failure of truss.

6.3. Probability updating

As demonstrated in Section 5.3, the BN-based EN can also be used
for belief updating or diagnostic (backward) analysis. For this purpose,
evidence in the form of new observations can be used to update prior
beliefs about the system and its components. For instance, assume that
the analysist observes the truss not fail under F= 190 kN. This ob-
servation can be considered as two pieces of evidence and thus being
implemented in the EN by instantiating the states of nodes “Truss
fails=Dis” and ”F=Btw_180_205” as shown in Fig. 12.

Accordingly, using the updated belief mass functions for the types of
AB and AC, the updated lower and upper bound probabilities can be
calculated. For instance, the updated belief and plausibility functions of
“Type of AB=Alloy” can be calculated using Eqs. (4) and (5) as Be-
lAB(Alloy)=mAB(Alloy)= 0.48 and PlsAB(Alloy)=mAB(Alloy)+
mAB(Steel_Alloy)+mAB(Iron_Alloy)= 0.48+0.16+0.0=0.64. Ac-
cordingly updated probability of AB being made of aluminum alloy can
be presented as 0.48≤ P(Type of AB=Alloy|F= 190, Truss does not

Fig. 11. EN for failure modeling of the truss under epistemic uncertainty.

Table 13
Conditional probability table of node “Truss fails” in the case of OR/AND gate.
OR gate has been used in Fig. 11.

Truss fails (OR gate) Truss fails (AND gate)

AB fails AC fails Bel Unc Dis Bel Unc Dis

Bel Bel 1 0 0 1 0 0
Bel Unc 1 0 0 0 1 0
Bel Dis 1 0 0 0 0 1
Unc Bel 1 0 0 0 1 0
Unc Unc 0 1 0 0 1 0
Unc Dis 0 1 0 0 0 1
Dis Bel 1 0 0 0 0 1
Dis Unc 0 1 0 0 0 1
Dis Dis 0 0 1 0 0 1
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fail)≤ 0.64, which compared to the prior probability 0.3≤ P(Type of
AB=Alloy)≤ 0.5 (see Table 10) has notably increased. Using a similar
approach, the updated lower and upper bound probabilities for the type
of AB and AC can be calculated as reported in Table 14.

Selecting the most probable type of AB merely based on either prior
or posterior probabilities is likely to lead to incorrect results. To identify
the most likely type of AB given the above-mentioned observation, a
variation ratio8 (VR) can be calculated for each state as:

=VR x P x E P x
P x

( ) ( | ) ( )
( ) (23)

where P(x|E) is the updated probability of X= x given evidence E
(posterior probability of x), and P(x) is the prior probability of X= x.
The results have been presented in the last column of Table 14. It is
worth mentioning that the mean value of the posterior and prior
probability intervals have been used in Eq. (23) to calculate VR. As can
be seen, despite a higher posterior probability interval for “Type of
AB=Alloy” than “Type of AB= Steel”, it is Steel that has been iden-
tified as the most likely type of AB, according to its higher VR.

7. Conclusions

In the present study, we developed a methodology for using im-
precise probabilities in Bayesian network for system safety assessment
under uncertainty. In a nutshell, the developed methodology consists of
three steps: (i) identifying belief masses from imprecise probabilities,
(ii) propagating the belief masses in Bayesian network, and (iii)

converting the predicted and/or updated belief masses back into im-
precise probabilities:

• As for the first step, we in Section 3 developed an innovative
heuristic approach for identifying joint belief masses of multi-state
events from their imprecise probabilities with no need for Demp-
ster’s rule of combination. The heuristic approach is particularly
useful in the case of events with four or more states, where the
application of Dempster-Shafer Theory could lead to an un-
determined and insoluble system of equations for belief masses.
• As for the second step, we in Section 5.2 modified the Bayesian
network approach originally proposed by Simon et al. (2008) so that
the combination and propagation of belief masses could be per-
formed more intuitively and with less complexity. This modification
was demonstrated to facilitate the modeling of complex systems
through a simpler Bayesian network.
• As for the third step, in Section 5.3 we demonstrated that the
Bayesian network can be used for belief mass updating the same way
it can be used for probability mass updating. This achievement
especially enables the modeler to update the imprecise probabilities
with no need for resorting to other techniques such as Credal net-
work.

Nevertheless, it should be noted that the predicted and updated
imprecise probabilities calculated using the developed Bayesian net-
work are credible as long as the prior belief masses assigned to the root
nodes of the Bayesian network are not specified through Dempster’s
rule of combination. This is because Dempster’s rule of combination
tends to produce counterintuitive and inconsistent results when used to
combine the belief masses, let alone when used for their updating.
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